Sample records for flood control operations

  1. Cascade reservoir flood control operation based on risk grading and warning in the Upper Yellow River

    NASA Astrophysics Data System (ADS)

    Xuejiao, M.; Chang, J.; Wang, Y.

    2017-12-01

    Flood risk reduction with non-engineering measures has become the main idea for flood management. It is more effective for flood risk management to take various non-engineering measures. In this paper, a flood control operation model for cascade reservoirs in the Upper Yellow River was proposed to lower the flood risk of the water system with multi-reservoir by combining the reservoir flood control operation (RFCO) and flood early warning together. Specifically, a discharge control chart was employed to build the joint RFCO simulation model for cascade reservoirs in the Upper Yellow River. And entropy-weighted fuzzy comprehensive evaluation method was adopted to establish a multi-factorial risk assessment model for flood warning grade. Furthermore, after determining the implementing mode of countermeasures with future inflow, an intelligent optimization algorithm was used to solve the optimization model for applicable water release scheme. In addition, another model without any countermeasure was set to be a comparative experiment. The results show that the model developed in this paper can further decrease the flood risk of water system with cascade reservoirs. It provides a new approach to flood risk management by coupling flood control operation and flood early warning of cascade reservoirs.

  2. 33 CFR 209.220 - Flood control regulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the purpose of coordinating the operation of the flood control features of reservoirs constructed... responsible for the maintenance and operation of the reservoir involved after a detailed study of the flood.... Regulations prescribed by the Secretary of the Army for the maintenance and operation of local flood...

  3. 33 CFR 209.220 - Flood control regulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the purpose of coordinating the operation of the flood control features of reservoirs constructed... responsible for the maintenance and operation of the reservoir involved after a detailed study of the flood.... Regulations prescribed by the Secretary of the Army for the maintenance and operation of local flood...

  4. Application of Decision Tree to Obtain Optimal Operation Rules for Reservoir Flood Control Considering Sediment Desilting-Case Study of Tseng Wen Reservoir

    NASA Astrophysics Data System (ADS)

    ShiouWei, L.

    2014-12-01

    Reservoirs are the most important water resources facilities in Taiwan.However,due to the steep slope and fragile geological conditions in the mountain area,storm events usually cause serious debris flow and flood,and the flood then will flush large amount of sediment into reservoirs.The sedimentation caused by flood has great impact on the reservoirs life.Hence,how to operate a reservoir during flood events to increase the efficiency of sediment desilting without risk the reservoir safety and impact the water supply afterward is a crucial issue in Taiwan.  Therefore,this study developed a novel optimization planning model for reservoir flood operation considering flood control and sediment desilting,and proposed easy to use operating rules represented by decision trees.The decision trees rules have considered flood mitigation,water supply and sediment desilting.The optimal planning model computes the optimal reservoir release for each flood event that minimum water supply impact and maximum sediment desilting without risk the reservoir safety.Beside the optimal flood operation planning model,this study also proposed decision tree based flood operating rules that were trained by the multiple optimal reservoir releases to synthesis flood scenarios.The synthesis flood scenarios consists of various synthesis storm events,reservoir's initial storage and target storages at the end of flood operating.  Comparing the results operated by the decision tree operation rules(DTOR) with that by historical operation for Krosa Typhoon in 2007,the DTOR removed sediment 15.4% more than that of historical operation with reservoir storage only8.38×106m3 less than that of historical operation.For Jangmi Typhoon in 2008,the DTOR removed sediment 24.4% more than that of historical operation with reservoir storage only 7.58×106m3 less than that of historical operation.The results show that the proposed DTOR model can increase the sediment desilting efficiency and extend the reservoir life.

  5. A dimension reduction method for flood compensation operation of multi-reservoir system

    NASA Astrophysics Data System (ADS)

    Jia, B.; Wu, S.; Fan, Z.

    2017-12-01

    Multiple reservoirs cooperation compensation operations coping with uncontrolled flood play vital role in real-time flood mitigation. This paper come up with a reservoir flood compensation operation index (ResFCOI), which formed by elements of flood control storage, flood inflow volume, flood transmission time and cooperation operations period, then establish a flood cooperation compensation operations model of multi-reservoir system, according to the ResFCOI to determine a computational order of each reservoir, and lastly the differential evolution algorithm is implemented for computing single reservoir flood compensation optimization in turn, so that a dimension reduction method is formed to reduce computational complexity. Shiguan River Basin with two large reservoirs and an extensive uncontrolled flood area, is used as a case study, results show that (a) reservoirs' flood discharges and the uncontrolled flood are superimposed at Jiangjiaji Station, while the formed flood peak flow is as small as possible; (b) cooperation compensation operations slightly increase in usage of flood storage capacity in reservoirs, when comparing to rule-based operations; (c) it takes 50 seconds in average when computing a cooperation compensation operations scheme. The dimension reduction method to guide flood compensation operations of multi-reservoir system, can make each reservoir adjust its flood discharge strategy dynamically according to the uncontrolled flood magnitude and pattern, so as to mitigate the downstream flood disaster.

  6. 33 CFR 209.300 - Flood control regulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.300 Flood control regulations. (a) Regulations for the operation and maintenance of local flood protection works approved by the Secretary of the Army under the...

  7. Distillation Column Flooding Predictor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillationmore » columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid/vapor traffic that produce increased contact area and lead to substantial increases in separation efficiency – which translates to a 10% increase in energy efficiency on a BTU/bbl basis. The Flooding Predictor™ operates on the principle that between five to sixty minutes in advance of a flooding event, certain column variables experience an oscillation, a pre-flood pattern. The pattern recognition system of the Flooding Predictor™ utilizes the mathematical first derivative of certain column variables to identify the column’s pre-flood pattern(s). This pattern is a very brief, highly repeatable, simultaneous movement among the derivative values of certain column variables. While all column variables experience negligible random noise generated from the natural frequency of the process, subtle pre-flood patterns are revealed among sub-sets of the derivative values of column variables as the column approaches its hydraulic limit. The sub-set of column variables that comprise the pre-flood pattern is identified empirically through in a two-step process. First, 2ndpoint’s proprietary off-line analysis tool is used to mine historical data for pre-flood patterns. Second, the column is flood-tested to fine-tune the pattern recognition for commissioning. Then the Flooding Predictor™ is implemented as closed-loop advanced control strategy on the plant’s distributed control system (DCS), thus automating control of the column at its hydraulic limit.« less

  8. Ensemble Flow Forecasts for Risk Based Reservoir Operations of Lake Mendocino in Mendocino County, California

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Hartman, R. K.; Mendoza, J.; Evans, K. M.; Evett, S.

    2016-12-01

    Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation or flow forecasts to inform the flood operations of reservoirs. Previous research and modeling for flood control reservoirs has shown that FIRO can reduce flood risk and increase water supply for many reservoirs. The risk-based method of FIRO presents a unique approach that incorporates flow forecasts made by NOAA's California-Nevada River Forecast Center (CNRFC) to model and assess risk of meeting or exceeding identified management targets or thresholds. Forecasted risk is evaluated against set risk tolerances to set reservoir flood releases. A water management model was developed for Lake Mendocino, a 116,500 acre-foot reservoir located near Ukiah, California. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United State Army Corps of Engineers and is operated by the Sonoma County Water Agency for water supply. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has been plagued with water supply reliability issues since 2007. FIRO is applied to Lake Mendocino by simulating daily hydrologic conditions from 1985 to 2010 in the Upper Russian River from Lake Mendocino to the City of Healdsburg approximately 50 miles downstream. The risk-based method is simulated using a 15-day, 61 member streamflow hindcast by the CNRFC. Model simulation results of risk-based flood operations demonstrate a 23% increase in average end of water year (September 30) storage levels over current operations. Model results show no increase in occurrence of flood damages for points downstream of Lake Mendocino. This investigation demonstrates that FIRO may be a viable flood control operations approach for Lake Mendocino and warrants further investigation through additional modeling and analysis.

  9. The influence of major dams on hydrology through the drainage network of the Sacramento River basin, California

    USGS Publications Warehouse

    Singer, M.B.

    2007-01-01

    This paper reports basinwide patterns of hydrograph alteration via statistical and graphical analysis from a network of long-term streamflow gauges located various distances downstream of major dams and confluences in the Sacramento River basin in California, USA. Streamflow data from 10 gauging stations downstream of major dams were divided into hydrologic series corresponding to the periods before and after dam construction. Pre- and post-dam flows were compared with respect to hydrograph characteristics representing frequency, magnitude and shape: annual flood peak, annual flow trough, annual flood volume, time to flood peak, flood drawdown time and interarrival time. The use of such a suite of characteristics within a statistical and graphical framework allows for generalising distinct strategies of flood control operation that can be identified without any a priori knowledge of operations rules. Dam operation is highly dependent on the ratio of reservoir capacity to annual flood volume (impounded runoff index). Dams with high values of this index generally completely cut off flood peaks thus reducing time to peak, drawdown time and annual flood volume. Those with low values conduct early and late flow releases to extend the hydrograph, increasing time to peak, drawdown time and annual flood volume. The analyses reveal minimal flood control benefits from foothill dams in the lower Sacramento River (i.e. dissipation of the down-valley flood control signal). The lower part of the basin is instead reliant on a weir and bypass system to control lowland flooding. Data from a control gauge (i.e. with no upstream dams) suggest a background signature of global climate change expressed as shortened flood hydrograph falling limbs and lengthened flood interarrival times at low exceedence probabilities. This research has implications for flood control, water resource management, aquatic and riparian ecosystems and for rehabilitation strategies involving flow alteration and/or manipulation of sediment supplies. Copyright ?? 2006 John Wiley & Sons, Ltd.

  10. Development of a model-based flood emergency management system in Yujiang River Basin, South China

    NASA Astrophysics Data System (ADS)

    Zeng, Yong; Cai, Yanpeng; Jia, Peng; Mao, Jiansu

    2014-06-01

    Flooding is the most frequent disaster in China. It affects people's lives and properties, causing considerable economic loss. Flood forecast and operation of reservoirs are important in flood emergency management. Although great progress has been achieved in flood forecast and reservoir operation through using computer, network technology, and geographic information system technology in China, the prediction accuracy of models are not satisfactory due to the unavailability of real-time monitoring data. Also, real-time flood control scenario analysis is not effective in many regions and can seldom provide online decision support function. In this research, a decision support system for real-time flood forecasting in Yujiang River Basin, South China (DSS-YRB) is introduced in this paper. This system is based on hydrological and hydraulic mathematical models. The conceptual framework and detailed components of the proposed DSS-YRB is illustrated, which employs real-time rainfall data conversion, model-driven hydrologic forecasting, model calibration, data assimilation methods, and reservoir operational scenario analysis. Multi-tiered architecture offers great flexibility, portability, reusability, and reliability. The applied case study results show the development and application of a decision support system for real-time flood forecasting and operation is beneficial for flood control.

  11. Integrating a Typhoon Event Database with an Optimal Flood Operation Model on the Real-Time Flood Control of the Tseng-Wen Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, Y. W.; Chang, L. C.

    2012-04-01

    Typhoons which normally bring a great amount of precipitation are the primary natural hazard in Taiwan during flooding season. Because the plentiful rainfall quantities brought by typhoons are normally stored for the usage of the next draught period, the determination of release strategies for flood operation of reservoirs which is required to simultaneously consider not only the impact of reservoir safety and the flooding damage in plain area but also for the water resource stored in the reservoir after typhoon becomes important. This study proposes a two-steps study process. First, this study develop an optimal flood operation model (OFOM) for the planning of flood control and also applies the OFOM on Tseng-wun reservoir and the downstream plain related to the reservoir. Second, integrating a typhoon event database with the OFOM mentioned above makes the proposed planning model have ability to deal with a real-time flood control problem and names as real-time flood operation model (RTFOM). Three conditions are considered in the proposed models, OFOM and RTFOM, include the safety of the reservoir itself, the reservoir storage after typhoons and the impact of flooding in the plain area. Besides, the flood operation guideline announced by government is also considered in the proposed models. The these conditions and the guideline can be formed as an optimization problem which is solved by the genetic algorithm (GA) in this study. Furthermore, a distributed runoff model, kinematic-wave geomorphic instantaneous unit hydrograph (KW-GIUH), and a river flow simulation model, HEC-RAS, are used to simulate the river water level of Tseng-wun basin in the plain area and the simulated level is shown as an index of the impact of flooding. Because the simulated levels are required to re-calculate iteratively in the optimization model, applying a recursive artificial neural network (recursive ANN) instead of the HEC-RAS model can significantly reduce the computational burden of the entire optimization problem. This study applies the developed methodology to Tseng-wun Reservoir. Forty typhoon events are collected as the historical database and six typhoon events are used to verify the proposed model. These typhoons include Typhoon Sepat and Typhoon Korsa in 2007 and Typhoon Kalmaegi, Typhoon Fung-Wong, Typhoon Sinlaku and Typhoon Jangmi in 2008. The results show that the proposed model can reduce the flood duration at the downstream area. For example, the real-time flood control model can reduce the flood duration by four and three hours for Typhoon Korsa and Typhoon Sinlaku respectively. This results indicate that the developed model can be a very useful tool for real-time flood control operation of reservoirs.

  12. Development of Real-Time System for Urban Flooding by Surcharge of Storm Drainge and River Inundation

    NASA Astrophysics Data System (ADS)

    Shim, J. B.; Won, C. Y.; Park, J.; Lee, K.

    2017-12-01

    Korea experiences frequent flood disasters, which cause considerable economic losses and damages to towns and farms. Especially, a regional torrential storm is about 98.5mm/hr on September 21, 2010 in Seoul. The storm exceeds the capacity of urban drainage system of 75mm/hr, and 9,419 houses. How to monitor and control the urban flood disasters is an important issue in Korea. To mitigate the flood damage, a customizing system was developed to estimate urban floods and inundation using by integrating drainage system data and river information database which are managed by local governments and national agencies. In the case of Korean urban city, there are a lot of detention ponds and drainage pumping stations on end of drainage system and flow is going into river. The drainage pumping station, it is very important hydraulic facility for flood control between river and drainage system. So, it is possible to occur different patterns of flood inundation according to operation rule of drainage pumping station. A flood disaster is different damage as how to operate drainage pumping station and plan operation rule.

  13. The influence of controlled floods on fine sediment storage in debris fan-affected canyons of the Colorado River basin

    USGS Publications Warehouse

    Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E.; Alexander, Jason S.; Kaplinski, Matt

    2014-01-01

    Prior to the construction of large dams on the Green and Colorado Rivers, annual floods aggraded sandbars in lateral flow-recirculation eddies with fine sediment scoured from the bed and delivered from upstream. Flows greater than normal dam operations may be used to mimic this process in an attempt to increase time-averaged sandbar size. These controlled floods may rebuild sandbars, but sediment deficit conditions downstream from the dams restrict the frequency that controlled floods produce beneficial results. Here, we integrate complimentary, long-term monitoring data sets from the Colorado River in Marble and Grand Canyons downstream from Glen Canyon dam and the Green River in the Canyon of Lodore downstream from Flaming Gorge dam. Since the mid-1990s, several controlled floods have occurred in these canyon rivers. These controlled floods scour fine sediment from the bed and build sandbars in eddies, thus increasing channel relief. These changes are short-lived, however, as interflood dam operations erode sandbars within several months to years. Controlled flood response and interflood changes in bed elevation are more variable in Marble Canyon and Grand Canyon, likely reflecting more variable fine sediment supply and stronger transience in channel bed sediment storage. Despite these differences, neither system shows a trend in fine-sediment storage during the period in which controlled floods were monitored. These results demonstrate that controlled floods build eddy sandbars and increase channel relief for short interflood periods, and this response may be typical in other dam-influenced canyon rivers. The degree to which these features persist depends on the frequency of controlled floods, but careful consideration of sediment supply is necessary to avoid increasing the long-term sediment deficit.

  14. Model Predictive Control application for real time operation of controlled structures for the Water Authority Noorderzijlvest, The Netherlands

    NASA Astrophysics Data System (ADS)

    van Heeringen, Klaas-Jan; Gooijer, Jan; Knot, Floris; Talsma, Jan

    2015-04-01

    In the Netherlands, flood protection has always been a key issue to protect settlements against storm surges and riverine floods. Whereas flood protection traditionally focused on structural measures, nowadays the availability of meteorological and hydrological forecasts enable the application of more advanced real-time control techniques for operating the existing hydraulic infrastructure in an anticipatory and more efficient way. Model Predictive Control (MPC) is a powerful technique to derive optimal control variables with the help of model based predictions evaluated against a control objective. In a project for the regional water authority Noorderzijlvest in the north of the Netherlands, it has been shown that MPC can increase the safety level of the system during flood events by an anticipatory pre-release of water. Furthermore, energy costs of pumps can be reduced by making tactical use of the water storage and shifting pump activities during normal operating conditions to off-peak hours. In this way cheap energy is used in combination of gravity flow through gates during low tide periods. MPC has now been implemented for daily operational use of the whole water system of the water authority Noorderzijlvest. The system developed to a real time decision support system which not only supports the daily operation but is able to directly implement the optimal control settings at the structures. We explain how we set-up and calibrated a prediction model (RTC-Tools) that is accurate and fast enough for optimization purposes, and how we integrated it in the operational flood early warning system (Delft-FEWS). Beside the prediction model, the weights and the factors of the objective function are an important element of MPC, since they shape the control objective. We developed special features in Delft-FEWS to allow the operators to adjust the objective function in order to meet changing requirements and to evaluate different control strategies.

  15. Operational flood control of a low-lying delta system using large time step Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Tian, Xin; van Overloop, Peter-Jules; Negenborn, Rudy R.; van de Giesen, Nick

    2015-01-01

    The safety of low-lying deltas is threatened not only by riverine flooding but by storm-induced coastal flooding as well. For the purpose of flood control, these deltas are mostly protected in a man-made environment, where dikes, dams and other adjustable infrastructures, such as gates, barriers and pumps are widely constructed. Instead of always reinforcing and heightening these structures, it is worth considering making the most of the existing infrastructure to reduce the damage and manage the delta in an operational and overall way. In this study, an advanced real-time control approach, Model Predictive Control, is proposed to operate these structures in the Dutch delta system (the Rhine-Meuse delta). The application covers non-linearity in the dynamic behavior of the water system and the structures. To deal with the non-linearity, a linearization scheme is applied which directly uses the gate height instead of the structure flow as the control variable. Given the fact that MPC needs to compute control actions in real-time, we address issues regarding computational time. A new large time step scheme is proposed in order to save computation time, in which different control variables can have different control time steps. Simulation experiments demonstrate that Model Predictive Control with the large time step setting is able to control a delta system better and much more efficiently than the conventional operational schemes.

  16. Short-term Operation of Multi-purpose Reservoir using Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Uysal, Gokcen; Schwanenberg, Dirk; Alvarado Montero, Rodolfo; Sensoy, Aynur; Arda Sorman, Ali

    2017-04-01

    Operation of water structures especially with conflicting water supply and flood mitigation objectives is under more stress attributed to growing water demand and changing hydro-climatic conditions. Model Predictive Control (MPC) based optimal control solutions has been successfully applied to different water resources applications. In this study, Feedback Control (FBC) and MPC get combined and an improved joint optimization-simulation operating scheme is proposed. Water supply and flood control objectives are fulfilled by incorporating the long term water supply objectives into a time-dependent variable guide curve policy whereas the extreme floods are attenuated by means of short-term optimization based on MPC. A final experiment is carried out to assess the lead time performance and reliability of forecasts in a hindcasting experiment with imperfect, perturbed forecasts. The framework is tested in Yuvacık Dam reservoir where the main water supply reservoir of Kocaeli City in the northwestern part of Turkey (the Marmara region) and it requires a challenging gate operation due to restricted downstream flow conditions.

  17. Study on reservoir time-varying design flood of inflow based on Poisson process with time-dependent parameters

    NASA Astrophysics Data System (ADS)

    Li, Jiqing; Huang, Jing; Li, Jianchang

    2018-06-01

    The time-varying design flood can make full use of the measured data, which can provide the reservoir with the basis of both flood control and operation scheduling. This paper adopts peak over threshold method for flood sampling in unit periods and Poisson process with time-dependent parameters model for simulation of reservoirs time-varying design flood. Considering the relationship between the model parameters and hypothesis, this paper presents the over-threshold intensity, the fitting degree of Poisson distribution and the design flood parameters are the time-varying design flood unit period and threshold discriminant basis, deduced Longyangxia reservoir time-varying design flood process at 9 kinds of design frequencies. The time-varying design flood of inflow is closer to the reservoir actual inflow conditions, which can be used to adjust the operating water level in flood season and make plans for resource utilization of flood in the basin.

  18. Integrated Urban Flood Analysis considering Optimal Operation of Flood Control Facilities in Urban Drainage Networks

    NASA Astrophysics Data System (ADS)

    Moon, Y. I.; Kim, M. S.; Choi, J. H.; Yuk, G. M.

    2017-12-01

    eavy rainfall has become a recent major cause of urban area flooding due to the climate change and urbanization. To prevent property damage along with casualties, a system which can alert and forecast urban flooding must be developed. Optimal performance of reducing flood damage can be expected of urban drainage facilities when operated in smaller rainfall events over extreme ones. Thus, the purpose of this study is to execute: A) flood forecasting system using runoff analysis based on short term rainfall; and B) flood warning system which operates based on the data from pump stations and rainwater storage in urban basins. In result of the analysis, it is shown that urban drainage facilities using short term rainfall forecasting data by radar will be more effective to reduce urban flood damage than using only the inflow data of the facility. Keywords: Heavy Rainfall, Urban Flood, Short-term Rainfall Forecasting, Optimal operating of urban drainage facilities. AcknowledgmentsThis research was supported by a grant (17AWMP-B066744-05) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  19. Classification and assessment of water bodies as adaptive structural measures for flood risk management planning.

    PubMed

    McMinn, William R; Yang, Qinli; Scholz, Miklas

    2010-09-01

    Severe rainfall events have become increasingly common in Europe. Flood defence engineering works are highly capital intensive and can be limited by land availability, leaving land and communities exposed to repeated flooding. Any adaptive drainage structure must have engineered inlets and outlets that control the water level and the rate of release. In Scotland, there are a relatively high number of drinking water reservoirs (operated by Scottish Water), which fall within this defined category and could contribute to flood management control. Reducing the rate of runoff from the upper reaches of a catchment will reduce the volume and peak flows of flood events downstream, thus allowing flood defences to be reduced in size, decreasing the corresponding capital costs. A database of retention basins with flood control potential has been developed for Scotland. The research shows that the majority of small and former drinking water reservoirs are kept full and their spillways are continuously in operation. Utilising some of the available capacity to contribute to flood control could reduce the costs of complying with the EU Flood Directive. Furthermore, the application of a previously developed classification model for Baden in Germany for the Scottish data set showed a lower diversity for basins in Scotland due to less developed infrastructure. The principle value of this approach is a clear and unambiguous categorisation, based on standard variables, which can help to promote communication and understanding between stakeholders. 2010 Elsevier Ltd. All rights reserved.

  20. The Impact of Corps Flood Control Reservoirs in the June 2008 Upper Mississippi Flood

    NASA Astrophysics Data System (ADS)

    Charley, W. J.; Stiman, J. A.

    2008-12-01

    The US Army Corps of Engineers is responsible for a multitude of flood control project on the Mississippi River and its tributaries, including levees that protect land from flooding, and dams to help regulate river flows. The first six months of 2008 were the wettest on record in the upper Mississippi Basin. During the first 2 weeks of June, rainfall over the Midwest ranged from 6 to as much as 16 inches, overwhelming the flood protection system, causing massive flooding and damage. Most severely impacted were the States of Iowa, Illinois, Indiana, Missouri, and Wisconsin. In Iowa, flooding occurred on almost every river in the state. On the Iowa River, record flooding occurred from Marshalltown, Iowa, downstream to its confluence with the Mississippi River. At several locations, flooding exceeded the 500-year event. The flooding affected agriculture, transportation, and infrastructure, including homes, businesses, levees, and other water-control structures. It has been estimated that there was at least 7 billion dollars in damages. While the flooding in Iowa was extraordinary, Corps of Engineers flood control reservoirs helped limit damage and prevent loss of life, even though some reservoirs were filled beyond their design capacity. Coralville Reservoir on the Iowa River, for example, filled to 135% of its design flood storage capacity, with stage a record five feet over the crest of the spillway. In spite of this, the maximum reservoir release was limited to 39,500 cfs, while a peak inflow of 57,000 cfs was observed. CWMS, the Corps Water Management System, is used to help regulate Corps reservoirs, as well as track and evaluate flooding and flooding potential. CWMS is a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. It encompasses data collection, validation and transformation, data storage, visualization, real time model simulation for decision-making support, and data dissemination. The system uses precipitation and flow data, collected in real-time, along with forecasted flow from the National Weather Service to model and optimize reservoir operations and forecast downstream flows and stages, providing communities accurate and timely information to aid their flood-fighting. This involves integrating several simulation modeling programs, including HEC-HMS to forecast flows, HEC-ResSim to model reservoir operations and HEC-RAS to compute forecasted stage hydrographs. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using ArcInfo. By varying future precipitation and releases, engineers can evaluate different "What if?" scenarios. The effectiveness of this tool and Corps reservoirs are examined.

  1. Feedbacks between Reservoir Operation and Floodplain Development

    NASA Astrophysics Data System (ADS)

    Wallington, K.; Cai, X.

    2017-12-01

    The increased connectedness of socioeconomic and natural systems warrants the study of them jointly as Coupled Natural-Human Systems (CNHS) (Liu et al., 2007). One such CNHS given significant attention in recent years has been the coupled sociological-hydrological system of floodplains. Di Baldassarre et al. (2015) developed a model coupling floodplain development and levee heightening, a flood control measure, which demonstrated the "levee effect" and "adaptation effect" seen in observations. Here, we adapt the concepts discussed by Di Baldassarre et al. (2015) and apply them to floodplains in which the primary flood control measure is reservoir storage, rather than levee construction, to study the role of feedbacks between reservoir operation and floodplain development. Specifically, we investigate the feedback between floodplain development and optimal management of trade-offs between flood water conservation and flood control. By coupling a socio-economic model based on that of Di Baldassarre et al. (2015) with a reservoir optimization model based on that discussed in Ding et al. (2017), we show that reservoir operation rules can co-evolve with floodplain development. Furthermore, we intend to demonstrate that the model results are consistent with real-world data for reservoir operating curves and floodplain development. This model will help explain why some reservoirs are currently operated for purposes which they were not originally intended and thus inform reservoir design and construction.

  2. Derivation of Optimal Operating Rules for Large-scale Reservoir Systems Considering Multiple Trade-off

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lei, X.; Liu, P.; Wang, H.; Li, Z.

    2017-12-01

    Flood control operation of multi-reservoir systems such as parallel reservoirs and hybrid reservoirs often suffer from complex interactions and trade-off among tributaries and the mainstream. The optimization of such systems is computationally intensive due to nonlinear storage curves, numerous constraints and complex hydraulic connections. This paper aims to derive the optimal flood control operating rules based on the trade-off among tributaries and the mainstream using a new algorithm known as weighted non-dominated sorting genetic algorithm II (WNSGA II). WNSGA II could locate the Pareto frontier in non-dominated region efficiently due to the directed searching by weighted crowding distance, and the results are compared with those of conventional operating rules (COR) and single objective genetic algorithm (GA). Xijiang river basin in China is selected as a case study, with eight reservoirs and five flood control sections within four tributaries and the mainstream. Furthermore, the effects of inflow uncertainty have been assessed. Results indicate that: (1) WNSGA II could locate the non-dominated solutions faster and provide better Pareto frontier than the traditional non-dominated sorting genetic algorithm II (NSGA II) due to the weighted crowding distance; (2) WNSGA II outperforms COR and GA on flood control in the whole basin; (3) The multi-objective operating rules from WNSGA II deal with the inflow uncertainties better than COR. Therefore, the WNSGA II can be used to derive stable operating rules for large-scale reservoir systems effectively and efficiently.

  3. Influence Assessment of Multiple Large-sized Reservoirs on Flooding in the Huai River Watershed, China

    NASA Astrophysics Data System (ADS)

    Wan, X. Y.

    2017-12-01

    The extensive constructions of reservoirs change the hydrologic characteristics of the associated watersheds, which obviously increases the complexity of watershed flood control decisions. By evaluating the impacts of the multi-reservoir system on the flood hydrograph, it becomes possible to improve the effectiveness of the flood control decisions. In this paper we compare the non-reservoir flood hydrograph with the actual observed flood hydrograph using the Lutaizi upstream of Huai river in East China as a representative case, where 20 large-scale/large-sized reservoirs have been built. Based on the total impact of the multi-reservoir system, a novel strategy, namely reservoir successively added (RSA) method, is presented to evaluate the contribution of each reservoir to the total impact. According each reservoir contribution, the "highly effective" reservoirs for watershed flood control are identified via hierarchical clustering. Moreover, we estimate further the degree of impact of the reservoir current operation rules on the flood hydrograph on the base of the impact of dams themselves. As a result, we find that the RSA method provides a useful method for analysis of multi-reservoir systems by partitioning the contribution of each reservoir to the total impacts on the flooding at the downstream section. For all the historical large floods examined, the multi-reservoir system in the Huai river watershed has a significant impact on flooding at the downstream Lutaizi section, on average reducing the flood volume and peak discharge by 13.92 × 108 m3 and 18.7% respectively. It is more informative to evaluate the maximum impact of each reservoir (on flooding at the downstream section) than to examine the average impact. Each reservoir has a different impact on the flood hydrograph at the Lutaizi section. In particular, the Meishan, Xianghongdian, Suyahu, Nanwan, Nianyushan and Foziling reservoirs exert a strong influence on the flood hydrograph, and are therefore important for flood control on the Huai river. Under the current operation rules, the volume and peak discharge of flooding at the Lutaizi section are reduced by 13.69 × 108m3 and 1429 m3/s respectively, accounting for 98% and 80.5% of the real reduction respectively.

  4. Real-Time Optimal Flood Control Decision Making and Risk Propagation Under Multiple Uncertainties

    NASA Astrophysics Data System (ADS)

    Zhu, Feilin; Zhong, Ping-An; Sun, Yimeng; Yeh, William W.-G.

    2017-12-01

    Multiple uncertainties exist in the optimal flood control decision-making process, presenting risks involving flood control decisions. This paper defines the main steps in optimal flood control decision making that constitute the Forecast-Optimization-Decision Making (FODM) chain. We propose a framework for supporting optimal flood control decision making under multiple uncertainties and evaluate risk propagation along the FODM chain from a holistic perspective. To deal with uncertainties, we employ stochastic models at each link of the FODM chain. We generate synthetic ensemble flood forecasts via the martingale model of forecast evolution. We then establish a multiobjective stochastic programming with recourse model for optimal flood control operation. The Pareto front under uncertainty is derived via the constraint method coupled with a two-step process. We propose a novel SMAA-TOPSIS model for stochastic multicriteria decision making. Then we propose the risk assessment model, the risk of decision-making errors and rank uncertainty degree to quantify the risk propagation process along the FODM chain. We conduct numerical experiments to investigate the effects of flood forecast uncertainty on optimal flood control decision making and risk propagation. We apply the proposed methodology to a flood control system in the Daduhe River basin in China. The results indicate that the proposed method can provide valuable risk information in each link of the FODM chain and enable risk-informed decisions with higher reliability.

  5. The Cumberland River Flood of 2010 and Corps Reservoir Operations

    NASA Astrophysics Data System (ADS)

    Charley, W.; Hanbali, F.; Rohrbach, B.

    2010-12-01

    On Saturday, May 1, 2010, heavy rain began falling in the Cumberland River Valley and continued through the following day. 13.5 inches was measured at Nashville, an unprecedented amount that doubled the previous 2-day record, and exceeded the May monthly total record of 11 inches. Elsewhere in the valley, amounts of over 19 inches were measured. The frequency of this storm was estimated to exceed the one-thousand year event. This historic rainfall brought large scale flooding to the Cumberland-Ohio-Tennessee River Valleys, and caused over 2 billion dollars in damages, despite the numerous flood control projects in the area, including eight U.S. Army Corps of Engineers projects. The vast majority of rainfall occurred in drainage areas that are uncontrolled by Corps flood control projects, which lead to the wide area flooding. However, preliminary analysis indicates that operations of the Corps projects reduced the Cumberland River flood crest in Nashville by approximately five feet. With funding from the American Recovery and Reinvestment Act (ARRA) of 2009, hydrologic, hydraulic and reservoir simulation models have just been completed for the Cumberland-Ohio-Tennessee River Valleys. These models are being implemented in the Corps Water Management System (CWMS), a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. The CWMS modeling component uses observed rainfall and forecasted rainfall to compute forecasts of river flows into and downstream of reservoirs, using HEC-HMS. Simulation of reservoir operations, utilizing either the HEC-ResSim or CADSWES RiverWare program, uses these flow scenarios to provide operational decision information for the engineer. The river hydraulics program, HEC-RAS, computes river stages and water surface profiles for these scenarios. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using ArcInfo. The economic impacts of the different inundation depths are computed by HEC-FIA. The user-configurable sequence of modeling software allows engineers to evaluate operational decisions for reservoirs and other control structures, and view and compare hydraulic and economic impacts for various “what if?” scenarios. This paper reviews the Cumberland River May 2010 event, the impact of Corps reservoirs and reservoir operations and the expected future benefits and effects of the ARRA funded models and CWMS on future events for this area.

  6. Improving Flood Risk Management for California's Central Valley: How the State Developed a Toolbox for Large, System-wide Studies

    NASA Astrophysics Data System (ADS)

    Pingel, N.; Liang, Y.; Bindra, A.

    2016-12-01

    More than 1 million Californians live and work in the floodplains of the Sacramento-San Joaquin Valley where flood risks are among the highest in the nation. In response to this threat to people, property and the environment, the Department of Water Resources (DWR) has been called to action to improve flood risk management. This has transpired through significant advances in development of flood information and tools, analysis, and planning. Senate Bill 5 directed DWR to prepare the Central Valley Flood Protection Plan (CVFPP) and update it every 5 years. A key component of this aggressive planning approach is answering the question: What is the current flood risk, and how would proposed improvements change flood risk throughout the system? Answering this question is a substantial challenge due to the size and complexity of the watershed and flood control system. The watershed is roughly 42,000 sq mi, and flows are controlled by numerous reservoirs, bypasses, and levees. To overcome this challenge, the State invested in development of a comprehensive analysis "tool box" through various DWR programs. Development of the tool box included: collection of hydro-meteorological, topographic, geotechnical, and economic data; development of rainfall-runoff, reservoir operation, hydraulic routing, and flood risk analysis models; and development of specialized applications and computing schemes to accelerate the analysis. With this toolbox, DWR is analyzing flood hazard, flood control system performance, exposure and vulnerability of people and property to flooding, consequence of flooding for specific events, and finally flood risk for a range of CVFPP alternatives. Based on the results, DWR will put forward a State Recommended Plan in the 2017 CVFPP. Further, the value of the analysis tool box extends beyond the CVFPP. It will serve as a foundation for other flood studies for years to come and has already been successfully applied for inundation mapping to support emergency response, reservoir operation analysis, and others.

  7. Forest operations, extreme flooding events, and considerations for hydrologic modeling in the Appalachians--A review

    Treesearch

    M.A. Eisenbies; W.M. Aust; J.A. Burger; M.B. Adams

    2007-01-01

    The connection between forests and water resources is well established, but the relationships among controlling factors are only partly understood. Concern over the effects of forestry operations, particularly harvesting, on extreme flooding events is a recurrent issue in forest and watershed management. Due to the complexity of the system, and the cost of installing...

  8. Flood monitoring network in southeastern Louisiana

    USGS Publications Warehouse

    McCallum, Brian E.

    1994-01-01

    A flood monitoring network has been established to alert emergency operations personnel and the public about hydrologic conditions in the Amite River Basin. The U.S. Geological Survey (USGS), in cooperation with the Louisiana Office of Emergency Preparedness (LOEP), has installed a real-time data acquisition system to monitor rainfall and river stages in the basin. These data will be transmitted for use by emergency operations personnel to develop flood control and evacuation strategies. The current river stages at selected gaging stations in the basin also will be broadcast by local television and radio stations during a flood. Residents can record the changing river stages on a basin monitoring map, similar to a hurricane tracking map.

  9. Retransmission of hydrometric data in Canada

    NASA Technical Reports Server (NTRS)

    Halliday, R. A. (Principal Investigator); Reid, I. A.

    1978-01-01

    The author has identified the following significant results. The LANDSAT program has demonstrated that polar orbiting satellites can be used to relay hydrologic data from any part of Canada to a user without difficulty and at low cost. These data can be used for many operational purposes, the most important of which were identified as follows: hydroelectric power plant operation; water supply for municipalities, industries, and irrigation; navigation; flood forecasting; operation of flood control structures and systems; and recreation.

  10. Model simulations of potential contribution of the proposed Huangpu Gate to flood control in the Lake Taihu basin of China

    NASA Astrophysics Data System (ADS)

    Zhang, Hanghui; Liu, Shuguang; Ye, Jianchun; Yeh, Pat J.-F.

    2017-10-01

    The Lake Taihu basin (36 895 km2), one of the most developed regions in China located in the hinterland of the Yangtze River Delta, has experienced increasing flood risk. The largest flood in history occurred in 1999 with a return period estimate of 200 years, considerably larger than the current capacity of the flood defense with a design return period of 50 years. Due to its flat saucer-like terrain, the capacity of the flood control system in this basin depends on flood control infrastructures and peripheral tidal conditions. The Huangpu River, an important river of the basin connecting Lake Taihu upstream and Yangtze River estuaries downstream, drains two-fifths of the entire basin. Since the water level in the Huangpu River is significantly affected by the high tide conditions in estuaries, constructing an estuary gate is considered an effective solution for flood mitigation. The main objective of this paper is to assess the potential contributions of the proposed Huangpu Gate to the flood control capacity of the basin. To achieve this goal, five different scenarios of flooding conditions and the associated gate operations are considered by using numerical model simulations. Results of quantitative analyses show that the Huangpu Gate is effective for evacuating floodwaters. It can help to reduce both peak values and duration of high water levels in Lake Taihu to benefit surrounding areas along the Taipu Canal and the Huangpu River. The contribution of the gate to the flood control capacity is closely associated with its operation modes and duration. For the maximum potential contribution of the gate, the net outflow at the proposed site is increased by 52 %. The daily peak level is decreased by a maximum of 0.12 m in Lake Taihu, by maxima of 0.26-0.37 and 0.46-0.60 m in the Taipu Canal and the Huangpu River, respectively, and by 0.05-0.39 m in the surrounding areas depending on the local topography. It is concluded that the proposed Huangpu Gate can reduce flood risk in the Lake Taihu basin, especially in those low-lying surrounding areas along the Taipu Canal and the Huangpu River significantly, which is of great benefit to the flood management in the basin and the Yangtze River Delta.

  11. Conditions and processes affecting sand resources at archeological sites in the Colorado River corridor below Glen Canyon Dam, Arizona

    USGS Publications Warehouse

    East, Amy E.; Collins, Brian D.; Sankey, Joel B.; Corbett, Skye C.; Fairley, Helen C.; Caster, Joshua J.

    2016-05-17

    We conclude that most of the river-corridor archeological sites are at elevated risk of net erosion under present dam operations. In the present flow regime, controlled floods do not simulate the magnitude or frequency of natural floods, and are not large enough to deposit sand at elevations that were flooded at annual to decadal intervals in predam time. For archeological sites that depend upon river-derived sand, we infer elevated erosion risk owing to a combination of reduced sand supply (both fluvial and aeolian) through (1) the lower-than-natural flood magnitude, frequency, and sediment supply of the controlled-flooding protocol; (2) reduction of open, dry sand area available for wind redistribution under current normal (nonflood) dam operations, which do not include flows as low as natural seasonal low flows and do include substantial daily flow fluctuations; and (3) impeded aeolian sand entrainment and transport owing to increased riparian vegetation growth in the absence of larger, more-frequent floods. If dam operations were to increase the supply of sand available for windblown transport—for example, through larger floods, sediment augmentation, or increased fluvial sandbar exposure by low flows—and also decrease riparian vegetation, the prevalence of active aeolian sand could increase over time, and the propensity for unmitigated gully erosion could decrease. Although the evolution of river-corridor landscapes and archeological sites has been altered fundamentally by the lack of large, sediment-rich floods (flows on the order of 5,000 m3/s), some combination of sediment-rich flows above 1,270 m3/s, seasonal flows below 226 m3/s, and riparian-vegetation removal might increase the preservation potential for sand-dependent archeological resources in the Colorado River corridor.

  12. Assessing the operation rules of a reservoir system based on a detailed modelling-chain

    NASA Astrophysics Data System (ADS)

    Bruwier, M.; Erpicum, S.; Pirotton, M.; Archambeau, P.; Dewals, B.

    2014-09-01

    According to available climate change scenarios for Belgium, drier summers and wetter winters are expected. In this study, we focus on two muti-purpose reservoirs located in the Vesdre catchment, which is part of the Meuse basin. The current operation rules of the reservoirs are first analysed. Next, the impacts of two climate change scenarios are assessed and enhanced operation rules are proposed to mitigate these impacts. For this purpose, an integrated model of the catchment was used. It includes a hydrological model, one-dimensional and two-dimensional hydraulic models of the river and its main tributaries, a model of the reservoir system and a flood damage model. Five performance indicators of the reservoir system have been defined, reflecting its ability to provide sufficient drinking, to control floods, to produce hydropower and to reduce low-flow condition. As shown by the results, enhanced operation rules may improve the drinking water potential and the low-flow augmentation while the existing operation rules are efficient for flood control and for hydropower production.

  13. Assessing the operation rules of a reservoir system based on a detailed modelling chain

    NASA Astrophysics Data System (ADS)

    Bruwier, M.; Erpicum, S.; Pirotton, M.; Archambeau, P.; Dewals, B. J.

    2015-03-01

    According to available climate change scenarios for Belgium, drier summers and wetter winters are expected. In this study, we focus on two multi-purpose reservoirs located in the Vesdre catchment, which is part of the Meuse basin. The current operation rules of the reservoirs are first analysed. Next, the impacts of two climate change scenarios are assessed and enhanced operation rules are proposed to mitigate these impacts. For this purpose, an integrated model of the catchment was used. It includes a hydrological model, one-dimensional and two-dimensional hydraulic models of the river and its main tributaries, a model of the reservoir system and a flood damage model. Five performance indicators of the reservoir system have been defined, reflecting its ability to provide sufficient drinking water, to control floods, to produce hydropower and to reduce low-flow conditions. As shown by the results, enhanced operation rules may improve the drinking water potential and the low-flow augmentation while the existing operation rules are efficient for flood control and for hydropower production.

  14. Real-time Ensemble Flow Forecasts for a 2017 Mock Operation Test Trial of Forecast Informed Reservoir Operations for Lake Mendocino in Mendocino County, California

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Mendoza, J.; Jasperse, J.; Hartman, R. K.; Whitin, B.; Kalansky, J.

    2017-12-01

    Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation and flow forecasts to inform the flood operations of reservoirs. The Ensemble Forecast Operations (EFO) alternative is a probabilistic approach of FIRO that incorporates 15-day ensemble streamflow predictions (ESPs) made by NOAA's California-Nevada River Forecast Center (CNRFC). With the EFO approach, release decisions are made to manage forecasted risk of reaching critical operational thresholds. A water management model was developed for Lake Mendocino, a 111,000 acre-foot reservoir located near Ukiah, California, to conduct a mock operation test trial of the EFO alternative for 2017. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United States Army Corps of Engineers and is operated for water supply by the Sonoma County Water Agency. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has suffered from water supply reliability issues since 2007. The operational trial utilized real-time ESPs prepared by the CNRFC and observed flow information to simulate hydrologic conditions in Lake Mendocino and a 50-mile downstream reach of the Russian River to the City of Healdsburg. Results of the EFO trial demonstrate a 6% increase in reservoir storage at the end of trial period (May 10) relative to observed conditions. Additionally, model results show no increase in flows above flood stage for points downstream of Lake Mendocino. Results of this investigation and other studies demonstrate that the EFO alternative may be a viable flood control operations approach for Lake Mendocino and warrants further investigation through additional modeling and analysis.

  15. Multiobjective hedging rules for flood water conservation

    NASA Astrophysics Data System (ADS)

    Ding, Wei; Zhang, Chi; Cai, Ximing; Li, Yu; Zhou, Huicheng

    2017-03-01

    Flood water conservation can be beneficial for water uses especially in areas with water stress but also can pose additional flood risk. The potential of flood water conservation is affected by many factors, especially decision makers' preference for water conservation and reservoir inflow forecast uncertainty. This paper discusses the individual and joint effects of these two factors on the trade-off between flood control and water conservation, using a multiobjective, two-stage reservoir optimal operation model. It is shown that hedging between current water conservation and future flood control exists only when forecast uncertainty or decision makers' preference is within a certain range, beyond which, hedging is trivial and the multiobjective optimization problem is reduced to a single objective problem with either flood control or water conservation. Different types of hedging rules are identified with different levels of flood water conservation preference, forecast uncertainties, acceptable flood risk, and reservoir storage capacity. Critical values of decision preference (represented by a weight) and inflow forecast uncertainty (represented by standard deviation) are identified. These inform reservoir managers with a feasible range of their preference to water conservation and thresholds of forecast uncertainty, specifying possible water conservation within the thresholds. The analysis also provides inputs for setting up an optimization model by providing the range of objective weights and the choice of hedging rule types. A case study is conducted to illustrate the concepts and analyses.

  16. Balancing Flood Risk and Water Supply in California: Policy Search Combining Short-Term Forecast Ensembles and Groundwater Recharge

    NASA Astrophysics Data System (ADS)

    Herman, J. D.; Steinschneider, S.; Nayak, M. A.

    2017-12-01

    Short-term weather forecasts are not codified into the operating policies of federal, multi-purpose reservoirs, despite their potential to improve service provision. This is particularly true for facilities that provide flood protection and water supply, since the potential flood damages are often too severe to accept the risk of inaccurate forecasts. Instead, operators must maintain empty storage capacity to mitigate flood risk, even if the system is currently in drought, as occurred in California from 2012-2016. This study investigates the potential for forecast-informed operating rules to improve water supply efficiency while maintaining flood protection, combining state-of-the-art weather hindcasts with a novel tree-based policy optimization framework. We hypothesize that forecasts need only accurately predict the occurrence of a storm, rather than its intensity, to be effective in regions like California where wintertime, synoptic-scale storms dominate the flood regime. We also investigate the potential for downstream groundwater injection to improve the utility of forecasts. These hypotheses are tested in a case study of Folsom Reservoir on the American River. Because available weather hindcasts are relatively short (10-20 years), we propose a new statistical framework to develop synthetic forecasts to assess the risk associated with inaccurate forecasts. The efficiency of operating policies is tested across a range of scenarios that include varying forecast skill and additional groundwater pumping capacity. Results suggest that the combined use of groundwater storage and short-term weather forecasts can substantially improve the tradeoff between water supply and flood control objectives in large, multi-purpose reservoirs in California.

  17. The effects of Missouri River mainstem reservoir system operations on 2011 flooding using a Precipitation-Runoff Modeling System model: Chapter K in 2011 Floods of the Central United States

    USGS Publications Warehouse

    Haj, Adel E.; Christiansen, Daniel E.; Viger, Roland J.

    2014-01-01

    In 2011 the Missouri River Mainstem Reservoir System (Reservoir System) experienced the largest volume of flood waters since the initiation of record-keeping in the nineteenth century. The high levels of runoff from both snowpack and rainfall stressed the Reservoir System’s capacity to control flood waters and caused massive damage and disruption along the river. The flooding and resulting damage along the Missouri River brought increased public attention to the U.S. Army Corps of Engineers (USACE) operation of the Reservoir System. To help understand the effects of Reservoir System operation on the 2011 Missouri River flood flows, the U.S. Geological Survey Precipitation-Runoff Modeling System was used to construct a model of the Missouri River Basin to simulate flows at streamgages and dam locations with the effects of Reservoir System operation (regulation) on flow removed. Statistical tests indicate that the Missouri River Precipitation-Runoff Modeling System model is a good fit for high-flow monthly and annual stream flow estimation. A comparison of simulated unregulated flows and measured regulated flows show that regulation greatly reduced spring peak flow events, consolidated two summer peak flow events to one with a markedly decreased magnitude, and maintained higher than normal base flow beyond the end of water year 2011. Further comparison of results indicate that without regulation, flows greater than those measured would have occurred and been sustained for much longer, frequently in excess of 30 days, and flooding associated with high-flow events would have been more severe.

  18. Improvement of the Lower Mississippi River and Attributes, 1931-1972

    DTIC Science & Technology

    1972-11-01

    purposes; and maintain and operate the improvements. The act adopted the plan for flood control and major drainage in the Reelfoot Lake area, Tennessee...lines, bridges, and highways. c. In Reelfoot Lake - Lake No. 9, Tennessee and Kentucky, located in the Reelfoot Lake Basin in Dyer, Lake , and Obion...Counties, Tennessee, and in Fulton County, Kentucky, a modification of the Reelfoot Lake area project for flood control and major drainage adopted by

  19. American Canyon Sanitary Landfill Operation Regulatory Permit Application, Napa County, California, Public Notice 9297-29R.

    DTIC Science & Technology

    1982-03-01

    control and containment levees on land located along the east bank of the Napa River in southern Napa County, California. 2. In response to the National...approximately 60 acres with construction of flood protection and containment levees around these areas. The estimated refuse and earthwork volumes are...of flood control and containment levees) of restorable wetland being permanently converted to upland. f. provide nuisance factors associated with

  20. 18 CFR 5.6 - Pre-application document.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., flushing flows, reservoir operations, and flood control operations. (v) In the case of an existing licensed...) project facilities and operations, provide information on the existing environment, and existing data or... meeting and site visit required by § 5.8(b)(3)(viii). (2) Project location, facilities, and operations...

  1. Evaluation method to floodwater amount of difficult control and utilization in flood season for hyperconcentration rivers and its application

    NASA Astrophysics Data System (ADS)

    Li, X.

    2013-05-01

    The severe soil erosion in the Chinese Loess Plateau has resulted in high sediment concentration in runoff, which can cause tremendous pressure to the development and utilization of regional floodwater resources as well as the regional flood control and disaster mitigation. The floodwater amount of difficult control and utilization in flood season (FADCUFS) is an important part of the available amount of surface water resources. It also has a critical role in the sustainable development of water resources, especially for those hyperconcentration rivers (HRs) in the Loess Plateau. The evaluation of FADCUFS for HRs is an important issue in the field of hydrology and water resources. However, the understandings of its connotation, evaluation method, and nature are limited. Combined engineering measures with non-engineering ones, the evaluation method of FADCUFS for HRs was presented based on the angles of water quantity and quality. The method divides the FADCUFS into two parts in terms of the flood control operation characteristics of reservoir in HR and the relationship between water resources utilization and sediment in runoff, respectively. One is the amount of difficult regulation-control floodwater (DRCF), and the other is the volume of difficult utilization floodwater (DUF). A case study of the Bajiazui Reservoir, located in the typical Jinghe River (the second tributary of the Chinese Yellow River with high sediment concentration) was performed. Three typical years, wet year (1988), average year (1986), and dry years (1995 and 2000), were employed. According to the daily optimal operation model of Bajiazui Reservoir, the DRCF occurs for only the wet year instead of the average and the dry years. There are four times of DRCF with the amount of 26.74 m3/s (July 14), 14.58 m3/s (August 5), 10.27 m3/s (August 9), and 1.23 m3/s (August 12) in 1988, respectively, with a total amount of 4.56 million m3. A certain close relationship exists between the amount of DRCF and the flood inflows to Bajiazui. When the events of DRCF occur, there must be big flood inflows several days ago. And the outflows from the daily optimal operation model exceed their permitted limits of discharges. In addition, they are close to the measured runoffs from the Bajiazui Hydrological Station downstream the dam. It indicates that the presented daily optimal operation model has a high accuracy and can achieve credible results. On the other hand, the maximum grade approach is used to achieve the coefficients of surplus floodwater in flood season in terms of the daily outflows from the daily optimal operation model and the corresponding sediment concentration in runoffs. When the water resources utilization limit of sediment concentration in runoff is set as 10%, the volume of DUF in flood season of 1988 is then calculated as 108.29 million m3. So the value of FADCUFS can be determined as 112.85 (=4.56+108.29) million m3, accounting for 78.06% of the total discharge of reservoir in flood season. The study deepens the understandings of the connotation and the evaluation method of FADCUFS. It offers a new and reliable approach to assess the FADCUFS for HRs. The results are beneficial to the sustainable development of regional water resources.

  2. Risk Based Reservoir Operations Using Ensemble Streamflow Predictions for Lake Mendocino in Mendocino County, California

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Mendoza, J.; Whitin, B.; Hartman, R. K.

    2017-12-01

    Ensemble Forecast Operations (EFO) is a risk based approach of reservoir flood operations that incorporates ensemble streamflow predictions (ESPs) made by NOAA's California-Nevada River Forecast Center (CNRFC). With the EFO approach, each member of an ESP is individually modeled to forecast system conditions and calculate risk of reaching critical operational thresholds. Reservoir release decisions are computed which seek to manage forecasted risk to established risk tolerance levels. A water management model was developed for Lake Mendocino, a 111,000 acre-foot reservoir located near Ukiah, California, to evaluate the viability of the EFO alternative to improve water supply reliability but not increase downstream flood risk. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United States Army Corps of Engineers and is operated for water supply by the Sonoma County Water Agency. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has suffered from water supply reliability issues since 2007. The EFO alternative was simulated using a 26-year (1985-2010) ESP hindcast generated by the CNRFC, which approximates flow forecasts for 61 ensemble members for a 15-day horizon. Model simulation results of the EFO alternative demonstrate a 36% increase in median end of water year (September 30) storage levels over existing operations. Additionally, model results show no increase in occurrence of flows above flood stage for points downstream of Lake Mendocino. This investigation demonstrates that the EFO alternative may be a viable approach for managing Lake Mendocino for multiple purposes (water supply, flood mitigation, ecosystems) and warrants further investigation through additional modeling and analysis.

  3. Operational water management of Rijnland water system and pilot of ensemble forecasting system for flood control

    NASA Astrophysics Data System (ADS)

    van der Zwan, Rene

    2013-04-01

    The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water management, including temporary lower storage basin levels and a reduction in extra investments for infrastructural measures.

  4. Environmental Assessment Lake Traverse Master Plan for Public-Use Development and Resource Management Lake Traverse Minnesota - South Dakota.

    DTIC Science & Technology

    1978-09-01

    classified as wet meadow. k. Tame Grassland Community (limited) - This community is of minor extent and importance in the vicinity of Lake Traverse...purposes of flood control and water conservation, the Lake Traverse-lois de Sioux flood control project began operation in 1941. It con- sists of two...reservoir pools--Lake Traverse and Mud Lake--plus 24 miles of channel improvement. Several consepts are recoiended for future development of the

  5. Vector-control response in a post-flood disaster setting, Honiara, Solomon Islands, 2014.

    PubMed

    Shortus, Matthew; Musto, Jennie; Bugoro, Hugo; Butafa, Charles; Sio, Alison; Joshua, Cynthia

    2016-01-01

    The close quartering and exposed living conditions in evacuation centres and the potential increase in vector density after flooding in Solomon Islands resulted in an increased risk of exposure for the occupants to vectorborne diseases. In April 2014, Solomon Islands experienced a flash flooding event that affected many areas and displaced a large number of people. In the capital, Honiara, nearly 10 000 people were housed in emergency evacuation centres at the peak of the post-flood emergency. At the time of the floods, the number of dengue cases was increasing, following a record outbreak in 2013. The National Vector Borne Disease Control Programme with the assistance of the World Health Organization implemented an emergency vector-control response plan to provide protection to the at-risk populations in the evacuation centres. The National Surveillance Unit also activated an early warning disease surveillance system to monitor communicable diseases, including dengue and malaria. Timely and strategic application of the emergency interventions probably prevented an increase in dengue and malaria cases in the affected areas. Rapid and appropriate precautionary vector-control measures applied in a post-natural disaster setting can prevent and mitigate vectorborne disease incidences. Collecting vector surveillance data allows better analysis of vector-control operations' effectiveness.

  6. Management of a Complex Open Channel Network During Flood Events

    NASA Astrophysics Data System (ADS)

    Franchini, M.; Valiani, A.; Schippa, L.; Mascellani, G.

    2003-04-01

    Most part of the area around Ferrara (Italy) is below the mean sea level and an extensive drainage system combined with several pump stations allows the use of this area for both urban development and industrial and agricultural activities. The three main channels of this hydraulic system constitute the Ferrara Inland Waterway (total length approximately 70 km), which connects the Po river near Ferrara to the sea. Because of the level difference between the upstream and dowstream ends of the waterway, three locks are located along it, each of them combined with a set of gates to control the water levels. During rainfall events, most of the water of the basin flows into the waterway and heavy precipitations sometimes cause flooding in several areas. This is due to the insufficiency of the channel network dimensions and an inadequate manual operation of the gates. This study presents a hydrological-hydraulic model for the entire Ferrara basin and a system of rules in order to operate the gates. In particular, their opening is designed to be regulated in real time by monitoring the water level in several sections along the channels. Besides flood peak attenuation, this operation strategy contributes also to the maintenance of a constant water level for irrigation and fluvial navigation during the dry periods. With reference to the flood event of May 1996, it is shown that this floodgate operation policy, unlike that which was actually adopted during that event, would lead to a significant flood peak attenuation, avoiding flooding in the area upstream of Ferrara.

  7. Floods of January-February 1963 in California and Nevada

    USGS Publications Warehouse

    Rantz, S.E.; Harris, E.E.

    1963-01-01

    Widespread flooding occurred in central California and northwestern Nevada during January 31 - February 1, 1963, as a result of intense precipitation of about 72 hours duration. The flood-producing storm was of the warm type, with precipitation falling as rain at altitudes as high as 8,000 feet. The heavy precipitation, totaling as much as 20 inches or more in the Sierra Nevada, fell on frozen ground or on the sparse snowpack that existed in the higher altitudes. The response of runoff to rainfall was dramatic, as streams throughout the area rose rapidly. Hardest hit were the basins of the American, Yuba, and Truckee Rivers, where flood peaks either reached record-breaking heights or rivalled the discharges attained in the memorable floods of November 1950 and December 1955. Because of the relatively short duration of the storm, the volume of flood flow in 1963 was not outstanding. Ten deaths were attributed to the storm or flood. Preliminary estimates indicate damage in excess of $16 million in foothill and valley areas, but no attempt has yet been made to assess the heavy damage to highways and drainage structures in the mountain areas. The U. S. Army, Corps of Engineirs estimates that its operation of flood-control facilities prevented additional damage of $236 million. Other reservoirs, operated primarily for water conservation or power production, were also instrumental in preventing damage.

  8. Hydrological Analysis for Inflow Forecasting into Temengor Dam

    NASA Astrophysics Data System (ADS)

    Najid, MI; Sidek, LM; Hidayah, B.; Roseli, ZA

    2016-03-01

    These days, natural disaster such as flood is the main concern for hydrologists. One of solutions in understanding the reason of flood is by prediction of the event sooner than normal occurrence. One of the criteria is lead time or travel time that is important in the study of fresh waters and flood events. Therefore, estimation of lead or travel time for flood event can be beneficial primary information. The objective of this study is to estimate the lead time or travel time for outlet of Temengor dam in Malaysia. Tenaga Nasional Berhad (TNB) Sungai Perak dam operation has the main contribution on decision support for early water released and flood warning to authorities and locals resident for in the down streams area. For this study, hydrological analysis carried out will help to determine which years that give more rainfall contribution into the reservoir. Rainfall contribution of reservoir help to understanding rainfall distribution and peak discharge on that period. It also help for calibration of forecasting model system for better accuracy of flood hydrograph. There may be various methods to determine the rainfall contribution of catchment. The result has shown that, the rainfall contribution for Temengor catchment, is more on November in each year which is the monsoon season in Malaysia. TNB dam operational decision support systems can prepare and be more aware at this time for flood control and flood mitigation.

  9. Effects of floodgates operation on nitrogen transformation in a lake based on structural equation modeling analysis.

    PubMed

    Zhu, Longji; Zhou, Haixuan; Xie, Xinyu; Li, Xueke; Zhang, Duoying; Jia, Liming; Wei, Qingbin; Zhao, Yue; Wei, Zimin; Ma, Yingying

    2018-08-01

    Floodgates operation is one of the primary means of flood control in lake development. However, knowledge on the linkages between floodgates operation and nitrogen transformation during the flood season is limited. In this study, water samples from six sampling sites along Lake Xingkai watershed were collected before and after floodgates operation. The causal relationships between environmental factors, bacterioplankton community composition and nitrogen fractions were determined during flood season. We found that concentrations of nitrogen fractions decreased significantly when the floodgates were opened, while the concentrations of total nitrogen (TN) and NO 3 - increased when the floodgates had been shut for a period. Further, we proposed a possible mechanism that the influence of floodgates operation on nitrogen transformation was largely mediated through changes in dissolved organic matter, dissolved oxygen and bacterioplankton community composition as revealed by structural equation modeling (SEM). We conclude that floodgates operation has a high risk for future eutrophication of downstream watershed, although it can reduce nitrogen content temporarily. Therefore, the environmental impacts of floodgates operation should be carefully evaluated before the floodwaters were discharged into downstream watershed. Copyright © 2018. Published by Elsevier B.V.

  10. Abiotic & biotic responses of the Colorado River to controlled floods at Glen Canyon Dam, Arizona, USA

    USGS Publications Warehouse

    Korman, Josh; Melis, Ted; Kennedy, Theodore A.

    2012-01-01

    Closure of Glen Canyon Dam reduced sand supply to the Colorado River in Grand Canyon National Park by about 94% while its operation has also eroded the park's sandbar habitats. Three controlled floods released from the dam since 1995 suggest that sandbars might be rebuilt and maintained, but only if repeated floods are timed to follow tributary sand deliveries below the dam. Monitoring data show that sandbars are dynamic and that their erosion after bar building is positively related with mean daily discharge and negatively related with tributary sand production after controlled floods. The March 2008 flood affected non-native rainbow trout abundance in the Lees Ferry tailwater, which supports a blue ribbon fishery. Downstream trout dispersal from the tailwater results in negative competitive interactions and predation on endangered humpback chub. Early survival rates of age-0 trout increased more than fourfold following the 2008 flood, and twofold in 2009, relative to prior years (2006-2007). Hatch-date analysis indicated that early survival rates were much higher for cohorts that emerged about 2 months after the 2008 flood relative to cohorts that emerged earlier that year. The 2009 survival data suggest that tailwater habitat improvements persisted for at least a year, but apparently decreased in 2010. Increased early survival rates for trout coincided with the increased availability of higher quality drifting food items after the 2008 flood owing to an increase in midges and black flies, preferred food items of rainbow trout. Repeated floods from the dam might sustainably rebuild and maintain sandbars if released when new tributary sand is available below the tailwater. Spring flooding might also sustain increased trout abundance and benefit the tailwater fishery, but also be a potential risk to humpback chub in Grand Canyon.

  11. In the Way of Peacemaker Guide Curve between Water Supply and Flood Control for Short Term Reservoir Operation

    NASA Astrophysics Data System (ADS)

    Uysal, G.; Sensoy, A.; Yavuz, O.; Sorman, A. A.; Gezgin, T.

    2012-04-01

    Effective management of a controlled reservoir system where it involves multiple and sometimes conflicting objectives is a complex problem especially in real time operations. Yuvacık Dam Reservoir, located in the Marmara region of Turkey, is built to supply annual demand of 142 hm3 water for Kocaeli city requires such a complex management strategy since it has relatively small (51 hm3) effective capacity. On the other hand, the drainage basin is fed by both rainfall and snowmelt since the elevation ranges between 80 - 1548 m. Excessive water must be stored behind the radial gates between February and May in terms of sustainability especially for summer and autumn periods. Moreover, the downstream channel physical conditions constraint the spillway releases up to 100 m3/s although the spillway is large enough to handle major floods. Thus, this situation makes short term release decisions the challenging task. Long term water supply curves, based on historical inflows and annual water demand, are in conflict with flood regulation (control) levels, based on flood attenuation and routing curves, for this reservoir. A guide curve, that is generated using both water supply and flood control of downstream channel, generally corresponds to upper elevation of conservation pool for simulation of a reservoir. However, sometimes current operation necessitates exceeding this target elevation. Since guide curves can be developed as a function of external variables, the water potential of a basin can be an indicator to explain current conditions and decide on the further strategies. Besides, releases with respect to guide curve are managed and restricted by user-defined rules. Although the managers operate the reservoir due to several variable conditions and predictions, still the simulation model using variable guide curve is an urgent need to test alternatives quickly. To that end, using HEC-ResSim, the several variable guide curves are defined to meet the requirements by taking inflow, elevation, precipitation and snow water equivalent into consideration to propose alternative simulations as a decision support system. After that, the releases are subjected to user-defined rules. Thus, previous year reservoir simulations are compared with observed reservoir levels and releases. Hypothetical flood scenarios are tested in case of different storm event timing and sizing. Numerical weather prediction data of Mesoscale Model 5 (MM5) can be used for temperature and precipitation forecasts that will form the inputs for a hydrological model. The estimated flows can be used for real time short term decisions for reservoir simulation based on variable guide curve and user defined rules.

  12. Dam pre-release as an important operation strategy in reducing flood impact in Malaysia

    NASA Astrophysics Data System (ADS)

    Hidayah Ishak, Nurul; Mustafa Hashim, Ahmad

    2018-03-01

    The 2014 flood was reported to be one of the worst natural disaster has ever affected several states in the northern part of Peninsular Malaysia. Overwhelming rainfall was noted as one of the main factors causing such impact, which was claimed to be unprecedented to some extent. The state of Perak, which is blessed with four cascading dams had also experienced flood damage at a scale that was considered the worst in history. The rainfall received had caused the dam to reach danger level that necessitated additional discharge to be released. Safety of the dams was of great importance and such unavoidable additional discharge was allowed to avoid catastrophic failure of the dam structures. This paper discusses the dam pre-release as a significant dam management strategy in reducing flood impact. An important balance between required dam storage to be maintained and the risk element that can be afforded is the crucial factor in such enhanced operation strategy. While further possibility in developing a carefully engineered dam pre-release strategy can be explored for dam operation in Malaysia, this has already been introduced in some developed countries. Australia and South Africa are examples where pre-release has been practiced and proven to reduce flood risk. The concept involves controlling the dam lake level throughout the year, in reference to the rainfall data and the hydrological properties for the catchment area of the dams. Plentiful data analysis need to be done in contemplation of producing the optimal pre-release model. The amount of heavy rainfalls received is beyond human control but the distribution of the discharge from the dams can be further managed with the appropriate pre-release strategy.

  13. Comparison of Strategies for Climate Change Adaptation of Water Supply and Flood Control Reservoirs

    NASA Astrophysics Data System (ADS)

    Ng, T. L.; Yang, P.; Bhushan, R.

    2016-12-01

    With climate change, streamflows are expected to become more fluctuating, with more frequent and intense floods and droughts. This complicates reservoir operation, which is highly sensitive to inflow variability. We make a comparative evaluation of three strategies for adapting reservoirs to climate-induced shifts in streamflow patterns. Specifically, we examine the effectiveness of (i) expanding the capacities of reservoirs by way of new off-stream reservoirs, (ii) introducing wastewater reclamation to augment supplies, and (iii) improving real-time streamflow forecasts for more optimal decision-making. The first two are hard strategies involving major infrastructure modifications, while the third a soft strategy entailing adjusting the system operation. A comprehensive side-by-side comparison of the three strategies is as yet lacking in the literature despite the many past studies investigating the strategies individually. To this end, we developed an adaptive forward-looking linear program that solves to yield the optimal decisions for the current time as a function of an ensemble forecast of future streamflows. Solving the model repeatedly on a rolling basis with regular updating of the streamflow forecast simulates the system behavior over the entire operating horizon. Results are generated for two hypothetical water supply and flood control reservoirs of differing inflows and demands. Preliminary findings suggest that of the three strategies, improving streamflow forecasts to be most effective in mitigating the effects of climate change. We also found that, in average terms, both additional reservoir capacity and wastewater reclamation have potential to reduce water shortage and downstream flooding. However, in the worst case, the potential of the former to reduce water shortage is limited, and similarly so the potential of the latter to reduce downstream flooding.

  14. A Preliminary Assessment of Corps of Engineers’ Reservoirs Their Purposes, and Susceptibility to Drought

    DTIC Science & Technology

    1991-09-01

    SEVERITY INDEX (PDSI) ................. 116 iv FOREWORD Recent droughts in the United States have caused water management agencies to examine the operation ...detail, and a discussion of reservoir operating procedures, may be found in the Corps’ Engineering Manual on Management of Water Control Systems (U. S...fishery management . The seasonal fluctuation that occurs at many flood control reservoirs, and the daily fluctuations that occur with hydropower operation

  15. Operational Management of Area Environment.

    ERIC Educational Resources Information Center

    Sprague, George W.

    Three phases leading to the automation of the mechanical building systems on the Harvard campus are described. The systems allow a single operator to monitor and control all the mechanical systems, plus fire, flood, and security alarms, for all buildings in a large area of the campus. (JT)

  16. 75 FR 65299 - Endangered and Threatened Species; Recovery Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    .../quantity. Address direct impacts of Willamette hydropower and flood control dam/reservoir operations by... eastside tributaries of the Willamette River; adverse thermal effects downstream from operation of the dams... spawning is high. c. Downstream passage survival of juvenile offspring through the reservoir and dam...

  17. Evaluating changes to reservoir rule curves using historical water-level data

    USGS Publications Warehouse

    Mower, Ethan; Miranda, Leandro E.

    2013-01-01

    Flood control reservoirs are typically managed through rule curves (i.e. target water levels) which control the storage and release timing of flood waters. Changes to rule curves are often contemplated and requested by various user groups and management agencies with no information available about the actual flood risk of such requests. Methods of estimating flood risk in reservoirs are not easily available to those unfamiliar with hydrological models that track water movement through a river basin. We developed a quantile regression model that uses readily available daily water-level data to estimate risk of spilling. Our model provided a relatively simple process for estimating the maximum applicable water level under a specific flood risk for any day of the year. This water level represents an upper-limit umbrella under which water levels can be operated in a variety of ways. Our model allows the visualization of water-level management under a user-specified flood risk and provides a framework for incorporating the effect of a changing environment on water-level management in reservoirs, but is not designed to replace existing hydrological models. The model can improve communication and collaboration among agencies responsible for managing natural resources dependent on reservoir water levels.

  18. Fews-Risk: A step towards risk-based flood forecasting

    NASA Astrophysics Data System (ADS)

    Bachmann, Daniel; Eilander, Dirk; de Leeuw, Annemargreet; Diermanse, Ferdinand; Weerts, Albrecht; de Bruijn, Karin; Beckers, Joost; Boelee, Leonore; Brown, Emma; Hazlewood, Caroline

    2015-04-01

    Operational flood prediction and the assessment of flood risk are important components of flood management. Currently, the model-based prediction of discharge and/or water level in a river is common practice for operational flood forecasting. Based on the prediction of these values decisions about specific emergency measures are made within operational flood management. However, the information provided for decision support is restricted to pure hydrological or hydraulic aspects of a flood. Information about weak sections within the flood defences, flood prone areas and assets at risk in the protected areas are rarely used in a model-based flood forecasting system. This information is often available for strategic planning, but is not in an appropriate format for operational purposes. The idea of FEWS-Risk is the extension of existing flood forecasting systems with elements of strategic flood risk analysis, such as probabilistic failure analysis, two dimensional flood spreading simulation and the analysis of flood impacts and consequences. Thus, additional information is provided to the decision makers, such as: • Location, timing and probability of failure of defined sections of the flood defence line; • Flood spreading, extent and hydraulic values in the hinterland caused by an overflow or a breach flow • Impacts and consequences in case of flooding in the protected areas, such as injuries or casualties and/or damages to critical infrastructure or economy. In contrast with purely hydraulic-based operational information, these additional data focus upon decision support for answering crucial questions within an operational flood forecasting framework, such as: • Where should I reinforce my flood defence system? • What type of action can I take to mend a weak spot in my flood defences? • What are the consequences of a breach? • Which areas should I evacuate first? This presentation outlines the additional required workflows towards risk-based flood forecasting systems. In a cooperation between HR Wallingford and Deltares, the extended workflows are being integrated into the Delft-FEWS software system. Delft-FEWS provides modules for managing the data handling and forecasting process. Results of a pilot study that demonstrates the new tools are presented. The value of the newly generated information for decision support during a flood event is discussed.

  19. Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon

    USGS Publications Warehouse

    Cross, Wyatt F.; Baxter, Colden V.; Donner, Kevin C.; Rosi-Marshall, Emma J.; Kennedy, Theodore A.; Hall, Robert O.; Wellard Kelly, Holly A.; Rogers, R. Scott

    2011-01-01

    Large dams have been constructed on rivers to meet human demands for water, electricity, navigation, and recreation. As a consequence, flow and temperature regimes have been altered, strongly affecting river food webs and ecosystem processes. Experimental high-flow dam releases, i.e., controlled floods, have been implemented on the Colorado River, USA, in an effort to reestablish pulsed flood events, redistribute sediments, improve conditions for native fishes, and increase understanding of how dam operations affect physical and biological processes. We quantified secondary production and organic matter flows in the food web below Glen Canyon dam for two years prior and one year after an experimental controlled flood in March 2008. Invertebrate biomass and secondary production declined significantly following the flood (total biomass, 55% decline; total production, 56% decline), with most of the decline driven by reductions in two nonnative invertebrate taxa, Potamopyrgus antipodarum and Gammarus lacustris. Diatoms dominated the trophic basis of invertebrate production before and after the controlled flood, and the largest organic matter flows were from diatoms to the three most productive invertebrate taxa (P. antipodarum, G. lacustris, and Tubificida). In contrast to invertebrates, production of rainbow trout (Oncorhynchus mykiss) increased substantially (194%) following the flood, despite the large decline in total secondary production of the invertebrate assemblage. This counterintuitive result is reconciled by a post-flood increase in production and drift concentrations of select invertebrate prey (i.e., Chironomidae and Simuliidae) that supported a large proportion of trout production but had relatively low secondary production. In addition, interaction strengths, measured as species impact values, were strongest between rainbow trout and these two taxa before and after the flood, demonstrating that the dominant consumer—resource interactions were not necessarily congruent with the dominant organic matter flows. Our study illustrates the value of detailed food web analysis for elucidating pathways by which dam management may alter production and strengths of species interactions in river food webs. We suggest that controlled floods may increase production of nonnative rainbow trout, and this information can be used to help guide future dam management decisions.

  20. User's guide for MAGIC-Meteorologic and hydrologic genscn (generate scenarios) input converter

    USGS Publications Warehouse

    Ortel, Terry W.; Martin, Angel

    2010-01-01

    Meteorologic and hydrologic data used in watershed modeling studies are collected by various agencies and organizations, and stored in various formats. Data may be in a raw, un-processed format with little or no quality control, or may be checked for validity before being made available. Flood-simulation systems require data in near real-time so that adequate flood warnings can be made. Additionally, forecasted data are needed to operate flood-control structures to potentially mitigate flood damages. Because real-time data are of a provisional nature, missing data may need to be estimated for use in floodsimulation systems. The Meteorologic and Hydrologic GenScn (Generate Scenarios) Input Converter (MAGIC) can be used to convert data from selected formats into the Hydrologic Simulation System-Fortran hourly-observations format for input to a Watershed Data Management database, for use in hydrologic modeling studies. MAGIC also can reformat the data to the Full Equations model time-series format, for use in hydraulic modeling studies. Examples of the application of MAGIC for use in the flood-simulation system for Salt Creek in northeastern Illinois are presented in this report.

  1. An operational procedure for rapid flood risk assessment in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Kalas, Milan; Salamon, Peter; Bianchi, Alessandra; Alfieri, Lorenzo; Feyen, Luc

    2017-07-01

    The development of methods for rapid flood mapping and risk assessment is a key step to increase the usefulness of flood early warning systems and is crucial for effective emergency response and flood impact mitigation. Currently, flood early warning systems rarely include real-time components to assess potential impacts generated by forecasted flood events. To overcome this limitation, this study describes the benchmarking of an operational procedure for rapid flood risk assessment based on predictions issued by the European Flood Awareness System (EFAS). Daily streamflow forecasts produced for major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in terms of flood-prone areas, economic damage and affected population, infrastructures and cities.An extensive testing of the operational procedure has been carried out by analysing the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-based and report-based flood extent data, while modelled estimates of economic damage and affected population are compared against ground-based estimations. Finally, we evaluate the skill of risk estimates derived from EFAS flood forecasts with different lead times and combinations of probabilistic forecasts. Results highlight the potential of the real-time operational procedure in helping emergency response and management.

  2. Determining the most suitable areas for artificial groundwater recharge via an integrated PROMETHEE II-AHP method in GIS environment (case study: Garabaygan Basin, Iran).

    PubMed

    Nasiri, Hossein; Boloorani, Ali Darvishi; Sabokbar, Hassan Ali Faraji; Jafari, Hamid Reza; Hamzeh, Mohamad; Rafii, Yusef

    2013-01-01

    Flood spreading is a suitable strategy for controlling and benefiting from floods. Selecting suitable areas for flood spreading and directing the floodwater into permeable formations are amongst the most effective strategies in flood spreading projects. Having combined geographic information systems (GIS) and multi-criteria decision analysis approaches, the present study sought to locate the most suitable areas for flood spreading operation in the Garabaygan Basin of Iran. To this end, the data layers relating to the eight effective factors were prepared in GIS environment. This stage was followed by elimination of the exclusionary areas for flood spreading while determining the potentially suitable ones. Having closely examined the potentially suitable areas using the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) II and analytic hierarchy process (AHP) methods, the land suitability map for flood spreading was produced. The PROMETHEE II and AHP were used for ranking all the alternatives and weighting the criteria involved, respectively. The results of the study showed that most suitable areas for the artificial groundwater recharge are located in Quaternary Q(g) and Q(gsc) geologic units and in geomorphological units of pediment and Alluvial fans with slopes not exceeding 3%. Furthermore, significant correspondence between the produced map and the control areas, where the flood spreading projects were successfully performed, provided further evidence for the acceptable efficiency of the integrated PROMETHEE II-AHP method in locating suitable flood spreading areas.

  3. Hawaii StreamStats; a web application for defining drainage-basin characteristics and estimating peak-streamflow statistics

    USGS Publications Warehouse

    Rosa, Sarah N.; Oki, Delwyn S.

    2010-01-01

    Reliable estimates of the magnitude and frequency of floods are necessary for the safe and efficient design of roads, bridges, water-conveyance structures, and flood-control projects and for the management of flood plains and flood-prone areas. StreamStats provides a simple, fast, and reproducible method to define drainage-basin characteristics and estimate the frequency and magnitude of peak discharges in Hawaii?s streams using recently developed regional regression equations. StreamStats allows the user to estimate the magnitude of floods for streams where data from stream-gaging stations do not exist. Existing estimates of the magnitude and frequency of peak discharges in Hawaii can be improved with continued operation of existing stream-gaging stations and installation of additional gaging stations for areas where limited stream-gaging data are available.

  4. 33 CFR 240.2 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GENERAL CREDIT FOR FLOOD CONTROL § 240.2 Applicability. Policies and procedures contained herein apply to all HQUSACE elements and field operating agencies of the Corps of Engineers having Civil Works...

  5. The Need for Modernized Operational Snow Models: A Tale of Two Years

    NASA Astrophysics Data System (ADS)

    Winstral, A. H.; Marks, D. G.

    2014-12-01

    The Boise River Basin in southwest Idaho, USA contains three major reservoirs totaling nearly 1,000,000 acre-feet of storage capacity. The primary goals for water managers are water supply and flood protection. In terms of observed SWE at monitoring sites throughout the basin, water years 2012 and 2014 were similar and near normal. In WY 2014 inflows into the BRB reservoir system followed historic patterns and reservoir releases were ideally controlled for management goals. WY2012 however was warmer than average and the winter snowpack had uncharacteristically high melt susceptibility. Subsequent energy fluxes produced late winter inflows much higher than normally encountered. The uncharacteristic flow patterns and inability of traditional operational modeling tools to handle this situation challenged water managers. Through late March and early April 2012 near flood stage flows were pushed through the city of Boise in order to increase storage and prevent more catastrophic flooding. While in this case a greater catastrophe was narrowly averted, the shortcomings of the traditional modeling approaches taken by operational agencies were exposed. "Uncharacteristic" events such as these are becoming more and more frequent as the effects of climate change are realized. The need for modernized methods - ones based on the physical controlling processes rather than historic patterns - is imperative. This presentation outlines the latest developments in the application of a physically-based, high-resolution spatial snow model to aid operational water management decisions.

  6. Decision Support System for Reservoir Management and Operation in Africa

    NASA Astrophysics Data System (ADS)

    Navar, D. A.

    2016-12-01

    Africa is currently experiencing a surge in dam construction for flood control, water supply and hydropower production, but ineffective reservoir management has caused problems in the region, such as water shortages, flooding and loss of potential hydropower generation. Our research aims to remedy ineffective reservoir management by developing a novel Decision Support System(DSS) to equip water managers with a technical planning tool based on the state of the art in hydrological sciences. The DSS incorporates a climate forecast model, a hydraulic model of the watershed, and an optimization model to effectively plan for the operation of a system of cascade large-scale reservoirs for hydropower production, while treating water supply and flood control as constraints. Our team will use the newly constructed hydropower plants in the Omo Gibe basin of Ethiopia as the test case. Using the basic HIDROTERM software developed in Brazil, the General Algebraic Modeling System (GAMS) utilizes a combination of linear programing (LP) and non-linear programming (NLP) in conjunction with real time hydrologic and energy demand data to optimize the monthly and daily operations of the reservoir system. We compare the DSS model results with the current reservoir operating policy used by the water managers of that region. We also hope the DSS will eliminate the current dangers associated with the mismanagement of large scale water resources projects in Africa.

  7. Long-term monitoring of sandbars on the Colorado River in Grand Canyon using remote sensing

    USGS Publications Warehouse

    Ross, Robert P.; Grams, Paul E.

    2015-01-01

    Closure of Glen Canyon Dam in 1963 dramatically changed discharge and sediment supply to the downstream Colorado River in Marble and Grand Canyons. Magnitudes of seasonal flow variation have been suppressed, while daily fluctuations have increased because of hydropower generation. Lake Powell, the upstream reservoir, traps all sediment, leaving the Paria and Little Colorado Rivers as the main suppliers of fine sediment to the system below Glen Canyon Dam. The reduction in sediment supply, along with changes in discharge, have resulted in finesediment deficit (Topping et al., 2000), leading to a decrease in the size and number of alluvial sandbars (Schmidt and Graf, 1990; Schmidt et al., 2004). However, the understanding of these important spatial and temporal changes in sandbars located along the banks of the river have been limited to infrequent measurements mostly made by direct visitation and topographic surveying (Hazel et al., 2010). Aerial photographs are the only data available from which it is possible to evaluate changes in alluvial deposits at a large number of sites and compare recent conditions with those that existed prior to the initiation of ground-based monitoring in the early 1990s. Previous studies have evaluated the effects of Glen Canyon Dam on sandbars by analysis of comprehensive maps of surficial geology that are based on seven sets of aerial imagery taken between 1935 and 1996 for selected reaches in the first 120 km downstream from Lees Ferry, Arizona (Figure 1). These studies showed that the area of exposed sand in eddy-deposition zones was less in the post-dam period than in the pre-dam period (Leschin and Schmidt, 1995; Schmidt et al., 1999b; Sondossi, 2001, Sondossi and Schmidt, 2001, Schmidt et al., 2004). In this study, we extend these analyses to encompass a 74-year period by including maps of sand deposits visible in aerial imagery taken in 2002, 2005, and 2009 for the same reaches that were mapped in the earlier studies. Results are analyzed for two post-dam periods, based on the implementation of the first controlled flood in March 1996. The period from 1965 to March 1996 is the pre-controlled flood period and was dominated by flows that fluctuated up to the maximum capacity of the Glen Canyon Dam powerplant. Beginning in 1991, fluctuations were constrained such that maximum daily flows were typically less than 65 percent of powerplant capacity. Thus, the pre-controlled flood period also includes five years of restricted dam operations. This period also included unplanned spills from the reservoir in 1983, 1984, and 1986. We refer to the period from April 1996 to 2009 as the controlled-flood period. This period consisted entirely of restricted dam operations and included three controlled floods conducted as sandbar-building experiments. We show that the areal extent of exposed sand was greater in the images taken in the controlled-flood period than in the pre-controlled flood period. We also show that in the controlled-flood period, the area of exposed sand is negatively correlated with the elapsed time since the most recent controlled flood.

  8. Interconnected ponds operation for flood hazard distribution

    NASA Astrophysics Data System (ADS)

    Putra, S. S.; Ridwan, B. W.

    2016-05-01

    The climatic anomaly, which comes with extreme rainfall, will increase the flood hazard in an area within a short period of time. The river capacity in discharging the flood is not continuous along the river stretch and sensitive to the flood peak. This paper contains the alternatives on how to locate the flood retention pond that are physically feasible to reduce the flood peak. The flood ponds were designed based on flood curve number criteria (TR-55, USDA) with the aim of rapid flood peak capturing and gradual flood retuning back to the river. As a case study, the hydrologic condition of upper Ciliwung river basin with several presumed flood pond locations was conceptually designed. A fundamental tank model that reproducing the operation of interconnected ponds was elaborated to achieve the designed flood discharge that will flows to the downstream area. The flood hazard distribution status, as the model performance criteria, will be computed within Ciliwung river reach in Manggarai Sluice Gate spot. The predicted hazard reduction with the operation of the interconnected retention area result had been bench marked with the normal flow condition.

  9. Benchmarking an operational procedure for rapid flood mapping and risk assessment in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Salamon, Peter; Kalas, Milan; Bianchi, Alessandra; Feyen, Luc

    2016-04-01

    The development of real-time methods for rapid flood mapping and risk assessment is crucial to improve emergency response and mitigate flood impacts. This work describes the benchmarking of an operational procedure for rapid flood risk assessment based on the flood predictions issued by the European Flood Awareness System (EFAS). The daily forecasts produced for the major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations, based on the hydro-meteorological dataset of EFAS. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in near real-time in terms of flood prone areas, potential economic damage, affected population, infrastructures and cities. An extensive testing of the operational procedure is carried out using the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-derived flood footprints, while ground-based estimations of economic damage and affected population is compared against modelled estimates. We evaluated the skill of flood hazard and risk estimations derived from EFAS flood forecasts with different lead times and combinations. The assessment includes a comparison of several alternative approaches to produce and present the information content, in order to meet the requests of EFAS users. The tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management.

  10. An operational real-time flood forecasting system in Southern Italy

    NASA Astrophysics Data System (ADS)

    Ortiz, Enrique; Coccia, Gabriele; Todini, Ezio

    2015-04-01

    A real-time flood forecasting system has been operating since year 2012 as a non-structural measure for mitigating the flood risk in Campania Region (Southern Italy), within the Sele river basin (3.240 km2). The Sele Flood Forecasting System (SFFS) has been built within the FEWS (Flood Early Warning System) platform developed by Deltares and it assimilates the numerical weather predictions of the COSMO LAM family: the deterministic COSMO-LAMI I2, the deterministic COSMO-LAMI I7 and the ensemble numerical weather predictions COSMO-LEPS (16 members). Sele FFS is composed by a cascade of three main models. The first model is a fully continuous physically based distributed hydrological model, named TOPKAPI-eXtended (Idrologia&Ambiente s.r.l., Naples, Italy), simulating the dominant processes controlling the soil water dynamics, runoff generation and discharge with a spatial resolution of 250 m. The second module is a set of Neural-Networks (ANN) built for forecasting the river stages at a set of monitored cross-sections. The third component is a Model Conditional Processor (MCP), which provides the predictive uncertainty (i.e., the probability of occurrence of a future flood event) within the framework of a multi-temporal forecast, according to the most recent advancements on this topic (Coccia and Todini, HESS, 2011). The MCP provides information about the probability of exceedance of a maximum river stage within the forecast lead time, by means of a discrete time function representing the variation of cumulative probability of exceeding a river stage during the forecast lead time and the distribution of the time occurrence of the flood peak, starting from one or more model forecasts. This work shows the Sele FFS performance after two years of operation, evidencing the added-values that can provide to a flood early warning and emergency management system.

  11. Forecasting skills of the ensemble hydro-meteorological system for the Po river floods

    NASA Astrophysics Data System (ADS)

    Ricciardi, Giuseppe; Montani, Andrea; Paccagnella, Tiziana; Pecora, Silvano; Tonelli, Fabrizio

    2013-04-01

    The Po basin is the largest and most economically important river-basin in Italy. Extreme hydrological events, including floods, flash floods and droughts, are expected to become more severe in the next future due to climate change, and related ground effects are linked both with environmental and social resilience. A Warning Operational Center (WOC) for hydrological event management was created in Emilia Romagna region. In the last years, the WOC faced challenges in legislation, organization, technology and economics, achieving improvements in forecasting skill and information dissemination. Since 2005, an operational forecasting and modelling system for flood modelling and forecasting has been implemented, aimed at supporting and coordinating flood control and emergency management on the whole Po basin. This system, referred to as FEWSPo, has also taken care of environmental aspects of flood forecast. The FEWSPo system has reached a very high level of complexity, due to the combination of three different hydrological-hydraulic chains (HEC-HMS/RAS - MIKE11 NAM/HD, Topkapi/Sobek), with several meteorological inputs (forecasted - COSMOI2, COSMOI7, COSMO-LEPS among others - and observed). In this hydrological and meteorological ensemble the management of the relative predictive uncertainties, which have to be established and communicated to decision makers, is a debated scientific and social challenge. Real time activities face professional, modelling and technological aspects but are also strongly interrelated with organization and human aspects. The authors will report a case study using the operational flood forecast hydro-meteorological ensemble, provided by the MIKE11 chain fed by COSMO_LEPS EQPF. The basic aim of the proposed approach is to analyse limits and opportunities of the long term forecast (with a lead time ranging from 3 to 5 days), for the implementation of low cost actions, also looking for a well informed decision making and the improvement of flood preparedness and crisis management for basins greater than 1.000 km2.

  12. Nonlinear Filtering Effects of Reservoirs on Flood Frequency Curves at the Regional Scale: RESERVOIRS FILTER FLOOD FREQUENCY CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Li, Hong-Yi; Leung, L. Ruby

    Anthropogenic activities, e.g., reservoir operation, may alter the characteristics of Flood Frequency Curve (FFC) and challenge the basic assumption of stationarity used in flood frequency analysis. This paper presents a combined data-modeling analysis of the nonlinear filtering effects of reservoirs on the FFCs over the contiguous United States. A dimensionless Reservoir Impact Index (RII), defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume, is used to quantify reservoir regulation effects. Analyses are performed for 388 river stations with an average record length of 50 years. The first two moments of the FFC, mean annual maximummore » flood (MAF) and coefficient of variations (CV), are calculated for the pre- and post-dam periods and compared to elucidate the reservoir regulation effects as a function of RII. It is found that MAF generally decreases with increasing RII but stabilizes when RII exceeds a threshold value, and CV increases with RII until a threshold value beyond which CV decreases with RII. The processes underlying the nonlinear threshold behavior of MAF and CV are investigated using three reservoir models with different levels of complexity. All models capture the non-linear relationships of MAF and CV with RII, suggesting that the basic flood control function of reservoirs is key to the non-linear relationships. The relative roles of reservoir storage capacity, operation objectives, available storage prior to a flood event, and reservoir inflow pattern are systematically investigated. Our findings may help improve flood-risk assessment and mitigation in regulated river systems at the regional scale.« less

  13. Assessing water reservoir management and development in Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Pianosi, F.; Quach, X.; Castelletti, A.; Soncini-Sessa, R.

    2012-04-01

    In many developing countries water is a key renewable resource to complement carbon-emitting energy production and support food security in the face of demand pressure from fast-growing industrial production and urbanization. To cope with undergoing changes, water resources development and management have to be reconsidered by enlarging their scope across sectors and adopting effective tools to analyze current and projected infrastructure potential and operation strategies. In this work we use multi-objective deterministic and stochastic optimization to assess the current reservoir operation and planned capacity expansion in the Red River Basin (Northern Vietnam), focusing on the major controllable infrastructure in the basin, the HoaBinh reservoir on the Da River. We first provide a general and mathematical description of the socio economic and physical system of the Red River Basin, including the three main objectives of hydropower production, flood control, and water supply, and using conceptual and data-driven modeling tools. Then, we analyze the historical operation of the HoaBinh reservoir and explore re-operation options corresponding to different tradeoffs among the three main objectives, using Multi-Objective Genetic Algorithm. Results show that there exist several operating policies that prove Pareto-dominant over the historical one, that is, they can improve all three management objectives simultaneously. However, while the improvement is rather significant with respect to hydropower production and water supply, it is much more limited in terms of flood control. To understand whether this is due to structural constraints (insufficient storing capacity) or to the imperfect information system (uncertainty in forecasting future flows and thus anticipate floods), we assessed the infrastructural system potential by application of Deterministic Dynamic Programming. Results show that the current operation can only be relatively improved by advanced optimization techniques, while investment should be put into enlarging the system storage capacity and exploiting additional information to inform the operation.

  14. U.S. Geological Survey Real-Time River Data Applications

    USGS Publications Warehouse

    Morlock, Scott E.

    1998-01-01

    Real-time river data provided by the USGS originate from streamflow-gaging stations. The USGS operates and maintains a network of more than 7,000 such stations across the nation (Mason and Wieger, 1995). These gaging stations, used to produce records of stage and streamflow data, are operated in cooperation with local, state, and other federal agencies. The USGS office in Indianapolis operates a statewide network of more than 170 gaging stations. The instrumentation at USGS gaging stations monitors and records river information, primarily river stage (fig. 1). As technological advances are made, many USGS gaging stations are being retrofitted with electronic instrumentation to monitor and record river data. Electronic instrumentation facilitates transmission of real-time or near real-time river data for use by government agencies in such flood-related tasks as operating flood-control structures and ordering evacuations.

  15. The use of LANDSAT DCS and imagery in reservoir management and operation

    NASA Technical Reports Server (NTRS)

    Cooper, S.; Bock, P.; Horowitz, J.; Foran, D.

    1975-01-01

    Experiments by the New England Division (NED), Corps of Engineers with LANDSAT-1 data collection and imaging systems are reported. Data cover the future usefulness of data products received from satellites such as LANDSAT in the day to day operation of NED water resources systems used to control floods.

  16. 33 CFR 208.25 - Pensacola Dam and Reservoir, Grand (Neosho) River, Okla.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... elevation of the reservoir pool and the tailwater, number of gates in operation, spillway and turbine... instructions for operation of the reservoir in the interest of flood control during an emergency condition when... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pensacola Dam and Reservoir...

  17. 33 CFR 208.25 - Pensacola Dam and Reservoir, Grand (Neosho) River, Okla.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... elevation of the reservoir pool and the tailwater, number of gates in operation, spillway and turbine... instructions for operation of the reservoir in the interest of flood control during an emergency condition when... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pensacola Dam and Reservoir...

  18. Ensemble Flow Forecasts for Risk Based Reservoir Operations of Lake Mendocino in Mendocino County, California: A Framework for Objectively Leveraging Weather and Climate Forecasts in a Decision Support Environment

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Hartman, R. K.; Mendoza, J.; Whitin, B.

    2017-12-01

    Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation and flow forecasts to inform the flood operations of reservoirs. The Ensemble Forecast Operations (EFO) alternative is a probabilistic approach of FIRO that incorporates ensemble streamflow predictions (ESPs) made by NOAA's California-Nevada River Forecast Center (CNRFC). With the EFO approach, release decisions are made to manage forecasted risk of reaching critical operational thresholds. A water management model was developed for Lake Mendocino, a 111,000 acre-foot reservoir located near Ukiah, California, to evaluate the viability of the EFO alternative to improve water supply reliability but not increase downstream flood risk. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United States Army Corps of Engineers and is operated for water supply by the Sonoma County Water Agency. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has suffered from water supply reliability issues since 2007. The EFO alternative was simulated using a 26-year (1985-2010) ESP hindcast generated by the CNRFC. The ESP hindcast was developed using Global Ensemble Forecast System version 10 precipitation reforecasts processed with the Hydrologic Ensemble Forecast System to generate daily reforecasts of 61 flow ensemble members for a 15-day forecast horizon. Model simulation results demonstrate that the EFO alternative may improve water supply reliability for Lake Mendocino yet not increase flood risk for downstream areas. The developed operations framework can directly leverage improved skill in the second week of the forecast and is extendable into the S2S time domain given the demonstration of improved skill through a reliable reforecast of adequate historical duration and consistent with operationally available numerical weather predictions.

  19. 25 CFR 216.4 - Technical examination of prospective surface exploration and mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ecological values; and control of erosion, flooding, and pollution of water; the isolation of toxic materials; the prevention of air pollution; the reclamation by revegetation, replacement of soil or by other... quality below standards established by the appropriate State water pollution control agency, or by the...

  20. 43 CFR 23.5 - Technical examination of prospective surface exploration and mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...; the control of erosion, flooding, and pollution of water; the isolation of toxic materials; the prevention of air pollution; the reclamation by revegetation, replacement of soil, or by other means, of... lowering of water quality below standards established by the appropriate State water pollution control...

  1. 43 CFR 419.3 - What general principles govern implementation of the TROA?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... conflict with those specific provisions, the specific TROA provisions control. Operations should meet all... reservoir recreation levels as described in Article Nine of the TROA. (d) Comply with applicable flood control requirements for Prosser Creek, Stampede, Boca, and Martis Creek Reservoirs. (e) Comply with all...

  2. Assessment of Short Term Flood Operation Strategies Using Numerical Weather Prediction Data in YUVACΙK DAM Reservoir, Turkey

    NASA Astrophysics Data System (ADS)

    Uysal, G.; Yavuz, O.; Sensoy, A.; Sorman, A.; Akgun, T.; Gezgin, T.

    2011-12-01

    Yuvacik Dam Reservoir Basin, located in the Marmara region of Turkey with 248 km2 drainage area, has steep topography, mild and rainy climate thus induces high flood potential with fast flow response, especially to early spring and fall precipitation events. Moreover, the basin provides considerable snowmelt contribution to the streamflow during melt season since the elevation ranges between 80 - 1548 m. The long term strategies are based on supplying annual demand of 142 hm3 water despite a relatively small reservoir capacity of 51 hm3. This situation makes short term release decisions as the challenging task regarding the constrained downstream safe channel capacity especially in times of floods. Providing the demand of 1.5 million populated city of Kocaeli is the highest priority issue in terms of reservoir management but risk optimization is also required due to flood regulation. Although, the spillway capacity is 1560 m3/s, the maximum amount of water to be released is set as 100 m3/s by the regional water authority taking into consideration the downstream channel capacity which passes through industrial region of the city. The reservoir is a controlled one and it is possible to hold back the 15 hm3 additional water by keeping the gates closed. Flood regulation is set to achieve the maximum possible flood attenuation by using the full flood-control zone capacity in the reservoir before making releases in excess of the downstream safe-channel capacity. However, the operators still need to exceed flood regulation zones to take precautions for drought summer periods in order to supply water without any shortage that increases the risk in times of flood. Regarding to this circumstances, a hydrological model integrated reservoir modeling system, is applied to account for the physical behavior of the system. Hence, this reservoir modeling is carried out to analyze both previous decisions and also the future scenarios as a decision support tool for operators. In the first step, a hydrological model with an embedded snow module is used to establish a rainfall-runoff relationship to calculate the inflow into the dam reservoir. The basin is divided into four sub-basins, along with the three elevation zones for each subbasin. Hydro-meteorological data are collected via 11 automated stations in and around the basin and a semi-distributed rainfall-runoff model, HEC-HMS, is calibrated for sub-basins. Then, HEC-ResSim is used to create simulation alternatives of reservoir system according to user defined guide curves and rules based on internal and/or external variables. The decision support modeling scenarios are tested with Numerical Weather Prediction Mesoscale Model 5 (MM5) daily total precipitation and daily average temperature data. Predicted precipitation and temperature data are compared with ground observations to examine the consistency. Predicted inflows computed by HEC-HMS are used as main forcing inputs into HEC-ResSim for the short term operation of reservoir during the flood events.

  3. Integrated water resources management using engineering measures

    NASA Astrophysics Data System (ADS)

    Huang, Y.

    2015-04-01

    The management process of Integrated Water Resources Management (IWRM) consists of aspects of policies/strategies, measures (engineering measures and non-engineering measures) and organizational management structures, etc., among which engineering measures such as reservoirs, dikes, canals, etc., play the backbone that enables IWRM through redistribution and reallocation of water in time and space. Engineering measures are usually adopted for different objectives of water utilization and water disaster prevention, such as flood control and drought relief. The paper discusses the planning and implementation of engineering measures in IWRM of the Changjiang River, China. Planning and implementation practices of engineering measures for flood control and water utilization, etc., are presented. Operation practices of the Three Gorges Reservoir, particularly the development and application of regulation rules for flood management, power generation, water supply, ecosystem needs and sediment issues (e.g. erosion and siltation), are also presented. The experience obtained in the implementation of engineering measures in Changjiang River show that engineering measures are vital for IWRM. However, efforts should be made to deal with changes of the river system affected by the operation of engineering measures, in addition to escalatory development of new demands associated with socio-economic development.

  4. Effects of flood control and other reservoir operations on the water quality of the lower Roanoke River, North Carolina

    USGS Publications Warehouse

    Garcia, Ana Maria

    2012-01-01

    The Roanoke River is an important natural resource for North Carolina, Virginia, and the Nation. Flood plains of the lower Roanoke River, which extend from Roanoke Rapids Dam to Batchelor Bay near Albemarle Sound, support a large and diverse population of nesting birds, waterfowl, freshwater and anadromous fish, and other wildlife, including threatened and endangered species. The flow regime of the lower Roanoke River is affected by a number of factors, including flood-management operations at the upstream John H. Kerr Dam and Reservoir. A three-dimensional, numerical water-quality model was developed to explore links between upstream flows and downstream water quality, specifically in-stream dissolved-oxygen dynamics. Calibration of the hydrodynamics and dissolved-oxygen concentrations emphasized the effect that flood-plain drainage has on water and oxygen levels, especially at locations more than 40 kilometers away from the Roanoke Rapids Dam. Model hydrodynamics were calibrated at three locations on the lower Roanoke River, yielding coefficients of determination between 0.5 and 0.9. Dissolved-oxygen concentrations were calibrated at the same sites, and coefficients of determination ranged between 0.6 and 0.8. The model has been used to quantify relations among river flow, flood-plain water level, and in-stream dissolved-oxygen concentrations in support of management of operations of the John H. Kerr Dam, which affects overall flows in the lower Roanoke River. Scenarios have been developed to mitigate the negative effects that timing, duration, and extent of flood-plain inundation may have on vegetation, wildlife, and fisheries in the lower Roanoke River corridor. Under specific scenarios, the model predicted that mean dissolved-oxygen concentrations could be increased by 15 percent by flow-release schedules that minimize the drainage of anoxic flood-plain waters. The model provides a tool for water-quality managers that can help identify options that improve water quality and protect the aquatic habitat of the Roanoke River.

  5. Spatiotemporal hazard mapping of a flood event "migration" in a transboundary river basin as an operational tool in flood risk management

    NASA Astrophysics Data System (ADS)

    Perrou, Theodora; Papastergios, Asterios; Parcharidis, Issaak; Chini, Marco

    2017-10-01

    Flood disaster is one of the heaviest disasters in the world. It is necessary to monitor and evaluate the flood disaster in order to mitigate the consequences. As floods do not recognize borders, transboundary flood risk management is imperative in shared river basins. Disaster management is highly dependent on early information and requires data from the whole river basin. Based on the hypothesis that the flood events over the same area with same magnitude have almost identical evolution, it is crucial to develop a repository database of historical flood events. This tool, in the case of extended transboundary river basins, could constitute an operational warning system for the downstream area. The utility of SAR images for flood mapping, was demonstrated by previous studies but the SAR systems in orbit were not characterized by high operational capacity. Copernicus system will fill this gap in operational service for risk management, especially during emergency phase. The operational capabilities have been significantly improved by newly available satellite constellation, such as the Sentinel-1A AB mission, which is able to provide systematic acquisitions with a very high temporal resolution in a wide swath coverage. The present study deals with the monitoring of a transboundary flood event in Evros basin. The objective of the study is to create the "migration story" of the flooded areas on the basis of the evolution in time for the event occurred from October 2014 till May 2015. Flood hazard maps will be created, using SAR-based semi-automatic algorithms and then through the synthesis of the related maps in a GIS-system, a spatiotemporal thematic map of the event will be produced. The thematic map combined with TanDEM-X DEM, 12m/pixel spatial resolution, will define the non- affected areas which is a very useful information for the emergency planning and emergency response phases. The Sentinels meet the main requirements to be an effective and suitable operational tool in transboundary flood risk management.

  6. Use of ERTS-1 DCS in the management and control of water resources systems

    NASA Technical Reports Server (NTRS)

    Finegan, J. W., Jr.

    1975-01-01

    The ERTS-1 experimental hydrologic Data Collection Platform System that has been established at the New England Division (NED), the reasons for getting involved with the experiment, some of the initial problems associated with the data collection hardware, and a preliminary conclusion based on operating experiences are reviewed. The New England Region includes the states of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island and Connecticut. The entire area consists of approximately 97,000 sq. km. (60,000 square miles), half of which is in the state of Maine. The limits of the NED are all of Maine, New Hampshire and Vermont to the western limits of the Connecticut River basin, Massachusetts, Connecticut to the western edge of the Housatonic River basin and Rhode Island. All reservoirs have flood control as a primary purpose. Other uses include water supply, recreation and low flow augmentation. However, none of the reservoirs are presently operated for hydroelectric power, navigation, or irrigation purposes. Basically then, flood control regulation is NED's primary concern.

  7. 77 FR 63299 - Notice of Intent To Prepare a Joint Environmental Impact Statement/Environmental Impact Report...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... operation rules of Folsom Dam and Reservoir to reduce flood risk to the Sacramento area by utilizing the... the Dam's new flood operations plan, with the intention of meeting flood risk management objectives... direction to reduce Folsom Reservoir variable space allocation from the current operating range of 400,000...

  8. A Framework for Flood Risk Analysis and Benefit Assessment of Flood Control Measures in Urban Areas

    PubMed Central

    Li, Chaochao; Cheng, Xiaotao; Li, Na; Du, Xiaohe; Yu, Qian; Kan, Guangyuan

    2016-01-01

    Flood risk analysis is more complex in urban areas than that in rural areas because of their closely packed buildings, different kinds of land uses, and large number of flood control works and drainage systems. The purpose of this paper is to propose a practical framework for flood risk analysis and benefit assessment of flood control measures in urban areas. Based on the concept of disaster risk triangle (hazard, vulnerability and exposure), a comprehensive analysis method and a general procedure were proposed for urban flood risk analysis. Urban Flood Simulation Model (UFSM) and Urban Flood Damage Assessment Model (UFDAM) were integrated to estimate the flood risk in the Pudong flood protection area (Shanghai, China). S-shaped functions were adopted to represent flood return period and damage (R-D) curves. The study results show that flood control works could significantly reduce the flood risk within the 66-year flood return period and the flood risk was reduced by 15.59%. However, the flood risk was only reduced by 7.06% when the flood return period exceeded 66-years. Hence, it is difficult to meet the increasing demands for flood control solely relying on structural measures. The R-D function is suitable to describe the changes of flood control capacity. This frame work can assess the flood risk reduction due to flood control measures, and provide crucial information for strategy development and planning adaptation. PMID:27527202

  9. Measurement of operational real-time kinematic global positioning service for southeastern Louisiana.

    DOT National Transportation Integrated Search

    2009-01-01

    The establishment of accurate and reliable vertical elevations in Louisiana is : exceedingly critical due to the substantial impact on flood control, hurricane : protection projects, and navigation projects of rapidly changing vertical elevations due...

  10. 26 CFR 1.832-6 - Policyholders of mutual fire or flood insurance companies operating on the basis of premium...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Other Insurance Companies § 1.832-6 Policyholders of mutual fire or flood insurance companies operating..., a taxpayer insured by a mutual fire or flood insurance company under a policy for which the premium... 26 Internal Revenue 8 2014-04-01 2014-04-01 false Policyholders of mutual fire or flood insurance...

  11. 26 CFR 1.832-6 - Policyholders of mutual fire or flood insurance companies operating on the basis of premium...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Other Insurance Companies § 1.832-6 Policyholders of mutual fire or flood insurance companies operating..., a taxpayer insured by a mutual fire or flood insurance company under a policy for which the premium... 26 Internal Revenue 8 2013-04-01 2013-04-01 false Policyholders of mutual fire or flood insurance...

  12. 26 CFR 1.832-6 - Policyholders of mutual fire or flood insurance companies operating on the basis of premium...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Other Insurance Companies § 1.832-6 Policyholders of mutual fire or flood insurance companies operating..., a taxpayer insured by a mutual fire or flood insurance company under a policy for which the premium... 26 Internal Revenue 8 2012-04-01 2012-04-01 false Policyholders of mutual fire or flood insurance...

  13. 26 CFR 1.832-6 - Policyholders of mutual fire or flood insurance companies operating on the basis of premium...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Other Insurance Companies § 1.832-6 Policyholders of mutual fire or flood insurance companies operating..., a taxpayer insured by a mutual fire or flood insurance company under a policy for which the premium... 26 Internal Revenue 8 2011-04-01 2011-04-01 false Policyholders of mutual fire or flood insurance...

  14. 43 CFR 45.73 - How will the bureau analyze a proposed alternative and formulate its modified condition or...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., distribution, cost, and use; (2) Flood control; (3) Navigation; (4) Water supply; (5) Air quality; and (6..., including: (1) Any evidence on the implementation costs or operational impacts for electricity production of...) Cost significantly less to implement; or (ii) Result in improved operation of the project works for...

  15. Evaluating the Implications of Climate Phenomenon Indices in Supporting Reservoir Operation Using the Artificial Neural Network and Decision-Tree Methods: A Case Study on Trinity Lake in Northern California

    NASA Astrophysics Data System (ADS)

    Yang, T.; Akbari Asanjan, A.; Gao, X.; Sorooshian, S.

    2016-12-01

    Reservoirs are fundamental human-built infrastructures that collect, store, and deliver fresh surface water in a timely manner for all kinds of purposes, including residential and industrial water supply, flood control, hydropower, and irrigation, etc. Efficient reservoir operation requires that policy makers and operators understand how reservoir inflows, available storage, and discharges are changing under different climatic conditions. Over the last decade, the uses of Artificial Intelligence and Data Mining (AI & DM) techniques in assisting reservoir management and seasonal forecasts have been increasing. Therefore, in this study, two distinct AI & DM methods, Artificial Neural Network (ANN) and Random Forest (RF), are employed and compared with respect to their capabilities of predicting monthly reservoir inflow, managing storage, and scheduling reservoir releases. A case study on Trinity Lake in northern California is conducted using long-term (over 50 years) reservoir operation records and 17 known climate phenomenon indices, i.e. PDO and ENSO, etc., as predictors. Results show that (1) both ANN and RF are capable of providing reasonable monthly reservoir storage, inflow, and outflow prediction with satisfactory statistics, and (2) climate phenomenon indices are useful in assisting monthly or seasonal forecasts of reservoir inflow and outflow. It is also found that reservoir storage has a consistent high autocorrelation effect, while inflow and outflow are more likely to be influenced by climate conditions. Using a Gini diversity index, RF method identifies that the reservoir discharges are associated with Southern Oscillation Index (SOI) and reservoir inflows are influenced by multiple climate phenomenon indices during different seasons. Furthermore, results also show that, during the winter season, reservoir discharges are controlled by the storage level for flood-control purposes, while, during the summer season, the flood-control operation is not as significant as that in the winter. With regard to the suitability of the AI & DM methods in support of reservoir operation, the Decision Tree method is suggested for future reservoir studies because of its transparency and non-parametric features over the "black-box" style ANN regression model.

  16. Designing and operating infrastructure for nonstationary flood risk management

    NASA Astrophysics Data System (ADS)

    Doss-Gollin, J.; Farnham, D. J.; Lall, U.

    2017-12-01

    Climate exhibits organized low-frequency and regime-like variability at multiple time scales, causing the risk associated with climate extremes such as floods and droughts to vary in time. Despite broad recognition of this nonstationarity, there has been little theoretical development of ideas for the design and operation of infrastructure considering the regime structure of such changes and their potential predictability. We use paleo streamflow reconstructions to illustrate an approach to the design and operation of infrastructure to address nonstationary flood and drought risk. Specifically, we consider the tradeoff between flood control and conservation storage, and develop design and operation principles for allocating these storage volumes considering both a m-year project planning period and a n-year historical sampling record. As n increases, the potential uncertainty in probabilistic estimates of the return periods associated with the T-year extreme event decreases. As the duration m of the future operation period decreases, the uncertainty associated with the occurrence of the T-year event also increases. Finally, given the quasi-periodic nature of the system it may be possible to offer probabilistic predictions of the conditions in the m-year future period, especially if m is small. In the context of such predictions, one can consider that a m-year prediction may have lower bias, but higher variance, than would be associated with using a stationary estimate from the preceding n years. This bias-variance trade-off, and the potential for considering risk management for multiple values of m, provides an interesting system design challenge. We use wavelet-based simulation models in a Bayesian framework to estimate these biases and uncertainty distributions and devise a risk-optimized decision rule for the allocation of flood and conservation storage. The associated theoretical development also provides a methodology for the sizing of storage for new infrastructure under nonstationarity, and an examination of risk adaptation measures which consider both short term and long term options simultaneously.

  17. August, 2002 - floods events, affected areas revitalisation and prevention for the future in the central Bohemian region, Czech Republic

    NASA Astrophysics Data System (ADS)

    Bina, L.; Vacha, F.; Vodova, J.

    2003-04-01

    Central Bohemian Region is located in a shape of a ring surrounding the capitol of Prague. Its total territorial area is 11.014 sq.km and population of 1 130.000 inhabitants. According to EU nomenclature of regional statistical units, the Central Bohemian Region is classified as an independent NUTS II. Bohemia's biggest rivers, Vltava and Labe form the region's backbone dividing it along a north-south line, besides that there are Sazava and Berounka, the two big headwaters of Vltava, which flow through the region and there also are some cascade man made lakes and 2 important big dams - Orlik and Slapy on the Vltava River in the area of the region. Overflowing of these rivers and their feeders including cracking of high-water dams during the floods in August 2002 caused total or partial destruction or damage of more than 200 towns and villages and total losses to the extend of 450 mil. EUR. The worst impact was on damaged or destroyed human dwellings, social infrastructure (schools, kindergartens, humanitarian facilities) and technical infrastructure (roads, waterworks, power distribution). Also businesses were considerably damaged including transport terminals in the area of river ports. Flowage of Spolana Neratovice chemical works caused critical environmental havoc. Regional crisis staff with regional Governor in the lead worked continuously during the floods and a regional integrated rescue system was subordinated to it. Due to the huge extent of the floods the crisis staff coordinated its work with central bodies of state including the Government and single "power" resorts (army, interior, transport). Immediately after floods a regional - controlled management was set up including an executive body for regional revitalisation which is connected to state coordinating resort - Ministry for Local Development, EU sources and humanitarian aid. In addition to a program of regional revitalisation additional preventive flood control programs are being developed including fields of: urban planning revision, river flow measures, revision of operation mode of dams, modification of waterworks' conception in areas liable to flooding and finally a program of power sources prevention during emergency situation (this program had been started before the floods). Regional establishment puts emphasis on preparation of preventive projects and management mentioned. An international co-operation of regions affected by floods and possibly building of joint teams for prevention measures proposal would be very effective and useful.

  18. Alkaline flooding for enhanced oil recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gittler, W.E.

    1983-09-01

    There are over 12 active projects of varying size using one of 3 major types of alkaline agents. These include sodium silicate, caustic soda, and soda ash. Among the largest pilots currently is the THUMS project in the Wilmington field, California. Plans called for the injection of a 4% weight concentration of sodium orthosilicate over a 60% PV. Through the first 3 yr, over 27 million bbl of chemicals have been injected. Gulf Oil is operating several alkaline floods, one of which is located off shore in the Quarantine Bay field, Louisiana. In this pilot, sodium hydroxide in a weightmore » concentration of 5 to 12% is being injected. Belco Petroleum Corp. has reported that their pilot operating in the Isenhour Unit in Wyoming is using a .5% weight concentration of soda ash in conjunction with a polymer. Other uses for alkaline agents in chemical flooding include the use of silicate as a preflush or sacrificial agent in micellar/polymer and surfactant recovery systems. In addition, caustic has been tested in the surface-mixed caustic emulsion process while orthosilicate has been tested in a recovery method known as mobility-controlled caustic floods.« less

  19. 26 CFR 1.832-6 - Policyholders of mutual fire or flood insurance companies operating on the basis of premium...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Insurance Companies § 1.832-6 Policyholders of mutual fire or flood insurance companies operating on the... taxpayer insured by a mutual fire or flood insurance company under a policy for which the premium deposit... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Policyholders of mutual fire or flood insurance...

  20. 29 CFR 1926.800 - Underground construction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Air monitoring; (2) Ventilation; (3) Illumination; (4) Communications; (5) Flood control; (6... communications for coordination of activities with other employers whose operations at the jobsite affect or may affect the safety of employees underground. (f) Communications. (1) When natural unassisted voice...

  1. 29 CFR 1926.800 - Underground construction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Air monitoring; (2) Ventilation; (3) Illumination; (4) Communications; (5) Flood control; (6... communications for coordination of activities with other employers whose operations at the jobsite affect or may affect the safety of employees underground. (f) Communications. (1) When natural unassisted voice...

  2. 29 CFR 1926.800 - Underground construction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Air monitoring; (2) Ventilation; (3) Illumination; (4) Communications; (5) Flood control; (6... communications for coordination of activities with other employers whose operations at the jobsite affect or may affect the safety of employees underground. (f) Communications. (1) When natural unassisted voice...

  3. 29 CFR 1926.800 - Underground construction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Air monitoring; (2) Ventilation; (3) Illumination; (4) Communications; (5) Flood control; (6... communications for coordination of activities with other employers whose operations at the jobsite affect or may affect the safety of employees underground. (f) Communications. (1) When natural unassisted voice...

  4. 29 CFR 1926.800 - Underground construction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Air monitoring; (2) Ventilation; (3) Illumination; (4) Communications; (5) Flood control; (6... communications for coordination of activities with other employers whose operations at the jobsite affect or may affect the safety of employees underground. (f) Communications. (1) When natural unassisted voice...

  5. 77 FR 8246 - Alabama Power Company; Notice of Application Accepted for Filing, Soliciting Motions To Intervene...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... Martin Dam Project: (1) A flood control guide; (2) an operating guide; and (3) a drought contingency.... The drought contingency plan provides an indication of impending hydrologic drought conditions. m. A...

  6. On the reliable use of satellite-derived surface water products for global flood monitoring

    NASA Astrophysics Data System (ADS)

    Hirpa, F. A.; Revilla-Romero, B.; Thielen, J.; Salamon, P.; Brakenridge, R.; Pappenberger, F.; de Groeve, T.

    2015-12-01

    Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response management. To this end, real-time flood forecasting and satellite-based detection systems have been developed at global scale. However, due to the limited availability of up-to-date ground observations, the reliability of these systems for real-time applications have not been assessed in large parts of the globe. In this study, we performed comparative evaluations of the commonly used satellite-based global flood detections and operational flood forecasting system using 10 major flood cases reported over three years (2012-2014). Specially, we assessed the flood detection capabilities of the near real-time global flood maps from the Global Flood Detection System (GFDS), and from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the operational forecasts from the Global Flood Awareness System (GloFAS) for the major flood events recorded in global flood databases. We present the evaluation results of the global flood detection and forecasting systems in terms of correctly indicating the reported flood events and highlight the exiting limitations of each system. Finally, we propose possible ways forward to improve the reliability of large scale flood monitoring tools.

  7. Water Management Applications of Advanced Precipitation Products

    NASA Astrophysics Data System (ADS)

    Johnson, L. E.; Braswell, G.; Delaney, C.

    2012-12-01

    Advanced precipitation sensors and numerical models track storms as they occur and forecast the likelihood of heavy rain for time frames ranging from 1 to 8 hours, 1 day, and extended outlooks out to 3 to 7 days. Forecast skill decreases at the extended time frames but the outlooks have been shown to provide "situational awareness" which aids in preparation for flood mitigation and water supply operations. In California the California-Nevada River Forecast Centers and local Weather Forecast Offices provide precipitation products that are widely used to support water management and flood response activities of various kinds. The Hydrometeorology Testbed (HMT) program is being conducted to help advance the science of precipitation tracking and forecasting in support of the NWS. HMT high-resolution products have found applications for other non-federal water management activities as well. This presentation will describe water management applications of HMT advanced precipitation products, and characterization of benefits expected to accrue. Two case examples will be highlighted, 1) reservoir operations for flood control and water supply, and 2) urban stormwater management. Application of advanced precipitation products in support of reservoir operations is a focus of the Sonoma County Water Agency. Examples include: a) interfacing the high-resolution QPE products with a distributed hydrologic model for the Russian-Napa watersheds, b) providing early warning of in-coming storms for flood preparedness and water supply storage operations. For the stormwater case, San Francisco wastewater engineers are developing a plan to deploy high resolution gap-filling radars looking off shore to obtain longer lead times on approaching storms. A 4 to 8 hour lead time would provide opportunity to optimize stormwater capture and treatment operations, and minimize combined sewer overflows into the Bay.ussian River distributed hydrologic model.

  8. Establishment and Practical Application of Flood Warning Stage in Taiwan's River

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Hsueh; Chia Yeh, Keh-

    2017-04-01

    In the face of extreme flood events or the possible impact of climate change, non-engineering disaster prevention and early warning work is particularly important. Taiwan is an island topography with more than 3,900 meters of high mountains. The length of the river is less than 100 kilometers. Most of the watershed catchment time is less than 24 hours, which belongs to the river with steep slope and rapid flood. Every year in summer and autumn, several typhoon events invade Taiwan. Typhoons often result in rainfall events in excess of 100 mm/hr or 250 mm/3hr. In the face of Taiwan's terrain and extreme rainfall events, flooding is difficult to avoid. Therefore, most of the river has embankment protection, so that people do not have to face every year flooding caused by economic and life and property losses. However, the river embankment protection is limited. With the increase of the hydrological data, the design criteria for the embankment protection standards in the past was 100 year of flood return period and is now gradually reduced to 25 or 50 year of flood return period. The river authorities are not easy to rise the existing embankment height. The safety of the river embankment in Taiwan is determined by the establishment of the flood warning stage to cope with the possible increase in annual floods and the impact of extreme hydrological events. The flood warning stage is equal to the flood control elevation minus the flood rise rate multiply by the flood early warning time. The control elevation can be the top of the embankment, the design flood level of the river, the embankment gap of the river section, the height of the bridge beam bottom, etc. The flood rise rate is consider the factors such as hydrological stochastic and uncertain rainfall and the effect of flood discharge operation on the flood in the watershed catchment area. The maximum value of the water level difference between the two hours or five hours before the peak value of the analysis result is decided by this rate. The flood early warning time is divided into two levels, the first level is 2 hours, evacuation time for the public, the second level is 5 hours for the implementation of unit preparation time. Finally, The flood warning stages are practical application in 20 water level stations have been incorporated into the flood early warning system of the Danshuei river basin in Taiwan.

  9. 33 CFR 203.50 - Nonstructural alternatives to rehabilitation of flood control works.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... rehabilitation, repair, or restoration of flood control works damaged by floods or coastal storms. (b) Policy. (1...

  10. Reduction of the uncertainties in the water level-discharge relation of a 1D hydraulic model in the context of operational flood forecasting

    NASA Astrophysics Data System (ADS)

    Habert, J.; Ricci, S.; Le Pape, E.; Thual, O.; Piacentini, A.; Goutal, N.; Jonville, G.; Rochoux, M.

    2016-01-01

    This paper presents a data-driven hydrodynamic simulator based on the 1-D hydraulic solver dedicated to flood forecasting with lead time of an hour up to 24 h. The goal of the study is to reduce uncertainties in the hydraulic model and thus provide more reliable simulations and forecasts in real time for operational use by the national hydrometeorological flood forecasting center in France. Previous studies have shown that sequential assimilation of water level or discharge data allows to adjust the inflows to the hydraulic network resulting in a significant improvement of the discharge while leaving the water level state imperfect. Two strategies are proposed here to improve the water level-discharge relation in the model. At first, a modeling strategy consists in improving the description of the river bed geometry using topographic and bathymetric measurements. Secondly, an inverse modeling strategy proposes to locally correct friction coefficients in the river bed and the flood plain through the assimilation of in situ water level measurements. This approach is based on an Extended Kalman filter algorithm that sequentially assimilates data to infer the upstream and lateral inflows at first and then the friction coefficients. It provides a time varying correction of the hydrological boundary conditions and hydraulic parameters. The merits of both strategies are demonstrated on the Marne catchment in France for eight validation flood events and the January 2004 flood event is used as an illustrative example throughout the paper. The Nash-Sutcliffe criterion for water level is improved from 0.135 to 0.832 for a 12-h forecast lead time with the data assimilation strategy. These developments have been implemented at the SAMA SPC (local flood forecasting service in the Haute-Marne French department) and used for operational forecast since 2013. They were shown to provide an efficient tool for evaluating flood risk and to improve the flood early warning system. Complementary with the deterministic forecast of the hydraulic state, the estimation of an uncertainty range is given relying on off-line and on-line diagnosis. The possibilities to further extend the control vector while limiting the computational cost and equifinality problem are finally discussed.

  11. Critical systems for public health management of floods, North Dakota.

    PubMed

    Wiedrich, Tim W; Sickler, Juli L; Vossler, Brenda L; Pickard, Stephen P

    2013-01-01

    Availability of emergency preparedness funding between 2002 and 2009 allowed the North Dakota Department of Health to build public health response capabilities. Five of the 15 public health preparedness capability areas identified by the Centers for Disease Control and Prevention in 2011 have been thoroughly tested by responses to flooding in North Dakota in 2009, 2010, and 2011; those capability areas are information sharing, emergency operations coordination, medical surge, material management and distribution, and volunteer management. Increasing response effectiveness has depended on planning, implementation of new information technology, changes to command and control procedures, containerized response materials, and rapid contract procedures. Continued improvement in response and maintenance of response capabilities is dependent on ongoing funding.

  12. Effects of Flood Control Strategies on Flood Resilience Under Sociohydrological Disturbances

    NASA Astrophysics Data System (ADS)

    Sung, Kyungmin; Jeong, Hanseok; Sangwan, Nikhil; Yu, David J.

    2018-04-01

    A community capacity to cope with flood hazards, or community flood resilience, emerges from the interplay of hydrological and social processes. This interplay can be significantly influenced by the flood control strategy adopted by a society, i.e., how a society sets its desired flood protection level and strives to achieve this goal. And this interplay can be further complicated by rising land-sea level differences, seasonal water level fluctuations, and economic change. But not much research has been done on how various forms of flood control strategies affect human-flood interactions under these disturbances and therefore flood resilience in the long run. The current study is an effort to address these issues by developing a conceptual model of human-flood interaction mediated by flood control strategies. Our model extends the existing model of Yu et al. (2017), who investigated the flood resilience of a community-based flood protection system in coastal Bangladesh. The major extensions made in this study are inclusions of various forms of flood control strategies (both adaptive and nonadaptive ones), the challenge of rising land-sea level differences, and various high tide level scenarios generated from modifying the statistical variances and averages. Our results show that adaptive forms of flood control strategies tend to outperform nonadaptive ones for maintaining the model community's flood protection system. Adaptive strategies that dynamically adjust target flood protection levels through close monitoring of flood damages and social memories of flood risk can help the model community deal with various disturbances.

  13. Project Operations: Flood Control Operations and Maintenance Policies

    DTIC Science & Technology

    1996-10-30

    President and an internal review performed by the Corps task group shortly after failure of the Teton Dam , we have undertaken numerous actions to modify our...practice for design, construction and operation of Corps reservoir projects. One important item as a result of the Teton Dam failure and the review...1 Glossary 1-4 1-2 CHAPTER 2 - Dam Operations Management Purpose 2-1 2-1 Policy 2-2 2-1 Emergency Plan 2-3 2-1 Dam Safety Training 2-4 2-2

  14. Determining effective forecast horizons for multi-purpose reservoirs with short- and long-term operating objectives

    NASA Astrophysics Data System (ADS)

    Luchner, Jakob; Anghileri, Daniela; Castelletti, Andrea

    2017-04-01

    Real-time control of multi-purpose reservoirs can benefit significantly from hydro-meteorological forecast products. Because of their reliability, the most used forecasts range on time scales from hours to few days and are suitable for short-term operation targets such as flood control. In recent years, hydro-meteorological forecasts have become more accurate and reliable on longer time scales, which are more relevant to long-term reservoir operation targets such as water supply. While the forecast quality of such products has been studied extensively, the forecast value, i.e. the operational effectiveness of using forecasts to support water management, has been only relatively explored. It is comparatively easy to identify the most effective forecasting information needed to design reservoir operation rules for flood control but it is not straightforward to identify which forecast variable and lead time is needed to define effective hedging rules for operational targets with slow dynamics such as water supply. The task is even more complex when multiple targets, with diverse slow and fast dynamics, are considered at the same time. In these cases, the relative importance of different pieces of information, e.g. magnitude and timing of peak flow rate and accumulated inflow on different time lags, may vary depending on the season or the hydrological conditions. In this work, we analyze the relationship between operational forecast value and streamflow forecast horizon for different multi-purpose reservoir trade-offs. We use the Information Selection and Assessment (ISA) framework to identify the most effective forecast variables and horizons for informing multi-objective reservoir operation over short- and long-term temporal scales. The ISA framework is an automatic iterative procedure to discriminate the information with the highest potential to improve multi-objective reservoir operating performance. Forecast variables and horizons are selected using a feature selection technique. The technique determines the most informative combination in a multi-variate regression model to the optimal reservoir releases based on perfect information at a fixed objective trade-off. The improved reservoir operation is evaluated against optimal reservoir operation conditioned upon perfect information on future disturbances and basic reservoir operation using only the day of the year and the reservoir level. Different objective trade-offs are selected for analyzing resulting differences in improved reservoir operation and selected forecast variables and horizons. For comparison, the effective streamflow forecast horizon determined by the ISA framework is benchmarked against the performances obtained with a deterministic model predictive control (MPC) optimization scheme. Both the ISA framework and the MPC optimization scheme are applied to the real-world case study of Lake Como, Italy, using perfect streamflow forecast information. The principal operation targets for Lake Como are flood control and downstream water supply which makes its operation a suitable case study. Results provide critical feedback to reservoir operators on the use of long-term streamflow forecasts and to the hydro-meteorological forecasting community with respect to the forecast horizon needed from reliable streamflow forecasts.

  15. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Zhang, Z.; Sun, A.; Save, H.; Mueller Schmied, H.; Wada, Y.; Doll, P. M.; Eisner, S.

    2016-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is a wicked problem solving Devils Lake flooding leads to extra discharge and water quality degradation in the Sheyenne River. Solving this problem requires trade of between Devils Lake flood control and the Sheyenne River water quality preservation.

  16. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    NASA Astrophysics Data System (ADS)

    Shabani, A.; Zhang, X.

    2017-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is a wicked problem solving Devils Lake flooding leads to extra discharge and water quality degradation in the Sheyenne River. Solving this problem requires trade of between Devils Lake flood control and the Sheyenne River water quality preservation.

  17. 12 CFR 614.4945 - Forced placement of flood insurance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Forced placement of flood insurance. 614.4945... OPERATIONS Flood Insurance Requirements § 614.4945 Forced placement of flood insurance. If a System... not covered by flood insurance or are covered by flood insurance in an amount less than the amount...

  18. Validation of satellite-based operational flood monitoring in Southern Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Gouweleeuw, Ben; Ticehurst, Catherine; Lerat, Julien; Thew, Peter

    2010-05-01

    The integration of remote sensing observations with stage data and flood modeling has the potential to provide improved support to a number of disciplines, such as flood warning emergency response and operational water resources management. The ability of remote sensing technology to monitor the dynamics of hydrological events lies in its capacity to map surface water. For flood monitoring, remote sensing imagery needs to be available sufficiently frequently to capture subsequent inundation stages. MODIS optical data are available at a moderately high spatial and temporal resolution (250m-1km, twice daily), but are affected by cloud cover. AMSR-E passive microwave observations are available at comparable temporal resolution, but coarse spatial resolution (5-70km), where the smaller footprints corresponds with the higher frequency bands, which are affected by precipitating clouds. A novel operational technique to monitor flood extent combines MODIS reflectance and AMSR-E passive microwave imagery to optimize data continuity. Flood extent is subsequently combined with a DEM to obtain total flood water volume. The flood extent and volume product is operational for the lower-Balonne floodplain in Southern Queensland, Australia. For validation purposes, two moderate flood events coinciding with the MODIS and AMSR-E sensor lifetime are evaluated. The flood volume estimated from MODIS/AMSR-E images gives an accurate indication of both the timing and the magnitude of the flood peak compared to the net volume from recorded flow. In the flood recession, however, satellite-derived water volume declines rapidly, while the net flow volume remains level. This may be explained by a combination of ungauged outflows, soil infiltration, evaporation and diversion of flood water into many large open reservoirs for irrigation purposes. The open water storage extent unchanged, the water volume product is not sensitive enough to capture the change in storage water level. Additional information on the latter, e.g. via telemetered buoys, may circumvent this limitation.

  19. Conjunctively optimizing flash flood control and water quality in urban water reservoirs by model predictive control and dynamic emulation

    NASA Astrophysics Data System (ADS)

    Galelli, Stefano; Goedbloed, Albert; Schmitter, Petra; Castelletti, Andrea

    2014-05-01

    Urban water reservoirs are a viable adaptation option to account for increasing drinking water demand of urbanized areas as they allow storage and re-use of water that is normally lost. In addition, the direct availability of freshwater reduces pumping costs and diversifies the portfolios of drinking water supply. Yet, these benefits have an associated twofold cost. Firstly, the presence of large, impervious areas increases the hydraulic efficiency of urban catchments, with short time of concentration, increased runoff rates, losses of infiltration and baseflow, and higher risk of flash floods. Secondly, the high concentration of nutrients and sediments characterizing urban discharges is likely to cause water quality problems. In this study we propose a new control scheme combining Model Predictive Control (MPC), hydro-meteorological forecasts and dynamic model emulation to design real-time operating policies that conjunctively optimize water quantity and quality targets. The main advantage of this scheme stands in its capability of exploiting real-time hydro-meteorological forecasts, which are crucial in such fast-varying systems. In addition, the reduced computational requests of the MPC scheme allows coupling it with dynamic emulators of water quality processes. The approach is demonstrated on Marina Reservoir, a multi-purpose reservoir located in the heart of Singapore and characterized by a large, highly urbanized catchment with a short (i.e. approximately one hour) time of concentration. Results show that the MPC scheme, coupled with a water quality emulator, provides a good compromise between different operating objectives, namely flood risk reduction, drinking water supply and salinity control. Finally, the scheme is used to assess the effect of source control measures (e.g. green roofs) aimed at restoring the natural hydrological regime of Marina Reservoir catchment.

  20. Adapting Reservoir Operations to Reduce the Multi-Sectoral Impacts of Flood Intensification in the Lower Susquehanna

    NASA Astrophysics Data System (ADS)

    Zatarain-Salazar, J.; Reed, P. M.; Quinn, J.

    2017-12-01

    This study characterizes how changes in reservoir operations can be used to better balance growing flood intensities and the conflicting multi-sectorial demands in the Lower Susequehanna River Basin (LSRB), USA. Tensions in the LSRB are increasing with urban population pressures, evolving energy demands, and growing flood-based infrastructure vulnerabilities. This study explores how re-operation of the Conowingo Reservoir, located in the LSRB, can improve the balance between competing demands for hydropower production, urban water supply to Chester, PA and Baltimore, MD, cooling water supply for the Peach Bottom Atomic Power Plant, recreation, federal environmental flow requirements and improved mitigation of growing flood hazards. The LSRB is also one of the most flood prone basins in the US, impacted by hurricanes and rain-on-snow induced flood events causing on average $100 million in economic losses and infrastructure damages to downstream settlements every year. The purpose of this study is to evaluate the consequences of mathematical formulation choices, uncertainty characterization and the value of information when defining the Conowingo reservoir's multi-purpose operations. This work seeks to strike a balance between the complexity and the efficacy of rival framings for the problem formulations used to discover effective operating policies. More broadly, the problem of intensifying urban floods in reservoir systems with complex multi-sectoral demands is broadly relevant to developed river basins globally.

  1. 46 CFR 171.070 - Subdivision requirements--Type II.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... each condition of loading and operation, it complies with the standard of flooding specified in Table... in each condition of loading and operation, it meets the standard of flooding specified in Table 171... flooding specified in Table 171.070(b), except that a ferry vessel in Great Lakes service must at least...

  2. 46 CFR 171.070 - Subdivision requirements--Type II.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... each condition of loading and operation, it complies with the standard of flooding specified in Table... in each condition of loading and operation, it meets the standard of flooding specified in Table 171... flooding specified in Table 171.070(b), except that a ferry vessel in Great Lakes service must at least...

  3. 46 CFR 171.070 - Subdivision requirements--Type II.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... each condition of loading and operation, it complies with the standard of flooding specified in Table... in each condition of loading and operation, it meets the standard of flooding specified in Table 171... flooding specified in Table 171.070(b), except that a ferry vessel in Great Lakes service must at least...

  4. 46 CFR 171.070 - Subdivision requirements--Type II.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... each condition of loading and operation, it complies with the standard of flooding specified in Table... in each condition of loading and operation, it meets the standard of flooding specified in Table 171... flooding specified in Table 171.070(b), except that a ferry vessel in Great Lakes service must at least...

  5. FLIRE DSS: A web tool for the management of floods and wildfires in urban and periurban areas

    NASA Astrophysics Data System (ADS)

    Kochilakis, Giorgos; Poursanidis, Dimitris; Chrysoulakis, Nektarios; Varella, Vassiliki; Kotroni, Vassiliki; Eftychidis, Giorgos; Lagouvardos, Kostas; Papathanasiou, Chrysoula; Karavokyros, George; Aivazoglou, Maria; Makropoulos, Christos; Mimikou, Maria

    2016-01-01

    A web-based Decision Support System, named FLIRE DSS, for combined forest fire control and planning as well as flood risk management, has been developed and is presented in this paper. State of the art tools and models have been used in order to enable Civil Protection agencies and local stakeholders to take advantage of the web based DSS without the need of local installation of complex software and their maintenance. Civil protection agencies can predict the behavior of a fire event using real time data and in such a way plan its efficient elimination. Also, during dry periods, agencies can implement "what-if" scenarios for areas that are prone to fire and thus have available plans for forest fire management in case such scenarios occur. Flood services include flood maps and flood-related warnings and become available to relevant authorities for visualization and further analysis on a daily basis. When flood warnings are issued, relevant authorities may proceed to efficient evacuation planning for the areas that are likely to flood and thus save human lives. Real-time weather data from ground stations provide the necessary inputs for the calculation of the fire model in real-time, and a high resolution weather forecast grid supports flood modeling as well as the development of "what-if" scenarios for the fire modeling. All these can be accessed by various computer sources including PC, laptop, Smartphone and tablet either by normal network connection or by using 3G and 4G cellular network. The latter is important for the accessibility of the FLIRE DSS during firefighting or rescue operations during flood events. All these methods and tools provide the end users with the necessary information to design an operational plan for the elimination of the fire events and the efficient management of the flood events in almost real time. Concluding, the FLIRE DSS can be easily transferred to other areas with similar characteristics due to its robust architecture and its flexibility.

  6. Modeling Flood Plain Hydrology and Forest Productivity of Congaree Swamp, South Carolina

    USGS Publications Warehouse

    Doyle, Thomas W.

    2009-01-01

    An ecological field and modeling study was conducted to examine the flood relations of backswamp forests and park trails of the flood plain portion of Congaree National Park, S.C. Continuous water level gages were distributed across the length and width of the flood plain portion - referred to as 'Congaree Swamp' - to facilitate understanding of the lag and peak flood coupling with stage of the Congaree River. A severe and prolonged drought at study start in 2001 extended into late 2002 before backswamp zones circulated floodwaters. Water levels were monitored at 10 gaging stations over a 4-year period from 2002 to 2006. Historical water level stage and discharge data from the Congaree River were digitized from published sources and U.S. Geological Survey (USGS) archives to obtain long-term daily averages for an upstream gage at Columbia, S.C., dating back to 1892. Elevation of ground surface was surveyed for all park trails, water level gages, and additional circuits of roads and boundaries. Rectified elevation data were interpolated into a digital elevation model of the park trail system. Regression models were applied to establish time lags and stage relations between gages at Columbia, S.C., and gages in the upper, middle, and lower reaches of the river and backswamp within the park. Flood relations among backswamp gages exhibited different retention and recession behavior between flood plain reaches with greater hydroperiod in the lower reach than those in the upper and middle reaches of the Congaree Swamp. A flood plain inundation model was developed from gage relations to predict critical river stages and potential inundation of hiking trails on a real-time basis and to forecast the 24-hour flood In addition, tree-ring analysis was used to evaluate the effects of flood events and flooding history on forest resources at Congaree National Park. Tree cores were collected from populations of loblolly pine (Pinus taeda), baldcypress (Taxodium distichum), water tupelo (Nyssa aquatica), green ash (Fraxinus pennslyvanica), laurel oak (Quercus laurifolia), swamp chestnut oak (Quercus michauxii), and sycamore (Plantanus occidentalis) within Congaree Swamp in highand low-elevation sites characteristic of shorter and longer flood duration and related to upriver flood controls and dam operation. Ring counts and dating indicated that all loblolly pine trees and nearly all baldcypress collections in this study are postsettlement recruits and old-growth cohorts, dating from 100 to 300 years in age. Most hardwood species and trees cored for age analysis were less than 100 years old, demonstrating robust growth and high site quality. Growth chronologies of loblolly pine and baldcypress exhibited positive and negative inflections over the last century that corresponded with climate history and residual effects of Hurricane Hugo in 1989. Stemwood production on average was less for trees and species on sites with longer flood retention and hydroperiod affected more by groundwater seepage and site elevation than river floods. Water level data provided evidence that stream regulation and operations of the Saluda Dam (post-1934) have actually increased the average daily water stage in the Congaree River. There was no difference in tree growth response by species or hydrogeomorphic setting to predam and postdam flood conditions and river stage. Climate-growth analysis showed that long-term growth variation is controlled more by spring/ summer temperatures in loblolly pine and by spring/summer precipitation in baldcypress than flooding history.

  7. Monitoring Floods with NASA's ST6 Autonomous Sciencecraft Experiment: Implications on Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Ip, Felipe; Dohm, J. M.; Baker, V. R.; Castano, B.; Chien, S.; Cichy, B.; Davies, A. G.; Doggett, T.; Greeley, R.; Sherwood, R.

    2005-01-01

    NASA's New Millennium Program (NMP) Autonomous Sciencecraft Experiment (ASE) [1-3] has been successfully demonstrated in Earth-orbit. NASA has identified the development of an autonomously operating spacecraft as a necessity for an expanded program of missions exploring the Solar System. The versatile ASE spacecraft command and control, image formation, and science processing software was uploaded to the Earth Observer 1 (EO-1) spacecraft in early 2004 and has been undergoing onboard testing since May 2004 for the near real-time detection of surface modification related to transient geological and hydrological processes such as volcanism [4], ice formation and retreat [5], and flooding [6]. Space autonomy technology developed as part of ASE creates the new capability to autonomously detect, assess, react to, and monitor dynamic events such as flooding. Part of the challenge has been the difficulty to observe flooding in real time at sufficient temporal resolutions; more importantly, it is the large spatial extent of most drainage networks coupled with the size of the data sets necessary to be downlinked from satellites that make it difficult to monitor flooding from space. Below is a description of the algorithms (referred to as ASE Flood water Classifiers) used in tandem with the Hyperion spectrometer instrument on EO-1 to identify flooding and some of the test results.

  8. Urban flood early warning systems: approaches to hydrometeorological forecasting and communicating risk

    NASA Astrophysics Data System (ADS)

    Cranston, Michael; Speight, Linda; Maxey, Richard; Tavendale, Amy; Buchanan, Peter

    2015-04-01

    One of the main challenges for the flood forecasting community remains the provision of reliable early warnings of surface (or pluvial) flooding. The Scottish Flood Forecasting Service has been developing approaches for forecasting the risk of surface water flooding including capitalising on the latest developments in quantitative precipitation forecasting from the Met Office. A probabilistic Heavy Rainfall Alert decision support tool helps operational forecasters assess the likelihood of surface water flooding against regional rainfall depth-duration estimates from MOGREPS-UK linked to historical short-duration flooding in Scotland. The surface water flood risk is communicated through the daily Flood Guidance Statement to emergency responders. A more recent development is an innovative risk-based hydrometeorological approach that links 24-hour ensemble rainfall forecasts through a hydrological model (Grid-to-Grid) to a library of impact assessments (Speight et al., 2015). The early warning tool - FEWS Glasgow - presents the risk of flooding to people, property and transport across a 1km grid over the city of Glasgow with a lead time of 24 hours. Communication of the risk was presented in a bespoke surface water flood forecast product designed based on emergency responder requirements and trialled during the 2014 Commonwealth Games in Glasgow. The development of new approaches to surface water flood forecasting are leading to improved methods of communicating the risk and better performance in early warning with a reduction in false alarm rates with summer flood guidance in 2014 (67%) compared to 2013 (81%) - although verification of instances of surface water flooding remains difficult. However the introduction of more demanding hydrometeorological capabilities with associated greater levels of uncertainty does lead to an increased demand on operational flood forecasting skills and resources. Speight, L., Cole, S.J., Moore, R.J., Pierce, C., Wright, B., Golding, B., Cranston, M., Tavendale, A., Ghimire, S., and Dhondia, J. (2015) Developing surface water flood forecasting capabilities in Scotland: an operational pilot for the 2014 Commonwealth Games in Glasgow. Journal of Flood Risk Management, In Press.

  9. The 3D Elevation Program—Flood risk management

    USGS Publications Warehouse

    Carswell, William J.; Lukas, Vicki

    2018-01-25

    Flood-damage reduction in the United States has been a longstanding but elusive societal goal. The national strategy for reducing flood damage has shifted over recent decades from a focus on construction of flood-control dams and levee systems to a three-pronged strategy to (1) improve the design and operation of such structures, (2) provide more accurate and accessible flood forecasting, and (3) shift the Federal Emergency Management Agency (FEMA) National Flood Insurance Program to a more balanced, less costly flood-insurance paradigm. Expanding the availability and use of high-quality, three-dimensional (3D) elevation information derived from modern light detection and ranging (lidar) technologies to provide essential terrain data poses a singular opportunity to dramatically enhance the effectiveness of all three components of this strategy. Additionally, FEMA, the National Weather Service, and the U.S. Geological Survey (USGS) have developed tools and joint program activities to support the national strategy.The USGS 3D Elevation Program (3DEP) has the programmatic infrastructure to produce and provide essential terrain data. This infrastructure includes (1) data acquisition partnerships that leverage funding and reduce duplicative efforts, (2) contracts with experienced private mapping firms that ensure acquisition of consistent, low-cost 3D elevation data, and (3) the technical expertise, standards, and specifications required for consistent, edge-to-edge utility across multiple collection platforms and public access unfettered by individual database designs and limitations.High-quality elevation data, like that collected through 3DEP, are invaluable for assessing and documenting flood risk and communicating detailed information to both responders and planners alike. Multiple flood-mapping programs make use of USGS streamflow and 3DEP data. Flood insurance rate maps, flood documentation studies, and flood-inundation map libraries are products of these programs.

  10. Combining empirical approaches and error modelling to enhance predictive uncertainty estimation in extrapolation for operational flood forecasting. Tests on flood events on the Loire basin, France.

    NASA Astrophysics Data System (ADS)

    Berthet, Lionel; Marty, Renaud; Bourgin, François; Viatgé, Julie; Piotte, Olivier; Perrin, Charles

    2017-04-01

    An increasing number of operational flood forecasting centres assess the predictive uncertainty associated with their forecasts and communicate it to the end users. This information can match the end-users needs (i.e. prove to be useful for an efficient crisis management) only if it is reliable: reliability is therefore a key quality for operational flood forecasts. In 2015, the French flood forecasting national and regional services (Vigicrues network; www.vigicrues.gouv.fr) implemented a framework to compute quantitative discharge and water level forecasts and to assess the predictive uncertainty. Among the possible technical options to achieve this goal, a statistical analysis of past forecasting errors of deterministic models has been selected (QUOIQUE method, Bourgin, 2014). It is a data-based and non-parametric approach based on as few assumptions as possible about the forecasting error mathematical structure. In particular, a very simple assumption is made regarding the predictive uncertainty distributions for large events outside the range of the calibration data: the multiplicative error distribution is assumed to be constant, whatever the magnitude of the flood. Indeed, the predictive distributions may not be reliable in extrapolation. However, estimating the predictive uncertainty for these rare events is crucial when major floods are of concern. In order to improve the forecasts reliability for major floods, an attempt at combining the operational strength of the empirical statistical analysis and a simple error modelling is done. Since the heteroscedasticity of forecast errors can considerably weaken the predictive reliability for large floods, this error modelling is based on the log-sinh transformation which proved to reduce significantly the heteroscedasticity of the transformed error in a simulation context, even for flood peaks (Wang et al., 2012). Exploratory tests on some operational forecasts issued during the recent floods experienced in France (major spring floods in June 2016 on the Loire river tributaries and flash floods in fall 2016) will be shown and discussed. References Bourgin, F. (2014). How to assess the predictive uncertainty in hydrological modelling? An exploratory work on a large sample of watersheds, AgroParisTech Wang, Q. J., Shrestha, D. L., Robertson, D. E. and Pokhrel, P (2012). A log-sinh transformation for data normalization and variance stabilization. Water Resources Research, , W05514, doi:10.1029/2011WR010973

  11. Flood-related work disruption and poor health outcomes among university students.

    PubMed

    Peek-Asa, Corinne; Ramirez, Marizen; Young, Tracy; Cao, YanYan

    2012-12-01

    Globally, floods are the most common and among the most devastating of natural disasters. Natural disasters such as floods impact local businesses, increasing local unemployment by up to 8.2%. Previous research has linked individual losses from disasters with symptoms such as posttraumatic stress disorder. However, little is known about the impact of work disruption and job loss on post-disaster psychological symptoms. University students, who are often living far away from family support structures and have limited resources, may be particularly vulnerable. This study examines student psychological health following a large flood at a university. Students who experienced flood-related job loss or disruption had a higher proportion of psychological symptoms than those who did not experience job loss or disruption, controlling for individual loss such as injury, home loss or evacuation. On June 8, 2008, a major flood affected seven US Midwestern states. A total of two dozen people were killed and 148 injured, although no deaths or serious injuries were reported in the population used for this study. At the study university, operations were closed for one week, and 20 buildings were severely damaged. A cross-sectional survey of all students enrolled during the semester of the flood was conducted. Students were sent an online survey six weeks after the flood. In addition to questions about damage to their homes, the survey asked students if their work was disrupted because of the floods. Symptoms of PTSD were measured through the modified Child PTSD Symptom Scale. Of the 1,231 responding students with complete surveys, 667 (54.2%) reported that their work was disrupted due to the floods. Controlling for gender, ethnicity, grade, and damage to the student's home, students reporting work disruption were more than four times more likely to report PTSD symptoms (95% CI, 2.5-8.2). Work disruption was independently associated with decreases in general mental and physical health following the floods, as well as with increases in alcohol use. Disaster research has focused on damage to individuals and homes, but there has been little focus on work losses. Individuals who lose their jobs may be a vulnerable population post-disaster.

  12. Applications of Experimental Suomi-NPP VIIRS Flood Inundation Maps in Operational Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Deweese, M. M.

    2017-12-01

    Flooding is the most costly natural disaster across the globe. In 2016 flooding caused more fatalities than any other natural disaster in the United States. The U.S. National Weather Service (NWS) is mandated to forecast rivers for the protection of life and property and the enhancement of the national economy. Since 2014, the NWS North Central River Forecast Center has utilized experimental near real time flood mapping products from the JPSS Suomi-NPP VIIRS satellite. These products have been demonstrated to provide reliable and high value information for forecasters in ice jam and snowmelt flooding in data sparse regions of the northern plains. In addition, they have proved valuable in rainfall induced flooding within the upper Mississippi River basin. Aerial photography and ground observations have validated the accuracy of the products. Examples are provided from numerous flooding events to demonstrate the operational application of this satellite derived information as a remotely sensed observational data source and it's utility in real time flood forecasting.

  13. Impacts of Climate Change on Regulated Streamflow, Hydrologic Extremes, Hydropower Production, and Sediment Discharge in the Skagit River Basin

    USGS Publications Warehouse

    Lee, Se-Yeun; Hamlet, Alan F.; Grossman, Eric E.

    2016-01-01

    Previous studies have shown that the impacts of climate change on the hydrologic response of the Skagit River are likely to be substantial under natural (i.e. unregulated) conditions. To assess the combined effects of changing natural flow and dam operations that determine impacts to regulated flow, a new integrated daily-time-step reservoir operations model was constructed for the Skagit River Basin. The model was used to simulate current reservoir operating policies for historical flow conditions and for projected flows for the 2040s (2030–2059) and 2080s (2070–2099). The results show that climate change is likely to cause substantial seasonal changes in both natural and regulated flow, with more flow in the winter and spring, and less in summer. Hydropower generation in the basin follows these trends, increasing (+ 19%) in the winter/ spring, and decreasing (- 29%) in the summer by the 2080s. The regulated 100-year flood is projected to increase by 23% by the 2040s and 49% by the 2080s. Peak winter sediment loading in December is projected to increase by 335% by the 2080s in response to increasing winter flows, and average annual sediment loading increases from 2.3 to 5.8 teragrams (+ 149%) per year by the 2080s. Regulated extreme low flows (7Q10) are projected to decrease by about 30% by the 2080s, but remain well above natural low flows. Both current and proposed alternative flood control operations are shown to be largely ineffective in mitigating increasing flood risks in the lower Skagit due to the distribution of flow in the basin during floods.

  14. 12 CFR 614.4940 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Required use of standard flood hazard... LOAN POLICIES AND OPERATIONS Flood Insurance Requirements § 614.4940 Required use of standard flood hazard determination form. (a) Use of form. System institutions must use the standard flood hazard...

  15. 12 CFR 614.4930 - Requirement to purchase flood insurance where available.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Requirement to purchase flood insurance where... POLICIES AND OPERATIONS Flood Insurance Requirements § 614.4930 Requirement to purchase flood insurance... flood insurance for the term of the loan. The amount of insurance must be at least equal to the...

  16. Making the most of data: An information selection and assessment framework to improve water systems operations

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Pianosi, F.; Castelletti, A.

    2015-11-01

    Advances in Environmental monitoring systems are making a wide range of data available at increasingly higher temporal and spatial resolution. This creates an opportunity to enhance real-time understanding of water systems conditions and to improve prediction of their future evolution, ultimately increasing our ability to make better decisions. Yet, many water systems are still operated using very simple information systems, typically based on simple statistical analysis and the operator's experience. In this work, we propose a framework to automatically select the most valuable information to inform water systems operations supported by quantitative metrics to operationally and economically assess the value of this information. The Hoa Binh reservoir in Vietnam is used to demonstrate the proposed framework in a multiobjective context, accounting for hydropower production and flood control. First, we quantify the expected value of perfect information, meaning the potential space for improvement under the assumption of exact knowledge of the future system conditions. Second, we automatically select the most valuable information that could be actually used to improve the Hoa Binh operations. Finally, we assess the economic value of sample information on the basis of the resulting policy performance. Results show that our framework successfully select information to enhance the performance of the operating policies with respect to both the competing objectives, attaining a 40% improvement close to the target trade-off selected as potentially good compromise between hydropower production and flood control.

  17. 18 CFR 1304.404 - Commercial marina harbor limits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... facilities at the dock, navigation and flood control requirements, optimum use of lands and land rights owned... to, changes in the ownership of the land base supporting the marina. ... harbor areas are determined by the extent of land rights held by the dock operator. The lakeward limits...

  18. 33 CFR 263.23 - Small flood control project authority (Section 205).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operation, except as may result from the normal procedure applying to projects authorized after submission of preliminary examination and survey reports. (b) Non-Federal responsibilities for dam and reservoir project. All new projects under this authority, including dams and reservoirs, are considered local...

  19. 33 CFR 263.23 - Small flood control project authority (Section 205).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operation, except as may result from the normal procedure applying to projects authorized after submission of preliminary examination and survey reports. (b) Non-Federal responsibilities for dam and reservoir project. All new projects under this authority, including dams and reservoirs, are considered local...

  20. Flood information for flood-plain planning

    USGS Publications Warehouse

    Bue, Conrad D.

    1967-01-01

    Floods are natural and normal phenomena. They are catastrophic simply because man occupies the flood plain, the highwater channel of a river. Man occupies flood plains because it is convenient and profitable to do so, but he must purchase his occupancy at a price-either sustain flood damage, or provide flood-control facilities. Although large sums of money have been, and are being, spent for flood control, flood damage continues to mount. However, neither complete flood control nor abandonment of the flood plain is practicable. Flood plains are a valuable resource and will continue to be occupied, but the nature and degree of occupancy should be compatible with the risk involved and with the degree of protection that is practicable to provide. It is primarily to meet the needs for defining the risk that the flood-inundation maps of the U.S. Geological Survey are prepared.

  1. Floods in the Raccoon River basin, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.

    1980-01-01

    Evaluation of flood hazards, and the planning, design, and operation of various facilities on flood plains requires information on floods. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the Raccoon River and some of its tributaries. Ir covers the Raccoon River, the North Raccoon River to the northern boundary of Sac County and the lower reaches of the Middle and South Raccoon Rivers.

  2. Model of Rescue Units Control in Event of Potential Emergency

    NASA Astrophysics Data System (ADS)

    Kalach, A. V.; Kravchenko, A. S.; Soloviev, A. S.; Nesterov, A. A.

    2018-05-01

    A problem of organization and efficiency improvement of the system controlling the rescue units of the Ministry of Civil Defense and Emergency Response of the Russian Federation considered using the example of potential hydrological emergency, a model of a system for controlling rescue units in the event of potential hydrological emergency. The problem solution is based on mathematical models of operational control of rescue units and assessment of a hydrological situation of area flooding.

  3. Using ensemble rainfall predictions in a countrywide flood forecasting model in Scotland

    NASA Astrophysics Data System (ADS)

    Cranston, M. D.; Maxey, R.; Tavendale, A. C. W.; Buchanan, P.

    2012-04-01

    Improving flood predictions for all sources of flooding is at the centre of flood risk management policy in Scotland. With the introduction of the Flood Risk Management (Scotland) Act providing a new statutory basis for SEPA's flood warning responsibilities, the pressures on delivering hydrological science developments in support of this legislation has increased. Specifically, flood forecasting capabilities need to develop in support of the need to reduce the impact of flooding through the provision of actively disseminated, reliable and timely flood warnings. Flood forecasting in Scotland has developed significantly in recent years (Cranston and Tavendale, 2012). The development of hydrological models to predict flooding at a catchment scale has relied upon the application of rainfall runoff models utilising raingauge, radar and quantitative precipitation forecasts in the short lead time (less than 6 hours). Single or deterministic forecasts based on highly uncertain rainfall predictions have led to the greatest operational difficulties when communicating flood risk with emergency responders, therefore the emergence of probability-based estimates offers the greatest opportunity for managing uncertain predictions. This paper presents operational application of a physical-conceptual distributed hydrological model on a countrywide basis across Scotland. Developed by CEH Wallingford for SEPA in 2011, Grid-to-Grid (G2G) principally runs in deterministic mode and employs radar and raingauge estimates of rainfall together with weather model predictions to produce forecast river flows, as gridded time-series at a resolution of 1km and for up to 5 days ahead (Cranston, et al., 2012). However the G2G model is now being run operationally using ensemble predictions of rainfall from the MOGREPS-R system to provide probabilistic flood forecasts. By presenting a range of flood predictions on a national scale through this approach, hydrologists are now able to consider an objective measure of the likelihood of flooding impacts to help with risk based emergency communication.

  4. Floods at Mount Clemens, Michigan

    USGS Publications Warehouse

    Wiitala, S.W.; Ash, Arlington D.

    1962-01-01

    The approximate areas inundated during the flood of April 5-6, 1947, by Clinton River, North Branch and Middle Branch of Clinton River, and Harrington Drain, in Clinton Township, Macomb County, Mich., are shown on a topographic map base to record the flood hazard in graphical form. The flood of April 1947 is the highest known since 1934 and probably since 1902. Greater floods are possible, but no attempt was made to define their probable overflow limits.The Clinton River Cut-Off Canal, a flood-relief channel which diverts flow directly into Lake St. Clair from a point about 1500 feet downstream from Gratiot Avenue (about 9 miles upstream from the mouth) has been in operation since October 1951. The approximate limits of overflow that would results from a flood equivalent in discharge to that of April 1947, and occurring with the Cut-Off Canal in operation, are also shown. Although the Cut-Off Canal may reduce the frequency and depth of flooding it will not necessarily eliminate future flooding in the area. Improvements and additions to the drainage systems in the basin, expanding urbanization, new highways, and other cultural changes may influence the inundation pattern of future floods.The preparation of this flood inundation map was financed through a cooperative agreement between Clinton Township, Macomb County, Mich., and the U.S. Geological Survey.Backwater curves used to define the profile for a hypothetical flood on the Clinton River downstream from Moravian Drive, equivalent in discharge to the 1947 flood, but occurring with the present Cut-Off Canal in operation; flood stage established at the gaging station on Clinton River at Mount Clemens; and supplementary floodmark elevations were furnished by the Corps of Engineers.Bench-mark elevations and field survey data, used in the analysis of floods on Harrington Drain, were furnished by the Macomb County Drain Commission.

  5. City-scale accessibility of emergency responders operating during flood events

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Yu, Dapeng; Pattison, Ian; Wilby, Robert; Bosher, Lee; Patel, Ramila; Thompson, Philip; Trowell, Keith; Draycon, Julia; Halse, Martin; Yang, Lili; Ryley, Tim

    2017-01-01

    Emergency responders often have to operate and respond to emergency situations during dynamic weather conditions, including floods. This paper demonstrates a novel method using existing tools and datasets to evaluate emergency responder accessibility during flood events within the city of Leicester, UK. Accessibility was quantified using the 8 and 10 min legislative targets for emergency provision for the ambulance and fire and rescue services respectively under "normal" no-flood conditions, as well as flood scenarios of various magnitudes (1 in 20-year, 1 in 100-year and 1 in 1000-year recurrence intervals), with both surface water and fluvial flood conditions considered. Flood restrictions were processed based on previous hydrodynamic inundation modelling undertaken and inputted into a Network Analysis framework as restrictions for surface water and fluvial flood events. Surface water flooding was shown to cause more disruption to emergency responders operating within the city due to its widespread and spatially distributed footprint when compared to fluvial flood events of comparable magnitude. Fire and rescue 10 min accessibility was shown to decrease from 100, 66.5, 39.8 and 26.2 % under the no-flood, 1 in 20-year, 1 in 100-year and 1 in 1000-year surface water flood scenarios respectively. Furthermore, total inaccessibility was shown to increase with flood magnitude from 6.0 % under the 1 in 20-year scenario to 31.0 % under the 1 in 100-year flood scenario. Additionally, the evolution of emergency service accessibility throughout a surface water flood event is outlined, demonstrating the rapid impact on emergency service accessibility within the first 15 min of the surface water flood event, with a reduction in service coverage and overlap being observed for the ambulance service during a 1 in 100-year flood event. The study provides evidence to guide strategic planning for decision makers prior to and during emergency response to flood events at the city scale. It also provides a readily transferable method for exploring the impacts of natural hazards or disruptions in other cities or regions based on historic, scenario-based events or real-time forecasting, if such data are available.

  6. Flood risk analysis for flood control and sediment transportation in sandy regions: A case study in the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Guo, Aijun; Chang, Jianxia; Wang, Yimin; Huang, Qiang; Zhou, Shuai

    2018-05-01

    Traditional flood risk analysis focuses on the probability of flood events exceeding the design flood of downstream hydraulic structures while neglecting the influence of sedimentation in river channels on regional flood control systems. This work advances traditional flood risk analysis by proposing a univariate and copula-based bivariate hydrological risk framework which incorporates both flood control and sediment transport. In developing the framework, the conditional probabilities of different flood events under various extreme precipitation scenarios are estimated by exploiting the copula-based model. Moreover, a Monte Carlo-based algorithm is designed to quantify the sampling uncertainty associated with univariate and bivariate hydrological risk analyses. Two catchments located on the Loess plateau are selected as study regions: the upper catchments of the Xianyang and Huaxian stations (denoted as UCX and UCH, respectively). The univariate and bivariate return periods, risk and reliability in the context of uncertainty for the purposes of flood control and sediment transport are assessed for the study regions. The results indicate that sedimentation triggers higher risks of damaging the safety of local flood control systems compared with the event that AMF exceeds the design flood of downstream hydraulic structures in the UCX and UCH. Moreover, there is considerable sampling uncertainty affecting the univariate and bivariate hydrologic risk evaluation, which greatly challenges measures of future flood mitigation. In addition, results also confirm that the developed framework can estimate conditional probabilities associated with different flood events under various extreme precipitation scenarios aiming for flood control and sediment transport. The proposed hydrological risk framework offers a promising technical reference for flood risk analysis in sandy regions worldwide.

  7. Rapid flood loss estimation for large scale floods in Germany

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Kreibich, Heidi; Merz, Bruno

    2013-04-01

    Rapid evaluations of flood events are needed for efficient responses both in emergency management and financial appraisal. Beyond that, closely monitoring and documenting the formation and development of flood events and their impacts allows for an improved understanding and in depth analyses of the interplay between meteorological, hydrological, hydraulic and societal causes leading to flood damage. This contribution focuses on the development of a methodology for the rapid assessment of flood events. In the first place, the focus is on the prediction of damage to residential buildings caused by large scale floods in Germany. For this purpose an operational flood event analysis system is developed. This system has basic spatial thematic data available and supports data capturing about the current flood situation. This includes the retrieval of online gauge data and the integration of remote sensing data. Further, it provides functionalities to evaluate the current flood situation, to assess the hazard extent and intensity and to estimate the current flood impact using the flood loss estimation model FLEMOps+r. The operation of the flood event analysis system will be demonstrated for the past flood event from January 2011 with a focus on the Elbe/Saale region. On this grounds, further requirements and potential for improving the information basis as for instance by including hydrological and /or hydraulic model results as well as information from social sensors will be discussed.

  8. 33 CFR 211.6 - Rights which may be granted by the Secretary of the Army in river and harbor and flood control...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recreational facilities in reservoir areas under the control of the Department of the Army and to permit the construction, maintenance, and operation of such facilities. The Secretary of the Army is authorized to grant leases of lands, including structures or facilities thereon, in reservoir areas for such periods and upon...

  9. Piloting a real-time surface water flood nowcasting system for enhancing operational resilience of emergency responders

    NASA Astrophysics Data System (ADS)

    Yu, Dapeng; Guan, Mingfu; Wilby, Robert; Bruce, Wright; Szegner, Mark

    2017-04-01

    Emergency services (such as Fire & Rescue, and Ambulance) can face the challenging tasks of having to respond to or operate under extreme and fast changing weather conditions, including surface water flooding. UK-wide, return period based surface water flood risk mapping undertaken by the Environment Agency provides useful information about areas at risks. Although these maps are useful for planning purposes for emergency responders, their utility to operational response during flood emergencies can be limited. A street-level, high resolution, real-time, surface water flood nowcasting system, has been piloted in the City of Leicester, UK to assess emergency response resilience to surface water flooding. Precipitation nowcasting over 7- and 48-hour horizons are obtained from the UK Met Office and used as inputs to the system. A hydro-inundation model is used to simulate urban surface water flood depths/areas at both the city and basin scale, with a 20 m and 3 m spatial resolution respectively, and a 15-minute temporal resolution, 7-hour and 48-hour in advance. Based on this, we evaluate both the direct and indirect impacts of potential surface water flood events on emergency responses, including: (i) identifying vulnerable populations (e.g. care homes and schools) at risk; and (ii) generating novel metrics of accessibility (e.g. travel time from service stations to vulnerable sites; spatial coverage with certain legislative timeframes) in real-time. In doing so, real-time information on potential risks and impacts of emerging flood incidents arising from intense rainfall can be communicated via a dedicated web-based platform to emergency responders thereby improving response times and operational resilience.

  10. Comparative Analysis of Emergency Response Operations: Haiti Earthquake in January 2010 and Pakistan’s Flood in 2010

    DTIC Science & Technology

    2011-09-01

    Earthquake, Pakistan, Flood, Emergency Response Operations, International Community, HA/DR, United Nations , FRC, NDMA , ICT 16. PRICE CODE 17. SECURITY...Registration Authority NATO North Atlantic Treaty Organization NDMA National Disaster and Management Authority NDMC National Disaster Management...complicates relief efforts. 6 NDMA Pakistan, “Pakistan Floods-Summary of Damages,” No Author. Accessed 24

  11. 43 CFR 418.24 - Precautionary drawdown and spills from Lahontan Reservoir.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Lahontan Reservoir. 418.24 Section 418.24 Public Lands: Interior Regulations Relating to Public Lands... RECLAMATION PROJECT, NEVADA Operations and Management § 418.24 Precautionary drawdown and spills from Lahontan Reservoir. (a) Even though flood control is not a specifically authorized purpose of the Project, at the...

  12. 43 CFR 418.24 - Precautionary drawdown and spills from Lahontan Reservoir.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Lahontan Reservoir. 418.24 Section 418.24 Public Lands: Interior Regulations Relating to Public Lands... RECLAMATION PROJECT, NEVADA Operations and Management § 418.24 Precautionary drawdown and spills from Lahontan Reservoir. (a) Even though flood control is not a specifically authorized purpose of the Project, at the...

  13. 33 CFR 239.7 - Separation of flood control works from urban drainage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Separation of flood control works... OF THE ARMY, DEPARTMENT OF DEFENSE WATER RESOURCES POLICIES AND AUTHORITIES: FEDERAL PARTICIPATION IN COVERED FLOOD CONTROL CHANNELS § 239.7 Separation of flood control works from urban drainage. Covered...

  14. 33 CFR 208.32 - Sanford Dam and Lake Meredith, Canadian River, Tex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Lake Meredith in the interest of flood control as follows: (a) Flood control storage in the reservoir... control pool) initially amounts to 462,100 acre-feet. Whenever the reservoir level is within this... as much as practicable the flood damage below the reservoir. All flood control releases shall be made...

  15. 33 CFR 208.32 - Sanford Dam and Lake Meredith, Canadian River, Tex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Lake Meredith in the interest of flood control as follows: (a) Flood control storage in the reservoir... control pool) initially amounts to 462,100 acre-feet. Whenever the reservoir level is within this... as much as practicable the flood damage below the reservoir. All flood control releases shall be made...

  16. Carbon dioxide field flooding reduces neurologic impairment after open heart surgery.

    PubMed

    Martens, Sven; Neumann, Katrin; Sodemann, Christian; Deschka, Heinz; Wimmer-Greinecker, Gerhard; Moritz, Anton

    2008-02-01

    Air emboli released from incompletely deaired cardiac chambers may cause neurocognitive decline after open heart surgery. Carbon dioxide (CO2) field flooding is reported to reduce residual intracavital air during cardiac surgery. A protective effect of carbon dioxide insufflation on postoperative brain function remains unproven in clinical trials. Eighty patients undergoing heart valve operations by median sternotomy were randomly assigned to either CO2 insufflation (group I, n = 39) or unprotected controls (group II, n = 41). Preoperative evaluation included neurocognitive test batteries consisting of six different tests, and objective measurements of brain function by means of P300 wave auditory-evoked potentials (peak latencies, ms). Neurocognitive testing and P300 measurements were repeated on postoperative day 5. Neurocognitive deficit (ND) was defined as a 20% decrement in two or more tests. Preoperatively, P300 peak latencies did not differ between groups (374 +/- 75 vs 366 +/- 72 ms, not significant [n.s.]). Five days after surgery, P300 peak latencies were significantly shorter with CO2 protection as compared with the unprotected control group (group I: 390 +/- 68 ms, group II: 429 +/- 75 ms, p = 0.02). Clinical outcome was comparable as for mortality (group I: 1 patient; group II: 2 patients) and cerebrovascular events or confusional syndromes (group I: 5 patients; group II: 4 patients) or other clinical variables as intubation time or hospital stay. Neurocognitive test batteries did not reveal differences between groups. Shorter P300 peak latencies after surgery indicate less brain damage in patients who underwent heart valve operations with CO2 flooding of the thoracic cavity. Even if these findings were not supported by clinical results or neurocognitive test batteries in our cohort, carbon dioxide field flooding has proven efficiency and should be advocated for all patients undergoing open heart surgery.

  17. Changing Course - The Moffatt & Nichol Team Solution- A "Systems Approach" to a consolidated and sustainable Lower Mississippi River Delta.

    NASA Astrophysics Data System (ADS)

    Hird, J. P.; Twilley, R.; Shelden, J.; Carney, J.; Georgiou, I. Y.; Agre, C.

    2016-02-01

    In response to the Changing Course Design Competition a bold, innovative "systems approach" to link the specific needs of the region's ecosystem, economy and community is proposed. "The Giving Delta" plan empowers the Mississippi River's seasonal natural flood pulse to maximized sediment capture in order to build and maintain wetlands, mitigate the effects of climate change and subsidence, and to slow the inevitable marine transgression of the Delta. Sediment capture is optimized by a series of sediment retention strategies and passive sediment diversion structures, as well as establishing a new deep draft navigation channel connected to the Barataria Bay shoreline littoral zone 40 miles north of the current channel.This paradigm shift from "flood control" to "controlled floods", connects the River's natural flood pulse to the coastal landscape. Using hydraulic residence time in the basin as a design and operational criteria for these controlled and passive structures, balances estuarine recovery and system response tolerance in order to determine the magnitude of the peak flows possible without intolerable salinity suppression in the receiving basins. Seasonal salinity gradients can be established that enable the diversion program to operate in harmony with and promote regional fisheries. On an annual basis, fisheries, communities and ecosystems will adapt to seasonally changing conditions. This plan is not designed to completely rebuild the wetlands that have been lost over the last century. Instead, the design encourages wetland adaptation to accelerated sea level rise in the coastal basins. With this plan, the basin ecologies would "self-organize" in parallel to the human settlement's natural ability to adapt and change to this long-term vision, as a new, consolidated and sustainable Delta emerges. By establishing a framework of implementation over 100 years, incremental adaptation minimizes individual uncertainty and costs within each human generation.

  18. 33 CFR 208.82 - Hetch Hetchy, Cherry Valley, and Don Pedro Dams and Reservoirs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... flood control all as follows: (a) Storage space in Don Pedro Reservoir shall be kept available for flood-control purposes in accordance with the Flood-Control Storage Reservation Diagram currently in force for... section. The Flood-Control Storage Reservation Diagram in force as of the promulgation of this section is...

  19. 33 CFR 208.82 - Hetch Hetchy, Cherry Valley, and Don Pedro Dams and Reservoirs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flood control all as follows: (a) Storage space in Don Pedro Reservoir shall be kept available for flood-control purposes in accordance with the Flood-Control Storage Reservation Diagram currently in force for... section. The Flood-Control Storage Reservation Diagram in force as of the promulgation of this section is...

  20. Land Sea Level Difference Impacts on Socio-Hydrological System.

    NASA Astrophysics Data System (ADS)

    Sung, K.; Yu, D. J.; Oh, W. S.; Sangwan, N.

    2016-12-01

    Allowing moderate shocks can be a new solution that helps to build adaptive capacity in society is a rising issue. In Social-Ecological field, Carpenter et al. (2015) suggested that exposure to short-term variability leads to long term resilience by enlarging safe operating space (SOS). The SOS refers to the boundary of favorable state that ecosystem can maintain resilience without imposing certain conditions (Carpenter et al. 2015). Our work is motivated by defining SOS in socio-hydrological system(SHS) because it can be an alternative way for flood management beyond optimized or robust flood control. In this context, large flood events that make system to cross the SOS should be fully managed, but frequent small floods need to be allowed if the system is located in SOS. Especially, land sea level change is critical factor to change flood resilience since it is one of the most substantial disturbance that changes the entire boundary of SOS. In order to have broader perspective of vulnerability and resilience of the coastal region, it is crucial to understand the land sea level dynamics changed with human activities and natural variances.The risk of land sea level change has been researched , but most of these researches have focused on explain cause and effect of land sea level change, paying little attention to its dynamics interacts with human activities. Thus, an objective of this research is to study dynamics of human work, land sea level change and resilience to flood with SOS approach. Especially, we focus on the case in Ganges-Brahmaputra, Bangladesh where has high vulnerability to flood, and is faced with relatively rapid land sea level change problem. To acheive the goal, this study will develop a stylized model by extending the human - flood interaction model combined with relative sea level difference equation. The model describes the dynamics of flood protection system which is changed by SHS and land sea level chage. we will focus on the aggradation and human compaction which are highly chaged by human-flood interactions. Carpenter, S. R., W. A. Brock, C. Folke, E. H. van Nes, and M. Scheffer. 2015. Allowing variance may enlarge the safe operating space for exploited ecosystems. Proceedings of the National Academy of Sciences 112(46):14384-14389.

  1. Mozambique Hit by a Flood Disaster, Again: What Role for the Scientific Community

    NASA Astrophysics Data System (ADS)

    Matonse, A. H.; Zucula, P.

    2007-05-01

    The Lower Zambezi basin in Mozambique covers an area of approximately 225,000 km2 from the Cahora Bassa Reservoir to the Zambezi Delta, and supports more than 3.8 million people (25% of the total population of Mozambique). The Zambezi Delta is a broad, flat alluvial plain along the coast of central Mozambique. Some 800 Mozambicans died in floods caused by two cyclones in 2000 and 2001 in the Zambezi River Valley in central Mozambique. Recently, seven years later, the same Zambezi River Valley was hit by heavy rain which was followed by Cyclone Favio. This event triggered flash floods along the Zambezi River and its tributaries, washing away homes, bridges, livestock and crops, and killing at least 45 people. The country's national relief agency INGC established an emergency operation centre to coordinate relief operations. By February 25, 2007, 53,000 people have been moved to accommodation centers and an estimated 36,000 people have lost virtually all their possessions. Due to the extent of the flooded area, rescue and supply operations are very difficult, and conditioned upon the availability of helicopters. Temporary accommodation centres have faced problems of food and fuel shortages, and delays in the distribution of food and fresh water are raising concerns with malnutrition and the outbreak of waterborne diseases. One of the major problems in the region is water management and regulation. The main structure to regulate water discharge in the Zambezi River is the Mozambique's largest Hydro-electric dam, Cahora Bassa. Water regulation from this structure during floods is particularly difficult due to transnational inflows passing through the neighbouring countries of Malawi, Zambia and Zimbabwe. Since the flood disaster of 2000/2001 occurred, the need to improve and strengthen disaster prevention has been a high priority of the Mozambique Government and its donors. Mozambique's Action Plan for the reduction of Absolute Poverty identified vulnerability to such natural disasters as a basic dimension of poverty. However, in spite of these advances the situation with the current flood disaster shows the need for a revision of this program to reduce future flood damage in the country. These revisions should include: 1) readjustments in the actual disaster relieve strategies; 2) disaster risk management to minimize the impact of flooding on individuals and communities; and 3) floodplain management in terms of (i) reviewing regulations intending to modify susceptibility to flood damage and disruption and (ii) the studying of alternative solutions for flood control in the affected areas. Interestingly, while the central provinces of Mozambique are facing floods, the southern part of the country is being hit by drought. To deal with this scenario it is important that the resulting floodplain management strategy accounts for regional and transboundary character of targeted water systems and thus be integrated with regional water resources, river development, and management programs. As part of this process collaborative research in the areas of hydroclimatology, impacts, and management of extraordinary floods is needed and should be encouraged within the region and internationally.

  2. Optimal and centralized reservoir management for drought and flood protection via Stochastic Dual Dynamic Programming on the Upper Seine-Aube River system

    NASA Astrophysics Data System (ADS)

    Chiavico, Mattia; Raso, Luciano; Dorchies, David; Malaterre, Pierre-Olivier

    2015-04-01

    Seine river region is an extremely important logistic and economic junction for France and Europe. The hydraulic protection of most part of the region relies on four controlled reservoirs, managed by EPTB Seine-Grands Lacs. Presently, reservoirs operation is not centrally coordinated, and release rules are based on empirical filling curves. In this study, we analyze how a centralized release policy can face flood and drought risks, optimizing water system efficiency. The optimal and centralized decisional problem is solved by Stochastic Dual Dynamic Programming (SDDP) method, minimizing an operational indicator for each planning objective. SDDP allows us to include into the system: 1) the hydrological discharge, specifically a stochastic semi-distributed auto-regressive model, 2) the hydraulic transfer model, represented by a linear lag and route model, and 3) reservoirs and diversions. The novelty of this study lies on the combination of reservoir and hydraulic models in SDDP for flood and drought protection problems. The study case covers the Seine basin until the confluence with Aube River: this system includes two reservoirs, the city of Troyes, and the Nuclear power plant of Nogent-Sur-Seine. The conflict between the interests of flood protection, drought protection, water use and ecology leads to analyze the environmental system in a Multi-Objective perspective.

  3. Remote sensing of drivers of spring snowmelt flooding in the North Central US

    USDA-ARS?s Scientific Manuscript database

    Spring snowmelt poses an annual flood risk in non-mountainous regions, such as the northern Great Plains of North America. However, ground observations are often not sufficient to characterize the spatiotemporal variation of drivers of snowmelt floods for operational flood forecasting purposes. Re...

  4. Use of real time control modelling on the urban sewage system of Nancy.

    PubMed

    Zug, M; Faure, D; De Belly, B; Phan, L

    2001-01-01

    Since 1991, European Legislation on the urban treatment of wastewater requires local authorities to take into account the treatment of polluted water transported by the sewerage system and this during dry and wet weather conditions. In the seventies, the urban Community of Grand Nancy constructed storage tanks in its sewerage system in order to prevent flooding and wish today to use them to reduce and control the pollution discharges into the receiving water. This action is a part of a European LIFE project 1996-2000. The main aim of this project was to assess the effectiveness of reducing pollution of one particular retention basin, the 12,000 m3 Gentilly tank. This one has two operating modes: protection against floods during heavy rain and reduction of pollutant overflows during lighter rain. To assess its effect on the pollutant discharge, the HYDROWORKS DM software and its Real Time Control Module have been used, calibrated and validated. As this study is still in progress, this paper describes the studied site and the modelling results under different weather conditions and shows that the mathematical model can be used to simulate the operation of the catchment area and its associated sewerage system realistically.

  5. A New Approach to Flood Protection Design and Riparian Management

    Treesearch

    Philip B. Williams; Mitchell L. Swanson

    1989-01-01

    Conventional engineering methods of flood control design focus narrowly on the efficient conveyance of water, with little regard for environmental resource planning and natural geomorphic processes. Consequently, flood control projects are often environmentally disastrous, expensive to maintain, and even inadequate to control floods. In addition, maintenance programs...

  6. Primary healthcare system capacities for responding to storm and flood-related health problems: a case study from a rural district in central Vietnam

    PubMed Central

    Van Minh, Hoang; Tuan Anh, Tran; Rocklöv, Joacim; Bao Giang, Kim; Trang, Le Quynh; Sahlen, Klas-Göran; Nilsson, Maria; Weinehall, Lars

    2014-01-01

    Background As a tropical depression in the East Sea, Vietnam is greatly affected by climate change and natural disasters. Knowledge of the current capacity of the primary healthcare system in Vietnam to respond to health issues associated with storms and floods is very important for policy making in the country. However, there has been little scientific research in this area. Objective This research was to assess primary healthcare system capacities in a rural district in central Vietnam to respond to such health issues. Design This was a cross-sectional descriptive study using quantitative and qualitative approaches. Quantitative methods used self-administered questionnaires. Qualitative methods (in-depth interviews and focus groups discussions) were used to broaden understanding of the quantitative material and to get additional information on actions taken. Results 1) Service delivery: Medical emergency services, especially surgical operations and referral systems, were not always available during the storm and flood seasons. 2) Governance: District emergency plans focus largely on disaster response rather than prevention. The plans did not clearly define the role of primary healthcare and had no clear information on the coordination mechanism among different sectors and organizations. 3) Financing: The budget for prevention and control of flood and storm activities was limited and had no specific items for healthcare activities. Only a little additional funding was available, but the procedures to get this funding were usually time-consuming. 4) Human resources: Medical rescue teams were established, but there were no epidemiologists or environmental health specialists to take care of epidemiological issues. Training on prevention and control of climate change and disaster-related health issues did not meet actual needs. 5) Information and research: Data that can be used for planning and management (including population and epidemiological data) were largely lacking. The district lacked a disease early-warning system. 6) Medical products and technology: Emergency treatment protocols were not available in every studied health facility. Conclusions The primary care system capacity in rural Vietnam is inadequate for responding to storm and flood-related health problems in terms of preventive and treatment healthcare. Developing clear facility preparedness plans, which detail standard operating procedures during floods and identify specific job descriptions, would strengthen responses to future floods. Health facilities should have contingency funds available for emergency response in the event of storms and floods. Health facilities should ensure that standard protocols exist in order to improve responses in the event of floods. Introduction of a computerized health information system would accelerate information and data processing. National and local policies need to be strengthened and developed in a way that transfers into action in local rural communities. PMID:25511879

  7. Primary healthcare system capacities for responding to storm and flood-related health problems: a case study from a rural district in central Vietnam.

    PubMed

    Van Minh, Hoang; Tuan Anh, Tran; Rocklöv, Joacim; Bao Giang, Kim; Trang, Le Quynh; Sahlen, Klas-Göran; Nilsson, Maria; Weinehall, Lars

    2014-01-01

    As a tropical depression in the East Sea, Vietnam is greatly affected by climate change and natural disasters. Knowledge of the current capacity of the primary healthcare system in Vietnam to respond to health issues associated with storms and floods is very important for policy making in the country. However, there has been little scientific research in this area. This research was to assess primary healthcare system capacities in a rural district in central Vietnam to respond to such health issues. This was a cross-sectional descriptive study using quantitative and qualitative approaches. Quantitative methods used self-administered questionnaires. Qualitative methods (in-depth interviews and focus groups discussions) were used to broaden understanding of the quantitative material and to get additional information on actions taken. 1) Service delivery: Medical emergency services, especially surgical operations and referral systems, were not always available during the storm and flood seasons. 2) Governance: District emergency plans focus largely on disaster response rather than prevention. The plans did not clearly define the role of primary healthcare and had no clear information on the coordination mechanism among different sectors and organizations. 3) Financing: The budget for prevention and control of flood and storm activities was limited and had no specific items for healthcare activities. Only a little additional funding was available, but the procedures to get this funding were usually time-consuming. 4) Human resources: Medical rescue teams were established, but there were no epidemiologists or environmental health specialists to take care of epidemiological issues. Training on prevention and control of climate change and disaster-related health issues did not meet actual needs. 5) Information and research: Data that can be used for planning and management (including population and epidemiological data) were largely lacking. The district lacked a disease early-warning system. 6) Medical products and technology: Emergency treatment protocols were not available in every studied health facility. The primary care system capacity in rural Vietnam is inadequate for responding to storm and flood-related health problems in terms of preventive and treatment healthcare. Developing clear facility preparedness plans, which detail standard operating procedures during floods and identify specific job descriptions, would strengthen responses to future floods. Health facilities should have contingency funds available for emergency response in the event of storms and floods. Health facilities should ensure that standard protocols exist in order to improve responses in the event of floods. Introduction of a computerized health information system would accelerate information and data processing. National and local policies need to be strengthened and developed in a way that transfers into action in local rural communities.

  8. Safety in the Chemical Laboratory: Flood Control.

    ERIC Educational Resources Information Center

    Pollard, Bruce D.

    1983-01-01

    Describes events leading to a flood in the Wehr Chemistry Laboratory at Marquette University, discussing steps taken to minimize damage upon discovery. Analyzes the problem of flooding in the chemical laboratory and outlines seven steps of flood control: prevention; minimization; early detection; stopping the flood; evaluation; clean-up; and…

  9. Decision Support for Emergency Operations Centers

    NASA Technical Reports Server (NTRS)

    Harvey, Craig; Lawhead, Joel; Watts, Zack

    2005-01-01

    The Flood Disaster Mitigation Decision Support System (DSS) is a computerized information system that allows regional emergency-operations government officials to make decisions regarding the dispatch of resources in response to flooding. The DSS implements a real-time model of inundation utilizing recently acquired lidar elevation data as well as real-time data from flood gauges, and other instruments within and upstream of an area that is or could become flooded. The DSS information is updated as new data become available. The model generates realtime maps of flooded areas and predicts flood crests at specified locations. The inundation maps are overlaid with information on population densities, property values, hazardous materials, evacuation routes, official contact information, and other information needed for emergency response. The program maintains a database and a Web portal through which real-time data from instrumentation are gathered into the database. Also included in the database is a geographic information system, from which the program obtains the overlay data for areas of interest as needed. The portal makes some portions of the database accessible to the public. Access to other portions of the database is restricted to government officials according to various levels of authorization. The Flood Disaster Mitigation DSS has been integrated into a larger DSS named REACT (Real-time Emergency Action Coordination Tool), which also provides emergency operations managers with data for any type of impact area such as floods, fires, bomb

  10. 33 CFR 203.42 - Inspection of non-Federal flood control works.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps... standards and is capable of providing the intended degree of flood protection. An Acceptable or Minimally...

  11. FEQinput—An editor for the full equations (FEQ) hydraulic modeling system

    USGS Publications Warehouse

    Ancalle, David S.; Ancalle, Pablo J.; Domanski, Marian M.

    2017-10-30

    IntroductionThe Full Equations Model (FEQ) is a computer program that solves the full, dynamic equations of motion for one-dimensional unsteady hydraulic flow in open channels and through control structures. As a result, hydrologists have used FEQ to design and operate flood-control structures, delineate inundation maps, and analyze peak-flow impacts. To aid in fighting floods, hydrologists are using the software to develop a system that uses flood-plain models to simulate real-time streamflow.Input files for FEQ are composed of text files that contain large amounts of parameters, data, and instructions that are written in a format exclusive to FEQ. Although documentation exists that can aid in the creation and editing of these input files, new users face a steep learning curve in order to understand the specific format and language of the files.FEQinput provides a set of tools to help a new user overcome the steep learning curve associated with creating and modifying input files for the FEQ hydraulic model and the related utility tool, Full Equations Utilities (FEQUTL).

  12. An Analytical Method for Deriving Reservoir Operation Curves to Maximize Social Benefits from Multiple Uses of Water in the Willamette River Basin

    NASA Astrophysics Data System (ADS)

    Moore, K. M.; Jaeger, W. K.; Jones, J. A.

    2013-12-01

    A central characteristic of large river basins in the western US is the spatial and temporal disjunction between the supply of and demand for water. Water sources are typically concentrated in forested mountain regions distant from municipal and agricultural water users, while precipitation is super-abundant in winter and deficient in summer. To cope with these disparities, systems of reservoirs have been constructed throughout the West. These reservoir systems are managed to serve two main competing purposes: to control flooding during winter and spring, and to store spring runoff and deliver it to populated, agricultural valleys during the summer. The reservoirs also provide additional benefits, including recreation, hydropower and instream flows for stream ecology. Since the storage capacity of the reservoirs cannot be used for both flood control and storage at the same time, these uses are traded-off during spring, as the most important, or dominant use of the reservoir, shifts from buffering floods to storing water for summer use. This tradeoff is expressed in the operations rule curve, which specifies the maximum level to which a reservoir can be filled throughout the year, apart from real-time flood operations. These rule curves were often established at the time a reservoir was built. However, climate change and human impacts may be altering the timing and amplitude of flood events and water scarcity is expected to intensify with anticipated changes in climate, land cover and population. These changes imply that reservoir management using current rule curves may not match future societal values for the diverse uses of water from reservoirs. Despite a broad literature on mathematical optimization for reservoir operation, these methods are not often used because they 1) simplify the hydrologic system, raising doubts about the real-world applicability of the solutions, 2) exhibit perfect foresight and assume stationarity, whereas reservoir operators face uncertainty and risk daily, and 3) require complex computer programming. The proposed research addresses these critiques by pursuing a novel approach - the development of an analytical method to demonstrate how reservoir management could adapt to anticipated changes in water supply and demand, which incorporates some of the complexity of the hydrologic system, includes stochasticity, and can be readily implemented. Employing a normative economic framework of social welfare maximization, the research will 1) estimate the social benefits associated with reservoir uses, 2) analytically derive conditions for maximizing the benefits of reservoir operation, and 3) estimate the resulting optimal operating rules under future trajectories of climate, land cover, and population. The findings of this analysis will be used to address the following research questions: 1) How do the derived optimal operating rules compare to the existing rule curves? 2) How does the shape of the derived rule curves change under different scenarios of global change? 3) What is the change in net social benefits resulting from the use of these derived rule curves as compared to existing rule curves? 4) To the extent possible, what are the distributional and social justice implications of the derived changes in the rule curves?

  13. Flood risk analysis for flood control and sediment transportation: a case study in the catchments of the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Chang, J.; Guo, A.

    2017-12-01

    Traditional flood risk analysis focuses on the probability of flood events exceeding the design flood of downstream hydraulic structures while neglecting the influence of sedimentation in river channels on flood control systems. Given this focus, a univariate and copula-based bivariate hydrological risk framework focusing on flood control and sediment transport is proposed in the current work. Additionally, the conditional probabilities of occurrence of different flood events under various extreme precipitation scenarios are estimated by exploiting the copula model. Moreover, a Monte Carlo-based algorithm is used to evaluate the uncertainties of univariate and bivariate hydrological risk. Two catchments located on the Loess plateau are selected as study regions: the upper catchments of the Xianyang and Huaxian stations (denoted as UCX and UCH, respectively). The results indicate that (1) 2-day and 3-day consecutive rainfall are highly correlated with the annual maximum flood discharge (AMF) in UCX and UCH, respectively; and (2) univariate and bivariate return periods, risk and reliability for the purposes of flood control and sediment transport are successfully estimated. Sedimentation triggers higher risks of damaging the safety of local flood control systems compared with the AMF, exceeding the design flood of downstream hydraulic structures in the UCX and UCH. Most importantly, there was considerable sampling uncertainty in the univariate and bivariate hydrologic risk analysis, which would greatly challenge measures of future flood mitigation. The proposed hydrological risk framework offers a promising technical reference for flood risk analysis in sandy regions worldwide.

  14. 33 CFR 208.25 - Pensacola Dam and Reservoir, Grand (Neosho) River, Okla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in order to obtain maximum flood control benefits, with the provision that the suggested reduction in... reading shall be shown for each day with additional readings of releases for all changes in spillway gate operation, and with readings of all items except evaporation three times daily when the District Engineer...

  15. 33 CFR 208.25 - Pensacola Dam and Reservoir, Grand (Neosho) River, Okla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in order to obtain maximum flood control benefits, with the provision that the suggested reduction in... reading shall be shown for each day with additional readings of releases for all changes in spillway gate operation, and with readings of all items except evaporation three times daily when the District Engineer...

  16. 33 CFR 208.25 - Pensacola Dam and Reservoir, Grand (Neosho) River, Okla.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in order to obtain maximum flood control benefits, with the provision that the suggested reduction in... reading shall be shown for each day with additional readings of releases for all changes in spillway gate operation, and with readings of all items except evaporation three times daily when the District Engineer...

  17. 33 CFR 208.28 - Foss Dam and Reservoir, Washita River, Oklahoma.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Foss Dam and Reservoir, Washita... THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.28 Foss Dam and Reservoir, Washita River, Oklahoma. The Bureau of Reclamation shall operate the Foss Dam and Reservoir in the interest of...

  18. 33 CFR 208.28 - Foss Dam and Reservoir, Washita River, Oklahoma.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Foss Dam and Reservoir, Washita... THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.28 Foss Dam and Reservoir, Washita River, Oklahoma. The Bureau of Reclamation shall operate the Foss Dam and Reservoir in the interest of...

  19. 7 CFR 1.673 - How will the Forest Service analyze a proposed alternative and formulate its modified condition?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... evidence on the implementation costs or operational impacts for electricity production of the proposed... alternative: (1) Will, as compared to the Forest Service's preliminary condition: (i) Cost significantly less... alternative not adopted on: (1) Energy supply, distribution, cost, and use; (2) Flood control; (3) Navigation...

  20. PAI-OFF: A new proposal for online flood forecasting in flash flood prone catchments

    NASA Astrophysics Data System (ADS)

    Schmitz, G. H.; Cullmann, J.

    2008-10-01

    SummaryThe Process Modelling and Artificial Intelligence for Online Flood Forecasting (PAI-OFF) methodology combines the reliability of physically based, hydrologic/hydraulic modelling with the operational advantages of artificial intelligence. These operational advantages are extremely low computation times and straightforward operation. The basic principle of the methodology is to portray process models by means of ANN. We propose to train ANN flood forecasting models with synthetic data that reflects the possible range of storm events. To this end, establishing PAI-OFF requires first setting up a physically based hydrologic model of the considered catchment and - optionally, if backwater effects have a significant impact on the flow regime - a hydrodynamic flood routing model of the river reach in question. Both models are subsequently used for simulating all meaningful and flood relevant storm scenarios which are obtained from a catchment specific meteorological data analysis. This provides a database of corresponding input/output vectors which is then completed by generally available hydrological and meteorological data for characterizing the catchment state prior to each storm event. This database subsequently serves for training both a polynomial neural network (PoNN) - portraying the rainfall-runoff process - and a multilayer neural network (MLFN), which mirrors the hydrodynamic flood wave propagation in the river. These two ANN models replace the hydrological and hydrodynamic model in the operational mode. After presenting the theory, we apply PAI-OFF - essentially consisting of the coupled "hydrologic" PoNN and "hydrodynamic" MLFN - to the Freiberger Mulde catchment in the Erzgebirge (Ore-mountains) in East Germany (3000 km 2). Both the demonstrated computational efficiency and the prediction reliability underline the potential of the new PAI-OFF methodology for online flood forecasting.

  1. Multi-time scale Climate Informed Stochastic Hybrid Simulation-Optimization Model (McISH model) for Multi-Purpose Reservoir System

    NASA Astrophysics Data System (ADS)

    Lu, M.; Lall, U.

    2013-12-01

    In order to mitigate the impacts of climate change, proactive management strategies to operate reservoirs and dams are needed. A multi-time scale climate informed stochastic model is developed to optimize the operations for a multi-purpose single reservoir by simulating decadal, interannual, seasonal and sub-seasonal variability. We apply the model to a setting motivated by the largest multi-purpose dam in N. India, the Bhakhra reservoir on the Sutlej River, a tributary of the Indus. This leads to a focus on timing and amplitude of the flows for the monsoon and snowmelt periods. The flow simulations are constrained by multiple sources of historical data and GCM future projections, that are being developed through a NSF funded project titled 'Decadal Prediction and Stochastic Simulation of Hydroclimate Over Monsoon Asia'. The model presented is a multilevel, nonlinear programming model that aims to optimize the reservoir operating policy on a decadal horizon and the operation strategy on an updated annual basis. The model is hierarchical, in terms of having a structure that two optimization models designated for different time scales are nested as a matryoshka doll. The two optimization models have similar mathematical formulations with some modifications to meet the constraints within that time frame. The first level of the model is designated to provide optimization solution for policy makers to determine contracted annual releases to different uses with a prescribed reliability; the second level is a within-the-period (e.g., year) operation optimization scheme that allocates the contracted annual releases on a subperiod (e.g. monthly) basis, with additional benefit for extra release and penalty for failure. The model maximizes the net benefit of irrigation, hydropower generation and flood control in each of the periods. The model design thus facilitates the consistent application of weather and climate forecasts to improve operations of reservoir systems. The decadal flow simulations are re-initialized every year with updated climate projections to improve the reliability of the operation rules for the next year, within which the seasonal operation strategies are nested. The multi-level structure can be repeated for monthly operation with weekly subperiods to take advantage of evolving weather forecasts and seasonal climate forecasts. As a result of the hierarchical structure, sub-seasonal even weather time scale updates and adjustment can be achieved. Given an ensemble of these scenarios, the McISH reservoir simulation-optimization model is able to derive the desired reservoir storage levels, including minimum and maximum, as a function of calendar date, and the associated release patterns. The multi-time scale approach allows adaptive management of water supplies acknowledging the changing risks, meeting both the objectives over the decade in expected value and controlling the near term and planning period risk through probabilistic reliability constraints. For the applications presented, the target season is the monsoon season from June to September. The model also includes a monthly flood volume forecast model, based on a Copula density fit to the monthly flow and the flood volume flow. This is used to guide dynamic allocation of the flood control volume given the forecasts.

  2. Floods in the English River basin, Iowa

    USGS Publications Warehouse

    Heinitz, A.J.; Riddle, D.E.

    1981-01-01

    Information describing floods is essential for proper planning, design, and operation of bridges and other structures on or over streams and their flood plains. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the English River and some of its tributaries. It covers the English River, the North English River to near Guernsey, the south Eaglish River to Barnes City and the lower reaches of the Biddle English and Deep Rivers

  3. Advances in urban-drainage management and flood protection.

    PubMed

    Verworn, Hans-Reinhard

    2002-07-15

    Since the beginning of modern urban drainage in the 19th century, the sole objective has been to get rid of sewage and storm water in the best possible way and design the systems according to accepted standards. In recent decades, advanced methods have been developed not only to refine the design but also especially to enable the assessment of hydraulic performance and pollutant emissions. Consequently, urban drainage has become part of an integrated approach concerning flood protection as well as ecological aspects for whole watersheds. Another major change concerns the management of urban systems: simple structural maintenance has been replaced by interactive operational management and control of the systems in order to make better use of the facilities. Rehabilitation has become a multi-objective task. This paper looks at today's basic principles of urban drainage and tomorrow's potential advances, and deals with their relevance to flood protection.

  4. A simulation for the gated weir opening of Wonokromo River, Rungkut District, Surabaya

    NASA Astrophysics Data System (ADS)

    Handajani, N.; Wahjudijanto, I.; Mu'afi, M.

    2018-01-01

    The gated weir is a weir that the crest elevation could be operated based on the flow through the river. The upstream water level of the gated weir could be controlled with gate opening or closing. This study applied a simulation with HEC-RAS 4,0 program in order to know the river hydraulic condition after the gated weir has built. According to the rainfall intensity from each sub-watershed, Distribution Log Pearson III with return period 50 years (Q50) was determined to calculate the design flood discharge. By using Rational Method, the design flood discharge is 470 m3/s. The Results show that capacity of the river is able to accomodate Q50 with discharge 470 m3/s and the gate should be fully opened during flood. This condition could passed the normal discharge at + 5.00 m elevation.

  5. The Effect of Model Grid Resolution on the Distributed Hydrologic Simulations for Forecasting Stream Flows and Reservoir Storage

    NASA Astrophysics Data System (ADS)

    Turnbull, S. J.

    2017-12-01

    Within the US Army Corps of Engineers (USACE), reservoirs are typically operated according to a rule curve that specifies target water levels based on the time of year. The rule curve is intended to maximize flood protection by specifying releases of water before the dominant rainfall period for a region. While some operating allowances are permissible, generally the rule curve elevations must be maintained. While this operational approach provides for the required flood control purpose, it may not result in optimal reservoir operations for multi-use impoundments. In the Russian River Valley of California a multi-agency research effort called Forecast-Informed Reservoir Operations (FIRO) is assessing the application of forecast weather and streamflow predictions to potentially enhance the operation of reservoirs in the watershed. The focus of the study has been on Lake Mendocino, a USACE project important for flood control, water supply, power generation and ecological flows. As part of this effort the Engineer Research and Development Center is assessing the ability of utilizing the physics based, distributed watershed model Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model to simulate stream flows, reservoir stages, and discharges while being driven by weather forecast products. A key question in this application is the effect of watershed model resolution on forecasted stream flows. To help resolve this question, GSSHA models of multiple grid resolutions, 30, 50, and 270m, were developed for the upper Russian River, which includes Lake Mendocino. The models were derived from common inputs: DEM, soils, land use, stream network, reservoir characteristics, and specified inflows and discharges. All the models were calibrated in both event and continuous simulation mode using measured precipitation gages and then driven with the West-WRF atmospheric model in prediction mode to assess the ability of the model to function in short term, less than one week, forecasting mode. In this presentation we will discuss the effect the grid resolution has model development, parameter assignment, streamflow prediction and forecasting capability utilizing the West-WRF forecast hydro-meteorology.

  6. Disastrous torrential floods in mountain areas in Serbia

    NASA Astrophysics Data System (ADS)

    Gavrilovic, Z.

    2009-04-01

    In Serbia, the relief is predominantly hilly and mountainous, intersected with numerous rivers. The greatest number of watercourses are small torrents; however the proportionally large rivers also have a distinctive torrential character. The highest parts of the catchments are at the altitudes above 1500 m, while their confluences are at the altitudes of 200 - 300 m. The catchment and channel slopes are extremely steep. So, as the initial natural preconditions are satisfied, torrential floods are the consequence. Although the Južna Morava catchments were regulated by erosion control works, during the last decades there were numerous torrential floods. Some of the floods had disastrous proportions, not recorded in Serbia or in Europe. The flood of river Vlasina in 1988 was presented to the professional public several times. This flood was not an isolated case. Many large-scale torrential floods occurred in Serbia from 1994 to 2007. As there were floods also in 2007, the causes of the recorded floods had to be analysed. The analysis pointed out a series of scenarios which were the causes of disastrous torrential floods, and also the disadvantages of the actual system of torrent and erosion control. Special attention was focused on the floods which resulted from sudden snow melting. This paper will present the results of the analyses of the extreme torrential floods of the rivers Nišava and Vlasina. Key words: Flood, torrents, torrent control, erosion control

  7. Computation and analysis of the instantaneous-discharge record for the Colorado River at Lees Ferry, Arizona : May 8, 1921, through September 30, 2000

    USGS Publications Warehouse

    Topping, David J.; Schmidt, John C.; Vierra, L.E.

    2003-01-01

    A gaging station has been operated by the U.S. Geological Survey at Lees Ferry, Arizona, since May 8, 1921. In March 1963, Glen Canyon Dam was closed 15.5 miles upstream, cutting off the upstream sediment supply and regulating the discharge of the Colorado River at Lees Ferry for the first time in history. To evaluate the pre-dam variability in the hydrology of the Colorado River, and to determine the effect of the operation of Glen Canyon Dam on the downstream hydrology of the river, a continuous record of the instantaneous discharge of the river at Lees Ferry was constructed and analyzed for the entire period of record between May 8, 1921, and September 30, 2000. This effort involved retrieval from the Federal Records Centers and then synthesis of all the raw historical data collected by the U.S. Geological Survey at Lees Ferry. As part of this process, the peak discharges of the two largest historical floods at Lees Ferry, the 1884 and 1921 floods, were reanalyzed and recomputed. This reanalysis indicates that the peak discharge of the 1884 flood was 210,000?30,000 cubic feet per second (ft3/s), and the peak discharge of the 1921 flood was 170,000?20,000 ft3/s. These values are indistinguishable from the peak discharges of these floods originally estimated or published by the U.S. Geological Survey, but are substantially less than the currently accepted peak discharges of these floods. The entire continuous record of instantaneous discharge of the Colorado River at Lees Ferry can now be requested from the U.S. Geological Survey Grand Canyon Monitoring and Research Center, Flagstaff, Arizona, and is also available electronically at http://www.gcmrc.gov. This record is perhaps the longest (almost 80 years) high-resolution (mostly 15- to 30-minute precision) times series of river discharge available. Analyses of these data, therefore, provide an unparalleled characterization of both the natural variability in the discharge of a river and the effects of dam operations on a river. Following the construction and quality-control checks of the continuous record of instantaneous discharge, analyses of flow duration, sub-daily flow variability, and flood frequency were conducted on the pre- and post-dam parts of the record. These analyses indicate that although the discharge of the Colorado River varied substantially prior to the closure of Glen Canyon Dam in 1963, operation of the dam has caused changes in discharge that are more extreme than the pre-dam natural variability. Operation of the dam has eliminated flood flows and base flows, and thereby has effectively 'flattened' the annual hydrograph. Prior to closure of the dam, the discharge of the Colorado River at Lees Ferry was lower than 7,980 ft3/s half of the time. Discharges lower than about 9,000 ft3/s were important for the seasonal accumulation and storage of sand in the pre-dam river downstream from Lees Ferry. The current operating plan for Glen Canyon Dam no longer allows sustained discharges lower than 8,000 ft3/s to be released. Thus, closure of the dam has not only cut off the upstream supply of sediment, but operation of the dam has also largely eliminated discharges during which sand could be demonstrated to accumulate in the river. In addition to radically changing the hydrology of the river, operation of the dam for hydroelectric-power generation has introduced large daily fluctuations in discharge. During the pre-dam era, the median daily range in discharge was only 542 ft3/s, although daily ranges in discharge exceeding 20,000 ft3/s were observed during the summer thunderstorm season. Relative to the pre-dam period of record, dam operations have increased the daily range in discharge during all but 0.1 percent of all days. The post-dam median daily range in discharge, 8,580 ft3/s, exceeds the pre-dam median discharge of 7,980 ft3/s. Operation of the dam has also radically changed the frequency of floods on the Colorado River at Lees Ferry. The frequency of f

  8. Process-based model with flood control measures towards more realistic global flood modeling

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Zhang, X.; Wang, Y.; Mu, M.; Lv, A.; Li, Z.

    2017-12-01

    In the profoundly human-influenced era, the Anthropocene, increased amount of land was developed in flood plains and many flood control measures were implemented to protect people and infrastructures placed in the flood-prone areas. These human influences (for example, dams and dykes) have altered peak streamflow and flood risk, and are already an integral part of flood. However, most of the process-based flood models have yet to taken into account the human influences. In this study, we used a hydrological model together with an advanced hydrodynamic model to assess flood risk at the Baiyangdian catchment. The Baiyangdian Lake is the largest shallow freshwater lake in North China, and it was used as a flood storage area in the past. A new development hub for the Beijing-Tianjin-Hebei economic triangle, namely the Xiongan new area, was recently established in the flood-prone area around the lake. The shuttle radar topography mission (SRTM) digital elevation model (DEMs) was used to parameterize the hydrodynamic model simulation, and the inundation estimates were compared with published flood maps and observed inundation area during the extreme historical flood events. A simple scheme was carried out to consider the impacts of flood control measures, including the reservoirs in the headwaters and the dykes to be built. By comparing model simulations with and without the influences of flood control measures, we demonstrated the importance of human influences in altering the inundated area and depth under design flood conditions. Based on the SRTM DEM and dam and reservoir data in the Global Reservoir and Dam (GRanD) database, we further discuss the potential to develop a global flood model with human influences.

  9. 12 CFR 614.4955 - Notice of special flood hazards and availability of Federal disaster relief assistance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Notice of special flood hazards and... ADMINISTRATION FARM CREDIT SYSTEM LOAN POLICIES AND OPERATIONS Flood Insurance Requirements § 614.4955 Notice of special flood hazards and availability of Federal disaster relief assistance. (a) Notice requirement. When...

  10. Simulating storm surge inundation and damage potential within complex port facilities

    NASA Astrophysics Data System (ADS)

    Mawdsley, Robert; French, Jon; Fujiyama, Taku; Achutan, Kamalasudhan

    2017-04-01

    Storm surge inundation of port facilities can cause damage to critical elements of infrastructure, significantly disrupt port operations and cause downstream impacts on vital supply chains. A tidal surge in December 2013 in the North Sea partly flooded the Port of Immingham, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. This flooding caused damage to port and rail transport infrastructure and disrupted operations for several weeks. This research aims to improve resilience to storm surges using hydrodynamic modelling coupled to an agent-based model of port operations. Using the December 2013 event to validate flood extent, depth and duration, we ran a high resolution hydrodynamic simulation using the open source Telemac 2D finite element code. The underlying Digital Elevation Model (DEM) was derived from Environment Agency LiDAR data, with ground truthing of the flood defences along the port frontage. Major infrastructure and buildings are explicitly resolved with varying degrees of permeability. Telemac2D simulations are run in parallel and take only minutes on a single 16 cpu compute node. Inundation characteristics predicted using Telemac 2D differ from a simple Geographical Information System 'bath-tub' analysis of the DEM based upon horizontal application of the maximum water level across the port topography. The hydrodynamic simulation predicts less extensive flooding and more closely matches observed flood extent. It also provides more precise depth and duration curves. Detailed spatial flood depth and duration maps were generated for a range of tide and surge scenarios coupled to mean sea-level rise projections. These inundation scenarios can then be integrated with critical asset databases and an agent-based model of port operation (MARS) that is capable of simulating storm surge disruption along wider supply chains. Port operators are able to act on information from a particular flood scenario to perform adaptive responses (e.g. pre-emptive relocation of equipment), as well as estimate the likely duration of any disruption to port and supply chain operation. High resolution numerical inundation modelling, coupled to accurate storm surge forecasting and an agent based port operation model, thus has the potential to significantly reduce damage and disruption costs associated with storm surge impacts on port infrastructure and systems.

  11. Climate, orography and scale controls on flood frequency in Triveneto (Italy)

    NASA Astrophysics Data System (ADS)

    Persiano, Simone; Castellarin, Attilio; Salinas, Jose Luis; Domeneghetti, Alessio; Brath, Armando

    2016-05-01

    The growing concern about the possible effects of climate change on flood frequency regime is leading Authorities to review previously proposed reference procedures for design-flood estimation, such as national flood frequency models. Our study focuses on Triveneto, a broad geographical region in North-eastern Italy. A reference procedure for design flood estimation in Triveneto is available from the Italian NCR research project "VA.PI.", which considered Triveneto as a single homogeneous region and developed a regional model using annual maximum series (AMS) of peak discharges that were collected up to the 1980s by the former Italian Hydrometeorological Service. We consider a very detailed AMS database that we recently compiled for 76 catchments located in Triveneto. All 76 study catchments are characterized in terms of several geomorphologic and climatic descriptors. The objective of our study is threefold: (1) to inspect climatic and scale controls on flood frequency regime; (2) to verify the possible presence of changes in flood frequency regime by looking at changes in time of regional L-moments of annual maximum floods; (3) to develop an updated reference procedure for design flood estimation in Triveneto by using a focused-pooling approach (i.e. Region of Influence, RoI). Our study leads to the following conclusions: (1) climatic and scale controls on flood frequency regime in Triveneto are similar to the controls that were recently found in Europe; (2) a single year characterized by extreme floods can have a remarkable influence on regional flood frequency models and analyses for detecting possible changes in flood frequency regime; (3) no significant change was detected in the flood frequency regime, yet an update of the existing reference procedure for design flood estimation is highly recommended and we propose the RoI approach for properly representing climate and scale controls on flood frequency in Triveneto, which cannot be regarded as a single homogeneous region.

  12. International NGOs and the role of network centrality in humanitarian aid operations: a case study of coordination during the 2000 Mozambique floods.

    PubMed

    Moore, Spencer; Eng, Eugenia; Daniel, Mark

    2003-12-01

    In February 2000, Mozambique suffered its worst flooding in almost 50 years: 699 people died and hundreds of thousands were displaced. Over 49 countries and 30 international non-governmental organisations provided humanitarian assistance. Coordination of disaster assistance is critical for effective humanitarian aid operations, but limited attention has been directed toward evaluating the system-wide structure of inter-organisational coordination during humanitarian operations. Network analysis methods were used to examine the structure of inter-organisational relations among 65 non-governmental organisations (NGOs) involved in the flood operations in Mozambique. Centrality scores were used to estimate NGO-specific potential for aid coordination and tested against NGO beneficiary numbers. The average number of relief- and recovery-period beneficiaries was significantly greater for NGOs with high relative to low centrality scores (p < 0.05). This report addresses the significance of these findings in the context of the Mozambican 2000 floods and the type of data required to evaluate system-wide coordination.

  13. Corps Water Management System (CWMS) Decision Support Modeling and Integration Use in the June 2007 Texas Floods

    NASA Astrophysics Data System (ADS)

    Charley, W. J.; Luna, M.

    2007-12-01

    The U.S. Army Corps of Engineers Corps Water Management System (CWMS) is a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. It encompasses data collection, validation and transformation, data storage, visualization, real time model simulation for decision-making support, and data dissemination. CWMS uses an Oracle database and Sun Solaris workstations for data processes, storage and the execution of models, with a client application (the Control and Visualization Interface, or CAVI) that can run on a Windows PC. CWMS was used by the Lower Colorado River Authority (LCRA) to make hydrologic forecasts of flows on the Lower Colorado River and operate reservoirs during the June 2007 event in Texas. The LCRA receives real-time observed gridded spatial rainfall data from OneRain, Inc. that which is a result of adjusting NexRad rainfall data with precipitation gages. This data is used, along with future precipitation estimates, for hydrologic forecasting by the rainfall-runoff modeling program HEC-HMS. Forecasted flows from HEC-HMS and combined with observed flows and reservoir information to simulate LCRA's reservoir operations and help engineers make release decisions based on the results. The river hydraulics program, HEC-RAS, computes river stages and water surface profiles for the computed flow. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using ArcInfo. By varying future precipitation and releases, engineers can evaluate different "What if?" scenarios. What was described as an "extraordinary cluster of thunderstorms" that stalled over Burnet and Llano counties in Texas on June 27, 2007, dropped 17 to 19 inches of rainfall over a 6-hour period. The storm was classified over a 500-year event and the resulting flow over some of the smaller tributaries as a 100-year or better. CWMS was used by LCRA for flood forecasting and reservoir operations. The models accurately forecasting the flows and allowed engineers to determine that only four floodgates needed to be opened for Mansfield dam, in the Chain of Highland lakes. CWMS also forecasted the peak of the flood well before it happened. Smaller rain storms continued for a period of weeks and CWMS was used throughout the event calculating lake levels, closing of gates along with a hydro-generation schedule.

  14. Hydrometeorological network for flood monitoring and modeling

    NASA Astrophysics Data System (ADS)

    Efstratiadis, Andreas; Koussis, Antonis D.; Lykoudis, Spyros; Koukouvinos, Antonis; Christofides, Antonis; Karavokiros, George; Kappos, Nikos; Mamassis, Nikos; Koutsoyiannis, Demetris

    2013-08-01

    Due to its highly fragmented geomorphology, Greece comprises hundreds of small- to medium-size hydrological basins, in which often the terrain is fairly steep and the streamflow regime ephemeral. These are typically affected by flash floods, occasionally causing severe damages. Yet, the vast majority of them lack flow-gauging infrastructure providing systematic hydrometric data at fine time scales. This has obvious impacts on the quality and reliability of flood studies, which typically use simplistic approaches for ungauged basins that do not consider local peculiarities in sufficient detail. In order to provide a consistent framework for flood design and to ensure realistic predictions of the flood risk -a key issue of the 2007/60/EC Directive- it is essential to improve the monitoring infrastructures by taking advantage of modern technologies for remote control and data management. In this context and in the research project DEUCALION, we have recently installed and are operating, in four pilot river basins, a telemetry-based hydro-meteorological network that comprises automatic stations and is linked to and supported by relevant software. The hydrometric stations measure stage, using 50-kHz ultrasonic pulses or piezometric sensors, or both stage (piezometric) and velocity via acoustic Doppler radar; all measurements are being temperature-corrected. The meteorological stations record air temperature, pressure, relative humidity, wind speed and direction, and precipitation. Data transfer is made via GPRS or mobile telephony modems. The monitoring network is supported by a web-based application for storage, visualization and management of geographical and hydro-meteorological data (ENHYDRIS), a software tool for data analysis and processing (HYDROGNOMON), as well as an advanced model for flood simulation (HYDROGEIOS). The recorded hydro-meteorological observations are accessible over the Internet through the www-application. The system is operational and its functionality has been implemented as open-source software for use in a wide range of applications in the field of water resources monitoring and management, such as the demonstration case study outlined in this work.

  15. Integrated Flood Forecast and Virtual Dam Operation System for Water Resources and Flood Risk Management

    NASA Astrophysics Data System (ADS)

    Shibuo, Yoshihiro; Ikoma, Eiji; Lawford, Peter; Oyanagi, Misa; Kanauchi, Shizu; Koudelova, Petra; Kitsuregawa, Masaru; Koike, Toshio

    2014-05-01

    While availability of hydrological- and hydrometeorological data shows growing tendency and advanced modeling techniques are emerging, such newly available data and advanced models may not always be applied in the field of decision-making. In this study we present an integrated system of ensemble streamflow forecast (ESP) and virtual dam simulator, which is designed to support river and dam manager's decision making. The system consists of three main functions: real time hydrological model, ESP model, and dam simulator model. In the real time model, the system simulates current condition of river basins, such as soil moisture and river discharges, using LSM coupled distributed hydrological model. The ESP model takes initial condition from the real time model's output and generates ESP, based on numerical weather prediction. The dam simulator model provides virtual dam operation and users can experience impact of dam control on remaining reservoir volume and downstream flood under the anticipated flood forecast. Thus the river and dam managers shall be able to evaluate benefit of priori dam release and flood risk reduction at the same time, on real time basis. Furthermore the system has been developed under the concept of data and models integration, and it is coupled with Data Integration and Analysis System (DIAS) - a Japanese national project for integrating and analyzing massive amount of observational and model data. Therefore it has advantage in direct use of miscellaneous data from point/radar-derived observation, numerical weather prediction output, to satellite imagery stored in data archive. Output of the system is accessible over the web interface, making information available with relative ease, e.g. from ordinary PC to mobile devices. We have been applying the system to the Upper Tone region, located northwest from Tokyo metropolitan area, and we show application example of the system in recent flood events caused by typhoons.

  16. The operation and maintenance of a crest-stage gaging station

    USGS Publications Warehouse

    Friday, John

    1965-01-01

    Rigid datum controls must be maintained at the gage site throughout the period of record. Physical changes of the site resulting from flood flows or manmade alterations must be evaluated. If a drainage structure such as a culvert is part of the site features, free-flow conditions must be maintained or obstructions carefully documented.

  17. 33 CFR 208.27 - Fort Cobb Dam and Reservoir, Pond (Cobb) Creek, Oklahoma.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Engineer showing the elevation of the reservoir level; number of river outlet works gates in operation with... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Fort Cobb Dam and Reservoir, Pond..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.27 Fort Cobb Dam and Reservoir...

  18. 33 CFR 208.27 - Fort Cobb Dam and Reservoir, Pond (Cobb) Creek, Oklahoma.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Engineer showing the elevation of the reservoir level; number of river outlet works gates in operation with... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Fort Cobb Dam and Reservoir, Pond..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.27 Fort Cobb Dam and Reservoir...

  19. Reservoir operations under climate change: Storage capacity options to mitigate risk

    NASA Astrophysics Data System (ADS)

    Ehsani, Nima; Vörösmarty, Charles J.; Fekete, Balázs M.; Stakhiv, Eugene Z.

    2017-12-01

    Observed changes in precipitation patterns, rising surface temperature, increases in frequency and intensity of floods and droughts, widespread melting of ice, and reduced snow cover are some of the documented hydrologic changes associated with global climate change. Climate change is therefore expected to affect the water supply-demand balance in the Northeast United States and challenge existing water management strategies. The hydrological implications of future climate will affect the design capacity and operating characteristics of dams. The vulnerability of water resources systems to floods and droughts will increase, and the trade-offs between reservoir releases to maintain flood control storage, drought resilience, ecological flow, human water demand, and energy production should be reconsidered. We used a Neural Networks based General Reservoir Operation Scheme to estimate the implications of climate change for dams on a regional scale. This dynamic daily reservoir module automatically adapts to changes in climate and re-adjusts the operation of dams based on water storage level, timing, and magnitude of incoming flows. Our findings suggest that the importance of dams in providing water security in the region will increase. We create an indicator of the Effective Degree of Regulation (EDR) by dams on water resources and show that it is expected to increase, particularly during drier months of year, simply as a consequence of projected climate change. The results also indicate that increasing the size and number of dams, in addition to modifying their operations, may become necessary to offset the vulnerabilities of water resources systems to future climate uncertainties. This is the case even without considering the likely increase in future water demand, especially in the most densely populated regions of the Northeast.

  20. Control of electrolyte fill to fuel cell stack

    DOEpatents

    Pollack, William

    1982-01-01

    A fuel cell stack which can be operated with cells in a horizontal position so that the fuel cell stack does not have to be taken out of operation when adding an electrolyte such as an acid. Acid is supplied to each matrix in a stack of fuel cells at a uniform, low pressure so that the matrix can either be filled initially or replenished with acid lost in operation of the cell, without exceeding the bubble pressure of the matrix or the flooding pressure of the electrodes on either side of the matrix. Acid control to each cell is achieved by restricting and offsetting the opening of electrolyte fill holes in the matrix relative to openings in the plates which sandwich the matrix and electrodes therebetween.

  1. Flood forecasting within urban drainage systems using NARX neural network.

    PubMed

    Abou Rjeily, Yves; Abbas, Oras; Sadek, Marwan; Shahrour, Isam; Hage Chehade, Fadi

    2017-11-01

    Urbanization activity and climate change increase the runoff volumes, and consequently the surcharge of the urban drainage systems (UDS). In addition, age and structural failures of these utilities limit their capacities, and thus generate hydraulic operation shortages, leading to flooding events. The large increase in floods within urban areas requires rapid actions from the UDS operators. The proactivity in taking the appropriate actions is a key element in applying efficient management and flood mitigation. Therefore, this work focuses on developing a flooding forecast system (FFS), able to alert in advance the UDS managers for possible flooding. For a forecasted storm event, a quick estimation of the water depth variation within critical manholes allows a reliable evaluation of the flood risk. The Nonlinear Auto Regressive with eXogenous inputs (NARX) neural network was chosen to develop the FFS as due to its calculation nature it is capable of relating water depth variation in manholes to rainfall intensities. The campus of the University of Lille is used as an experimental site to test and evaluate the FFS proposed in this paper.

  2. Applications of ASFCM(Assessment System of Flood Control Measurement) in Typhoon Committee Members

    NASA Astrophysics Data System (ADS)

    Kim, C.

    2013-12-01

    Due to extreme weather environment such as global warming and greenhouse effect, the risks of having flood damage has been increased with larger scale of flood damages. Therefore, it became necessary to consider modifying climate change, flood damage and its scale to the previous dimension measurement evaluation system. In this regard, it is needed to establish a comprehensive and integrated system to evaluate the most optimized measures for flood control through eliminating uncertainties of socio-economic impacts. Assessment System of Structural Flood Control Measures (ASFCM) was developed for determining investment priorities of the flood control measures and establishing the social infrastructure projects. ASFCM consists of three modules: 1) the initial setup and inputs module, 2) the flood and damage estimation module, and 3) the socio-economic analysis module. First, we have to construct the D/B for flood damage estimation, which is the initial and input data about the estimation unit, property, historical flood damages, and applied area's topographic & hydrological data. After that, it is important to classify local characteristic for constructing flood damage data. Five local characteristics (big city, medium size city, small city, farming area, and mountain area) are classified by criterion of application (population density). Next step is the floodplain simulation with HEC-RAS which is selected to simulate inundation. Through inputting the D/B and damage estimation, it is able to estimate the total damage (only direct damage) that is the amount of cost to recover the socio-economic activities back to the safe level before flood did occur. The last module suggests the economic analysis index (B/C ratio) with Multidimensional Flood Damage Analysis. Consequently, ASFCM suggests the reference index in constructing flood control measures and planning non-structural systems to reduce water-related damage. It is possible to encourage flood control planners and managers to consider and apply the socio-economic analysis results. ASFCM was applied in Republic of Korea, Thailand and Philippines to review efficiency and applicability. Figure 1. ASFCM Application(An-yang Stream, Republic of Korea)

  3. 33 CFR 203.15 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of Congress. Flood control project: A project designed and constructed to have appreciable and... Washington, D.C. Hurricane/Shore Protection Project (HSPP). A flood control project designed and constructed... project, only those components that are necessary for the flood control function are considered eligible...

  4. 33 CFR 203.15 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of Congress. Flood control project: A project designed and constructed to have appreciable and... Washington, D.C. Hurricane/Shore Protection Project (HSPP). A flood control project designed and constructed... project, only those components that are necessary for the flood control function are considered eligible...

  5. 33 CFR 203.15 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of Congress. Flood control project: A project designed and constructed to have appreciable and... Washington, D.C. Hurricane/Shore Protection Project (HSPP). A flood control project designed and constructed... project, only those components that are necessary for the flood control function are considered eligible...

  6. 33 CFR 203.15 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of Congress. Flood control project: A project designed and constructed to have appreciable and... Washington, D.C. Hurricane/Shore Protection Project (HSPP). A flood control project designed and constructed... project, only those components that are necessary for the flood control function are considered eligible...

  7. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOEpatents

    Johnson, Jr., James S.; Westmoreland, Clyde G.

    1982-01-01

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  8. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOEpatents

    Johnson, J.S. Jr.; Westmoreland, C.G.

    1980-08-20

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  9. Towards an Efficient Flooding Scheme Exploiting 2-Hop Backward Information in MANETs

    NASA Astrophysics Data System (ADS)

    Le, Trong Duc; Choo, Hyunseung

    Flooding is an indispensable operation for providing control or routing functionalities to mobile ad hoc networks (MANETs). Previously, many flooding schemes have been studied with the intention of curtailing the problems of severe redundancies, contention, and collisions in traditional implementations. A recent approach with relatively high efficiency is 1HI by Liu et al., which uses only 1-hop neighbor information. The scheme achieves local optimality in terms of the number of retransmission nodes with time complexity &Theta(n log n), where n is the number of neighbors of a node; however, this method tends to make many redundant transmissions. In this paper, we present a novel flooding algorithm, 2HBI (2-hop backward information), that efficiently reduces the number of retransmission nodes and solves the broadcast storm problem in ad hoc networks using our proposed concept, “2-hop backward information.” The most significant feature of the proposed algorithm is that it does not require any extra communication overhead other than the exchange of 1-hop HELLO messages but maintains high deliverability. Comprehensive computer simulations show that the proposed scheme significantly reduces redundant transmissions in 1HI and in pure flooding, up to 38% and 91%, respectively; accordingly it alleviates contention and collisions in networks.

  10. Department of the Navy Fiscal Year 2011 Annual Financial Report. Mission Ready: Managing Risk and Meeting Objectives

    DTIC Science & Technology

    2011-01-01

    Earthquake Relief Effort Haiti Migrant Operational Support Deepwater Horizon Oil Spill Tennessee Flooding Pakistan Flooding Typhoon Megi (Philippines) Natural...provide relevant capabilities and to enable Operationally Responsive Space. TacSat-4 provides ten Ultra High Frequency (UHF) channels, which can be used

  11. Climate Change and the Los Alamos National Laboratory. The Adaptation Challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Kimberly M.; Hjeresen, Dennis; Silverman, Josh

    2015-02-01

    The Los Alamos National Laboratory (LANL) has been adapting to climate change related impacts that have been occurring on decadal time scales. The region where LANL is located has been subject to a cascade of climate related impacts: drought, devastating wildfires, and historic flooding events. Instead of buckling under the pressure, LANL and the surrounding communities have integrated climate change mitigation strategies into their daily operations and long-term plans by increasing coordination and communication between the Federal, State, and local agencies in the region, identifying and aggressively managing forested areas in need of near-term attention, addressing flood control and retentionmore » issues, and more.« less

  12. Large-scale application of the flood damage model RAilway Infrastructure Loss (RAIL)

    NASA Astrophysics Data System (ADS)

    Kellermann, Patric; Schönberger, Christine; Thieken, Annegret H.

    2016-11-01

    Experience has shown that river floods can significantly hamper the reliability of railway networks and cause extensive structural damage and disruption. As a result, the national railway operator in Austria had to cope with financial losses of more than EUR 100 million due to flooding in recent years. Comprehensive information on potential flood risk hot spots as well as on expected flood damage in Austria is therefore needed for strategic flood risk management. In view of this, the flood damage model RAIL (RAilway Infrastructure Loss) was applied to estimate (1) the expected structural flood damage and (2) the resulting repair costs of railway infrastructure due to a 30-, 100- and 300-year flood in the Austrian Mur River catchment. The results were then used to calculate the expected annual damage of the railway subnetwork and subsequently analysed in terms of their sensitivity to key model assumptions. Additionally, the impact of risk aversion on the estimates was investigated, and the overall results were briefly discussed against the background of climate change and possibly resulting changes in flood risk. The findings indicate that the RAIL model is capable of supporting decision-making in risk management by providing comprehensive risk information on the catchment level. It is furthermore demonstrated that an increased risk aversion of the railway operator has a marked influence on flood damage estimates for the study area and, hence, should be considered with regard to the development of risk management strategies.

  13. What are the hydro-meteorological controls on flood characteristics?

    NASA Astrophysics Data System (ADS)

    Nied, Manuela; Schröter, Kai; Lüdtke, Stefan; Nguyen, Viet Dung; Merz, Bruno

    2017-02-01

    Flood events can be expressed by a variety of characteristics such as flood magnitude and extent, event duration or incurred loss. Flood estimation and management may benefit from understanding how the different flood characteristics relate to the hydrological catchment conditions preceding the event and to the meteorological conditions throughout the event. In this study, we therefore propose a methodology to investigate the hydro-meteorological controls on different flood characteristics, based on the simulation of the complete flood risk chain from the flood triggering precipitation event, through runoff generation in the catchment, flood routing and possible inundation in the river system and floodplains to flood loss. Conditional cumulative distribution functions and regression tree analysis delineate the seasonal varying flood processes and indicate that the effect of the hydrological pre-conditions, i.e. soil moisture patterns, and of the meteorological conditions, i.e. weather patterns, depends on the considered flood characteristic. The methodology is exemplified for the Elbe catchment. In this catchment, the length of the build-up period, the event duration and the number of gauges undergoing at least a 10-year flood are governed by weather patterns. The affected length and the number of gauges undergoing at least a 2-year flood are however governed by soil moisture patterns. In case of flood severity and loss, the controlling factor is less pronounced. Severity is slightly governed by soil moisture patterns whereas loss is slightly governed by weather patterns. The study highlights that flood magnitude and extent arise from different flood generation processes and concludes that soil moisture patterns as well as weather patterns are not only beneficial to inform on possible flood occurrence but also on the involved flood processes and resulting flood characteristics.

  14. All-season flash flood forecasting system for real-time operations

    USDA-ARS?s Scientific Manuscript database

    Flash floods can cause extensive damage to both life and property, especially because they are difficult to predict. Flash flood prediction requires high-resolution meteorologic observations and predictions, as well as calibrated hydrologic models in addition to extensive data handling. We have de...

  15. The state of the art of flood forecasting - Hydrological Ensemble Prediction Systems

    NASA Astrophysics Data System (ADS)

    Thielen-Del Pozo, J.; Pappenberger, F.; Salamon, P.; Bogner, K.; Burek, P.; de Roo, A.

    2010-09-01

    Flood forecasting systems form a key part of ‘preparedness' strategies for disastrous floods and provide hydrological services, civil protection authorities and the public with information of upcoming events. Provided the warning leadtime is sufficiently long, adequate preparatory actions can be taken to efficiently reduce the impacts of the flooding. Because of the specific characteristics of each catchment, varying data availability and end-user demands, the design of the best flood forecasting system may differ from catchment to catchment. However, despite the differences in concept and data needs, there is one underlying issue that spans across all systems. There has been an growing awareness and acceptance that uncertainty is a fundamental issue of flood forecasting and needs to be dealt with at the different spatial and temporal scales as well as the different stages of the flood generating processes. Today, operational flood forecasting centres change increasingly from single deterministic forecasts to probabilistic forecasts with various representations of the different contributions of uncertainty. The move towards these so-called Hydrological Ensemble Prediction Systems (HEPS) in flood forecasting represents the state of the art in forecasting science, following on the success of the use of ensembles for weather forecasting (Buizza et al., 2005) and paralleling the move towards ensemble forecasting in other related disciplines such as climate change predictions. The use of HEPS has been internationally fostered by initiatives such as "The Hydrologic Ensemble Prediction Experiment" (HEPEX), created with the aim to investigate how best to produce, communicate and use hydrologic ensemble forecasts in hydrological short-, medium- und long term prediction of hydrological processes. The advantages of quantifying the different contributions of uncertainty as well as the overall uncertainty to obtain reliable and useful flood forecasts also for extreme events, has become evident. However, despite the demonstrated advantages, worldwide the incorporation of HEPS in operational flood forecasting is still limited. The applicability of HEPS for smaller river basins was tested in MAP D-Phase, an acronym for "Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region" which was launched in 2005 as a Forecast Demonstration Project of World Weather Research Programme of WMO, and entered a pre-operational and still active testing phase in 2007. In Europe, a comparatively high number of EPS driven systems for medium-large rivers exist. National flood forecasting centres of Sweden, Finland and the Netherlands, have already implemented HEPS in their operational forecasting chain, while in other countries including France, Germany, Czech Republic and Hungary, hybrids or experimental chains have been installed. As an example of HEPS, the European Flood Alert System (EFAS) is being presented. EFAS provides medium-range probabilistic flood forecasting information for large trans-national river basins. It incorporates multiple sets of weather forecast including different types of EPS and deterministic forecasts from different providers. EFAS products are evaluated and visualised as exceedance of critical levels only - both in forms of maps and time series. Different sources of uncertainty and its impact on the flood forecasting performance for every grid cell has been tested offline but not yet incorporated operationally into the forecasting chain for computational reasons. However, at stations where real-time discharges are available, a hydrological uncertainty processor is being applied to estimate the total predictive uncertainty from the hydrological and input uncertainties. Research on long-term EFAS results has shown the need for complementing statistical analysis with case studies for which examples will be shown.

  16. Forecasting snowmelt flooding over Britain using the Grid-to-Grid model: a review and assessment of methods

    NASA Astrophysics Data System (ADS)

    Dey, Seonaid R. A.; Moore, Robert J.; Cole, Steven J.; Wells, Steven C.

    2017-04-01

    In many regions of high annual snowfall, snowmelt modelling can prove to be a vital component of operational flood forecasting and warning systems. Although Britain as a whole does not experience prolonged periods of lying snow, with the exception of the Scottish Highlands, the inclusion of snowmelt modelling can still have a significant impact on the skill of flood forecasts. Countrywide operational flood forecasts over Britain are produced using the national Grid-to-Grid (G2G) distributed hydrological model. For Scotland, snowmelt is included in these forecasts through a G2G snow hydrology module involving temperature-based snowfall/rainfall partitioning and functions for temperature-excess snowmelt, snowpack storage and drainage. Over England and Wales, the contribution of snowmelt is included by pre-processing the precipitation prior to input into G2G. This removes snowfall diagnosed from weather model outputs and adds snowmelt from an energy budget land surface scheme to form an effective liquid water gridded input to G2G. To review the operational options for including snowmelt modelling in G2G over Britain, a project was commissioned by the Environment Agency through the Flood Forecasting Centre (FFC) for England and Wales and in partnership with the Scottish Environment Protection Agency (SEPA) and Natural Resources Wales (NRW). Results obtained from this snowmelt review project will be reported on here. The operational methods used by the FFC and SEPA are compared on past snowmelt floods, alongside new alternative methods of treating snowmelt. Both case study and longer-term analyses are considered, covering periods selected from the winters 2009-2010, 2012-2013, 2013-2014 and 2014-2015. Over Scotland, both of the snowmelt methods used operationally by FFC and SEPA provided a clear improvement to the river flow simulations. Over England and Wales, fewer and less significant snowfall events occurred, leading to less distinction in the results between the methods. It is noted that, for all methods considered, large uncertainties remain in flood forecasts influenced by snowmelt. Understanding and quantifying these uncertainties should lead to more informed flood forecasts and associated guidance information.

  17. 33 CFR 208.19 - Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Reservoir in the interest of flood control as follows: (a) Water Control Plan—(1) General..., flood control, stream regulation, generation of power, irrigation, water supply, and recreation uses. (2) Overall plan for water control. Within the Colorado River Basin, four Federal projects provide flood...

  18. 33 CFR 208.19 - Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and Reservoir in the interest of flood control as follows: (a) Water Control Plan—(1) General..., flood control, stream regulation, generation of power, irrigation, water supply, and recreation uses. (2) Overall plan for water control. Within the Colorado River Basin, four Federal projects provide flood...

  19. BIOAVAILABILITY OF MERCURY IN SEDIMENTS FROM A FLOOD CONTROL RESERVOIR TO HYALELLA AZTECA

    EPA Science Inventory

    In the last three years, mercury contamination in North Mississippi flood control reservoirs has become a growing concern. Previous data indicate that three flood control reservoirs have similar total mercury sediment concentrations and that fish collected from one reservoir cont...

  20. Tangible Results and Progress in Flood Risks Management with the PACTES Initiative

    NASA Astrophysics Data System (ADS)

    Costes, Murielle; Abadie, Jean-Paul; Ducuing, Jean-Louis; Denier, Jean-Paul; Stéphane

    The PACTES project (Prévention et Anticipation des Crues au moyen des Techniques Spatiales), initiated by CNES and the French Ministry of Research, aims at improving flood risk management, over the following three main phases : - Prevention : support and facilitate the analysis of flood risks and socio-economic impacts (risk - Forecasting and alert : improve the capability to predict and anticipate the flooding event - Crisis management : allow better situation awareness, communication and sharing of In order to achieve its ambitious objectives, PACTES: - integrates state-of-the-art techniques and systems (integration of the overall processing chains, - takes advantage of integrating recent model developments in wheather forecasting, rainfall, In this approach, space technology is thus used in three main ways : - radar and optical earth observation data are used to produce Digital Elevation Maps, land use - earth observation data are also an input to wheather forecasting, together with ground sensors; - satellite-based telecommunication and mobile positioning. Started in December 2000, the approach taken in PACTES is to work closely with users such as civil security and civil protection organisms, fire fighter brigades and city councils for requirements gathering and during the validation phase. It has lead to the development and experimentation of an integrated pre-operational demonstrator, delivered to different types of operational users. Experimentation has taken place in three watersheds representative of different types of floods (flash and plain floods). After a breaf reminder of what the PACTES project organization and aims are, the PACTES integrated pre-operational demonstrator is presented. The main scientific inputs to flood risk management are summarized. Validation studies for the three watersheds covered by PACTES (Moselle, Hérault and Thoré) are detailed. Feedback on the PACTES tangible results on flood risk management from an user point of view are given. Costs of what an operational PACTES demonstrator could be, are discussed.

  1. Optimal Hedging Rule for Reservoir Refill Operation

    NASA Astrophysics Data System (ADS)

    Wan, W.; Zhao, J.; Lund, J. R.; Zhao, T.; Lei, X.; Wang, H.

    2015-12-01

    This paper develops an optimal reservoir Refill Hedging Rule (RHR) for combined water supply and flood operation using mathematical analysis. A two-stage model is developed to formulate the trade-off between operations for conservation benefit and flood damage in the reservoir refill season. Based on the probability distribution of the maximum refill water availability at the end of the second stage, three zones are characterized according to the relationship among storage capacity, expected storage buffer (ESB), and maximum safety excess discharge (MSED). The Karush-Kuhn-Tucker conditions of the model show that the optimality of the refill operation involves making the expected marginal loss of conservation benefit from unfilling (i.e., ending storage of refill period less than storage capacity) as nearly equal to the expected marginal flood damage from levee overtopping downstream as possible while maintaining all constraints. This principle follows and combines the hedging rules for water supply and flood management. A RHR curve is drawn analogously to water supply hedging and flood hedging rules, showing the trade-off between the two objectives. The release decision result has a linear relationship with the current water availability, implying the linearity of RHR for a wide range of water conservation functions (linear, concave, or convex). A demonstration case shows the impacts of factors. Larger downstream flood conveyance capacity and empty reservoir capacity allow a smaller current release and more water can be conserved. Economic indicators of conservation benefit and flood damage compete with each other on release, the greater economic importance of flood damage is, the more water should be released in the current stage, and vice versa. Below a critical value, improving forecasts yields less water release, but an opposing effect occurs beyond this critical value. Finally, the Danjiangkou Reservoir case study shows that the RHR together with a rolling horizon decision approach can lead to a gradual dynamic refilling, indicating its potential for practical use.

  2. 33 CFR 203.48 - Inspection guidelines for non-Federal flood control works.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...

  3. 33 CFR 203.48 - Inspection guidelines for non-Federal flood control works.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...

  4. 33 CFR 203.44 - Rehabilitation of non-Federal flood control works.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...

  5. 33 CFR 203.44 - Rehabilitation of non-Federal flood control works.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...

  6. 33 CFR 203.44 - Rehabilitation of non-Federal flood control works.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...

  7. 33 CFR 203.44 - Rehabilitation of non-Federal flood control works.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...

  8. 33 CFR 203.44 - Rehabilitation of non-Federal flood control works.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...

  9. 33 CFR 203.48 - Inspection guidelines for non-Federal flood control works.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...

  10. 33 CFR 203.48 - Inspection guidelines for non-Federal flood control works.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...

  11. Early physiological flood tolerance is followed by slow post-flooding root recovery in the dryland riparian tree Eucalyptus camaldulensis subsp. refulgens.

    PubMed

    Argus, R E; Colmer, T D; Grierson, P F

    2015-06-01

    We investigated physiological and morphological responses to flooding and recovery in Eucalyptus camaldulensis subsp. refulgens, a riparian tree species from a dryland region prone to intense episodic floods. Seedlings in soil flooded for 88 d produced extensive adventitious roots, displayed stem hypertrophy (stem diameter increased by 93%) and increased root porosity owing to aerenchyma formation. Net photosynthesis (Pn) and stomatal conductance (gs) were maintained for at least 2 weeks of soil flooding, contrasting with previous studies of other subspecies of E. camaldulensis. Gradual declines followed in both gs (30% less than controls) and Pn (19% less). Total leaf soluble sugars did not differ between flooded and control plants. Root mass did not recover 32 d after flooding ceased, but gs was not lower than controls, suggesting the root system was able to functionally compensate. However, the limited root growth during recovery after flooding was surprising given the importance of extensive root systems in dryland environments. We conclude that early flood tolerance could be an adaptation to capitalize on scarce water resources in a water-limited environment. Overall, our findings highlight the need to assess flooding responses in relation to a species' fitness for particular flood regimes or ecological niches. © 2014 John Wiley & Sons Ltd.

  12. Impacts of climate change on the food-energy-water nexus in the upper Yellow River Basin: An integrated hydro-economic modeling approach

    NASA Astrophysics Data System (ADS)

    Si, Y.; Cai, X.

    2017-12-01

    The large-scale reservoir system built on the upper Yellow River serves multiple purposes. The generated hydropower supplies over 60% of the entire electricity for the regional power grid while the irrigated crop production feeds almost one-third of the total population throughout the whole river basin. Moreover, the reservoir system also bears the responsibility for controlling ice flood, which occurs during the non-flood season due to winter ice freezing followed by spring thawing process, and could be even more disastrous than the summer flood. The contradiction of water allocation to satisfy multi-sector demands while mitigating ice flood risk has been longstanding. However, few researchers endeavor to employ the nexus thinking to addressing the complexities involved in all the interlinked purposes. In this study, we develop an integrated hydro-economic model that can be used to explore both the tradeoffs and synergies between the multiple purposes, based on which the water infrastructures (e.g., reservoir, diversion canal, pumping well) can be coordinated for maximizing the co-benefits of multiple sectors. The model is based on a node-link schematic of multiple operations including hydropower generation, irrigation scheduling, and the conjunctive use of surface and ground water resources. In particular, the model depicts some details regarding reservoir operation rules during the ice season using two indicators, i.e., flow control period and flow control level. The rules are obtained from historical records using data mining techniques under different climate conditions, and they are added to the model as part of the system constraints. Future reservoir inflow series are generated by a hydrological model with future climate scenarios projected by General Circulation Model (GCM). By analyzing the model results under the various climate scenarios, the future possible shifting trajectory of the food-energy-water system characteristics will be derived compared to the baseline scenario (i.e., the status-quo condition). Thus the model and the results are expected to be useful for enlightening economically efficient water allocation policy coping with climate change.

  13. A two-stage method of quantitative flood risk analysis for reservoir real-time operation using ensemble-based hydrologic forecasts

    NASA Astrophysics Data System (ADS)

    Liu, P.

    2013-12-01

    Quantitative analysis of the risk for reservoir real-time operation is a hard task owing to the difficulty of accurate description of inflow uncertainties. The ensemble-based hydrologic forecasts directly depict the inflows not only the marginal distributions but also their persistence via scenarios. This motivates us to analyze the reservoir real-time operating risk with ensemble-based hydrologic forecasts as inputs. A method is developed by using the forecast horizon point to divide the future time into two stages, the forecast lead-time and the unpredicted time. The risk within the forecast lead-time is computed based on counting the failure number of forecast scenarios, and the risk in the unpredicted time is estimated using reservoir routing with the design floods and the reservoir water levels of forecast horizon point. As a result, a two-stage risk analysis method is set up to quantify the entire flood risks by defining the ratio of the number of scenarios that excessive the critical value to the total number of scenarios. The China's Three Gorges Reservoir (TGR) is selected as a case study, where the parameter and precipitation uncertainties are implemented to produce ensemble-based hydrologic forecasts. The Bayesian inference, Markov Chain Monte Carlo, is used to account for the parameter uncertainty. Two reservoir operation schemes, the real operated and scenario optimization, are evaluated for the flood risks and hydropower profits analysis. With the 2010 flood, it is found that the improvement of the hydrologic forecast accuracy is unnecessary to decrease the reservoir real-time operation risk, and most risks are from the forecast lead-time. It is therefore valuable to decrease the avarice of ensemble-based hydrologic forecasts with less bias for a reservoir operational purpose.

  14. Active water management at the cathode of a planar air-breathing polymer electrolyte membrane fuel cell using an electroosmotic pump

    NASA Astrophysics Data System (ADS)

    Fabian, T.; O'Hayre, R.; Litster, S.; Prinz, F. B.; Santiago, J. G.

    In a typical air-breathing fuel cell design, ambient air is supplied to the cathode by natural convection and dry hydrogen is supplied to a dead-ended anode. While this design is simple and attractive for portable low-power applications, the difficulty in implementing effective and robust water management presents disadvantages. In particular, excessive flooding of the open-cathode during long-term operation can lead to a dramatic reduction of fuel cell power. To overcome this limitation, we report here on a novel air-breathing fuel cell water management design based on a hydrophilic and electrically conductive wick in conjunction with an electroosmotic (EO) pump that actively pumps water out of the wick. Transient experiments demonstrate the ability of the EO-pump to "resuscitate" the fuel cell from catastrophic flooding events, while longer term galvanostatic measurements suggest that the design can completely eliminate cathode flooding using less than 2% of fuel cell power, and lead to stable operation with higher net power performance than a control design without EO-pump. This demonstrates that active EO-pump water management, which has previously only been demonstrated in forced-convection fuel cell systems, can also be applied effectively to miniaturized (<5 W) air-breathing fuel cell systems.

  15. 40 CFR 122.34 - As an operator of a regulated small MS4, what will my NPDES MS4 storm water permit require?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., accumulated sediments, floatables, and other debris); and ways to ensure that new flood management projects... management program designed to reduce the discharge of pollutants from your MS4 to the maximum extent... Clean Water Act. Your storm water management program must include the minimum control measures described...

  16. 12. VIEW OF PUMPS NO. 6, 8, AND 7 (L ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF PUMPS NO. 6, 8, AND 7 (L TO R) WITH THEIR CANVAS COVERS, LOOKING NORTHEAST. NOTE CONCRETE CONSTRUCTION. THE FOUR LIGHT WINDOWS AND THE STEEL EAM FOR THE 10-TON HAND OPERATED TRAVELING CRANE. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  17. Remote collection and analysis of witness reports on flash floods

    NASA Astrophysics Data System (ADS)

    Gourley, Jonathan; Erlingis, Jessica; Smith, Travis; Ortega, Kiel; Hong, Yang

    2010-05-01

    Typically, flash floods are studied ex post facto in response to a major impact event. A complement to field investigations is developing a detailed database of flash flood events, including minor events and null reports (i.e., where heavy rain occurred but there was no flash flooding), based on public survey questions conducted in near-real time. The Severe Hazards Analysis and Verification Experiment (SHAVE) has been in operation at the National Severe Storms Laboratory (NSSL) in Norman, OK, USA during the summers since 2006. The experiment employs undergraduate students to analyse real-time products from weather radars, target specific regions within the conterminous US, and poll public residences and businesses regarding the occurrence and severity of hail, wind, tornadoes, and now flash floods. In addition to providing a rich learning experience for students, SHAVE has been successful in creating high-resolution datasets of severe hazards used for algorithm and model verification. This talk describes the criteria used to initiate the flash flood survey, the specific questions asked and information entered to the database, and then provides an analysis of results for flash flood data collected during the summer of 2008. It is envisioned that specific details provided by the SHAVE flash flood observation database will complement databases collected by operational agencies and thus lead to better tools to predict the likelihood of flash floods and ultimately reduce their impacts on society.

  18. 33 CFR 240.6 - General policy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... they generally make reference to flood control “projects,” should be understood to have equivalent... subsequent maintenance of the creditable non-Federal flood control work will not be credited. In the event... GENERAL CREDIT FOR FLOOD CONTROL § 240.6 General policy. (a) Section 104 is applicable only to projects...

  19. 33 CFR 240.6 - General policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... they generally make reference to flood control “projects,” should be understood to have equivalent... subsequent maintenance of the creditable non-Federal flood control work will not be credited. In the event... GENERAL CREDIT FOR FLOOD CONTROL § 240.6 General policy. (a) Section 104 is applicable only to projects...

  20. 33 CFR 240.6 - General policy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... they generally make reference to flood control “projects,” should be understood to have equivalent... subsequent maintenance of the creditable non-Federal flood control work will not be credited. In the event... GENERAL CREDIT FOR FLOOD CONTROL § 240.6 General policy. (a) Section 104 is applicable only to projects...

  1. 33 CFR 240.6 - General policy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... they generally make reference to flood control “projects,” should be understood to have equivalent... subsequent maintenance of the creditable non-Federal flood control work will not be credited. In the event... GENERAL CREDIT FOR FLOOD CONTROL § 240.6 General policy. (a) Section 104 is applicable only to projects...

  2. 33 CFR 240.6 - General policy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... they generally make reference to flood control “projects,” should be understood to have equivalent... subsequent maintenance of the creditable non-Federal flood control work will not be credited. In the event... GENERAL CREDIT FOR FLOOD CONTROL § 240.6 General policy. (a) Section 104 is applicable only to projects...

  3. A new automatic synthetic aperture radar-based flood mapping application hosted on the European Space Agency's Grid Processing of Demand Fast Access to Imagery environment

    NASA Astrophysics Data System (ADS)

    Matgen, Patrick; Giustarini, Laura; Hostache, Renaud

    2012-10-01

    This paper introduces an automatic flood mapping application that is hosted on the Grid Processing on Demand (GPOD) Fast Access to Imagery (Faire) environment of the European Space Agency. The main objective of the online application is to deliver operationally flooded areas using both recent and historical acquisitions of SAR data. Having as a short-term target the flooding-related exploitation of data generated by the upcoming ESA SENTINEL-1 SAR mission, the flood mapping application consists of two building blocks: i) a set of query tools for selecting the "crisis image" and the optimal corresponding "reference image" from the G-POD archive and ii) an algorithm for extracting flooded areas via change detection using the previously selected "crisis image" and "reference image". Stakeholders in flood management and service providers are able to log onto the flood mapping application to get support for the retrieval, from the rolling archive, of the most appropriate reference image. Potential users will also be able to apply the implemented flood delineation algorithm. The latter combines histogram thresholding, region growing and change detection as an approach enabling the automatic, objective and reliable flood extent extraction from SAR images. Both algorithms are computationally efficient and operate with minimum data requirements. The case study of the high magnitude flooding event that occurred in July 2007 on the Severn River, UK, and that was observed with a moderateresolution SAR sensor as well as airborne photography highlights the performance of the proposed online application. The flood mapping application on G-POD can be used sporadically, i.e. whenever a major flood event occurs and there is a demand for SAR-based flood extent maps. In the long term, a potential extension of the application could consist in systematically extracting flooded areas from all SAR images acquired on a daily, weekly or monthly basis.

  4. Variability in eddy sandbar dynamics during two decades of controlled flooding of the Colorado River in the Grand Canyon

    USGS Publications Warehouse

    Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.

    2018-01-01

    Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar surfaces increases with successive floods. Because many sandbars are intermediate to the end members described above, high-elevation bar surfaces stabilized by vegetation often have a more dynamic unvegetated sandbar on the channel-ward margin that aggrades and erodes in response to controlled flood cycles. Ultimately, controlled floods have been effective at increasing averaged sandbar volumes, and, while bar deposition during floods decreases through time where vegetation has stabilized sandbars, future controlled floods are likely to continue to result in deposition in a majority of the river corridor.

  5. The Effects of the Saluda Dam on the Surface-Water and Ground-Water Hydrology of the Congaree National Park Flood Plain, South Carolina

    USGS Publications Warehouse

    Conrads, Paul; Feaster, Toby D.; Harrelson, Larry G.

    2008-01-01

    The Congaree National Park was established '... to preserve and protect for the education, inspiration, and enjoyment of present and future generations an outstanding example of a near-virgin, southern hardwood forest situated in the Congaree River flood plain in Richland County, South Carolina' (Public Law 94-545). The resource managers at Congaree National Park are concerned about the timing, frequency, magnitude, and duration of flood-plain inundation of the Congaree River. The dynamics of the Congaree River directly affect ground-water levels in the flood plain, and the delivery of sediments and nutrients is constrained by the duration, extent, and frequency of flooding from the Congaree River. The Congaree River is the southern boundary of the Congaree National Park and is formed by the convergence of the Saluda and Broad Rivers 24 river miles upstream from the park. The streamflow of the Saluda River has been regulated since 1929 by the operation of the Saluda Dam at Lake Murray. The U.S. Geological Survey, in cooperation with the National Park Service, Congaree National Park, studied the interaction between surface water in the Congaree River and ground water in the flood plain to determine the effect Saluda Dam operations have on water levels in the Congaree National Park flood plain. Analysis of peak flows showed the reduction in peak flows after the construction of Lake Murray was more a result of climate variability and the absence of large floods after 1930 than the operation of the Lake Murray dam. Dam operations reduced the recurrence interval of the 2-year to 100-year peak flows by 6.1 to 17.6 percent, respectively. Analysis of the daily gage height of the Congaree River showed that the dam has had the effect of lowering high gage heights (95th percentile) in the first half of the year (December to May) and raising low gage heights (5th percentile) in the second half of the year (June to November). The dam has also had the effect of increasing the 1-, 3-, 7-, 30-, and 90-day minimum gage heights by as much as 23.9 percent and decreasing the 1-, 3-, 7-, 30-, and 90-day maximum gage heights by as much as 7.2 percent. Analysis of the ground-water elevations in the Congaree National Park flood plain shows similar results as the gage-height analysis--the dam has had the effect of lowering high ground-water elevations and increasing low ground-water elevations. Overall, the operation of the dam has had a greater effect on the gage heights within the river banks than gage heights in the flood plain. This result may have a greater effect on the subsurface water levels of the surficial flood-plain aquifer than the frequency and magnitude of inundation of the flood plain.

  6. Flood Control, Mississippi River, La Crosse, Wisconsin.

    DTIC Science & Technology

    1975-10-01

    end SuP.,tifle) S TYPE OF REPORT & PERIOD COVEkr FINAL ENVIRONMENTAL IMPACT STATEMENT FLOOD CONTROL MISSISSIPPI RIVER LA CROSSE, WISCONSIN Pinal FIq 6...PERFORMING ORG. REPORT NUMBER 7. AUTHOR(e) 0 CONTRACT OR GRANT NUMBER( s ) 9 PERFORMING ORGANIZATION NAME AND ADrRESS 10. PROGRAM ELEMENT. PROJECT, T...rev s eflA ff r,,.e.. ind IdeInify by block rnmber) "-The proposed action is a flood control project consisting of levees, road raises, flood wall

  7. Method of improving heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control

    NASA Astrophysics Data System (ADS)

    Zhao, Ling; Xia, Huifen

    2018-01-01

    The project of polymer flooding has achieved great success in Daqing oilfield, and the main oil reservoir recovery can be improved by more than 15%. But, for some strong oil reservoir heterogeneity carrying out polymer flooding, polymer solution will be inefficient and invalid loop problem in the high permeability layer, then cause the larger polymer volume, and a significant reduction in the polymer flooding efficiency. Aiming at this problem, it is studied the method that improves heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control. The research results show that the polymer physical and chemical reaction of positively-charged gel with the residual polymer in high permeability layer can generate three-dimensional network of polymer, plugging high permeable layer, and increase injection pressure gradient, then improve the effect of polymer flooding development. Under the condition of the same dosage, positively-charged gel profile control can improve the polymer flooding recovery factor by 2.3∼3.8 percentage points. Under the condition of the same polymer flooding recovery factor increase value, after positively-charged gel profile control, it can reduce the polymer volume by 50 %. Applying mechanism of positively-charged gel profile control technology is feasible, cost savings, simple construction, and no environmental pollution, therefore has good application prospect.

  8. Exploring How Changing Monsoonal Dynamics and Human Pressures Challenge Multi-Reservoir Management of Food-Energy-Water Tradeoffs

    NASA Astrophysics Data System (ADS)

    Quinn, J.; Reed, P. M.; Giuliani, M.; Castelletti, A.; Oyler, J.; Nicholas, R.

    2017-12-01

    Multi-reservoir systems require robust and adaptive control policies capable of managing evolving hydroclimatic variability and human demands across a wide range of time scales. This is especially true for systems with high intra-annual and inter-annual variability, such as monsoonal river systems that need to buffer against seasonal droughts while also managing extreme floods. Moreover, the timing, intensity, duration, and frequency of these hydrologic extremes may be affected by deeply uncertain changes in socioeconomic and climatic pressures. This study contributes an innovative method for exploring how possible changes in the timing and magnitude of monsoonal seasonal extremes impact the robustness of reservoir operating policies optimized to historical conditions assuming stationarity. We illustrate this analysis on the Red River basin in Vietnam, where reservoirs and dams serve as important sources of hydropower production, irrigable water supply, and flood protection for the capital city of Hanoi. Applying our scenario discovery approach, we find food-energy-water tradeoffs are exacerbated by potential hydrologic shifts, with wetter worlds threatening the ability of operating strategies to manage flood risk and drier worlds threatening their ability to provide sufficient water supply and hydropower production, especially if demands increase. Most notably, though, amplification of the within-year monsoonal cycle and increased inter-annual variability threaten all of the above. These findings highlight the importance of considering changes in both lower order moments of annual streamflow and intra-annual monsoonal behavior when evaluating the robustness of alternative water systems control strategies for managing deeply uncertain futures.

  9. Management of health care services for flood victims: the case of the shelter at Nakhon Pathom Rajabhat University Central Thailand.

    PubMed

    Buajaroen, Hathaichanok

    2013-08-01

    In Central Thailand basic health care services were affected by a natural disaster in the form of a flood situation. Flood Relief Operations Centers were established from the crisis. Nakhon Pathom Rajabhat University and including the faculty of nursing volunteered to care for those affected and assist in re-establishing a functioning health care system. The aim of this study was to make explicit knowledge of concept, lesson learned, and the process of management for re-establishing a health care service system at a flood victims at Relief Operations Center, Nakhon Pathom Rajabhat University. We used a qualitative design with mixed methods. This involved in-depth interviews, focus group, observational participation and non-observational participation. Key informants included university administrators, instructors, leaders of flood victims and the flood victims. Data was collected during October-December, 2010. Data were analysed using content analysis and compared matrix. We found that the concept and principle of health care services management were community based and involved home care and field hospital services. We had prepared a management system that placed emphasise on a community based approach and holistic caring such as 24h Nursing Clinic Home, visits with family, a referral system, field hospital. The core of management was to achieve integrated instruction started from nursing students were practiced skills as Health promotion and nursing techniques practicum. Rules were established regarding the health care service system. The outcomes of Health Care Service at the Flood Relief Operations Center were direct and sincere help without conditions, administrations concerned and volunteer nursing students instructors, University Officer have sympathetic and charitable with flood victims and environment. Copyright © 2013 College of Emergency Nursing Australasia Ltd. Published by Elsevier Ltd. All rights reserved.

  10. Assessing urban potential flooding risk and identifying effective risk-reduction measures.

    PubMed

    Cherqui, Frédéric; Belmeziti, Ali; Granger, Damien; Sourdril, Antoine; Le Gauffre, Pascal

    2015-05-01

    Flood protection is one of the traditional functions of any drainage system, and it remains a major issue in many cities because of economic and health impact. Heavy rain flooding has been well studied and existing simulation software can be used to predict and improve level of protection. However, simulating minor flooding remains highly complex, due to the numerous possible causes related to operational deficiencies or negligent behaviour. According to the literature, causes of blockages vary widely from one case to another: it is impossible to provide utility managers with effective recommendations on how to improve the level of protection. It is therefore vital to analyse each context in order to define an appropriate strategy. Here we propose a method to represent and assess the flooding risk, using GIS and data gathered during operation and maintenance. Our method also identifies potential management responses. The approach proposed aims to provide decision makers with clear and comprehensible information. Our method has been successfully applied to the Urban Community of Bordeaux (France) on 4895 interventions related to flooding recorded during the 2009-2011 period. Results have shown the relative importance of different issues, such as human behaviour (grease, etc.) or operational deficiencies (roots, etc.), and lead to identify corrective and proactive. This study also confirms that blockages are not always directly due to the network itself and its deterioration. Many causes depend on environmental and operating conditions on the network and often require collaboration between municipal departments in charge of roads, green spaces, etc. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A GIS-based model to estimate flood consequences and the degree of accessibility and operability of strategic emergency response structures in urban areas

    NASA Astrophysics Data System (ADS)

    Albano, R.; Sole, A.; Adamowski, J.; Mancusi, L.

    2014-11-01

    Efficient decision-making regarding flood risk reduction has become a priority for authorities and stakeholders in many European countries. Risk analysis methods and techniques are a useful tool for evaluating costs and benefits of possible interventions. Within this context, a methodology to estimate flood consequences was developed in this paper that is based on GIS, and integrated with a model that estimates the degree of accessibility and operability of strategic emergency response structures in an urban area. The majority of the currently available approaches do not properly analyse road network connections and dependencies within systems, and as such a loss of roads could cause significant damages and problems to emergency services in cases of flooding. The proposed model is unique in that it provides a maximum-impact estimation of flood consequences on the basis of the operability of the strategic emergency structures in an urban area, their accessibility, and connection within the urban system of a city (i.e. connection between aid centres and buildings at risk), in the emergency phase. The results of a case study in the Puglia region in southern Italy are described to illustrate the practical applications of this newly proposed approach. The main advantage of the proposed approach is that it allows for defining a hierarchy between different infrastructure in the urban area through the identification of particular components whose operation and efficiency are critical for emergency management. This information can be used by decision-makers to prioritize risk reduction interventions in flood emergencies in urban areas, given limited financial resources.

  12. Spatial scales of light transmission through Antarctic pack ice: Surface flooding vs. floe-size distribution

    NASA Astrophysics Data System (ADS)

    Arndt, S.; Meiners, K.; Krumpen, T.; Ricker, R.; Nicolaus, M.

    2016-12-01

    Snow on sea ice plays a crucial role for interactions between the ocean and atmosphere within the climate system of polar regions. Antarctic sea ice is covered with snow during most of the year. The snow contributes substantially to the sea-ice mass budget as the heavy snow loads can depress the ice below water level causing flooding. Refreezing of the snow and seawater mixture results in snow-ice formation on the ice surface. The snow cover determines also the amount of light being reflected, absorbed, and transmitted into the upper ocean, determining the surface energy budget of ice-covered oceans. The amount of light penetrating through sea ice into the upper ocean is of critical importance for the timing and amount of bottom sea-ice melt, biogeochemical processes and under-ice ecosystems. Here, we present results of several recent observations in the Weddell Sea measuring solar radiation under Antarctic sea ice with instrumented Remotely Operated Vehicles (ROV). The combination of under-ice optical measurements with simultaneous characterization of surface properties, such as sea-ice thickness and snow depth, allows the identification of key processes controlling the spatial distribution of the under-ice light. Thus, our results show how the distinction between flooded and non-flooded sea-ice regimes dominates the spatial scales of under-ice light variability for areas smaller than 100-by-100m. In contrast, the variability on larger scales seems to be controlled by the floe-size distribution and the associated lateral incidence of light. These results are related to recent studies on the spatial variability of Arctic under-ice light fields focusing on the distinctly differing dominant surface properties between the northern (e.g. summer melt ponds) and southern (e.g. year-round snow cover, surface flooding) hemisphere sea-ice cover.

  13. Assessing reservoir operations risk under climate change

    USGS Publications Warehouse

    Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T.

    2009-01-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios. Copyright 2009 by the American Geophysical Union.

  14. Examining the effects of urban agglomeration polders on flood events in Qinhuai River basin, China with HEC-HMS model.

    PubMed

    Gao, Yuqin; Yuan, Yu; Wang, Huaizhi; Schmidt, Arthur R; Wang, Kexuan; Ye, Liu

    2017-05-01

    The urban agglomeration polders type of flood control pattern is a general flood control pattern in the eastern plain area and some of the secondary river basins in China. A HEC-HMS model of Qinhuai River basin based on the flood control pattern was established for simulating basin runoff, examining the impact of urban agglomeration polders on flood events, and estimating the effects of urbanization on hydrological processes of the urban agglomeration polders in Qinhuai River basin. The results indicate that the urban agglomeration polders could increase the peak flow and flood volume. The smaller the scale of the flood, the more significant the influence of the polder was to the flood volume. The distribution of the city circle polder has no obvious impact on the flood volume, but has effect on the peak flow. The closer the polder is to basin output, the smaller the influence it has on peak flows. As the level of urbanization gradually improving of city circle polder, flood volumes and peak flows gradually increase compared to those with the current level of urbanization (the impervious rate was 20%). The potential change in flood volume and peak flow with increasing impervious rate shows a linear relationship.

  15. The response of source-bordering aeolian dunefields to sediment-supply changes 2: Controlled floods of the Colorado River in Grand Canyon, Arizona, USA

    USGS Publications Warehouse

    Sankey, Joel B.; Caster, Joshua; Kasprak, Alan; East, Amy

    2018-01-01

    In the Colorado River downstream of Glen Canyon Dam in the Grand Canyon, USA, controlled floods are used to resupply sediment to, and rebuild, river sandbars that have eroded severely over the past five decades owing to dam-induced changes in river flow and sediment supply. In this study, we examine whether controlled floods, can in turn resupply aeolian sediment to some of the large source-bordering aeolian dunefields (SBDs) along the margins of the river. Using a legacy of high-resolution lidar remote-sensing and meteorological data, we characterize the response of four SBDs (a subset of 117 SBDs and other aeolian-sand-dominated areas in the canyon) during four sediment-laden controlled floods of the Colorado River in 2012, 2013, 2014, and 2016. We find that aeolian sediment resupply unambiguously occurred in 8 of the 16 instances of controlled flooding adjacent to SBDs. Resupply attributed to individual floods varied substantially among sites, and occurred with four, three, one, and zero floods at the four sites, respectively. We infer that the relative success of controlled floods as a regulated-river management tool for resupplying sediment to SBDs is analogous to the frequency of resupply observed for fluvial sandbars in this setting, in that sediment resupply was estimated to have occurred for roughly half of the instances of recent controlled flooding at sandbars monitored separately from this study. We find the methods developed in this, and a companion study, are effective tools to quantify geomorphic changes in sediment storage, along linked fluvial and aeolian pathways of sedimentary systems.

  16. The response of source-bordering aeolian dunefields to sediment-supply changes 2: Controlled floods of the Colorado River in Grand Canyon, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Sankey, Joel B.; Caster, Joshua; Kasprak, Alan; East, Amy E.

    2018-06-01

    In the Colorado River downstream of Glen Canyon Dam in the Grand Canyon, USA, controlled floods are used to resupply sediment to, and rebuild, river sandbars that have eroded severely over the past five decades owing to dam-induced changes in river flow and sediment supply. In this study, we examine whether controlled floods, can in turn resupply aeolian sediment to some of the large source-bordering aeolian dunefields (SBDs) along the margins of the river. Using a legacy of high-resolution lidar remote-sensing and meteorological data, we characterize the response of four SBDs (a subset of 117 SBDs and other aeolian-sand-dominated areas in the canyon) during four sediment-laden controlled floods of the Colorado River in 2012, 2013, 2014, and 2016. We find that aeolian sediment resupply unambiguously occurred in 8 of the 16 instances of controlled flooding adjacent to SBDs. Resupply attributed to individual floods varied substantially among sites, and occurred with four, three, one, and zero floods at the four sites, respectively. We infer that the relative success of controlled floods as a regulated-river management tool for resupplying sediment to SBDs is analogous to the frequency of resupply observed for fluvial sandbars in this setting, in that sediment resupply was estimated to have occurred for roughly half of the instances of recent controlled flooding at sandbars monitored separately from this study. We find the methods developed in this, and a companion study, are effective tools to quantify geomorphic changes in sediment storage, along linked fluvial and aeolian pathways of sedimentary systems.

  17. 33 CFR 208.34 - Norman Dam and Lake Thunderbird, Little River, Okla.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... amounts to 76,600 acre-feet. Whenever the reservoir level is within this elevation range the flood control... flood damage below the reservoir. In order to accomplish this purpose, flood control releases shall be... of bankfull on the Little River downstream of the reservoir. Controlling bankfull stages and...

  18. 33 CFR 208.34 - Norman Dam and Lake Thunderbird, Little River, Okla.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amounts to 76,600 acre-feet. Whenever the reservoir level is within this elevation range the flood control... flood damage below the reservoir. In order to accomplish this purpose, flood control releases shall be... of bankfull on the Little River downstream of the reservoir. Controlling bankfull stages and...

  19. Enhancing water supply through reservoir reoperation

    NASA Astrophysics Data System (ADS)

    Rajagopal, S.; Sterle, K. M.; Jose, L.; Coors, S.; Pohll, G.; Singletary, L.

    2017-12-01

    Snowmelt is a significant contributor to water supply in western U.S. which is stored in reservoirs for use during peak summer demand. The reservoirs were built to satisfy multiple objectives, but primarily to either enhance water supply and/or for flood mitigation. The operating rules for these water supply reservoirs are based on historical assumptions of stationarity of climate, assuming peak snowmelt occurs after April 1 and hence have to let water pass through if it arrived earlier. Using the Truckee River which originates in the eastern Sierra Nevada, has seven reservoirs and is shared between California and Nevada as an example, we show enhanced water storage by altering reservoir operating rules. These results are based on a coupled hydrology (Ground-Surface water Flow, GSFLOW) and water management model (RIverware) developed for the river system. All the reservoirs in the system benefit from altering the reservoir rules, but some benefit more than others. Prosser Creek reservoir for example, historically averaged 76% of capacity, which was lowered to 46% of capacity in the future as climate warms and shifts snowmelt to earlier days of the year. This reduction in storage can be mitigated by altering the reservoir operation rules and the reservoir storage increases to 64-76% of capacity. There are limitations to altering operating rules as reservoirs operated primarily for flood control are required to maintain lower storage to absorb a flood pulse, yet using modeling we show that there are water supply benefits to adopting a more flexible rules of operation. In the future, due to changing climate we anticipate the reservoirs in the western U.S. which were typically capturing spring- summer snowmelt will have to be managed more actively as the water stored in the snowpack becomes more variable. This study presents a framework for understanding, modeling and quantifying the consequences of such a shift in hydrology and water management.

  20. Assessment of the Flood Problems of the Taunton River Basin Massachusetts.

    DTIC Science & Technology

    1978-12-01

    essential for fish and provides a habitat for numerous varieties of aquatic oriented wildlife species. Of the com- bined forested wetland and open forest...Detailed flood elevation data essential for operation of regula- tions. Flood velocities, flood duration, wave action, erosion pr,,- blems and other...along with the preservation of as much trees and shrubs are essential . Where possible fast growing annual grass seed should be used, intermixed with

  1. Remotely Measuring Trash Fluxes in the Flood Canals of Megacities with Time Lapse Cameras and Computer Vision Algorithms - a Case Study from Jakarta, Indonesia.

    NASA Astrophysics Data System (ADS)

    Sedlar, F.; Turpin, E.; Kerkez, B.

    2014-12-01

    As megacities around the world continue to develop at breakneck speeds, future development, investment, and social wellbeing are threatened by a number of environmental and social factors. Chief among these is frequent, persistent, and unpredictable urban flooding. Jakarta, Indonesia with a population of 28 million, is a prime example of a city plagued by such flooding. Yet although Jakarta has ample hydraulic infrastructure already in place with more being constructed, the increasingly severity of the flooding it experiences is not from a lack of hydraulic infrastructure but rather a failure of existing infrastructure. As was demonstrated during the most recent floods in Jakarta, the infrastructure failure is often the result of excessive amounts of trash in the flood canals. This trash clogs pumps and reduces the overall system capacity. Despite this critical weakness of flood control in Jakarta, no data exists on the overall amount of trash in the flood canals, much less on how it varies temporally and spatially. The recent availability of low cost photography provides a means to obtain such data. Time lapse photography postprocessed with computer vision algorithms yields a low cost, remote, and automatic solution to measuring the trash fluxes. When combined with the measurement of key hydrological parameters, a thorough understanding of the relationship between trash fluxes and the hydrology of massive urban areas becomes possible. This work examines algorithm development, quantifying trash parameters, and hydrological measurements followed by data assimilation into existing hydraulic and hydrological models of Jakarta. The insights afforded from such an approach allows for more efficient operating of hydraulic infrastructure, knowledge of when and where critical levels of trash originate from, and the opportunity for community outreach - which is ultimately needed to reduce the trash in the flood canals of Jakarta and megacities around the world.

  2. Introduction to SNPP/VIIRS Flood Mapping Software Version 1.0

    NASA Astrophysics Data System (ADS)

    Li, S.; Sun, D.; Goldberg, M.; Sjoberg, W.; Santek, D.; Hoffman, J.

    2017-12-01

    Near real-time satellite-derived flood maps are invaluable to river forecasters and decision-makers for disaster monitoring and relief efforts. With support from the JPSS (Joint Polar Satellite System) Proving Ground and Risk Reduction (PGRR) Program, flood detection software has been developed using Suomi-NPP/VIIRS (Suomi National Polar-orbiting Partnership/Visible Infrared Imaging Radiometer Suite) imagery to automatically generate near real-time flood maps for National Weather Service (NWS) River Forecast Centers (RFC) in the USA. The software, which is called VIIRS NOAA GMU Flood Version 1.0 (hereafter referred to as VNG Flood V1.0), consists of a series of algorithms that include water detection, cloud shadow removal, terrain shadow removal, minor flood detection, water fraction retrieval, and floodwater determination. The software is designed for flood detection in any land region between 80°S and 80°N, and it has been running routinely with direct broadcast SNPP/VIIRS data at the Space Science and Engineering Center at the University of Wisconsin-Madison (UW/SSEC) and the Geographic Information Network of Alaska at the University of Alaska-Fairbanks (UAF/GINA) since 2014. Near real-time flood maps are distributed via the Unidata Local Data Manager (LDM), reviewed by river forecasters in AWIPS-II (the second generation of the Advanced Weather Interactive Processing System) and applied in flood operations. Initial feedback from operational forecasters on the product accuracy and performance has been largely positive. The software capability has also been extended to areas outside of the USA via a case-driven mode to detect major floods all over the world. Offline validation efforts include the visual inspection of over 10,000 VIIRS false-color composite images, an inter-comparison with MODIS automatic flood products and a quantitative evaluation using Landsat imagery. The steady performance from the 3-year routine process and the promising validation results indicate that VNG Flood V1.0 has a high feasibility for flood detection at the product level.

  3. Water resources implications of integrating malaria control into the operation of an Ethiopian dam

    NASA Astrophysics Data System (ADS)

    Reis, Julia; Culver, Teresa B.; McCartney, Matthew; Lautze, Jonathan; Kibret, Solomon

    2011-09-01

    This paper investigates the water resources implications of using a method of hydrological control to reduce malaria around the Koka reservoir in central Ethiopia. This method is based on recent findings that malaria is transmitted from the shoreline of the Koka reservoir, and on a similar method that was used to control malaria some 80 yr ago in the United States. To assess the feasibility of implementing hydrological control at Koka, we considered the potential impact of the modified management regime on the benefits derived from current uses of the reservoir water (i.e., hydropower, irrigation, flood control, water supply, and downstream environmental flows). We used the HEC-ResSim model to simulate lowering the reservoir by a rate designed to disrupt larval development, which is expected to reduce the abundance of adult mosquito vectors and therefore reduce malaria transmission during the season in which transmission of the disease peaks. A comparison was made of major reservoir uses with and without the malaria control measure. In the 26-yr simulation, application of the malaria control measure increased total average annual electricity generation from 87.6 GWh × y-1 to 92.2 GWh × y-1 (i.e., a 5.3% increase) but resulted in a small decline in firm power generation (i.e., guaranteed at 99.5% reliability) from 4.16 MW to 4.15 MW (i.e., a 0.2% decrease). Application of the malaria control measure did not impact the ability of the reservoir to meet downstream irrigation demand and reduced the number of days of downstream flooding from 28 to 24 d. These results indicate that targeted use of hydrological control for malaria vector management could be undertaken without sacrificing the key benefits of reservoir operation.

  4. Final Environmental Impact Statement. Mankato-North Mankato-Le Hillier Flood Control. Phase I (As Amended 18 January 1972). Final Supplement II-C.

    DTIC Science & Technology

    1983-11-01

    I A 11 Cultural Resources I 11 Noise CC7A&I 1.. Water Resources T, B 12 Traffic Service and Safety _._ 12 Rail Operations and Service 1 13 Avall e.no...Recreation 114 Cultural Resources 15 Noise 15 Water Resources 15 Traffic Service and Safety 16 Rail Operations and Service 16 6.00 Public Involvement 17...renovate the trusses, the disturbance to rail service that would occur during construction, and the small potential cost saving compared to the risks

  5. Variability in eddy sandbar dynamics during two decades of controlled flooding of the Colorado River in the Grand Canyon

    NASA Astrophysics Data System (ADS)

    Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.

    2018-01-01

    Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar surfaces increases with successive floods. Because many sandbars are intermediate to the end members described above, high-elevation bar surfaces stabilized by vegetation often have a more dynamic unvegetated sandbar on the channel-ward margin that aggrades and erodes in response to controlled flood cycles. Ultimately, controlled floods have been effective at increasing averaged sandbar volumes, and, while bar deposition during floods decreases through time where vegetation has stabilized sandbars, future controlled floods are likely to continue to result in deposition in a majority of the river corridor. Supplementary Fig. 2 Relation between the total site and high-elevation discharge-volume relation slope for all sites where both relations are available (n = 33). Supplementary Fig. 3 Change in sandbar volume since 1990 for Marble versus Grand Canyon sites. Solid vertical gray lines indicate controlled floods, and dashed vertical gray lines indicate other high test flows in 1997 and 2000 as discussed in the text. ​Photographs by U.S. Geological Survey, 2008-2015.

  6. Some Modeling Tools Available for Adaptive Management of South Florida Hydrology

    NASA Astrophysics Data System (ADS)

    Lal, W. A.; Van Zee, R. J.

    2002-05-01

    The hydrology of South Florida is a result of (1) the hydrology of the natural system; (2) the hydrology of the man made design components such as structures and levees designed to alter the natural hydrology; (3) influence of the operations imposed on the system using the design components. Successful restoration of the South Florida ecosystem depend not only on the design of the structural components, but also on its careful operation. The current discussion is focused on a number of optimal control methods that have recently become available to optimize restoration goals in the context of modeling. Optimal operation of the system can lessen stresses on some hydrological and ecological components. Careless operation can on the other hand lead to disastrous effects. Systems engineering and control theory have been used in the past to understand and operate simple systems such as the cruise control and the thermostat. Somewhat complex ones have been used to auto-pilot planes. The simplest control methods such as proportional and integral (PI) control are already used in the South Florida Water Management Model (SFWMM) for flood control and rain driven operations. The popular proportional-integral-differential (PID) control is widely used in industry for operational control of complex engineering systems. Some uses of PID control are investigated in the study. Other methods that an be used for operational control include Baysean methods, Kalman filtering and Neural network methods. A cursory evaluation of these methods is made in the discussion, along with the traditional methods used to operate complex engineering systems.

  7. Formation and evolution of valley-bottom and channel features, Lower Deschutes River, Oregon

    USGS Publications Warehouse

    Curran, Janet H.; O'Conner, Jim E.; O'Conner, Jim E.; Grant, Gordon E.

    2003-01-01

    Primary geologic and geomorphic processes that formed valley-bottom and channel features downstream from the Pelton-Round Butte dam complex are inferred from a canyon-long analysis of feature morphology, composition, location, and spatial distribution. Major controls on valley-bottom morphology are regional tectonics, large landslides, and outsized floods (floods with return periods greater than 1000 yrs), which include the late Holocene Outhouse Flood and several Quaternary landslide dam failures. Floods with a return period on the order of 100 yrs, including historical floods in 1996, 1964, and 1861, contribute to fan building and flood plain formation only within the resistant framework established by the major controls. Key processes in the formation of channel features, in particular the 153 islands and 23 large rapids, include long-term bedrock erosion, outsized floods, and century-scale floods. Historical analysis of channel conditions since 1911 indicates that the largest islands, which are cored by outsized-flood deposits, locally control channel location, although their margins are substantially modified during annual- to century-scale floods. Islands cored by bedrock have changed little. Islands formed by annual- to century-scale floods are more susceptible to dynamic interactions between tributary sediment inputs, mainstem flow hydraulics, and perhaps riparian vegetation. Temporal patterns of island change in response to the sequence of 20th century flooding indicate that many islands accreted sediment during annual- to decadal-scale floods, but eroded during larger century-scale floods. There is, however, no clear trend of long-term changes in patterns of island growth, movement, or erosion either spatially or temporally within the lower Deschutes River.

  8. Warm Season Storms, Floods, and Tributary Sand Inputs below Glen Canyon Dam: Investigating Salience to Adaptive Management in the Context of a 10-Year Long Controlled Flooding Experiment in Grand Canyon National Park, AZ, USA

    NASA Astrophysics Data System (ADS)

    Jain, S.; Melis, T. S.; Topping, D. J.; Pulwarty, R. S.; Eischeid, J.

    2013-12-01

    The planning and decision processes in the Glen Canyon Dam Adaptive Management Program (GCDAMP) strive to balance numerous, often competing, objectives, such as, water supply, hydropower generation, low flow maintenance, maximizing conservation of downstream tributary sand supply, endangered native fish, and other sociocultural resources of Glen Canyon National Recreation Area and Grand Canyon National Park. In this context, use of monitored and predictive information on the warm season floods (at point-to-regional scales) has been identified as lead-information for a new 10-year long controlled flooding experiment (termed the High-Flow Experiment Protocol) intended to determine management options for rebuilding and maintaining sandbars in Grand Canyon; an adaptive strategy that can potentially facilitate improved planning and dam operations. In this work, we focus on a key concern identified by the GCDAMP, related to the timing and volume of tributary sand input from the Paria and Little Colorado Rivers (located 26 and 124 km below the dam, respectively) into the Colorado River in Grand Canyon National Park. Episodic and intraseasonal variations (with links to equatorial and sub-tropical Pacific sea surface temperature variability) in the southwest hydroclimatology are investigated to understand the magnitude, timing and spatial scales of warm season floods from this relatively small, but prolific sand producing drainage of the semi-arid Colorado Plateau. The coupled variations of the flood-driven sediment input (magnitude and timing) from these two drainages into the Colorado River are also investigated. The physical processes, including diagnosis of storms and moisture sources, are mapped alongside the planning and decision processes for the ongoing experimental flood releases from the Glen Canyon Dam which are aimed at achieving restoration and maintenance of sandbars and instream ecology. The GCDAMP represents one of the most visible and widely recognized adaptive management efforts in the world to manage resources under growing environmental uncertainty as climate change and global warming continues.

  9. Experiences from coordinated national-level landslide and flood forecasting in Norway

    NASA Astrophysics Data System (ADS)

    Krøgli, Ingeborg; Fleig, Anne; Glad, Per; Dahl, Mads-Peter; Devoli, Graziella; Colleuille, Hervé

    2015-04-01

    While flood forecasting at national level is quite well established and operational in many countries worldwide, landslide forecasting at national level is still seldom. Examples of coordinated flood and landslide forecasting are even rarer. Most of the time flood and landslide forecasters work separately (investigating, defining thresholds, and developing models) and most of the time without communication with each other. One example of coordinated operational early warning systems (EWS) for flooding and shallow landslides is found at the Norwegian Water Resources and Energy Directorate (NVE) in Norway. In this presentation we give an introduction to the two separate but tightly collaborative EWSs and to the coordination of these. The two EWSs are being operated from the same office, every day using similar hydro-meteorological prognosis and hydrological models. Prognosis and model outputs on e.g. discharge, snow melt, soil water content and exceeded landslide thresholds are evaluated in a web based decision-making tool (xgeo.no). The experts performing forecasts are hydrologists, geologists and physical geographers. A similar warning scale, based on colors (green, yellow, orange and red) is used for both EWSs, however thresholds for flood and landslide warning levels are defined differently. Also warning areas may not necessary be the same for both hazards and depending on the specific meteorological event, duration of the warning periods can differ. We present how knowledge, models and tools, but also human and economic resources are being shared between the two EWSs. Moreover, we discuss challenges faced in the communication of warning messages using recent flood and landslide events as examples.

  10. An inventory of published and unpublished fluvial-sediment data for California, 1956-70

    USGS Publications Warehouse

    Porterfield, George

    1972-01-01

    This inventory was prepared to provide a convenient reference to published and unpublished fluvial-sediment data for water years 1956-70, and updates substantially previous inventories. Sediment stations are listed in downstream order, and an alphabetical list of stations is also included. Figure 1 shows the approximate location of sediment stations in California. Most of the fluvial-sediment data in California were collected by the U.S. Geological Survey, under cooperative agreements with the following Federal, State, and local agencies: California Department of Water Resources, California Department of Navigation and Ocean Development, California Department of Fish and Game, Bolinas Harbor District, Monterey County Flood Control and Water Conservation District, Orange County Flood Control District, Riverside County Flood Control and Water Conservation District, San Diego County Department of Sanitation and Flood Control, San Luis Obispo County, San Mateo County, Santa Clara County Flood Control and Water District, Santa Cruz County Flood Control and Water Conservation District, Santa Cruz, city of, University of California, Ventura County Flood Control District, Forest Service, U.S. Department of Agriculture, Soil Conservation Service, U.S. Department of Agriculture, Corps of Engineers, U.S. Army, Bureau of Reclamation, U.S. Department of the Interior, National Park Service, U.S. Department of the Interior. This report was prepared by the Geological Survey under the general supervision of R. Stanley Lord, district chief in charge of water-resources investigations in California.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dam, William; Gil, Dr. April; Johnson, Raymond H.

    The US Department of Energy Office of Legacy Management (LM) is responsible for maintaining protective public health and environmental conditions at former uranium mill tailings sites nationwide via long-term stewardship. One of these sites, a former uranium mill near Riverton, Wyoming, is within the boundary of the Wind River Indian Reservation and operated from 1958 to 1963. Tailings and contaminated material associated with mill operations were removed and transported to an offsite disposal cell in 1989. The remedial action was completed under Title I of the Uranium Mill Tailings Radiation Control Act of 1978. Milling operations, which included an unlinedmore » tailings impoundment and an unlined evaporation pond, contaminated the shallow groundwater, resulting in a downgradient groundwater plume that discharges to the Little Wind River. A natural flushing compliance strategy was implemented in 1998. This strategy allows contaminants of concern to naturally flush from the groundwater, provided that contaminants flush below US Environmental Protection Agency maximum concentration limits within 100 years. As part of the compliance strategy, LM has implemented a groundwater monitoring program along with institutional controls that include the installation of an alternate water supply, continued sampling of private wells, and restrictions on well drilling and gravel pit construction. LM works closely with local stakeholders and community members to ensure that these institutional controls are in place and maintained. The Riverton site provides an interesting case study where contaminant remobilization due to river flooding prompted a reevaluation of the conceptual site model to verify if the current compliance strategy would remain protective of human health and the environment. Concentrations of groundwater contaminants, which include sulfate, molybdenum, and uranium, were transiently elevated following flooding of the Little Wind River in 2010 and 2016. These flood events provided the impetus to investigate other aspects of the hydrologic system, including the unsaturated zone, naturally reduced (sulfidic) zones, and evaporite deposits. New site conceptual models, field and laboratory studies, and numerical models are being developed to explain how biogeochemical sediment–water interactions contribute to plume persistence and flood-related increases in groundwater concentrations. Updated human health and ecological risk assessments are progressing to evaluate the risk to human health and the environment based on current site conditions. Groundwater concentrations may remain above US Environmental Protection Agency maximum concentration limits beyond the 100-year natural flushing regulatory time frame. LM in its capacity as a long-term steward continues to monitor the site to ensure protectiveness is maintained and to determine the feasibility of alternative compliance and remediation strategies.« less

  12. Integration of Remote Sensing Data In Operational Flood Forecast In Southwest Germany

    NASA Astrophysics Data System (ADS)

    Bach, H.; Appel, F.; Schulz, W.; Merkel, U.; Ludwig, R.; Mauser, W.

    Methods to accurately assess and forecast flood discharge are mandatory to minimise the impact of hydrological hazards. However, existing rainfall-runoff models rarely accurately consider the spatial characteristics of the watershed, which is essential for a suitable and physics-based description of processes relevant for runoff formation. Spatial information with low temporal variability like elevation, slopes and land use can be mapped or extracted from remote sensing data. However, land surface param- eters of high temporal variability, like soil moisture and snow properties are hardly available and used in operational forecasts. Remote sensing methods can improve flood forecast by providing information on the actual water retention capacities in the watershed and facilitate the regionalisation of hydrological models. To prove and demonstrate this, the project 'InFerno' (Integration of remote sensing data in opera- tional water balance and flood forecast modelling) has been set up, funded by DLR (50EE0053). Within InFerno remote sensing data (optical and microwave) are thor- oughly processed to deliver spatially distributed parameters of snow properties and soil moisture. Especially during the onset of a flood this information is essential to estimate the initial conditions of the model. At the flood forecast centres of 'Baden- Württemberg' and 'Rheinland-Pfalz' (Southwest Germany) the remote sensing based maps on soil moisture and snow properties will be integrated in the continuously op- erated water balance and flood forecast model LARSIM. The concept is to transfer the developed methodology from the Neckar to the Mosel basin. The major challenges lie on the one hand in the implementation of algorithms developed for a multisensoral synergy and the creation of robust, operationally applicable remote sensing products. On the other hand, the operational flood forecast must be adapted to make full use of the new data sources. In the operational phase of the project ESA's ENVISAT satellite, which will be launched in 2002, will serve as remote sensing data source. Until EN- VISAT data is available, algorithm retrieval, software development and product gener- ation is performed using existing sensors with ENVISAT-like specifications. Based on these data sets test cases and demonstration runs are conducted and will be presented to prove the advantages of the approach.

  13. Study on the water flooding in the cathode of direct methanol fuel cells.

    PubMed

    Im, Hun Suk; Kim, Sang-Kyung; Lim, Seongyop; Peck, Dong-Hyun; Jung, Doohwan; Hong, Won Hi

    2011-07-01

    Water flooding phenomena in the cathode of direct methanol fuel cells were analyzed by using electrochemical impedance spectroscopy. Two kinds of commercial gas diffusion layers with different PTFE contents of 5 wt% (GDL A5) and 20 wt% (GDL B20) were used to investigate the water flooding under various operating conditions. Water flooding was divided into two types: catalyst flooding and backing flooding. The cathode impedance spectra of each gas diffusion layer was obtained and compared under the same conditions. The diameter of the capacitive semicircle became larger with increasing current density for both, and this increase was greater for GDL B20 than GDL A5. Catalyst flooding is dominant and backing flooding is negligible when the air flow rate is high and current density is low. An equivalent model was suggested and fitted to the experimental data. Parameters for catalyst flooding and backing flooding were individually obtained. The capacitance of the catalyst layer decreases as the air flow rate decreases when the catalyst flooding is dominant.

  14. Implications of flood pulse restoration for Populus regeneration on the upper Missouri River

    USGS Publications Warehouse

    Bovee, Ken D.; Scott, Michael L.

    2002-01-01

    We developed a mass balance flow model to reconstruct unregulated daily peak flows in the National Wild and Scenic reach of the Missouri River, Montana. Results indicated that although the observed frequency of large peak flows has not changed in the post-dam period, their magnitude has been reduced from 40 to 50% as a consequence of flow regulation. Reductions in the magnitude of these flows should reduce the expected frequency of large flood-pulses over a longer time-scale. Results of a two-dimensional hydraulic model indicated that limited cottonwood (Populus deltoides subsp. Monilifera) recruitment occurs at relatively small peak discharges, but to maximize establishment of cottonwoods in the Wild and Scenic reach, a threshold of 1850 m3/s would be necessary at the Virgelle gauge. Floods of this magnitude or greater lead to establishment of cottonwood seedlings above the zone of frequent ice-drive disturbance. Restoring the frequency, magnitude, duration and timing of these flood pulses would benefit important natural resource values including riparian cottonwood forests and native fish species in the upper Missouri River basin. However, efforts to naturalize flow must be made in the context of a water management system that was authorized and constructed for the primary purposes of flood control, power generation and irrigation. Using the synthesized flow model and flood damage curves, we examined six scenarios for delivering flows ≥1850 m3/s to the Wild and Scenic reach. Whereas some scenarios appeared to be politically and economically infeasible, our analysis suggested that there is enough operational flexibility in the system to restore more natural flood pulses without greatly compromising other values.

  15. A Prototype Visualization of Real-time River Drainage Network Response to Rainfall

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.

    2011-12-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS streams rainfall data from NEXRAD radar, and provides three interfaces including animation for rainfall intensity, daily rainfall totals and rainfall accumulations for past 14 days for Iowa. A real-time interactive visualization interface is developed using past rainfall intensity data. The interface creates community-based rainfall products on-demand using watershed boundaries of each community as a mask. Each individual rainfall pixel is tracked in the interface along the drainage network, and the ones drains to same pixel location are accumulated. The interface loads recent rainfall data in five minute intervals that are combined with current values. Latest web technologies are utilized for the development of the interface including HTML 5 Canvas, and JavaScript. The performance of the interface is optimized to run smoothly on modern web browsers. The interface controls allow users to change internal parameters of the system, and operation conditions of the animation. The interface will help communities understand the effects of rainfall on water transport in stream and river networks and make better-informed decisions regarding the threat of floods. This presentation provides an overview of a unique visualization interface and discusses future plans for real-time dynamic presentations of streamflow forecasting.

  16. A Web-based Data Intensive Visualization of Real-time River Drainage Network Response to Rainfall

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.

    2012-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS streams rainfall data from NEXRAD radar, and provides three interfaces including animation for rainfall intensity, daily rainfall totals and rainfall accumulations for past 14 days for Iowa. A real-time interactive visualization interface is developed using past rainfall intensity data. The interface creates community-based rainfall products on-demand using watershed boundaries of each community as a mask. Each individual rainfall pixel is tracked in the interface along the drainage network, and the ones drains to same pixel location are accumulated. The interface loads recent rainfall data in five minute intervals that are combined with current values. Latest web technologies are utilized for the development of the interface including HTML 5 Canvas, and JavaScript. The performance of the interface is optimized to run smoothly on modern web browsers. The interface controls allow users to change internal parameters of the system, and operation conditions of the animation. The interface will help communities understand the effects of rainfall on water transport in stream and river networks and make better-informed decisions regarding the threat of floods. This presentation provides an overview of a unique visualization interface and discusses future plans for real-time dynamic presentations of streamflow forecasting.

  17. What is the real price of hydroelectric production on the Senegal River?

    NASA Astrophysics Data System (ADS)

    Raso, Luciano; Bader, Jean-Claude; Malaterre, Pierre-Olivier

    2014-05-01

    Manantali is an annual reservoir on the Senegal River, located in Mali and serving Senegal and Mauritania. The reservoir is used to regulate the flow for hydroelectric production, in the face of the extremely variable seasonal climate of the region. Manantali has been operative for about 10 years now, exceeding the planned production capacity. The economic benefit comes at a price. Before the dam's construction, the annual flood was the basis of flood recession agriculture, traditionally practiced by the local population. Hydroelectric production requires a more regular flow; therefore flow peaks that used to create the flood are now dumped in the reservoir. Floods are reduced because the current reservoir management privileges hydroelectric production to flood recession agriculture. Moreover, the local water authority is evaluating the construction of 6 more reservoirs, which will enhance even further the controllability of the river flow. This study assesses the externalities of energy production for the agricultural production, quantifying the reduction of flooded surface when energy production is maximized, or alternatively, the loss energy production to maintain a minimum sustainable flood. In addition, we examine the system reliability against extreme events, and how a better use of hydrological information can improve the present reservoir management, in order to find a win-win solution. In this study we employ Stochastic Dual Dynamic Programming (SDDP) methodology. SDDP is a leaner version of Stochastic Dynamic Programming (SDP). SDDP does not suffer of the "curse of dimensionality", and therefore it can be applied to larger systems. In this application we include in the model: i) A semi-distributed hydrological model, ii) the reservoir, iii) the hydraulic routing process within the catchment and from the reservoir to the floodplain.

  18. Potentialities of ensemble strategies for flood forecasting over the Milano urban area

    NASA Astrophysics Data System (ADS)

    Ravazzani, Giovanni; Amengual, Arnau; Ceppi, Alessandro; Homar, Víctor; Romero, Romu; Lombardi, Gabriele; Mancini, Marco

    2016-08-01

    Analysis of ensemble forecasting strategies, which can provide a tangible backing for flood early warning procedures and mitigation measures over the Mediterranean region, is one of the fundamental motivations of the international HyMeX programme. Here, we examine two severe hydrometeorological episodes that affected the Milano urban area and for which the complex flood protection system of the city did not completely succeed. Indeed, flood damage have exponentially increased during the last 60 years, due to industrial and urban developments. Thus, the improvement of the Milano flood control system needs a synergism between structural and non-structural approaches. First, we examine how land-use changes due to urban development have altered the hydrological response to intense rainfalls. Second, we test a flood forecasting system which comprises the Flash-flood Event-based Spatially distributed rainfall-runoff Transformation, including Water Balance (FEST-WB) and the Weather Research and Forecasting (WRF) models. Accurate forecasts of deep moist convection and extreme precipitation are difficult to be predicted due to uncertainties arising from the numeric weather prediction (NWP) physical parameterizations and high sensitivity to misrepresentation of the atmospheric state; however, two hydrological ensemble prediction systems (HEPS) have been designed to explicitly cope with uncertainties in the initial and lateral boundary conditions (IC/LBCs) and physical parameterizations of the NWP model. No substantial differences in skill have been found between both ensemble strategies when considering an enhanced diversity of IC/LBCs for the perturbed initial conditions ensemble. Furthermore, no additional benefits have been found by considering more frequent LBCs in a mixed physics ensemble, as ensemble spread seems to be reduced. These findings could help to design the most appropriate ensemble strategies before these hydrometeorological extremes, given the computational cost of running such advanced HEPSs for operational purposes.

  19. 76 FR 19753 - Intent To Prepare a Draft Environmental Impact Statement for the `Īao Stream Flood Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... Environmental Impact Statement for the `[Imacr]ao Stream Flood Control Project, Wailuku, Maui, HI AGENCY... Project, Wailuku, Maui, HI. This effort is being proposed under Section 203 of the Flood Control Act of...), Building 230, Fort Shafter, HI 96858- 5440. Submit electronic comments to [email protected] . FOR...

  20. 33 CFR 263.24 - Authority for snagging and clearing for flood control (Section 208).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... clearing for flood control (Section 208). 263.24 Section 263.24 Navigation and Navigable Waters CORPS OF... Policy § 263.24 Authority for snagging and clearing for flood control (Section 208). (a) Legislative... 26 of the Water Resources Development Act approved March 7, 1974 states: The Secretary of the Army is...

  1. 33 CFR 208.33 - Cheney Dam and Reservoir, North Fork of Ninnescah River, Kans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Cheney Dam and Reservoir, North..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.33 Cheney Dam and Reservoir... the Cheney Dam and Reservoir in the interest of flood control as follows: (a) Flood control storage in...

  2. 33 CFR 208.33 - Cheney Dam and Reservoir, North Fork of Ninnescah River, Kans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Cheney Dam and Reservoir, North..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.33 Cheney Dam and Reservoir... the Cheney Dam and Reservoir in the interest of flood control as follows: (a) Flood control storage in...

  3. Remote collection and analysis of witness reports on flash floods

    NASA Astrophysics Data System (ADS)

    Gourley, J. J.; Erlingis, J. M.; Smith, T. M.; Ortega, K. L.; Hong, Y.

    2010-11-01

    SummaryTypically, flash floods are studied ex post facto in response to a major impact event. A complement to field investigations is developing a detailed database of flash flood events, including minor events and null reports (i.e., where heavy rain occurred but there was no flash flooding), based on public survey questions conducted in near-real time. The Severe hazards analysis and verification experiment (SHAVE) has been in operation at the National Severe Storms Laboratory (NSSL) in Norman, OK, USA during the summers since 2006. The experiment employs undergraduate students to analyse real-time products from weather radars, target specific regions within the conterminous US, and poll public residences and businesses regarding the occurrence and severity of hail, wind, tornadoes, and now flash floods. In addition to providing a rich learning experience for students, SHAVE has also been successful in creating high-resolution datasets of severe hazards used for algorithm and model verification. This paper describes the criteria used to initiate the flash flood survey, the specific questions asked and information entered to the database, and then provides an analysis of results for flash flood data collected during the summer of 2008. It is envisioned that specific details provided by the SHAVE flash flood observation database will complement databases collected by operational agencies (i.e., US National Weather Service Storm Data reports) and thus lead to better tools to predict the likelihood of flash floods and ultimately reduce their impacts on society.

  4. Probabilistic Flood Mapping using Volunteered Geographical Information

    NASA Astrophysics Data System (ADS)

    Rivera, S. J.; Girons Lopez, M.; Seibert, J.; Minsker, B. S.

    2016-12-01

    Flood extent maps are widely used by decision makers and first responders to provide critical information that prevents economic impacts and the loss of human lives. These maps are usually obtained from sensory data and/or hydrologic models, which often have limited coverage in space and time. Recent developments in social media and communication technology have created a wealth of near-real-time, user-generated content during flood events in many urban areas, such as flooded locations, pictures of flooding extent and height, etc. These data could improve decision-making and response operations as events unfold. However, the integration of these data sources has been limited due to the need for methods that can extract and translate the data into useful information for decision-making. This study presents an approach that uses volunteer geographic information (VGI) and non-traditional data sources (i.e., Twitter, Flicker, YouTube, and 911 and 311 calls) to generate/update the flood extent maps in areas where no models and/or gauge data are operational. The approach combines Web-crawling and computer vision techniques to gather information about the location, extent, and water height of the flood from unstructured textual data, images, and videos. These estimates are then used to provide an updated flood extent map for areas surrounding the geo-coordinate of the VGI through the application of a Hydro Growing Region Algorithm (HGRA). HGRA combines hydrologic and image segmentation concepts to estimate a probabilistic flooding extent along the corresponding creeks. Results obtained for a case study in Austin, TX (i.e., 2015 Memorial Day flood) were comparable to those obtained by a calibrated hydrologic model and had good spatial correlation with flooding extents estimated by the Federal Emergency Management Agency (FEMA).

  5. Morphology of the Middle Rio Grande from Cochiti Dam to Bernalillo Bridge, New Mexico

    Treesearch

    Claudia Leon Salazar

    1998-01-01

    The continuous geomorphologic changes in the Middle Rio Grande in New Mexico have been of interest for many governmental agencies involved with the management and operation of this river system. Due to sedimentation problems along this river, highly developed plans for sediment detention and flood control have been carried out. Cochiti Dam was built as a part of these...

  6. Assessing sedimentation issues within aging flood-control reservoirs

    USDA-ARS?s Scientific Manuscript database

    Flood control reservoirs designed and built by federal agencies have been extremely effective in reducing the ravages of floods nationwide. Yet some structures are being removed for a variety of reasons, while other structures are aging rapidly and require either rehabilitation or decommissioning. ...

  7. The United States Air Force and Humanitarian Airlift Operations 1947-1994

    DTIC Science & Technology

    1998-01-01

    Flood. Location: Republic of Bolivia. Date(s): February 13 and 28, 1971. Emergency: Heavy rain flooded the Beni and Madre de Dios River valleys of...descended on the Beni and Madre de Dios River valleys of northern Bolivia on the edge of the Amazon basin, flooding Riberalta and surrounding areas... heavy rain flooded river valleys south of Volcan de Fuego, Guatemala, threatening the towns of Singuinala and La Democracia. The Pantaleon River near

  8. Urban sprawl and flooding in southern California

    USGS Publications Warehouse

    Rantz, S.E.

    1970-01-01

    The floods of January 1969 in south-coastal California provide a timely example of the effect of urban sprawl on flood damage. Despite recordbreaking, or near recordbreaking, stream discharges, damage was minimal in the older developed areas that are protected against inundation and debris damage by carefully planned flood-control facilities, including debris basins and flood-conveyance channels. By contrast, heavy damage occurred in areas of more recent urban sprawl, where the hazards of inundation and debris or landslide damage have not been taken into consideration, and where the improvement and development of drainage or flood-control facilities have not kept pace with expanding urbanization.

  9. Urban Flood Prevention and Early Warning System in Jinan City

    NASA Astrophysics Data System (ADS)

    Feng, Shiyuan; Li, Qingguo

    2018-06-01

    The system construction of urban flood control and disaster reduction in China is facing pressure and challenge from new urban water disaster. Under the circumstances that it is difficult to build high standards of flood protection engineering measures in urban areas, it is particularly important to carry out urban flood early warning. In Jinan City, a representative inland area, based on the index system of early warning of flood in Jinan urban area, the method of fuzzy comprehensive evaluation was adopted to evaluate the level of early warning. Based on the cumulative rainfall of 3 hours, the CAflood simulation results based on cellular automaton model of urban flooding were used as evaluation indexes to realize the accuracy and integration of urban flood control early warning.

  10. Do Natural Disasters Affect Voting Behavior? Evidence from Croatian Floods

    PubMed Central

    Bovan, Kosta; Banai, Benjamin; Pavela Banai, Irena

    2018-01-01

    Introduction: Studies show that natural disasters influence voters’ perception of incumbent politicians. To investigate whether voters are prone to punish politicians for events that are out of their control, this study was conducted in the previously unstudied context of Croatia, and by considering some of the methodological issues of previous studies. Method: Matching method technique was used, which ensures that affected and non-affected areas are matched on several control variables. The cases of natural disaster in the present study were floods that affected Croatia in 2014 and 2015. Results: Main results showed that, prior to matching, floods had an impact on voting behaviour in the 2014 and 2015 elections. Voters from flooded areas decreased their support for the incumbent government and president in the elections following the floods. However, once we accounted for differences in control variables between flooded and non-flooded areas, the flood effect disappeared. Furthermore, results showed that neither the presence nor the amount of the government’s relief spending had an impact on voting behaviour. Discussion: Presented results imply that floods did not have an impact on the election outcome. Results are interpreted in light of the retrospective voter model. PMID:29770268

  11. Hospital infection prevention and control issues relevant to extensive floods.

    PubMed

    Apisarnthanarak, Anucha; Mundy, Linda M; Khawcharoenporn, Thana; Glen Mayhall, C

    2013-02-01

    The devastating clinical and economic implications of floods exemplify the need for effective global infection prevention and control (IPC) strategies for natural disasters. Reopening of hospitals after excessive flooding requires a balance between meeting the medical needs of the surrounding communities and restoration of a safe hospital environment. Postflood hospital preparedness plans are a key issue for infection control epidemiologists, healthcare providers, patients, and hospital administrators. We provide recent IPC experiences related to reopening of a hospital after extensive black-water floods necessitated hospital closures in Thailand and the United States. These experiences provide a foundation for the future design, execution, and analysis of black-water flood preparedness plans by IPC stakeholders.

  12. Optimization of wetland restoration siting and zoning in flood retention areas of river basins in China: A case study in Mengwa, Huaihe River Basin

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Song, Yuqin

    2014-11-01

    Wetland restoration in floodplains is an ecological solution that can address basin-wide flooding issues and minimize flooding and damages to riverine and downstream areas. High population densities, large economic outputs, and heavy reliance on water resources make flood retention and management pressing issues in China. To balance flood control and sustainable development economically, socially, and politically, flood retention areas have been established to increase watershed flood storage capacities and enhance the public welfare for the populace living in the areas. However, conflicts between flood storage functions and human habitation appear irreconcilable. We developed a site-specific methodology for identifying potential sites and functional zones for wetland restoration in a flood retention area in middle and eastern China, optimizing the spatial distribution and functional zones to maximize flood control and human and regional development. This methodology was applied to Mengwa, one of 21 flood retention areas in China's Huaihe River Basin, using nine scenarios that reflected different flood, climatic, and hydraulic conditions. The results demonstrated improved flood retention and ecological functions, as well as increased economic benefits.

  13. 76 FR 37647 - Safety Zone; Missouri River From the Border Between Montana and North Dakota

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... destruction, loss or injury due to hazards associated with rising flood water. Operation in this zone is... vessels from destruction, loss or injury due to the hazards associated with rising flood water. The... destruction, loss or injury due to the hazards associated with rising flood water. If you are a small business...

  14. Automated remote cameras for monitoring alluvial sandbars on the Colorado River in Grand Canyon, Arizona

    USGS Publications Warehouse

    Grams, Paul E.; Tusso, Robert B.; Buscombe, Daniel

    2018-02-27

    Automated camera systems deployed at 43 remote locations along the Colorado River corridor in Grand Canyon National Park, Arizona, are used to document sandbar erosion and deposition that are associated with the operations of Glen Canyon Dam. The camera systems, which can operate independently for a year or more, consist of a digital camera triggered by a separate data controller, both of which are powered by an external battery and solar panel. Analysis of images for categorical changes in sandbar size show deposition at 50 percent or more of monitoring sites during controlled flood releases done in 2012, 2013, 2014, and 2016. The images also depict erosion of sandbars and show that erosion rates were highest in the first 3 months following each controlled flood. Erosion rates were highest in 2015, the year of highest annual dam release volume. Comparison of the categorical estimates of sandbar change agree with sandbar change (erosion or deposition) measured by topographic surveys in 76 percent of cases evaluated. A semiautomated method for quantifying changes in sandbar area from the remote-camera images by rectifying the oblique images and segmenting the sandbar from the rest of the image is presented. Calculation of sandbar area by this method agrees with sandbar area determined by topographic survey within approximately 8 percent and allows quantification of sandbar area monthly (or more frequently).

  15. Developments of the European Flood Awareness System (EFAS)

    NASA Astrophysics Data System (ADS)

    Thiemig, Vera; Olav Skøien, Jon; Salamon, Peter; Pappenberger, Florian; Wetterhall, Fredrik; Holst, Bo; Asp, Sara-Sophia; Garcia Padilla, Mercedes; Garcia, Rafael J.; Schweim, Christoph; Ziese, Markus

    2017-04-01

    EFAS (http://www.efas.eu) is an operational system for flood forecasting and early warning for the entire Europe, which is fully operational as part of the Copernicus Emergency Management Service since 2012. The prime aim of EFAS is to gain time for preparedness measures before major flood events - particularly in trans-national river basins - strike. This is achieved by providing complementary, added value information to the national and regional services holding the mandate for flood warning as well as to the ERCC (European Response and Coordination Centre). Using a coherent model for all of Europe forced with a range of deterministic and ensemble weather forecasts, the system can give a probabilistic flood forecast for a medium range lead time (up to 10 days) independent of country borders. The system is under continuous development, and we will present the basic set up, some prominent examples of recent and ongoing developments (such as the rapid impact assessment, seasonal outlook and the extended domain) and the future challenges.

  16. Flood control surveys in the northeast

    Treesearch

    Arthur Bevan

    1947-01-01

    Floods are a grave danger to our Nation's resources. It is estimated that floods cost the United States at least $100 million every year. The recent Mississippi floods, which dramatically brought the seriousness of the situation to public attention, cost half a billion dollars in direct-damages. The Northeast carries a heavy burden of flood losses. In 1936, floods...

  17. 33 CFR 203.41 - General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.41... constructed hurricane/shore protection projects. (b) Implementation of authority. The Rehabilitation and... projects damaged by floods and coastal storm events. The RIP consists of a process to inspect flood control...

  18. 33 CFR 203.41 - General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.41... constructed hurricane/shore protection projects. (b) Implementation of authority. The Rehabilitation and... projects damaged by floods and coastal storm events. The RIP consists of a process to inspect flood control...

  19. 33 CFR 203.41 - General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.41... constructed hurricane/shore protection projects. (b) Implementation of authority. The Rehabilitation and... projects damaged by floods and coastal storm events. The RIP consists of a process to inspect flood control...

  20. 33 CFR 203.41 - General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.41... constructed hurricane/shore protection projects. (b) Implementation of authority. The Rehabilitation and... projects damaged by floods and coastal storm events. The RIP consists of a process to inspect flood control...

  1. 33 CFR 203.41 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.41... constructed hurricane/shore protection projects. (b) Implementation of authority. The Rehabilitation and... projects damaged by floods and coastal storm events. The RIP consists of a process to inspect flood control...

  2. Influence of continuous mining arrangements on respirable dust exposures

    PubMed Central

    Beck, T. W.; Organiscak, J. A.; Pollock, D. E.; Potts, J. D.; Reed, W. R.

    2017-01-01

    In underground continuous mining operations, ventilation, water sprays and machine-mounted flooded-bed scrubbers are the primary means of controlling respirable dust exposures at the working face. Changes in mining arrangements — such as face ventilation configuration, orientation of crosscuts mined in relation to the section ventilation and equipment operator positioning — can have impacts on the ability of dust controls to reduce occupational respirable dust exposures. This study reports and analyzes dust concentrations measured by the Pittsburgh Mining Research Division for remote-controlled continuous mining machine operators as well as haulage operators at 10 U.S. underground mines. The results of these respirable dust surveys show that continuous miner exposures varied little with depth of cut but are significantly higher with exhaust ventilation. Haulage operators experienced elevated concentrations with blowing face ventilation. Elevated dust concentrations were observed for both continuous miner operators and haulage operators when working in crosscuts driven into or counter to the section airflow. Individual cuts are highlighted to demonstrate instances of minimal and excessive dust exposures attributable to particular mining configurations. These findings form the basis for recommendations for lowering face worker respirable dust exposures. PMID:28529441

  3. Impact of Sedimentation hazard at Jor Reservoir, Batang Padang Hydroelectric Scheme in Malaysia

    NASA Astrophysics Data System (ADS)

    Luis, Jansen; Mohd Sidek, Lariyah; Jajarmizadeh, Milad

    2016-03-01

    Sedimentation in reservoir can be treated as a hazard because it affects the overall safety of the dam. It is a growing concern for reservoir operators throughout the world as it impacts the operability of the hydropower plant and its function as flood control. The objective of the study is to carry out reservoir bathymetric survey to determine the storage volume available at Jor reservoir. The paper intends to discuss the results of two successive surveys carried out in year 2007 and 2010 and comparison with historical data in1968 owing to analyse of sedimentation trend. The result showed that the total storage loss is approximately 43% with an estimated deposited sediment volume of 1.4 million m3 in year 2010. The sedimentation rate is estimated at 3.3% for the years surveyed which is greater than the world average of 0.93%. The findings from the survey are used to develop a revised elevation-storage curve which could be used by the operator and engineers to carry out future power generation planning and flood study predictions. The findings are also expected to be used to determine the optimum method for sediment management and hydro-mechanical protection.

  4. Impact of Reservoir Operation to the Inflow Flood - a Case Study of Xinfengjiang Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, L.

    2017-12-01

    Building of reservoir shall impact the runoff production and routing characteristics, and changes the flood formation. This impact, called as reservoir flood effect, could be divided into three parts, including routing effect, volume effect and peak flow effect, and must be evaluated in a whole by using hydrological model. After analyzing the reservoir flood formation, the Liuxihe Model for reservoir flood forecasting is proposed. The Xinfengjiang Reservoir is studied as a case. Results show that the routing effect makes peak flow appear 4 to 6 hours in advance, volume effect is bigger for large flood than small one, and when rainfall focus on the reservoir area, this effect also increases peak flow largely, peak flow effect makes peak flow increase 6.63% to 8.95%. Reservoir flood effect is obvious, which have significant impact to reservoir flood. If this effect is not considered in the flood forecasting model, the flood could not be forecasted accurately, particularly the peak flow. Liuxihe Model proposed for Xinfengjiang Reservoir flood forecasting has a good performance, and could be used for real-time flood forecasting of Xinfengjiang Reservoir.Key words: Reservoir flood effect, reservoir flood forecasting, physically based distributed hydrological model, Liuxihe Model, parameter optimization

  5. A new automatic SAR-based flood mapping application hosted on the European Space Agency's grid processing on demand fast access to imagery environment

    NASA Astrophysics Data System (ADS)

    Hostache, Renaud; Chini, Marco; Matgen, Patrick; Giustarini, Laura

    2013-04-01

    There is a clear need for developing innovative processing chains based on earth observation (EO) data to generate products supporting emergency response and flood management at a global scale. Here an automatic flood mapping application is introduced. The latter is currently hosted on the Grid Processing on Demand (G-POD) Fast Access to Imagery (Faire) environment of the European Space Agency. The main objective of the online application is to deliver flooded areas using both recent and historical acquisitions of SAR data in an operational framework. It is worth mentioning that the method can be applied to both medium and high resolution SAR images. The flood mapping application consists of two main blocks: 1) A set of query tools for selecting the "crisis image" and the optimal corresponding pre-flood "reference image" from the G-POD archive. 2) An algorithm for extracting flooded areas using the previously selected "crisis image" and "reference image". The proposed method is a hybrid methodology, which combines histogram thresholding, region growing and change detection as an approach enabling the automatic, objective and reliable flood extent extraction from SAR images. The method is based on the calibration of a statistical distribution of "open water" backscatter values inferred from SAR images of floods. Change detection with respect to a pre-flood reference image helps reducing over-detection of inundated areas. The algorithms are computationally efficient and operate with minimum data requirements, considering as input data a flood image and a reference image. Stakeholders in flood management and service providers are able to log onto the flood mapping application to get support for the retrieval, from the rolling archive, of the most appropriate pre-flood reference image. Potential users will also be able to apply the implemented flood delineation algorithm. Case studies of several recent high magnitude flooding events (e.g. July 2007 Severn River flood, UK and March 2010 Red River flood, US) observed by high-resolution SAR sensors as well as airborne photography highlight advantages and limitations of the online application. A mid-term target is the exploitation of ESA SENTINEL 1 SAR data streams. In the long term it is foreseen to develop a potential extension of the application for systematically extracting flooded areas from all SAR images acquired on a daily, weekly or monthly basis. On-going research activities investigate the usefulness of the method for mapping flood hazard at global scale using databases of historic SAR remote sensing-derived flood inundation maps.

  6. 46 CFR 62.35-10 - Flooding safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Flooding safety. 62.35-10 Section 62.35-10 Shipping... Requirements for Specific Types of Automated Vital Systems § 62.35-10 Flooding safety. (a) Automatic bilge.... (b) Remote controls for flooding safety equipment must remain functional under flooding conditions to...

  7. 46 CFR 62.35-10 - Flooding safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Flooding safety. 62.35-10 Section 62.35-10 Shipping... Requirements for Specific Types of Automated Vital Systems § 62.35-10 Flooding safety. (a) Automatic bilge.... (b) Remote controls for flooding safety equipment must remain functional under flooding conditions to...

  8. 46 CFR 62.35-10 - Flooding safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Flooding safety. 62.35-10 Section 62.35-10 Shipping... Requirements for Specific Types of Automated Vital Systems § 62.35-10 Flooding safety. (a) Automatic bilge.... (b) Remote controls for flooding safety equipment must remain functional under flooding conditions to...

  9. 46 CFR 62.35-10 - Flooding safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Flooding safety. 62.35-10 Section 62.35-10 Shipping... Requirements for Specific Types of Automated Vital Systems § 62.35-10 Flooding safety. (a) Automatic bilge.... (b) Remote controls for flooding safety equipment must remain functional under flooding conditions to...

  10. Nutrient response of Bacopa monnieri (water hyssop) to varying degrees of soil saturation

    USDA-ARS?s Scientific Manuscript database

    Tissue concentrations of N and P were measured in Bacopa monnieri subjected to four progressive levels of flooding: well-drained Control, Intermittently Flooded, Partially Flooded, and Continuously Flooded. Soil redox potential (Eh) decreased in all flooded treatments at 30 cm depth, becoming anoxic...

  11. 46 CFR 62.35-10 - Flooding safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Flooding safety. 62.35-10 Section 62.35-10 Shipping... Requirements for Specific Types of Automated Vital Systems § 62.35-10 Flooding safety. (a) Automatic bilge.... (b) Remote controls for flooding safety equipment must remain functional under flooding conditions to...

  12. Magnitude and frequency of floods in Nebraska

    USGS Publications Warehouse

    Beckman, Emil W.

    1976-01-01

    Observed maximum flood peaks at 303 gaging stations with 13 or more years of record and significant peaks at 57 short-term stations and 31 miscellaneous sites are useful in designing flood-control works for maximum safety from flood damage. Comparison is made with maximum observed floods in the United States.

  13. 46 CFR 134.170 - Operating manual.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... dimensions; (ii) Tonnages; and (iii) Load capacities for— (A) Various cargoes; (B) Crane hook; and (C... concerning the effects on stability of flooded legs, and what to do upon discovering the flooding of a...

  14. 46 CFR 134.170 - Operating manual.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... dimensions; (ii) Tonnages; and (iii) Load capacities for— (A) Various cargoes; (B) Crane hook; and (C... concerning the effects on stability of flooded legs, and what to do upon discovering the flooding of a...

  15. 46 CFR 134.170 - Operating manual.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... dimensions; (ii) Tonnages; and (iii) Load capacities for— (A) Various cargoes; (B) Crane hook; and (C... concerning the effects on stability of flooded legs, and what to do upon discovering the flooding of a...

  16. 46 CFR 134.170 - Operating manual.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... dimensions; (ii) Tonnages; and (iii) Load capacities for— (A) Various cargoes; (B) Crane hook; and (C... concerning the effects on stability of flooded legs, and what to do upon discovering the flooding of a...

  17. Internationally coordinated multi-mission planning is now critical to sustain the space-based rainfall observations needed for managing floods globally

    NASA Astrophysics Data System (ADS)

    Reed, Patrick M.; Chaney, Nathaniel W.; Herman, Jonathan D.; Ferringer, Matthew P.; Wood, Eric F.

    2015-02-01

    At present 4 of 10 dedicated rainfall observing satellite systems have exceeded their design life, some by more than a decade. Here, we show operational implications for flood management of a ‘collapse’ of space-based rainfall observing infrastructure as well as the high-value opportunities for a globally coordinated portfolio of satellite missions and data services. Results show that the current portfolio of rainfall missions fails to meet operational data needs for flood management, even when assuming a perfectly coordinated data product from all current rainfall-focused missions (i.e., the full portfolio). In the full portfolio, satellite-based rainfall data deficits vary across the globe and may preclude climate adaptation in locations vulnerable to increasing flood risks. Moreover, removing satellites that are currently beyond their design life (i.e., the reduced portfolio) dramatically increases data deficits globally and could cause entire high intensity flood events to be unobserved. Recovery from the reduced portfolio is possible with internationally coordinated replenishment of as few as 2 of the 4 satellite systems beyond their design life, yielding rainfall data coverages that outperform the current full portfolio (i.e., an optimized portfolio of eight satellites can outperform ten satellites). This work demonstrates the potential for internationally coordinated satellite replenishment and data services to substantially enhance the cost-effectiveness, sustainability and operational value of space-based rainfall observations in managing evolving flood risks.

  18. Large scale modelling of catastrophic floods in Italy

    NASA Astrophysics Data System (ADS)

    Azemar, Frédéric; Nicótina, Ludovico; Sassi, Maximiliano; Savina, Maurizio; Hilberts, Arno

    2017-04-01

    The RMS European Flood HD model® is a suite of country scale flood catastrophe models covering 13 countries throughout continental Europe and the UK. The models are developed with the goal of supporting risk assessment analyses for the insurance industry. Within this framework RMS is developing a hydrologic and inundation model for Italy. The model aims at reproducing the hydrologic and hydraulic properties across the domain through a modeling chain. A semi-distributed hydrologic model that allows capturing the spatial variability of the runoff formation processes is coupled with a one-dimensional river routing algorithm and a two-dimensional (depth averaged) inundation model. This model setup allows capturing the flood risk from both pluvial (overland flow) and fluvial flooding. Here we describe the calibration and validation methodologies for this modelling suite applied to the Italian river basins. The variability that characterizes the domain (in terms of meteorology, topography and hydrologic regimes) requires a modeling approach able to represent a broad range of meteo-hydrologic regimes. The calibration of the rainfall-runoff and river routing models is performed by means of a genetic algorithm that identifies the set of best performing parameters within the search space over the last 50 years. We first establish the quality of the calibration parameters on the full hydrologic balance and on individual discharge peaks by comparing extreme statistics to observations over the calibration period on several stations. The model is then used to analyze the major floods in the country; we discuss the different meteorological setup leading to the historical events and the physical mechanisms that induced these floods. We can thus assess the performance of RMS' hydrological model in view of the physical mechanisms leading to flood and highlight the main controls on flood risk modelling throughout the country. The model's ability to accurately simulate antecedent conditions and discharge hydrographs over the affected area is also assessed, showing that spatio-temporal correlation is retained through the modelling chain. Results show that our modelling approach can capture a wide range of conditions leading to major floods in the Italian peninsula. Under the umbrella of the RMS European Flood HD models this constitutes, to our knowledge, the only operational flood risk model to be applied at continental scale with a coherent model methodology and a domain wide MonteCarlo stochastic set.

  19. Locally Operated Levees: Issues and Federal Programs

    DTIC Science & Technology

    2011-04-05

    attention. Congressional authorization of the National Flood Insurance Program ( NFIP ), managed by the Federal Emergency Management Agency (FEMA), expires...levees, FEMA’s Flood Insurance Rate Maps (FIRMs) and levee accreditation (which determine which NFIP requirements and premiums apply in an area), and...investments that reduce flood risk; concerns about the local costs associated with NFIP purchase and levee accreditation requirements; and consideration

  20. 76 FR 38013 - Safety Zone; Big Sioux River From the Military Road Bridge North Sioux City to the Confluence of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... rising flood water. Operation in this zone is restricted unless specifically authorized by the Captain of... rising flood water. The impacts on routine navigation are expected to be minimal. Small Entities Under... vessels from destruction, loss or injury due to the hazards associated with rising flood water. If you are...

  1. Operational tools to help stakeholders to protect and alert municipalities facing uncertainties and changes in karst flash floods

    NASA Astrophysics Data System (ADS)

    Borrell Estupina, V.; Raynaud, F.; Bourgeois, N.; Kong-A-Siou, L.; Collet, L.; Haziza, E.; Servat, E.

    2015-06-01

    Flash floods are often responsible for many deaths and involve many material damages. Regarding Mediterranean karst aquifers, the complexity of connections, between surface and groundwater, as well as weather non-stationarity patterns, increase difficulties in understanding the basins behaviour and thus warning and protecting people. Furthermore, given the recent changes in land use and extreme rainfall events, knowledge of the past floods is no longer sufficient to manage flood risks. Therefore the worst realistic flood that could occur should be considered. Physical and processes-based hydrological models are considered among the best ways to forecast floods under diverse conditions. However, they rarely match with the stakeholders' needs. In fact, the forecasting services, the municipalities, and the civil security have difficulties in running and interpreting data-consuming models in real-time, above all if data are uncertain or non-existent. To face these social and technical difficulties and help stakeholders, this study develops two operational tools derived from these models. These tools aim at planning real-time decisions given little, changing, and uncertain information available, which are: (i) a hydrological graphical tool (abacus) to estimate flood peak discharge from the karst past state and the forecasted but uncertain intense rainfall; (ii) a GIS-based method (MARE) to estimate the potential flooded pathways and areas, accounting for runoff and karst contributions and considering land use changes. Then, outputs of these tools are confronted to past and recent floods and municipalities observations, and the impacts of uncertainties and changes on planning decisions are discussed. The use of these tools on the recent 2014 events demonstrated their reliability and interest for stakeholders. This study was realized on French Mediterranean basins, in close collaboration with the Flood Forecasting Services (SPC Med-Ouest, SCHAPI, municipalities).

  2. 33 CFR 203.47 - Modifications to non-Federal flood control works.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Federal construction cost of rehabilitation to preflood level of protection, or $100,000, whichever is... only in cash. In-kind services are not permitted for modification work. (b) Protection of additional...

  3. 33 CFR 203.47 - Modifications to non-Federal flood control works.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Federal construction cost of rehabilitation to preflood level of protection, or $100,000, whichever is... only in cash. In-kind services are not permitted for modification work. (b) Protection of additional...

  4. 33 CFR 203.47 - Modifications to non-Federal flood control works.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Federal construction cost of rehabilitation to preflood level of protection, or $100,000, whichever is... only in cash. In-kind services are not permitted for modification work. (b) Protection of additional...

  5. 33 CFR 203.47 - Modifications to non-Federal flood control works.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Federal construction cost of rehabilitation to preflood level of protection, or $100,000, whichever is... only in cash. In-kind services are not permitted for modification work. (b) Protection of additional...

  6. 33 CFR 203.47 - Modifications to non-Federal flood control works.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Federal construction cost of rehabilitation to preflood level of protection, or $100,000, whichever is... only in cash. In-kind services are not permitted for modification work. (b) Protection of additional...

  7. 33 CFR 238.7 - Decision criteria for participation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... larger floods, such as the one-percent flood. Examples include the presence of extremely pervious soils... control improvement. Similarly, the need to terminate flood control improvements in a safe and economical manner may justify the extension of some portions of the improvements, such as levee tiebacks, into areas...

  8. 33 CFR 238.7 - Decision criteria for participation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... larger floods, such as the one-percent flood. Examples include the presence of extremely pervious soils... control improvement. Similarly, the need to terminate flood control improvements in a safe and economical manner may justify the extension of some portions of the improvements, such as levee tiebacks, into areas...

  9. Communications and control for electric power systems

    NASA Technical Reports Server (NTRS)

    Kirkham, H.

    1992-01-01

    A long-term strategy for the integration of new control technologies for power generation and delivery is proposed: the industry would benefit from an evolutionary approach that would adapt to its needs future technologies as well as those that it has so far not heeded. The integrated operation of the entire system, including the distribution system, was proposed as a future goal. The AbNET communication protocols are reviewed, and additions that were made in 1991 are described. In the original network, traffic was controlled by polling at the master station, located at the substation, and routed by a flooding algorithm. In a revised version, the polling and flooding are modified. The question of interfacing low-energy measurement transducers or instrument transformers is considered. There is presently little or no agreement on what the output of optical current transducers (CT's) should be. Appendices deal with the calibration of current transducers; with Delta modulation, a simple means of serially encoding the output of an OCT; and with noise shaping, a method of digital signal processing that trades off the number of bits in a digital sample for a higher number of samples.

  10. Geographic information systems supporting the solution of emergencies and their connection to self-actuated notification systems

    NASA Astrophysics Data System (ADS)

    Reil, Adam; Bureš, Luděk; Roub, Radek; Hejduk, Tomáš; Novák, Pavel

    2015-04-01

    Geographic information systems represent an important tool in supporting the operation and crisis management of Integrated Rescue System (IRS) branches. The technology of geographic information systems makes it possible to localize specific information directly in the concerned area. A basic pre-requisite for efficient IRS functioning is the identification of so-called critical points in the given territory. The next step is the identification of endangered persons and properties. In these issues, emphasis is put particularly on the time scale, which represents a key aspect of the crisis management. In case of flood danger, the Early Flood Warning Service would inform flood authorities responsible for warning the population, declaring flood activity degrees, IRS activation and organization. For their decision-making, the flood authorities need data on level heights, current discharge rates and inundation areas. The information about discharge rates and height levels can be obtained from the network of recording stream gauge stations operated by the Czech Hydrometeorological Institute. Inundation areas are plotted in the flood control plans of municipalities, which however contain default information about areas flooded at the N-year flood discharges Q5, Q20 and Q100. Because of large intervals, these three scenarios are insufficient for the crisis management of larger communities and towns. Therefore, a data store was suggested that would include maps showing flow rate fields and inundation areas for a finer scale of flood discharges at regular intervals. The scale should be based on the N-year flood discharges with a possibility of extension if required by flood authorities. The discharge interval size should be selected with regard to the dynamics of level height change in the given watercourse. The inundation areas will be then established by way of calculation using the MIKE 21C 2D hydrodynamic model. The novel approach was applied recently in the cadastral area of Lety on the Berounka River. Two sets of certified maps were created: (1) The map of endangered properties 1 - grid of depths, and (2) The map of endangered properties 2 - grid of flow rates. The maps were created from the discharge of 500 m3/s to 1460 m3/s at intervals of 60 m3/s. Two additional discharge values were 1500 m3/s and a calibration discharge of 990 m3/s. In total, thirty-eight maps were created the foundation of which was an orthophotograph map where endangered properties were plotted together with inundation areas. The next step will now be a specific proposal for data store version. The data store will be placed on the web interface where scenarios will be possible to display according to the selected discharge. At the same time, information will be available about the current discharge in the given watercourse. The web interface will be publicly accessible and will be connected to IRS. This study was supported from the Project VG20132015127 as a part of the Security Research conducted by the Ministry of the Interior of the Czech Republic. Keywords: IRS, MIKE 21C, flood

  11. Mental health impacts of flooding: a controlled interrupted time series analysis of prescribing data in England

    PubMed Central

    Milojevic, Ai; Armstrong, Ben; Wilkinson, Paul

    2017-01-01

    Background There is emerging evidence that people affected by flooding suffer adverse impacts on their mental well-being, mostly based on self-reports. Methods We examined prescription records for drugs used in the management of common mental disorder among primary care practices located in the vicinity of recent large flood events in England, 2011–2014. A controlled interrupted time series analysis was conducted of the number of prescribing items for antidepressant drugs in the year before and after the flood onset. Pre–post changes were compared by distance of the practice from the inundated boundaries among 930 practices located within 10 km of a flood. Results After control for deprivation and population density, there was an increase of 0.59% (95% CI 0.24 to 0.94) prescriptions in the postflood year among practices located within 1 km of a flood over and above the change observed in the furthest distance band. The increase was greater in more deprived areas. Conclusions This study suggests an increase in prescribed antidepressant drugs in the year after flooding in primary care practices close to recent major floods in England. The degree to which the increase is actually concentrated in those flooded can only be determined by more detailed linkage studies. PMID:28860201

  12. Information Sharing for Medical Triage Tasking During Mass Casualty/Humanitarian Operations

    DTIC Science & Technology

    2009-12-01

    military patrol units or surreptitious " cloak and dagger " fact gathering missions to gain photographic/video graphic data for dissemination to the...fractured command and control organization and retarded deployment of resources. Tragedies such as Hurricane Katrina in 2005, the September 11 attacks of...with PKI certificates and HMAC protection from replay attacks and UDP flooding [17]. 3. Triage Graphical User Interface (GUI) Currently the GUI for

  13. An Integrated Ensemble-Based Operational Framework to Predict Urban Flooding: A Case Study of Hurricane Sandy in the Passaic and Hackensack River Basins

    NASA Astrophysics Data System (ADS)

    Saleh, F.; Ramaswamy, V.; Georgas, N.; Blumberg, A. F.; Wang, Y.

    2016-12-01

    Advances in computational resources and modeling techniques are opening the path to effectively integrate existing complex models. In the context of flood prediction, recent extreme events have demonstrated the importance of integrating components of the hydrosystem to better represent the interactions amongst different physical processes and phenomena. As such, there is a pressing need to develop holistic and cross-disciplinary modeling frameworks that effectively integrate existing models and better represent the operative dynamics. This work presents a novel Hydrologic-Hydraulic-Hydrodynamic Ensemble (H3E) flood prediction framework that operationally integrates existing predictive models representing coastal (New York Harbor Observing and Prediction System, NYHOPS), hydrologic (US Army Corps of Engineers Hydrologic Modeling System, HEC-HMS) and hydraulic (2-dimensional River Analysis System, HEC-RAS) components. The state-of-the-art framework is forced with 125 ensemble meteorological inputs from numerical weather prediction models including the Global Ensemble Forecast System, the European Centre for Medium-Range Weather Forecasts (ECMWF), the Canadian Meteorological Centre (CMC), the Short Range Ensemble Forecast (SREF) and the North American Mesoscale Forecast System (NAM). The framework produces, within a 96-hour forecast horizon, on-the-fly Google Earth flood maps that provide critical information for decision makers and emergency preparedness managers. The utility of the framework was demonstrated by retrospectively forecasting an extreme flood event, hurricane Sandy in the Passaic and Hackensack watersheds (New Jersey, USA). Hurricane Sandy caused significant damage to a number of critical facilities in this area including the New Jersey Transit's main storage and maintenance facility. The results of this work demonstrate that ensemble based frameworks provide improved flood predictions and useful information about associated uncertainties, thus improving the assessment of risks as when compared to a deterministic forecast. The work offers perspectives for short-term flood forecasts, flood mitigation strategies and best management practices for climate change scenarios.

  14. Improving regional climate and hydrological forecasting following the record setting flooding across the Lake Ontario - St. Lawrence River system

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Seglenieks, F.; Bruxer, J.; Fortin, V.; Noel, J.

    2017-12-01

    In the spring of 2017, water levels across Lake Ontario and the upper St. Lawrence River exceeded record high levels, leading to widespread flooding, damage to property, and controversy over regional dam operating protocols. Only a few years earlier, water levels on Lakes Superior, Michigan, and Huron (upstream of Lake Ontario) had dropped to record low levels leading to speculation that either anthropogenic controls or climate change were leading to chronic water loss from the Great Lakes. The contrast between low water level conditions across Earth's largest lake system from the late 1990s through 2013, and the rapid rise prior to the flooding in early 2017, underscores the challenges of quantifying and forecasting hydrologic impacts of rising regional air and water temperatures (and associated changes in lake evaporation) and persistent increases in long-term precipitation. Here, we assess the hydrologic conditions leading to the recent record flooding across the Lake Ontario - St. Lawrence River system, with a particular emphasis on understanding the extent to which those conditions were consistent with observed and anticipated changes in historical and future climate, and the extent to which those conditions could have been anticipated through improvements in seasonal climate outlooks and hydrological forecasts.

  15. Quality control of the RMS US flood model

    NASA Astrophysics Data System (ADS)

    Jankowfsky, Sonja; Hilberts, Arno; Mortgat, Chris; Li, Shuangcai; Rafique, Farhat; Rajesh, Edida; Xu, Na; Mei, Yi; Tillmanns, Stephan; Yang, Yang; Tian, Ye; Mathur, Prince; Kulkarni, Anand; Kumaresh, Bharadwaj Anna; Chaudhuri, Chiranjib; Saini, Vishal

    2016-04-01

    The RMS US flood model predicts the flood risk in the US with a 30 m resolution for different return periods. The model is designed for the insurance industry to estimate the cost of flood risk for a given location. Different statistical, hydrological and hydraulic models are combined to develop the flood maps for different return periods. A rainfall-runoff and routing model, calibrated with observed discharge data, is run with 10 000 years of stochastic simulated precipitation to create time series of discharge and surface runoff. The 100, 250 and 500 year events are extracted from these time series as forcing for a two-dimensional pluvial and fluvial inundation model. The coupling of all the different models which are run on the large area of the US implies a certain amount of uncertainty. Therefore, special attention is paid to the final quality control of the flood maps. First of all, a thorough quality analysis of the Digital Terrain model and the river network was done, as the final quality of the flood maps depends heavily on the DTM quality. Secondly, the simulated 100 year discharge in the major river network (600 000 km) is compared to the 100 year discharge derived using extreme value distribution of all USGS gauges with more than 20 years of peak values (around 11 000 gauges). Thirdly, for each gauge the modelled flood depth is compared to the depth derived from the USGS rating curves. Fourthly, the modelled flood depth is compared to the base flood elevation given in the FEMA flood maps. Fifthly, the flood extent is compared to the FEMA flood extent. Then, for historic events we compare flood extents and flood depths at given locations. Finally, all the data and spatial layers are uploaded on geoserver to facilitate the manual investigation of outliers. The feedback from the quality control is used to improve the model and estimate its uncertainty.

  16. 78 FR 75370 - Draft Supplemental Environmental Assessment and Finding of No Significant Impact for Flood...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ... Environmental Assessment and Finding of No Significant Impact for Flood Control Improvements to the Rio Grande... Supplemental Environmental Assessment (SEA) and Finding of No Significant Impact (FONSI). SUMMARY: Pursuant to... Significant Impact for Flood Control Improvements to the Rio Grande Canalization Project in Vado, New Mexico...

  17. Resesrvoir sedimentation rates in the Little Washita River experimental watershed, Oklahoma

    USDA-ARS?s Scientific Manuscript database

    The Washita River Basin (WRB) was one of eleven pilot watershed projects selected for construction of flood control reservoirs around the country as a result of the Flood Control Act of 1936. These reservoirs were implemented to prevent and manage soil erosion and flooding. A total of 45 reservoirs ...

  18. Evaluation of Flood Forecast and Warning in Elbe river basin - Impact of Forecaster's Strategy

    NASA Astrophysics Data System (ADS)

    Danhelka, Jan; Vlasak, Tomas

    2010-05-01

    Czech Hydrometeorological Institute (CHMI) is responsible for flood forecasting and warning in the Czech Republic. To meet that issue CHMI operates hydrological forecasting systems and publish flow forecast in selected profiles. Flood forecast and warning is an output of system that links observation (flow and atmosphere), data processing, weather forecast (especially NWP's QPF), hydrological modeling and modeled outputs evaluation and interpretation by forecaster. Forecast users are interested in final output without separating uncertainties of separate steps of described process. Therefore an evaluation of final operational forecasts was done for profiles within Elbe river basin produced by AquaLog forecasting system during period 2002 to 2008. Effects of uncertainties of observation, data processing and especially meteorological forecasts were not accounted separately. Forecast of flood levels exceedance (peak over the threshold) during forecasting period was the main criterion as flow increase forecast is of the highest importance. Other evaluation criteria included peak flow and volume difference. In addition Nash-Sutcliffe was computed separately for each time step (1 to 48 h) of forecasting period to identify its change with the lead time. Textual flood warnings are issued for administrative regions to initiate flood protection actions in danger of flood. Flood warning hit rate was evaluated at regions level and national level. Evaluation found significant differences of model forecast skill between forecasting profiles, particularly less skill was evaluated at small headwater basins due to domination of QPF uncertainty in these basins. The average hit rate was 0.34 (miss rate = 0.33, false alarm rate = 0.32). However its explored spatial difference is likely to be influenced also by different fit of parameters sets (due to different basin characteristics) and importantly by different impact of human factor. Results suggest that the practice of interactive model operation, experience and forecasting strategy differs between responsible forecasting offices. Warning is based on model outputs interpretation by hydrologists-forecaster. Warning hit rate reached 0.60 for threshold set to lowest flood stage of which 0.11 was underestimation of flood degree (miss 0.22, false alarm 0.28). Critical success index of model forecast was 0.34, while the same criteria for warning reached 0.55. We assume that the increase accounts not only to change of scale from single forecasting point to region for warning, but partly also to forecaster's added value. There is no official warning strategy preferred in the Czech Republic (f.e. tolerance towards higher false alarm rate). Therefore forecaster decision and personal strategy is of great importance. Results show quite successful warning for 1st flood level exceedance, over-warning for 2nd flood level, but under-warning for 3rd (highest) flood level. That suggests general forecaster's preference of medium level warning (2nd flood level is legally determined to be the start of the flood and flood protection activities). In conclusion human forecaster's experience and analysis skill increases flood warning performance notably. However society preference should be specifically addressed in the warning strategy definition to support forecaster's decision making.

  19. MINERVE flood warning and management project. What is computed, what is required and what is visualized?

    NASA Astrophysics Data System (ADS)

    Garcia Hernandez, J.; Boillat, J.-L.; Schleiss, A.

    2010-09-01

    During last decades several flood events caused important inundations in the Upper Rhone River basin in Switzerland. As a response to such disasters, the MINERVE project aims to improve the security by reducing damages in this basin. The main goal of this project is to predict floods in advance in order to obtain a better flow control during flood peaks taking advantage from the multireservoir system of the existing hydropower schemes. The MINERVE system evaluates the hydro-meteorological situation on the watershed and provides hydrological forecasts with a horizon from three to five days. It exploits flow measurements, data from reservoirs and hydropower plants as well as deterministic (COSMO-7 and COSMO-2) and ensemble (COSMO-LEPS) meteorological forecast from MeteoSwiss. The hydrological model is based on a semi-distributed concept, dividing the watershed in 239 sub-catchments, themselves decomposed in elevation bands in order to describe the temperature-driven processes related to snow and glacier melt. The model is completed by rivers and hydraulic works such as water intakes, reservoirs, turbines and pumps. Once the hydrological forecasts are calculated, a report provides the warning level at selected control points according to time, being a support to decision-making for preventive actions. A Notice, Alert or Alarm is then activated depending on the discharge thresholds defined by the Valais Canton. Preventive operation scenarios are then generated based on observed discharge at control points, meteorological forecasts from MeteoSwiss, hydrological forecasts from MINERVE and retention possibilities in the reservoirs. An update of the situation is done every time new data or new forecasts are provided, keeping last observations and last forecasts in the warning report. The forecasts can also be used for the evaluation of priority decisions concerning the management of hydropower plants for security purposes. Considering future inflows and reservoir levels, turbine and bottom outlet preventive operations can be proposed to the hydropower plants operators in order to store water inflows and to stop turbining during the peak flow. Appropriate operations can thus reduce the peak discharges in the Rhone River and its tributaries, limiting or avoiding damages. Results presentation in a clear and understandable way is an important goal of the project and is considered as one of the main focuses. The MINERVE project is developed in partnership by the Swiss Federal Office for Environment (FOEV), Services of Roads and Water courses as well as Water Power and Energy of the Wallis Canton and Service of Water, Land and Sanitation of the Vaud Canton. The Swiss Weather Service (MeteoSwiss) provides the weather forecasts and hydroelectric companies communicate specific information regarding the hydropower plants. Scientific developments are entrusted to two entities of the Ecole Polytechnique Fédérale de Lausanne (EPFL), the Hydraulic Constructions Laboratory (LCH) and the Ecohydrology Laboratory (ECHO), as well as to the Institute of Geomatics and Analysis of Risk (IGAR) of Lausanne University (UNIL).

  20. Streamflow model of Wisconsin River for estimating flood frequency and volume

    USGS Publications Warehouse

    Krug, William R.; House, Leo B.

    1980-01-01

    The 100-year flood peak at Wisconsin Dells, computed from the simulated, regulated streamflow data for the period 1915-76, is 82,000 cubic feet per second, including the effects of all the reservoirs in the river system, as they are currently operated. It also includes the effects of Lakes Du Bay, Petenwell, and Castle Rock which are significant for spring floods but are insignificant for summer or fall floods because they are normally maintained nearly full in the summer and fall and have very little storage for floodwaters. (USGS)

  1. Robust Flood Monitoring Using Sentinel-1 SAR Time Series

    NASA Astrophysics Data System (ADS)

    DeVries, B.; Huang, C.; Armston, J.; Huang, W.

    2017-12-01

    The 2017 hurricane season in North and Central America has resulted in unprecedented levels of flooding that have affected millions of people and continue to impact communities across the region. The extent of casualties and damage to property incurred by these floods underscores the need for reliable systems to track flood location, timing and duration to aid response and recovery efforts. While a diverse range of data sources provide vital information on flood status in near real-time, only spaceborne Synthetic Aperture Radar (SAR) sensors can ensure wall-to-wall coverage over large areas, mostly independently of weather conditions or site accessibility. The European Space Agency's Sentinel-1 constellation represents the only SAR mission currently providing open access and systematic global coverage, allowing for a consistent stream of observations over flood-prone regions. Importantly, both the data and pre-processing software are freely available, enabling the development of improved methods, tools and data products to monitor floods in near real-time. We tracked flood onset and progression in Southeastern Texas, Southern Florida, and Puerto Rico using a novel approach based on temporal backscatter anomalies derived from times series of Sentinel-1 observations and historic baselines defined for each of the three sites. This approach was shown to provide a more objective measure of flood occurrence than the simple backscatter thresholds often employed in operational flood monitoring systems. Additionally, the use of temporal anomaly measures allowed us to partially overcome biases introduced by varying sensor view angles and image acquisition modes, allowing increased temporal resolution in areas where additional targeted observations are available. Our results demonstrate the distinct advantages offered by data from operational SAR missions such as Sentinel-1 and NASA's planned NISAR mission, and call attention to the continuing need for SAR Earth Observation missions that provide systematic repeat observations to facilitate continuous monitoring of flood-affected regions.

  2. Assessing coastal flood risk and sea level rise impacts at New York City area airports

    NASA Astrophysics Data System (ADS)

    Ohman, K. A.; Kimball, N.; Osler, M.; Eberbach, S.

    2014-12-01

    Flood risk and sea level rise impacts were assessed for the Port Authority of New York and New Jersey (PANYNJ) at four airports in the New York City area. These airports included John F. Kennedy International, LaGuardia, Newark International, and Teterboro Airports. Quantifying both present day and future flood risk due to climate change and developing flood mitigation alternatives is crucial for the continued operation of these airports. During Hurricane Sandy in October 2012 all four airports were forced to shut down, in part due to coastal flooding. Future climate change and sea level rise effects may result in more frequent shutdowns and disruptions in travel to and from these busy airports. The study examined the effects of the 1%-annual-chance coastal flooding event for present day existing conditions and six different sea level rise scenarios at each airport. Storm surge model outputs from the Federal Emergency Management Agency (FEMA) provided the present day storm surge conditions. 50th and 90thpercentile sea level rise projections from the New York Panel on Climate Change (NPCC) 2013 report were incorporated into storm surge results using linear superposition methods. These projections were evaluated for future years 2025, 2035, and 2055. In addition to the linear superposition approach for storm surge at airports where waves are a potential hazard, one dimensional wave modeling was performed to get the total water level results. Flood hazard and flood depth maps were created based on these results. In addition to assessing overall flooding at each airport, major at-risk infrastructure critical to the continued operation of the airport was identified and a detailed flood vulnerability assessment was performed. This assessment quantified flood impacts in terms of potential critical infrastructure inundation and developed mitigation alternatives to adapt to coastal flooding and future sea level changes. Results from this project are advancing the PANYNJ's understanding of the effects of sea level rise on coastal flooding at the airports and guiding decision-making in the selection of effective adaptation actions. Given the importance of these airports to transportation, this project is advancing security and continuity of national and international commerce well into the 21st century.

  3. The Role of Eolian Sediment in the Preservation of Archeologic Sites Along the Colorado River Corridor in Grand Canyon National Park, Arizona

    USGS Publications Warehouse

    Draut, Amy E.; Rubin, David M.

    2008-01-01

    Since the closure of Glen Canyon Dam in 1963, the natural hydrologic and sedimentary systems along the Colorado River in the Grand Canyon reach have changed substantially (see, for example, Andrews, 1986; Johnson and Carothers, 1987; Webb and others, 1999b; Rubin and others, 2002; Topping and others, 2003; Wright and others, 2005; Hazel and others, 2006b). The dam has reduced the fluvial sediment supply at the upstream boundary of Grand Canyon National Park by about 95 percent. Regulation of river discharge by dam operations has important implications for the storage and redistribution of sediment in the Colorado River corridor. In the absence of floods, sediment is not deposited at elevations that regularly received sediment before dam closure. Riparian vegetation has colonized areas at lower elevations than in predam time when annual floods removed young vegetation (Turner and Karpiscak, 1980). Together, these factors have caused a systemwide decrease in the size and number of subaerially exposed fluvial sand deposits since the 1960s, punctuated by episodic aggradation during the exceptional high-flow intervals in 1983-84, 1996, and 2004 and by sediment input from occasional tributary floods (Beus and others, 1985; Schmidt and Graf, 1987; Kearsley and others, 1994; Hazel and others, 1999; Schmidt and others, 2004; Wright and others, 2005). When the Bureau of Reclamation sponsored the creation of the Glen Canyon Environmental Studies (GCES) research initiative in 1982, research objectives included physical and biologic resources, whereas the effects of dam operations on cultural resources were not addressed (Fairley and others, 1994; Fairley, 2003). In the early 1980s, it was widely believed that because few archeologic sites were preserved within the river's annual-flood zone, cultural features would not be greatly affected by dam operations. Recent studies, however, indicate that alterations in the flow and sediment load of the Colorado River by Glen Canyon Dam operations may affect archeologic sites within the river corridor, even above the annual flood limit (Hereford and others, 1993, Yeatts, 1996, 1997; Thompson and Potochnik, 2000; Draut and others, 2005). (The annual-flood zone is defined here by the mean annual predam flood of 2,410 m3/s; the 'predam flood limit', the highest elevation at which fluvial deposits are present locally, was approximately equivalent to a rare, major flood of 8,500 m3/s; Topping and others, 2003.) Of about 500 archeologic sites documented between Glen Canyon Dam and Separation Canyon (255 river miles), more than 330 are considered to be within the area of potential effect (APE) of dam operations (Fairley and others, 1994; Neal and others, 2000; Fairley, 2005). The APE was designated by the National Park Service (NPS) to include the area below the peak stage of the 1884 flood; though previously believed to have reached 8,490 m3/s, this flood was shown by Topping and others (2003) to have peaked at 5,940 m3/s. Archeologic research and monitoring in Grand Canyon National Park focus increasingly on the potential effects of Glen Canyon Dam operations on the landscape in which these sites exist. Many archeologic sites in or on sedimentary deposits are being eroded, owing to eolian deflation and gully incision (Leap and others, 2000; Neal and others, 2000; Fairley, 2003, 2005). Hereford and others (1993) first suggested that gully incision of sedimentary deposits, and the base level to which small drainage systems respond, were linked to dam operations; they hypothesized that pronounced arroyo incision, which occurs during rainfall runoff, was caused by lowering of the effective base level at the mouths of ephemeral drainages to meet the new postdam elevation of high-flow sediment deposition, about 3 to 4 m below the lowest predam alluvial terraces. Thompson and Potochnik (2000) modified that hypothesis to include the restorative effects of fluvial deposition in the mouths of gullies and ar

  4. Interpretation of the Cosmo-SkyMed observations of the 2009 Tanaro river flood

    NASA Astrophysics Data System (ADS)

    Pulvirenti, L.; Pierdicca, N.; Chini, M.; Guerriero, L.

    2010-09-01

    The potentiality of spaceborne Synthetic Aperture Radar (SAR) for flood mapping was demonstrated by several past investigations. The synoptic view and the capability to operate in almost all-weather conditions and during both day and night are the key features that make the SAR images useful for monitoring inundation events. In addition, their high spatial resolution allows a fairly accurate delineation of the flood extent. The Cosmo-SkyMed (COnstellation of small Satellites for Mediterranean basin Observation) mission offers a unique opportunity to obtain radar images characterized by short revisit time, so that an operational use of Cosmo-SkyMed data in flood management systems can be envisaged. However, the interpretation of SAR images of flooded areas might be complex, because of the dependence of the radar response from flooded pixels on land cover, system parameters and environmental conditions. An example of radar data whose interpretation is not straightforward is represented by the Cosmo-SkyMed observations of the overflowing of the Tanaro river, close to the city of Alessandria (Northern Italy), occurred on April, 27-28 2009. Within the framework of a study, funded by the Italian Space Agency (ASI), aiming at evaluating the usefulness of Earth Observation techniques into operational flood prediction and assessment chains (named OPERA, civil protection from floods), ASI provided a number of Cosmo-SkyMed images of the Tanaro basin. In this study, we use three images that were acquired during three days in succession: from April, 29 to May, 1 2009, as well as other two acquisitions performed two weeks later (May, 16 and May, 17 2009), when the effects of the flood were disappeared. In this work, we firstly extract information on the spatial extension of homogeneous objects present in the scene through a segmentation procedure. In this way we cope with the speckle noise characteristic of SAR images and produce, from the multi-temporal series of five imagery we employ, a map formed by homogeneous regions. Among these regions we single out some areas presenting a fairly complex temporal evolution of the radar return. To correctly explain the multi-temporal radar signature of these segments, we use of a well-established electromagnetic model. Some reference multi-temporal backscattering trends are analyzed with the aid of the theoretical model to associate the segments to the classes of flooded or non-flooded areas. Using these reference trends as a training set, a classification algorithm is also developed to generate a map of the flood evolution. This study aims at demonstrating the importance and the feasibility of a method based on a joint use of a well-established electromagnetic scattering model and an advanced image processing technique to reliably interpreting SAR observations of floods.

  5. Quantifying the key factors that create road flooding.

    DOT National Transportation Integrated Search

    2013-01-01

    Road flooding is a serious operational hazard in the low-lying areas of southern Louisiana. This hazard is especially acute for the regions emergency evacuation routes, which must be accessible by coastal residents who plan evacuations ahead of an...

  6. Hydrologic ensembles based on convection-permitting precipitation nowcasts for flash flood warnings

    NASA Astrophysics Data System (ADS)

    Demargne, Julie; Javelle, Pierre; Organde, Didier; de Saint Aubin, Céline; Ramos, Maria-Helena

    2017-04-01

    In order to better anticipate flash flood events and provide timely warnings to communities at risk, the French national service in charge of flood forecasting (SCHAPI) is implementing a national flash flood warning system for small-to-medium ungauged basins. Based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014), the current version of the system runs a simplified hourly distributed hydrologic model with operational radar-gauge QPE grids from Météo-France at a 1-km2 resolution every 15 minutes. This produces real-time peak discharge estimates along the river network, which are subsequently compared to regionalized flood frequency estimates to provide warnings according to the AIGA-estimated return period of the ongoing event. To further extend the effective warning lead time while accounting for hydrometeorological uncertainties, the flash flood warning system is being enhanced to include Météo-France's AROME-NWC high-resolution precipitation nowcasts as time-lagged ensembles and multiple sets of hydrological regionalized parameters. The operational deterministic precipitation forecasts, from the nowcasting version of the AROME convection-permitting model (Auger et al. 2015), were provided at a 2.5-km resolution for a 6-hr forecast horizon for 9 significant rain events from September 2014 to June 2016. The time-lagged approach is a practical choice of accounting for the atmospheric forecast uncertainty when no extensive forecast archive is available for statistical modelling. The evaluation on 781 French basins showed significant improvements in terms of flash flood event detection and effective warning lead-time, compared to warnings from the current AIGA setup (without any future precipitation). We also discuss how to effectively communicate verification information to help determine decision-relevant warning thresholds for flood magnitude and probability. Javelle, P., Demargne, J., Defrance, D., Arnaud, P., 2014. Evaluating flash flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, doi: 10.1080/02626667.2014.923970 Auger, L., Dupont, O., Hagelin, S., Brousseau, P., Brovelli, P., 2015. AROME-NWC: a new nowcasting tool based on an operational mesoscale forecasting system. Quarterly Journal of the Royal Meteorological Society, 141: 1603-1611, doi:10.1002/qj.2463

  7. The Irma-sponge Program: Methodologies For Sustainable Flood Risk Management Along The Rhine and Meuse Rivers

    NASA Astrophysics Data System (ADS)

    Hooijer, A.; van Os, A. G.

    Recent flood events and socio-economic developments have increased the awareness of the need for improved flood risk management along the Rhine and Meuse Rivers. In response to this, the IRMA-SPONGE program incorporated 13 research projects in which over 30 organisations from all 6 River Basin Countries co-operated. The pro- gram is financed partly by the European INTERREG Rhine-Meuse Activities (IRMA). The main aim of IRMA-SPONGE is defined as: "The development of methodologies and tools to assess the impact of flood risk reduction measures and of land-use and climate change scenarios. This to support the spatial planning process in establish- ing alternative strategies for an optimal realisation of the hydraulic, economical and ecological functions of the Rhine and Meuse River Basins." Further important objec- tives are to promote transboundary co-operation in flood risk management by both scientific and management organisations, and to promote public participation in flood management issues. The projects in the program are grouped in three clusters, looking at measures from different scientific angles. The results of the projects in each cluster have been evaluated to define recommendations for flood risk management; some of these outcomes call for a change to current practices, e.g.: 1. (Flood Risk and Hydrol- ogy cluster): hydrological changes due to climate change exceed those due to further land use change, and are significant enough to necessitate a change in flood risk man- agement strategies if the currently claimed protection levels are to be sustained. 2. (Flood Protection and Ecology cluster): to not only provide flood protection but also enhance the ecological quality of rivers and floodplains, new flood risk management concepts ought to integrate ecological knowledge from start to finish, with a clear perspective on the type of nature desired and the spatial and time scales considered. 3. (Flood Risk Management and Spatial Planning cluster): extreme floods can not be prevented by taking mainly upstream measures; significant and space-consuming lo- cal measures will therefore be needed in the lower Rhine and Meuse deltas. However, there is also a need for improved flood risk management upstream, which calls for better spatial planning procedures. More detailed information on the IRMA-SPONGE program can be found on our website: www.irma-sponge.org.

  8. Integrating Fluvial and Oceanic Drivers in Operational Flooding Forecasts for San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Herdman, Liv; Erikson, Li; Barnard, Patrick; Kim, Jungho; Cifelli, Rob; Johnson, Lynn

    2016-04-01

    The nine counties that make up the San Francisco Bay area are home to 7.5 million people and these communties are susceptible to flooding along the bay shoreline and inland creeks that drain to the bay. A forecast model that integrates fluvial and oceanic drivers is necessary for predicting flooding in this complex urban environment. The U.S. Geological Survey ( USGS) and National Weather Service (NWS) are developing a state-of-the-art flooding forecast model for the San Francisco Bay area that will predict watershed and ocean-based flooding up to 72 hours in advance of an approaching storm. The model framework for flood forecasts is based on the USGS-developed Coastal Storm Modeling System (CoSMoS) that was applied to San Francisco Bay under the Our Coast Our Future project. For this application, we utilize Delft3D-FM, a hydrodynamic model based on a flexible mesh grid, to calculate water levels that account for tidal forcing, seasonal water level anomalies, surge and in-Bay generated wind waves from the wind and pressure fields of a NWS forecast model, and tributary discharges from the Research Distributed Hydrologic Model (RDHM), developed by the NWS Office of Hydrologic Development. The flooding extent is determined by overlaying the resulting water levels onto a recently completed 2-m digital elevation model of the study area which best resolves the extensive levee and tidal marsh systems in the region. Here we present initial pilot results of hindcast winter storms in January 2010 and December 2012, where the flooding is driven by oceanic and fluvial factors respectively. We also demonstrate the feasibility of predicting flooding on an operational time scale that incorporates both atmospheric and hydrologic forcings.

  9. Factors Increasing Vulnerability to Health Effects before, during and after Floods

    PubMed Central

    Lowe, Dianne; Ebi, Kristie L.; Forsberg, Bertil

    2013-01-01

    Identifying the risk factors for morbidity and mortality effects pre-, during and post-flood may aid the appropriate targeting of flood-related adverse health prevention strategies. We conducted a systematic PubMed search to identify studies examining risk factors for health effects of precipitation-related floods, among Organisation for Economic Co-Operation and Development (OECD) member countries. Research identifying flood-related morbidity and mortality risk factors is limited and primarily examines demographic characteristics such as age and gender. During floods, females, elderly and children appear to be at greater risk of psychological and physical health effects, while males between 10 to 29 years may be at greater risk of mortality. Post-flood, those over 65 years and males are at increased risk of physical health effects, while females appear at greater risk of psychological health effects. Other risk factors include previous flood experiences, greater flood depth or flood trauma, existing illnesses, medication interruption, and low education or socio-economic status. Tailoring messages to high-risk groups may increase their effectiveness. Target populations differ for morbidity and mortality effects, and differ pre-, during, and post-flood. Additional research is required to identify the risk factors associated with pre- and post-flood mortality and post-flood morbidity, preferably using prospective cohort studies. PMID:24336027

  10. Factors increasing vulnerability to health effects before, during and after floods.

    PubMed

    Lowe, Dianne; Ebi, Kristie L; Forsberg, Bertil

    2013-12-11

    Identifying the risk factors for morbidity and mortality effects pre-, during and post-flood may aid the appropriate targeting of flood-related adverse health prevention strategies. We conducted a systematic PubMed search to identify studies examining risk factors for health effects of precipitation-related floods, among Organisation for Economic Co-Operation and Development (OECD) member countries. Research identifying flood-related morbidity and mortality risk factors is limited and primarily examines demographic characteristics such as age and gender. During floods, females, elderly and children appear to be at greater risk of psychological and physical health effects, while males between 10 to 29 years may be at greater risk of mortality. Post-flood, those over 65 years and males are at increased risk of physical health effects, while females appear at greater risk of psychological health effects. Other risk factors include previous flood experiences, greater flood depth or flood trauma, existing illnesses, medication interruption, and low education or socio-economic status. Tailoring messages to high-risk groups may increase their effectiveness. Target populations differ for morbidity and mortality effects, and differ pre-, during, and post-flood. Additional research is required to identify the risk factors associated with pre- and post-flood mortality and post-flood morbidity, preferably using prospective cohort studies.

  11. Optimizing Reservoir Operation to Adapt to the Climate Change

    NASA Astrophysics Data System (ADS)

    Madadgar, S.; Jung, I.; Moradkhani, H.

    2010-12-01

    Climate change and upcoming variation in flood timing necessitates the adaptation of current rule curves developed for operation of water reservoirs as to reduce the potential damage from either flood or draught events. This study attempts to optimize the current rule curves of Cougar Dam on McKenzie River in Oregon addressing some possible climate conditions in 21th century. The objective is to minimize the failure of operation to meet either designated demands or flood limit at a downstream checkpoint. A simulation/optimization model including the standard operation policy and a global optimization method, tunes the current rule curve upon 8 GCMs and 2 greenhouse gases emission scenarios. The Precipitation Runoff Modeling System (PRMS) is used as the hydrology model to project the streamflow for the period of 2000-2100 using downscaled precipitation and temperature forcing from 8 GCMs and two emission scenarios. An ensemble of rule curves, each associated with an individual scenario, is obtained by optimizing the reservoir operation. The simulation of reservoir operation, for all the scenarios and the expected value of the ensemble, is conducted and performance assessment using statistical indices including reliability, resilience, vulnerability and sustainability is made.

  12. Operational flash flood forecasting platform based on grid technology

    NASA Astrophysics Data System (ADS)

    Thierion, V.; Ayral, P.-A.; Angelini, V.; Sauvagnargues-Lesage, S.; Nativi, S.; Payrastre, O.

    2009-04-01

    Flash flood events of south of France such as the 8th and 9th September 2002 in the Grand Delta territory caused important economic and human damages. Further to this catastrophic hydrological situation, a reform of flood warning services have been initiated (set in 2006). Thus, this political reform has transformed the 52 existing flood warning services (SAC) in 22 flood forecasting services (SPC), in assigning them territories more hydrological consistent and new effective hydrological forecasting mission. Furthermore, national central service (SCHAPI) has been created to ease this transformation and support local services in their new objectives. New functioning requirements have been identified: - SPC and SCHAPI carry the responsibility to clearly disseminate to public organisms, civil protection actors and population, crucial hydrologic information to better anticipate potential dramatic flood event, - a new effective hydrological forecasting mission to these flood forecasting services seems essential particularly for the flash floods phenomenon. Thus, models improvement and optimization was one of the most critical requirements. Initially dedicated to support forecaster in their monitoring mission, thanks to measuring stations and rainfall radar images analysis, hydrological models have to become more efficient in their capacity to anticipate hydrological situation. Understanding natural phenomenon occuring during flash floods mainly leads present hydrological research. Rather than trying to explain such complex processes, the presented research try to manage the well-known need of computational power and data storage capacities of these services. Since few years, Grid technology appears as a technological revolution in high performance computing (HPC) allowing large-scale resource sharing, computational power using and supporting collaboration across networks. Nowadays, EGEE (Enabling Grids for E-science in Europe) project represents the most important effort in term of grid technology development. This paper presents an operational flash flood forecasting platform which have been developed in the framework of CYCLOPS European project providing one of virtual organizations of EGEE project. This platform has been designed to enable multi-simulations processes to ease forecasting operations of several supervised watersheds on Grand Delta (SPC-GD) territory. Grid technology infrastructure, in providing multiple remote computing elements enables the processing of multiple rainfall scenarios, derived to the original meteorological forecasting transmitted by Meteo-France, and their respective hydrological simulations. First results show that from one forecasting scenario, this new presented approach can permit simulations of more than 200 different scenarios to support forecasters in their aforesaid mission and appears as an efficient hydrological decision-making tool. Although, this system seems operational, model validity has to be confirmed. So, further researches are necessary to improve models core to be more efficient in term of hydrological aspects. Finally, this platform could be an efficient tool for developing others modelling aspects as calibration or data assimilation in real time processing.

  13. Composite Environmental Statement for Operations and Maintenance of Four Projects in the Mermentau Basin, Louisiana.

    DTIC Science & Technology

    1981-10-01

    heavy metals, or petroleum hydrocarbons in the tissues of marine organisms was evaluated by laboratory methodologies for the winter (120C) and...for trans- port of petroleum , marine shells, supply boats for these industries, and commercial fishing boats. Flood control protection will continue to...emergent salt domes, are entirely Quaternary (Pleistocene and Holocene) in age. d. Economic geology. Sand and petroleum are the principal pro- ducts

  14. Big Creek Flood Control Project, Cleveland, Ohio. Phase II. General Design Memorandum.

    DTIC Science & Technology

    1979-08-01

    enviromental measure to -minii polluted leachate, if say, from flowing down the embashment. 1. Comnt 12(a). The freboard on the chute will be revised...cost ratio); (3) operational dependability; and (4) socio -environmental effects, including external damage effects. Each of these alternative plans is...schedule for the utility relocations will not be in conflict with the construction schedule for the major components of the project outlined above. 112

  15. Boussinesq Modeling for Inlets, Harbors & Structures (Bouss-2D)

    DTIC Science & Technology

    2014-10-27

    subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 27...work applications. It may be used from deep to shallow water to simulate the nonlinear wave processes of interest in the open coast, nearshore zone...design, and operation of coastal navigation and flooding projects. It provides key engineering estimates for coastal and hydraulic engineering practice

  16. Operational Hydrological Forecasting During the Iphex-iop Campaign - Meet the Challenge

    NASA Technical Reports Server (NTRS)

    Tao, Jing; Wu, Di; Gourley, Jonathan; Zhang, Sara Q.; Crow, Wade; Peters-Lidard, Christa D.; Barros, Ana P.

    2016-01-01

    An operational streamflow forecasting testbed was implemented during the Intense Observing Period (IOP) of the Integrated Precipitation and Hydrology Experiment (IPHEx-IOP) in May-June 2014 to characterize flood predictability in complex terrain. Specifically, hydrological forecasts were issued daily for 12 headwater catchments in the Southern Appalachians using the Duke Coupled surface-groundwater Hydrology Model (DCHM) forced by hourly atmospheric fields and QPFs (Quantitative Precipitation Forecasts) produced by the NASA-Unified Weather Research and Forecasting (NU-WRF) model. Previous day hindcasts forced by radar-based QPEs (Quantitative Precipitation Estimates) were used to provide initial conditions for present day forecasts. This manuscript first describes the operational testbed framework and workflow during the IPHEx-IOP including a synthesis of results. Second, various data assimilation approaches are explored a posteriori (post-IOP) to improve operational (flash) flood forecasting. Although all flood events during the IOP were predicted by the IPHEx operational testbed with lead times of up to 6 h, significant errors of over- and, or under-prediction were identified that could be traced back to the QPFs and subgrid-scale variability of radar QPEs. To improve operational flood prediction, three data-merging strategies were pursued post-IOP: (1) the spatial patterns of QPFs were improved through assimilation of satellite-based microwave radiances into NU-WRF; (2) QPEs were improved by merging raingauge observations with ground-based radar observations using bias-correction methods to produce streamflow hindcasts and associated uncertainty envelope capturing the streamflow observations, and (3) river discharge observations were assimilated into the DCHM to improve streamflow forecasts using the Ensemble Kalman Filter (EnKF), the fixed-lag Ensemble Kalman Smoother (EnKS), and the Asynchronous EnKF (i.e. AEnKF) methods. Both flood hindcasts and forecasts were significantly improved by assimilating discharge observations into the DCHM. Specifically, Nash-Sutcliff Efficiency (NSE) values as high as 0.98, 0.71 and 0.99 at 15-min time-scales were attained for three headwater catchments in the inner mountain region demonstrating that the assimilation of discharge observations at the basins outlet can reduce the errors and uncertainties in soil moisture at very small scales. Success in operational flood forecasting at lead times of 6, 9, 12 and 15 h was also achieved through discharge assimilation with NSEs of 0.87, 0.78, 0.72 and 0.51, respectively. Analysis of experiments using various data assimilation system configurations indicates that the optimal assimilation time window depends both on basin properties and storm-specific space-time-structure of rainfall, and therefore adaptive, context-aware configurations of the data assimilation system are recommended to address the challenges of flood prediction in headwater basins.

  17. Operational hydrological forecasting during the IPHEx-IOP campaign - Meet the challenge

    NASA Astrophysics Data System (ADS)

    Tao, Jing; Wu, Di; Gourley, Jonathan; Zhang, Sara Q.; Crow, Wade; Peters-Lidard, Christa; Barros, Ana P.

    2016-10-01

    An operational streamflow forecasting testbed was implemented during the Intense Observing Period (IOP) of the Integrated Precipitation and Hydrology Experiment (IPHEx-IOP) in May-June 2014 to characterize flood predictability in complex terrain. Specifically, hydrological forecasts were issued daily for 12 headwater catchments in the Southern Appalachians using the Duke Coupled surface-groundwater Hydrology Model (DCHM) forced by hourly atmospheric fields and QPFs (Quantitative Precipitation Forecasts) produced by the NASA-Unified Weather Research and Forecasting (NU-WRF) model. Previous day hindcasts forced by radar-based QPEs (Quantitative Precipitation Estimates) were used to provide initial conditions for present day forecasts. This manuscript first describes the operational testbed framework and workflow during the IPHEx-IOP including a synthesis of results. Second, various data assimilation approaches are explored a posteriori (post-IOP) to improve operational (flash) flood forecasting. Although all flood events during the IOP were predicted by the IPHEx operational testbed with lead times of up to 6 h, significant errors of over- and, or under-prediction were identified that could be traced back to the QPFs and subgrid-scale variability of radar QPEs. To improve operational flood prediction, three data-merging strategies were pursued post-IOP: (1) the spatial patterns of QPFs were improved through assimilation of satellite-based microwave radiances into NU-WRF; (2) QPEs were improved by merging raingauge observations with ground-based radar observations using bias-correction methods to produce streamflow hindcasts and associated uncertainty envelope capturing the streamflow observations, and (3) river discharge observations were assimilated into the DCHM to improve streamflow forecasts using the Ensemble Kalman Filter (EnKF), the fixed-lag Ensemble Kalman Smoother (EnKS), and the Asynchronous EnKF (i.e. AEnKF) methods. Both flood hindcasts and forecasts were significantly improved by assimilating discharge observations into the DCHM. Specifically, Nash-Sutcliff Efficiency (NSE) values as high as 0.98, 0.71 and 0.99 at 15-min time-scales were attained for three headwater catchments in the inner mountain region demonstrating that the assimilation of discharge observations at the basin's outlet can reduce the errors and uncertainties in soil moisture at very small scales. Success in operational flood forecasting at lead times of 6, 9, 12 and 15 h was also achieved through discharge assimilation with NSEs of 0.87, 0.78, 0.72 and 0.51, respectively. Analysis of experiments using various data assimilation system configurations indicates that the optimal assimilation time window depends both on basin properties and storm-specific space-time-structure of rainfall, and therefore adaptive, context-aware configurations of the data assimilation system are recommended to address the challenges of flood prediction in headwater basins.

  18. Sediment Transport During Three Controlled-Flood Experiments on the Colorado River Downstream from Glen Canyon Dam, with Implications for Eddy-Sandbar Deposition in Grand Canyon National Park

    USGS Publications Warehouse

    Topping, David J.; Rubin, David M.; Grams, Paul E.; Griffiths, Ronald E.; Sabol, Thomas A.; Voichick, Nicholas; Tusso, Robert B.; Vanaman, Karen M.; McDonald, Richard R.

    2010-01-01

    Three large-scale field experiments were conducted on the Colorado River downstream from Glen Canyon Dam in 1996, 2004, and 2008 to evaluate whether artificial (that is, controlled) floods released from the dam could be used in conjunction with the sand supplied by downstream tributaries to rebuild and sustainably maintain eddy sandbars in the river in Grand Canyon National Park. Higher suspended-sand concentrations during a controlled flood will lead to greater eddy-sandbar deposition rates. During each controlled flood experiment, sediment-transport and bed-sediment data were collected to evaluate sediment-supply effects on sandbar deposition. Data collection substantially increased in spatial and temporal density with each subsequent experiment. The suspended- and bed-sediment data collected during all three controlled-flood experiments are presented and analyzed in this report. Analysis of these data indicate that in designing the hydrograph of a controlled flood that is optimized for sandbar deposition in a given reach of the Colorado River, both the magnitude and the grain size of the sand supply must be considered. Because of the opposing physical effects of bed-sand area and bed-sand grain size in regulating suspended-sand concentration, larger amounts of coarser sand on the bed can lead to lower suspended-sand concentrations, and thus lower rates of sandbar deposition, during a controlled flood than can lesser amounts of finer sand on the bed. Although suspended-sand concentrations were higher at all study sites during the 2008 controlled-flood experiment (CFE) than during either the 1996 or 2004 CFEs, these higher concentrations were likely associated with more sand on the bed of the Colorado River in only lower Glen Canyon. More sand was likely present on the bed of the river in Grand Canyon during the 1996 CFE than during either the 2004 or 2008 CFEs. The question still remains as to whether sandbars can be sustained in the Colorado River in Grand Canyon National Park through use of controlled floods in conjunction with typical amounts and grain sizes of sand supplied by the tributaries that enter the Colorado River downstream from Glen Canyon Dam.

  19. Towards River Rehabilitation as AN Integrated Approach to Flood Management in Asian Cities

    NASA Astrophysics Data System (ADS)

    Higgitt, David L.

    Flood management in Asian cities has conventionally been approached through structural intervention where floods are regarded as a threat requiring control through engineering infrastructure. Such a command and control paradigm represents a marked transition from the way that monsoon flood regimes have been traditionally perceived across Asia. Rapid urbanization and climate change has imposed increasingly difficult flood management challenges as an extension of impermeable surfaces generates rapid runoff and flash flooding, while cities expand into flood-prone areas. Property and communities are placed at enhanced risk. Urbanization reallocates risk as channel and floodplain modification influences flood regimes, while demands for flood protection at certain locations can redistribute risk to other areas. An increasing concern about flood hazard across Asian cities questions whether conventional solutions reliant on structural intervention are sustainable. Such questioning is mirrored by an alternative paradigm of rehabilitation in integrated river basin management — a recognition that restoring and sustaining functional river ecosystems with high biodiversity is one of the greatest challenges facing society. Rehabilitation initiatives demand a new approach to river basin management which encourage interdisciplinary activity, particularly between engineers, hydrologists, geomorphologists and ecologists. The paper sets out some preliminary ideas from a research project investigating the potential for river rehabilitation as a central tenet of flood management, with a particular focus on Asian cities.

  20. Flood Extent Mapping Using Dual-Polarimetric SENTINEL-1 Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Jo, M.-J.; Osmanoglu, B.; Zhang, B.; Wdowinski, S.

    2018-04-01

    Rapid generation of synthetic aperture radar (SAR) based flood extent maps provide valuable data in disaster response efforts thanks to the cloud penetrating ability of microwaves. We present a method using dual-polarimetric SAR imagery acquired on Sentinel-1a/b satellites. A false-colour map is generated using pre- and post- disaster imagery, allowing operators to distinguish between existing standing water pre-flooding, and recently flooded areas. The method works best in areas of standing water and provides mixed results in urban areas. A flood depth map is also estimated by using an external DEM. We will present the methodology, it's estimated accuracy as well as investigations into improving the response in urban areas.

  1. 76 FR 59121 - Notice of Availability of the Record of Decision for the Final Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... lined open channels; grade control structures; bridges and drainage crossings; building pads; and water quality control facilities (sedimentation control, flood control, debris, and water quality basins). The... facilities (sedimentation control, flood debris, and water quality basins); regular and ongoing maintenance...

  2. Flood frequency approach in a Mediterranean Flash Flood basin. A case study in the Besòs catchment

    NASA Astrophysics Data System (ADS)

    Velasco, D.; Zanon, F.; Corral, C.; Sempere-Torres, D.; Borga, M.

    2009-04-01

    Flash floods are one of the most devastating natural disasters in the Mediterranean areas. In particular, the region of Catalonia (North-East Spain) is one of the most affected by flash floods in the Iberian Peninsula. The high rainfall intensities generating these events, the specific terrain characteristics giving rise to very fast hydrological responses and the high variability in space and time of both rain and land surface, are the main features of FF and also the main cause of their extreme complexity. Distributed hydrological models have been developed to increase the flow forecast resolution in order to implement effective operational warning systems. Some studies have shown how the distributed-models accuracy is highly sensitive to reduced computational grid scale, so, hydrological model uncertainties must be studied. In these conditions, an estimation of the modeling uncertainty (whatever the accuracy is) becomes highly valuable information to enhance our ability to predict the occurrence of flash flooding. The statistical-distributed modeling approach (Reed, 2004) is proposed in the present study to simulate floods on a small basin and account for hydrologic modeling uncertainty. The Besòs catchment (1020 km2), near Barcelona, has been selected in this study to apply the proposed flood frequency methodology. Hydrometeorological data is available for 11 rain-gauges and 6 streamflow gauges in the last 12 years, and a total of 9 flood events have been identified and analyzed in this study. The DiCHiTop hydrological model (Corral, 2004) was developed to fit operational requirements in the Besòs catchment: distributed, robust and easy to implement. It is a grid-based model that works at a given resolution (here at 1 × 1 km2, the hydrological cell), defining a simplified drainage system at this scale. A loss function is applied at the hydrological cell resolution, provided by a coupled storage model between the SCS model (Mockus, 1957) in urban areas and Topmodel (Beven & Kirkby, 1979) in rural and forested areas. The distributed hydrological model is calibrated using observed streamflow information from the available events. Simulated peak discharges are then compared to observed discharges in these gauged cells, so the relative forecast errors are estimated for all the events. Flood frequency is introduced in the analysis in order to derive probability functions for relative flow error. The next step consists in the extension of the flood frequency error patterns to the corresponding subbasins so it is possible to characterize the accuracy of the simulation in the uncalibrated cells (typically ungaged basins). As a result, the operational flood simulation at every cell in the Besos catchment can be checked and validated (in a first approach) in terms of occurrence. Thus, the distributed warning system can take advantage of the modeling uncertainties for operational tasks.

  3. Climate Change Adaptation in the Western U.S.: the Case for Dynamic Rule Curves in Water Resources Management

    NASA Astrophysics Data System (ADS)

    Lee, S.; Hamlet, A. F.; Burges, S. J.

    2008-12-01

    Climate change in the Western U.S. will bring systematic hydrologic changes affecting many water resources systems. Successful adaptation to these changes, which will be ongoing through the 21st century, will require the 'rebalancing' of competing system objectives such as water supply, flood control, hydropower production, and environmental services in response to hydrologic (and other) changes. Although fixed operating policies for the operation of reservoirs has been a traditional approach to water management in the 20th century, the rapid pace of projected climate shifts (~0.5 F per decade), and the prohibitive costs of recursive policy intervention to mitigate impacts, suggest that more sophisticated approaches will be needed to cope with climate change on a long term basis. The use of 'dynamic rule curves' is an approach that maintains some of the key characteristics of current water management practice (reservoir rule curves) while avoiding many of the fundamental drawbacks of traditional water resources management strategies in a non-stationary climate. In this approach, water resources systems are optimized for each operational period using ensemble streamflow and/or water demand forecasts. The ensemble of optimized reservoir storage traces are then analyzed to produce a set of unique reservoir rule curves for each operational period reflecting the current state of the system. The potential advantage of this approach is that hydrologic changes associated with climate change (such as systematically warmer temperatures) can be captured explicitly in operational hydrologic forecasts, which would in turn inform the optimized reservoir management solutions, creating water resources systems that are largely 'self tending' as the climate system evolves. Furthermore, as hydrologic forecasting systems improve (e.g. in response to improved ENSO forecasting or other scientific advances), so does the performance of reservoir operations. An example of the approach is given for flood control in the Columbia River basin.

  4. Using Automatic Control Approach In Detention Storages For Storm Water Management In An Urban Watershed

    NASA Astrophysics Data System (ADS)

    Goyal, A.; Yadav, H.; Tyagi, H.; Gosain, A. K.; Khosa, R.

    2017-12-01

    Increased imperviousness due to rapid urbanization have changed the urban hydrological cycle. As watersheds are urbanized, infiltration and groundwater recharge have decreased, surface runoff hydrograph shows higher peak indicating large volumes of surface runoff in lesser time durations. The ultimate panacea is to reduce the peak of hydrograph or increase the retention time of surface flow. SWMM is widely used hydrologic and hydraulic software which helps to simulate the urban storm water management with the provision to apply different techniques to prevent flooding. A model was setup to simulate the surface runoff and channel flow in a small urban catchment. It provides the temporal and spatial information of flooding in a catchment. Incorporating the detention storages in the drainage network helps achieve reduced flooding. Detention storages provided with predefined algorithms were for controlling the pluvial flooding in urban watersheds. The algorithm based on control theory, automated the functioning of detention storages ensuring that the storages become active on occurrence of flood in the storm water drains and shuts down when flooding is over. Detention storages can be implemented either at source or at several downstream control points. The proposed piece of work helps to mitigate the wastage of rainfall water, achieve desirable groundwater and attain a controlled urban storm water management system.

  5. Communicating uncertainty in hydrological forecasts: mission impossible?

    NASA Astrophysics Data System (ADS)

    Ramos, Maria-Helena; Mathevet, Thibault; Thielen, Jutta; Pappenberger, Florian

    2010-05-01

    Cascading uncertainty in meteo-hydrological modelling chains for forecasting and integrated flood risk assessment is an essential step to improve the quality of hydrological forecasts. Although the best methodology to quantify the total predictive uncertainty in hydrology is still debated, there is a common agreement that one must avoid uncertainty misrepresentation and miscommunication, as well as misinterpretation of information by users. Several recent studies point out that uncertainty, when properly explained and defined, is no longer unwelcome among emergence response organizations, users of flood risk information and the general public. However, efficient communication of uncertain hydro-meteorological forecasts is far from being a resolved issue. This study focuses on the interpretation and communication of uncertain hydrological forecasts based on (uncertain) meteorological forecasts and (uncertain) rainfall-runoff modelling approaches to decision-makers such as operational hydrologists and water managers in charge of flood warning and scenario-based reservoir operation. An overview of the typical flow of uncertainties and risk-based decisions in hydrological forecasting systems is presented. The challenges related to the extraction of meaningful information from probabilistic forecasts and the test of its usefulness in assisting operational flood forecasting are illustrated with the help of two case-studies: 1) a study on the use and communication of probabilistic flood forecasting within the European Flood Alert System; 2) a case-study on the use of probabilistic forecasts by operational forecasters from the hydroelectricity company EDF in France. These examples show that attention must be paid to initiatives that promote or reinforce the active participation of expert forecasters in the forecasting chain. The practice of face-to-face forecast briefings, focusing on sharing how forecasters interpret, describe and perceive the model output forecasted scenarios, is essential. We believe that the efficient communication of uncertainty in hydro-meteorological forecasts is not a mission impossible. Questions remaining unanswered in probabilistic hydrological forecasting should not neutralize the goal of such a mission, and the suspense kept should instead act as a catalyst for overcoming the remaining challenges.

  6. Flood forecasting with DDD-application of a parsimonious hydrological model in operational flood forecasting in Norway

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Haddeland, Ingjerd

    2014-05-01

    A new parameter-parsimonious rainfall-runoff model, DDD (Distance Distribution Dynamics) has been run operationally at the Norwegian Flood Forecasting Service for approximately a year. DDD has been calibrated for, altogether, 104 catchments throughout Norway, and provide runoff forecasts 8 days ahead on a daily temporal resolution driven by precipitation and temperature from the meteorological forecast models AROME (48 hrs) and EC (192 hrs). The current version of DDD differs from the standard model used for flood forecasting in Norway, the HBV model, in its description of the subsurface and runoff dynamics. In DDD, the capacity of the subsurface water reservoir M, is the only parameter to be calibrated whereas the runoff dynamics is completely parameterised from observed characteristics derived from GIS and runoff recession analysis. Water is conveyed through the soils to the river network by waves with celerities determined by the level of saturation in the catchment. The distributions of distances between points in the catchment to the nearest river reach and of the river network give, together with the celerities, distributions of travel times, and, consequently unit hydrographs. DDD has 6 parameters less to calibrate in the runoff module than the HBV model. Experiences using DDD show that especially the timing of flood peaks has improved considerably and in a comparison between DDD and HBV, when assessing timeseries of 64 years for 75 catchments, DDD had a higher hit rate and a lower false alarm rate than HBV. For flood peaks higher than the mean annual flood the median hit rate is 0.45 and 0.41 for the DDD and HBV models respectively. Corresponding number for the false alarm rate is 0.62 and 0.75 For floods over the five year return interval, the median hit rate is 0.29 and 0.28 for the DDD and HBV models, respectively with false alarm rates equal to 0.67 and 0.80. During 2014 the Norwegian flood forecasting service will run DDD operationally at a 3h temporal resolution. Running DDD at a 3h resolution will give a better prediction of flood peaks in small catchments, where the averaging over 24 hrs will lead to a underestimation of high events, and we can better describe the progress floods in larger catchments. Also, at a 3h temporal resolution we make better use of the meteorological forecasts that for long have been provided at a very detailed temporal resolution.

  7. Satellite data-relay activities in Arizona

    USGS Publications Warehouse

    Boner, F.C.; Blee, J.W.; Shope, W.G.

    1985-01-01

    The U.S. Geological Survey (USGS) Arizona District collects data from automated streamflow stations for a wide variety of uses. Data from these stations are provided to Federal, State, and local agencies that have a responsibility to issue flood warnings; to generate forecasts of water availability; to monitor flow to insure compliance with treaties and other legal mandates; and to manage reservoirs for hydropower, flood abatement, and municipal and irrigation water supply. In the mid-1970's, the escalation of data collection costs and a need for more timely data led the Arizona District to examine alternatives for remote data acquisition. On the basis of successful data communications experiments with NASA 's Landsat satellite, an operational system for satellite-data relay was developed in 1976 using the National Oceanic and Atmospheric Administrations 's (NOAA) Geostationary Operational Environmental Satellite (GOES). A total of 62 data collection platforms (DCP's) was operated in 1983. Satellite telemetry operations are controlled at the remote data-collection stations by small battery-operated data collection platforms. The DCP 's periodically collect data from the sensors, store the data in computer memory, and at preset times transmit the data to the GOES satellite. The satellite retransmits the data to Earth where a ground-receive station transmits or transfers the data by land communications to the USGS computer in Reston, Virginia, for processing. The satellite relay transfers the data from sensor to computer in minutes; therefore, the data are available to users on a near real-time basis. (Author 's abstract)

  8. Spatial discontinuity and temporal evolution of channel morphology along a mixed bedrock-alluvial river, upper Drôme River, southeast France: Contingent responses to external and internal controls

    NASA Astrophysics Data System (ADS)

    Toone, J.; Rice, S. P.; Piégay, H.

    2014-01-01

    The rehabilitation of degraded river channels is often guided by assumptions of continuity, yet in response to spatial and temporal variations in controlling conditions rivers typically display discontinuous response in space and time. This study examines the development of a 5 km reach of the Drôme River, S.E. France, characterised by alternating alluvial and bedrock zones that are separated by abrupt downstream transitions. This reach is representative of the Drôme River as a whole, and other rivers in the European Alps where braided channel planforms have been replaced by more complex, discontinuous morphologies. The primary aims are to understand how this spatial complexity has developed on the Drôme; evaluate how temporal channel changes have been affected by local factors, particularly bedrock exposures, and by long-term, catchment-scale changes in sediment supply and the flood activity; and consider the implications of this discontinuous geomorphology for reach management. The development of geomorphological zonation is examined by documenting sequential changes in channel planform between seven periods, using aerial photography (1948-2006) and by analysing change in bed elevation from profiles surveyed in 1928, 2003 and 2005. Between 1948 and 2001 bedrock exposed in the channel bed and along the floodplain margins defined discontinuities in sediment connectivity that were largely responsible for the configuration of channel zones. The impact of floods on this system was not proportional to flood magnitude. A modest flood in 1978 was an important event that, by incision and avulsion at key locations, defined a pattern of zonation that persisted until the end of the study in 2006. During the final 5 years of the study, alluvial zones that previously responded to large floods by widening underwent narrowing, despite the occurrence of a large flood, and led to an overall reduction in width variance. This resulted from progressive incision beneath and disconnection from formerly active channel areas, in response to long-term, catchment-scale reductions in sediment supply and flood frequency. In 2006 the pattern of zonation remains distinct, disguising this recent change in channel response and underlining the need for long-term and sequential perspectives of channel development to fully understand the processes in operation; contemporary snapshots of channel form may be misleading. Understanding interactions between inherent channel complexity and prevailing flow and sediment conditions, and how this shapes channel response to individual floods, is essential when interpreting future trajectories of channel change and likely response to management intervention.

  9. Development of Integrated Flood Analysis System for Improving Flood Mitigation Capabilities in Korea

    NASA Astrophysics Data System (ADS)

    Moon, Young-Il; Kim, Jong-suk

    2016-04-01

    Recently, the needs of people are growing for a more safety life and secure homeland from unexpected natural disasters. Flood damages have been recorded every year and those damages are greater than the annual average of 2 trillion won since 2000 in Korea. It has been increased in casualties and property damages due to flooding caused by hydrometeorlogical extremes according to climate change. Although the importance of flooding situation is emerging rapidly, studies related to development of integrated management system for reducing floods are insufficient in Korea. In addition, it is difficult to effectively reduce floods without developing integrated operation system taking into account of sewage pipe network configuration with the river level. Since the floods result in increasing damages to infrastructure, as well as life and property, structural and non-structural measures should be urgently established in order to effectively reduce the flood. Therefore, in this study, we developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting for supporting synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information in Korea. Keywords: Flooding, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011686022015)" Rural Development Administration, Republic of Korea

  10. Shoreline to Height (S2H): an algorithm to monitor reservoirs' water height from satellite images. A flood risk management application

    NASA Astrophysics Data System (ADS)

    Cenci, Luca; Boni, Giorgio; Pulvirenti, Luca; Gabellani, Simone; Gardella, Fabio; Squicciarino, Giuseppe; Pierdicca, Nazzareno; Benedetto, Catia

    2016-04-01

    In a reservoir, water level monitoring is important for emergency management purposes. This information can be used to estimate the degree of filling of the water body, thus helping decision makers in flood control operations. Furthermore, if assimilated in hydrological models and coupled with rainfall forecasts, this information can be used for flood forecast and early warning. In many cases, water level is not known (e.g. data-scarce environments), or not shared by operators. Remote sensing may allow overcoming these limitations, enabling its estimation. The objective of this work is to present the Shoreline to Height (S2H) algorithm, developed to retrieve the height of the water stored in reservoirs from satellite images. To this aim, some auxiliary data are needed: a DEM and the maximum/minimum height that can be reached by the water. In data-scarce environments, these information can be easily obtained on the Internet (e.g. free, worldwide DEM and design data for artificial reservoirs). S2H was tested with different satellite data, both optical and SAR (Landsat and Cosmo SkyMed®-CSK®) in order to assess the impact of different sensors on the final estimates. The study area was the Place-Moulin Lake (Valle d'Aosta-VdA, Italy), where it is present a monitoring network that can provide reliable ground-truths for validating the algorithm and assessing its accuracy. When the algorithm was developed, it was assumed to be in absence of any "official"-auxiliary data. Therefore, two DEMs (SRTM 1 arc-second and ASTER GDEM) were used to evaluate their performances. The maximum/minimum water height values were found on the website of VdA Region. The S2H is based on three steps: i) satellite data preprocessing (Landsat: atmospheric correction; CSK®: geocoding and speckle filtering); ii) water mask generation (using a thresholding and region growing algorithm) and shoreline extraction; iii) retrieval of the shoreline height according to the reference DEMs (adopting a statistical approach). The algorithm was tested for different water heights and results were compared against ground-truths. Findings showed that the combination CSK®-SRTM provided more reliable results. It was also found that the overall quality of the estimates increases as the water height increases, reaching an accuracy up to some centimetres. This result is particularly interesting for flood control applications, where it is important to be accurate when the reservoir's degree of filling is high. The potentialities of S2H for operational hydrology purposes were tested in a real-case simulation, in which the river discharge's prediction downstream of the dam was needed for flood risk management purposes. The water height value retrieved with S2H was assimilated within a semi-distributed, event-based, hydrological model (DRiFt) by using a simple direct insertion algorithm. DRiFt is usually run in operative way on the reservoir by using ground-truths as input data. The result of the data assimilation experiment was compared with the "real", operative run of the model. Findings showed a high agreement between the two simulations, proving the utility/quality of the S2H algorithm. "Project carried out using CSK® Products, © of the Italian Space Agency (ASI), delivered under a license to use by ASI."

  11. Establishment of Rio Grande cottonwood seedlings using micro-irrigation of xeric flood plain sites

    Treesearch

    David R. Dreesen; Gregory A. Fenchel; Joseph G. Fraser

    1999-01-01

    Flood control, irrigation structures, and flow control practices on the Middle Rio Grande have prevented the deposition of sediments and hydrologic conditions conducive to the germination and establishment of Rio Grande cottonwood (Populus fremontii S. Wats.). The Los Lunas Plant Materials Center has been investigating the use of micro-irrigation systems on xeric flood...

  12. Anthropogenic impact on flood-risk: a large-scale assessment for planning controlled inundation strategies along the River Po

    NASA Astrophysics Data System (ADS)

    Domeneghetti, Alessio; Castellarin, Attilio; Brath, Armando

    2013-04-01

    The European Flood Directive (2007/60/EC) has fostered the development of innovative and sustainable approaches and methodologies for flood-risk mitigation and management. Furthermore, concerning flood-risk mitigation, the increasing awareness of how the anthropogenic pressures (e.g. demographic and land-use dynamics, uncontrolled urban and industrial expansion on flood-prone area) could strongly increase potential flood damages and losses has triggered a paradigm shift from "defending the territory against flooding" (e.g. by means of levee system strengthening and heightening) to "living with floods" (e.g. promoting compatible land-uses or adopting controlled flooding strategies of areas located outside the main embankments). The assessment of how socio-economic dynamics may influence flood-risk represents a fundamental skill that should be considered for planning a sustainable industrial and urban development of flood-prone areas, reducing their vulnerability and therefore minimizing socio-economic and ecological losses due to large flood events. These aspects, which are of fundamental importance for Institutions and public bodies in charge of Flood Directive requirements, need to be considered through a holistic approach at river basin scale. This study focuses on the evaluation of large-scale flood-risk mitigation strategies for the middle-lower reach of River Po (~350km), the longest Italian river and the largest in terms of streamflow. Due to the social and economical importance of the Po River floodplain (almost 40% of the total national gross product results from this area), our study aims at investigating the potential of combining simplified vulnerability indices with a quasi-2D model for the definition of sustainable and robust flood-risk mitigation strategies. Referring to past (1954) and recent (2006) land-use data sets (e.g. CORINE) we propose simplified vulnerability indices for assessing potential flood-risk of industrial and urbanized flood prone areas taking into account altimetry and population density, and we analyze the modification of flood-risk occurred during last decades due to the demographic dynamics of the River Po floodplains. Flood hazard associated to a high magnitude event (i.e. return period of about 500 year) was estimated by means of a quasi-2D hydraulic model set up for the middle-lower portion of the Po River and for its major tributaries. The results of the study highlight how coupling a large-scale numerical model with the proposed flood-vulnerability indices could be a useful tool for decision-makers when they are called to define sustainable spatial development plans for the study area, or when they need to identify priorities in the organization of civil protection actions during a major flood event that could include the necessity of controlled flooding of flood-prone areas located outside the main embankment system.

  13. Geomorphic variation in riparian tree mortality and stream coarse woody debris recruitment from record flooding in a coastal plain stream

    Treesearch

    Brian J. Palik; Stephen W. Golladay; P. Charles Goebel; Brad W. Taylor

    1998-01-01

    Large floods are an important process controlling the structure and function of stream ecosystems. One of the ways floods affect streams is through the recruitment of coarse woody debris from stream-side forests. Stream valley geomorphology may mediate this interaction by altering flood velocity, depth, and duration. Little research has examined how floods and...

  14. Mapping technological and biophysical capacities of watersheds to regulate floods

    USGS Publications Warehouse

    Mogollón, Beatriz; Villamagna, Amy M.; Frimpong, Emmanuel A.; Angermeier, Paul

    2016-01-01

    Flood regulation is a widely valued and studied service provided by watersheds. Flood regulation benefits people directly by decreasing the socio-economic costs of flooding and indirectly by its positive impacts on cultural (e.g., fishing) and provisioning (e.g., water supply) ecosystem services. Like other regulating ecosystem services (e.g., pollination, water purification), flood regulation is often enhanced or replaced by technology, but the relative efficacy of natural versus technological features in controlling floods has scarcely been examined. In an effort to assess flood regulation capacity for selected urban watersheds in the southeastern United States, we: (1) used long-term flood records to assess relative influence of technological and biophysical indicators on flood magnitude and duration, (2) compared the widely used runoff curve number (RCN) approach for assessing the biophysical capacity to regulate floods to an alternative approach that acknowledges land cover and soil properties separately, and (3) mapped technological and biophysical flood regulation capacities based on indicator importance-values derived for flood magnitude and duration. We found that watersheds with high biophysical (via the alternative approach) and technological capacities lengthened the duration and lowered the peak of floods. We found the RCN approach yielded results opposite that expected, possibly because it confounds soil and land cover processes, particularly in urban landscapes, while our alternative approach coherently separates these processes. Mapping biophysical (via the alternative approach) and technological capacities revealed great differences among watersheds. Our study improves on previous mapping of flood regulation by (1) incorporating technological capacity, (2) providing high spatial resolution (i.e., 10-m pixel) maps of watershed capacities, and (3) deriving importance-values for selected landscape indicators. By accounting for technology that enhances or replaces natural flood regulation, our approach enables watershed managers to make more informed choices in their flood-control investments.

  15. Flash-flood potential assessment and mapping by integrating the weights-of-evidence and frequency ratio statistical methods in GIS environment - case study: Bâsca Chiojdului River catchment (Romania)

    NASA Astrophysics Data System (ADS)

    Costache, Romulus; Zaharia, Liliana

    2017-06-01

    Given the significant worldwide human and economic losses caused due to floods annually, reducing the negative consequences of these hazards is a major concern in development strategies at different spatial scales. A basic step in flood risk management is identifying areas susceptible to flood occurrences. This paper proposes a methodology allowing the identification of areas with high potential of accelerated surface run-off and consequently, of flash-flood occurrences. The methodology involves assessment and mapping in GIS environment of flash flood potential index (FFPI), by integrating two statistical methods: frequency ratio and weights-of-evidence. The methodology was applied for Bâsca Chiojdului River catchment (340 km2), located in the Carpathians Curvature region (Romania). Firstly, the areas with torrential phenomena were identified and the main factors controlling the surface run-off were selected (in this study nine geographical factors were considered). Based on the features of the considered factors, many classes were set for each of them. In the next step, the weights of each class/category of the considered factors were determined, by identifying their spatial relationships with the presence or absence of torrential phenomena. Finally, the weights for each class/category of geographical factors were summarized in GIS, resulting the FFPI values for each of the two statistical methods. These values were divided into five classes of intensity and were mapped. The final results were used to estimate the flash-flood potential and also to identify the most susceptible areas to this phenomenon. Thus, the high and very high values of FFPI characterize more than one-third of the study catchment. The result validation was performed by (i) quantifying the rate of the number of pixels corresponding to the torrential phenomena considered for the study (training area) and for the results' testing (validating area) and (ii) plotting the ROC (receiver operating characteristics) curve.

  16. A Study of the Optimal Planning Model for Reservoir Sustainable Management- A Case Study of Shihmen Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ho, C. C.; Chang, L. C.

    2017-12-01

    The reservoir management in Taiwan faces lots of challenge. Massive sediment caused by landslide were flushed into reservoir, which will decrease capacity, rise the turbidity, and increase supply risk. Sediment usually accompanies nutrition that will cause eutrophication problem. Moreover, the unevenly distribution of rainfall cause water supply instability. Hence, how to ensure sustainable use of reservoirs has become an important task in reservoir management. The purpose of the study is developing an optimal planning model for reservoir sustainable management to find out an optimal operation rules of reservoir flood control and sediment sluicing. The model applies Genetic Algorithms to combine with the artificial neural network of hydraulic analysis and reservoir sediment movement. The main objective of operation rules in this study is to prevent reservoir outflow caused downstream overflow, minimum the gap between initial and last water level of reservoir, and maximum sluicing sediment efficiency. A case of Shihmen reservoir was used to explore the different between optimal operating rule and the current operation of the reservoir. The results indicate optimal operating rules tended to open desilting tunnel early and extend open duration during flood discharge period. The results also show the sluicing sediment efficiency of optimal operating rule is 36%, 44%, 54% during Typhoon Jangmi, Typhoon Fung-Wong, and Typhoon Sinlaku respectively. The results demonstrate the optimal operation rules do play a role in extending the service life of Shihmen reservoir and protecting the safety of downstream. The study introduces a low cost strategy, alteration of operation reservoir rules, into reservoir sustainable management instead of pump dredger in order to improve the problem of elimination of reservoir sediment and high cost.

  17. Recent changes in flood damage in the United States from observations and ACME model

    NASA Astrophysics Data System (ADS)

    Leng, G.; Leung, L. R.

    2017-12-01

    Despite efforts to mitigate flood hazards in flood-prone areas, survey- and report-based flood databases show that flood damage has increased and emerged as one of the most costly disaster in the United States since the 1990s. Understanding the mechanism driving the changes in flood damage is therefore critical for reducing flood risk. In this study, we first conduct a comprehensive analysis of the changing characteristics of flood damage at local, state and country level. Results show a significant increasing trend in the number of flood hazards, causing economic losses of up to $7 billion per year. The ratio of flood events that caused tangible economical cost to the total flood events has exhibited a non-significant increasing trend before 2007 followed by a significant decrease, indicating a changing vulnerability to floods. Analysis also reveals distinct spatial and temporal patterns in the threshold intensity of flood hazards with tangible economical cost. To understand the mechanism behind the increasing flood damage, we develop a flood damage economic model coupled with the integrated hydrological modeling system of ACME that features a river routing model with an inundation parameterization and a water use and regulation model. The model is evaluated over the country against historical records. Several numerical experiments are then designed to explore the mechanisms behind the recent changes in flood damage from the perspective of flood hazard, exposure and vulnerability, which constitute flood damage. The role of human activities such as reservoir operations and water use in modifying regional floods are also explored using the new tool, with the goal of improving understanding and modeling of vulnerability to flood hazards.

  18. Proteomic analysis of soybean hypocotyl during recovery after flooding stress.

    PubMed

    Khan, Mudassar Nawaz; Sakata, Katsumi; Komatsu, Setsuko

    2015-05-21

    Soybean is a nutritionally important crop, but exhibits reduced growth and yields under flooding stress. To investigate soybean responses during post-flooding recovery, a gel-free proteomic technique was used to examine the protein profile in the hypocotyl. Two-day-old soybeans were flooded for 2 days and hypocotyl was collected under flooding and during the post-flooding recovery period. A total of 498 and 70 proteins were significantly changed in control and post-flooding recovering soybeans, respectively. Based on proteomic and clustering analyses, three proteins were selected for mRNA expression and enzyme activity assays. Pyruvate kinase was increased under flooding, but gradually decreased during post-flooding recovery period at protein abundance, mRNA, and enzyme activity levels. Nucleotidylyl transferase was decreased under flooding and increased during post-flooding recovery at both mRNA expression and enzyme activity levels. Beta-ketoacyl reductase 1 was increased under flooding and decreased during recovery at protein abundance and mRNA expression levels, but its enzyme activity gradually increased during the post-flooding recovery period. These results suggest that pyruvate kinase, nucleotidylyl transferase, and beta-ketoacyl reductase play key roles in post-flooding recovery in soybean hypocotyl by promoting glycolysis for the generation of ATP and regulation of secondary metabolic pathways. This study analyzed post-flooding recovery response mechanisms in soybean hypocotyl, which is a model organ for studying secondary growth, using a gel-free proteomic technique. Mass spectrometry analysis of proteins extracted from soybean hypocotyls identified 20 common proteins between control and flooding-stressed soybeans that changed significantly in abundance over time. The hypocotyl proteins that changed during post-flooding recovery were assigned to protein, development, secondary metabolism, and glycolysis categories. The analysis revealed that three proteins, pyruvate kinase, nucleotidylyl transferase, and beta-ketoacyl reductase, were increased in hypocotyl under flooding conditions and during post-flooding recovery. The proteins are involved in glycolysis, nucleotide synthesis and amino acid activation, and complex fatty acid biosynthesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Applications of ERTS-1 Data Collection System (DCS) in the Arizona Regional Ecological Test Site (ARETS). [water management, streamflow rates, flood control

    NASA Technical Reports Server (NTRS)

    Schumann, H. H. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The DCS water-stage data from the USGS streamflow gaging station on the Verde River near Camp Verde furnished information sufficient for the accurate computation of daily mean streamflow rates during the first 2 months of operation. Daily mean flow rates computed from the DCS data agreed with those computed from the digital recorder data within + or - 5% during periods of stable or slowly changing flow and within + or - 10% during periods of rapidly changing high flow. The SRP was furnished near-real time DCS information on snow moisture content and streamflow rates for use in the management and operation of the multiple-use reservoir system. The SRP, by prudent water management and the use of near-real time hydrologic data furnished by microwave and ERTS DCS telemetry, was successful in anticipating the amount of flow into the Salt and Verde Rivers and in the subsequent release of water at rates that did not create flooding in metropolitan Phoenix. Only minor flooding occurred along the Gila River west of Phoenix. According to the Maricopa County Civil Defense agency, wage and salary losses of about $11,400,000 resulted from closing of roads across the Salt River in the winter and spring of 1972-73; however, the number and duration of the closing were minimized by use of DCS data.

  20. Flood-tracking chart for the Chattahoochee River Basin in Metropolitan Atlanta, Georgia

    USGS Publications Warehouse

    LaFontaine, Jacob H.; McCallum, Brian E.; Stamey, Timothy C.; Wipperfurth, Caryl J.

    2006-01-01

    The U.S. Geological Survey (USGS)—in cooperation with other Federal, State, and local agencies—operates a flood monitoring system in the Chattahoochee River Basin. This system is a network of 35 automated river stage stations that transmit stage data through satellite telemetry to the USGS Georgia Water Science Center in Atlanta. During floods, the public and emergency response agencies use this information to make decisions about road closures, evacuations, and other public safety issues. The emergency phone number for your area is listed under “Local flood emergency phone numbers.”

  1. The potential of remotely sensed soil moisture for operational flood forecasting

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Karssenberg, D.; de Roo, A.; de Jong, S.; Bierkens, M. F.

    2013-12-01

    Nowadays, remotely sensed soil moisture is readily available from multiple space born sensors. The high temporal resolution and global coverage make these products very suitable for large-scale land-surface applications. The potential to use these products in operational flood forecasting has thus far not been extensively studied. In this study, we evaluate the added value of assimilated remotely sensed soil moisture for the European Flood Awareness System (EFAS) and its potential to improve the timing and height of the flood peak and low flows. EFAS is used for operational flood forecasting in Europe and uses a distributed hydrological model for flood predictions for lead times up to 10 days. Satellite-derived soil moisture from ASCAT, AMSR-E and SMOS is assimilated into the EFAS system for the Upper Danube basin and results are compared to assimilation of only discharge observations. Discharge observations are available at the outlet and at six additional locations throughout the catchment. To assimilate soil moisture data into EFAS, an Ensemble Kalman Filter (EnKF) is used. Information on the spatial (cross-) correlation of the errors in the satellite products, derived from a detailed model-satellite soil moisture comparison study, is included to ensure optimal performance of the EnKF. For the validation, additional discharge observations not used in the EnKF are used as an independent validation dataset. Our results show that the accuracy of flood forecasts is increased when more discharge observations are used in that the Mean Absolute Error (MAE) of the ensemble mean is reduced by 65%. The additional inclusion of satellite data results in a further increase of the performance: forecasts of base flows are better and the uncertainty in the overall discharge is reduced, shown by a 10% reduction in the MAE. In addition, floods are predicted with a higher accuracy and the Continuous Ranked Probability Score (CRPS) shows a performance increase of 10-15% on average, compared to assimilation of discharge only. The rank histograms show that the forecast is not biased. The timing errors in the flood predictions are decreased when soil moisture data is used and imminent floods can be forecasted with skill one day earlier. In conclusion, our study shows that assimilation of satellite soil moisture increases the performance of flood forecasting systems for large catchments, like the Upper Danube. The additional gain is highest when discharge observations from both upstream and downstream areas are used in combination with the soil moisture data. These results show the potential of future soil moisture missions with a higher spatial resolution like SMAP to improve near-real time flood forecasting in large catchments.

  2. Mental health impacts of flooding: a controlled interrupted time series analysis of prescribing data in England.

    PubMed

    Milojevic, Ai; Armstrong, Ben; Wilkinson, Paul

    2017-10-01

    There is emerging evidence that people affected by flooding suffer adverse impacts on their mental well-being, mostly based on self-reports. We examined prescription records for drugs used in the management of common mental disorder among primary care practices located in the vicinity of recent large flood events in England, 2011-2014. A controlled interrupted time series analysis was conducted of the number of prescribing items for antidepressant drugs in the year before and after the flood onset. Pre-post changes were compared by distance of the practice from the inundated boundaries among 930 practices located within 10 km of a flood. After control for deprivation and population density, there was an increase of 0.59% (95% CI 0.24 to 0.94) prescriptions in the postflood year among practices located within 1 km of a flood over and above the change observed in the furthest distance band. The increase was greater in more deprived areas. This study suggests an increase in prescribed antidepressant drugs in the year after flooding in primary care practices close to recent major floods in England. The degree to which the increase is actually concentrated in those flooded can only be determined by more detailed linkage studies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Use and Availability of Continuous Streamflow Records in Tennessee

    DTIC Science & Technology

    1988-01-01

    which are operated for a water budget study of Reelfoot Lake and two stations for a base flow-groundwater study at the Department of Energy’s Oak...continuous lake stage; (3) 5 flood hydrograph; (4) 75 low-flow partial-record; (5) 84 crest-stage partial-record; and (6) 6 flood-profile partial...operated for planning or design purposes. There is one gage at each of three water-supply studies, five stations are used in a lake sedimentation

  4. Mississippi River channel response to the Bonnet Carré Spillway opening in the 2011 flood and its implications for the design and operation of river diversions

    NASA Astrophysics Data System (ADS)

    Allison, Mead A.; Vosburg, Brian M.; Ramirez, Michael T.; Meselhe, Ehab A.

    2013-01-01

    SummaryThe large Mississippi River flood in 2011 was notable in the lowermost Louisiana, USA reach for requiring operation of several flood control structures to reduce stress on artificial levees: the largest diversion went through the gated Bonnet Carré Spillway, which was opened for 42 days in May and June. The removal of approximately 20% of the total flood discharge from the river provided an opportunity to examine the impact of large water diversion on the sediment transport capacity of large rivers. Boat-based, acoustic and water and bed sampling surveys were conducted in the Mississippi River channel adjacent to the Spillway immediately prior to the opening of the structure, at full capacity, and immediately following (June 2011) and 1 year after (June 2012) closure. The surveys were designed to examine (1) elevation change of the channel bed due to scour or aggradation of sediment, and (2) suspended and bedload transport variability upriver and downriver of the Spillway. The results indicate that approximately 9.1 million tons of sand were deposited on the channel bed immediately downriver of the water exit pathway and extending at least 13 km downriver at a rapidly and progressively reducing magnitude per river kilometer. The surficial deposit was of finer grain size than the lateral sand bars in the channel upriver of the structure. We argue the deposit was largely delivered from suspension derived from the observed deflation of lateral bars upstream of the diversion point, rather than from sand arriving from the drainage basin. Approximately 69% of the 2011 flood deposit was removed from the 13 km downstream reach between June 2011 and June 2012. We conclude that the source of the channel deposit was the reduction in stream power, and, thus, in the sediment transport capacity of the Mississippi, associated with the water withdrawal. The re-entrainment of this material in the following flood year indicates the system rapidly re-establishes an equilibrium to pre-opening conditions. Future diversions in the river for coastal restoration will have to address this issue to maintain a deep draft navigation channel in the Mississippi River.

  5. Nodes on ropes: a comprehensive data and control flow for steering ensemble simulations.

    PubMed

    Waser, Jürgen; Ribičić, Hrvoje; Fuchs, Raphael; Hirsch, Christian; Schindler, Benjamin; Blöschl, Günther; Gröller, M Eduard

    2011-12-01

    Flood disasters are the most common natural risk and tremendous efforts are spent to improve their simulation and management. However, simulation-based investigation of actions that can be taken in case of flood emergencies is rarely done. This is in part due to the lack of a comprehensive framework which integrates and facilitates these efforts. In this paper, we tackle several problems which are related to steering a flood simulation. One issue is related to uncertainty. We need to account for uncertain knowledge about the environment, such as levee-breach locations. Furthermore, the steering process has to reveal how these uncertainties in the boundary conditions affect the confidence in the simulation outcome. Another important problem is that the simulation setup is often hidden in a black-box. We expose system internals and show that simulation steering can be comprehensible at the same time. This is important because the domain expert needs to be able to modify the simulation setup in order to include local knowledge and experience. In the proposed solution, users steer parameter studies through the World Lines interface to account for input uncertainties. The transport of steering information to the underlying data-flow components is handled by a novel meta-flow. The meta-flow is an extension to a standard data-flow network, comprising additional nodes and ropes to abstract parameter control. The meta-flow has a visual representation to inform the user about which control operations happen. Finally, we present the idea to use the data-flow diagram itself for visualizing steering information and simulation results. We discuss a case-study in collaboration with a domain expert who proposes different actions to protect a virtual city from imminent flooding. The key to choosing the best response strategy is the ability to compare different regions of the parameter space while retaining an understanding of what is happening inside the data-flow system. © 2011 IEEE

  6. Additional Cultural Resources Investigations at Selected Portions of the State-Road Coulee - Pammel Creek Flood Control Project at La Crosse, Wisconsin

    DTIC Science & Technology

    1986-05-01

    Mammals: Ten mammal taxa are represented in the Lc176 assemblage. Two of these, the short-tailed shrew (Blarina brevivicauda) and a vole (Microtus sp...ADDITIONAL CULTURAL RESOURCES INVESTIGATIONS AT SELECTED PORTIONS OF THE STATE-ROAD COULEE - PAMMEL CREEK FLOOD CONTROL PROJECT ATm LA CROSSE...INVESTIGATIONS AT SELECTED PORTIONS OF THE STATE-ROAD COULEE- PAMMEL CREEK FLOOD CONTROL PROJECT AT LA CROSSE. WISCONSIN 12. PERSONAL AUTHOR(S

  7. Flood Foresight: A near-real time flood monitoring and forecasting tool for rapid and predictive flood impact assessment

    NASA Astrophysics Data System (ADS)

    Revilla-Romero, Beatriz; Shelton, Kay; Wood, Elizabeth; Berry, Robert; Bevington, John; Hankin, Barry; Lewis, Gavin; Gubbin, Andrew; Griffiths, Samuel; Barnard, Paul; Pinnell, Marc; Huyck, Charles

    2017-04-01

    The hours and days immediately after a major flood event are often chaotic and confusing, with first responders rushing to mobilise emergency responders, provide alleviation assistance and assess loss to assets of interest (e.g., population, buildings or utilities). Preparations in advance of a forthcoming event are becoming increasingly important; early warning systems have been demonstrated to be useful tools for decision markers. The extent of damage, human casualties and economic loss estimates can vary greatly during an event, and the timely availability of an accurate flood extent allows emergency response and resources to be optimised, reduces impacts, and helps prioritise recovery. In the insurance sector, for example, insurers are under pressure to respond in a proactive manner to claims rather than waiting for policyholders to report losses. Even though there is a great demand for flood inundation extents and severity information in different sectors, generating flood footprints for large areas from hydraulic models in real time remains a challenge. While such footprints can be produced in real time using remote sensing, weather conditions and sensor availability limit their ability to capture every single flood event across the globe. In this session, we will present Flood Foresight (www.floodforesight.com), an operational tool developed to meet the universal requirement for rapid geographic information, before, during and after major riverine flood events. The tool provides spatial data with which users can measure their current or predicted impact from an event - at building, basin, national or continental scales. Within Flood Foresight, the Screening component uses global rainfall predictions to provide a regional- to continental-scale view of heavy rainfall events up to a week in advance, alerting the user to potentially hazardous situations relevant to them. The Forecasting component enhances the predictive suite of tools by providing a local-scale view of the extent and depth of possible riverine flood events several days in advance by linking forecast river flow from a hydrological model to a global flood risk map. The Monitoring component provides a similar local-scale view of a flood inundation extent but in near real time, as an event unfolds, by combining the global flood risk map with observed river gauge telemetry. Immediately following an event, the maximum extent of the flood is also generated. Users of Flood Foresight will be able to receive current and forecast flood extents and depth information via API into their own GIS or analytics software. The set of tools is currently operational for the UK and Europe; the methods presented can be applied globally, allowing provision of service to any country or region. This project was supported by InnovateUK under the Solving Business Problems with Environmental Data competition.

  8. A pan-African medium-range ensemble flood forecast system

    NASA Astrophysics Data System (ADS)

    Thiemig, Vera; Bisselink, Bernard; Pappenberger, Florian; Thielen, Jutta

    2015-04-01

    The African Flood Forecasting System (AFFS) is a probabilistic flood forecast system for medium- to large-scale African river basins, with lead times of up to 15 days. The key components are the hydrological model LISFLOOD, the African GIS database, the meteorological ensemble predictions of the ECMWF and critical hydrological thresholds. In this study the predictive capability is investigated, to estimate AFFS' potential as an operational flood forecasting system for the whole of Africa. This is done in a hindcast mode, by reproducing pan-African hydrological predictions for the whole year of 2003 where important flood events were observed. Results were analysed in two ways, each with its individual objective. The first part of the analysis is of paramount importance for the assessment of AFFS as a flood forecasting system, as it focuses on the detection and prediction of flood events. Here, results were verified with reports of various flood archives such as Dartmouth Flood Observatory, the Emergency Event Database, the NASA Earth Observatory and Reliefweb. The number of hits, false alerts and missed alerts as well as the Probability of Detection, False Alarm Rate and Critical Success Index were determined for various conditions (different regions, flood durations, average amount of annual precipitations, size of affected areas and mean annual discharge). The second part of the analysis complements the first by giving a basic insight into the prediction skill of the general streamflow. For this, hydrological predictions were compared against observations at 36 key locations across Africa and the Continuous Rank Probability Skill Score (CRPSS), the limit of predictability and reliability were calculated. Results showed that AFFS detected around 70 % of the reported flood events correctly. In particular, the system showed good performance in predicting riverine flood events of long duration (> 1 week) and large affected areas (> 10 000 km2) well in advance, whereas AFFS showed limitations for small-scale and short duration flood events. Also the forecasts showed on average a good reliability, and the CRPSS helped identifying regions to focus on for future improvements. The case study for the flood event in March 2003 in the Sabi Basin (Zimbabwe and Mozambique) illustrated the good performance of AFFS in forecasting timing and severity of the floods, gave an example of the clear and concise output products, and showed that the system is capable of producing flood warnings even in ungauged river basins. Hence, from a technical perspective, AFFS shows a good prospective as an operational system, as it has demonstrated its significant potential to contribute to the reduction of flood-related losses in Africa by providing national and international aid organizations timely with medium-range flood forecast information. However, issues related to the practical implication will still need to be investigated.

  9. Flood monitoring for ungauged rivers: the power of combining space-based monitoring and global forecasting models

    NASA Astrophysics Data System (ADS)

    Revilla-Romero, Beatriz; Netgeka, Victor; Raynaud, Damien; Thielen, Jutta

    2013-04-01

    Flood warning systems typically rely on forecasts from national meteorological services and in-situ observations from hydrological gauging stations. This capacity is not equally developed in flood-prone developing countries. Low-cost satellite monitoring systems and global flood forecasting systems can be an alternative source of information for national flood authorities. The Global Flood Awareness System (GloFAS) has been develop jointly with the European Centre for Medium-Range Weather Forecast (ECMWF) and the Joint Research Centre, and it is running quasi operational now since June 2011. The system couples state-of-the art weather forecasts with a hydrological model driven at a continental scale. The system provides downstream countries with information on upstream river conditions as well as continental and global overviews. In its test phase, this global forecast system provides probabilities for large transnational river flooding at the global scale up to 30 days in advance. It has shown its real-life potential for the first time during the flood in Southeast Asia in 2011, and more recently during the floods in Australia in March 2012, India (Assam, September-October 2012) and Chad Floods (August-October 2012).The Joint Research Centre is working on further research and development, rigorous testing and adaptations of the system to create an operational tool for decision makers, including national and regional water authorities, water resource managers, hydropower companies, civil protection and first line responders, and international humanitarian aid organizations. Currently efforts are being made to link GloFAS to the Global Flood Detection System (GFDS). GFDS is a Space-based river gauging and flood monitoring system using passive microwave remote sensing which was developed by a collaboration between the JRC and Dartmouth Flood Observatory. GFDS provides flood alerts based on daily water surface change measurements from space. Alerts are shown on a world map, with detailed reports for individual gauging sites. A comparison of discharge estimates from the Global Flood Detection System (GFDS) and the Global Flood Awareness System (GloFAS) with observations for representative climatic zones is presented. Both systems have demonstrated strong potential in forecasting and detecting recent catastrophic floods. The usefulness of their combined information on global scale for decision makers at different levels is discussed. Combining space-based monitoring and global forecasting models is an innovative approach and has significant benefits for international river commissions as well as international aid organisations. This is in line with the objectives of the Hyogo and the Post-2015 Framework that aim at the development of systems which involve trans-boundary collaboration, space-based earth observation, flood forecasting and early warning.

  10. A synthesis of recent research regarding the spring flood in Wisconsin: Knowns and unknowns

    USDA-ARS?s Scientific Manuscript database

    Approximately half of Wisconsin’s cranberry growers replace a spring insecticide application with a 1- to 2-day spring flood. Despite the potential for this flood to be a highly cost-effective alternative to chemical insect controls, growers need to know whether the flood can reduce pest pressure wi...

  11. PH Sensitive Polymers for Improving Reservoir Sweep and Conformance Control in Chemical Flooring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukul Sharma; Steven Bryant; Chun Huh

    There is an increasing opportunity to recover bypassed oil from depleted, mature oilfields in the US. The recovery factor in many reservoirs is low due to inefficient displacement of the oil by injected fluids (typically water). The use of chemical flooding methods to increase recovery efficiencies is severely constrained by the inability of the injected chemicals to contact the bypassed oil. Low sweep efficiencies are the primary cause of low oil recoveries observed in the field in chemical flooding operations even when lab studies indicate high oil recovery efficiency. Any technology that increases the ability of chemical flooding agents tomore » better contact the remaining oil and reduce the amount of water produced in conjunction with the produced oil will have a significant impact on the cost of producing oil domestically in the US. This translates directly into additional economically recoverable reserves, which extends the economic lives of marginal and mature wells. The objective of this research project was to develop a low-cost, pH-triggered polymer for use in IOR processes to improve reservoir sweep efficiency and reservoir conformance in chemical flooding. Rheological measurements made on the polymer solution, clearly show that it has a low viscosity at low pH and exhibits a sudden increase in viscosity (by 2 orders of magnitude or more) at a pH of 3.5 to 4. This implies that the polymer would preferentially flow into zones containing water since the effective permeability to water is highest in these zones. As the pH of the zone increases due to the buffering capacity of the reservoir rock, the polymer solution undergoes a liquid to gel transition causing a sharp increase in the viscosity of the polymer solution in these zones. This allows operationally robust, in-depth conformance treatment of such water bearing zones and better mobility control. The rheological properties of HPAM solutions were measured. These include: steady-shear viscosity and viscoelastic behavior as functions of pH; shear rate; polymer concentration; salinity, including divalent ion effects; polymer molecular weight; and degree of hydrolysis. A comprehensive rheological model was developed for HPAM solution rheology in terms of: shear rate; pH; polymer concentration; and salinity, so that the spatial and temporal changes in viscosity during the polymer flow in the reservoir can be accurately modeled. A series of acid coreflood experiments were conducted to understand the geochemical reactions relevant for both the near-wellbore injection profile control and for conformance control applications. These experiments showed that the use hydrochloric acid as a pre-flush is not viable because of the high reaction rate with the rock. The use of citric acid as a pre-flush was found to be quite effective. This weak acid has a slow rate of reaction with the rock and can buffer the pH to below 3.5 for extended periods of time. With the citric acid pre-flush the polymer could be efficiently propagated through the core in a low pH environment i.e. at a low viscosity. The transport of various HPAM solutions was studied in sandstones, in terms of permeability reduction, mobility reduction, adsorption and inaccessible pore volume with different process variables: injection pH, polymer concentration, polymer molecular weight, salinity, degree of hydrolysis, and flow rate. Measurements of polymer effluent profiles and tracer tests show that the polymer retention increases at the lower pH. A new simulation capability to model the deep-penetrating mobility control or conformance control using pH-sensitive polymer was developed. The core flood acid injection experiments were history matched to estimate geochemical reaction rates. Preliminary scale-up simulations employing linear and radial geometry floods in 2-layer reservoir models were conducted. It is clearly shown that the injection rate of pH-sensitive polymer solutions can be significantly increased by injecting it at a pH below 3.5 (at a fixed bottom-hole pressure). This improvement in injectivity by a factor of 2 to 10 can have a significant impact on the economics of chemical flooding and conformance control applications. Simulation tools and experimental data presented in this report help to design and implement such polymer injection projects.« less

  12. Responses of black willow ( Salix nigra) cuttings to simulated herbivory and flooding

    NASA Astrophysics Data System (ADS)

    Li, Shuwen; Martin, Lili T.; Pezeshki, S. Reza; Shields, F. Douglas

    2005-09-01

    Herbivory and flooding influence plant species composition and diversity in many wetland ecosystems. Black willow ( Salix nigra) naturally occurs in floodplains and riparian zones of the southeastern United States. Cuttings from this species are used as a bioengineering tool for streambank stabilization and habitat rehabilitation. The present study was conducted to evaluate the photosynthetic and growth responses of black willow to simulated herbivory and flooding. Potted cuttings were subjected to three levels of single-event herbivory: no herbivory (control), light herbivory, and heavy herbivory; and three levels of flooding conditions: no flooding (control), continuous flooding, and periodic flooding. Results indicated that elevated stomatal conductance partially contributed to the increased net photosynthesis noted under both levels of herbivory on day 30. However, chlorophyll content was not responsible for the observed compensatory photosynthesis. Cuttings subjected to heavy herbivory accumulated the lowest biomass even though they had the highest height growth by the conclusion of the experiment. In addition, a reduction in root/shoot ratio was noted for plants subjected to continuous flooding with no herbivory. However, continuously flooded, lightly clipped plants allocated more resources to roots than shoots. This study provides evidence that it is feasible to use black willow for habitat rehabilitation along highly eroded streambanks where both flooding and herbivory are present.

  13. The Wildcat-San Pablo Creek Flood Control Project and Its Implications for the Design of Environmentally Sensitive Flood Management Plans

    Treesearch

    A. L. Riley

    1989-01-01

    In 1982 a coalition of neighborhood and environmental organizations used a community organizing strategy of the early 1960's, referred to as "advocacy planning" to substantially redesign a traditional structural type of joint federal and local flood control project on Wildcat and San Pablo Creeks in North Richmond, California. Using a combination of...

  14. The Iowa Flood Center's River Stage Sensors—Technical Details

    NASA Astrophysics Data System (ADS)

    Niemeier, J. J.; Kruger, A.; Ceynar, D.; Fahim Rezaei, H.

    2012-12-01

    The Iowa Flood Center (IFC), along with support from the Iowa Department of Transportation (DOT) and the Iowa Department of Natural Resources (DNR) have developed a bridge-mounted river stage sensor. Each sensor consists of an ultrasonic distance measuring module, cellular modem, a GPS unit that provides accurate time and an embedded controller that orchestrates the sensors' operation. A sensor is powered by a battery and solar panel along with a solar charge controller. All the components are housed in/on a sturdy metal box that is then mounted on the side of a bridge. Additionally, each sensor incorporates a water-intrusion sensor and an internal temperature sensor. In operation, the microcontroller wakes, and turns on the electronics every 15 minutes and then measures the distance between the ultrasonic sensor and the water surface. Several measurements are averaged and transmitted along with system health information (battery voltage, state of water intrusion sensor, and internal temperature) via cellular modem to remote servers on the internet. The microcontroller then powers the electronics down and enters a sleep/power savings mode. The sensor's firmware allows the remote server to adjust the measurement rate to 5, 15, and 60 minutes. Further, sensors maintain a 24-day buffer of previous measurements. If a sensor could not successfully transmit its data because of cellular network connection problems, it will transmit the backlog on subsequent transmissions. We paid meticulous attention to all engineering aspects and sensors are very robust and have operated essentially continuously through two Iowa winters and summers, including the 2012 record-breaking warm summer.

  15. The potential of coordinated reservoir operation for flood mitigation in large basins - A case study on the Bavarian Danube using coupled hydrological-hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Seibert, S. P.; Skublics, D.; Ehret, U.

    2014-09-01

    The coordinated operation of reservoirs in large-scale river basins has great potential to improve flood mitigation. However, this requires large scale hydrological models to translate the effect of reservoir operation to downstream points of interest, in a quality sufficient for the iterative development of optimized operation strategies. And, of course, it requires reservoirs large enough to make a noticeable impact. In this paper, we present and discuss several methods dealing with these prerequisites for reservoir operation using the example of three major floods in the Bavarian Danube basin (45,000 km2) and nine reservoirs therein: We start by presenting an approach for multi-criteria evaluation of model performance during floods, including aspects of local sensitivity to simulation quality. Then we investigate the potential of joint hydrologic-2d-hydrodynamic modeling to improve model performance. Based on this, we evaluate upper limits of reservoir impact under idealized conditions (perfect knowledge of future rainfall) with two methods: Detailed simulations and statistical analysis of the reservoirs' specific retention volume. Finally, we investigate to what degree reservoir operation strategies optimized for local (downstream vicinity to the reservoir) and regional (at the Danube) points of interest are compatible. With respect to model evaluation, we found that the consideration of local sensitivities to simulation quality added valuable information not included in the other evaluation criteria (Nash-Sutcliffe efficiency and Peak timing). With respect to the second question, adding hydrodynamic models to the model chain did, contrary to our expectations, not improve simulations, despite the fact that under idealized conditions (using observed instead of simulated lateral inflow) the hydrodynamic models clearly outperformed the routing schemes of the hydrological models. Apparently, the advantages of hydrodynamic models could not be fully exploited when fed by output from hydrological models afflicted with systematic errors in volume and timing. This effect could potentially be reduced by joint calibration of the hydrological-hydrodynamic model chain. Finally, based on the combination of the simulation-based and statistical impact assessment, we identified one reservoir potentially useful for coordinated, regional flood mitigation for the Danube. While this finding is specific to our test basin, the more interesting and generally valid finding is that operation strategies optimized for local and regional flood mitigation are not necessarily mutually exclusive, sometimes they are identical, sometimes they can, due to temporal offsets, be pursued simultaneously.

  16. Geomorphic adjustment to hydrologic modifications along a meandering river: Implications for surface flooding on a floodplain

    NASA Astrophysics Data System (ADS)

    Edwards, Brandon L.; Keim, Richard F.; Johnson, Erin L.; Hupp, Cliff R.; Marre, Saraline; King, Sammy L.

    2016-09-01

    Responses of large regulated rivers to contemporary changes in base level are not well understood. We used field measurements and historical analysis of air photos and topographic maps to identify geomorphic trends of the lower White River, Arkansas, USA, in the 70 years following base-level lowering at its confluence with the Mississippi River and concurrent with flood control by dams. Incision was identified below a knickpoint area upstream of St. Charles, AR, and increases over the lowermost 90 km of the study site to 2 m near the confluence with the Mississippi River. Mean bankfull width increased by 30 m (21%) from 1930 to 2010. Bank widening appears to be the result of flow regulation above the incision knickpoint and concomitant with incision below the knickpoint. Hydraulic modeling indicated that geomorphic adjustments likely reduced flooding by 58% during frequent floods in the incised, lowermost floodplain affected by backwater flooding from the Mississippi River and by 22% above the knickpoint area. Dominance of backwater flooding in the incised reach indicates that incision is more important than flood control on the lower White River in altering flooding and also suggests that the Mississippi River may be the dominant control in shaping the lower floodplain. Overall, results highlight the complex geomorphic adjustment in large river-floodplain systems in response to anthropogenic modifications and their implications, including reduced river-floodplain connectivity.

  17. Quantification of Interbasin Transfers into the Addicks Reservoir during Hurricane Harvey

    NASA Astrophysics Data System (ADS)

    Sebastian, A.; Juan, A.; Gori, A.; Maulsby, F.; Bedient, P. B.

    2017-12-01

    Between August 25 and 30, Hurricane Harvey dropped unprecedented rainfall over southeast Texas causing widespread flooding in the City of Houston. Water levels in the Addicks and Barker reservoirs, built in the 1940s to protect downtown Houston, exceeded previous records by approximately 2 meters. Concerns regarding structural integrity of the dams and damage to neighbourhoods in within the reservoir pool resulted in controlled releases into Buffalo Bayou, flooding an estimated 4,000 additional structures downstream of the dams. In 2016, during the Tax Day it became apparent that overflows from Cypress Creek in northern Harris County substantially contribute to water levels in Addicks. Prior to this event, little was known about the hydrodynamics of this overflow area or about the additional stress placed on Addicks and Barker reservoirs due to the volume of overflow. However, this information is critical for determining flood risk in Addicks Watershed, and ultimately Buffalo Bayou. In this study, we utilize the recently developed HEC-RAS 2D model the interbasin transfer that occurs between Cypress Creek Watershed and Addicks Reservoir to quantify the volume and rate at which water from Cypress enters the reservoir during extreme events. Ultimately, the results of this study will help inform the official hydrologic models used by HCFCD to determine reservoir operation during future storm events and better inform residents living in or above the reservoir pool about their potential flood risk.

  18. Into the Second Century: Memphis Engineer District, 1976-1981

    DTIC Science & Technology

    1983-01-01

    stream out of Lake Itasca in central Minnesota, the river begins a 2,340-mile journey to the Gulf of Mexico. In making the long journey, the river...McKellar Lake in honor of the senior Senator from Tennessee, Kenneth D. McKellar. Part of Tennessee Chute was dredged and then used as a slack...Missouri; and the Reelfoot -Obion areas in west Tennessee to monitor flood control structures. Under Phase I operations the Memphis District provided

  19. 33 CFR 208.11 - Regulations for use of storage allocated for flood control or navigation and/or project operation...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Lk KS Mitchel Solomon R FIM 722.3204.8 1488.31455.6 1455.61428.0 3368212602 126023341 PL 78-534PL 79....34051.0 137309410 9410820 PL 78-534 USBR. Kirwin Dam & Res KS Phillips N Fork Solomon R FICR 215.189.6... 1330 890 PL 78-534 VT Webster Dam & Res KS Rocks S Fork Solomon R FIRC 183.472.1 1923.71892.5 1892...

  20. 33 CFR 208.11 - Regulations for use of storage allocated for flood control or navigation and/or project operation...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Lk KS Mitchel Solomon R FIM 722.3204.8 1488.31455.6 1455.61428.0 3368212602 126023341 PL 78-534PL 79....34051.0 137309410 9410820 PL 78-534 USBR. Kirwin Dam & Res KS Phillips N Fork Solomon R FICR 215.189.6... 1330 890 PL 78-534 VT Webster Dam & Res KS Rocks S Fork Solomon R FIRC 183.472.1 1923.71892.5 1892...

  1. 33 CFR 208.11 - Regulations for use of storage allocated for flood control or navigation and/or project operation...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Lk KS Mitchel Solomon R FIM 722.3204.8 1488.31455.6 1455.61428.0 3368212602 126023341 PL 78-534PL 79....34051.0 137309410 9410820 PL 78-534 USBR. Kirwin Dam & Res KS Phillips N Fork Solomon R FICR 215.189.6... 1330 890 PL 78-534 VT Webster Dam & Res KS Rocks S Fork Solomon R FIRC 183.472.1 1923.71892.5 1892...

  2. 33 CFR 203.32 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Prior to, during, or immediately following flood or coastal storm activity, emergency operations may be... waters recede below bankfull, absent a short term threat (e.g., a significant storm front expected to... Corps assistance. Corps assistance will be limited to major floods or coastal storm disasters resulting...

  3. 33 CFR 203.32 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Prior to, during, or immediately following flood or coastal storm activity, emergency operations may be... waters recede below bankfull, absent a short term threat (e.g., a significant storm front expected to... Corps assistance. Corps assistance will be limited to major floods or coastal storm disasters resulting...

  4. 33 CFR 203.32 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Prior to, during, or immediately following flood or coastal storm activity, emergency operations may be... waters recede below bankfull, absent a short term threat (e.g., a significant storm front expected to... Corps assistance. Corps assistance will be limited to major floods or coastal storm disasters resulting...

  5. The effect of a disastrous flood on the quality of life in Dongting lake area in China.

    PubMed

    Tan, H Z; Luo, Y J; Wen, S W; Liu, A Z; Li, S Q; Yang, T B; Sun, Z Q

    2004-01-01

    We carried out an epidemiological study to assess the impact of flood on the quality of life (QOL) of residents in the affected areas in China. We used a natural experiment approach, randomly selected 494 adults from 18 villages, which suffered from flooding as a result of embankments collapsing, 473 adults from 16 villages, which suffered from, soaked flood, and 773 adults from 11 villages without flood (control group). We used the Generic QOL Inventory-74 (GQOLI-74), social support scale, and questionnaires to assess the QOL of all study participants. The QOL was significantly poorer in soaked group (58.4) and (especially) in collapsed group (55.1) than in control group (59.5, p<0.001). Adjustment for potential confounding factors did not change the results. The impact of flood on QOL was stronger among farmers, seniors, persons with introvert personality, and residents with adverse life-events, whereas social support and extrovert personalities offset the negative impact of flood on QOL.

  6. Assessment of the cooling capacity of plate tectonics and flood volcanism in the evolution of Earth, Mars and Venus

    NASA Astrophysics Data System (ADS)

    van Thienen, P.; Vlaar, N. J.; van den Berg, A. P.

    2005-06-01

    Geophysical arguments against plate tectonics in a hotter Earth, based on buoyancy considerations, require an alternative means of cooling the planet from its original hot state to the present situation. Such an alternative could be extensive flood volcanism in a more stagnant-lid like setting. Starting from the notion that all heat output of the Earth is through its surface, we have constructed two parametric models to evaluate the cooling characteristics of these two mechanisms: plate tectonics and basalt extrusion/flood volcanism. Our model results show that for a steadily (exponentially) cooling Earth, plate tectonics is capable of removing all the required heat at a rate of operation comparable to or even lower than its current rate of operation, contrary to earlier speculations. The extrusion mechanism may have been an important cooling agent in the early Earth, but requires global eruption rates two orders of magnitude greater than those of known Phanerozoic flood basalt provinces. This may not be a problem, since geological observations indicate that flood volcanism was both stronger and more ubiquitous in the early Earth. Because of its smaller size, Mars is capable of cooling conductively through its lithosphere at significant rates, and as a result may have cooled without an additional cooling mechanism. Venus, on the other hand, has required the operation of an additional cooling agent for probably every cooling phase of its possibly episodic history, with rates of activity comparable to those of the Earth.

  7. Evaluation of multiple hydraulic models in generating design/near-real time flood inundation extents under various geophysical settings

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Rajib, M. A.; Jafarzadegan, K.; Merwade, V.

    2015-12-01

    Application of land surface/hydrologic models within an operational flood forecasting system can provide probable time of occurrence and magnitude of streamflow at specific locations along a stream. Creating time-varying spatial extent of flood inundation and depth requires the use of a hydraulic or hydrodynamic model. Models differ in representing river geometry and surface roughness which can lead to different output depending on the particular model being used. The result from a single hydraulic model provides just one possible realization of the flood extent without capturing the uncertainty associated with the input or the model parameters. The objective of this study is to compare multiple hydraulic models toward generating ensemble flood inundation extents. Specifically, relative performances of four hydraulic models, including AutoRoute, HEC-RAS, HEC-RAS 2D, and LISFLOOD are evaluated under different geophysical conditions in several locations across the United States. By using streamflow output from the same hydrologic model (SWAT in this case), hydraulic simulations are conducted for three configurations: (i) hindcasting mode by using past observed weather data at daily time scale in which models are being calibrated against USGS streamflow observations, (ii) validation mode using near real-time weather data at sub-daily time scale, and (iii) design mode with extreme streamflow data having specific return periods. Model generated inundation maps for observed flood events both from hindcasting and validation modes are compared with remotely sensed images, whereas the design mode outcomes are compared with corresponding FEMA generated flood hazard maps. The comparisons presented here will give insights on probable model-specific nature of biases and their relative advantages/disadvantages as components of an operational flood forecasting system.

  8. Development of Flood Inundation Libraries using Historical Satellite Data and DEM for Part of Godavari Basin: An Approach Towards Better Flood Management

    NASA Astrophysics Data System (ADS)

    Bhatt, C. M.; Rao, G. S.; Patro, B.

    2014-12-01

    Conventional method of identifying areas to be inundated for issuing flood alert require inputs like discharge data, fine resolution digital elevation model (DEM), software for modelling and technically trained manpower to interpret the results meaningfully. Due to poor availability of these inputs, including good network of historical hydrological observations and limitation of time, quick flood early warning becomes a difficult task. Presently, based on the daily river water level and forecasted water level for major river systems in India, flood alerts are provided which are non-spatial in nature and does not help in understanding the inundation (spatial dimension) which may be caused at various water levels. In the present paper a concept for developing a series of flood-inundation map libraries two approaches are adopted one by correlating inundation extent derived from historical satellite data analysis with the corresponding water level recorded by the gauge station and the other simulation of inundation using digital elevation model (DEM's) is demonstrated for a part of Godavari Basin. The approach explained can be one of quick and cost-effective method for building a library of flood inundation extents, which can be utilized during flood disaster for alerting population and taking the relief and rescue operations. This layer can be visualized from a spatial dimension together with other spatial information like administrative boundaries, transport network, land use and land cover, digital elevation data and satellite images for better understanding and visualization of areas to be inundated spatially on free web based earth visualization portals like ISRO's Bhuvan portal (http://bhuvan.nrsc.gov.in). This can help decision makers in taking quick appropriate measures for warning, planning relief and rescue operations for the population to get affected under that river stage.

  9. Deciphering Paria and Little Colorado River flood regimes and their significance in multi-objective adaptive management strategies for Colorado River resources in Grand Canyon

    NASA Astrophysics Data System (ADS)

    Jain, S.; Topping, D. J.; Melis, T. S.

    2014-12-01

    Planning and decision processes in the Glen Canyon Dam Adaptive Management Program (GCDAMP) strive to balance numerous, often competing, objectives, such as, water supply, hydropower generation, low flow maintenance, sandbars, recreational trout angling, endangered native fish, whitewater rafting, and other sociocultural resources of Glen Canyon National Recreation Area and Grand Canyon National Park. In this context, use of monitored and predictive information on warm-season Paria River floods (JUL-OCT, at point-to-regional scales) has been identified as lead information for a new 10-year long controlled flooding experiment (termed the High-Flow Experiment Protocol) intended to determine management options for rebuilding and maintaining sandbars below Glen Canyon Dam; an adaptive strategy that can potentially facilitate improved planning and dam operations. In this work, we focus on a key concern identified by the GCDAMP, related to the timing and volume of warm season tributary sand input from the Paria River into the Colorado River in Grand Canyon National Park. The Little Colorado River is an important secondary source of sand inputs to Grand Canyon, but its lower segment is also critical spawning habitat for the endangered humpback chub. Fish biologists have reported increased abundance of chub juveniles in this key tributary in summers following cool-season flooding (DEC-FEB), but little is known about chub spawning substrates and behavior or the role that flood frequency in this tributary may play in native fish population dynamics in Grand Canyon. Episodic and intraseasonal variations (with links to equatorial and sub-tropical Pacific sea surface temperature variability) in southwest hydroclimatology are investigated to understand the magnitude, timing and spatial scales of warm- and cool-season floods from these two important tributaries of the semi-arid Colorado Plateau. Coupled variations of floods (magnitude and timing) from these rivers are also investigated. The physical processes, including diagnosis of storms and moisture sources, are mapped alongside the planning and decision processes for the ongoing experimental flood releases from the dam which are aimed at improving sandbars and instream ecology of native fish.

  10. High-Performance Integrated Control of water quality and quantity in urban water reservoirs

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Castelletti, A.; Goedbloed, A.

    2015-11-01

    This paper contributes a novel High-Performance Integrated Control framework to support the real-time operation of urban water supply storages affected by water quality problems. We use a 3-D, high-fidelity simulation model to predict the main water quality dynamics and inform a real-time controller based on Model Predictive Control. The integration of the simulation model into the control scheme is performed by a model reduction process that identifies a low-order, dynamic emulator running 4 orders of magnitude faster. The model reduction, which relies on a semiautomatic procedural approach integrating time series clustering and variable selection algorithms, generates a compact and physically meaningful emulator that can be coupled with the controller. The framework is used to design the hourly operation of Marina Reservoir, a 3.2 Mm3 storm-water-fed reservoir located in the center of Singapore, operated for drinking water supply and flood control. Because of its recent formation from a former estuary, the reservoir suffers from high salinity levels, whose behavior is modeled with Delft3D-FLOW. Results show that our control framework reduces the minimum salinity levels by nearly 40% and cuts the average annual deficit of drinking water supply by about 2 times the active storage of the reservoir (about 4% of the total annual demand).

  11. Floods of 1952 in California. Flood of January 1952 in the south San Francisco Bay region; Snowmelt flood of 1952 in Kern River, Tulare Lake, and San Joaquin River basins

    USGS Publications Warehouse

    Rantz, S.E.; Stafford, H.M.

    1956-01-01

    Two major floods occurred in California in 1952. The first was the flood of January 11-13 in the south San Francisco Bay region that resulted from heavy rains which began on the morning of January 11 and ended about noon January 13. This flood was notable for the magnitude of the peak discharges, although these discharges were reduced by the controlling effect of reservoirs for conservation and flood-control purposes. The flood damage was thereby reduced, and no lives were lost; damage, nevertheless, amounted to about $1.400.000. The second flood was due, not to the immediate runoff of heavy rain, but to the melting of one of the largest snow packs ever recorded in the Sierra Nevada range. In the spring and summer of 1952, flood runoff occurred on all the major streams draining the Sierra Nevada. In the northern half of the Central Valley basin?the Sacramento River basin?flood volumes and maximum daily discharges were not exceptional. and flood damage was not appreciable. However, in the southern half, which is formed by the Kern River, Tulare Lake, and San Joaquin River basins, new records for snowmelt runoff were established for some streams; but for below-normal temperatures and shorter, less warm hot spells, record flood discharges would have occurred on many others. In the three basins an area of 200,000 acres. largely cropland. was inundated, and damage was estimated at $11,800,000.

  12. Optimal adaptation to extreme rainfalls in current and future climate

    NASA Astrophysics Data System (ADS)

    Rosbjerg, Dan

    2017-01-01

    More intense and frequent rainfalls have increased the number of urban flooding events in recent years, prompting adaptation efforts. Economic optimization is considered an efficient tool to decide on the design level for adaptation. The costs associated with a flooding to the T-year level and the annual capital and operational costs of adapting to this level are described with log-linear relations. The total flooding costs are developed as the expected annual damage of flooding above the T-year level plus the annual capital and operational costs for ensuring no flooding below the T-year level. The value of the return period T that corresponds to the minimum of the sum of these costs will then be the optimal adaptation level. The change in climate, however, is expected to continue in the next century, which calls for expansion of the above model. The change can be expressed in terms of a climate factor (the ratio between the future and the current design level) which is assumed to increase in time. This implies increasing costs of flooding in the future for many places in the world. The optimal adaptation level is found for immediate as well as for delayed adaptation. In these cases, the optimum is determined by considering the net present value of the incurred costs during a sufficiently long time-span. Immediate as well as delayed adaptation is considered.

  13. Optimal adaptation to extreme rainfalls under climate change

    NASA Astrophysics Data System (ADS)

    Rosbjerg, Dan

    2017-04-01

    More intense and frequent rainfalls have increased the number of urban flooding events in recent years, prompting adaptation efforts. Economic optimization is considered an efficient tool to decide on the design level for adaptation. The costs associated with a flooding to the T-year level and the annual capital and operational costs of adapting to this level are described with log-linear relations. The total flooding costs are developed as the expected annual damage of flooding above the T-year level plus the annual capital and operational costs for ensuring no flooding below the T-year level. The value of the return period T that corresponds to the minimum of the sum of these costs will then be the optimal adaptation level. The change in climate, however, is expected to continue in the next century, which calls for expansion of the above model. The change can be expressed in terms of a climate factor (the ratio between the future and the current design level) which is assumed to increase in time. This implies increasing costs of flooding in the future for many places in the world. The optimal adaptation level is found for immediate as well as for delayed adaptation. In these cases the optimum is determined by considering the net present value of the incurred costs during a sufficiently long time span. Immediate as well as delayed adaptation is considered.

  14. The suitability of remotely sensed soil moisture for improving operational flood forecasting

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Karssenberg, D.; de Roo, A.; de Jong, S. M.; Bierkens, M. F. P.

    2013-11-01

    We evaluate the added value of assimilated remotely sensed soil moisture for the European Flood Awareness System (EFAS) and its potential to improve the prediction of the timing and height of the flood peak and low flows. EFAS is an operational flood forecasting system for Europe and uses a distributed hydrological model for flood predictions with lead times up to 10 days. For this study, satellite-derived soil moisture from ASCAT, AMSR-E and SMOS is assimilated into the EFAS system for the Upper Danube basin and results are compared to assimilation of discharge observations only. To assimilate soil moisture and discharge data into EFAS, an Ensemble Kalman Filter (EnKF) is used. Information on the spatial (cross-) correlation of the errors in the satellite products, is included to ensure optimal performance of the EnKF. For the validation, additional discharge observations not used in the EnKF, are used as an independent validation dataset. Our results show that the accuracy of flood forecasts is increased when more discharge observations are assimilated; the Mean Absolute Error (MAE) of the ensemble mean is reduced by 65%. The additional inclusion of satellite data results in a further increase of the performance: forecasts of base flows are better and the uncertainty in the overall discharge is reduced, shown by a 10% reduction in the MAE. In addition, floods are predicted with a higher accuracy and the Continuous Ranked Probability Score (CRPS) shows a performance increase of 5-10% on average, compared to assimilation of discharge only. When soil moisture data is used, the timing errors in the flood predictions are decreased especially for shorter lead times and imminent floods can be forecasted with more skill. The number of false flood alerts is reduced when more data is assimilated into the system and the best performance is achieved with the assimilation of both discharge and satellite observations. The additional gain is highest when discharge observations from both upstream and downstream areas are used in combination with the soil moisture data. These results show the potential of remotely sensed soil moisture observations to improve near-real time flood forecasting in large catchments.

  15. The suitability of remotely sensed soil moisture for improving operational flood forecasting

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Karssenberg, D.; de Roo, A.; de Jong, S. M.; Bierkens, M. F. P.

    2014-06-01

    We evaluate the added value of assimilated remotely sensed soil moisture for the European Flood Awareness System (EFAS) and its potential to improve the prediction of the timing and height of the flood peak and low flows. EFAS is an operational flood forecasting system for Europe and uses a distributed hydrological model (LISFLOOD) for flood predictions with lead times of up to 10 days. For this study, satellite-derived soil moisture from ASCAT (Advanced SCATterometer), AMSR-E (Advanced Microwave Scanning Radiometer - Earth Observing System) and SMOS (Soil Moisture and Ocean Salinity) is assimilated into the LISFLOOD model for the Upper Danube Basin and results are compared to assimilation of discharge observations only. To assimilate soil moisture and discharge data into the hydrological model, an ensemble Kalman filter (EnKF) is used. Information on the spatial (cross-) correlation of the errors in the satellite products, is included to ensure increased performance of the EnKF. For the validation, additional discharge observations not used in the EnKF are used as an independent validation data set. Our results show that the accuracy of flood forecasts is increased when more discharge observations are assimilated; the mean absolute error (MAE) of the ensemble mean is reduced by 35%. The additional inclusion of satellite data results in a further increase of the performance: forecasts of baseflows are better and the uncertainty in the overall discharge is reduced, shown by a 10% reduction in the MAE. In addition, floods are predicted with a higher accuracy and the continuous ranked probability score (CRPS) shows a performance increase of 5-10% on average, compared to assimilation of discharge only. When soil moisture data is used, the timing errors in the flood predictions are decreased especially for shorter lead times and imminent floods can be forecasted with more skill. The number of false flood alerts is reduced when more observational data is assimilated into the system. The added values of the satellite data is largest when these observations are assimilated in combination with distributed discharge observations. These results show the potential of remotely sensed soil moisture observations to improve near-real time flood forecasting in large catchments.

  16. Flood Risk Assessment and Forecasting for the Ganges-Brahmaputra-Meghna River Basins

    NASA Astrophysics Data System (ADS)

    Hopson, T. M.; Priya, S.; Young, W.; Avasthi, A.; Clayton, T. D.; Brakenridge, G. R.; Birkett, C. M.; Riddle, E. E.; Broman, D.; Boehnert, J.; Sampson, K. M.; Kettner, A.; Singh, D.

    2017-12-01

    During the 2017 South Asia monsoon, torrential rains and catastrophic floods affected more than 45 million people, including 16 million children, across the Ganges-Brahmaputra-Meghna (GBM) basins. The basin is recognized as one of the world's most disaster-prone regions, with severe floods occurring almost annually causing extreme loss of life and property. In light of this vulnerability, the World Bank and collaborators have contributed toward reducing future flood impacts through recent developments to improve operational preparedness for such events, as well as efforts in more general preparedness and resilience building through planning based on detailed risk assessments. With respect to improved event-specific flood preparedness through operational warnings, we discuss a new forecasting system that provides probability-based flood forecasts developed for more than 85 GBM locations. Forecasts are available online, along with near-real-time data maps of rainfall (predicted and actual) and river levels. The new system uses multiple data sets and multiple models to enhance forecasting skill, and provides improved forecasts up to 16 days in advance of the arrival of high waters. These longer lead times provide the opportunity to save both lives and livelihoods. With sufficient advance notice, for example, farmers can harvest a threatened rice crop or move vulnerable livestock to higher ground. Importantly, the forecasts not only predict future water levels but indicate the level of confidence in each forecast. Knowing whether the probability of a danger-level flood is 10 percent or 90 percent helps people to decide what, if any, action to take. With respect to efforts in general preparedness and resilience building, we also present a recent flood risk assessment, and how it provides, for the first time, a numbers-based view of the impacts of different size floods across the Ganges basin. The findings help identify priority areas for tackling flood risks (for example, relocating levees, improving flood warning systems, or boosting overall economic resilience). The assessment includes the locations and numbers of people at risk, as well as the locations and value of buildings, roads and railways, and crops at risk. An accompanying atlas includes easy-to-use risk maps and tables for the Ganges basins.

  17. Flood Prediction for the Tam Nong District in Mekong Delta Using Hydrological Modelling and Hydrologic Remote Sensing Technique

    NASA Astrophysics Data System (ADS)

    Kappas, Martin; Nguyen Hong, Quang; Thanh, Nga Pham Thi; Thu, Hang Le Thi; Nguyen Vu, Giang; Degener, Jan; Rafiei Emam, Ammar

    2017-04-01

    There has been an increasing attention to the large trans-boundary Mekong river basin due to various problems related to water management and flood control, for instance. Vietnam Mekong delta is located at the downstream of the river basin where is affected most by this human-induced reduction in flows from the upstream. On the other hand, the flood plain of nine anastomosing channels is increasingly effected by the seawater intrusion due to sea level rising of climate change. This results in negative impacts of salinization, drought, and floods, while formerly flooding had frequently brought positive natural gain of irrigation water and alluvial aggradation. In this research, our aim is to predict flooding for the better water management adaptation and control. We applied the model HEC-SSP 2.1 to analyze flood flow frequency, two-dimensional unsteady flow calculations in HEC-RAS 5.0 for simulating a floodplain inundation. Remote sensing-based water level (Jason-2) and inundation map were used for validation and comparison with the model simulations. The results revealed a reduction of water level at all the monitoring stations, particularly in the last decade. In addition, a trend of the inundation extension gradually declined, but in some periods it remained severe due to water release from upstream reservoirs during the rainy season (October-November). We found an acceptable agreement between the HEC-RAS and remote sensing flooding maps (around 70%). Based on the flood routine analysis, we could conclude that the water level will continue lower and lead to a trend of drought and salinization harsher in the near future. Keywords: Mekong delta, flood control, inundation, water management, hydrological modelling, remote sensing

  18. Conserving carnivorous arthropods: an example from early-season cranberry (Ericaceae) flooding

    USDA-ARS?s Scientific Manuscript database

    Biological control plays an important role in many IPM programs, but can be disrupted by other control strategies, including chemical and cultural controls. In commercial cranberry production, a spring flood can replace an insecticide application, providing an opportunity to study the compatibility ...

  19. Variation in flooding-induced morphological traits in natural populations of white clover (Trifolium repens) and their effects on plant performance during soil flooding

    PubMed Central

    Huber, Heidrun; Jacobs, Elke; Visser, Eric J. W.

    2009-01-01

    Background and Aims Soil flooding leads to low soil oxygen concentrations and thereby negatively affects plant growth. Differences in flooding tolerance have been explained by the variation among species in the extent to which traits related to acclimation were expressed. However, our knowledge of variation within natural species (i.e. among individual genotypes) in traits related to flooding tolerance is very limited. Such data could tell us on which traits selection might have taken place, and will take place in future. The aim of the present study was to show that variation in flooding-tolerance-related traits is present among genotypes of the same species, and that both the constitutive variation and the plastic variation in flooding-induced changes in trait expression affect the performance of genotypes during soil flooding. Methods Clones of Trifolium repens originating from a river foreland were subjected to either drained, control conditions or to soil flooding. Constitutive expression of morphological traits was recorded on control plants, and flooding-induced changes in expression were compared with these constitutive expression levels. Moreover, the effect of both constitutive and flooding-induced trait expression on plant performance was determined. Key Results Constitutive and plastic variation of several morphological traits significantly affected plant performance. Even relatively small increases in root porosity and petiole length contributed to better performance during soil flooding. High specific leaf area, by contrast, was negatively correlated with performance during flooding. Conclusions The data show that different genotypes responded differently to soil flooding, which could be linked to variation in morphological trait expression. As flooded and drained conditions exerted different selection pressures on trait expression, the optimal value for constitutive and plastic traits will depend on the frequency and duration of flooding. These data will help us understanding the mechanisms affecting short- and long-term dynamics in flooding-prone ecosystems. PMID:18713824

  20. Review of Portable, Manually Operated, and Non-Total Flooding Fire Extinguishing Technologies for Use on Naval Vessels

    DTIC Science & Technology

    2011-12-01

    Corrosion problems arising from the use of perfluoro-or hydrofluorocarbon agents have been investigated and are of concern. The concern centers on the...which was formerly known as Powdered Aerosol B, can be used on Class A, Class B, and Class C fires. These agents are a blend of several halocarbons...Canada Review of Portable, Manually Operated, and Non-Total Flooding Fire Extinguishing Technologies for Use on Naval Vessels Contract Project Manager

  1. Forecast-based Integrated Flood Detection System for Emergency Response and Disaster Risk Reduction (Flood-FINDER)

    NASA Astrophysics Data System (ADS)

    Arcorace, Mauro; Silvestro, Francesco; Rudari, Roberto; Boni, Giorgio; Dell'Oro, Luca; Bjorgo, Einar

    2016-04-01

    Most flood prone areas in the globe are mainly located in developing countries where making communities more flood resilient is a priority. Despite different flood forecasting initiatives are now available from academia and research centers, what is often missing is the connection between the timely hazard detection and the community response to warnings. In order to bridge the gap between science and decision makers, UN agencies play a key role on the dissemination of information in the field and on capacity-building to local governments. In this context, having a reliable global early warning system in the UN would concretely improve existing in house capacities for Humanitarian Response and the Disaster Risk Reduction. For those reasons, UNITAR-UNOSAT has developed together with USGS and CIMA Foundation a Global Flood EWS called "Flood-FINDER". The Flood-FINDER system is a modelling chain which includes meteorological, hydrological and hydraulic models that are accurately linked to enable the production of warnings and forecast inundation scenarios up to three weeks in advance. The system is forced with global satellite derived precipitation products and Numerical Weather Prediction outputs. The modelling chain is based on the "Continuum" hydrological model and risk assessments produced for GAR2015. In combination with existing hydraulically reconditioned SRTM data and 1D hydraulic models, flood scenarios are derived at multiple scales and resolutions. Climate and flood data are shared through a Web GIS integrated platform. First validation of the modelling chain has been conducted through a flood hindcasting test case, over the Chao Phraya river basin in Thailand, using multi temporal satellite-based analysis derived for the exceptional flood event of 2011. In terms of humanitarian relief operations, the EO-based services of flood mapping in rush mode generally suffer from delays caused by the time required for their activation, programming, acquisitions and image processing. Flood-FINDER aims to pre-empt this process and to provide preliminary analyses where no field data is available. In the early 2015, the Flood-FINDER's forecast along the Shire River has been used to guide the rapid mapping activities in Southern Malawi and Northern Mozambique. It proved efficient support providing timely information about the evolution of the flood event over an area lacking of field data. Regarding in-country capacity building, Flood-FINDER allowed UNOSAT to set up in middle 2015 a flood early warning system in Chad along the Chari River basin with the collaboration of Chadian Ministry of hydraulics and livestock. Weekly flood bulletins have been shared with local authorities and UN agencies over the entire rainy season. Finally, an experimental version of the global web alerting platform has been recently developed for supporting the El Nino flood preparedness in the Horn of Africa. Flood-FINDEŔs mission is to support decision makers throughout all the disaster management cycle with flood alerts, modelled scenarios, EO-based impact assessments and with direct support at country level to implement disaster mitigation strategies. The aim for the future is to seek funding for having the global system fully operational using CERN's supercomputing facilities and to establish new in-country projects with local authorities.

  2. 33 CFR 208.82 - Hetch Hetchy, Cherry Valley, and Don Pedro Dams and Reservoirs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-control purposes in accordance with the Flood-Control Storage Reservation Diagram currently in force for... section. The Flood-Control Storage Reservation Diagram in force as of the promulgation of this section is...-Control Storage Reservation Diagram may be developed from time to time as necessary by the Corps of...

  3. Biogeochemical and metabolic responses to the flood pulse in a semiarid floodplain

    USGS Publications Warehouse

    Valett, H.M.; Baker, M.A.; Morrice, J.A.; Crawford, C.S.; Molles, M.C.; Dahm, Clifford N.; Moyer, D.L.; Thibault, J.R.; Ellis, L.M.

    2005-01-01

    Flood pulse inundation of riparian forests alters rates of nutrient retention and organic matter processing in the aquatic ecosystems formed in the forest interior. Along the Middle Rio Grande (New Mexico, USA), impoundment and levee construction have created riparian forests that differ in their inter-flood intervals (IFIs) because some floodplains are still regularly inundated by the flood pulse (i.e., connected), while other floodplains remain isolated from flooding (i.e., disconnected). This research investigates how ecosystem responses to the flood pulse relate to forest IFI by quantifying nutrient and organic matter dynamics in the Rio Grande floodplain during three years of experimental flooding of the disconnected floodplain and during a single year of natural flooding of the connected floodplain. Surface and subsurface conditions in paired sites (control, flood) established in the two floodplain types were monitored to address metabolic and biogeochemical responses. Compared to dry controls, rates of respiration in the flooded sites increased by up to three orders of magnitude during the flood pulse. In the disconnected forest, month-long experimental floods produced widespread anoxia of four-week duration during each of the three years of flooding. In contrast, water in the connected floodplain remained well oxygenated (3-8 ppm). Material budgets for experimental floods showed the disconnected floodplain to be a sink for inorganic nitrogen and suspended solids, but a potential source of dissolved organic carbon (DOC). Compared to the main stem of the Rio Grande, flood-water on the connected floodplain contained less nitrate, but comparable concentrations of DOC, phosphate-phosphorus, and ammonium-nitrogen. Results suggest that floodplain IFI drives metabolic and biogeochemical responses during the flood pulse. Impoundment and fragmentation have altered floodplains from a mosaic of patches with variable IFI to a bimodal distribution. Relatively predictable flooding occurs in the connected forest, while inundation of the disconnected forest occurs only as the result of managed application of water. In semiarid floodplains, water is scarce except during the flood pulse. Ecosystem responses to the flood pulse are related to the IFI and other measures of flooding history that help describe spatial variation in ecosystem function.

  4. Bathymetric survey of the Cayuga Inlet flood-control channel and selected tributaries in Ithaca, New York, 2016

    USGS Publications Warehouse

    Wernly, John F.; Nystrom, Elizabeth A.; Coon, William F.

    2017-09-08

    From July 14 to July 20, 2016, the U.S. Geological Survey, in cooperation with the City of Ithaca, New York, and the New York State Department of State, surveyed the bathymetry of the Cayuga Inlet flood-control channel and the mouths of selected tributaries to Cayuga Inlet and Cayuga Lake in Ithaca, N.Y. The flood-control channel, built by the U.S. Army Corps of Engineers between 1965 and 1970, was designed to convey flood flows from the Cayuga Inlet watershed through the City of Ithaca and minimize possible flood damages. Since that time, the channel has infrequently been maintained by dredging, and sediment accumulation and resultant shoaling have greatly decreased the conveyance of the channel and its navigational capability.U.S. Geological Survey personnel collected bathymetric data by using an acoustic Doppler current profiler. The survey produced a dense dataset of water depths that were converted to bottom elevations. These elevations were then used to generate a geographic information system bathymetric surface. The bathymetric data and resultant bathymetric surface show the current condition of the channel and provide the information that governmental agencies charged with maintaining the Cayuga Inlet for flood-control and navigational purposes need to make informed decisions regarding future maintenance measures.

  5. An experimental system for flood risk forecasting at global scale

    NASA Astrophysics Data System (ADS)

    Alfieri, L.; Dottori, F.; Kalas, M.; Lorini, V.; Bianchi, A.; Hirpa, F. A.; Feyen, L.; Salamon, P.

    2016-12-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by an increasing range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasts, combining streamflow estimations with expected inundated areas and flood impacts. To this end, we have developed an experimental procedure for near-real time flood mapping and impact assessment based on the daily forecasts issued by the Global Flood Awareness System (GloFAS). The methodology translates GloFAS streamflow forecasts into event-based flood hazard maps based on the predicted flow magnitude and the forecast lead time and a database of flood hazard maps with global coverage. Flood hazard maps are then combined with exposure and vulnerability information to derive flood risk. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To further increase the reliability of the proposed methodology we integrated model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification of impact forecasts. The preliminary tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management. In particular, the link with social media is crucial for improving the accuracy of impact predictions.

  6. Extreme flood event analysis in Indonesia based on rainfall intensity and recharge capacity

    NASA Astrophysics Data System (ADS)

    Narulita, Ida; Ningrum, Widya

    2018-02-01

    Indonesia is very vulnerable to flood disaster because it has high rainfall events throughout the year. Flood is categorized as the most important hazard disaster because it is causing social, economic and human losses. The purpose of this study is to analyze extreme flood event based on satellite rainfall dataset to understand the rainfall characteristic (rainfall intensity, rainfall pattern, etc.) that happened before flood disaster in the area for monsoonal, equatorial and local rainfall types. Recharge capacity will be analyzed using land cover and soil distribution. The data used in this study are CHIRPS rainfall satellite data on 0.05 ° spatial resolution and daily temporal resolution, and GSMap satellite rainfall dataset operated by JAXA on 1-hour temporal resolution and 0.1 ° spatial resolution, land use and soil distribution map for recharge capacity analysis. The rainfall characteristic before flooding, and recharge capacity analysis are expected to become the important information for flood mitigation in Indonesia.

  7. Early Flood Warning in Africa: Results of a Feasibility study in the JUBA, SHABELLE and ZAMBEZI

    NASA Astrophysics Data System (ADS)

    Pappenberger, F. P.; de Roo, A. D.; Buizza, Roberto; Bodis, Katalin; Thiemig, Vera

    2009-04-01

    Building on the experiences gained with the European Flood Alert System (EFAS), pilot studies are carried out in three river basins in Africa. The European Flood Alert System, pre-operational since 2003, provides early flood alerts for European rivers. At present, the experiences with the European EFAS system are used to evaluate the feasibility of flood early warning for Africa. Three case studies are carried in the Juba and Shabelle rivers (Somalia and Ethiopia), and in the Zambesi river (Southern Africa). Predictions in these data scarce regions are extremely difficult to make as records of observations are scarce and often unreliable. Meteorological and Discharge observations are used to calibrate and test the model, as well as soils, landuse and topographic data available within the JRC African Observatory. ECMWF ERA-40, ERA-Interim data and re-forecasts of flood events from January to March 1978, and in March 2001 are evaluated to examine the feasibility for early flood warning. First results will be presented.

  8. Balancing hydropower production and river bed incision in operating a run-of-river hydropower scheme along the River Po

    NASA Astrophysics Data System (ADS)

    Denaro, Simona; Dinh, Quang; Bizzi, Simone; Bernardi, Dario; Pavan, Sara; Castelletti, Andrea; Schippa, Leonardo; Soncini-Sessa, Rodolfo

    2013-04-01

    Water management through dams and reservoirs is worldwide necessary to support key human-related activities ranging from hydropower production to water allocation, and flood risk mitigation. Reservoir operations are commonly planned in order to maximize these objectives. However reservoirs strongly influence river geomorphic processes causing sediment deficit downstream, altering the flow regime, leading, often, to process of river bed incision: for instance the variations of river cross sections over few years can notably affect hydropower production, flood mitigation, water supply strategies and eco-hydrological processes of the freshwater ecosystem. The river Po (a major Italian river) has experienced severe bed incision in the last decades. For this reason infrastructure stability has been negatively affected, and capacity to derive water decreased, navigation, fishing and tourism are suffering economic damages, not to mention the impact on the environment. Our case study analyzes the management of Isola Serafini hydropower plant located on the main Po river course. The plant has a major impact to the geomorphic river processes downstream, affecting sediment supply, connectivity (stopping sediment upstream the dam) and transport capacity (altering the flow regime). Current operation policy aims at maximizing hydropower production neglecting the effects in term of geomorphic processes. A new improved policy should also consider controlling downstream river bed incision. The aim of this research is to find suitable modeling framework to identify an operating policy for Isola Serafini reservoir able to provide an optimal trade-off between these two conflicting objectives: hydropower production and river bed incision downstream. A multi-objective simulation-based optimization framework is adopted. The operating policy is parameterized as a piecewise linear function and the parameters optimized using an interactive response surface approach. Global and local response surface are comparatively assessed. Preliminary results show that a range of potentially interesting trade-off policies exist able to better control river bed incision downstream without significantly decreasing hydropower production.

  9. River flood seasonality in the Northeast United States and trends in annual timing

    NASA Astrophysics Data System (ADS)

    Collins, M. J.

    2017-12-01

    The New England and Mid-Atlantic regions of the Northeast United States have experienced climate-associated increases in both the magnitude and frequency of floods. However, a detailed understanding of flood seasonality across these regions, and how flood seasonality may have changed over the instrumental record, has not been established. The annual timing of river floods reflects the flood-generating mechanisms operating in a basin and many aquatic and riparian organisms are adapted to flood seasonality, as are human uses of river channels and floodplains. Changes in flood seasonality may indicate changes in flood-generating mechanisms, and their interactions, with important implications for habitats, floodplain infrastructure, and human communities. For example, changes in spring or fall flood timing may negatively or positively affect a vulnerable life stage for a migratory fish (e.g., egg setting) depending on whether floods occur more frequently before or after the life history event. In this study I apply an objective, probabilistic method for identifying flood seasons at a monthly resolution for 90 climate-sensitive watersheds in New England and the Mid-Atlantic (Hydrologic Unit Codes 01 and 02). Historical trends in flood timing during the year are also investigated. The analyses are based on partial duration flood series that are an average of 85 years long. The seasonality of flooding in these regions, and any historical changes, are considered in the context of other ongoing or expected phenological changes in the Northeast U.S. environment that affect flood generation—e.g., the timing of leaf-off/leaf-out for deciduous plants. How these factors interact will affect whether and how flood magnitudes and frequencies change in the future and associated impacts.

  10. An investigation of Digital Elevation Model (DEM) structure influence on flood modelling

    NASA Astrophysics Data System (ADS)

    Sahid; Nurrohman, A. W.; Hadi, M. P.

    2018-04-01

    Flood is one of the natural calamities that cause huge losses and damages. Flood hazard zonation has been widely produced to face the impact of the disaster. DEM as the primary data to construct the earth surface has been developed from rough to fine resolution. Aster GDEM v.2 within 1arc spatial resolution has an ability to derived DEM and TIN data as bases river geometrics data. Maximum daily peak discharges used to calculate flood peak discharge. Furthermore, steady flow analysis has been used to produce flood inundation model based on four scenarios with return periods 5yr, 10yr, 50yr, and 100yr. The model results have been validated using UAV flood map in 2016 by means of pixel by pixel operation and the result shows that the vertical variance between grid DEM and TIN data about 0.3 m.

  11. National Levee Database: monitoring, vulnerability assessment and management in Italy

    NASA Astrophysics Data System (ADS)

    Barbetta, Silvia; Camici, Stefania; Maccioni, Pamela; Moramarco, Tommaso

    2015-04-01

    A properly designed and constructed levees system can often be an effective device for repelling floodwaters and provide barriers against inundation to protect urbanized and industrial areas. However, the delineation of flooding-prone areas and the related hydraulic hazard mapping taking account of uncertainty (Apel et al., 2008) are usually developed with a scarce consideration of the possible occurrence of levee failures along river channels (Mazzoleni et al., 2014). Indeed, it is well known that flooding is frequently the result of levee failures that can be triggered by several factors, as: (1) overtopping, (2) scouring of the foundation, (3) seepage/piping of levee body/foundation, and (4) sliding of the foundation. Among these failure mechanisms that are influenced by the levee's geometrical configuration, hydraulic conditions (e.g. river level and seepage), and material properties (e.g. permeability, cohesion, porosity, compaction), the piping caused by seepage (ICOLD, http://www.icold-cigb.org) is considered one of the most dominant levee failure mechanisms (Colleselli F., 1994; Wallingford H. R., 2003). The difficulty of estimating the hydraulic parameters to properly describe the seepage line within the body and foundation of the levee implies that the study of the critical flood wave routing is typically carried out by assuming that the levee system is undamaged during the flood event. In this context, implementing and making operational a National Levee Database (NLD), effectively structured and continuously updated, becomes fundamental to have a searchable inventory of information about levees available as a key resource supporting decisions and actions affecting levee safety. The ItaliaN LEvee Database (INLED) has been recently developed by the Research Institute for Geo-Hydrological Protection (IRPI) for the Civil Protection Department of the Presidency of Council of Ministers. INLED has the main focus of collecting comprehensive information about Italian levees and historical breach failures to be exploited in the framework of an operational procedure addressed to the seepage vulnerability assessment of river reaches where the levee system is an important structural measure against flooding. For its structure, INLED is a dynamic geospatial database with ongoing efforts to add levee data from authorities with the charge of hydraulic risk mitigation. In particular, the database is aimed to provide the available information about: i) location and condition of levees; ii) morphological and geometrical properties; iii) photographic documentation; iv) historical levee failures; v) assessment of vulnerability to overtopping and seepage carried out through a procedure based on simple vulnerability indexes (Camici et al. 2014); vi) management, control and maintenance; vii)flood hazard maps developed by assuming the levee system undamaged/damaged during the flood event. Currently, INLED contains data of levees that are mostly located in the Tiber basin, Central Italy. References Apel H., Merz B. & Thieken A.H. Quantification of uncertainties in flood risk assessments. Int J River Basin Manag 2008, 6, (2), 149-162. Camici S,, Barbetta S., Moramarco T., Levee body vulnerability to seepage: the case study of the levee failure along the Foenna stream on 1st January 2006 (central Italy)", Journal of Flood Risk Management, in press. Colleselli F. Geotechnical problems related to river and channel embankments. Rotterdam, the Netherlands: Springer, 1994. H. R.Wallingford Consultants (HRWC). Risk assessment for flood and coastal defence for strategic planning: high level methodology technical report, London, 2003. Mazzoleni M., Bacchi B., Barontini S., Di Baldassarre G., Pilotti M. & Ranzi R. Flooding hazard mapping in floodplain areas affected by piping breaches in the Po River, Italy. J Hydrol Eng 2014, 19, (4), 717-731.

  12. Feedback on flood risk management

    NASA Astrophysics Data System (ADS)

    Moreau, K.; Roumagnac, A.

    2009-09-01

    For several years, as floods were increasing in South of France, local communities felt deprive to assume their mission of protection and information of citizens, and were looking for assistance in flood management. In term of flood disaster, the fact is that physical protection is necessary but inevitably limited. Tools and structures of assistance to anticipation remain slightly developed. To manage repeated crisis, local authorities need to be able to base their policy against flood on prevention, warnings, post-crisis analysis and feedback from former experience. In this objective, after 3 years of test and improvement since 2003, the initiative Predict-Services was developped in South of France: it aims at helping communities and companies to face repeated flood crisis. The principle is to prepare emergency plans, to organize crisis management and reduce risks; to help and assist communities and companies during crisis to activate and adapt their emergency plans with enough of anticipation; and to analyse floods effects and improve emergency plans afterwards. In order to reduce risks, and to keep the benefits of such an initiative, local communities and companies have to maintain the awareness of risk of the citizens and employees. They also have to maintain their safety plans to keep them constantly operational. This is a part of the message relayed. Companies, Local communities, local government authorities and basin stakeholders are the decision makers. Companies and local communities have to involve themselves in the elaboration of safety plans. They are also completely involved in their activation that is their own responsability. This applies to other local government authorities, like districts one's and basin stakeholders, which participle in the financing community safety plans and adminitrative district which are responsible of the transmission of meteorological alert and of rescue actions. In the crossing of the géo-information stemming from the space technology, communication, meteorology, hydraulics and hydrology, Predict-services brings help to local communities in their mission of protection and information to the citizens, for flood problems and helps companies to limit and delete operating losses facing floods. The initiative, developped by BRL, EADS Astrium, in association with Meteo France, has been employed and is functioning on cities of south of France, notably on Montpellier, and also on the scale of catchment area( BRL is a regional development company, a public private partnership controlled by the local gouvernments of the Languedoc-Roussillon Region). The initiative has to be coordinated with state services to secure continuity and coherence of information. This initiative is developped in dialogue with State services as Météo France, the Ministry for the interior, the Ministry for ecology and the durable development, the Regional Direction of the Environment (DIREN), the Central service of Hydrometeorology and Support to the Forecast of the Floods ( SCHAPI) and service of forecast of rising (SPC). It has been successfully functioning for 5 years with 300 southern cities from South West to South East of France and notably Montpellier and Sommières, famous for it’s flood problems on the Vidourle river where no human loss was to regret and where the economic impacts were minimized. Actually developed in cities of South of France, this initiative is to be developed nationaly and very soon internationally. Thanks to the efficiency of it’s method, this initiative is also developed in partnership with insurance company involved in prevention actions. The presentation will expose the feedback of this initiative and lessons learned.

  13. 10. VIEW OF THE SOUTH ELEVATION AND THE FLOOD GATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF THE SOUTH ELEVATION AND THE FLOOD GATE ON THE PRESSURE CULVERT, LOOKING NORTH. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  14. Flood Impact Assessment in the Surrounding Area of Suvarnabhumi Airport, Thailand

    NASA Astrophysics Data System (ADS)

    Tingsanchali, Tawatchai; Eng, D.

    2009-03-01

    The existence of the Second Bangkok International Airport (SBIA) or the Suvarnabhumi International Airport induces more adverse effect to the flooding situation in its surrounding area. Due to limited drainage capacity, during a heavy storm, flooding in the surrounding area occurs over the area. The objective of the study is to find the most suitable flood control and drainage system that can drain floodwater from the surrounding area of 624 sq. km with minimum flood damages and impact to social and living conditions of the people in the study area. This study involves the application of MIKE FLOOD hydrodynamic model for determining the relative effects of flood control and drainage system in the surrounding area of the airport. The results of the study show that flood damages mostly occur in the central and downstream parts of the study area where drainage is insufficient. Flood depth and duration are main parameters used for the estimation of flood losses. Flood mitigation and management in the surrounding area of SBIA is planned by pumping water of 100 m3/s from Klong Samrong canal inside the study area through the proposed drainage channel to the Gulf of Thailand. The existing dikes along boundaries of the study area can protect water from the outer area to enter into the surrounding area of the airport. Flood simulation shows that a canal with capacity of 100 m3/s and a pumping station at the downstream end of the canal are required to cope with the drainage capacity for the flood of 100 years return period. A flood drainage channel of capacity of 100 m3/s is designed and will be constructed to drain flood from Klong Samrong to the sea. On the other hand, the embankment along the proposed drainage canal project improves traffic flow in the vicinity of the airport. On economic benefit, the project investment cost is Baht 8,410 million. The project benefit cost ratio is 2.12 with the economic internal rate of return of 15.61%. The construction period is 4 years. Environmental and social impacts are investigated and counter measures are proposed to reduce the impacts. The study considers compensating scheme for people who are directly affected by the flood drainage project and those who will lose their lands or their professions. Considerations are also extended to people who are indirectly affected by the project. Institutional framework is recommended to be established to manage flood control and drainage and water resources in the surrounding area of the airport.

  15. Origin of the Colorado River experimental flood in Grand Canyon

    USGS Publications Warehouse

    Andrews, E.D.; Pizzi, L.A.

    2000-01-01

    The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of ~17 x 109 m3 year -1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the incidental impacts of this development have become apparent especially along the Colorado River through Grand Canyon National Park downstream from Glen Canyon Dam and caused widespread concern. Since the completion of Glen Canyon Dam, the number and size of sand bars, which are used by recreational river runners and form the habitat for native fishes, have decreased substantially. Following an extensive hydrological and geomorphic investigation, an experimental flood release from the Glen Canyon Dam was proposed to determine whether sand bars would be rebuilt by a relatively brief period of flow substantially greater than the normal operating regime. This proposed release, however, was constrained by the Law of the River, the body of law developed over 70 years to control and distribute Colorado River water, the needs of hydropower users and those dependent upon hydropower revenues, and the physical constraints of the dam itself. A compromise was reached following often difficult negotiations and an experimental flood to rebuild sand bars was released in 1996. This flood, and the process by which it came about, gives hope to resolving the difficult and pervasive problem of allocation of water resources among competing interests.The Colorado River is one of the most highly regulated and extensively utilized rivers in the world. Total reservoir storage is approximately four times the mean annual runoff of approximately 17??109 m3 year-1. Reservoir storage and regulation have decreased annual peak discharges and hydroelectric power generation has increased daily flow variability. In recent years, the incidental impacts of this development have become apparent especially along the Colorado River through Grand Canyon National Park downstream from Glen Canyon Dam and caused widespread concern. Since the completion of Glen Canyon Dam, the number and size of sand bars, which are used by recreational river runners and form the habitat for native fishes, have decreased substantially. Following an extensive hydrological and geomorphic investigation, an experimental flood release from the Glen Canyon Dam was proposed to determine whether sand bars would be rebuilt by a relatively brief period of flow substantially greater than the normal operating regime. This proposed release, however, was constrained by the Law of the River, the body of law developed over 70 years to control and distribute Colorado River water, the needs of hydropower users and those dependent upon hydropower revenues, and the physical constraints of the dam itself. A compromise was reached following often difficult negotiations and an experimental flood to rebuild sand bars was released in 1996. This flood, and the process by which it came about, gives hope to resolving the difficult and pervasive problem of allocation of water resources among competing interests.

  16. Flash flood disasters analysis and evaluation: a case study of Yiyang County in China

    NASA Astrophysics Data System (ADS)

    Li, Haichen; Zhang, Xiaolei; Li, Qing; Qin, Tao; Lei, Xiaohui

    2018-03-01

    Global climate change leads to the more extreme precipitation and more flash flood disasters, which is a serious threat to the mountain inhabitants. To prevent flash flood disasters, China started flash flood disaster control planning and other projects from 2006. Among those measures, non-engineering measures are effective and economical. This paper introduced the framework of flash flood disaster analysis and evaluation in China, followed by a case study of Yiyang County.

  17. Three Experimental High-Flow Releases from Glen Canyon Dam, Arizona-Effects on the Downstream Colorado River Ecosystem

    USGS Publications Warehouse

    Melis, Theodore S.; Grams, Paul E.; Kennedy, Theodore A.; Ralston, Barbara E.; Robinson, Christopher T.; Schmidt, John C.; Schmit, Lara M.; Valdez, Richard A.; Wright, Scott A.

    2011-01-01

    Three high-flow experiments (HFEs) were conducted by the U.S. Department of the Interior at Glen Canyon Dam, Arizona, in March 1996, November 2004, and March 2008. Also known as artificial or controlled floods, these scheduled releases of water above the dam's powerplant capacity were designed to mimic pre-dam seasonal flooding on the Colorado River. The goal of the HFEs was to determine whether high flows could be used to benefit important downstream resources in Glen Canyon National Recreation Area and Grand Canyon National Park that have been affected by the existence and operation of Glen Canyon Dam. These downstream resources include native fish, particularly endangered humpback chub (Gila cypha), terrestrial and aquatic sandbar habitats, cultural sites, and recreational resources. This Fact Sheet summarizes HFE-related studies published since 1996 and outlines a possible strategy for implementing future HFEs.

  18. Optimal investment and location decisions of a firm in a flood risk area using Impulse Control Theory

    NASA Astrophysics Data System (ADS)

    Grames, Johanna; Grass, Dieter; Kort, Peter; Prskawetz, Alexia

    2017-04-01

    Flooding events can affect businesses close to rivers, lakes or coasts. This paper provides a partial equilibrium model which helps to understand the optimal location choice for a firm in flood risk areas and its investment strategies. How often, when and how much are firms willing to invest in flood risk protection measures? We apply Impulse Control Theory to solve the model analytically and develop a continuation algorithm to solve the model numerically. Firms always invest in flood defense. The investment increases the higher the flood risk and the more firms also value the future, i.e. the more sustainable they plan. Investments in production capital follow a similar path. Hence, planning in a sustainable way leads to economic growth. Sociohydrological feedbacks are crucial for the location choice of the firm, whereas different economic situations have an impact on investment strategies. If flood defense is already present, e.g. built up by the government, firms move closer to the water and invest less in flood defense, which allows firms to accrue higher expected profits. Firms with a large initial production capital surprisingly try not to keep their market advantage, but rather reduce flood risk by reducing exposed production capital.

  19. Risk factors of diarrhoea among flood victims: a controlled epidemiological study.

    PubMed

    Mondal, N C; Biswas, R; Manna, A

    2001-01-01

    The concept and practice of 'disaster preparedness and response', instead of traditional casualty relief, is relatively new. Vulnerability analysis and health risks assessment of disaster prone communities are important prerequisites of meaningful preparedness and effective response against any calamity. In this community based study, the risk of diarrhoeal disease and its related epidemiological factors were analysed by collecting data from two selected flood prone block of Midnapur district of West Bengal. The information was compared with that of another population living in two non-flood prone blocks of the same district. The study showed that diarrhoeal disease was the commonest morbidity in flood prone population. Some behaviours, like use of pond water for utensil wash and kitchen purpose, hand washing after defecation without soap, improper hand washing before eating, open field defecation, storage of drinking water in wide mouth vessels etc. were found to be associated with high attack rate of diarrhoea, in both study and control population during flood season compared to pre-flood season. Attack rates were also significantly higher in flood prone population than that of population in non-flood prone area during the same season. Necessity of both community education for proper water use behaviour and personal hygiene along with ensuring safe water and sanitation facilities of flood affected communities were emphasized.

  20. The Impact of a Library Flood on Computer Operations.

    ERIC Educational Resources Information Center

    Myles, Barbara

    2000-01-01

    Describes the efforts at Boston Public Library to recover from serious flooding that damaged computer equipment. Discusses vendor help in assessing the damage; the loss of installation disks; hiring consultants to help with financial matters; effects on staff; repairing and replacing damaged equipment; insurance issues; and disaster recovery…

  1. 77 FR 47827 - Intent To Prepare an Environmental Impact Statement for the Kissimmee Basin Modified Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ... more acceptable balance among flood control, water supply, aquatic plant management, and natural... achieve a more acceptable balance among flood control, water supply, aquatic plant management, and natural...

  2. Remote sensing of rainfall for flash flood prediction in the United States

    NASA Astrophysics Data System (ADS)

    Gourley, J. J.; Flamig, Z.; Vergara, H. J.; Clark, R. A.; Kirstetter, P.; Terti, G.; Hong, Y.; Howard, K.

    2015-12-01

    This presentation will briefly describe the Multi-Radar Multi-Sensor (MRMS) system that ingests all NEXRAD and Canadian weather radar data and produces accurate rainfall estimates at 1-km resolution every 2 min. This real-time system, which was recently transitioned for operational use in the National Weather Service, provides forcing to a suite of flash flood prediction tools. The Flooded Locations and Simulated Hydrographs (FLASH) project provides 6-hr forecasts of impending flash flooding across the US at the same 1-km grid cell resolution as the MRMS rainfall forcing. This presentation will describe the ensemble hydrologic modeling framework, provide an evaluation at gauged basins over a 10-year period, and show the FLASH tools' performance during the record-setting floods in Oklahoma and Texas in May and June 2015.

  3. Flood management on the lower Yellow River: hydrological and geomorphological perspectives

    NASA Astrophysics Data System (ADS)

    Shu, Li; Finlayson, Brian

    1993-05-01

    The Yellow River, known also as "China's Sorrow", has a long history of channel changes and disastrous floods in its lower reaches. Past channel positions can be identified from historical documentary records and geomorphological and sedimentological evidence. Since 1947, government policy has been aimed at containing the floods within artificial levees and preventing the river from changing its course. Flood control is based on flood-retarding dams and off-stream retention basins as well as artificial levees lining the channel. The design flood for the system has a recurrence interval of only around 60 years and floods of this and larger magnitudes can be generated downstream of the main flood control dams at Sanmenxia and Xiaolangdi. Rapid sedimentation along the river causes problems for storage and has raised the bed of the river some 10 m above the surrounding floodplain. The present management strategy is probably not viable in the long term and to avoid a major disaster a new management approach is required. The most viable option would appear to be to breach the levees at predetermined points coupled with advanced warning and evacuation of the population thus put at risk.

  4. Prepared to react? Assessing the functional capacity of the primary health care system in rural Orissa, India to respond to the devastating flood of September 2008.

    PubMed

    Phalkey, Revati; Dash, Shisir R; Mukhopadhyay, Alok; Runge-Ranzinger, Silvia; Marx, Michael

    2012-01-01

    Early detection of an impending flood and the availability of countermeasures to deal with it can significantly reduce its health impacts. In developing countries like India, public primary health care facilities are frontline organizations that deal with disasters particularly in rural settings. For developing robust counter reacting systems evaluating preparedness capacities within existing systems becomes necessary. The objective of the study is to assess the functional capacity of the primary health care system in Jagatsinghpur district of rural Orissa in India to respond to the devastating flood of September 2008. An onsite survey was conducted in all 29 primary and secondary facilities in five rural blocks (administrative units) of Jagatsinghpur district in Orissa state. A pre-tested structured questionnaire was administered face to face in the facilities. The data was entered, processed and analyzed using STATA(®) 10. Data from our primary survey clearly shows that the healthcare facilities are ill prepared to handle the flood despite being faced by them annually. Basic utilities like electricity backup and essential medical supplies are lacking during floods. Lack of human resources along with missing standard operating procedures; pre-identified communication and incident command systems; effective leadership; and weak financial structures are the main hindering factors in mounting an adequate response to the floods. The 2008 flood challenged the primary curative and preventive health care services in Jagatsinghpur. Simple steps like developing facility specific preparedness plans which detail out standard operating procedures during floods and identify clear lines of command will go a long way in strengthening the response to future floods. Performance critiques provided by the grass roots workers, like this one, should be used for institutional learning and effective preparedness planning. Additionally each facility should maintain contingency funds for emergency response along with local vendor agreements to ensure stock supplies during floods. The facilities should ensure that baseline public health standards for health care delivery identified by the Government are met in non-flood periods in order to improve the response during floods. Building strong public primary health care systems is a development challenge. The recovery phases of disasters should be seen as an opportunity to expand and improve services and facilities.

  5. Prepared to react? Assessing the functional capacity of the primary health care system in rural Orissa, India to respond to the devastating flood of September 2008

    PubMed Central

    Phalkey, Revati; Dash, Shisir R.; Mukhopadhyay, Alok; Runge-Ranzinger, Silvia; Marx, Michael

    2012-01-01

    Background Early detection of an impending flood and the availability of countermeasures to deal with it can significantly reduce its health impacts. In developing countries like India, public primary health care facilities are frontline organizations that deal with disasters particularly in rural settings. For developing robust counter reacting systems evaluating preparedness capacities within existing systems becomes necessary. Objective The objective of the study is to assess the functional capacity of the primary health care system in Jagatsinghpur district of rural Orissa in India to respond to the devastating flood of September 2008. Methods An onsite survey was conducted in all 29 primary and secondary facilities in five rural blocks (administrative units) of Jagatsinghpur district in Orissa state. A pre-tested structured questionnaire was administered face to face in the facilities. The data was entered, processed and analyzed using STATA® 10. Results Data from our primary survey clearly shows that the healthcare facilities are ill prepared to handle the flood despite being faced by them annually. Basic utilities like electricity backup and essential medical supplies are lacking during floods. Lack of human resources along with missing standard operating procedures; pre-identified communication and incident command systems; effective leadership; and weak financial structures are the main hindering factors in mounting an adequate response to the floods. Conclusion The 2008 flood challenged the primary curative and preventive health care services in Jagatsinghpur. Simple steps like developing facility specific preparedness plans which detail out standard operating procedures during floods and identify clear lines of command will go a long way in strengthening the response to future floods. Performance critiques provided by the grass roots workers, like this one, should be used for institutional learning and effective preparedness planning. Additionally each facility should maintain contingency funds for emergency response along with local vendor agreements to ensure stock supplies during floods. The facilities should ensure that baseline public health standards for health care delivery identified by the Government are met in non-flood periods in order to improve the response during floods. Building strong public primary health care systems is a development challenge. The recovery phases of disasters should be seen as an opportunity to expand and improve services and facilities. PMID:22435044

  6. Remote Sensing and River Discharge Forecasting for Major Rivers in South Asia (Invited)

    NASA Astrophysics Data System (ADS)

    Webster, P. J.; Hopson, T. M.; Hirpa, F. A.; Brakenridge, G. R.; De-Groeve, T.; Shrestha, K.; Gebremichael, M.; Restrepo, P. J.

    2013-12-01

    The South Asia is a flashpoint for natural disasters particularly flooding of the Indus, Ganges, and Brahmaputra has profound societal impacts for the region and globally. The 2007 Brahmaputra floods affecting India and Bangladesh, the 2008 avulsion of the Kosi River in India, the 2010 flooding of the Indus River in Pakistan and the 2013 Uttarakhand exemplify disasters on scales almost inconceivable elsewhere. Their frequent occurrence of floods combined with large and rapidly growing populations, high levels of poverty and low resilience, exacerbate the impact of the hazards. Mitigation of these devastating hazards are compounded by limited flood forecast capability, lack of rain/gauge measuring stations and forecast use within and outside the country, and transboundary data sharing on natural hazards. Here, we demonstrate the utility of remotely-derived hydrologic and weather products in producing skillful flood forecasting information without reliance on vulnerable in situ data sources. Over the last decade a forecast system has been providing operational probabilistic forecasts of severe flooding of the Brahmaputra and Ganges Rivers in Bangldesh was developed (Hopson and Webster 2010). The system utilizes ECMWF weather forecast uncertainty information and ensemble weather forecasts, rain gauge and satellite-derived precipitation estimates, together with the limited near-real-time river stage observations from Bangladesh. This system has been expanded to Pakistan and has successfully forecast the 2010-2012 flooding (Shrestha and Webster 2013). To overcome the in situ hydrological data problem, recent efforts in parallel with the numerical modeling have utilized microwave satellite remote sensing of river widths to generate operational discharge advective-based forecasts for the Ganges and Brahmaputra. More than twenty remotely locations upstream of Bangldesh were used to produce stand-alone river flow nowcasts and forecasts at 1-15 days lead time. showing that satellite-based flow estimates are a useful source of dynamical surface water information in data-scarce regions and that they could be used for model calibration and data assimilation purposes in near-time hydrologic forecast applications (Hirpa et al. 2013). More recent efforts during this year's monsoon season are optimally combining these different independent sources of river forecast information along with archived flood inundation imagery of the Dartmouth Flood Observatory to improve the visualization and overall skill of the ongoing CFAB ensemble weather forecast-based flood forecasting system within the unique context of the ongoing flood forecasting efforts for Bangladesh.

  7. 11. VIEW OF FLOOD GATE FOR THE PRESSURE CULVERT AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF FLOOD GATE FOR THE PRESSURE CULVERT AND THE SOUTH AND EAST ELEVATIONS, LOOKING NORTHWEST. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  8. On operational flood forecasting system involving 1D/2D coupled hydraulic model and data assimilation

    NASA Astrophysics Data System (ADS)

    Barthélémy, S.; Ricci, S.; Morel, T.; Goutal, N.; Le Pape, E.; Zaoui, F.

    2018-07-01

    In the context of hydrodynamic modeling, the use of 2D models is adapted in areas where the flow is not mono-dimensional (confluence zones, flood plains). Nonetheless the lack of field data and the computational cost constraints limit the extensive use of 2D models for operational flood forecasting. Multi-dimensional coupling offers a solution with 1D models where the flow is mono-dimensional and with local 2D models where needed. This solution allows for the representation of complex processes in 2D models, while the simulated hydraulic state is significantly better than that of the full 1D model. In this study, coupling is implemented between three 1D sub-models and a local 2D model for a confluence on the Adour river (France). A Schwarz algorithm is implemented to guarantee the continuity of the variables at the 1D/2D interfaces while in situ observations are assimilated in the 1D sub-models to improve results and forecasts in operational mode as carried out by the French flood forecasting services. An implementation of the coupling and data assimilation (DA) solution with domain decomposition and task/data parallelism is proposed so that it is compatible with operational constraints. The coupling with the 2D model improves the simulated hydraulic state compared to a global 1D model, and DA improves results in 1D and 2D areas.

  9. Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen

    NASA Astrophysics Data System (ADS)

    Wunderlich, S.; Borken, W.

    2012-05-01

    Peatlands store large amounts of organic carbon, but the carbon stock is sensitive to changes in precipitation or water table manipulations. Restoration of drained peatlands by drain blocking and flooding is a common measure to conserve and augment the carbon stock of peatland soils. Here, we report to what extent flooding affected the contribution of heterotrophic and rhizosphere respiration to soil CO2 efflux in a grass-dominated mountain fen, Germany. Soil CO2 efflux was measured in three un-manipulated control plots and three flooded plots in two consecutive years. Flooding was achieved by permanent irrigation during the growing seasons. Radiocarbon signatures of CO2 from different sources including soil CO2 efflux, incubated peat cores and live grass roots were repeatedly analyzed for partitioning of soil CO2 efflux. Additionally, heterotrophic respiration and its radiocarbon signature were determined by eliminating rhizosphere respiration in trenched subplots (only control). In the control plots, rhizosphere respiration determined by 14C signatures contributed between 47 and 61% during the growing season, but was small (4%) immediately before budding. Trenching revealed a smaller rhizosphere contribution of 33% (2009) and 22% (2010) during growing seasons. Flooding reduced annual soil CO2 efflux of the fen by 42% in 2009 and by 30% in 2010. The reduction was smaller in 2010 mainly through naturally elevated water level in the control plots. A 1-week interruption of irrigation caused a strong short-lived increase in soil CO2 efflux, demonstrating the sensitivity of the fen to water table drawdown near the peat surface. The reduction in soil CO2 efflux in the flooded plots diminished the relative proportion of rhizosphere respiration from 56 to 46%, suggesting that rhizosphere respiration was slightly more sensitive to flooding than heterotrophic respiration. We conclude that the moderate decrease in rhizosphere respiration following flooding arises from a gradual change in vegetation in this fen ecosystem.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastenberg, W.E.; Apostolakis, G.; Dhir, V.K.

    Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable ofmore » propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed.« less

  11. Physiological and biochemical responses of Salix integra Thunb. under copper stress as affected by soil flooding.

    PubMed

    Cao, Yini; Ma, Chuanxin; Chen, Guangcai; Zhang, Jianfeng; Xing, Baoshan

    2017-06-01

    To explore the joint effect of copper (Cu) and flooding on Salix integra Thunb. (S. integra), the physiological and biochemical parameters of the seedlings grown in Cu amended soil (50, 150, 450 mg kg -1 ) with or without the flooding for 60 days were evaluated. The results suggested that the flooding significantly inhibited the root growth in terms of root length and root tips. The Cu exposures of 50 and 150 mg kg -1 notably enhanced the root growth as compared to the control. Majority of Cu was accumulated in S. integra roots, while flooding significantly reduced the Cu content, except the 150 mg kg -1 Cu treatment, but the iron (Fe) and manganese (Mn) content on the root surface were both markedly increased relative to non-flooded control. The malonaldehyde (MDA) and glutathione (GSH) contents in leaves showed a dose-response upon Cu exposure. Soil flooding enhanced the GSH level, which displayed 4.50-49.59% increases compared to its respective non-flooded treatment, while no difference was evident on MDA contents between the flooding and the non-flooded treatments. Both superoxide dismutase (SOD) and peroxidase (POD) activities were boosted while the catalase (CAT) was suppressed with increasing Cu exposure dose, and soil flooding reduced the POD and CAT activities. The elevated Cu level caused the evident increases of root calcium (Ca), potassium (K), and sulfur (S) concentrations and decreases of root phosphorus (P), sodium (Na), and zinc (Zn) concentrations. Soil flooding increased the concentrations of Fe, S, Na, Ca, and magnesium (Mg) in S. integra root. Taken together, our results suggested S. integra has high tolerance to the joint stress from Cu and flooding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Performance assessment of deterministic and probabilistic weather predictions for the short-term optimization of a tropical hydropower reservoir

    NASA Astrophysics Data System (ADS)

    Mainardi Fan, Fernando; Schwanenberg, Dirk; Alvarado, Rodolfo; Assis dos Reis, Alberto; Naumann, Steffi; Collischonn, Walter

    2016-04-01

    Hydropower is the most important electricity source in Brazil. During recent years, it accounted for 60% to 70% of the total electric power supply. Marginal costs of hydropower are lower than for thermal power plants, therefore, there is a strong economic motivation to maximize its share. On the other hand, hydropower depends on the availability of water, which has a natural variability. Its extremes lead to the risks of power production deficits during droughts and safety issues in the reservoir and downstream river reaches during flood events. One building block of the proper management of hydropower assets is the short-term forecast of reservoir inflows as input for an online, event-based optimization of its release strategy. While deterministic forecasts and optimization schemes are the established techniques for the short-term reservoir management, the use of probabilistic ensemble forecasts and stochastic optimization techniques receives growing attention and a number of researches have shown its benefit. The present work shows one of the first hindcasting and closed-loop control experiments for a multi-purpose hydropower reservoir in a tropical region in Brazil. The case study is the hydropower project (HPP) Três Marias, located in southeast Brazil. The HPP reservoir is operated with two main objectives: (i) hydroelectricity generation and (ii) flood control at Pirapora City located 120 km downstream of the dam. In the experiments, precipitation forecasts based on observed data, deterministic and probabilistic forecasts with 50 ensemble members of the ECMWF are used as forcing of the MGB-IPH hydrological model to generate streamflow forecasts over a period of 2 years. The online optimization depends on a deterministic and multi-stage stochastic version of a model predictive control scheme. Results for the perfect forecasts show the potential benefit of the online optimization and indicate a desired forecast lead time of 30 days. In comparison, the use of actual forecasts with shorter lead times of up to 15 days shows the practical benefit of actual operational data. It appears that the use of stochastic optimization combined with ensemble forecasts leads to a significant higher level of flood protection without compromising the HPP's energy production.

  13. The model of flood control using servqual method and importance performance analysis in Surakarta City – Indonesia

    NASA Astrophysics Data System (ADS)

    Titi Purwantini, V.; Sutanto, Yusuf

    2018-05-01

    This research is to create a model of flood control in the city of Surakarta using Servqual method and Importance Performance Analysis. Service quality is generally defined as the overall assessment of a service by the customersor the extent to which a service meets customer’s needs or expectations. The purpose of this study is to find the first model of flood control that is appropriate to the condition of the community. Surakarta This means looking for a model that can provide satisfactory service for the people of Surakarta who are in the location of the flood. The second is to find the right model to improve service performance of Surakarta City Government in serving the people in flood location. The method used to determine the satisfaction of the public on the quality of service is to see the difference in the quality of service expected by the community with the reality. This method is Servqual Method While to assess the performance of city government officials is by comparing the actual performance with the quality of services provided, this method is This means looking for a model that can provide satisfactory service for the people of Surakarta who are in the location of the flood.The second is to find the right model to improve service performance of Surakarta City Government in serving the people in flood location. The method used to determine the satisfaction of the public on the quality of service is to see the difference in the quality of service expected by the community with the reality. This method is Servqual Method While to assess the performance of city government officials is by comparing the actual performance with the quality of services provided, this method is Importance Performance Analysis. Samples were people living in flooded areas in the city of Surakarta. Result this research is Satisfaction = Responsiveness+ Realibility + Assurance + Empathy+ Tangible (Servqual Model) and Importance Performance Analysis is From Cartesian diagram can be made Flood Control Formula as follow: Food Control = High performance

  14. 33 CFR 208.11 - Regulations for use of storage allocated for flood control or navigation and/or project operation...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... VA Pwr. Glen Elder Dam & Waconda Lk KS Mitchel Solomon R FIM 722.3204.8 1488.31455.6 1455.61428.0... 820 PL 78-534 USBR. Kirwin Dam & Res KS Phillips N Fork Solomon R F ICR 215.1 89.6 1757.3 1729.2 1729... Webster Dam & Res KS Rocks S Fork Solomon R F IRC 183.4 72.1 1923.7 1892.5 1892.5 1860.0 8480 3772 3772...

  15. 33 CFR 208.11 - Regulations for use of storage allocated for flood control or navigation and/or project operation...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VA Pwr. Glen Elder Dam & Waconda Lk KS Mitchel Solomon R FIM 722.3204.8 1488.31455.6 1455.61428.0... 820 PL 78-534 USBR. Kirwin Dam & Res KS Phillips N Fork Solomon R F ICR 215.1 89.6 1757.3 1729.2 1729... Webster Dam & Res KS Rocks S Fork Solomon R F IRC 183.4 72.1 1923.7 1892.5 1892.5 1860.0 8480 3772 3772...

  16. Multiple-Purpose Project. Osage River Basin, Big Bull Creek, Kansas. Hillsdale Lake Operation and Maintenance Manual. Appendix V. Embankment Criteria and Performance Report.

    DTIC Science & Technology

    1984-09-01

    and Mississippi Rivers; provide storage for Increasing low - water flows for the Improvement of water supply, abatement of pollution, and improvement...des Cygnes, Osage and Lower Missourl River. Hillsdale Lake will have storage for sediment, low -flow supplementation, water supply, and flood control...will furnish a water supply withdrawal of 32 cubic feet per second on a 2 percent chance dependability and low flow supplementation of 13 cubic feet

  17. Recreational Appendix Report, Elm Fork Flood Control Project, Dallas and Denton Counties, Texas.

    DTIC Science & Technology

    1973-05-01

    Sambucus canadensis 9. Texas Sophora Sophora affinis It will be recognized that, among both the trees and the understory woody plants, there are a number...a new treatment plant for the Town of Flower Mound is ex- pected to come into operation in 1973 on a branch of Denton Creek. The Flower Mound Plant is...within the market area will be in the immediate vicinity of the Project. Coppell, Irving, Carrollton, Flower Mound, Lewisville, Piano and Hebron are all

  18. Optimal Reservoir Operation using Stochastic Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Sahu, R.; McLaughlin, D.

    2016-12-01

    Hydropower operations are typically designed to fulfill contracts negotiated with consumers who need reliable energy supplies, despite uncertainties in reservoir inflows. In addition to providing reliable power the reservoir operator needs to take into account environmental factors such as downstream flooding or compliance with minimum flow requirements. From a dynamical systems perspective, the reservoir operating strategy must cope with conflicting objectives in the presence of random disturbances. In order to achieve optimal performance, the reservoir system needs to continually adapt to disturbances in real time. Model Predictive Control (MPC) is a real-time control technique that adapts by deriving the reservoir release at each decision time from the current state of the system. Here an ensemble-based version of MPC (SMPC) is applied to a generic reservoir to determine both the optimal power contract, considering future inflow uncertainty, and a real-time operating strategy that attempts to satisfy the contract. Contract selection and real-time operation are coupled in an optimization framework that also defines a Pareto trade off between the revenue generated from energy production and the environmental damage resulting from uncontrolled reservoir spills. Further insight is provided by a sensitivity analysis of key parameters specified in the SMPC technique. The results demonstrate that SMPC is suitable for multi-objective planning and associated real-time operation of a wide range of hydropower reservoir systems.

  19. Rebuilding Habitat and Shoreline Resilience through Improved Flood Control Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Rebuilding Habitat and Shoreline Resilience through Improved Flood Control Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  20. NASA Images Mississippi River Flooding in Louisiana

    NASA Image and Video Library

    2011-05-19

    NASA Terra spacecraft shows the water flow after the U.S. Army Corps of Engineers opened the Morganza Spillway, a flood control structure along the western bank of the Mississippi River in Louisiana, to ease flooding along levee systems on May 14, 2011.

  1. Linking Science of Flood Forecasts to Humanitarian Actions for Improved Preparedness and Effective Response

    NASA Astrophysics Data System (ADS)

    Uprety, M.; Dugar, S.; Gautam, D.; Kanel, D.; Kshetri, M.; Kharbuja, R. G.; Acharya, S. H.

    2017-12-01

    Advances in flood forecasting have provided opportunities for humanitarian responders to employ a range of preparedness activities at different forecast time horizons. Yet, the science of prediction is less understood and realized across the humanitarian landscape, and often preparedness plans are based upon average level of flood risk. Working under the remit of Forecast Based Financing (FbF), we present a pilot from Nepal on how available flood and weather forecast products are informing specific pre-emptive actions in the local preparedness and response plans, thereby supporting government stakeholders and humanitarian agencies to take early actions before an impending flood event. In Nepal, forecasting capabilities are limited but in a state of positive flux. Whilst local flood forecasts based upon rainfall-runoff models are yet to be operationalized, streamflow predictions from Global Flood Awareness System (GLoFAS) can be utilized to plan and implement preparedness activities several days in advance. Likewise, 3-day rainfall forecasts from Nepal Department of Hydrology and Meteorology (DHM) can further inform specific set of early actions for potential flash floods due to heavy precipitation. Existing community based early warning systems in the major river basins of Nepal are utilizing real time monitoring of water levels and rainfall together with localised probabilistic flood forecasts which has increased warning lead time from 2-3 hours to 7-8 hours. Based on these available forecast products, thresholds and trigger levels have been determined for different flood scenarios. Matching these trigger levels and assigning responsibilities to relevant actors for early actions, a set of standard operating procedures (SOPs) are being developed, broadly covering general preparedness activities and science informed anticipatory actions for different forecast lead times followed by the immediate response activities. These SOPs are currently being rolled out and tested by the Ministry of Home Affairs (MoHA) through its district emergency operation centres in West Nepal. Potential scale up and successful implementation of this science based approach would be instrumental to take forward global commitments on disaster risk reduction, climate change adaptation and sustainable goals in Nepal.

  2. Note on a modified return period scale for upper-truncated unbounded flood distributions

    NASA Astrophysics Data System (ADS)

    Bardsley, Earl

    2017-01-01

    Probability distributions unbounded to the right often give good fits to annual discharge maxima. However, all hydrological processes are in reality constrained by physical upper limits, though not necessarily well defined. A result of this contradiction is that for sufficiently small exceedance probabilities the unbounded distributions anticipate flood magnitudes which are impossibly large. This raises the question of whether displayed return period scales should, as is current practice, have some given number of years, such as 500 years, as the terminating rightmost tick-point. This carries the implication that the scale might be extended indefinitely to the right with a corresponding indefinite increase in flood magnitude. An alternative, suggested here, is to introduce a sufficiently high upper truncation point to the flood distribution and modify the return period scale accordingly. The rightmost tick-mark then becomes infinity, corresponding to the upper truncation point discharge. The truncation point is likely to be set as being above any physical upper bound and the return period scale will change only slightly over all practical return periods of operational interest. The rightmost infinity tick point is therefore proposed, not as an operational measure, but rather to signal in flood plots that the return period scale does not extend indefinitely to the right.

  3. Identifying and preserving high-water mark data

    USGS Publications Warehouse

    Koenig, Todd A.; Bruce, Jennifer L.; O'Connor, Jim; McGee, Benton D.; Holmes, Robert R.; Hollins, Ryan; Forbes, Brandon T.; Kohn, Michael S.; Schellekens, Mathew; Martin, Zachary W.; Peppler, Marie C.

    2016-03-08

    High-water marks provide valuable data for understanding recent and historical flood events. The proper collection and recording of high-water mark data from perishable and preserved evidence informs flood assessments, research, and water resource management. Given the high cost of flooding in developed areas, experienced hydrographers, using the best available techniques, can contribute high-quality data toward efforts such as public education of flood risk, flood inundation mapping, flood frequency computations, indirect streamflow measurement, and hazard assessments.This manual presents guidance for skilled high-water mark identification, including marks left behind in natural and man-made environments by tranquil and rapid flowing water. This manual also presents pitfalls and challenges associated with various types of flood evidence that help hydrographers identify the best high-water marks and assess the uncertainty associated with a given mark. Proficient high-water mark data collection contributes to better understanding of the flooding process and reduces risk through greater ability to estimate flood probability.The U.S. Geological Survey, operating the Nation’s premier water data collection network, encourages readers of this manual to familiarize themselves with the art and science of high-water mark collection. The U.S. Geological survey maintains a national database at http://water.usgs.gov/floods/FEV/ that includes high-water mark information for many flood events, and local U.S. Geological Survey Water Science Centers can provide information to interested readers about participation in data collection and flood documentation efforts as volunteers or observers.

  4. Monitoring and research to describe geomorphic effects of the 2011 controlled flood on the Green River in the Canyon of Lodore, Dinosaur National Monument, Colorado and Utah

    USGS Publications Warehouse

    Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E.; Kaplinski, Matt; Alexander, Jason A.; Kohl, Keith

    2014-01-01

    In 2011, a large magnitude flow release from Flaming Gorge Reservoir, Wyoming and Utah, occurred in response to high snowpack in the middle Rocky Mountains. This was the third highest recorded discharge along the Green River downstream of Flaming Gorge Dam, Utah, since its initial closure in November 1962 and motivated a research effort to document effects of these flows on channel morphology and sedimentology at four long-term monitoring sites within the Canyon of Lodore in Dinosaur National Monument, Colorado and Utah. Data collected in September 2011 included raft-based bathymetric surveys, ground-based surveys of banks, channel cross sections and vegetation-plot locations, sand-bar stratigraphy, and painted rock recovery on gravel bars. As part of this surveying effort, Global Navigation Satellite System (GNSS) data were collected at benchmarks on the canyon rim and along the river corridor to establish a high-resolution survey control network. This survey control network allows for the collection of repeatable spatial and elevation data necessary for high accuracy geomorphic change detection. Nearly 10,000 ground survey points and more than 20,000 bathymetric points (at 1-meter resolution) were collected over a 5-day field campaign, allowing for the construction of reach-scale digital elevation models (DEMs). Additionally, we evaluated long-term geomorphic change at these sites using repeat topographic surveys of eight monumented cross sections at each of the four sites. Analysis of DEMs and channel cross sections show a spatially variable pattern of erosion and deposition, both within and between reaches. As much as 5 meters of scour occurred in pools downstream from flow constrictions, especially in channel segments where gravel bars were absent. By contrast, some channel cross sections were stable during the 2011 floods, and have shown almost no change in over a decade of monitoring. Partial mobility of gravel bars occurred, and although in some locations vegetation such as tamarisk (Tamarix ramosissima) was damaged, wholesale bed motion necessary to fully clear these surfaces was not evident. In flow recirculation zones, eddy sandbars aggraded one meter or more, increasing the area of bars exposed during typical dam operations. Yet overall, the 2011 flood resulted in a decrease in reach-scale sand storage because bed degradation exceeded bar deposition. The 2011 response is consistent with that of a similar event in 1999, which was followed by sand-bar erosion and sediment accumulation on the bed during subsequent years of normal dam operational flows. Although the 1999 and 2011 floods were exceptional in the post-dam system, they did not exceed the pre-dam 2-year flood, isolating their effects to the modern active channel with minor erosion or reworking of pre-dam deposits stabilized through vegetation encroachment.

  5. Sediment supply versus local hydraulic controls on sediment transport and storage in a river with large sediment loads

    USGS Publications Warehouse

    Dean, David; Topping, David; Schmidt, John C.; Griffiths, Ronald; Sabol, Thomas

    2016-01-01

    The Rio Grande in the Big Bend region of Texas, USA, and Chihuahua and Coahuila, Mexico, undergoes rapid geomorphic changes as a result of its large sediment supply and variable hydrology; thus, it is a useful natural laboratory to investigate the relative importance of flow strength and sediment supply in controlling alluvial channel change. We analyzed a suite of sediment transport and geomorphic data to determine the cumulative influence of different flood types on changing channel form. In this study, physically based analyses suggest that channel change in the Rio Grande is controlled by both changes in flow strength and sediment supply over different spatial and temporal scales. Channel narrowing is primarily caused by substantial deposition of sediment supplied to the Rio Grande during tributary-sourced flash floods. Tributary floods have large suspended-sediment concentrations, occur for short durations, and attenuate rapidly downstream in the Rio Grande, depositing much of their sediment in downstream reaches. Long-duration floods on the mainstem have the capacity to enlarge the Rio Grande, and these floods, released from upstream dams, can either erode or deposit sediment in the Rio Grande depending upon the antecedent in-channel sediment supply and the magnitude and duration of the flood. Geomorphic and sediment transport analyses show that the locations and rates of sand erosion and deposition during long-duration floods are most strongly controlled by spatial changes in flow strength, largely through changes in channel slope. However, spatial differences in the in-channel sediment supply regulate sediment evacuation or accumulation over time in long reaches (greater than a kilometer).

  6. Characterization of peak streamflows and flood inundation of selected areas in Louisiana from the August 2016 flood

    USGS Publications Warehouse

    Watson, Kara M.; Storm, John B.; Breaker, Brian K.; Rose, Claire E.

    2017-02-06

    Heavy rainfall occurred across Louisiana and southwestern Mississippi in August 2016 as a result of a slow-moving area of low pressure and a high amount of atmospheric moisture. The storm caused major flooding in the southern portions of Louisiana including areas surrounding Baton Rouge and Lafayette. Flooding occurred along the rivers such as the Amite, Comite, Tangipahoa, Tickfaw, Vermilion, and Mermentau Rivers. Over 31 inches of rain was reported in the city of Watson, 20 miles northeast of Baton Rouge, La., over the duration of the event. Streamflow-gaging stations operated by the U.S. Geological Survey (USGS) recorded peak streamflows of record at 10 locations, and 7 other locations experienced peak streamflows ranking in the top five for the duration of the period of record. In August 2016, USGS hydrographers made 50 discharge measurements at 21 locations on streams in Louisiana. Many of those discharge measurements were made for the purpose of verifying the accuracy of stage-streamflow relations at gaging stations operated by the USGS. Following the storm event, USGS hydrographers recovered and documented 590 high-water marks, noting location and height of the water above land surface. Many of these high-water marks were used to create 12 flood-inundation maps for selected communities of Louisiana that experienced flooding in August 2016. Digital datasets of the inundation area, modeling boundary, water depth rasters, and final map products are available online.

  7. A methodology for urban flood resilience assessment

    NASA Astrophysics Data System (ADS)

    Lhomme, Serge; Serre, Damien; Diab, Youssef; Laganier, Richard

    2010-05-01

    In Europe, river floods have been increasing in frequency and severity [Szöllösi-Nagy and Zevenbergen, 2005]. Moreover, climate change is expected to exacerbate the frequency and intensity of hydro meteorological disaster [IPCC, 2007]. Despite efforts made to maintain the flood defense assets, we often observe levee failures leading to finally increase flood risk in protected area. Furthermore, flood forecasting models, although benefiting continuous improvements, remain partly inaccurate due to uncertainties arising all along data calculation processes. In the same time, the year 2007 marks a turning point in history: half of the world population now lives in cities (UN-Habitat, 2007). Moreover, the total urban population is expected to double from two to four billion over the next 30 to 35 years (United Nations, 2006). This growing rate is equivalent to the creation of a new city of one million inhabitants every week, and this during the next four decades [Flood resilience Group]. So, this quick urban development coupled with technical failures and climate change have increased flood risk and corresponding challenges to urban flood risk management [Ashley et al., 2007], [Nie et al., 2009]. These circumstances oblige to manage flood risk by integrating new concepts like urban resilience. In recent years, resilience has become a central concept for risk management. This concept has emerged because a more resilient system is less vulnerable to risk and, therefore, more sustainable [Serre et al., 2010]. But urban flood resilience is a concept that has not yet been directly assessed. Therefore, when decision makers decide to use the resilience concept to manage urban flood, they have no tool to help them. That is why this paper proposes a methodology to assess urban flood resilience in order to make this concept operational. Networks affect the well-being of the people and the smooth functioning of services and, more generally, of economical activities. Yet, multiple networks that innervate the city are particularly sensitive to flooding, through their structures and geographic constraints. Because societal functions are highly dependent on networked systems and the operability of these systems can be vulnerable to disasters, there is a need to understand how networked systems are resilient. That is why, considering that networks can be regarded as the "flood gateway" [Lhomme et al., 2009], we will focus on the resilience assessment of these critical networks before urban resilience assessment. The first part of this paper introduce resilience concept to well understand the importance of this concept to manage flood risk and of assessing this resilience. In a second part, this paper presents the use of safety methods to model network system dysfunctions during flood and then to produce resilience indicators. Finally it presents use of graph theory to assess adaptive capacity of these networks. These researches are the first steps toward the development of a GIS tool to optimize preparedness and recovery after a flood event.

  8. Reservoir sedimentation rates in the Little Washita River experimental watershed, Oklahoma: measurement and controlling factors

    USDA-ARS?s Scientific Manuscript database

    Forty-five flood control reservoirs, authorized in the United States Flood Control Act of 1936, were installed between 1969 and 1982 in the Little Washita River Experimental Watershed (LWREW), located in central Oklahoma. Over time, these reservoirs have lost water storage capacity due to sedimentat...

  9. 76 FR 39091 - San Luis Obispo Flood Control and Water Conservation District; Notice of Effectiveness of Surrender

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... Water Treatment Plant Hydropower Generation Unit Project No. 4804. The project was located on the county's water distribution system in San Luis Obispo County, California. \\1\\ San Luis Obispo Flood Control...

  10. Investigating NWP initialization sensitivities in heavy precipitation events

    NASA Astrophysics Data System (ADS)

    Frediani, M. E. B.; Anagnostou, E. N.; Papadopoulos, A.

    2010-09-01

    This study aims to investigate the effect of different types of model initialization applied to extreme storms simulations. Storms with extreme precipitation can usually produce flash floods that cause several damages to the society. Lives and property are destroyed from the landslides when they could be speared if forecasted a few hours in advance. The forecasts depend on several factors; among them the initialization fields play an important role. These fields are the starting point for the simulation and therefore it controls the quality of the forecast. This study evaluates the sensitivities of WRF to the initialization from two perspectives, (1) resolution and (2) initial atmospheric fields. Two storms that lead to flash flood are simulated. The first one happened in Northeast Italy in 04/09/2009 (NI), and the second in Germany, in 02/06/2008 (GE). These storms present contrasting characteristics, NI was a maritime originated storm enhanced by local orography while GE was a typical summer convection. Three different sources of atmospheric fields defining the initial conditions are applied: (a) ECMWF operational analysis at resolution of 0.25 deg, (b) GFS operational analysis at 0.5deg and (c) LAPS analysis at ~15km, produced operationally at HCMR. The rainfall forecasted is compared against in situ ground radar and surface rain gauges observations through a set of quantitative precipitation forecast scores.

  11. Morphological processes in permeable sediment traps with check dams

    NASA Astrophysics Data System (ADS)

    Schwindt, S.; Franca, M. J.; Schleiss, A. J.

    2017-12-01

    Sediment traps serve for the retention of sediment in the case of major floods, but the retention of sediment is not wanted up to smaller frequent floods which are important to the morphodynamics of rivers. A new concept for the sediment traps that enables sediment transfer for frequent floods and safely retains sediment in the case of important floods was recently developed and experimentally tested. The tests were performed using a standardized hydrograph and different barrier types for the mechanically or hydraulically controlled retention of sediments. The deposition pattern was measured at the end of every experimental run using a motion sensing camera. These measurements show that the shape of the deposits varies as a function of the retention control type (mechanical or hydraulic) and particularly as a function of the barrier height. Deposits were large when a high barrier was applied that was not overflown, and when both control types were combined. The deposition slope was shallow in the case of the high barrier, steeper for combined controls and steepest when mechanical control only was tested. The study enables a better understanding for the optimization of the shape of artificial deposition areas upstream of partially permeable check dams to enhance the tradeoff between eco-morphological and economical aspects of flood protection.

  12. Vector-control response in a post-flood disaster setting, Honiara, Solomon Islands, 2014

    PubMed Central

    Musto, Jennie; Bugoro, Hugo; Butafa, Charles; Sio, Alison; Joshua, Cynthia

    2016-01-01

    Problem The close quartering and exposed living conditions in evacuation centres and the potential increase in vector density after flooding in Solomon Islands resulted in an increased risk of exposure for the occupants to vectorborne diseases. Context In April 2014, Solomon Islands experienced a flash flooding event that affected many areas and displaced a large number of people. In the capital, Honiara, nearly 10 000 people were housed in emergency evacuation centres at the peak of the post-flood emergency. At the time of the floods, the number of dengue cases was increasing, following a record outbreak in 2013. Action The National Vector Borne Disease Control Programme with the assistance of the World Health Organization implemented an emergency vector-control response plan to provide protection to the at-risk populations in the evacuation centres. The National Surveillance Unit also activated an early warning disease surveillance system to monitor communicable diseases, including dengue and malaria. Outcome Timely and strategic application of the emergency interventions probably prevented an increase in dengue and malaria cases in the affected areas. Discussion Rapid and appropriate precautionary vector-control measures applied in a post-natural disaster setting can prevent and mitigate vectorborne disease incidences. Collecting vector surveillance data allows better analysis of vector-control operations’ effectiveness. PMID:27757255

  13. Carnivorous arthropods after spring flood

    USDA-ARS?s Scientific Manuscript database

    Spring flooding is a common practice in Wisconsin cranberries, but flooding as insect control produces variable results among marshes. This project is aimed at figuring out why it works, and why it sometimes doesn’t. We have focused on tracking arthropod populations to explain the observed patterns ...

  14. Shades of Green: Flood control study focused on Duluth, Minnesota

    EPA Science Inventory

    In the aftermath of the economically and environmentally painful flood of 2012, the city of Duluth and the CSC examined ecologically based options to reduce runoff velocities and flood volume in the watershed with assistance and input of Minnesota Duluth's Natural Resources Resea...

  15. Not Out of Control: Analysis of the Federal Disaster Spending Trend

    DTIC Science & Technology

    2016-03-01

    included heavy rain, excessive rainfall, tropical storms, hurricanes, flooding, coastal flooding, wind, straight line winds, high winds, tornadoes ...straight line winds, tornadoes , high winds, coastal flooding, soil saturation, and mud flow.174 Despite the high number of severe storm declarations over

  16. 46 CFR 28.580 - Unintentional flooding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... INDUSTRY VESSELS Stability § 28.580 Unintentional flooding. (a) Applicability. Except for an open boat that... means to rapidly make it watertight which is operable from a location aft of the collision bulkhead; (4... penetration must be assumed: (1) Longitudinal extent—L/10, or 10 feet (3.05 meters) plus 0.03L, whichever is...

  17. Flooding and Flood Management

    USGS Publications Warehouse

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim

    2011-01-01

    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  18. Identification of Dominant Flood Drivers across Canada

    NASA Astrophysics Data System (ADS)

    Singh, J.; Karmakar, S.; Ghosh, S.; Simonovic, S.; Gusain, A.

    2016-12-01

    In recent past, flooding has taken a devastating form causing societal, economic, and environmental losses over the Globe. Reliable information on the cause of occurrence, time, and magnitude of flood events might be useful for effective planning, design and operation of hydraulic structures to minimize losses. In the present study, we used circular statistics to understand the pattern and seasonality in flooding across Canada. A set of analyses is performed on unregulated daily stream flow data from 318 stream gage stations (procure from HYDAT database) with a record of at least 40 years between 1951-2010. Further, an attempt is also made to identify possible primary drivers of flooding across Canada. To accomplish this, daily precipitation record from 561 stations and 10 resolution snowmelt data from ECMWF ERA 20C during 1951-2010 have been used. Majority of stations reported statistically significant negative trend in flood magnitude in south western part, whereas, an increasing trend in frequency of flooding observed in south eastern part of Canada. The results show a strong evidence of regional patterns of seasonality and inter-annual variability in flooding. It is observed, about 42% of flood events occur during spring (March-May) over south eastern part of Canada and are not associated with extreme precipitation, where snowmelt is found to be primary factor for occurrence of flood events. Further, about 44% of flood events occur during summer (June-August) in southwestern region and having strong association with extreme precipitation. Additionally, we observe the negative trend in precipitation driven flood events (summer flooding) in south western part of Canada. The present study on identification of major flood drivers across Canada shows a need to examine the influence of various climate indices quantifying variation of surface temperature anomalies, which will improve flood prediction and consequently flood risk management. Keywords: Canada, Flood drivers, Flood management, Precipitation, Snowmelt

  19. An exhaustive approach for identification of flood risk hotspots in data poor regions enforcing combined geomorphic and socio-economic indicators

    NASA Astrophysics Data System (ADS)

    Mohanty, M. P.; Karmakar, S.; Ghosh, S.

    2017-12-01

    Many countries across the Globe are victims of floods. To monitor them, various sophisticated algorithms and flood models are used by the scientific community. However, there still lies a gap to efficiently mapping flood risk. The limitations being: (i) scarcity of extensive data inputs required for precise flood modeling, (ii) fizzling performance of models in large and complex terrains (iii) high computational cost and time, and (iv) inexpertise in handling model simulations by civic bodies. These factors trigger the necessity of incorporating uncomplicated and inexpensive, yet precise approaches to identify areas at different levels of flood risk. The present study addresses this issue by utilizing various easily available, low cost data in a GIS environment for a large flood prone and data poor region. A set of geomorphic indicators of Digital Elevation Model (DEM) are analysed through linear binary classification, and are used to identify the flood hazard. The performance of these indicators is then investigated using receiver operating characteristics (ROC) curve, whereas the calibration and validation of the derived flood maps are accomplished through a comparison with dynamically coupled 1-D 2-D flood model outputs. A high degree of similarity on flood inundation proves the reliability of the proposed approach in identifying flood hazard. On the other hand, an extensive list of socio-economic indicators is selected to represent the flood vulnerability at a very finer forward sortation level using multivariate Data Envelopment Analysis (DEA). A set of bivariate flood risk maps is derived combining the flood hazard and socio-economic vulnerability maps. Given the acute problem of floods in developing countries, the proposed methodology which may be characterized by low computational cost, lesser data requirement and limited flood modeling complexity may facilitate local authorities and planners for deriving effective flood management strategies.

  20. Managing Floodplain Expectations on the Lower Missouri River, USA.

    NASA Astrophysics Data System (ADS)

    Bulliner, E. A., IV; Jacobson, R. B.; Lindner, G. A.; Paukert, C.; Bouska, K.

    2017-12-01

    The Missouri River is an archetype of the challenges of managing large rivers and their floodplains for multiple objectives. At 1.3 million km2 drainage area, the Missouri boasts the largest reservoir system in North America with 91 km3 of total storage; in an average year the system generates 10 billion kilowatt hours of electricity. The Lower Missouri River floodplain extends 1,300 km downstream from the reservoir system and encompasses approximately 9,200 km2. For the past 150 years, the floodplain has been predominantly used for agriculture much of which is protected from flooding by private and Federal levees. Reservoir system operating policies prioritize flood-hazard reduction but in recent years, large, damaging floods have demonstrated system limitations. These large floods and changing societal values have created new expectations about how conversion of floodplain agricultural lands to conservation lands might increase ecosystem services, in particular decreasing flood risk and mitigating fluxes of nutrients to the Gulf of Mexico. Our research addresses these expectations at multiple spatial scales by starting with hydrologic and hydraulic models to understand controls on floodplain hydrodynamics. The results document the substantial regional spatial variability in floodplain connectivity that exists because of multi-decadal channel adjustments to channelization and sediment budgets. Exploration of levee setback scenarios with 1- and 2-dimensional hydrodynamic models indicates modest and spatially variable gains in flood-hazard reduction are possible if substantial land areas (50% or more) are converted from agricultural production. Estimates of potential denitrification benefits of connecting floodplains indicate that the floodplain has the capacity to remove 100's to 1,000's of metric tons of N each year, but amounts to a maximum of about 5% the existing load of 200,000 ton*y-1. The results indicate that in this river-floodplain system, the ecosystem services associated with floodplain conversion can be substantial, but the sum of benefits needed to justify land conversion over broad areas remains uncertain.

  1. Association between floods and infectious diarrhea and their effect modifiers in Hunan province, China: A two-stage model.

    PubMed

    Liu, Zhidong; Zhang, Feifei; Zhang, Ying; Li, Jing; Liu, Xuena; Ding, Guoyong; Zhang, Caixia; Liu, Qiyong; Jiang, Baofa

    2018-06-01

    Understanding the potential links between floods and infectious diarrhea is important under the context of climate change. However, little is known about the risk of infectious diarrhea after floods and what factors could modify these effects in China. This study aims to quantitatively examine the relationship between floods and infectious diarrhea and their effect modifiers. Weekly number of infectious diarrhea cases from 2004 to 2011 during flood season in Hunan province were supplied by the National Notifiable Disease Surveillance System. Flood and meteorological data over the same period were obtained. A two-stage model was used to estimate a provincial average association and their effect modifiers between floods and infectious diarrhea, accounting for other confounders. A total of 134,571 cases of infectious diarrhea were notified from 2004 to 2011. After controlling for seasonality, long-term trends, and meteorological factors, floods were significantly associated with infectious diarrhea in the provincial level with a cumulative RR of 1.22 (95% CI: 1.05, 1.43) with a lagged effect of 0-1 week. Geographic locations and economic levels were identified as effect modifiers, with a higher impact of floods on infectious diarrhea in the western and regions with a low economic level of Hunan. Our study provides strong evidence of a positive association between floods and infectious diarrhea in the study area. Local control strategies for public health should be taken in time to prevent and reduce the risk of infectious diarrhea after floods, especially for the vulnerable regions identified. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Flooding mortality and habitat renewal for least terns and piping plovers

    USGS Publications Warehouse

    Sidle, John G.; Carlson, D.E.; Kirsch, E.M.; Dinan, J.J.

    1992-01-01

    We observed extensive mortality (eggs and chicks) of the endangered interior population of the Least Tern (Sterna antillarum) and threatened Piping Plover (Charadrius melodus) caused by natural flooding during the 1990 breeding season along the Platte River, Nebraska USA. Aerial videography of the Platte River before and after the flood revealed a 78% reduction of perennial vegetation on sandbars. The flood scoured vegetation from sandbars and greatly increased the amount of barren sandbar habitat that nesting Least Terns and Piping Plovers use. A review of river gauging station data indicated that flooding of the 1990 magnitude or greater can be expected to occur about once every nine years. We recommend a review of the annual operating plans of managed rivers to account for the effects of dam discharges on Least Terns and Piping Plovers.

  3. Flooding on the Mississippi River Captured by NASA Spacecraft

    NASA Image and Video Library

    2016-01-20

    This image acquired on Jan. 17, 2016 by NASA Terra spacecraft shows major flooding along the Mississippi River, affecting Missouri, Illinois, Arkansas and Tennessee. As of January 17, flood warnings were issued for the area around Baton Rouge, Louisiana, as the river crested at 43.3 feet (13.1 meters), 8 feet (2.4 meters) above flood stage. Shipping and industrial activities were significantly affected; low-lying areas were flooded, and agricultural operations were impacted on the west side of the river. This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra spacecraft was acquired Jan. 17, 2016, covers an area of 23.6 by 23.6 miles (38 by 38 kilometers), and is located at 30.6 degrees north, 91.3 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA20364

  4. Study on ecological regulation of coastal plain sluice

    NASA Astrophysics Data System (ADS)

    Yu, Wengong; Geng, Bing; Yu, Huanfei; Yu, Hongbo

    2018-02-01

    Coastal plains are densely populated and economically developed, therefore their importance is self-evident. However, there are some problems related with water in coastal plains, such as low flood control capacity and severe water pollution. Due to complicated river network hydrodynamic force, changeable flow direction and uncertain flood concentration and propagation mechanism, it is rather difficult to use sluice scheduling to realize flood control and tackle water pollution. On the base of the measured hydrological data during once-in-a-century Fitow typhoon in 2013 in Yuyao city, by typical analysis, theoretical analysis and process simulation, some key technologies were researched systematically including plain river network sluice ecological scheduling, “one tide” flood control and drainage scheduling and ecological running water scheduling. In the end, single factor health diagnostic evaluation, unit hydrograph of plain water level and evening tide scheduling were put forward.

  5. Deciphering flood frequency curves from a coupled human-nature system perspective

    NASA Astrophysics Data System (ADS)

    Li, H. Y.; Abeshu, G. W.; Wang, W.; Ye, S.; Guo, J.; Bloeschl, G.; Leung, L. R.

    2017-12-01

    Most previous studies and applications in deriving or applying FFC are underpinned by the stationarity assumption. To examine the theoretical robustness of this basic assumption, we analyzed the observed FFCs at hundreds of catchments in the contiguous United States along the gradients of climate conditions and human influences. The shape of FFCs is described using three similarity indices: mean annual floods (MAF), coefficient of variance (CV), and a seasonality index defined using circular statistics. The characteristics of catchments are quantified with a small number of dimensionless indices, including particularly: 1) the climatic aridity index, AI, which is a measure of the competition between energy and water availability; 2) reservoir impact index, defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume. The linkages between these two sets of indices are then explored based on a combination of mathematical derivations of the Budyko formula, simple but physically based reservoir operation models, and other auxiliary data. It is found that the shape of FFCs shifts from arid to humid climate, and from periods with weak human influences to periods with strong influences. The seasonality of floods is found to be largely controlled by the synchronization between the seasonal cycles of precipitation and solar radiation in pristine catchments, but also by the reservoir regulation capacity in managed catchments. Our findings may help improve flood-risk assessment and mitigation in both natural and regulated river systems across various climate gradients.

  6. Effects of a flood pulse on exchange flows along a sinuous stream

    NASA Astrophysics Data System (ADS)

    Käser, D.; Brunner, P.; Renard, P.; Perrochet, P.; Schirmer, M.; Hunkeler, D.

    2012-04-01

    Flood pulses are important events for river ecosystems: they create hydrological interactions at the terrestrial/aquatic interface that fuel biological productivity and shape the hyporheic-riparian habitats. For example, floods promote faunal activity and decomposition by increasing the supply of oxygenated water in downwelling areas, while the following recession periods tend to provide stable thermal conditions favoured by fish or insects in areas of groundwater upwelling. This 3-D modelling study investigates the effect of stream stage transience (with events characterised by their intensity and duration) on hydrological exchanges between the surface and the near-stream subsurface. It evaluates, in particular, its effect on streams of varying sinuosity by quantifying the dynamic response of: (1) subsurface flow paths, (2) the exchange pattern at the sediment-water interface, and (3) integrative measures such as total exchange flux and total storage. Understanding geomorphological controls on groundwater/surface water interactions is attractive because topography is generally better constrained than subsurface parameters, and can be used in data-poor situations. The numerical model represents a hypothetical alluvial plain limited by impervious bedrock on all four sides, and in which the channel meanders according to the sine-generated curve of Langbein and Leopold (1966). As the model (HydroGeoSphere) couples surface and subsurface flow, the stream stage transience is imposed by a fluctuating head at the channel inlet. Preliminary results show that a simple rectangular flood pulse in an idealised sinuous stream without additional complexity can generate multiple flow direction reversals at a single point in the channel. The initial conditions of the groundwater table, the channel sinuosity and the time characteristics of the flood pulse all control exchange flow features in different ways. Results are also compared with 'bank storage' analytical solutions that typically assume a straight channel. The discussion covers an evaluation of this work with respect to previous studies that considered the influence of sinuosity on interfacial exchange flows. It addresses the issue of steady vs. transient exchanges, which is of uppermost importance at the operational scale of river restoration schemes. Langbein WB, Leopold LB. 1966. River meanders - theory of minimum variance. U.S. Geol. Surv. Prof. Pap. 422-H: 15 p.

  7. Assessing the potential of reservoir outflow management to reduce sedimentation using continuous turbidity monitoring and reservoir modelling

    USGS Publications Warehouse

    Lee, Casey; Foster, Guy

    2013-01-01

    In-stream sensors are increasingly deployed as part of ambient water quality-monitoring networks. Temporally dense data from these networks can be used to better understand the transport of constituents through streams, lakes or reservoirs. Data from existing, continuously recording in-stream flow and water quality monitoring stations were coupled with the two-dimensional hydrodynamic CE-QUAL-W2 model to assess the potential of altered reservoir outflow management to reduce sediment trapping in John Redmond Reservoir, located in east-central Kansas. Monitoring stations upstream and downstream from the reservoir were used to estimate 5.6 million metric tons of sediment transported to John Redmond Reservoir from 2007 through 2010, 88% of which was trapped within the reservoir. The two-dimensional model was used to estimate the residence time of 55 equal-volume releases from the reservoir; sediment trapping for these releases varied from 48% to 97%. Smaller trapping efficiencies were observed when the reservoir was maintained near the normal operating capacity (relative to higher flood pool levels) and when average residence times were relatively short. An idealized, alternative outflow management scenario was constructed, which minimized reservoir elevations and the length of time water was in the reservoir, while continuing to meet downstream flood control end points identified in the reservoir water control manual. The alternative scenario is projected to reduce sediment trapping in the reservoir by approximately 3%, preventing approximately 45 000 metric tons of sediment from being deposited within the reservoir annually. This article presents an approach to quantify the potential of reservoir management using existing in-stream data; actual management decisions need to consider the effects on other reservoir benefits, such as downstream flood control and aquatic life.

  8. A flood risk assessment and mapping for Riga city

    NASA Astrophysics Data System (ADS)

    Bethers, U.; Sennikovs, J.; Virbulis, J.; Timuhins, A.

    2009-04-01

    Riga (population ca. 800,000) is the capital of Latvia. The city is located at the southern coast of Gulf of Riga along the lower stretch of the River Daugava. The water bodies adjacent or within the territory of the city are the River Daugava itself, its connection (Bullupe) to another major river - Lielupe, several minor tributaries of the River Daugava, as well as an interconnected lake system of estuarine origin. The flow in the lower stretch of the River Daugava is regulated by Riga hydropower plant which is situated approx. 25 kilometers upstream the river mouth. The lowest 12 kilometers of the river channel is dredged to ensure the operation of the Riga Freeport. The aims of the study were (1) the identification of the flood risk situations, (2) the quantification of the flooding scenarious of different return periods, (3) the building and calibration of the hydrodynamical mathematical model for the domain potentially vulnerable for flooding, (4) the calculation of flood events with different return period, and (5) the detailed (horizontal accuracy around 10 m) of the potentially flooded areas. The combination of storm surges in the southern part of Gulf of Riga with unfavorable regime of hydropower plant operation was found as the most dangerous flooding situation. The time series of water level at the mouth of the River Daugava was analysed for more than 130 year long time period. The significant trend was found in the annual peak water level. Five significant storm events were found in time period 2001-2007 which roughly correspond to storm surges with return period once in 5, 10, 20, 50 and 100 years. The model storm events were created by scaling waterlevel and meteorological conditions during these selected events, and superposing them with hydropowerplant operation regime. The finite-element based shallow water model was built for the area, potentially vulnerable for flooding. Heterogeneous depth/terrain information from various sources was integrated in the model. The linear objects (watercourses, dams, etc.) of hydraulic importance were included in the model. The typical spatial resolution of approx. 50-100 m was reached with total number of finite elements around 250,000. The hydrodynamical model was calibrated on the basis of water level observations in 5 different locations during 5 selected real storm events. The hydrodynamics of the flood scenarious were calculated for the model storm situations. The importance of the dynamical modeling of flooded areas was shown for the domain with a complex channel system and typical length of storm event below 18 hours. The method for the mapping of the results of hydrodynamical calculations on the digital terrain map of much higher (10 m) spatial resolution was proposed and applied.

  9. Metagenomic profiling of historic Colorado Front Range flood impact on distribution of riverine antibiotic resistance genes.

    PubMed

    Garner, Emily; Wallace, Joshua S; Argoty, Gustavo Arango; Wilkinson, Caitlin; Fahrenfeld, Nicole; Heath, Lenwood S; Zhang, Liqing; Arabi, Mazdak; Aga, Diana S; Pruden, Amy

    2016-12-05

    Record-breaking floods in September 2013 caused massive damage to homes and infrastructure across the Colorado Front Range and heavily impacted the Cache La Poudre River watershed. Given the unique nature of this watershed as a test-bed for tracking environmental pathways of antibiotic resistance gene (ARG) dissemination, we sought to determine the impact of extreme flooding on ARG reservoirs in river water and sediment. We utilized high-throughput DNA sequencing to obtain metagenomic profiles of ARGs before and after flooding, and investigated 23 antibiotics and 14 metals as putative selective agents during post-flood recovery. With 277 ARG subtypes identified across samples, total bulk water ARGs decreased following the flood but recovered to near pre-flood abundances by ten months post-flood at both a pristine site and at a site historically heavily influenced by wastewater treatment plants and animal feeding operations. Network analysis of de novo assembled sequencing reads into 52,556 scaffolds identified ARGs likely located on mobile genetic elements, with up to 11 ARGs per plasmid-associated scaffold. Bulk water bacterial phylogeny correlated with ARG profiles while sediment phylogeny varied along the river's anthropogenic gradient. This rare flood afforded the opportunity to gain deeper insight into factors influencing the spread of ARGs in watersheds.

  10. Delivering integrated HAZUS-MH flood loss analyses and flood inundation maps over the Web.

    PubMed

    Hearn, Paul P; Longenecker, Herbert E; Aguinaldo, John J; Rahav, Ami N

    2013-01-01

    Catastrophic flooding is responsible for more loss of life and damages to property than any other natural hazard. Recently developed flood inundation mapping technologies make it possible to view the extent and depth of flooding on the land surface over the Internet; however, by themselves these technologies are unable to provide estimates of losses to property and infrastructure. The Federal Emergency Management Agency's (FEMA's) HAZUS-MH software is extensively used to conduct flood loss analyses in the United States, providing a nationwide database of population and infrastructure at risk. Unfortunately, HAZUS-MH requires a dedicated Geographic Information System (GIS) workstation and a trained operator, and analyses are not adapted for convenient delivery over the Web. This article describes a cooperative effort by the US Geological Survey (USGS) and FEMA to make HAZUS-MH output GIS and Web compatible and to integrate these data with digital flood inundation maps in USGS's newly developed Inundation Mapping Web Portal. By running the computationally intensive HAZUS-MH flood analyses offline and converting the output to a Web-GIS compatible format, detailed estimates of flood losses can now be delivered to anyone with Internet access, thus dramatically increasing the availability of these forecasts to local emergency planners and first responders.

  11. Delivering integrated HAZUS-MH flood loss analyses and flood inundation maps over the Web

    USGS Publications Warehouse

    Hearn,, Paul P.; Longenecker, Herbert E.; Aguinaldo, John J.; Rahav, Ami N.

    2013-01-01

    Catastrophic flooding is responsible for more loss of life and damages to property than any other natural hazard. Recently developed flood inundation mapping technologies make it possible to view the extent and depth of flooding on the land surface over the Internet; however, by themselves these technologies are unable to provide estimates of losses to property and infrastructure. The Federal Emergency Management Agency’s (FEMA's) HAZUS-MH software is extensively used to conduct flood loss analyses in the United States, providing a nationwide database of population and infrastructure at risk. Unfortunately, HAZUS-MH requires a dedicated Geographic Information System (GIS) workstation and a trained operator, and analyses are not adapted for convenient delivery over the Web. This article describes a cooperative effort by the US Geological Survey (USGS) and FEMA to make HAZUS-MH output GIS and Web compatible and to integrate these data with digital flood inundation maps in USGS’s newly developed Inundation Mapping Web Portal. By running the computationally intensive HAZUS-MH flood analyses offline and converting the output to a Web-GIS compatible format, detailed estimates of flood losses can now be delivered to anyone with Internet access, thus dramatically increasing the availability of these forecasts to local emergency planners and first responders.

  12. Metagenomic profiling of historic Colorado Front Range flood impact on distribution of riverine antibiotic resistance genes

    NASA Astrophysics Data System (ADS)

    Garner, Emily; Wallace, Joshua S.; Argoty, Gustavo Arango; Wilkinson, Caitlin; Fahrenfeld, Nicole; Heath, Lenwood S.; Zhang, Liqing; Arabi, Mazdak; Aga, Diana S.; Pruden, Amy

    2016-12-01

    Record-breaking floods in September 2013 caused massive damage to homes and infrastructure across the Colorado Front Range and heavily impacted the Cache La Poudre River watershed. Given the unique nature of this watershed as a test-bed for tracking environmental pathways of antibiotic resistance gene (ARG) dissemination, we sought to determine the impact of extreme flooding on ARG reservoirs in river water and sediment. We utilized high-throughput DNA sequencing to obtain metagenomic profiles of ARGs before and after flooding, and investigated 23 antibiotics and 14 metals as putative selective agents during post-flood recovery. With 277 ARG subtypes identified across samples, total bulk water ARGs decreased following the flood but recovered to near pre-flood abundances by ten months post-flood at both a pristine site and at a site historically heavily influenced by wastewater treatment plants and animal feeding operations. Network analysis of de novo assembled sequencing reads into 52,556 scaffolds identified ARGs likely located on mobile genetic elements, with up to 11 ARGs per plasmid-associated scaffold. Bulk water bacterial phylogeny correlated with ARG profiles while sediment phylogeny varied along the river’s anthropogenic gradient. This rare flood afforded the opportunity to gain deeper insight into factors influencing the spread of ARGs in watersheds.

  13. Health protection and risks for rescuers in cases of floods.

    PubMed

    Janev Holcer, Nataša; Jeličić, Pavle; Grba Bujević, Maja; Važanić, Damir

    2015-03-01

    Floods can pose a number of safety and health hazards for flood-affected populations and rescuers and bring risk of injuries, infections, and diseases due to exposure to pathogenic microorganisms and different biological and chemical contaminants. The risk factors and possible health consequences for the rescuers involved in evacuation and rescuing operations during the May 2014 flood crisis in Croatia are shown, as well as measures for the prevention of injuries and illnesses. In cases of extreme floods, divers play a particularly important role in rescuing and first-response activities. Rescuing in contaminated floodwaters means that the used equipment such as diving suits should be disinfected afterwards. The need for securing the implementation of minimal health and safety measures for involved rescuers is paramount. Data regarding injuries and disease occurrences among rescuers are relatively scarce, indicating the need for medical surveillance systems that would monitor and record all injuries and disease occurrences among rescuers in order to ensure sound epidemiological data. The harmful effects of flooding can be reduced by legislation, improvement of flood forecasting, establishing early warning systems, and appropriate planning and education.

  14. Flood-tracking chart for the Withlacoochee and Little River Basins in south-central Georgia and northern Florida

    USGS Publications Warehouse

    Gotvald, Anthony J.; McCallum, Brian E.; Painter, Jaime A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with other Federal, State, and local agencies, operates a flood-monitoring system in the Withlacoochee and Little River Basins. This system is a network of automated river stage stations (ten are shown on page 2 of this publication) that transmit stage data through satellite telemetry to the USGS in Atlanta, Georgia and the National Weather Service (NWS) in Peachtree City, Georgia. During floods, the public and emergency response agencies use this information to make decisions about road closures, evacuations, and other public safety issues. This Withlacoochee and Little River Basins flood-tracking chart can be used by local citizens and emergency response personnel to record the latest river stage and predicted flood-crest information along the Withlacoochee River, Little River, and Okapilco Creek in south-central Georgia and northern Florida. By comparing the current stage (water-surface level above a datum) and predicted flood crest to the recorded peak stages of previous floods, emergency response personnel and residents can make informed decisions concerning the threat to life and property.

  15. Regional flood frequency analysis in Triveneto (Italy): climate and scale controls

    NASA Astrophysics Data System (ADS)

    Persiano, Simone; Castellarin, Attilio; Domeneghetti, Alessio; Brath, Armando

    2016-04-01

    The growing concern about the possible effects of climate change on flood frequency regime is leading Authorities to review previously proposed procedures for design-flood estimation, such as national regionalization approaches. Our study focuses on the Triveneto region, a broad geographical area in North-eastern Italy consisting of the administrative regions of Trentino-Alto Adige, Veneto and Friuli-Venezia Giulia. A reference procedure for design flood estimation in Triveneto is available from the Italian NCR research project "VA.PI.", which developed a regional model using annual maximum series (AMS) of peak discharges that were collected up to the 80s by the former Italian Hydrometeorological Service. We consider a very detailed AMS database that we recently compiled for ~80 catchments located in Triveneto. Our dataset includes the historical data mentioned above, together with more recent data obtained from Regional Services and annual maximum peak streamflows extracted from inflow series to artificial reservoirs and provided by dam managers. All ~80 study catchments are characterized in terms of several geomorphologic and climatic descriptors. The main objectives of our study are: (1) to check whether climatic and scale controls on flood frequency regime in Triveneto are similar to the controls that were recently found in Europe; (2) to verify the possible presence of trends as well as abrupt changes in the intensity and frequency of flood extremes by looking at changes in time of regional L-moments of annual maximum floods; (3) to assess the reliability and representativeness of the reference procedure for design flood estimation relative to flood data that were not included in the VA.PI. dataset (i.e. more recent data collected after the 80s and historical data provided by dam managers); (4) to develop an updated reference procedure for design flood estimation in Triveneto by using a focused-pooling approach (i.e. Region of Influence, RoI).

  16. Evaluation of the LA 1 bridge at the Morganza flood control structure.

    DOT National Transportation Integrated Search

    2010-11-01

    This technical assistance report documents the investigation conducted by the Louisiana Transportation : Research Center (LTRC) of the LA 1 Bridge located at the flood control structure near Morganza, LA. : The in-place condition of the bridge deck s...

  17. Evaluation of the LA 1 bridge at the Morganza flood control structure.

    DOT National Transportation Integrated Search

    2010-11-01

    This technical assistance report documents the investigation conducted by the Louisiana Transportation Research Center (LTRC) of the LA 1 Bridge located at the flood control structure near Morganza, LA. The in-place condition of the bridge deck showe...

  18. Nested 1D-2D approach for urban surface flood modeling

    NASA Astrophysics Data System (ADS)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of interactions within the 1D sewer network. Other areas that recorded flooding outside the main streets have been also included with the second mesh resolution for an accurate determination of flood maps (12.5m2 - 50m2). Permeable areas have been identified and used as infiltration zones using the Horton infiltration model. A mesh sensitivity analysis has been performed for the low flood risk areas for a proper model optimization. As outcome of that analysis, the third mesh resolution has been chosen (75m2 - 300m2). Performance tests have been applied for several synthetic design storms as well as historical storm events displaying satisfactory results upon comparing the flood mapping outcomes produced by the different approaches. Accounting for the infiltration in the green city spaces reduces the flood extents in the range 39% - 68%, while the average reduction in flood volume equals 86%. Acknowledgement: Funding for this research was provided by the Interreg IVB NWE programme (project RainGain) and the Belgian Science Policy Office (project PLURISK). The high resolution topographical information data were obtained from the geographical information service AGIV; the original full hydrodynamic sewer network model from the service company Farys, and the InfoWorks licence from Innovyze.

  19. 44 CFR 65.6 - Revision of base flood elevation determinations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program... new discharge estimates. (6) Any computer program used to perform hydrologic or hydraulic analyses in... control and/or the regulation of flood plain lands. For computer programs adopted by non-Federal agencies...

  20. 44 CFR 65.6 - Revision of base flood elevation determinations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program... new discharge estimates. (6) Any computer program used to perform hydrologic or hydraulic analyses in... control and/or the regulation of flood plain lands. For computer programs adopted by non-Federal agencies...

Top