Sample records for flood damage

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Ootegem, Luc; SHERPPA — Ghent University; Verhofstadt, Elsy

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimationmore » technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks.« less

  2. Uncertainty in flood damage estimates and its potential effect on investment decisions

    NASA Astrophysics Data System (ADS)

    Wagenaar, D. J.; de Bruijn, K. M.; Bouwer, L. M.; de Moel, H.

    2016-01-01

    This paper addresses the large differences that are found between damage estimates of different flood damage models. It explains how implicit assumptions in flood damage functions and maximum damages can have large effects on flood damage estimates. This explanation is then used to quantify the uncertainty in the damage estimates with a Monte Carlo analysis. The Monte Carlo analysis uses a damage function library with 272 functions from seven different flood damage models. The paper shows that the resulting uncertainties in estimated damages are in the order of magnitude of a factor of 2 to 5. The uncertainty is typically larger for flood events with small water depths and for smaller flood events. The implications of the uncertainty in damage estimates for flood risk management are illustrated by a case study in which the economic optimal investment strategy for a dike segment in the Netherlands is determined. The case study shows that the uncertainty in flood damage estimates can lead to significant over- or under-investments.

  3. Predictability of state-level flood damage in the conterminous United States: the role of hazard, exposure and vulnerability

    DOE PAGES

    Zhou, Qianqian; Leng, Guoyong; Feng, Leyang

    2017-07-13

    Understanding historical changes in flood damage and the underlying mechanisms is critical for predicting future changes for better adaptations. In this study, a detailed assessment of flood damage for 1950–1999 is conducted at the state level in the conterminous United States (CONUS). Geospatial datasets on possible influencing factors are then developed by synthesizing natural hazards, population, wealth, cropland and urban area to explore the relations with flood damage. A considerable increase in flood damage in CONUS is recorded for the study period which is well correlated with hazards. Comparably, runoff indexed hazards simulated by the Variable Infiltration Capacity (VIC) modelmore » can explain a larger portion of flood damage variations than precipitation in 84% of the states. Cropland is identified as an important factor contributing to increased flood damage in central US while urbanland exhibits positive and negative relations with total flood damage and damage per unit wealth in 20 and 16 states, respectively. Altogether, flood damage in 34 out of 48 investigated states can be predicted at the 90% confidence level. In extreme cases, ~76% of flood damage variations can be explained in some states, highlighting the potential of future flood damage prediction based on climate change and socioeconomic scenarios.« less

  4. Predictability of state-level flood damage in the conterminous United States: the role of hazard, exposure and vulnerability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qianqian; Leng, Guoyong; Feng, Leyang

    Understanding historical changes in flood damage and the underlying mechanisms is critical for predicting future changes for better adaptations. In this study, a detailed assessment of flood damage for 1950–1999 is conducted at the state level in the conterminous United States (CONUS). Geospatial datasets on possible influencing factors are then developed by synthesizing natural hazards, population, wealth, cropland and urban area to explore the relations with flood damage. A considerable increase in flood damage in CONUS is recorded for the study period which is well correlated with hazards. Comparably, runoff indexed hazards simulated by the Variable Infiltration Capacity (VIC) modelmore » can explain a larger portion of flood damage variations than precipitation in 84% of the states. Cropland is identified as an important factor contributing to increased flood damage in central US while urbanland exhibits positive and negative relations with total flood damage and damage per unit wealth in 20 and 16 states, respectively. Altogether, flood damage in 34 out of 48 investigated states can be predicted at the 90% confidence level. In extreme cases, ~76% of flood damage variations can be explained in some states, highlighting the potential of future flood damage prediction based on climate change and socioeconomic scenarios.« less

  5. Uncertainty in flood damage estimates and its potential effect on investment decisions

    NASA Astrophysics Data System (ADS)

    Wagenaar, Dennis; de Bruijn, Karin; Bouwer, Laurens; de Moel, Hans

    2015-04-01

    This paper addresses the large differences that are found between damage estimates of different flood damage models. It explains how implicit assumptions in flood damage models can lead to large uncertainties in flood damage estimates. This explanation is used to quantify this uncertainty with a Monte Carlo Analysis. This Monte Carlo analysis uses a damage function library with 272 functions from 7 different flood damage models. This results in uncertainties in the order of magnitude of a factor 2 to 5. This uncertainty is typically larger for small water depths and for smaller flood events. The implications of the uncertainty in damage estimates for flood risk management are illustrated by a case study in which the economic optimal investment strategy for a dike segment in the Netherlands is determined. The case study shows that the uncertainty in flood damage estimates can lead to significant over- or under-investments.

  6. Uncertainty in flood damage estimates and its potential effect on investment decisions

    NASA Astrophysics Data System (ADS)

    Wagenaar, D. J.; de Bruijn, K. M.; Bouwer, L. M.; De Moel, H.

    2015-01-01

    This paper addresses the large differences that are found between damage estimates of different flood damage models. It explains how implicit assumptions in flood damage models can lead to large uncertainties in flood damage estimates. This explanation is used to quantify this uncertainty with a Monte Carlo Analysis. As input the Monte Carlo analysis uses a damage function library with 272 functions from 7 different flood damage models. This results in uncertainties in the order of magnitude of a factor 2 to 5. The resulting uncertainty is typically larger for small water depths and for smaller flood events. The implications of the uncertainty in damage estimates for flood risk management are illustrated by a case study in which the economic optimal investment strategy for a dike segment in the Netherlands is determined. The case study shows that the uncertainty in flood damage estimates can lead to significant over- or under-investments.

  7. Flood damage curves for consistent global risk assessments

    NASA Astrophysics Data System (ADS)

    de Moel, Hans; Huizinga, Jan; Szewczyk, Wojtek

    2016-04-01

    Assessing potential damage of flood events is an important component in flood risk management. Determining direct flood damage is commonly done using depth-damage curves, which denote the flood damage that would occur at specific water depths per asset or land-use class. Many countries around the world have developed flood damage models using such curves which are based on analysis of past flood events and/or on expert judgement. However, such damage curves are not available for all regions, which hampers damage assessments in those regions. Moreover, due to different methodologies employed for various damage models in different countries, damage assessments cannot be directly compared with each other, obstructing also supra-national flood damage assessments. To address these problems, a globally consistent dataset of depth-damage curves has been developed. This dataset contains damage curves depicting percent of damage as a function of water depth as well as maximum damage values for a variety of assets and land use classes (i.e. residential, commercial, agriculture). Based on an extensive literature survey concave damage curves have been developed for each continent, while differentiation in flood damage between countries is established by determining maximum damage values at the country scale. These maximum damage values are based on construction cost surveys from multinational construction companies, which provide a coherent set of detailed building cost data across dozens of countries. A consistent set of maximum flood damage values for all countries was computed using statistical regressions with socio-economic World Development Indicators from the World Bank. Further, based on insights from the literature survey, guidance is also given on how the damage curves and maximum damage values can be adjusted for specific local circumstances, such as urban vs. rural locations, use of specific building material, etc. This dataset can be used for consistent supra-national scale flood damage assessments, and guide assessment in countries where no damage model is currently available.

  8. 44 CFR 206.252 - Insurance requirements for facilities damaged by flood.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... facilities damaged by flood. 206.252 Section 206.252 Emergency Management and Assistance FEDERAL EMERGENCY... Assistance Insurance Requirements § 206.252 Insurance requirements for facilities damaged by flood. (a) Where an insurable building damaged by flooding is located in a special flood hazard area identified for...

  9. Recent changes in flood damage in the United States from observations and ACME model

    NASA Astrophysics Data System (ADS)

    Leng, G.; Leung, L. R.

    2017-12-01

    Despite efforts to mitigate flood hazards in flood-prone areas, survey- and report-based flood databases show that flood damage has increased and emerged as one of the most costly disaster in the United States since the 1990s. Understanding the mechanism driving the changes in flood damage is therefore critical for reducing flood risk. In this study, we first conduct a comprehensive analysis of the changing characteristics of flood damage at local, state and country level. Results show a significant increasing trend in the number of flood hazards, causing economic losses of up to $7 billion per year. The ratio of flood events that caused tangible economical cost to the total flood events has exhibited a non-significant increasing trend before 2007 followed by a significant decrease, indicating a changing vulnerability to floods. Analysis also reveals distinct spatial and temporal patterns in the threshold intensity of flood hazards with tangible economical cost. To understand the mechanism behind the increasing flood damage, we develop a flood damage economic model coupled with the integrated hydrological modeling system of ACME that features a river routing model with an inundation parameterization and a water use and regulation model. The model is evaluated over the country against historical records. Several numerical experiments are then designed to explore the mechanisms behind the recent changes in flood damage from the perspective of flood hazard, exposure and vulnerability, which constitute flood damage. The role of human activities such as reservoir operations and water use in modifying regional floods are also explored using the new tool, with the goal of improving understanding and modeling of vulnerability to flood hazards.

  10. Climate change impacts on flood risk and asset damages within mapped 100-year floodplains of the contiguous United States

    NASA Astrophysics Data System (ADS)

    Wobus, Cameron; Gutmann, Ethan; Jones, Russell; Rissing, Matthew; Mizukami, Naoki; Lorie, Mark; Mahoney, Hardee; Wood, Andrew W.; Mills, David; Martinich, Jeremy

    2017-12-01

    A growing body of work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus potentially increasing flood damages in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) to estimate changes in the frequency of modeled 1 % annual exceedance probability (1 % AEP, or 100-year) flood events at 57 116 stream reaches across the contiguous United States (CONUS). We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations and trajectories of future damages that vary substantially depending on the greenhouse gas (GHG) emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches USD 4 billion per year by 2100 (in undiscounted 2014 dollars), suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long term in terms of reduced flood damages. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages on a national scale. Our approach relies on a series of simplifications that could ultimately affect damage estimates (e.g., use of statistical downscaling, reliance on a nationwide hydrologic model, and linking damage estimates only to 1 % AEP floods). Although future work is needed to test the sensitivity of our results to these methodological choices, our results indicate that monetary damages from inland flooding could be significantly reduced through substantial GHG mitigation.

  11. Applications of ASFCM(Assessment System of Flood Control Measurement) in Typhoon Committee Members

    NASA Astrophysics Data System (ADS)

    Kim, C.

    2013-12-01

    Due to extreme weather environment such as global warming and greenhouse effect, the risks of having flood damage has been increased with larger scale of flood damages. Therefore, it became necessary to consider modifying climate change, flood damage and its scale to the previous dimension measurement evaluation system. In this regard, it is needed to establish a comprehensive and integrated system to evaluate the most optimized measures for flood control through eliminating uncertainties of socio-economic impacts. Assessment System of Structural Flood Control Measures (ASFCM) was developed for determining investment priorities of the flood control measures and establishing the social infrastructure projects. ASFCM consists of three modules: 1) the initial setup and inputs module, 2) the flood and damage estimation module, and 3) the socio-economic analysis module. First, we have to construct the D/B for flood damage estimation, which is the initial and input data about the estimation unit, property, historical flood damages, and applied area's topographic & hydrological data. After that, it is important to classify local characteristic for constructing flood damage data. Five local characteristics (big city, medium size city, small city, farming area, and mountain area) are classified by criterion of application (population density). Next step is the floodplain simulation with HEC-RAS which is selected to simulate inundation. Through inputting the D/B and damage estimation, it is able to estimate the total damage (only direct damage) that is the amount of cost to recover the socio-economic activities back to the safe level before flood did occur. The last module suggests the economic analysis index (B/C ratio) with Multidimensional Flood Damage Analysis. Consequently, ASFCM suggests the reference index in constructing flood control measures and planning non-structural systems to reduce water-related damage. It is possible to encourage flood control planners and managers to consider and apply the socio-economic analysis results. ASFCM was applied in Republic of Korea, Thailand and Philippines to review efficiency and applicability. Figure 1. ASFCM Application(An-yang Stream, Republic of Korea)

  12. A prediction and damage assessment model for snowmelt flood events in middle and high latitudes Region

    NASA Astrophysics Data System (ADS)

    Qiao, C.; Huang, Q.; Chen, T.; Zhang, X.

    2017-12-01

    In the context of global warming, the snowmelt flood events in the mountainous area of the middle and high latitudes are increasingly frequent and create severe casualties and property damages. Carrying out the prediction and risk assessment of the snowmelt flood is of great importance in the water resources management, the flood warning and prevention. Based on the remote sensing and GIS techniques, the relationships of the variables influencing the snowmelt flood such as the snow area, the snow depth, the air temperature, the precipitation, the land topography and land covers are analyzed and a prediction and damage assessment model for snowmelt floods is developed. This model analyzes and predicts the flood submerging area, flood depth, flood grade, and the damages of different underlying surfaces in the study area in a given time period based on the estimation of snowmelt amount, the snowmelt runoff, the direction and velocity of the flood. Then it was used to predict a snowmelt flood event in the Ertis River Basin in northern Xinjiang, China, during March and June, 2005 and to assess its damages including the damages of roads, transmission lines, settlements caused by the floods and the possible landslides using the hydrological and meteorological data, snow parameter data, DEM data and land use data. A comparison was made between the prediction results from this model and observation data including the flood measurement and its disaster loss data, which suggests that this model performs well in predicting the strength and impact area of snowmelt flood and its damage assessment. This model will be helpful for the prediction and damage assessment of snowmelt flood events in the mountainous area in the middle and high latitudes in spring, which has great social and economic significance because it provides a relatively reliable method for snowmelt flood prediction and reduces the possible damages caused by snowmelt floods.

  13. Modeled changes in 100 year Flood Risk and Asset Damages within Mapped Floodplains of the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Wobus, C. W.; Gutmann, E. D.; Jones, R.; Rissing, M.; Mizukami, N.; Lorie, M.; Mahoney, H.; Wood, A.; Mills, D.; Martinich, J.

    2017-12-01

    A growing body of recent work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus increasing monetary damages from flooding in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) to estimate changes in the frequency of modeled 1% annual exceedance probability flood events at 57,116 locations across the contiguous United States (CONUS). We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century, under two greenhouse gas (GHG) emissions scenarios. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations, and trajectories of future damages that vary substantially depending on the GHG emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches $4 billion per year by 2100 (in undiscounted 2014 dollars), suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long-term in terms of reduced flood risk. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages at a national scale. Our approach relies on a series of simplifications that could ultimately affect damage estimates (e.g., use of statistical downscaling, reliance on a nationwide hydrologic model, and linking damage estimates only to 1% AEP floods). Although future work is needed to test the sensitivity of our results to these methodological choices, our results suggest that monetary damages from inland flooding could be substantially reduced through more aggressive GHG mitigation policies.

  14. Evidence of floods on the Potomac River from anatomical abnormalities in the wood of flood-plain trees

    USGS Publications Warehouse

    Yanosky, Thomas M.

    1983-01-01

    Ash trees along the Potomac River flood plain near Washington, D.C., were studied to determine changes in wood anatomy related to flood damage, and anomalous growth was compared to flood records for April 15 to August 31, 1930-79. Collectively, anatomical evidence was detected for 33 of the 34 growing-season floods during the study period. Evidence of 12 floods prior to 1930 was also noted, including catastrophic ones in 1889 and 1924. Trees damaged after the transition from earlywood to latewood growth typically formed ' flood rings ' of enlarged vessels within the latewood zone. Trees damaged near the beginning of the growth year developed flood rings within, or contiguous with, the earlywood. Both patterns are assumed to have developed when flood-damaged trees produced a second crop of leaves. Trees damaged by high-magnitude floods developed well formed flood rings along the entire height and around the entire circumference of the stem. Small floods were generally associated wtih diffuse or discontinuous anomalies restricted to stem apices. Frequency of flood rings was positively related to flood magnitude, and time of flood generation during the tree-growth season was estimated from the radial position of anomalous growth relative to annual ring width. Reconstructing tree heights in a year of flood-ring formation gives a minimum stage estimate along local stream reaches. Some trees provided evidence of numerous floods. Those with the greatest number of flood rings grew on frequently flooded surfaces subject to flood-flow velocities of at least 1 m/s, and more typically greater than 2 m/s. Tree size, more than age, was related to flood-ring formation. Trees kept small by frequent flood damage had more flood rings than taller trees of comparable age. (USGS)

  15. The relationship between precipitation and insurance data for floods in a Mediterranean region (northeast Spain)

    NASA Astrophysics Data System (ADS)

    Cortès, Maria; Turco, Marco; Llasat-Botija, Montserrat; Llasat, Maria Carmen

    2018-03-01

    Floods in the Mediterranean region are often surface water floods, in which intense precipitation is usually the main driver. Determining the link between the causes and impacts of floods can make it easier to calculate the level of flood risk. However, up until now, the limitations in quantitative observations for flood-related damages have been a major obstacle when attempting to analyse flood risk in the Mediterranean. Flood-related insurance damage claims for the last 20 years could provide a proxy for flood impact, and this information is now available in the Mediterranean region of Catalonia, in northeast Spain. This means a comprehensive analysis of the links between flood drivers and impacts is now possible. The objective of this paper is to develop and evaluate a methodology to estimate flood damages from heavy precipitation in a Mediterranean region. Results show that our model is able to simulate the probability of a damaging event as a function of precipitation. The relationship between precipitation and damage provides insights into flood risk in the Mediterranean and is also promising for supporting flood management strategies.

  16. Urban sprawl and flooding in southern California

    USGS Publications Warehouse

    Rantz, S.E.

    1970-01-01

    The floods of January 1969 in south-coastal California provide a timely example of the effect of urban sprawl on flood damage. Despite recordbreaking, or near recordbreaking, stream discharges, damage was minimal in the older developed areas that are protected against inundation and debris damage by carefully planned flood-control facilities, including debris basins and flood-conveyance channels. By contrast, heavy damage occurred in areas of more recent urban sprawl, where the hazards of inundation and debris or landslide damage have not been taken into consideration, and where the improvement and development of drainage or flood-control facilities have not kept pace with expanding urbanization.

  17. Summary of floods in the United States during 1958

    USGS Publications Warehouse

    Hendricks, E.L.

    1964-01-01

    This report describes the most outstanding floods that occurred in the United States during 1958.A series of storms from January 23 to February 16 brought large amounts of precipitation to northern California and produced damaging floods, particularly in the Lower Sacramento Valley where losses totaled about \\$12 million.Major floods, notable because of the large area affected, occurred on many small streams in central and south Texas, following heavy general rains in late February. Extensive flooding occurred along the Gulf Coastal plain on the lower reaches of the major streams from the Brazos River to the Nueces River. Two lives were lost, and property damage exceeded \\$1 million.Damaging floods of April 1-7 followed one of the wettest winters in California history. Swollen streams overflowed their banks throughout the central part of the State, and discharge peaks on many streams exceeded those .of the floods of December 1955. Most severely flooded was the San Francisco Bay area. Total flood damage was estimated at \\$23 million.The storms and floods of April-May in Louisiana and adjacent States outranked all other floods in the United States during 1958 with respect to intensity of rain over a large area, number of streams having maximum discharge of record, rare occurrence of peaks, and great amount (\\$21 million) of resultant damage.Heavy rains on June 8-15 caused one of the greatest summer floods of record in central Indiana. Peak discharges were high and of rare occurrences. Failure of numerous levees along the Wabash River caused great damage. Crop damage alone was estimated at \\$48 million.Intense rains of July 1-2 caused record-breaking floods in southwestern Iowa. Rapid rises and the great magnitude of the floods on small streams resulted in 18 deaths and many injuries. Six towns and cities along the East Nishnabotna River and its tributaries were particularly hard hit; rural damage was also high. Total damage was estimated at \\$15 million.Heavy rains (as much as 40 inches during the last 2 weeks in September) from the middle of September to the middle of October caused destructive floods along the Rio Grande in Texas and Mexico. Many communities were isolated by the flood waters, and damage to crops was great.In addition to the 7 floods mentioned above, 21 others of lesser magnitude are reported in this annual summary.

  18. 33 CFR 203.50 - Nonstructural alternatives to rehabilitation of flood control works.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... rehabilitation, repair, or restoration of flood control works damaged by floods or coastal storms. (b) Policy. (1...

  19. Methodology of Historical Flood Evaluation from Korean Historical Documents during AD 1392 to 1910

    NASA Astrophysics Data System (ADS)

    Cho, H. B.; Kim, H.; Noh, S.; Jang, C.

    2007-12-01

    Study on extreme flood events has critical limitation of shortage of historical data because modern systematic data don't implement long time series. The historical documentary records hence can be one of the important sources to contribute additional information on extreme flood events which had occurred before the instrumental observations began. For the proper data mining, documentary records satisfying following four conditions are preferred. 1. Long enough time series, 2. Official archives covering over all Korean peninsular, 3. Abundant enough record number, and 4. Detailed damage description. The Annals of Choson Dynasty includes about 500 years and 511 number of flood records during Choson Dynasty in ancient Korea. According to the annals, there were highly dense flood damage records in the middle of 17th century and the largest human damage and residence damage occurred in 1739 and 1856 respectively. Another source is Jeungbo-Munheonbigo. Jeungbo-Munheonbigo is a taxonomic document categorized by the themes such as cultures, social systems, and climates as well as contains 79 number of flood damage records. An effective way to analyze those historical floods without water level data is to classify and categorize the flood damage records because all records are written in descriptive way. Consequently, 556 records are categorized into 10 items by flood damage types and each categorized record is classified into three grades by numerical level that is how much the record is expressed in numerical way. These grouping results are applied to decide reasonable period range to get detailed information from entire inspection period. In addition, Historical Flood Evaluation Index (HFEI) thereby can be derived from the processes in quantitative and statistical ways to evaluate the magnitude of each ancient flood. In this research, flood damage evaluation is mainly focused on the damage of human beings and residences. Also degree ranges based on cumulative probability are induced with two damage inventory. HFEI by conditional weighted factors is applied to every flood record and to analysis for flood distribution in annual series.

  20. Flood Damage Assessment in Pearl River Delta Rural Area Application in Huashan Town, Huadu District,Guanghzou during the 2017 5.7 Heavy Rain Storm

    NASA Astrophysics Data System (ADS)

    Wang, X.

    2017-12-01

    The Pearl River Delta (PRD) in China, the summer rain storm occurs frequently, the flood damage is very serious. Damage assessment is the basis of scientific decision-making in disaster mitigation. All approaches of flood damage analysis contain uncertainties due to the inaccuracies and generalisations used, the lack of data aggravates this problem, making methods very rough. This study presents a detailed flood damage assessment framework in Pearl River Delta rural area, using 2017 "5.7" heavy rain storm event to simulate the process and estimate the flood loss in resident building and property, agriculture production. The framework integrates four modules,1) utilize the remote sensing and statistical yearbook and so on to construct the disaster bearing bodies GIS database; 2) using hydraulics model to simulate the flood extent and depth spatial distribution;3)through field investigation to obtain the flood loss data for all kinds of hazard-affected body, using statistical analysis method to get the damage curves;4)Integrate flood scenarios, disaster bearing bodies GIS database and damage curves to calculate the flood loss estimation value. Using this methodology, in the 2017 "5.7" heavy rain storm event, Huashan Town flood damage loss is underestimate compared with the government report, because of not considering the damage of water conservancy facilities. But the disaster loss value on the spatial distribution is consistent with actual situation. In terms of aggregated values in the whole town, the model is capable of obtaining figures that are within the same order of magnitude. This study produce a flood damage assessment framework taking into account the regional characteristics of PRD rural area, provide a template for future practice. This study only considers the current impacts, the framework should be improved by taking into account socio-economic and climatic changes, as well as implementing adaptation measures to be applied to assess the potential future damages. Key words: Heavy rain storm; flood; damage assessment; Pearl River Delta; rural area

  1. Approach for Assessing Direct Flood Damages

    NASA Astrophysics Data System (ADS)

    Gaňová, Lenka; Zeleňáková, Martina; Słyś, Daniel; Purcz, Pavol

    2014-11-01

    This article presents a methodological approach to flood direct tangible damage - damage to assets and direct intangible damage - environmental damage and loss of life assessment. The assessment of flood risk is an essential part of the risk management approach, which is the conceptual basis for the EU directive 2007/60/ES on the assessment and management of flood risk. The purpose of this directive is to establish a framework for the assessment and management of flood risk, aiming at the reduction of the adverse consequences for human health, the environment, cultural heritage and economic activity associated with flood in the community. Overall, an accurate estimation of negative effects on assets, environment and people is important in order to be able to determine the economy, environmental and social flood risk level in a system and the effects of risk mitigation measures.

  2. Identifying the impact of the built environment on flood damage in Texas.

    PubMed

    Brody, Samuel D; Zahran, Sammy; Highfield, Wesley E; Grover, Himanshu; Vedlitz, Arnold

    2008-03-01

    Floods continue to pose the greatest threat to the property and safety of human communities among all natural hazards in the United States. This study examines the relationship between the built environment and flood impacts in Texas, which consistently sustains the most damage from flooding of any other state in the country. Specifically, we calculate property damage resulting from 423 flood events between 1997 and 2001 at the county level. We identify the effect of several built environment measures, including wetland alteration, impervious surface, and dams on reported property damage while controlling for biophysical and socio-economic characteristics. Statistical results suggest that naturally occurring wetlands play a particularly important role in mitigating flood damage. These findings provide guidance to planners and flood managers on how to alleviate most effectively the costly impacts of foods at the community level.

  3. Statistical analysis of the uncertainty related to flood hazard appraisal

    NASA Astrophysics Data System (ADS)

    Notaro, Vincenza; Freni, Gabriele

    2015-12-01

    The estimation of flood hazard frequency statistics for an urban catchment is of great interest in practice. It provides the evaluation of potential flood risk and related damage and supports decision making for flood risk management. Flood risk is usually defined as function of the probability, that a system deficiency can cause flooding (hazard), and the expected damage, due to the flooding magnitude (damage), taking into account both the exposure and the vulnerability of the goods at risk. The expected flood damage can be evaluated by an a priori estimation of potential damage caused by flooding or by interpolating real damage data. With regard to flood hazard appraisal several procedures propose to identify some hazard indicator (HI) such as flood depth or the combination of flood depth and velocity and to assess the flood hazard corresponding to the analyzed area comparing the HI variables with user-defined threshold values or curves (penalty curves or matrixes). However, flooding data are usually unavailable or piecemeal allowing for carrying out a reliable flood hazard analysis, therefore hazard analysis is often performed by means of mathematical simulations aimed at evaluating water levels and flow velocities over catchment surface. As results a great part of the uncertainties intrinsic to flood risk appraisal can be related to the hazard evaluation due to the uncertainty inherent to modeling results and to the subjectivity of the user defined hazard thresholds applied to link flood depth to a hazard level. In the present work, a statistical methodology was proposed for evaluating and reducing the uncertainties connected with hazard level estimation. The methodology has been applied to a real urban watershed as case study.

  4. Large-scale application of the flood damage model RAilway Infrastructure Loss (RAIL)

    NASA Astrophysics Data System (ADS)

    Kellermann, Patric; Schönberger, Christine; Thieken, Annegret H.

    2016-11-01

    Experience has shown that river floods can significantly hamper the reliability of railway networks and cause extensive structural damage and disruption. As a result, the national railway operator in Austria had to cope with financial losses of more than EUR 100 million due to flooding in recent years. Comprehensive information on potential flood risk hot spots as well as on expected flood damage in Austria is therefore needed for strategic flood risk management. In view of this, the flood damage model RAIL (RAilway Infrastructure Loss) was applied to estimate (1) the expected structural flood damage and (2) the resulting repair costs of railway infrastructure due to a 30-, 100- and 300-year flood in the Austrian Mur River catchment. The results were then used to calculate the expected annual damage of the railway subnetwork and subsequently analysed in terms of their sensitivity to key model assumptions. Additionally, the impact of risk aversion on the estimates was investigated, and the overall results were briefly discussed against the background of climate change and possibly resulting changes in flood risk. The findings indicate that the RAIL model is capable of supporting decision-making in risk management by providing comprehensive risk information on the catchment level. It is furthermore demonstrated that an increased risk aversion of the railway operator has a marked influence on flood damage estimates for the study area and, hence, should be considered with regard to the development of risk management strategies.

  5. Flood damage assessment using computer-assisted analysis of color infrared photography

    USGS Publications Warehouse

    Anderson, William H.

    1978-01-01

    Use of digitized aerial photographs for flood damage assessment in agriculture is new and largely untested. However, under flooding circumstances similar to the 1975 Red River Valley flood, computer-assisted techniques can be extremely useful, especially if detailed crop damage estimates are needed within a relatively short period of time.Airphoto interpretation techniques, manual or computer-assisted, are not intended to replace conventional ground survey and sampling procedures. But their use should be considered a valuable addition to the tools currently available for assessing agricultural flood damage.

  6. Damage assessment in Braunsbach 2016: data collection and analysis for an improved understanding of damaging processes during flash floods

    NASA Astrophysics Data System (ADS)

    Laudan, Jonas; Rözer, Viktor; Sieg, Tobias; Vogel, Kristin; Thieken, Annegret H.

    2017-12-01

    Flash floods are caused by intense rainfall events and represent an insufficiently understood phenomenon in Germany. As a result of higher precipitation intensities, flash floods might occur more frequently in future. In combination with changing land use patterns and urbanisation, damage mitigation, insurance and risk management in flash-flood-prone regions are becoming increasingly important. However, a better understanding of damage caused by flash floods requires ex post collection of relevant but yet sparsely available information for research. At the end of May 2016, very high and concentrated rainfall intensities led to severe flash floods in several southern German municipalities. The small town of Braunsbach stood as a prime example of the devastating potential of such events. Eight to ten days after the flash flood event, damage assessment and data collection were conducted in Braunsbach by investigating all affected buildings and their surroundings. To record and store the data on site, the open-source software bundle KoBoCollect was used as an efficient and easy way to gather information. Since the damage driving factors of flash floods are expected to differ from those of riverine flooding, a post-hoc data analysis was performed, aiming to identify the influence of flood processes and building attributes on damage grades, which reflect the extent of structural damage. Data analyses include the application of random forest, a random general linear model and multinomial logistic regression as well as the construction of a local impact map to reveal influences on the damage grades. Further, a Spearman's Rho correlation matrix was calculated. The results reveal that the damage driving factors of flash floods differ from those of riverine floods to a certain extent. The exposition of a building in flow direction shows an especially strong correlation with the damage grade and has a high predictive power within the constructed damage models. Additionally, the results suggest that building materials as well as various building aspects, such as the existence of a shop window and the surroundings, might have an effect on the resulting damage. To verify and confirm the outcomes as well as to support future mitigation strategies, risk management and planning, more comprehensive and systematic data collection is necessary.

  7. Using risk-based analysis and geographic information systems to assess flooding problems in an urban watershed in Rhode Island.

    PubMed

    Hardmeyer, Kent; Spencer, Michael A

    2007-04-01

    This article provides an overview of the use of risk-based analysis (RBA) in flood damage assessment, and it illustrates the use of Geographic Information Systems (GIS) in identifying flood-prone areas, which can aid in flood-mitigation planning assistance. We use RBA to calculate expected annual flood damages in an urban watershed in the state of Rhode Island, USA. The method accounts for the uncertainty in the three primary relationships used in computing flood damage: (1) the probability that a given flood will produce a given amount of floodwater, (2) the probability that a given amount of floodwater will reach a certain stage or height, and (3) the probability that a certain stage of floodwater will produce a given amount of damage. A greater than 50% increase in expected annual flood damage is estimated for the future if previous development patterns continue and flood-mitigation measures are not taken. GIS is then used to create a map that shows where and how often floods might occur in the future, which can help (1) identify priority areas for flood-mitigation planning assistance and (2) disseminate information to public officials and other decision-makers.

  8. Flood damage: a model for consistent, complete and multipurpose scenarios

    NASA Astrophysics Data System (ADS)

    Menoni, Scira; Molinari, Daniela; Ballio, Francesco; Minucci, Guido; Mejri, Ouejdane; Atun, Funda; Berni, Nicola; Pandolfo, Claudia

    2016-12-01

    Effective flood risk mitigation requires the impacts of flood events to be much better and more reliably known than is currently the case. Available post-flood damage assessments usually supply only a partial vision of the consequences of the floods as they typically respond to the specific needs of a particular stakeholder. Consequently, they generally focus (i) on particular items at risk, (ii) on a certain time window after the occurrence of the flood, (iii) on a specific scale of analysis or (iv) on the analysis of damage only, without an investigation of damage mechanisms and root causes. This paper responds to the necessity of a more integrated interpretation of flood events as the base to address the variety of needs arising after a disaster. In particular, a model is supplied to develop multipurpose complete event scenarios. The model organizes available information after the event according to five logical axes. This way post-flood damage assessments can be developed that (i) are multisectoral, (ii) consider physical as well as functional and systemic damage, (iii) address the spatial scales that are relevant for the event at stake depending on the type of damage that has to be analyzed, i.e., direct, functional and systemic, (iv) consider the temporal evolution of damage and finally (v) allow damage mechanisms and root causes to be understood. All the above features are key for the multi-usability of resulting flood scenarios. The model allows, on the one hand, the rationalization of efforts currently implemented in ex post damage assessments, also with the objective of better programming financial resources that will be needed for these types of events in the future. On the other hand, integrated interpretations of flood events are fundamental to adapting and optimizing flood mitigation strategies on the basis of thorough forensic investigation of each event, as corroborated by the implementation of the model in a case study.

  9. General characteristics of causes of urban flood damage and flood forecasting/warning system in Seoul, Korea Young-Il Moon1, 2, Jong-Suk Kim1, 2 1 Department of Civil Engineering, University of Seoul, Seoul 130-743, South Korea 2 Urban Flood Research Inst

    NASA Astrophysics Data System (ADS)

    Moon, Young-Il; Kim, Jong-Suk

    2015-04-01

    Due to rapid urbanization and climate change, the frequency of concentrated heavy rainfall has increased, causing urban floods that result in casualties and property damage. As a consequence of natural disasters that occur annually, the cost of damage in Korea is estimated to be over two billion US dollars per year. As interest in natural disasters increase, demands for a safe national territory and efficient emergency plans are on the rise. In addition to this, as a part of the measures to cope with the increase of inland flood damage, it is necessary to build a systematic city flood prevention system that uses technology to quantify flood risk as well as flood forecast based on both rivers and inland water bodies. Despite the investment and efforts to prevent landside flood damage, research and studies of landside-river combined hydro-system is at its initial stage in Korea. Therefore, the purpose of this research introduces the causes of flood damage in Seoul and shows a flood forecasting and warning system in urban streams of Seoul. This urban flood forecasting and warning system conducts prediction on flash rain or short-term rainfall by using radar and satellite information and performs prompt and accurate prediction on the inland flooded area and also supports synthetic decision-making for prevention through real-time monitoring. Although we cannot prevent damage from typhoons or localized heavy rain, we can minimize that damage with accurate and timely forecast and a prevention system. To this end, we developed a flood forecasting and warning system, so in case of an emergency there is enough time for evacuation and disaster control. Keywords: urban flooding, flood risk, inland-river system, Korea Acknowledgments This research was supported by a grant (13AWMP-B066744-01) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  10. Surface water floods in Switzerland: what insurance claim records tell us about the damage in space and time

    NASA Astrophysics Data System (ADS)

    Bernet, Daniel B.; Prasuhn, Volker; Weingartner, Rolf

    2017-09-01

    Surface water floods (SWFs) have received increasing attention in the recent years. Nevertheless, we still know relatively little about where, when and why such floods occur and cause damage, largely due to a lack of data but to some degree also because of terminological ambiguities. Therefore, in a preparatory step, we summarize related terms and identify the need for unequivocal terminology across disciplines and international boundaries in order to bring the science together. Thereafter, we introduce a large (n = 63 117), long (10-33 years) and representative (48 % of all Swiss buildings covered) data set of spatially explicit Swiss insurance flood claims. Based on registered flood damage to buildings, the main aims of this study are twofold: First, we introduce a method to differentiate damage caused by SWFs and fluvial floods based on the geographical location of each damaged object in relation to flood hazard maps and the hydrological network. Second, we analyze the data with respect to their spatial and temporal distributions aimed at quantitatively answering the fundamental questions of how relevant SWF damage really is, as well as where and when it occurs in space and time. This study reveals that SWFs are responsible for at least 45 % of the flood damage to buildings and 23 % of the associated direct tangible losses, whereas lower losses per claim are responsible for the lower loss share. The Swiss lowlands are affected more heavily by SWFs than the alpine regions. At the same time, the results show that the damage claims and associated losses are not evenly distributed within each region either. Damage caused by SWFs occurs by far most frequently in summer in almost all regions. The normalized SWF damage of all regions shows no significant upward trend between 1993 and 2013. We conclude that SWFs are in fact a highly relevant process in Switzerland that should receive similar attention like fluvial flood hazards. Moreover, as SWF damage almost always coincides with fluvial flood damage, we suggest considering SWFs, like fluvial floods, as integrated processes of our catchments.

  11. A new survey tool to assess pluvial damage to residential buildings

    NASA Astrophysics Data System (ADS)

    Rözer, Viktor; Spekkers, Matthieu; ten Veldhuis, Marie-Claire; Kreibich, Heidi

    2017-04-01

    Pluvial floods have caused severe damage to urban dwellings in Europe and elsewhere in recent years. These type of flood events are caused by storm events with exceptionally high rainfall rates, which lead to inundation of streets and buildings and are commonly associated with a failure of the urban drainage system. Therefore, pluvial floods often happen with little warning and in areas that are not obviously prone to flooding. With a predicted increase in extreme weather events as well as an ongoing urbanization, pluvial flood damage is expected to increase in the future. So far little research was done on the adverse consequences of pluvial floods, as empirical damage data of pluvial flooding is scarce. Therefore, a newly developed survey tool to assess pluvial flood damage as well as the results of a comparison between two international pluvial flood case studies are presented. The questionnaire used in the two study areas was developed with the aim to create a harmonized transnational pluvial flood damage survey that can potentially be extended to other European countries. New indicator variables have been developed to account for different national and regional standards in building structure, early warning, socio-economic data and recovery. The surveys comprise interviews with 510 households in the Münster area (Germany) and 349 households in Amsterdam (the Netherlands), which were affected by the heavy rainfall events on July 28 2014. The respondents were asked more than 80 questions about the damage to their building structure and contents, as well as on topics such as early warning, emergency and precautionary measures, building properties and hazard characteristics. A comparison of the two surveys revealed strong similarities concerning damage reducing effects and the popularity of precautionary measures, besides significant differences between the mean water levels inside the house as well as the median of the building structure and content damage. A comparison between the relative damage contributions for different entry points of water into the house indicates an effect of regional distinctions in building topology on the total damage. The results of this comparison give important insights for the development and transferability of pluvial flood damage models.

  12. 44 CFR 206.253 - Insurance requirements for facilities damaged by disasters other than flood.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... facilities damaged by disasters other than flood. 206.253 Section 206.253 Emergency Management and Assistance... by disasters other than flood. (a) Prior to approval of a Federal grant for the restoration of a facility and its contents which were damaged by a disaster other than flood, the Grantee shall notify the...

  13. Flood damage estimation of companies: A comparison of Stage-Damage-Functions and Random Forests

    NASA Astrophysics Data System (ADS)

    Sieg, Tobias; Kreibich, Heidi; Vogel, Kristin; Merz, Bruno

    2017-04-01

    The development of appropriate flood damage models plays an important role not only for the damage assessment after an event but also to develop adaptation and risk mitigation strategies. So called Stage-Damage-Functions (SDFs) are often applied as a standard approach to estimate flood damage. These functions assign a certain damage to the water depth depending on the use or other characteristics of the exposed objects. Recent studies apply machine learning algorithms like Random Forests (RFs) to model flood damage. These algorithms usually consider more influencing variables and promise to depict a more detailed insight into the damage processes. In addition they provide an inherent validation scheme. Our study focuses on direct, tangible damage of single companies. The objective is to model and validate the flood damage suffered by single companies with SDFs and RFs. The data sets used are taken from two surveys conducted after the floods in the Elbe and Danube catchments in the years 2002 and 2013 in Germany. Damage to buildings (n = 430), equipment (n = 651) as well as goods and stock (n = 530) are taken into account. The model outputs are validated via a comparison with the actual flood damage acquired by the surveys and subsequently compared with each other. This study investigates the gain in model performance with the use of additional data and the advantages and disadvantages of the RFs compared to SDFs. RFs show an increase in model performance with an increasing amount of data records over a comparatively large range, while the model performance of the SDFs is already saturated for a small set of records. In addition, the RFs are able to identify damage influencing variables, which improves the understanding of damage processes. Hence, RFs can slightly improve flood damage predictions and provide additional insight into the underlying mechanisms compared to SDFs.

  14. 44 CFR 206.253 - Insurance requirements for facilities damaged by disasters other than flood.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... facilities damaged by disasters other than flood. 206.253 Section 206.253 Emergency Management and Assistance... ASSISTANCE Public Assistance Insurance Requirements § 206.253 Insurance requirements for facilities damaged... facility and its contents which were damaged by a disaster other than flood, the Grantee shall notify the...

  15. Field Testing of Energy-Efficient Flood-Damage-Resistant Residential Envelope Systems Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aglan, H.

    2005-08-04

    The primary purpose of the project was to identify materials and methods that will make the envelope of a house flood damage resistant. Flood damage resistant materials and systems are intended to be used to repair houses subsequent to flooding. This project was also intended to develop methods of restoring the envelopes of houses that have been flooded but are repairable and may be subject to future flooding. Then if the house floods again, damage will not be as extensive as in previous flood events and restoration costs and efforts will be minimized. The purpose of the first pair ofmore » field tests was to establish a baseline for typical current residential construction practice. The first test modules used materials and systems that were commonly found in residential envelopes throughout the U.S. The purpose of the second pair of field tests was to begin evaluating potential residential envelope materials and systems that were projected to be more flood-damage resistant and restorable than the conventional materials and systems tested in the first pair of tests. The purpose of testing the third slab-on-grade module was to attempt to dry flood proof the module (no floodwater within the structure). If the module could be sealed well enough to prevent water from entering, then this would be an effective method of making the interior materials and systems flood damage resistant. The third crawl space module was tested in the same manner as the previous modules and provided an opportunity to do flood tests of additional residential materials and systems. Another purpose of the project was to develop the methodology to collect representative, measured, reproducible (i.e. scientific) data on how various residential materials and systems respond to flooding conditions so that future recommendations for repairing flood damaged houses could be based on scientific data. An additional benefit of collecting this data is that it will be used in the development of a standard test procedure which could lead to the certification of building materials and systems as flood damage resistant.« less

  16. Flood Damages- savings potential for Austrian municipalities and evidence of adaptation

    NASA Astrophysics Data System (ADS)

    Unterberger, C.

    2016-12-01

    Recent studies show that the number of extreme precipitation events has increased globally and will continue to do so in the future. These observations are particularly true for central, northern and north-eastern Europe. These changes in the patterns of extreme events have direct repercussions for policy makers. Rojas et al. (2013) find that until 2080, annual damages could increase by a factor of 17 (from €5,5 bn/year today to € 98 bn/year in 2080) in the event that no adaptation measures are taken. Steininger et al. (2015) find that climate and weather induced extreme events account for an annual current welfare loss of about € 1 billion in Austria. As a result, policy makers will need to understand the interaction between hazard, exposure and vulnerability, with the goal of achieving flood risk reduction. Needed is a better understanding of where exposure, vulnerability and eventually flood risk are highest, i.e. where to reduce risk first and which factors drive existing flood risk. This article analyzes direct flood losses as reported by 1153 Austrian municipalities between 2005 and 2013. To achieve comparability between flood damages and municipalities' ordinary spending, a "vulnerability threshold" is introduced suggesting that flood damages should be lower than 5% of municipalities' average annual ordinary spending. It is found that the probability that flood damages exceed this vulnerability threshold is 12%. To provide a reliable estimate for that exceedance probability the joint distribution of damages and spending is modelled by means of a copula approach. Based on the joint distribution, a Monte Carlo simulation is conducted to derive uncertainty ranges for the exceedance probability. To analyze the drivers of flood damages and the effect they have on municipalities' spending, two linear regression models are estimated. Hereby obtained results suggest that damages increase significantly for those municipalities located along the shores of the river Danube and decrease significantly for municipalities that experienced floods in the past- indicating successful adaptation. As for the relationship between flood damages and municipalities' spending, the regression results indicate that flood damages have a significant positive impact.

  17. A global assessment of the societal impacts of glacier outburst floods

    NASA Astrophysics Data System (ADS)

    Carrivick, Jonathan L.; Tweed, Fiona S.

    2016-09-01

    Glacier outburst floods are sudden releases of large amounts of water from a glacier. They are a pervasive natural hazard worldwide. They have an association with climate primarily via glacier mass balance and their impacts on society partly depend on population pressure and land use. Given the ongoing changes in climate and land use and population distributions there is therefore an urgent need to discriminate the spatio-temporal patterning of glacier outburst floods and their impacts. This study presents data compiled from 20 countries and comprising 1348 glacier floods spanning 10 centuries. Societal impacts were assessed using a relative damage index based on recorded deaths, evacuations, and property and infrastructure destruction and disruption. These floods originated from 332 sites; 70% were from ice-dammed lakes and 36% had recorded societal impact. The number of floods recorded has apparently reduced since the mid-1990s in all major world regions. Two thirds of sites that have produced > 5 floods (n = 32) have floods occurring progressively earlier in the year. Glacier floods have directly caused at least: 7 deaths in Iceland, 393 deaths in the European Alps, 5745 deaths in South America and 6300 deaths in central Asia. Peru, Nepal and India have experienced fewer floods yet higher levels of damage. One in five sites in the European Alps has produced floods that have damaged farmland, destroyed homes and damaged bridges; 10% of sites in South America have produced glacier floods that have killed people and damaged infrastructure; 15% of sites in central Asia have produced floods that have inundated farmland, destroyed homes, damaged roads and damaged infrastructure. Overall, Bhutan and Nepal have the greatest national-level economic consequences of glacier flood impacts. We recommend that accurate, full and standardised monitoring, recording and reporting of glacier floods is essential if spatio-temporal patterns in glacier flood occurrence, magnitude and societal impact are to be better understood. We note that future modelling of the global impact of glacier floods cannot assume that the same trends will continue and will need to consider combining land-use change with probability distributions of geomorphological responses to climate change and to human activity.

  18. Summary of floods in the United States during 1962

    USGS Publications Warehouse

    Rostvedt, J.O.

    1968-01-01

    This report describes the most outstanding floods in the United Spates during 1962. The most damaging floods during the year occurred in February in southern Idaho and northern Nevada and Utah, and during the latter part of February and the early part of March in Kentucky and in the Cumberland River basin in Tennessee.The floods in Idaho and adjacent areas of Nevada and Utah resulted from a combination of prolonged low-intensity rainfall, moderate amounts of snow on low-altitude areas, a period of high temperatures, and a glaze of ice over deeply frozen ground. The floods affected some of the most valuable agricultural land in the region and some of the most heavily populated areas in Idaho. Damage in Idaho was estimated at more than \\$7 million.The floods in Kentucky and Tennessee were caused by two storms; precipitation exceeded 7 inches at places during the second storm. Damage in Kentucky totaled about \\$7 million.Recordbreaking snowmelt floods occurred in March and April in southeastern South Dakota and adjacent areas. Many peak discharges were much greater than those that can be expected to occur on an average of once in 25 years. Peak discharges on the Floyd River and the Big Sioux River were the greatest snowmelt floods since 1881. Damage in South Dakota was estimated at \\$4 million.Heavy rains during May and intense rains in early June caused flooding in Minnesota on tributaries of the Red River of the North. Peak discharges exceeded previous maximums at some areas in the basins of the Buffalo, Clearwater, and Wild Rice Rivers. Damage from the floods of May and June in Minnesota was about \\$5 million.The greatest flood since 1920 in Rapid City, S. Dak., caused at out $600,000 damage in July. The great runoff of 3,300 cubic feet per second, from a relatively small area downstream from Pactola Reservoir, resulted from rainfall having an intensity greater than that for a 100-year recurrence interval.Floods caused almost \\$3 million damage in three river basins' in western Florida in September. The greatest damage was in Sarasota where from 3 to 7 feet of water flooded homes and stores. About 70,000 acres of farmland and woodland was inundated.Unusual floods of September in southern Arizona flooded areas up to 10 miles wide. Damage, which totaled about \\$3 million, was almost entirely to farms, as the flood area is sparsely populated.In addition to the floods just mentioned, 15 others of lesser magnitude are considered outstanding enough to be included in this annual summary.

  19. Evaluation of urban flood damages in climate and land use changes: Case Studies from Southeast Asia

    NASA Astrophysics Data System (ADS)

    Kefi, M.; Binaya, M. K.; Kumar, P.; Fukushi, K.

    2017-12-01

    Urbanization, changes in land use and global warming increase the threat of natural disasters such as flooding. In recent decades, it was observed a rise of intensity and frequency of flood events. The exposure both of people and the national economy to flood hazards is amplified and can induce serious economic and social damages. For this reason, local governments adopted several strategies to cope with flood risk in urban areas in particular, but a better comprehension of the flood hazard factors may enhance the efficiency of mitigating measures overall. For this research, a spatial analysis is applied to estimate future direct flood damage for 2030 in three Southeast Asian megacities: Jakarta (Indonesia), Metro-Manila (Philippines) and Hanoi (Vietnam). This comprehensive method combined flood characteristics (flood depth) obtained from flood simulation using FLO-2D, land use generated from supervised classification and remote sensing products, property value of affected buildings and flood damage rate derived from flood depth function. This function is established based on field surveys with local people affected by past flood events. Additionally, two scenarios were analyzed to simulate the future conditions. The first one is related to climate change and it is based on several General Circulation Models (GCMs). However, the second one is establish to point out the effect of adaptation strategies. The findings shows that the climate change combined with the expansion of built-up areas increase the vulnerability of urban areas to flooding and the economic damage. About 16%, 8% and 19% of flood inundation areas are expected to increase respectively in Metro-Manila, Jakarta and Hanoi. However, appropriate flood control measures can be helpful to reduce the impact of natural disaster. Furthermore, flood damage maps are generated at a large scale, which can be helpful to local stakeholders when prioritizing their mitigation strategies on urban disaster resilience.

  20. Probabilistic flood damage modelling at the meso-scale

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2014-05-01

    Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.

  1. Quantification of increased flood risk due to global climate change for urban river management planning.

    PubMed

    Morita, M

    2011-01-01

    Global climate change is expected to affect future rainfall patterns. These changes should be taken into account when assessing future flooding risks. This study presents a method for quantifying the increase in flood risk caused by global climate change for use in urban flood risk management. Flood risk in this context is defined as the product of flood damage potential and the probability of its occurrence. The study uses a geographic information system-based flood damage prediction model to calculate the flood damage caused by design storms with different return periods. Estimation of the monetary damages these storms produce and their return periods are precursors to flood risk calculations. The design storms are developed from modified intensity-duration-frequency relationships generated by simulations of global climate change scenarios (e.g. CGCM2A2). The risk assessment method is applied to the Kanda River basin in Tokyo, Japan. The assessment provides insights not only into the flood risk cost increase due to global warming, and the impact that increase may have on flood control infrastructure planning.

  2. Uncertainty in urban flood damage assessment due to urban drainage modelling and depth-damage curve estimation.

    PubMed

    Freni, G; La Loggia, G; Notaro, V

    2010-01-01

    Due to the increased occurrence of flooding events in urban areas, many procedures for flood damage quantification have been defined in recent decades. The lack of large databases in most cases is overcome by combining the output of urban drainage models and damage curves linking flooding to expected damage. The application of advanced hydraulic models as diagnostic, design and decision-making support tools has become a standard practice in hydraulic research and application. Flooding damage functions are usually evaluated by a priori estimation of potential damage (based on the value of exposed goods) or by interpolating real damage data (recorded during historical flooding events). Hydraulic models have undergone continuous advancements, pushed forward by increasing computer capacity. The details of the flooding propagation process on the surface and the details of the interconnections between underground and surface drainage systems have been studied extensively in recent years, resulting in progressively more reliable models. The same level of was advancement has not been reached with regard to damage curves, for which improvements are highly connected to data availability; this remains the main bottleneck in the expected flooding damage estimation. Such functions are usually affected by significant uncertainty intrinsically related to the collected data and to the simplified structure of the adopted functional relationships. The present paper aimed to evaluate this uncertainty by comparing the intrinsic uncertainty connected to the construction of the damage-depth function to the hydraulic model uncertainty. In this way, the paper sought to evaluate the role of hydraulic model detail level in the wider context of flood damage estimation. This paper demonstrated that the use of detailed hydraulic models might not be justified because of the higher computational cost and the significant uncertainty in damage estimation curves. This uncertainty occurs mainly because a large part of the total uncertainty is dependent on depth-damage curves. Improving the estimation of these curves may provide better results in term of uncertainty reduction than the adoption of detailed hydraulic models.

  3. Flooding and Flood Management

    USGS Publications Warehouse

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim

    2011-01-01

    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  4. An overview of road damages due to flooding: Case study in Kedah state, Malaysia

    NASA Astrophysics Data System (ADS)

    Ismail, Muhd Shahril Nizam; Ghani, Abdul Naser Abdul

    2017-10-01

    Flooding occurs frequently in many countries including Malaysia. Floods in Malaysia are usually due to heavy and prolonged rainfall, uncontrolled development, and drainage systems that are not being monitored. Road damage due to flooding event can cause huge expenditures for the post-flooding rehabilitation and maintenance. The required maintenance and rehabilitation could upset the original life cycle cost estimations. Data on road statistics were obtained from the Highway Planning Division, Ministry of Works Malaysia and data on flooding was collected from the Department of Irrigation and Drainage Malaysia for events between 2012 and 2015. The pilot sites were selected based on its historical cases of floods that caused road damages in Kedah. The pilot site indicated that the impact of flooding on road infrastructures systems can be used to plan better road design and maintenances. It also revealed that it costs more than RM 1 million to reinstate roads damaged by flooding in a typical district annually.

  5. The 2011 flood event in the Mekong Delta: preparedness, response, damage and recovery of private households and small businesses.

    PubMed

    Chinh, Do Thi; Bubeck, Philip; Dung, Nguyen Viet; Kreibich, Heidi

    2016-10-01

    Floods frequently cause substantial economic and human losses, particularly in developing countries. For the development of sound flood risk management schemes that reduce flood consequences, detailed insights into the different components of the flood risk management cycle, such as preparedness, response, flood impact analyses and recovery, are needed. However, such detailed insights are often lacking: commonly, only (aggregated) data on direct flood damage are available. Other damage categories such as losses owing to the disruption of production processes are usually not considered, resulting in incomplete risk assessments and possibly inappropriate recommendations for risk management. In this paper, data from 858 face-to-face interviews among flood-prone households and small businesses in Can Tho city in the Vietnamese Mekong Delta are presented to gain better insights into the damage caused by the 2011 flood event and its management by households and businesses. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.

  6. Estimating monetary damages from flooding in the United States under a changing climate

    EPA Science Inventory

    A national-scale analysis of potential changes in monetary damages from flooding under climate change. The approach uses empirically based statistical relationships between historical precipitation and flood damage records from 18 hydrologic regions of the United States, along w...

  7. Dam-Break Flooding and Structural Damage in a Residential Neighborhood: Performance of a coupled hydrodynamic-damage model

    NASA Astrophysics Data System (ADS)

    Sanders, B. F.; Gallegos, H. A.; Schubert, J. E.

    2011-12-01

    The Baldwin Hills dam-break flood and associated structural damage is investigated in this study. The flood caused high velocity flows exceeding 5 m/s which destroyed 41 wood-framed residential structures, 16 of which were completed washed out. Damage is predicted by coupling a calibrated hydrodynamic flood model based on the shallow-water equations to structural damage models. The hydrodynamic and damage models are two-way coupled so building failure is predicted upon exceedance of a hydraulic intensity parameter, which in turn triggers a localized reduction in flow resistance which affects flood intensity predictions. Several established damage models and damage correlations reported in the literature are tested to evaluate the predictive skill for two damage states defined by destruction (Level 2) and washout (Level 3). Results show that high-velocity structural damage can be predicted with a remarkable level of skill using established damage models, but only with two-way coupling of the hydrodynamic and damage models. In contrast, when structural failure predictions have no influence on flow predictions, there is a significant reduction in predictive skill. Force-based damage models compare well with a subset of the damage models which were devised for similar types of structures. Implications for emergency planning and preparedness as well as monetary damage estimation are discussed.

  8. DamaGIS: a multisource geodatabase for collection of flood-related damage data

    NASA Astrophysics Data System (ADS)

    Saint-Martin, Clotilde; Javelle, Pierre; Vinet, Freddy

    2018-06-01

    Every year in France, recurring flood events result in several million euros of damage, and reducing the heavy consequences of floods has become a high priority. However, actions to reduce the impact of floods are often hindered by the lack of damage data on past flood events. The present paper introduces a new database for collection and assessment of flood-related damage. The DamaGIS database offers an innovative bottom-up approach to gather and identify damage data from multiple sources, including new media. The study area has been defined as the south of France considering the high frequency of floods over the past years. This paper presents the structure and contents of the database. It also presents operating instructions in order to keep collecting damage data within the database. This paper also describes an easily reproducible method to assess the severity of flood damage regardless of the location or date of occurrence. A first analysis of the damage contents is also provided in order to assess data quality and the relevance of the database. According to this analysis, despite its lack of comprehensiveness, the DamaGIS database presents many advantages. Indeed, DamaGIS provides a high accuracy of data as well as simplicity of use. It also has the additional benefit of being accessible in multiple formats and is open access. The DamaGIS database is available at https://doi.org/10.5281/zenodo.1241089.

  9. Future property damage from flooding: sensitivities to economy and climate change

    DOE PAGES

    Liu, Jing; Hertel, Thomas; Diffenbaugh, Noah; ...

    2015-08-09

    Using a unique dataset for Indiana counties during the period 1995-2012, we estimate the effects of flood hazard, asset exposure, and social vulnerability on property damage. This relationship then is combined with the expected level of future flood risks to project property damage from flooding in 2030 under various scenarios. We compare these scenario projections to identify which risk management strategy offers the greatest potential to mitigate flooding loss. Results show that by 2030, county level flooding hazard measured by extreme flow volume and frequency will increase by an average of 16.2% and 7.4%, respectively. The total increase in propertymore » damages projected under different model specifications range from 13.3% to 20.8%. Across models future damages consistently exhibit the highest sensitivity to future increases in asset exposure, reinforcing the importance of non-structural measures in managing floodplain development.« less

  10. Uncertainty and Sensitivity of Direct Economic Flood Damages: the FloodRisk Free and Open-Source Software

    NASA Astrophysics Data System (ADS)

    Albano, R.; Sole, A.; Mancusi, L.; Cantisani, A.; Perrone, A.

    2017-12-01

    The considerable increase of flood damages in the the past decades has shifted in Europe the attention from protection against floods to managing flood risks. In this context, the expected damages assessment represents a crucial information within the overall flood risk management process. The present paper proposes an open source software, called FloodRisk, that is able to operatively support stakeholders in the decision making processes with a what-if approach by carrying out the rapid assessment of the flood consequences, in terms of direct economic damage and loss of human lives. The evaluation of the damage scenarios, trough the use of the GIS software proposed here, is essential for cost-benefit or multi-criteria analysis of risk mitigation alternatives. However, considering that quantitative assessment of flood damages scenarios is characterized by intrinsic uncertainty, a scheme has been developed to identify and quantify the role of the input parameters in the total uncertainty of flood loss model application in urban areas with mild terrain and complex topography. By the concept of parallel models, the contribution of different module and input parameters to the total uncertainty is quantified. The results of the present case study have exhibited a high epistemic uncertainty on the damage estimation module and, in particular, on the type and form of the utilized damage functions, which have been adapted and transferred from different geographic and socio-economic contexts because there aren't depth-damage functions that are specifically developed for Italy. Considering that uncertainty and sensitivity depend considerably on local characteristics, the epistemic uncertainty associated with the risk estimate is reduced by introducing additional information into the risk analysis. In the light of the obtained results, it is evident the need to produce and disseminate (open) data to develop micro-scale vulnerability curves. Moreover, the urgent need to push forward research into the implementation of methods and models for the assimilation of uncertainties in decision-making processes emerges.

  11. Enhancement of global flood damage assessments using building material based vulnerability curves

    NASA Astrophysics Data System (ADS)

    Englhardt, Johanna; de Ruiter, Marleen; de Moel, Hans; Aerts, Jeroen

    2017-04-01

    This study discusses the development of an enhanced approach for flood damage and risk assessments using vulnerability curves that are based on building material information. The approach draws upon common practices in earthquake vulnerability assessments, and is an alternative for land-use or building occupancy approach in flood risk assessment models. The approach is of particular importance for studies where there is a large variation in building material, such as large scale studies or studies in developing countries. A case study of Ethiopia is used to demonstrate the impact of the different methodological approaches on direct damage assessments due to flooding. Generally, flood damage assessments use damage curves for different land-use or occupancy types (i.e. urban or residential and commercial classes). However, these categories do not necessarily relate directly to vulnerability of damage by flood waters. For this, the construction type and building material may be more important, as is used in earthquake risk assessments. For this study, we use building material classification data of the PAGER1 project to define new building material based vulnerability classes for flood damage. This approach will be compared to the widely applied land-use based vulnerability curves such as used by De Moel et al. (2011). The case of Ethiopia demonstrates and compares the feasibility of this novel flood vulnerability method on a country level which holds the potential to be scaled up to a global level. The study shows that flood vulnerability based on building material also allows for better differentiation between flood damage in urban and rural settings, opening doors to better link to poverty studies when such exposure data is available. Furthermore, this new approach paves the road to the enhancement of multi-risk assessments as the method enables the comparison of vulnerability across different natural hazard types that also use material-based vulnerability curves. Finally, this approach allows for more accuracy in estimating losses as a result of direct damages. 1 http://earthquake.usgs.gov/data/pager/

  12. A 500-year history of floods in the semi arid basins of south-eastern Spain

    NASA Astrophysics Data System (ADS)

    Sánchez García, Carlos; Schulte, Lothar; Peña, Juan Carlos; Carvalho, Filpe; Brembilla, Carla

    2016-04-01

    Floods are one of the natural hazards with higher incidence in the south-eastern Spain, the driest region in Europe, causing fatalities, damage of infrastructure and economic losses. Flash-floods in semi arid environments are related to intensive rainfall which can last from few hours to days. These floods are violent and destructive because of their high discharges, sediment transport and aggradation processes in the flood plain. Also during historical times floods affected the population in the south-eastern Spain causing sever damage or in some cases the complete destruction of towns. Our studies focus on the flood reconstruction from historical sources of the Almanzora, Aguas and Antas river basins, which have a surface between 260-2600 km2. We have also compiled information from the Andarax river and compared the flood series with the Guadalentín and Segura basins from previous studies (Benito et. al., 2010 y Machado et al., 2011). Flood intensities have been classified in four levels according to the type of damage: 1) ordinary floods that only affect agriculture plots; 2) extraordinary floods which produce some damage to buildings and hydraulic infrastructure; 3) catastrophic floods which caused sever damage, fatalities and partial or complete destruction of towns. A higher damage intensity of +1 magnitude was assigned when the event is recorded from more than one major sub-basin (stretches and tributaries such as Huércal-Overa basin) or catchment (e.g. Antas River). In total 102 incidences of damages and 89 floods were reconstructed in the Almanzora (2.611 km2), Aguas (539 km2), Antas (261 km2) and Andarax (2.100 km2) catchments. The Almanzora River was affected by 36 floods (1550-2012). The highest events for the Almanzora River were in 1580, 1879, 1973 and 2012 producing many fatalities and destruction of several towns. In addition, we identified four flood-clusters 1750-1780, 1870-1900, 1960-1977 and 1989-2012 which coincides with the periods of increased flood frequencies in the Andarax catchment. However, only the 1870-1900 flood-cluster is synchronic with the Guadalentín and Segura flood-periods, whereas the rest of flood-episodes are non-synchronic. The 2012 event, the largest flood in the Almanzora river since the 1973 event, produced in the lower stretch less damage than in the middle stretch because of structural mitigation measures such as reservoir and artificial river channelling. However, in the lower Antas and Aguas rivers the situation is different. The damages increased in 2012 as a result from the increased exposure of tourism infrastructure in the floodplain near the coastline during the last two decades. Traditional settlements of rural societies were located also in the lower river stretches at a higher elevation (e.g. fluvial terraces, glacis, slopes) like today in the higher and middle catchments.

  13. BILLBOARD EXPRESSING LOCAL HUMOR CONCERNING FLOOD DAMAGE TO WALNUT STREET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BILLBOARD EXPRESSING LOCAL HUMOR CONCERNING FLOOD DAMAGE TO WALNUT STREET BRIDGE, I-83 SOUTHBOUND, LOOKING WEST. BILLBOARD EXPRESSING LOCAL HUMOR CONCERNING FLOOD DAMAGE TO WALNUT STREET BRIDGE, I-83 SOUTHBOUND, LOOKING WEST. - Walnut Street Bridge, Spanning Susquehanna River at Walnut Street (State Route 3034), Harrisburg, Dauphin County, PA

  14. 44 CFR 206.252 - Insurance requirements for facilities damaged by flood.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... facilities damaged by flood. 206.252 Section 206.252 Emergency Management and Assistance FEDERAL EMERGENCY... Assistance Insurance Requirements § 206.252 Insurance requirements for facilities damaged by flood. (a) Where... insurance policy. (b) The reduction stated above shall not apply to a PNP facility which could not be...

  15. Beaver Brook, Keene, New Hampshire. Flood Damage Reduction Project. Detailed Project Report for Water Resources Development.

    DTIC Science & Technology

    1984-02-01

    Project Report/ Environmental Assessment Beaver Brook, Keene, New Hampshire I ~ j~j~i iii ii.. A Flood Damage Reduction AD-A 14 3 376 I 𔃾, W " FEBRUARY...STATEMENT (of tme abestwee enteed to Sleok I0. Of dlfieme W booer IS. SUPPLEMENTARY MOTES 2 volume set: vol 1- Flood Damage Reduction - vol 2- Flood Damage...that are considered reasonably characteristic of the region, excluding extremely rare combinations. 2 ,4INN (0 ( w a 12 7’ PLATE * -..- ~ -- - 7 ’ k 47

  16. Ohio River main stem study - The role of geographic information systems and remote sensing in flood damage assessments

    NASA Technical Reports Server (NTRS)

    Edwardo, H. A.; Moulis, F. R.; Merry, C. J.; Mckim, H. L.; Kerber, A. G.; Miller, M. A.

    1985-01-01

    The Pittsburgh District, Corps of Engineers, has conducted feasibility analyses of various procedures for performing flood damage assessments along the main stem of the Ohio River. Procedures using traditional, although highly automated, techniques and those based on geographic information systems have been evaluated at a test site, the City of New Martinsville, Wetzel County, WV. The flood damage assessments of the test site developed from an automated, conventional structure-by-structure appraisal served as the ground truth data set. A geographic information system was developed for the test site which includes data on hydraulic reach, ground and reference flood elevations, and land use/cover. Damage assessments were made using land use mapping developed from an exhaustive field inspection of each tax parcel. This ground truth condition was considered to provide the best comparison of flood damages to the conventional approach. Also, four land use/cover data sets were developed from Thematic Mapper Simulator (TMS) and Landsat-4 Thematic Mapper (TM) data. One of these was also used to develop a damage assessment of the test site. This paper presents the comparative absolute and relative accuracies of land use/cover mapping and flood damage assessments, and the recommended role of geographic information systems aided by remote sensing for conducting flood damage assessments and updates along the main stem of the Ohio River.

  17. Impacts of flood damage on airborne bacteria and fungi in homes after the 2013 Colorado Front Range flood.

    PubMed

    Emerson, Joanne B; Keady, Patricia B; Brewer, Tess E; Clements, Nicholas; Morgan, Emily E; Awerbuch, Jonathan; Miller, Shelly L; Fierer, Noah

    2015-03-03

    Flood-damaged homes typically have elevated microbial loads, and their occupants have an increased incidence of allergies, asthma, and other respiratory ailments, yet the microbial communities in these homes remain under-studied. Using culture-independent approaches, we characterized bacterial and fungal communities in homes in Boulder, CO, USA 2-3 months after the historic September, 2013 flooding event. We collected passive air samples from basements in 50 homes (36 flood-damaged, 14 non-flooded), and we sequenced the bacterial 16S rRNA gene (V4-V5 region) and the fungal ITS1 region from these samples for community analyses. Quantitative PCR was used to estimate the abundances of bacteria and fungi in the passive air samples. Results indicate significant differences in bacterial and fungal community composition between flooded and non-flooded homes. Fungal abundances were estimated to be three times higher in flooded, relative to non-flooded homes, but there were no significant differences in bacterial abundances. Penicillium (fungi) and Pseudomonadaceae and Enterobacteriaceae (bacteria) were among the most abundant taxa in flooded homes. Our results suggest that bacterial and fungal communities continue to be affected by flooding, even after relative humidity has returned to baseline levels and remediation has removed any visible evidence of flood damage.

  18. Floods of August and September 2004 in Eastern Ohio: FEMA Disaster Declaration 1556

    USGS Publications Warehouse

    Ebner, Andrew D.; Straub, David E.; Lageman, Jonathan D.

    2008-01-01

    A band of severe thunderstorms at the end of August 2004 and the passage of the remnants of Hurricanes Frances and Ivan during September 2004 caused severe flooding in eastern Ohio during August and September 2004. Record peak streamflow occurred at 12 U.S. Geological Survey (USGS) streamgages. Damages caused by the flooding produced by these storms were severe enough for 21 counties in eastern Ohio to be declared Federal disaster areas. In all, there were 4 storm- or flood-related deaths, 2,563 private structures damaged or destroyed, and an estimated $81 million in damages. This report describes the meteorological factors that resulted in severe flooding in eastern Ohio during August 27-September 27, 2004, and examines the damages caused by the storms and flooding. Peak-stage, peak-streamflow, and recurrence-interval data are reported for selected USGS streamgages. Flood profiles determined by the USGS are presented for selected streams.

  19. Assessment of flood risk in Tokyo metropolitan area

    NASA Astrophysics Data System (ADS)

    Hirano, J.; Dairaku, K.

    2013-12-01

    Flood is one of the most significant natural hazards in Japan. The Tokyo metropolitan area has been affected by several large flood disasters. Therefore, investigating potential flood risk in Tokyo metropolitan area is important for development of adaptation strategy for future climate change. We aim to develop a method for evaluating flood risk in Tokyo Metropolitan area by considering effect of historical land use and land cover change, socio-economic change, and climatic change. Ministry of land, infrastructure, transport and tourism in Japan published 'Statistics of flood', which contains data for flood causes, number of damaged houses, area of wetted surface, and total amount of damage for each flood at small municipal level. By using these flood data, we estimated damage by inundation inside a levee for each prefecture based on a statistical method. On the basis of estimated damage, we developed flood risk curves in the Tokyo metropolitan area, representing relationship between damage and exceedance probability of flood for the period 1976-2008 for each prefecture. Based on the flood risk curve, we attempted evaluate potential flood risk in the Tokyo metropolitan area and clarify the cause for regional difference of flood risk. By analyzing flood risk curves, we found out regional differences of flood risk. We identified high flood risk in Tokyo and Saitama prefecture. On the other hand, flood risk was relatively low in Ibaraki and Chiba prefecture. We found that these regional differences of flood risk can be attributed to spatial distribution of entire property value and ratio of damaged housing units in each prefecture.We also attempted to evaluate influence of climate change on potential flood risk by considering variation of precipitation amount and precipitation intensity in the Tokyo metropolitan area. Results shows that we can evaluate potential impact of precipitation change on flood risk with high accuracy by using our methodology. Acknowledgments This study is conducted as part of the research subject "Vulnerability and Adaptation to Climate Change in Water Hazard Assessed Using Regional Climate Scenarios in the Tokyo Region' (National Research Institute for Earth Science and Disaster Prevention; PI: Koji Dairaku) of Research Program on Climate Change Adaptation (RECCA) and was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan

  20. Supply and demand analysis for flood insurance by using logistic regression model: case study at Citarum watershed in South Bandung, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Sidi, P.; Mamat, M.; Sukono; Supian, S.

    2017-01-01

    Floods have always occurred in the Citarum river basin. The adverse effects caused by floods can cover all their property, including the destruction of houses. The impact due to damage to residential buildings is usually not small. Indeed, each of flooding, the government and several social organizations providing funds to repair the building. But the donations are given very limited, so it cannot cover the entire cost of repair was necessary. The presence of insurance products for property damage caused by the floods is considered very important. However, if its presence is also considered necessary by the public or not? In this paper, the factors that affect the supply and demand of insurance product for damaged building due to floods are analyzed. The method used in this analysis is the ordinal logistic regression. Based on the analysis that the factors that affect the supply and demand of insurance product for damaged building due to floods, it is included: age, economic circumstances, family situations, insurance motivations, and lifestyle. Simultaneously that the factors affecting supply and demand of insurance product for damaged building due to floods mounted to 65.7%.

  1. Assessment of big floods in the Eastern Black Sea Basin of Turkey.

    PubMed

    Yüksek, Ömer; Kankal, Murat; Üçüncü, Osman

    2013-01-01

    In this study, general knowledge and some details of the floods in Eastern Black Sea Basin of Turkey are presented. Brief hydro-meteorological analysis of selected nine floods and detailed analysis of the greatest flood are given. In the studied area, 51 big floods have taken place between 1955-2005 years, causing 258 deaths and nearly US $500,000,000 of damage. Most of the floods have occurred in June, July and August. It is concluded that especially for the rainstorms that have caused significantly damages, the return periods of the rainfall heights and resultant flood discharges have gone up to 250 and 500 years, respectively. A general agreement is observed between the return periods of rains and resultant floods. It is concluded that there has been no significant climate change to cause increases in flood harms. The most important human factors to increase the damage are determined as wrong and illegal land use, deforestation and wrong urbanization and settlement, psychological and technical factors. Some structural and non-structural measures to mitigate flood damages are also included in the paper. Structural measures include dykes and flood levees. Main non-structural measures include flood warning system, modification of land use, watershed management and improvement, flood insurance, organization of flood management studies, coordination between related institutions and education of the people and informing of the stakeholders.

  2. Development of Integrated Flood Analysis System for Improving Flood Mitigation Capabilities in Korea

    NASA Astrophysics Data System (ADS)

    Moon, Young-Il; Kim, Jong-suk

    2016-04-01

    Recently, the needs of people are growing for a more safety life and secure homeland from unexpected natural disasters. Flood damages have been recorded every year and those damages are greater than the annual average of 2 trillion won since 2000 in Korea. It has been increased in casualties and property damages due to flooding caused by hydrometeorlogical extremes according to climate change. Although the importance of flooding situation is emerging rapidly, studies related to development of integrated management system for reducing floods are insufficient in Korea. In addition, it is difficult to effectively reduce floods without developing integrated operation system taking into account of sewage pipe network configuration with the river level. Since the floods result in increasing damages to infrastructure, as well as life and property, structural and non-structural measures should be urgently established in order to effectively reduce the flood. Therefore, in this study, we developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting for supporting synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information in Korea. Keywords: Flooding, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011686022015)" Rural Development Administration, Republic of Korea

  3. Analysis of the 2011 Mekong flood in Can Tho city

    NASA Astrophysics Data System (ADS)

    Do, Thi-Chinh; Bubeck, Philip; Nguyen, Viet-Dung; Kreibich, Heidi

    2014-05-01

    Floods in the Mekong delta occur on a recurring basis during the flood season from July to November, and regular inundations of large areas are a prerequisite for the livelihoods of about 17 million people in the Vietnamese delta. At the same time, large-scale flood events above usual water levels pose a serious hazard that repeatedly caused severe economic damage and losses of life in past decades. The flood event in 2011 in the Mekong Delta heavily impacted Can Tho City and caused substantial damage to various economic sectors. Data from face to face interviews with 480 flood-affected households and 378 small businesses were analysed to gain detailed insights into flood preparedness, early warning, emergency measures, flood impacts and recovery before, during and after the 2011 flood in Can Tho city. Amongst other things, the findings reveal that damage to households is high, often exceeding the amount of several months of income, despite a relatively high level of preparedness. In terms of small businesses, it is found that higher losses indeed occur due to the disruption of production processes compared with direct damage.

  4. Flood risk assessment and mapping for the Lebanese watersheds

    NASA Astrophysics Data System (ADS)

    Abdallah, Chadi; Hdeib, Rouya

    2016-04-01

    Of all natural disasters, floods affect the greatest number of people worldwide and have the greatest potential to cause damage. Nowadays, with the emerging global warming phenomenon, this number is expected to increase. The Eastern Mediterranean area, including Lebanon (10452 Km2, 4.5 M habitant), has witnessed in the past few decades an increase frequency of flooding events. This study profoundly assess the flood risk over Lebanon covering all the 17 major watersheds and a number of small sub-catchments. It evaluate the physical direct tangible damages caused by floods. The risk assessment and evaluation process was carried out over three stages; i) Evaluating Assets at Risk, where the areas and assets vulnerable to flooding are identified, ii) Vulnerability Assessment, where the causes of vulnerability are assessed and the value of the assets are provided, iii) Risk Assessment, where damage functions are established and the consequent damages of flooding are estimated. A detailed Land CoverUse map was prepared at a scale of 1/ 1 000 using 0.4 m resolution satellite images within the flood hazard zones. The detailed field verification enabled to allocate and characterize all elements at risk, identify hotspots, interview local witnesses, and to correlate and calibrate previous flood damages with the utilized models. All filed gathered information was collected through Mobile Application and transformed to be standardized and classified under GIS environment. Consequently; the general damage evaluation and risk maps at different flood recurrence periods (10, 50, 100 years) were established. Major results showed that floods in a winter season (December, January, and February) of 10 year recurrence and of water retention ranging from 1 to 3 days can cause total damages (losses) that reach 1.14 M for crop lands and 2.30 M for green houses. Whereas, it may cause 0.2 M to losses in fruit trees for a flood retention ranging from 3 to 5 days. These numbers differs according to the flooding season, cultivation type and the agro-climatic zone. The flood damage equivalence to constructions summed up to reach 32 M for residential structures, 29 M for non-residential structures, and 5 M for the Syrian refugees tents, while structures' content losses were estimated at 27M, 54M, 7 M respectively for the same flood frequency. The total length of affected road networks during flooding is 1589km with an estimated cost of 565M. The total number of affected population reached 82,000 while the number of effected vehicles is 62,000 for a 50year recurrence period

  5. 76 FR 54453 - Request for Comments on the Notice of Intent To Prepare a Draft Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Investigation Study (Previously Advertised as the Skagit River Flood Damage Reduction Study), Skagit County, WA... advertised as the Skagit River Flood Damage Reduction Study), Skagit County, Washington. This extension will... Investigation Study (previously advertised as the Skagit River Flood Damage Reduction Study), Skagit County...

  6. How do we best estimate fluvial flood risk in urban environments? : The case of the city of Eilenburg, Germany

    NASA Astrophysics Data System (ADS)

    Longo, Elisa; Tito Aronica, Giuseppe; Di Baldassarre, Giuliano; Mukolwe, Micah

    2015-04-01

    Flooding is one of the most impactful natural hazards. In particular, by looking at the data of damages from natural hazards in Europe collected in the International Disaster Database (EM-DAT) one can see a significant increase over the past four decades of both frequency of floods and associated economic damages. Similarly, dramatic trends are also found by analyzing other types of flood losses, such as the number of people affected by floods, homeless, injured or killed. To deal with the aforementioned increase of flood risk, more and more efforts are being made to promote integrated flood risk management, for instance, at the end of 2007, the European Community (EC) issued the Flood Directive (F.D.) 2007/60/EC. One of the major innovations was that the F.D. 2007/60/C requires Member State to carry out risk maps and then take appropriate measures to reduce the evaluated risk. The main goal of this research was to estimate flood damaging using a computer code based on a recently developed method (KULTURisk, www.kulturisk.eu) and to compare the estimated damage with the observed one. The study area was the municipality of Eilenburg, which in 2002 was subjected to a destructive flood event. Were produced flood damage maps with new procedures (e.g. KULTURisk) and compared the estimates with observed data. This study showed the possibility to extend the lesson learned with the Eilenburg case study in other similar contexts. The outcomes of this test provided interesting insights about the flood risk mapping, which are expected to contribute to raise awareness to the flooding issues,to plan (structural and/or non-structural) measures of flood risk reduction and to support better land-use and urban planning.

  7. Flood loss assessment in Can Tho City, Vietnam

    NASA Astrophysics Data System (ADS)

    Do, T. C.; Kreibich, H.

    2012-04-01

    Floods are recurring events in the Lower Mekong Basin resulting in loss of life and property, causing damage to agriculture and rural infrastructure, and disrupting social and economic activities. Flood management and mitigation has become a priority issue at the national and regional levels. Besides, it is expected that large areas of the Mekong delta, the Red River delta and the central coast will be flooded by sea-level rise due to climate change. Can Tho City is ranked under the five most flood-tide-influenced cities of Vietnam. It is the biggest city in the Mekong delta and it is located near the Hau river. Like other region of the Mekong delta, Can Tho suffers due to floods from upstream and flood tides from the sea. In the flood season large rural areas of the city are flooded, particularly during tidal days. Flood risk management policy includes preparative measures for living with floods and to minimise the damage caused by floods as well as to take advantage of floods for sustainable development. An intensive literature review, including administrative reports as well as expert interviews have been undertaken to gain more insight into flood characteristics, their consequences and risk mitigation. Therefore, flood damaging processes and trends have been reviewed for Can Tho City and the Mekong Basin in Vietnam. Additionally, suitable flood damage estimation methodologies have been collected as important input for flood risk analyses. On this basis it has been investigated which flood risk mitigation and management strategies promise to be effective in Can Tho City, Vietnam.

  8. Flood damage modeling based on expert knowledge: Insights from French damage model for agricultural sector

    NASA Astrophysics Data System (ADS)

    Grelot, Frédéric; Agenais, Anne-Laurence; Brémond, Pauline

    2015-04-01

    In France, since 2011, it is mandatory for local communities to conduct cost-benefit analysis (CBA) of their flood management projects, to make them eligible for financial support from the State. Meanwhile, as a support, the French Ministry in charge of Environment proposed a methodology to fulfill CBA. Like for many other countries, this methodology is based on the estimation of flood damage. However, existing models to estimate flood damage were judged not convenient for a national-wide use. As a consequence, the French Ministry in charge of Environment launched studies to develop damage models for different sectors, such as: residential sector, public infrastructures, agricultural sector, and commercial and industrial sector. In this presentation, we aim at presenting and discussing methodological choices of those damage models. They all share the same principle: no sufficient data from past events were available to build damage models on a statistical analysis, so modeling was based on expert knowledge. We will focus on the model built for agricultural activities and more precisely for agricultural lands. This model was based on feedback from 30 agricultural experts who experienced floods in their geographical areas. They were selected to have a representative experience of crops and flood conditions in France. The model is composed of: (i) damaging functions, which reveal physiological vulnerability of crops, (ii) action functions, which correspond to farmers' decision rules for carrying on crops after a flood, and (iii) economic agricultural data, which correspond to featured characteristics of crops in the geographical area where the flood management project studied takes place. The two first components are generic and the third one is specific to the area studied. It is, thus, possible to produce flood damage functions adapted to different agronomic and geographical contexts. In the end, the model was applied to obtain a pool of damage functions giving damage in euros by hectare for 14 agricultural lands categories. As a conclusion, we will discuss the validation step of the model. Although the model was validated by experts, we analyse how it could gain insight from comparison with past events.

  9. Flood damage modeling based on expert knowledge: Insights from French damage model for agricultural sector

    NASA Astrophysics Data System (ADS)

    Grelot, Frédéric; Agenais, Anne-Laurence; Brémond, Pauline

    2014-05-01

    In France, since 2011, it is mandatory for local communities to conduct cost-benefit analysis (CBA) of their flood management projects, to make them eligible for financial support from the State. Meanwhile, as a support, the French Ministry in charge of Environment proposed a methodology to fulfill CBA. Like for many other countries, this methodology is based on the estimation of flood damage. Howerver, existing models to estimate flood damage were judged not convenient for a national-wide use. As a consequence, the French Ministry in charge of Environment launched studies to develop damage models for different sectors, such as: residential sector, public infrastructures, agricultural sector, and commercial and industrial sector. In this presentation, we aim at presenting and discussing methodological choices of those damage models. They all share the same principle: no sufficient data from past events were available to build damage models on a statistical analysis, so modeling was based on expert knowledge. We will focus on the model built for agricultural activities and more precisely for agricultural lands. This model was based on feedback from 30 agricultural experts who experienced floods in their geographical areas. They were selected to have a representative experience of crops and flood conditions in France. The model is composed of: (i) damaging functions, which reveal physiological vulnerability of crops, (ii) action functions, which correspond to farmers' decision rules for carrying on crops after a flood, and (iii) economic agricultural data, which correspond to featured characteristics of crops in the geographical area where the flood management project studied takes place. The two first components are generic and the third one is specific to the area studied. It is, thus, possible to produce flood damage functions adapted to different agronomic and geographical contexts. In the end, the model was applied to obtain a pool of damage functions giving damage in euros by hectare for 14 agricultural lands categories. As a conclusion, we will discuss the validation step of the model. Although the model was validated by experts, we analyse how it could gain insight from comparison with past events.

  10. Flood Losses Associated with Winter Storms in the U.S. Northeast

    NASA Astrophysics Data System (ADS)

    Ting, M.; Shimkus, C.

    2015-12-01

    Winter storms pose a number of hazards to coastal communities in the U.S. Northeast including heavy rain, snow, strong wind, cold temperatures, and flooding. These hazards can cause millions in property damages from one storm alone. This study addresses the impacts of winter storms from 2001 - 2012 on coastal counties in the U.S. Northeast and underscores the significant economic consequences extreme winter storms have on property. The analysis on the types of hazards (floods, strong wind, snow, etc.) and associated damage from the National Climatic Data Center Storm Events Database indicates that floods were responsible for the highest damages. This finding suggests that winter storm vulnerability could grow in the future as precipitation intensity increases and sea level rise exacerbate flood losses. Flood loss maps are constructed based on damage amount, which can be compared to the flood exposure maps constructed by the NOAA Office of Coastal Management. Interesting agreements and discrepancies exist between the two methods, which warrant further examination. Furthermore, flood losses often came from storms characterized as heavy precipitation storms and strong surge storms, and sometimes both, illustrating the compounding effect of flood risks in the region. While New Jersey counties experienced the most damage per unit area, there is no discernable connection between population density and damage amount, which suggests that societal impacts may rely less on population characteristics and more on infrastructure types and property values, which vary throughout the region.

  11. PoliRisposta: Overcoming present limits of flood damage data

    NASA Astrophysics Data System (ADS)

    Molinari, Daniela; Mazuran, Mirjana; Arias, Carolina; Minucci, Guido; Atun, Funda; Ardagna, Danilo

    2014-05-01

    Already in the Fifties, US researchers identified the main weakness of flood records in the inadequacy of flood damage data. The recent seminar "Flood damage survey and assessment: which priorities for future research and practice?", held at Politecnico di Milano on 24-25 January 2012, highlighted that poor and insufficient flood loss data is still a matter of concern. In detail, participants concluded that the lack of damage data and of innovative approaches for their analysis (e.g. multivariate approaches, data mining) is one of the main causes of the shortcomings of present risk assessment tools; among them: the uncertainty of flood risk predictions and the limited capacity of estimating damages apart from the direct ones to residential sector (i.e. indirect/intangible damages). On the other hand, flood damage data collected in the aftermath of a disastrous event can support a variety of actions besides the validation/definition of damage models: the identification of priorities for intervention during emergencies, the creation of complete event scenarios on the bases of which understating the fragilities of the flooded areas as well as defining compensation schemes. However, few efforts have been addressed so far on the improvement of the way in which data are presently collected and stored. The aim of this presentation is to discuss first results of Poli-RISPOSTA (stRumentI per la protezione civile a Supporto delle POpolazioni nel poST Alluvione), a research project founded by Politecnico di Milano which is just intended to develop tools and procedures for the collection and storage of high quality, consistent and reliable flood damage data. In detail, specific objectives of Poli-RISPOSTA are: - Develop an operational procedure for collecting, storing and analyzing all damage data, in the aftermath of flood event, including: damage to infrastructures and public facilities, damage suffered by citizens and their dwellings and goods, and to economic activities; - Develop educational material and modules for training practitioners in the use of the procedure; - Develop enhanced IT tools (both hardware and software) to support the procedure, easing as much as possible the collection of field data, the creation of databases and the connection between the latter and different regional and municipal databases that already exist for different purposes (from cadastral data, to satellite images, etc.). Results will be discussed with respect to first applications in the Umbria Region (Central Italy). Emphasis will be put on the utility of results for damage modelling, risk mitigation and emergency management.

  12. Geographical Information Analysis of Tsunami Flooded Area by the Great East Japan Earthquake Using Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Koarai, M.; Okatani, T.; Nakano, T.; Nakamura, T.; Hasegawa, M.

    2012-07-01

    The great earthquake occurred in Tohoku District, Japan on 11th March, 2011. This earthquake is named "the 2011 off the Pacific coast of Tohoku Earthquake", and the damage by this earthquake is named "the Great East Japan Earthquake". About twenty thousand people were killed or lost by the tsunami of this earthquake, and large area was flooded and a large number of buildings were destroyed by the tsunami. The Geospatial Information Authority of Japan (GSI) has provided the data of tsunami flooded area interpreted from aerial photos taken just after the great earthquake. This is fundamental data of tsunami damage and very useful for consideration of reconstruction planning of tsunami damaged area. The authors analyzed the relationship among land use, landform classification, DEMs data flooded depth of the tsunami flooded area by the Great East Japan Earthquake in the Sendai Plain using GIS. Land use data is 100 meter grid data of National Land Information Data by the Ministry of Land, Infrastructure, Transportation and Tourism (MLIT). Landform classification data is vector data of Land Condition Map produced by GSI. DEMs data are 5 meters grid data measured with LiDAR by GSI after earthquake. Especially, the authors noticed the relationship between tsunami hazard damage and flooded depth. The authors divided tsunami damage into three categories by interpreting aerial photos; first is the completely destroyed area where almost wooden buildings were lost, second is the heavily damaged area where a large number of houses were destroyed by the tsunami, and third is the flooded only area where houses were less destroyed. The flooded depth was measured by photogrammetric method using digital image taken by Mobile Mapping System (MMS). The result of these geographic analyses show the distribution of tsunami damage level is as follows: 1) The completely destroyed area was located within 1km area from the coastline, flooded depth of this area is over 4m, and no relationship between damaged area and landform classification. 2) The heavily damaged area was observed up to 3 or 4km from the coastline. Flooded depth of this area is over 1.5m, and there is a good relationship between damaged area and height of DEMs. 3) The flood only area was observed up to 4 or 5km from the coastline. Flooded depth of this area was less than 1.5m, and there is a good relationship between damaged area and landform. For instance, a certain area in valley plain or flooded plain was not affected by the tsunami, even though an area with almost the same height in coastal plain or delta was flooded. These results mean that it is important for tsunami disaster management to consider not only DEMs but also landform classification.

  13. A Methodology for Forecasting Damage & Economic Consequences to Floods: Building on the National Flood Interoperability Experiment (NFIE)

    NASA Astrophysics Data System (ADS)

    Tootle, G. A.; Gutenson, J. L.; Zhu, L.; Ernest, A. N. S.; Oubeidillah, A.; Zhang, X.

    2015-12-01

    The National Flood Interoperability Experiment (NFIE) held June 3-July 17, 2015 at the National Water Center (NWC) in Tuscaloosa, Alabama sought to demonstrate an increase in flood predictive capacity for the coterminous United States (CONUS). Accordingly, NFIE-derived technologies and workflows offer the ability to forecast flood damage and economic consequence estimates that coincide with the hydrologic and hydraulic estimations these physics-based models generate. A model providing an accurate prediction of damage and economic consequences is a valuable asset when allocating funding for disaster response, recovery, and relief. Damage prediction and economic consequence assessment also offer an adaptation planning mechanism for defending particularly valuable or vulnerable structures. The NFIE, held at the NWC on The University of Alabama (UA) campus led to the development of this large scale flow and inundation forecasting framework. Currently, the system can produce 15-hour lead-time forecasts for the entire coterminous United States (CONUS). A concept which is anticipated to become operational as of May 2016 within the NWC. The processing of such a large-scale, fine resolution model is accomplished in a parallel computing environment using large supercomputing clusters. Traditionally, flood damage and economic consequence assessment is calculated in a desktop computing environment with a ménage of meteorology, hydrology, hydraulic, and damage assessment tools. In the United States, there are a range of these flood damage/ economic consequence assessment software's available to local, state, and federal emergency management agencies. Among the more commonly used and freely accessible models are the Hydrologic Engineering Center's Flood Damage Reduction Analysis (HEC-FDA), Flood Impact Assessment (HEC-FIA), and Federal Emergency Management Agency's (FEMA's) United States Multi-Hazard (Hazus-MH). All of which exist only in a desktop environment. With this, authors submit an initial framework for estimating damage and economic consequences to floods using flow and inundation products from the NFIE framework. This adaptive system utilizes existing nationwide datasets describing location and use of structures and can take assimilate a range of data resolutions.

  14. Spatial Information in Support of 3D Flood Damage Assessment of Buildings at Micro Level: A Review

    NASA Astrophysics Data System (ADS)

    Amirebrahimi, S.; Rajabifard, A.; Sabri, S.; Mendis, P.

    2016-10-01

    Floods, as the most common and costliest natural disaster around the globe, have adverse impacts on buildings which are considered as major contributors to the overall economic damage. With emphasis on risk management methods for reducing the risks to structures and people, estimating damage from potential flood events becomes an important task for identifying and implementing the optimal flood risk-reduction solutions. While traditional Flood Damage Assessment (FDA) methods focus on simple representation of buildings for large-scale damage assessment purposes, recent emphasis on buildings' flood resilience resulted in development of a sophisticated method that allows for a detailed and effective damage evaluation at the scale of building and its components. In pursuit of finding the suitable spatial information model to satisfy the needs of implementing such frameworks, this article explores the technical developments for an effective representation of buildings, floods and other required information within the built environment. The search begins with the Geospatial domain and investigates the state-of-the-art and relevant developments from data point of view in this area. It is further extended to other relevant disciplines in the Architecture, Engineering and Construction domain (AEC/FM) and finally, even some overlapping areas between these domains are considered and explored.

  15. Estimation of flood environmental effects using flood zone mapping techniques in Halilrood Kerman, Iran.

    PubMed

    Boudaghpour, Siamak; Bagheri, Majid; Bagheri, Zahra

    2014-01-01

    High flood occurrences with large environmental damages have a growing trend in Iran. Dynamic movements of water during a flood cause different environmental damages in geographical areas with different characteristics such as topographic conditions. In general, environmental effects and damages caused by a flood in an area can be investigated from different points of view. The current essay is aiming at detecting environmental effects of flood occurrences in Halilrood catchment area of Kerman province in Iran using flood zone mapping techniques. The intended flood zone map was introduced in four steps. Steps 1 to 3 pave the way to calculate and estimate flood zone map in the understudy area while step 4 determines the estimation of environmental effects of flood occurrence. Based on our studies, wide range of accuracy for estimating the environmental effects of flood occurrence was introduced by using of flood zone mapping techniques. Moreover, it was identified that the existence of Jiroft dam in the study area can decrease flood zone from 260 hectares to 225 hectares and also it can decrease 20% of flood peak intensity. As a result, 14% of flood zone in the study area can be saved environmentally.

  16. Floods of May and June 2004 in Central and Eastern Ohio: FEMA Disaster Declaration 1519

    USGS Publications Warehouse

    Ebner, Andrew D.; Straub, David E.; Lageman, Jonathan D.

    2008-01-01

    Several severe thunderstorms that passed through Ohio between May 17 and June 17, 2004, produced large amounts of rain in an already wet central and eastern Ohio, resulting in flooding in this region from May 18 to June 21, 2004. Record peak streamflow occurred at three U.S. Geological Survey (USGS) streamgages. Damages caused by the flooding resulting from these storms were severe enough that 25 counties in central and eastern Ohio were declared Federal disaster areas. In all, there were two storm- or flood-related deaths, 3,529 private structures damaged or destroyed, and an estimated $43 million in damages. This report describes the meteorological factors that resulted in severe flooding in central and eastern Ohio between May 18 and June 21, 2004, and addresses the damages caused by the storms and flooding. Peak-stage, peak-streamflow, and recurrence-interval data are reported for selected USGS streamgages. Flood profiles determined by the USGS are presented for selected streams.

  17. Strategically placing green infrastructure: cost-effective land conservation in the floodplain.

    PubMed

    Kousky, Carolyn; Olmstead, Sheila M; Walls, Margaret A; Macauley, Molly

    2013-04-16

    Green infrastructure approaches have attracted increased attention from local governments as a way to lower flood risk and provide an array of other environmental services. The peer-reviewed literature, however, offers few estimates of the economic impacts of such approaches at the watershed scale. We estimate the avoided flood damages and the costs of preventing development of floodplain parcels in the East River Watershed of Wisconsin's Lower Fox River Basin. Results suggest that the costs of preventing conversion of all projected floodplain development would exceed the flood damage mitigation benefits by a substantial margin. However, targeting of investments to high-benefit, low-cost parcels can reverse this equation, generating net benefits. The analysis demonstrates how any flood-prone community can use a geographic-information-based model to estimate the flood damage reduction benefits of green infrastructure, compare them to the costs, and target investments to design cost-effective nonstructural flood damage mitigation policies.

  18. High Resolution, Consistent Online Estimation of Potential Flood Damage in The Netherlands

    NASA Astrophysics Data System (ADS)

    Hoes, O.; Hut, R.; van Leeuwen, E.

    2014-12-01

    In the current age where water authorities no longer blindly design and maintain all infrastructure just to meet a certain standardized return period, accurate estimation of potential flood damage is important in decision making with regards to flood prevention measures. We identify three issues with current methods of estimating flood damages. Firstly, common practice is to assume that for a given land use type, damage is mainly dependent on inundation depth, and sometimes flow velocity. We recognize that depending on the type of land use inundation depth, velocity, flood duration, season, detour time and recovery time influences the amount of damage significantly. Secondly, setting stage-damage curves is usually left to an end user and can thus vary between different water authorities within a single country. What was needed at a national level is a common way of calculating flood damages, so different prevention measures can be fairly compared. Finally, most flood models use relatively large grid cells, usually in the order of 25 m2 or coarser. Especially in urban areas this leads to obvious errors: different land uses (shops, housing, park, are all classified as "urban" and treated equally. To tackle these issues we developed a web-based model which can be accessed via www.waterschadeschatter.nl (water schade schatter is Dutch for water damage estimator). It includes all necessary data sources to calculate the damage of any potential flood in the Netherlands. It uses different damage functions for different land use types, which the user can, but need not change. It runs on 0.25m2 grid cells. Both the datasets required and the amount of calculation needed is more than a desktop computer can handle. In order to start a calculation a user needs to upload the relevant flood information to the website. The calculation is divided over several multicore servers, after which the user will receive an email with a link to the results of his calculations. Our presentation will include a life demonstration of our online model.

  19. Summary of floods in the United States during 1960

    USGS Publications Warehouse

    Rostvedt, J.O.

    1965-01-01

    This report describes the most outstanding floods in the United States during 1960. No major floods occurred during the year, although two floods caused severe damage the first in March and April in eastern Nebraska and adjacent areas, and the second in September in Puerto Rico.Unseasonal rains in mid-March caused extensive flooding in north-central Florida. Several thousand persons were evacuated from their homes, and damage to homes, roads, and crops was extensive.The most widespread flooding ever known in Nebraska occurred late in March and early in April as a result of rapid melting of a heavy snow cover. Most of the flood damage, estimated at about $3 million, was to roads and bridges. The flood area extended into South Dakota, Iowa, Kansas, Missouri, and Wisconsin.Snowmelt in April supplemented by rains and later heavy rains in early May caused severe flooding in northern Wisconsin and in Michigan Upper Peninsula.The most destructive flood of the year was in eastern Puerto Rico as the result of hurricane Donna. More than one hundred persons died, and considerably more than one hundred persons were injured; property damage was f.bout $7 million. Hurricane Donna also caused severe flooding as it passed over Florida and along the Atlantic coastline.In addition to these floods mentioned, 31 others of lesser magnitude were significant enough to report in this annual summary.

  20. Tree-based flood damage modeling of companies: Damage processes and model performance

    NASA Astrophysics Data System (ADS)

    Sieg, Tobias; Vogel, Kristin; Merz, Bruno; Kreibich, Heidi

    2017-07-01

    Reliable flood risk analyses, including the estimation of damage, are an important prerequisite for efficient risk management. However, not much is known about flood damage processes affecting companies. Thus, we conduct a flood damage assessment of companies in Germany with regard to two aspects. First, we identify relevant damage-influencing variables. Second, we assess the prediction performance of the developed damage models with respect to the gain by using an increasing amount of training data and a sector-specific evaluation of the data. Random forests are trained with data from two postevent surveys after flood events occurring in the years 2002 and 2013. For a sector-specific consideration, the data set is split into four subsets corresponding to the manufacturing, commercial, financial, and service sectors. Further, separate models are derived for three different company assets: buildings, equipment, and goods and stock. Calculated variable importance values reveal different variable sets relevant for the damage estimation, indicating significant differences in the damage process for various company sectors and assets. With an increasing number of data used to build the models, prediction errors decrease. Yet the effect is rather small and seems to saturate for a data set size of several hundred observations. In contrast, the prediction improvement achieved by a sector-specific consideration is more distinct, especially for damage to equipment and goods and stock. Consequently, sector-specific data acquisition and a consideration of sector-specific company characteristics in future flood damage assessments is expected to improve the model performance more than a mere increase in data.

  1. A Study on Active Disaster Management System for Standardized Emergency Action Plan using BIM and Flood Damage Estimation Techniques

    NASA Astrophysics Data System (ADS)

    Jeong, C.; Om, J.; Hwang, J.; Joo, K.; Heo, J.

    2013-12-01

    In recent, the frequency of extreme flood has been increasing due to climate change and global warming. Highly flood damages are mainly caused by the collapse of flood control structures such as dam and dike. In order to reduce these disasters, the disaster management system (DMS) through flood forecasting, inundation mapping, EAP (Emergency Action Plan) has been studied. The estimation of inundation damage and practical EAP are especially crucial to the DMS. However, it is difficult to predict inundation and take a proper action through DMS in real emergency situation because several techniques for inundation damage estimation are not integrated and EAP is supplied in the form of a document in Korea. In this study, the integrated simulation system including rainfall frequency analysis, rainfall-runoff modeling, inundation prediction, surface runoff analysis, and inland flood analysis was developed. Using this system coupled with standard GIS data, inundation damage can be estimated comprehensively and automatically. The standard EAP based on BIM (Building Information Modeling) was also established in this system. It is, therefore, expected that the inundation damages through this study over the entire area including buildings can be predicted and managed.

  2. Using insurance data to learn more about damages to buildings caused by surface runoff

    NASA Astrophysics Data System (ADS)

    Bernet, Daniel; Roethlisberger, Veronika; Prasuhn, Volker; Weingartner, Rolf

    2015-04-01

    In Switzerland, almost forty percent of total insurance loss due to natural hazards in the last two decades was caused by flooding. Those flood damages occurred not only within known inundation zones of water courses. Practitioners expect that roughly half of all flood damages lie outside of known inundation zones. In urban areas such damages may simply be caused by drainage system overload for instance. However, as several case studies show, natural and agricultural land play a major role in surface runoff formation leading to damages in rural and peri-urban areas. Although many damages are caused by surface runoff, the whole process chain including surface runoff formation, propagation through the landscape and damages to buildings is not well understood. Therefore, within the framework of a project, we focus our research on this relevant process. As such flash flood events have a very short response time and occur rather diffusely in the landscape, this process is very difficult to observe directly. Therefore indirect data sources with the potential to indicate spatial and temporal distributions of the process have to be used. For that matter, post-flood damage data may be a profitable source. Namely, insurance companies' damage claim records could provide a good picture about the spatial and temporal distributions of damages caused by surface runoff and, thus, about the process itself. In our research we analyze insurance data records of flood damage claims systematically to infer main drivers and influencing factors of surface runoff causing damages to buildings. To demonstrate the potential and drawbacks of using data from insurance companies in relation to damages caused by surface runoff, a case study is presented. A well-documented event with data from a public as well as a private insurance company is selected. The case study focuses on the differences of the datasets as well as the associated problems and advantages respectively. Furthermore, the analysis of the data, especially the crucial identification of damages caused by surface runoff opposed to damages caused by other processes such as riverine flooding, drainage system surcharges etc. are discussed.

  3. Cross-country transferability of multi-variable damage models

    NASA Astrophysics Data System (ADS)

    Wagenaar, Dennis; Lüdtke, Stefan; Kreibich, Heidi; Bouwer, Laurens

    2017-04-01

    Flood damage assessment is often done with simple damage curves based only on flood water depth. Additionally, damage models are often transferred in space and time, e.g. from region to region or from one flood event to another. Validation has shown that depth-damage curve estimates are associated with high uncertainties, particularly when applied in regions outside the area where the data for curve development was collected. Recently, progress has been made with multi-variable damage models created with data-mining techniques, i.e. Bayesian Networks and random forest. However, it is still unknown to what extent and under which conditions model transfers are possible and reliable. Model validations in different countries will provide valuable insights into the transferability of multi-variable damage models. In this study we compare multi-variable models developed on basis of flood damage datasets from Germany as well as from The Netherlands. Data from several German floods was collected using computer aided telephone interviews. Data from the 1993 Meuse flood in the Netherlands is available, based on compensations paid by the government. The Bayesian network and random forest based models are applied and validated in both countries on basis of the individual datasets. A major challenge was the harmonization of the variables between both datasets due to factors like differences in variable definitions, and regional and temporal differences in flood hazard and exposure characteristics. Results of model validations and comparisons in both countries are discussed, particularly in respect to encountered challenges and possible solutions for an improvement of model transferability.

  4. Multidisciplinary approach to evaluate flood damage for residential buildings: first results in Northern Italy

    NASA Astrophysics Data System (ADS)

    Luino, Fabio

    2015-04-01

    Flooding is the most common natural instability process in Italy. Flood damage are the results of land-use planning policies which, starting chiefly from the late 1950s and early 1960s, did not take into account the geomorphologic-hydraulic characteristics of an area or the its historical data on past flood events. Historically, compared to other areas, riverside property has always been less valuable. Unfortunately, year after year, even areas of high recreational and environmental value were intensely urbanized despite their being exposed to the threat of flooding. As the number of residential dwellings, infrastructure and industrial buildings increased, what was originally a hazard became a risk. For each flood event, the damage depends on the specific land-use of the area and subsequently on the elements at risk in the area involved and its vulnerability, expressed as a percentage of the element that has actually been lost during the event. This is why a comprehensive knowledge of the area it is so important for conducting a detailed survey of an area's structures and infrastructure and to evaluate the degree of vulnerability. This paper presents first results in Italy of the European Project called DAMAGE, the first attempt by the civil protection agencies of several European Union member states to devise a common methodology for the assessment of damage caused by natural or anthropic disasters. The main objective was to create an initial tool for practical and immediate application by civil protection agencies and local governments, to assess damage in a multidimensional perspective that takes into account infrastructure, the economy, the environment and social problems. Within the framework of a broad-based project for the evaluation and collection of reports on damage caused by floods, the CNR-IRPI of Turin and Regione Lombardia have directed attention to the town of Cittiglio (province of Varese), which was struck by severe flash flood in May 2002. One of the aims was to provide public administrations a management tool to help them use damage information. For this purpose a GIS-based model was created that can simulate flood events and evaluate potential direct economic loss due to a catastrophe based on thorough land knowledge coupled with the description of various physical elements of the natural event. The multidisciplinary method can be summarized in the following steps: 1) Event description: definition of flood parameters (flooded area and water level). This definition is possible because of real-time measurements or event simulation through a hydraulic model; 2) Identifying the affected assets in the flooded area; 3) Evaluation of the degree of damage to the exposed elements as a function of event magnitude identified from the measurement of floodwater depths of an event; 4) Attribution of an economic value to exposed assets. Quantification of economic loss by multiplying the economic value of damaged assets and the degree of damage. The methodology can be used to estimate the damage from the impact of floodwater on exposed elements (direct damage) and to quantify the resulting economic loss (tangible damage).

  5. Flood Risk and Probabilistic Benefit Assessment to Support Management of Flood-Prone Lands: Evidence From Candaba Floodplains, Philippines

    NASA Astrophysics Data System (ADS)

    Juarez, A. M.; Kibler, K. M.; Sayama, T.; Ohara, M.

    2016-12-01

    Flood management decision-making is often supported by risk assessment, which may overlook the role of coping capacity and the potential benefits derived from direct use of flood-prone land. Alternatively, risk-benefit analysis can support floodplain management to yield maximum socio-ecological benefits for the minimum flood risk. We evaluate flood risk-probabilistic benefit tradeoffs of livelihood practices compatible with direct human use of flood-prone land (agriculture/wild fisheries) and nature conservation (wild fisheries only) in Candaba, Philippines. Located north-west to Metro Manila, Candaba area is a multi-functional landscape that provides a temporally-variable mix of possible land uses, benefits and ecosystem services of local and regional value. To characterize inundation from 1.3- to 100-year recurrence intervals we couple frequency analysis with rainfall-runoff-inundation modelling and remotely-sensed data. By combining simulated probabilistic floods with both damage and benefit functions (e.g. fish capture and rice yield with flood intensity) we estimate potential damages and benefits over varying probabilistic flood hazards. We find that although direct human uses of flood-prone land are associated with damages, for all the investigated magnitudes of flood events with different frequencies, the probabilistic benefits ( 91 million) exceed risks by a large margin ( 33 million). Even considering risk, probabilistic livelihood benefits of direct human uses far exceed benefits provided by scenarios that exclude direct "risky" human uses (difference of 85 million). In addition, we find that individual coping strategies, such as adapting crop planting periods to the flood pulse or fishing rather than cultivating rice in the wet season, minimize flood losses ( 6 million) while allowing for valuable livelihood benefits ($ 125 million) in flood-prone land. Analysis of societal benefits and local capacities to cope with regular floods demonstrate the relevance of accounting for the full range of flood events and their relation to both potential damages and benefits in risk assessments. Management measures may thus be designed to reflect local contexts and support benefits of natural hydrologic processes, while minimizing flood damage.

  6. Development of evaluation metod of flood risk in Tokyo metropolitan area

    NASA Astrophysics Data System (ADS)

    Hirano, J.; Dairaku, K.

    2012-12-01

    Flood is one of the most significant natural hazards in Japan. In particular, the Tokyo metropolitan area has been affected by several large flood disasters. Investigating potential flood risk in Tokyo metropolitan area is important for development of climate change adaptation strategy. We aim to develop a method for evaluating flood risk in Tokyo Metropolitan area by considering effect of historical land use and land cover change, socio-economic change, and climatic change. Ministry of land, infrastructure, transport and tourism in Japan published "Statistics of flood", which contains data for flood causes, number of damaged houses, area of wetted surface, and total amount of damage for each flood at small municipal level. Based on these flood data, we constructed a flood database system for Tokyo metropolitan area for the period from 1961 to 2008 by using ArcGIS software.Based on these flood data , we created flood risk curve, representing the relation ship between damage and exceedbability of flood for the period 1976-2008. Based on the flood risk cruve, we aim to evaluate potential flood risk in the Tokyo metropolitan area and clarify the cause of regional difference in flood risk at Tokyo metropolitan area by considering effect of socio-economic change and climate change

  7. Damage-reducing measures to manage flood risks in a changing climate

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Bubeck, Philip; Van Vliet, Mathijs; De Moel, Hans

    2014-05-01

    Damage due to floods has increased during the last few decades, and further increases are expected in several regions due to climate change and a growing vulnerability. To address the projected increase in flood risk, a combination of structural and non-structural flood risk mitigation measures is considered as a promising adaptation strategy. Such a combination takes into account that flood defence systems may fail, and prepare for unexpected crisis situations via land-use planning, building construction, evacuation and disaster response. Non-structural flood risk mitigation measures like shielding with water shutters or sand bags, building fortification or safeguarding of hazardous substances are often voluntary: they demand self-dependent action by the population at risk (Bubeck et al. 2012; 2013). It is believed that these measures are especially effective in areas with frequent flood events and low flood water levels, but some types of measures showed a significant damage-reducing effect also during extreme flood events, such as the Elbe River flood in August 2002 in Germany (Kreibich et al. 2005; 2011). Despite the growing importance of damage-reducing measures, information is still scarce about factors that motivate people to undertake such measures, the state of implementation of various non-structural measures in different countries and their damage reducing effects. Thus, we collected information and undertook an international review about this topic in the framework of the Dutch KfC project "Climate proof flood risk management". The contribution will present an overview about the available information on damage-reducing measures and draw conclusions for practical flood risk management in a changing climate. References: Bubeck, P., Botzen, W. J. W., Suu, L. T. T., Aerts, J. C. J. H. (2012): Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam. Journal of Flood Risk Management, 5, 4, 295-302 Bubeck, P., Botzen, W. J. W., Kreibich, H., Aerts, J. C. J. H. (2013) Detailed insights into the influence of flood-coping appraisals on mitigation behaviour. Global Environmental Change. DOI:10.1016/j.gloenvcha.2013.05.009. Kreibich, H., Thieken, A. H., Petrow, T., Müller, M., Merz, B. (2005): Flood loss reduction of private households due to building precautionary measures - Lessons Learned from the Elbe flood in August 2002. NHESS, 5, 1, 117-126. Kreibich, H., Christenberger, S., Schwarze, R. (2011) Economic motivation of households to undertake private precautionary measures against floods. NHESS, 11, 2, 309-321.

  8. Flood Damage and Loss Estimation for Iowa on Web-based Systems using HAZUS

    NASA Astrophysics Data System (ADS)

    Yildirim, E.; Sermet, M. Y.; Demir, I.

    2016-12-01

    Importance of decision support systems for flood emergency response and loss estimation increases with its social and economic impacts. To estimate the damage of the flood, there are several software systems available to researchers and decision makers. HAZUS-MH is one of the most widely used desktop program, developed by FEMA (Federal Emergency Management Agency), to estimate economic loss and social impacts of disasters such as earthquake, hurricane and flooding (riverine and coastal). HAZUS used loss estimation methodology and implements through geographic information system (GIS). HAZUS contains structural, demographic, and vehicle information across United States. Thus, it allows decision makers to understand and predict possible casualties and damage of the floods by running flood simulations through GIS application. However, it doesn't represent real time conditions because of using static data. To close this gap, an overview of a web-based infrastructure coupling HAZUS and real time data provided by IFIS (Iowa Flood Information System) is presented by this research. IFIS is developed by the Iowa Flood Center, and a one-stop web-platform to access community-based flood conditions, forecasts, visualizations, inundation maps and flood-related data, information, and applications. Large volume of real-time observational data from a variety of sensors and remote sensing resources (radars, rain gauges, stream sensors, etc.) and flood inundation models are staged on a user-friendly maps environment that is accessible to the general public. Providing cross sectional analyses between HAZUS-MH and IFIS datasets, emergency managers are able to evaluate flood damage during flood events easier and more accessible in real time conditions. With matching data from HAZUS-MH census tract layer and IFC gauges, economical effects of flooding can be observed and evaluated by decision makers. The system will also provide visualization of the data by using augmented reality for see-through displays. Emergency management experts can take advantage of this visualization mode to manage flood response activities in real time. Also, forecast system developed by the Iowa Flood Center will be used to predict probable damage of the flood.

  9. Flood frequencies and durations and their response to El Niño Southern Oscillation: Global analysis

    NASA Astrophysics Data System (ADS)

    Ward, P. J.; Kummu, M.; Lall, U.

    2016-08-01

    Floods are one of the most serious forms of natural hazards in terms of the damages they cause. In 2012 alone, flood damages exceeded 19 billion. A large proportion of the damages from several recent major flood disasters, such as those in South India and South Carolina (2015), England and Wales (2014), the Mississippi (2012), Thailand (2011), Queensland (Australia) (2010-2011), and Pakistan (2010), were related to the long duration of those flood events. However, most flood risk studies to date do not account for flood duration. In this paper, we provide the first global modelling exercise to assess the link between interannual climate variability and flood duration and frequency. Specifically, we examine relationships between simulated flood events and El Niño Southern Oscillation (ENSO). Our results show that the duration of flooding appears to be more sensitive to ENSO than is the case for flood frequency. At the globally aggregated scale, we found floods to be significantly longer during both El Niño and La Niña years, compared to neutral years. At the scale of individual river basins, we found strong correlations between ENSO and both flood frequency and duration for a large number of basins, with generally stronger correlations for flood duration than for flood frequency. Future research on flood impacts should attempt to incorporate more information on flood durations.

  10. Effects of changes along the risk chain on flood risk

    NASA Astrophysics Data System (ADS)

    Duha Metin, Ayse; Apel, Heiko; Viet Dung, Nguyen; Guse, Björn; Kreibich, Heidi; Schröter, Kai; Vorogushyn, Sergiy; Merz, Bruno

    2017-04-01

    Interactions of hydrological and socio-economic factors shape flood disaster risk. For this reason, assessment of flood risk ideally takes into account the whole flood risk chain from atmospheric processes, through the catchment and river system processes to the damage mechanisms in the affected areas. Since very different processes at various scales are interacting along the flood risk, the impact of the single components is rather unclear. However for flood risk management, it is required to know the controlling factor of flood damages. The present study, using the flood-prone Mulde catchment in Germany, discusses the sensitivity of flood risk to disturbances along the risk chain: How do disturbances propagate through the risk chain? How do different disturbances combine or conflict and affect flood risk? In this sensitivity analysis, the five components of the flood risk change are included. These are climate, catchment, river system, exposure and vulnerability. A model framework representing the complete risk chain is combined with observational data to understand how the sensitivities evolve along the risk chain by considering three plausible change scenarios for each of five components. The flood risk is calculated by using the Regional Flood Model (RFM) which is based on a continuous simulation approach, including rainfall-runoff, 1D river network, 2D hinterland inundation and damage estimation models. The sensitivity analysis covers more than 240 scenarios with different combinations of the five components. It is investigated how changes in different components affect risk indicators, such as the risk curve and expected annual damage (EAD). In conclusion, it seems that changes in exposure and vulnerability seem to outweigh changes in hazard.

  11. Floods of 1952 in California. Flood of January 1952 in the south San Francisco Bay region; Snowmelt flood of 1952 in Kern River, Tulare Lake, and San Joaquin River basins

    USGS Publications Warehouse

    Rantz, S.E.; Stafford, H.M.

    1956-01-01

    Two major floods occurred in California in 1952. The first was the flood of January 11-13 in the south San Francisco Bay region that resulted from heavy rains which began on the morning of January 11 and ended about noon January 13. This flood was notable for the magnitude of the peak discharges, although these discharges were reduced by the controlling effect of reservoirs for conservation and flood-control purposes. The flood damage was thereby reduced, and no lives were lost; damage, nevertheless, amounted to about $1.400.000. The second flood was due, not to the immediate runoff of heavy rain, but to the melting of one of the largest snow packs ever recorded in the Sierra Nevada range. In the spring and summer of 1952, flood runoff occurred on all the major streams draining the Sierra Nevada. In the northern half of the Central Valley basin?the Sacramento River basin?flood volumes and maximum daily discharges were not exceptional. and flood damage was not appreciable. However, in the southern half, which is formed by the Kern River, Tulare Lake, and San Joaquin River basins, new records for snowmelt runoff were established for some streams; but for below-normal temperatures and shorter, less warm hot spells, record flood discharges would have occurred on many others. In the three basins an area of 200,000 acres. largely cropland. was inundated, and damage was estimated at $11,800,000.

  12. 33 CFR 203.41 - General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.41... constructed hurricane/shore protection projects. (b) Implementation of authority. The Rehabilitation and... projects damaged by floods and coastal storm events. The RIP consists of a process to inspect flood control...

  13. 33 CFR 203.41 - General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.41... constructed hurricane/shore protection projects. (b) Implementation of authority. The Rehabilitation and... projects damaged by floods and coastal storm events. The RIP consists of a process to inspect flood control...

  14. 33 CFR 203.41 - General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.41... constructed hurricane/shore protection projects. (b) Implementation of authority. The Rehabilitation and... projects damaged by floods and coastal storm events. The RIP consists of a process to inspect flood control...

  15. 33 CFR 203.41 - General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.41... constructed hurricane/shore protection projects. (b) Implementation of authority. The Rehabilitation and... projects damaged by floods and coastal storm events. The RIP consists of a process to inspect flood control...

  16. 33 CFR 203.41 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.41... constructed hurricane/shore protection projects. (b) Implementation of authority. The Rehabilitation and... projects damaged by floods and coastal storm events. The RIP consists of a process to inspect flood control...

  17. Floods of December 2004 and January 2005 in Ohio: FEMA Disaster Declaration 1580

    USGS Publications Warehouse

    Ebner, Andrew D.; Straub, David E.; Lageman, Jonathan D.

    2008-01-01

    A large snowstorm at the end of December 2004 that left more than 20 inches of snow in some areas of Ohio, followed by unseasonably warm temperatures in early January 2005, caused snowmelt to begin filling river channels. Widespread rain showers during January 2005 combined with this snowmelt to cause flooding throughout Ohio and mudslides in some areas. Record peak streamflows occurred at nine U.S. Geological Survey (USGS) streamgages. Damages caused by the snowstorms, flooding, and mudslides were severe enough for 62 counties in Ohio to be declared Federal disaster areas. In all, approximately 3,664 private structures were damaged or destroyed, and an estimated $238 million in damages occurred. This report describes the meteorological factors that resulted in severe flooding throughout Ohio between December 22, 2004, and February 1, 2005, and examines the damages caused by the storms and flooding. Peak-stage, peak-streamflow, and recurrence-interval data are reported for selected USGS streamgages. Flood profiles determined by the USGS are presented for selected streams.

  18. Estimation of Damage Costs Associated with Flood Events

    NASA Astrophysics Data System (ADS)

    Andrews, T. A.; Wauthier, C.; Zipp, K.

    2017-12-01

    This study investigates the possibility of creating a mathematical function that enables the estimation of flood-damage costs. We begin by examining the costs associated with past flood events in the United States. The data on these tropical storms and hurricanes are provided by the National Oceanic and Atmospheric Administration. With the location, extent of flooding, and damage reparation costs identified, we analyze variables such as: number of inches rained, land elevation, type of landscape, region development in regards to building density and infrastructure, and population concentration. We seek to identify the leading drivers of high flood-damage costs and understand which variables play a large role in the costliness of these weather events. Upon completion of our mathematical analysis, we turn out attention to the 2017 natural disaster of Texas. We divide the region, as we did above, by land elevation, type of landscape, region development in regards to building density and infrastructure, and population concentration. Then, we overlay the number of inches rained in those regions onto the divided landscape and apply our function. We hope to use these findings to estimate the potential flood-damage costs of Hurricane Harvey. This information is then transformed into a hazard map that could provide citizens and businesses of flood-stricken zones additional resources for their insurance selection process.

  19. Improving Flood Damage Assessment Models in Italy

    NASA Astrophysics Data System (ADS)

    Amadio, M.; Mysiak, J.; Carrera, L.; Koks, E.

    2015-12-01

    The use of Stage-Damage Curve (SDC) models is prevalent in ex-ante assessments of flood risk. To assess the potential damage of a flood event, SDCs describe a relation between water depth and the associated potential economic damage over land use. This relation is normally developed and calibrated through site-specific analysis based on ex-post damage observations. In some cases (e.g. Italy) SDCs are transferred from other countries, undermining the accuracy and reliability of simulation results. Against this background, we developed a refined SDC model for Northern Italy, underpinned by damage compensation records from a recent flood event. Our analysis considers both damage to physical assets and production losses from business interruptions. While the first is calculated based on land use information, production losses are measured through the spatial distribution of Gross Value Added (GVA). An additional component of the model assesses crop-specific agricultural losses as a function of flood seasonality. Our results show an overestimation of asset damage from non-calibrated SDC values up to a factor of 4.5 for tested land use categories. Furthermore, we estimate that production losses amount to around 6 per cent of the annual GVA. Also, maximum yield losses are less than a half of the amount predicted by the standard SDC methods.

  20. Summary of floods in the United States during 1969

    USGS Publications Warehouse

    Reid, J.K.

    1975-01-01

    The most outstanding floods in the United States during 1969 are described in chronological order. The areas most seriously affected by flooding were: Central and southern California (January and February); the upper Midwestern States of North Dakota, South Dakota, Minnesota, Iowa, Wisconsin, and Illinois (April); north-central Ohio (July); Mississippi, Alabama, and Virginia (Hurricane Camille in August); and Florida and Georgia (September). Severe floods in central and southern California were caused by three storms during January and February. At least 60 lives were lost. Homes and property were destroyed or damaged, by rainstorms, floods, and mudflows. Many floods approached or exceeded the maximum known. The severe flood damage was due partly to recent home construction in floodprone areas. The April floods in the upper Midwestern States of North Dakota, South Dakota, Minnesota, Iowa, Wisconsin, and Illinois were expected because of a large accumulation of snow containing as much as 8 inches of water. Flood-protection procedures, together with cool temperatures, had a mitigating effect on the flood. The floods were the largest since the late 1800's, and their recurrence intervals exceeded 50 years at many of the gaged sites. Estimates of flood damage were about $147 million. More than a million acres of rich agricultural land were inundated, thousands of culverts and bridges were washed out, 23,000 people were forced from their homes and 11 lives were lost in the six-State flood area. Intense rainstorms and wind with gusts as much as 100 miles per hour, July 4-5, caused record floods in north-central Ohio, July 4-8. The storm and floods left trees uprooted, more than $66 million in damage, and 41 deaths. In many places the floods were the largest of record. Together with the wind and rainstorm, the hydrologic conditions were among the most significant experienced in the area. Hurricane Camille was the most intense hurricane on record to enter the United States mainland. It struck the Mississippi-Alabama coast on August 18, with tidal waves as high as 25 feet above mean sea level and wind velocities more than 190 miles per hour. Tidal wave and flood damage was about $1.3 billion. In Mississippi the known dead totaled 139 and 76 other persons were missing. The hurricane intensity decreased as it moved inland until it merged with severe rainstorms over the Appalachian mountains. The intensified hurricane then caused record-breaking floods of streams in a 50-mile-wide area as it moved eastward from Sulphur Springs, W. Va., to Fredericksburg, Va. Total flood damage in Virginia exceeded $116 million. There were 113 known deaths, 102 injuries, and 39 people missing. A tropical storm that was nearly stationary over northwest Florida for about 48 hours, September 20-23 produced record rains and floods. Near Quincy, Fla., the total rainfall for the period exceeded 20 inches. On Little River near Quincy, the peak discharge was nearly twice the previous maximum of record and was three times that of a 50-year flood. Flood damage to agricultural lands, bridges, culverts, and roads was about $1.7 million.

  1. Human activity and damaging landslides and floods on Madeira Island

    NASA Astrophysics Data System (ADS)

    Baioni, D.

    2011-11-01

    Over the last few decades, the island of Madeira has become an important offshore tourism and business center, with rapid economic and demographic development that has caused changes to the landscape due to human activity. In Madeira's recent history, there has been an increase over time in the frequency of occurrence of damaging landslide and flood events. As a result, the costs of restoration work due to damage caused by landslide and flood events have become a larger and larger component of Madeira's annual budget. Landslides and floods in Madeira deserve particular attention because they represent the most serious hazard to human life, to property, and to the natural environment and its important heritage value. The work reported on in this paper involved the analysis of historical data regarding damaging landslide and flood events on Madeira (in particular from 1941 to 1991) together with data on geological characteristics, topographic features, and climate, and from field observations. This analysis showed that the main factor triggering the occurrence of damaging landslide and flood events is rainfall, but that the increase in the number of damaging events recorded on Madeira Island, especially in recent times, seems to be related mostly to human activity, specifically to economic development and population growth, rather than to natural factors.

  2. Record Flood-Producing Rainstorms of 17-18 July 1996 in the Chicago Metropolitan Area. Part III: Impacts and Responses to the Flash Flooding.

    NASA Astrophysics Data System (ADS)

    Changnon, Stanley A.

    1999-03-01

    A record-breaking 24-h rainstorm on 17-18 July 1996 was centered on south Chicago and its southern and western suburbs, areas with a population of 3.4 million. The resulting flash flooding in Chicago and 21 suburbs broke all-time records in the region and brought the Illinois and Mississippi Rivers above flood stage. More than 4300 persons were evacuated from the flooded zones and 35000 homes experienced flood damage. Six persons were killed and the total estimated cost of the flood (losses and recovery actions) was 645 million, ranking as Illinois' second most costly weather disaster on record after the 1993 flood. Extensive damages and travel delays occurred on metropolitan transportation systems (highways and railroads). Commuters were unable to reach Chicago for up to three days and more than 300 freight trains were delayed or rerouted. Communities dealt with removal of flood-damaged materials, as well as damage to streets, bridges, and sewage treatment and water treatment plants. Reduced crop yields in adjacent rural areas represented a 67 million loss of farm income. Conflicts between communities developed over blame for the flooding due to inadequate storage capacity resulting in new regional flood planning. Federal and state aid ultimately reached 265 million, 41% of the storm costs. More than 85000 individuals received assistance, and 222 structures have been relocated under the federal Hazard Mitigation Grant Program at a cost of 19.6 million.

  3. Flood of September 18-19, 2004 in the Upper Delaware River Basin, New York

    USGS Publications Warehouse

    Brooks, Lloyd T.

    2005-01-01

    The interaction between the remnants of tropical depression Ivan and a frontal boundary in the upper Delaware River basin on September 18-19, 2004, produced 4 to more than 6 inches of rainfall over a 5-county area within a 24-hour period. Significant flooding occurred on the East Branch Delaware River and its tributaries, and the main stem of the Delaware River. The resultant flooding damaged more than 100 homes and displaced more than 1,000 people. All of the counties within the basin were declared Federal disaster areas, but flood damage in New York was most pronounced in Delaware, Orange, and Sullivan Counties. Flood damage totaled more than $10 million. Peak water-surface elevations at some study sites in the basin exceeded the 500-year flood elevation as documented in flood-insurance studies by the Federal Emergency Management Agency. Flood peaks at some long-term U.S. Geological Survey (USGS) streamflow-gaging stations were the highest ever recorded.

  4. A coupled weather generator - rainfall-runoff approach on hourly time steps for flood risk analysis

    NASA Astrophysics Data System (ADS)

    Winter, Benjamin; Schneeberger, Klaus; Dung Nguyen, Viet; Vorogushyn, Sergiy; Huttenlau, Matthias; Merz, Bruno; Stötter, Johann

    2017-04-01

    The evaluation of potential monetary damage of flooding is an essential part of flood risk management. One possibility to estimate the monetary risk is to analyze long time series of observed flood events and their corresponding damages. In reality, however, only few flood events are documented. This limitation can be overcome by the generation of a set of synthetic, physically and spatial plausible flood events and subsequently the estimation of the resulting monetary damages. In the present work, a set of synthetic flood events is generated by a continuous rainfall-runoff simulation in combination with a coupled weather generator and temporal disaggregation procedure for the study area of Vorarlberg (Austria). Most flood risk studies focus on daily time steps, however, the mesoscale alpine study area is characterized by short concentration times, leading to large differences between daily mean and daily maximum discharge. Accordingly, an hourly time step is needed for the simulations. The hourly metrological input for the rainfall-runoff model is generated in a two-step approach. A synthetic daily dataset is generated by a multivariate and multisite weather generator and subsequently disaggregated to hourly time steps with a k-Nearest-Neighbor model. Following the event generation procedure, the negative consequences of flooding are analyzed. The corresponding flood damage for each synthetic event is estimated by combining the synthetic discharge at representative points of the river network with a loss probability relation for each community in the study area. The loss probability relation is based on exposure and susceptibility analyses on a single object basis (residential buildings) for certain return periods. For these impact analyses official inundation maps of the study area are used. Finally, by analyzing the total event time series of damages, the expected annual damage or losses associated with a certain probability of occurrence can be estimated for the entire study area.

  5. Flood hazard and a rapidly growing capital in the floodplain: Social response on major 18th-century Danube floods in Pest (East-Budapest)

    NASA Astrophysics Data System (ADS)

    Kiss, Andrea

    2014-05-01

    Due to its floodplain location, Pest was especially prone to damages caused by great flood events. Before water regulation works, the greatest flood events, and the highest rate of destruction occurred during ice jam floods. Whereas in the first half of the 18th century Pest is restricted to the medieval downtown located on a higher terrain (Danube terrace), from the mid 18th century onwards the rapidly growing population established suburbs around the downtown in the lower-lying flood plain. Thus, while in the first half of the century floods were more dangerous for the harvest in the agricultural lands, in the second half of the century at the same place suburbs, urban areas with thousands of inhabitants were prone to the same danger. In the first half of the century at least three particularly large flood events, in 1712, 1732 and 1744, caused increasing problems in the close vicinity of the town (and its lands), the second half of the century - as part of a climatic anomaly (Maldá) famous of its weather extremes - was characterised by two extreme (in 1775 and 1799), at least two larger (1789 and 1795) and some more, medium-sized ice jam floods. While in terms of damaged houses the loss was only some dozens in the early part of the century, several hundreds of houses - actually, complete suburbs were erased by floods in 1775 and 1799. In the poster presentation a series of known damaging 18th-century floods, occurred at Pest, is presented, the short-term impacts (e.g. damages), and medium-, long-term administrative responses as well as related long-term landscape changes influenced by floods and flood protection are discussed. Another important aim of the poster is to present the main reasons why in the 18th century these great ice jam floods caused much greater damages (e.g. percentage of collapsed houses in suburbs) in Pest protected by dams than, for example, in the Buda suburbs with no dams, partly also located in high flood-risk areas, in the immediate vicinity of the Danube.

  6. Flood area and damage estimation in Zhejiang, China.

    PubMed

    Liu, Renyi; Liu, Nan

    2002-09-01

    A GIS-based method to estimate flood area and damage is presented in this paper, which is oriented to developing countries like China, where labor is readily available for GIS data collecting, and tools such as, HEC-GeoRAS might not be readily available. At present local authorities in developing countries are often not predisposed to pay for commercial GIS platforms. To calculate flood area, two cases, non-source flood and source flood, are distinguished and a seed-spread algorithm suitable for source-flooding is described. The flood damage estimation is calculated in raster format by overlaying the flood area range with thematic maps and relating this to other socioeconomic data. Several measures used to improve the geometric accuracy and computing efficiency are presented. The management issues related to the application of this method, including the cost-effectiveness of approximate method in practice and supplementing two technical lines (self-programming and adopting commercial GIS software) to each other, are also discussed. The applications show that this approach has practical significance to flood fighting and control in developing countries like China.

  7. Flood information for flood-plain planning

    USGS Publications Warehouse

    Bue, Conrad D.

    1967-01-01

    Floods are natural and normal phenomena. They are catastrophic simply because man occupies the flood plain, the highwater channel of a river. Man occupies flood plains because it is convenient and profitable to do so, but he must purchase his occupancy at a price-either sustain flood damage, or provide flood-control facilities. Although large sums of money have been, and are being, spent for flood control, flood damage continues to mount. However, neither complete flood control nor abandonment of the flood plain is practicable. Flood plains are a valuable resource and will continue to be occupied, but the nature and degree of occupancy should be compatible with the risk involved and with the degree of protection that is practicable to provide. It is primarily to meet the needs for defining the risk that the flood-inundation maps of the U.S. Geological Survey are prepared.

  8. Civil protection and Damaging Hydrogeological Events: comparative analysis of the 2000 and 2015 events in Calabria (southern Italy)

    NASA Astrophysics Data System (ADS)

    Petrucci, Olga; Caloiero, Tommaso; Aurora Pasqua, Angela; Perrotta, Piero; Russo, Luigi; Tansi, Carlo

    2017-11-01

    Calabria (southern Italy) is a flood prone region, due to both its rough orography and fast hydrologic response of most watersheds. During the rainy season, intense rain affects the region, triggering floods and mass movements that cause economic damage and fatalities. This work presents a methodological approach to perform the comparative analysis of two events affecting the same area at a distance of 15 years, by collecting all the qualitative and quantitative features useful to describe both rain and damage. The aim is to understand if similar meteorological events affecting the same area can have different outcomes in terms of damage. The first event occurred between 8 and 10 September 2000, damaged 109 out of 409 municipalities of the region and killed 13 people in a campsite due to a flood. The second event, which occurred between 30 October and 1 November 2015, damaged 79 municipalities, and killed a man due to a flood. The comparative analysis highlights that, despite the exceptionality of triggering daily rain was higher in the 2015 event, the damage caused by the 2000 event to both infrastructures and belongings was higher, and it was strongly increased due to the 13 flood victims. We concluded that, in the 2015 event, the management of pre-event phases, with the issuing of meteorological alert, and the emergency management, with the preventive evacuation of people in hazardous situations due to landslides or floods, contributed to reduce the number of victims.

  9. Comparing flood loss models of different complexity

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Kreibich, Heidi; Vogel, Kristin; Riggelsen, Carsten; Scherbaum, Frank; Merz, Bruno

    2013-04-01

    Any deliberation on flood risk requires the consideration of potential flood losses. In particular, reliable flood loss models are needed to evaluate cost-effectiveness of mitigation measures, to assess vulnerability, for comparative risk analysis and financial appraisal during and after floods. In recent years, considerable improvements have been made both concerning the data basis and the methodological approaches used for the development of flood loss models. Despite of that, flood loss models remain an important source of uncertainty. Likewise the temporal and spatial transferability of flood loss models is still limited. This contribution investigates the predictive capability of different flood loss models in a split sample cross regional validation approach. For this purpose, flood loss models of different complexity, i.e. based on different numbers of explaining variables, are learned from a set of damage records that was obtained from a survey after the Elbe flood in 2002. The validation of model predictions is carried out for different flood events in the Elbe and Danube river basins in 2002, 2005 and 2006 for which damage records are available from surveys after the flood events. The models investigated are a stage-damage model, the rule based model FLEMOps+r as well as novel model approaches which are derived using data mining techniques of regression trees and Bayesian networks. The Bayesian network approach to flood loss modelling provides attractive additional information concerning the probability distribution of both model predictions and explaining variables.

  10. Flood loss modelling with FLF-IT: a new flood loss function for Italian residential structures

    NASA Astrophysics Data System (ADS)

    Hasanzadeh Nafari, Roozbeh; Amadio, Mattia; Ngo, Tuan; Mysiak, Jaroslav

    2017-07-01

    The damage triggered by different flood events costs the Italian economy millions of euros each year. This cost is likely to increase in the future due to climate variability and economic development. In order to avoid or reduce such significant financial losses, risk management requires tools which can provide a reliable estimate of potential flood impacts across the country. Flood loss functions are an internationally accepted method for estimating physical flood damage in urban areas. In this study, we derived a new flood loss function for Italian residential structures (FLF-IT), on the basis of empirical damage data collected from a recent flood event in the region of Emilia-Romagna. The function was developed based on a new Australian approach (FLFA), which represents the confidence limits that exist around the parameterized functional depth-damage relationship. After model calibration, the performance of the model was validated for the prediction of loss ratios and absolute damage values. It was also contrasted with an uncalibrated relative model with frequent usage in Europe. In this regard, a three-fold cross-validation procedure was carried out over the empirical sample to measure the range of uncertainty from the actual damage data. The predictive capability has also been studied for some sub-classes of water depth. The validation procedure shows that the newly derived function performs well (no bias and only 10 % mean absolute error), especially when the water depth is high. Results of these validation tests illustrate the importance of model calibration. The advantages of the FLF-IT model over other Italian models include calibration with empirical data, consideration of the epistemic uncertainty of data, and the ability to change parameters based on building practices across Italy.

  11. Evaluating the effectiveness of flood damage mitigation measures by the application of propensity score matching

    NASA Astrophysics Data System (ADS)

    Hudson, P.; Botzen, W. J. W.; Kreibich, H.; Bubeck, P.; Aerts, J. C. J. H.

    2014-07-01

    The employment of damage mitigation measures (DMMs) by individuals is an important component of integrated flood risk management. In order to promote efficient damage mitigation measures, accurate estimates of their damage mitigation potential are required. That is, for correctly assessing the damage mitigation measures' effectiveness from survey data, one needs to control for sources of bias. A biased estimate can occur if risk characteristics differ between individuals who have, or have not, implemented mitigation measures. This study removed this bias by applying an econometric evaluation technique called propensity score matching (PSM) to a survey of German households along three major rivers that were flooded in 2002, 2005, and 2006. The application of this method detected substantial overestimates of mitigation measures' effectiveness if bias is not controlled for, ranging from nearly EUR 1700 to 15 000 per measure. Bias-corrected effectiveness estimates of several mitigation measures show that these measures are still very effective since they prevent between EUR 6700 and 14 000 of flood damage per flood event. This study concludes with four main recommendations regarding how to better apply propensity score matching in future studies, and makes several policy recommendations.

  12. Economic valuation of flood mitigation services: A case study from the Otter Creek, VT.

    NASA Astrophysics Data System (ADS)

    Galford, G. L.; Ricketts, T.; Bryan, K. L.; ONeil-Dunne, J.; Polasky, S.

    2014-12-01

    The ecosystem services provided by wetlands are widely recognized but difficult to quantify. In particular, estimating the effect of landcover and land use on downstream flood outcomes remains challenging, but is increasingly important in light of climate change predictions of increased precipitation in many areas. Economic valuation can help incorporate ecosystem services into decisions and enable communities to plan for climate and flood resiliency. Here we estimate the economic value of Otter Creek wetlands for Middlebury, VT in mitigating the flood that followed Tropical Storm Irene, as well as for ten historic floods. Observationally, hydrographs above and below the wetlands in the case of each storm indicated the wetlands functioned as a temporary reservoir, slowing the delivery of water to Middlebury. We compare observed floods, based on Middlebury's hydrograph, with simulated floods for scenarios without wetlands. To simulate these "without wetlands" scenarios, we assume the same volume of water was delivered to Middlebury, but in a shorter time pulse similar to a hydrograph upstream of the wetlands. For scenarios with and without wetlands, we map the spatial extent of flooding using LiDAR digital elevation data. We then estimate flood depth at each affected building, and calculate monetary losses as a function of the flood depth and house value using established depth damage relationships. For example, we expect damages equal to 20% of the houses value for a flood depth of two feet in a two-story home with a basement. We define the value of flood mitigation services as the difference in damages between the with and without wetlands scenario, and find that the Otter Creek wetlands reduced flood damage in Middlebury by 88% following Hurricane Irene. Using the 10 additional historic floods, we estimate an ongoing mean value of $400,000 in avoided damages per year. Economic impacts of this magnitude stress the importance of wetland conservation and warrant the consideration of ecosystem services in land use decisions. Our study indicates that here and elsewhere, green infrastructure may have to potential to increase the resilience of communities to projected changes in climate.

  13. An analysis of European riverine flood risk and adaptation measures under projected climate change

    NASA Astrophysics Data System (ADS)

    Bouwer, Laurens; Burzel, Andreas; Holz, Friederike; Winsemius, Hessel; de Bruijn, Karind

    2015-04-01

    There is increasing need to assess costs and benefits of adaptation at scales beyond the river basin. In Europe, such estimates are required at the European scale in order to set priorities for action and financing, for instance in the context of the EU Adaptation Strategy. The goal of this work as part of the FP7 BASE project is to develop a flood impact model that can be applied at Pan-European scale and that is able to project changes in flood risk due to climate change and socio-economic developments, and costs of adaptation. For this research, we build upon the global flood hazard estimation method developed by Winsemius et al. (Hydrology and Earth System Sciences, 2013), that produces flood inundation maps at different return period, for present day (EU WATCH) and future climate (IPCC scenarios RCP4.5 and 8.5, for five climate models). These maps are used for the assessment of flood impacts. We developed and tested a model for assessing direct economic flood damages by using large scale land use maps. We characterise vulnerable land use functions, in particular residential, commercial, industrial, infrastructure and agriculture, using depth-damage relationships. Furthermore, we apply up to NUTS3 level information on Gross Domestic Product, which is used as a proxy for relative differences in maximum damage values between different areas. Next, we test two adaptation measures, by adjusting flood protection levels and adjusting damage functions. The results show the projected changes in flood risk in the future. For example, on NUTS2 level, flood risk increases in some regions up to 179% (between the baseline scenario 1960-1999 and time slice 2010-2049). On country level there are increases up to 60% for selected climate models. The conference presentation will show the most relevant improvements in damage modelling on the continental scale, and results of the analysis of adaptation measures. The results will be critically discussed under the aspect of major uncertainties in both future flood hazards as well as damage costs and adaptation effects and costs.

  14. Modeled changes in 100 year Flood Risk and Asset Damages within Mapped Floodplains of the Contiguous United States

    EPA Science Inventory

    A growing body of recent work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude with a warming climate. These changes are likely to increase flooding damages in the future. We use hydrologic projections from 2...

  15. Assessing flood damage to agriculture using color infrared aerial photography

    USGS Publications Warehouse

    Anderson, William H.

    1977-01-01

    The rationale for using color-infrared (CIR) film to assist in assessing flood damage to agriculture is demonstrated using examples prepared from photographs acquired of the 1975 flood in the Red River Valley of North Dakota and Minnesota. Information concerning flood inundation boundaries, crop damage, soil erosion, sedimentation, and other similar general features and conditions was obtained through the interpretation of CIR aerial photographs. CIR aerial photographs can be used to help improve the estimates of potential remaining production on a field by field basis, owing to the increased accuracy obtained in determining the area component of crop production as compared to conventional ground sketching methods.

  16. 24 CFR 203.378 - Property condition.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the Commissioner, the property shall be undamaged by fire, earthquake, flood, or tornado, except as... mortgagee shall be responsible for: (1) Damage by fire, flood, earthquake, hurricane, or tornado; (2) Damage...

  17. 24 CFR 203.378 - Property condition.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the Commissioner, the property shall be undamaged by fire, earthquake, flood, or tornado, except as... mortgagee shall be responsible for: (1) Damage by fire, flood, earthquake, hurricane, or tornado; (2) Damage...

  18. 24 CFR 203.378 - Property condition.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the Commissioner, the property shall be undamaged by fire, earthquake, flood, or tornado, except as... mortgagee shall be responsible for: (1) Damage by fire, flood, earthquake, hurricane, or tornado; (2) Damage...

  19. 24 CFR 203.378 - Property condition.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the Commissioner, the property shall be undamaged by fire, earthquake, flood, or tornado, except as... mortgagee shall be responsible for: (1) Damage by fire, flood, earthquake, hurricane, or tornado; (2) Damage...

  20. 24 CFR 203.378 - Property condition.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the Commissioner, the property shall be undamaged by fire, earthquake, flood, or tornado, except as... mortgagee shall be responsible for: (1) Damage by fire, flood, earthquake, hurricane, or tornado; (2) Damage...

  1. Flood Insurance in Canada: Implications for Flood Management and Residential Vulnerability to Flood Hazards

    NASA Astrophysics Data System (ADS)

    Oulahen, Greg

    2015-03-01

    Insurance coverage of damage caused by overland flooding is currently not available to Canadian homeowners. As flood disaster losses and water damage claims both trend upward, insurers in Canada are considering offering residential flood coverage in order to properly underwrite the risk and extend their business. If private flood insurance is introduced in Canada, it will have implications for the current regime of public flood management and for residential vulnerability to flood hazards. This paper engages many of the competing issues surrounding the privatization of flood risk by addressing questions about whether flood insurance can be an effective tool in limiting exposure to the hazard and how it would exacerbate already unequal vulnerability. A case study investigates willingness to pay for flood insurance among residents in Metro Vancouver and how attitudes about insurance relate to other factors that determine residential vulnerability to flood hazards. Findings indicate that demand for flood insurance is part of a complex, dialectical set of determinants of vulnerability.

  2. Development of Real-Time System for Urban Flooding by Surcharge of Storm Drainge and River Inundation

    NASA Astrophysics Data System (ADS)

    Shim, J. B.; Won, C. Y.; Park, J.; Lee, K.

    2017-12-01

    Korea experiences frequent flood disasters, which cause considerable economic losses and damages to towns and farms. Especially, a regional torrential storm is about 98.5mm/hr on September 21, 2010 in Seoul. The storm exceeds the capacity of urban drainage system of 75mm/hr, and 9,419 houses. How to monitor and control the urban flood disasters is an important issue in Korea. To mitigate the flood damage, a customizing system was developed to estimate urban floods and inundation using by integrating drainage system data and river information database which are managed by local governments and national agencies. In the case of Korean urban city, there are a lot of detention ponds and drainage pumping stations on end of drainage system and flow is going into river. The drainage pumping station, it is very important hydraulic facility for flood control between river and drainage system. So, it is possible to occur different patterns of flood inundation according to operation rule of drainage pumping station. A flood disaster is different damage as how to operate drainage pumping station and plan operation rule.

  3. Flood Control, State Road and Ebner Coulees, La Crosse, Wisconsin, General Design Memorandum. Phase I. Plan Formulation and Hydrology and Draft Environmental Impact Statement.

    DTIC Science & Technology

    1982-04-01

    development of the floodplain by use of appropriate floodplain management techniques to reduce flood losses . h. In the event of future development or...the total annual flood damages in the study area. These losses include physical damages to land, buildings, equipment, and stocks of merchandise as...well as the loss of wages and business profits and the costs of emergency protection. Average annual commercial damages are estimated at $253,000. The

  4. National Economic Development Procedures Manual - Urban Flood Damage. Volume 2: Primer for Surveying Flood Damage for Residential Structures and Contents

    DTIC Science & Technology

    1991-10-01

    procedures and techniques to measure flood damage and to further implement the Principles and Guidelines of the U.S. Water Resources Council. This manual... guidelines for using the OMB approved questionnaires are provided in Engineer Regulation 1105-2-100. The compendium provides the analyst with a helpful...question content, the analyst must also comply with OMB guidelines concerning implementation of the Privacy Act of 1974 (P.L. 93-579). This Act requires

  5. An Approach to Assessing Flood Risk in Low-lying Paddy Areas of Japan considering Economic Damage on Rice

    NASA Astrophysics Data System (ADS)

    Minakawa, H.; Masumoto, T.

    2013-12-01

    Hiroki Minakawa, Takao Masumoto National Institute for Rural Engineering (NIRE), NARO, Japan Flooding is one type of nature disaster, and is caused by heavy rainfall events. In the future, the risk of flooding is predicted to increase due to global climate change. Immediate measures such as strengthening drainage capacity are needed to minimize the damage caused by more frequent flooding, so a quantitative evaluation method of flood risks is needed to discuss countermeasure against these problems. At the same time, rice is an important crop for food production in Japan. However, paddy fields are often damaged by flooding because they are principally spread in lower part of the basin. Therefore, it is also important to assess the damages to paddy fields. This study discusses a method for evaluating a relationship between the risk of flood damage and the scale of heavy rainfall. We also developed a method of estimating the economic effect of a reduction in rice yield by flooding. First, we developed a drainage analysis model that incorporates kinematic and diffusive runoff models for calculating water level in channels and paddies. Next, heavy rainfall data for drainage analyses were generated by using a diurnal rainfall pattern generator. The generator can create hourly data of heavy rainfall, and internal pattern of them is different each. These data were input to the drainage model to estimate flood risk. Simultaneously, we tried to clarify economic losses of a rice yields caused by flooding. Here, the reduction scale in rice yield which shows relations between flooding situation (e.g. water level, duration of submersion etc.) and damage of rice is available to calculate reduction of rice yield. In this study, we created new reduction scales through a pseudo-flooding experiment under real inundation conditions. The methodology of the experiment was as follow: We chose the popular Japanese rice cultivar Koshihikari for this experiment. An experimental arena was constructed in a rice paddy plot, which consisted of two zones, one in which the rice was cultivated as usual with normal water levels, and a flood zone, which was used for submerging rice plants. The flood zone, which was designed to reproduce actual flood disaster conditions in paddy fields, can be filled with water to a depth of 0.3, 0.6 or 0.9 m above ground level, and is divided into two plots, a clean water part and a turbid water part. Thus, the experimental conditions can vary according to 1) the development stage of rice, 2) complete or incomplete submersion, 3) clean or turbid water, and 4) duration of submergence. Finally, the reduction scales were formulated by using the resultant data and it was found that rice is most sensitive to damage during the development stage. Flood risk was evaluated by using calculated water level on each paddy. Here, the averaged duration of inundation to a depth of more than 0.3 m was used as the criteria for flood occurrence. The results indicated that the duration increased with larger heavy rainfall amounts. Furthermore, the damage to rice was predicted to increase especially in low-lying paddy fields. Mitigation measures, such as revising drainage planning and/or changing design standards for the capacity of drainage pumps may be necessary in the future.

  6. Damaging events along roads during bad weather periods: a case study in Calabria (Italy)

    NASA Astrophysics Data System (ADS)

    Petrucci, O.; Pasqua, A. A.

    2012-02-01

    The study focuses on circumstances that affect people during periods of bad weather conditions characterised by winds, rainfall, landslides, flooding, and storm surges. A methodological approach and its application to a study area in southern Italy are presented here. A 10-yr database was generated by mining data from a newspaper. Damaging agents were sorted into five types: flood, urban flooding, landslide, wind, and storm surge. Damage to people occurred in 126 cases, causing 13 victims, 129 injured and about 782 people involved but not injured. For cases of floods, urban flooding and landslides, the analysis does not highlight straightforward relationships between rainfall and damage to people, even if the events showed different features according to the months of occurrence. The events occurring between May and October were characterised by concentrated and intense rainfall, and between May and July, the highest values of hourly (103 mm on the average) and monthly rainfall (114 mm on the average) were recorded. Urban flooding and flash floods were the most common damaging agents: injured, involved people and more rarely, cases with victims were reported. Between November and April, the highest number of events was recorded. Rainfall presented longer durations and hourly and sub-hourly rainfall were lower than those recorded between May and October. Landslides were the most frequent damaging agents but the highest number of cases with victims, which occurred between November and January, were mainly related to floods and urban flooding. Motorists represent the totality of the victims; 84% of the people were injured and the whole of people involved. All victims were men, and the average age was 43 yr. The primary cause of death was drowning caused by floods, and the second was trauma suffered in car accidents caused by urban flooding. The high number of motorists rescued in submerged cars reveals an underestimation of danger in the case of floods, often increased by the sense of security related to the familiarity of the road. In contrast, in the cases of people involved in landslides, when there was enough time to realise the potential risk, people behaved appropriately to avoid negative consequences. Of the victims, 50% were killed along fast-flowing roads; this may be related to the high speed limit in force on these roads, as a car's speed reduces the reaction time of a driver's response to an unexpected situation, whatever the damaging agent is. These results can be used in local information/education campaigns to both increase risk awareness and promote self-protective behaviours. Moreover, the mapping of damaging effects pointed out the regional sectors in which the high frequency of the events suggests further planning of in-depth examinations, which can individuate the critical points and local regulator interventions that might change damage incidences in the future.

  7. Estimating Paleoflood Magnitude From Tree-Ring Anatomy and the Height of Abrasion Scars

    NASA Astrophysics Data System (ADS)

    Yanosky, T. M.; Jarrett, R. D.

    2003-12-01

    Evidence of floods preserved in the growth rings of trees can be used to extend the historical record of flooding or to estimate the magnitude of extraordinary floods on ungaged streams. Floods that damage the aerial parts of trees during the growing season sometimes induce striking anatomical changes in subsequent growth of rings in the lower trunk. In ring-porous species, this growth most commonly produces concentric bands of atypically large vessels within the latewood. The number and diameter of anomalous vessels seem positively related to the amount of flood damage, and thus can be used to refine estimates of flood magnitude when also considering the position of the tree relative to the channel and its approximate height during the flood. Floods of long duration on low-gradient streams are less likely to damage trees directly, but prolonged root flooding often results in the formation of narrow rings with atypically small vessels; shorter-duration floods, sometimes inundating roots for as little as several days, are followed by the production of fibers (non-conducting cells) with large lumens and thin walls that appear as light-colored bands compared to earlier-formed tissue. In these instances, a series of trees increasingly distant from the channel can be used to estimate a minimum flood elevation. Abrasion scars from flood-borne debris often are the most easily observed evidence of flood damage and, like anatomical abnormalities, can be precisely dated. The relation between the heights of scars and maximum flood stages depends in part upon channel slope. Previous studies have indicated that scar heights along low-gradient streams are the same or slightly lower than maximum flood elevations. Along the high-gradient (6% maximum slope) Buffalo Creek, Colorado USA, scar heights measured in 102 trees following a flood in 1996 ranged from -0.6 to +1.5 m relative to the actual crest elevation. Scar elevations exceeding flood elevations by 3-4 m, however, were observed following a flood in 2002 along a small Colorado stream with slopes ranging from 6 to 15%.

  8. The Impact of a Library Flood on Computer Operations.

    ERIC Educational Resources Information Center

    Myles, Barbara

    2000-01-01

    Describes the efforts at Boston Public Library to recover from serious flooding that damaged computer equipment. Discusses vendor help in assessing the damage; the loss of installation disks; hiring consultants to help with financial matters; effects on staff; repairing and replacing damaged equipment; insurance issues; and disaster recovery…

  9. Integrated Urban Flood Analysis considering Optimal Operation of Flood Control Facilities in Urban Drainage Networks

    NASA Astrophysics Data System (ADS)

    Moon, Y. I.; Kim, M. S.; Choi, J. H.; Yuk, G. M.

    2017-12-01

    eavy rainfall has become a recent major cause of urban area flooding due to the climate change and urbanization. To prevent property damage along with casualties, a system which can alert and forecast urban flooding must be developed. Optimal performance of reducing flood damage can be expected of urban drainage facilities when operated in smaller rainfall events over extreme ones. Thus, the purpose of this study is to execute: A) flood forecasting system using runoff analysis based on short term rainfall; and B) flood warning system which operates based on the data from pump stations and rainwater storage in urban basins. In result of the analysis, it is shown that urban drainage facilities using short term rainfall forecasting data by radar will be more effective to reduce urban flood damage than using only the inflow data of the facility. Keywords: Heavy Rainfall, Urban Flood, Short-term Rainfall Forecasting, Optimal operating of urban drainage facilities. AcknowledgmentsThis research was supported by a grant (17AWMP-B066744-05) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  10. Measuring flood footprint of a regional economy - A case study for the UK flooding

    NASA Astrophysics Data System (ADS)

    Guan, D.

    2013-12-01

    Analysis of the urban economy and society is central to understanding the broad impacts of flooding and to identify cost-effective adaptation and mitigation measures. Assessments of the flooding impacts on cities have traditionally focused on the initial impact on people and assets. These initial estimates (so-called ';direct damage') are useful both in understanding the immediate implications of damage, and in marshalling the pools of capital and supplies required for re-building after an event. Since different economies as well as societies are coupled, especially under the current economic crisis, any small-scale damage may be multiplied and cascaded throughout wider economic systems and social networks. The direct and indirect damage is currently not evaluated well and could be captured by quantification of what we call the flood footprint. Flooding in one location can impact the whole UK economy. Neglecting these knock-on costs (i.e. the true footprint of the flood) means we might be ignoring the economic benefits and beneficiaries of flood risk management interventions. In 2007, for example, floods cost the economy about £3.2 bn directly, but the wider effect might actually add another 50% to 250% to that. Flood footprint is a measure of the exclusive total socioeconomic impact that is directly and indirectly caused by a flood event to the flooding region and wider economic systems and social networks. We adopt the UK 2012 flooding. An input-output basic dynamic inequalities (BDI) model is used to assess the impact of the floodings on the level of a Yorkshire economy, accounting for interactions between industries through demand and supply of intermediate consumption goods with a circular flow. After the disaster the economy will be unbalanced. The recovery process finishes when the economy is completely balance, i.e., when labour production capacity equals demands and production and all the variables reach pre-disaster levels. The analysis is carried out focusing on 42 sectors. Most regional data have been produced from the Multisectoral Dynamic Model of the UK economy. The flooding caused a 3.56% direct damage in the Yorkshire economy, while the indirect accounted for 14.58%.Utilities and transportation where the sectors that suffered the greatest direct impact. This impact indirectly transferred through business and supply chain to services, construction and primary industries.

  11. Socio-economic Impact Analysis for Near Real-Time Flood Detection in the Lower Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Oddo, P.; Ahamed, A.; Bolten, J. D.

    2017-12-01

    Flood events pose a severe threat to communities in the Lower Mekong River Basin. The combination of population growth, urbanization, and economic development exacerbate the impacts of these flood events. Flood damage assessments are frequently used to quantify the economic losses in the wake of storms. These assessments are critical for understanding the effects of flooding on the local population, and for informing decision-makers about future risks. Remote sensing systems provide a valuable tool for monitoring flood conditions and assessing their severity more rapidly than traditional post-event evaluations. The frequency and severity of extreme flood events are projected to increase, further illustrating the need for improved flood monitoring and impact analysis. In this study we implement a socio-economic damage model into a decision support tool with near real-time flood detection capabilities (NASA's Project Mekong). Surface water extent for current and historical floods is found using multispectral Moderate-resolution Imaging Spectroradiometer (MODIS) 250-meter imagery and the spectral Normalized Difference Vegetation Index (NDVI) signatures of permanent water bodies (MOD44W). Direct and indirect damages to populations, infrastructure, and agriculture are assessed using the 2011 Southeast Asian flood as a case study. Improved land cover and flood depth assessments result in a more refined understanding of losses throughout the Mekong River Basin. Results suggest that rapid initial estimates of flood impacts can provide valuable information to governments, international agencies, and disaster responders in the wake of extreme flood events.

  12. Determination of Flood Reduction Alternatives for Climate Change Adaptation in Gyeongancheon basin

    NASA Astrophysics Data System (ADS)

    Han, D.; Joo, H. J.; Jung, J.; Kim, H. S.

    2017-12-01

    Recently, the frequency of extreme rainfall event has increased due to the climate change and the impermeable area in an urban watershed has also increased due to the rapid urbanization. Therefore, the flood risk is increasing and we ought to prepare countermeasures for flood damage reduction. For the determination of appropriate measures or alternatives, firstly, this study estimated the frequency based rainfall considering the climate change according to the each target period(reference : 1971˜2010, Target period Ⅰ : 2011˜2040, Target period Ⅱ : 2041˜2070, Target period Ⅲ : 2071˜2100). Then the future flood discharge was computed by using HEC-HMS model. We set 5 sizes of drainage pumps and detention ponds respectively as the flood reduction alternatives and the flood level in the river was obtained by each alternative through HEC-RAS model. The flood inundation map was constructed using topographical data and flood water level in the river and the economic analysis was conducted for the flood damage reduction studies using Multi Dimensional Flood Damage Analysis (MD-FDA) tool. As a result of the effectiveness analysis of the flood reduction alternatives, the flood level by drainage pump was reduced by 0.06m up to 0.44m while it was reduced by 0.01m up to 1.86m in the case of the detention pond. The flooded area was shrunk by up to 32.64% from 0.3% and inundation depth was also dropped. As a result of a comparison of the Benefit/Cost ratio estimated by the economic analysis, a detention pond E in the target period Ⅰ and the pump D in the periods Ⅱ and Ⅲ were considered as the appropriate alternatives for the flood damage reduction under the climate change. AcknowledgementsThis research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(2017R1A2B3005695)

  13. Floods of January-February 1963 in California and Nevada

    USGS Publications Warehouse

    Rantz, S.E.; Harris, E.E.

    1963-01-01

    Widespread flooding occurred in central California and northwestern Nevada during January 31 - February 1, 1963, as a result of intense precipitation of about 72 hours duration. The flood-producing storm was of the warm type, with precipitation falling as rain at altitudes as high as 8,000 feet. The heavy precipitation, totaling as much as 20 inches or more in the Sierra Nevada, fell on frozen ground or on the sparse snowpack that existed in the higher altitudes. The response of runoff to rainfall was dramatic, as streams throughout the area rose rapidly. Hardest hit were the basins of the American, Yuba, and Truckee Rivers, where flood peaks either reached record-breaking heights or rivalled the discharges attained in the memorable floods of November 1950 and December 1955. Because of the relatively short duration of the storm, the volume of flood flow in 1963 was not outstanding. Ten deaths were attributed to the storm or flood. Preliminary estimates indicate damage in excess of $16 million in foothill and valley areas, but no attempt has yet been made to assess the heavy damage to highways and drainage structures in the mountain areas. The U. S. Army, Corps of Engineirs estimates that its operation of flood-control facilities prevented additional damage of $236 million. Other reservoirs, operated primarily for water conservation or power production, were also instrumental in preventing damage.

  14. Leith Creek, Scotland County, North Carolina, Detailed Project Report. Revised.

    DTIC Science & Technology

    1977-07-01

    34Effect of the Plan on Environ- " ment" included loss of veqetation, tei.porary erosion and siltation, and better drained soils for a very narrow strip...tangible damages. Tangible damages are those subject to monetary evaluation and include: physical damages or losses to property and improvements...emergency costs for flood damage prevention; and business, 0 financial, and wage losses in and adjacent to flood areas. Intangible damages are not

  15. Analyzing the sensitivity of a flood risk assessment model towards its input data

    NASA Astrophysics Data System (ADS)

    Glas, Hanne; Deruyter, Greet; De Maeyer, Philippe; Mandal, Arpita; James-Williamson, Sherene

    2016-11-01

    The Small Island Developing States are characterized by an unstable economy and low-lying, densely populated cities, resulting in a high vulnerability to natural hazards. Flooding affects more people than any other hazard. To limit the consequences of these hazards, adequate risk assessments are indispensable. Satisfactory input data for these assessments are hard to acquire, especially in developing countries. Therefore, in this study, a methodology was developed and evaluated to test the sensitivity of a flood model towards its input data in order to determine a minimum set of indispensable data. In a first step, a flood damage assessment model was created for the case study of Annotto Bay, Jamaica. This model generates a damage map for the region based on the flood extent map of the 2001 inundations caused by Tropical Storm Michelle. Three damages were taken into account: building, road and crop damage. Twelve scenarios were generated, each with a different combination of input data, testing one of the three damage calculations for its sensitivity. One main conclusion was that population density, in combination with an average number of people per household, is a good parameter in determining the building damage when exact building locations are unknown. Furthermore, the importance of roads for an accurate visual result was demonstrated.

  16. A framework for global river flood risk assessments

    NASA Astrophysics Data System (ADS)

    Winsemius, H. C.; Van Beek, L. P. H.; Jongman, B.; Ward, P. J.; Bouwman, A.

    2012-08-01

    There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate. The framework estimates hazard at high resolution (~1 km2) using global forcing datasets of the current (or in scenario mode, future) climate, a global hydrological model, a global flood routing model, and importantly, a flood extent downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population) to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population). The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE). We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case-study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard and damage estimates has been performed using the Dartmouth Flood Observatory database and damage estimates from the EM-DAT database and World Bank sources. We discuss and show sensitivities of the estimated risks with regard to the use of different climate input sets, decisions made in the downscaling algorithm, and different approaches to establish impact models.

  17. Flood Hazards - A National Threat

    USGS Publications Warehouse

    ,

    2006-01-01

    In the late summer of 2005, the remarkable flooding brought by Hurricane Katrina, which caused more than $200 billion in losses, constituted the costliest natural disaster in U.S. history. However, even in typical years, flooding causes billions of dollars in damage and threatens lives and property in every State. Natural processes, such as hurricanes, weather systems, and snowmelt, can cause floods. Failure of levees and dams and inadequate drainage in urban areas can also result in flooding. On average, floods kill about 140 people each year and cause $6 billion in property damage. Although loss of life to floods during the past half-century has declined, mostly because of improved warning systems, economic losses have continued to rise due to increased urbanization and coastal development.

  18. Disaster mitigation at drainage basin of Kuranji Padang City

    NASA Astrophysics Data System (ADS)

    Utama, L.; Yamin, M.

    2017-06-01

    Floods is flooding of effect of exit water groove river because big river debit sudden its accomodation energy, happened swiftly knock over areas which is debasement, in river basin and hollow. Flow debris or which is recognized with galodo have knock over river of Kuranji year 2012 in Padang city. Area is floods disaster are: 19 Sub-District in 7 district, and hard that is district of Pauh and district of Nanggalo. Governmental claim tired loss of Rp 263,9 Billion while Government of Provinsi West Sumatera appraise loss estimated by Fourty Billion Rupiah (Padang Ekspress 28 July 2012), with detail of damage house counted 878 unit, damage religious service house 15 unit, damage irrigation 12 unit, damage bridge 6 unit, damage school 2 unit, damage health post 1 unit. Result of calculation, by using rainfall of year 2003 until year 2015 with method Gumbel, Hasper and Wedwen, got high rainfall plan is 310,00 mm, and method Melchior and Hasper floods is 1125,86 m³ / second. From result of study analyse at Citra map of correlation and image to parameters cause of floods, and use software Watershed Modelling System (WMS) this region have two class that is middle susceptance and low susceptance. Middle susceptance area is there are in middle river and downstream river, with inclination level off. Low susceptance area there is middle river. Area which have potency result the happening of floods is headwaters, because having keen ramp storey level ( 45 - 55%) and is hilly. For the mitigasi of floods disaster determined by three area evacuate that are: Sub-District Of Kelurahan Limau Manis District Of Pauh, Sub-District Of Surau Gadang District Of Nanggalo, and Sub-District Of Lambung Bukik District of Pauh, in the form of map.

  19. Flood of April 1975 at Williamston, Michigan

    USGS Publications Warehouse

    Knutilla, R.L.; Swallow, L.A.

    1975-01-01

    On April 18 between 5 p.m. and 12 p.m. the city of Williamston experienced an intense rain storm that caused the Red Cedar River and the many small streams in the area to overflow their banks and resulted in the most devastating flood since at least 1904. Local officials estimated a loss of \\$775,000 in property damage. Damage from flooding by the Red Cedar River was caused primarily by inundation, rather than by water moving at high velocity, as is common when many streams are flooded. During the flood of April 1975 many basements were flooded as well as the lower floors of some homes in the flood plain. Additional damage occurred in places when sewers backed up and flooded basements, and when ground water seeped through basement walls and floors—situations that affected many homes including those that were well outside of the flood plain.During the time of flooding the U.S. Geological Survey obtained aerial photography and data on a streamflow to document the disaster. This report shows on a photomosaic base map the extent of flooding along the Red Cedar River at Williamston, during the flood. It also presents data obtained at stream-gaging stations near Williamston, as well as the results of peak-flow discharge measurements made on the Red Cedar River at Michigan State Highway M-52 east of the city. Information on the magnitude of the flood can guide in making decisions pertaining to the use of flood-plains in the area. It is one of a series of reports on the April 1975 flood in the Lansing metropolitan area.

  20. 46 CFR 171.080 - Damage stability standards for vessels with Type I or Type II subdivision.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... following conditions in the final stage of flooding: (1) On a vessel required to survive assumed damage with... in the final stage of flooding and to meet the conditions set forth in paragraphs (f) (8) and (9) of this section in each intermediate stage of flooding. For the purposes of establishing boundaries to...

  1. 46 CFR 171.080 - Damage stability standards for vessels with Type I or Type II subdivision.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... following conditions in the final stage of flooding: (1) On a vessel required to survive assumed damage with... in the final stage of flooding and to meet the conditions set forth in paragraphs (f) (8) and (9) of this section in each intermediate stage of flooding. For the purposes of establishing boundaries to...

  2. 46 CFR 171.080 - Damage stability standards for vessels with Type I or Type II subdivision.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... following conditions in the final stage of flooding: (1) On a vessel required to survive assumed damage with... in the final stage of flooding and to meet the conditions set forth in paragraphs (f) (8) and (9) of this section in each intermediate stage of flooding. For the purposes of establishing boundaries to...

  3. 46 CFR 174.065 - Damage stability requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... lowest edge of any opening through which additional flooding could occur if the unit were subjected simultaneously to— (1) Damage causing flooding described in §§ 174.075 through 174.085; and (2) A wind heeling...

  4. 46 CFR 174.065 - Damage stability requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... lowest edge of any opening through which additional flooding could occur if the unit were subjected simultaneously to— (1) Damage causing flooding described in §§ 174.075 through 174.085; and (2) A wind heeling...

  5. 46 CFR 174.065 - Damage stability requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... lowest edge of any opening through which additional flooding could occur if the unit were subjected simultaneously to— (1) Damage causing flooding described in §§ 174.075 through 174.085; and (2) A wind heeling...

  6. Geo-infrastructure damage assessment, repair and mitigation strategies.

    DOT National Transportation Integrated Search

    2013-09-01

    The 2011 Missouri River flooding caused significant damage to many geo-infrastructure systems including levees, bridge : abutments/foundations, paved and unpaved roadways, culverts, and embankment slopes in western Iowa. The flooding resulted in : cl...

  7. Flood risk change in some European, African and Asian catchments

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi

    2017-04-01

    In light of the expected increase of flood risk in large parts of the world due to climate change and globally increasing exposure, efficient integrated flood risk management needs to be implemented. Societies learn from floods, and consequently improve their risk management. Such learning can occur through 'focusing events', i.e. events that provide a sudden, strong push for action. For example, the 1953 North Sea flood triggered the Delta Works in The Netherlands and the construction of the Thames Barrier. We show how societies have learnt from focusing events in river systems, by a semi-quantitative assessment of eight paired flood events around the world, i.e. consecutive floods that occurred in the same catchments, with the second flood causing significantly lower damage. We unravel the main mechanisms underlying these eight success stories of risk reduction. Across all case studies, we find that lower damage caused by the second event was mainly due to significant reductions in vulnerability. The role of changes in exposure is less apparent; positive and negative changes are reported. In some cases, significant investments in flood protection between the floods have played a large role in exposure and damage reduction. Reduction of vulnerability seems to be a key for better risk reduction via integrated flood risk management. Thus, we need to redouble efforts to improve our understanding of vulnerability.

  8. Prospects for development of unified global flood observation and prediction systems (Invited)

    NASA Astrophysics Data System (ADS)

    Lettenmaier, D. P.

    2013-12-01

    Floods are among the most damaging of natural hazards, with global flood losses in 2011 alone estimated to have exceeded $100B. Historically, flood economic damages have been highest in the developed world (due in part to encroachment on historical flood plains), but loss of life, and human impacts have been greatest in the developing world. However, as the 2011 Thailand floods show, industrializing countries, many of which do not have well developed flood protection systems, are increasingly vulnerable to economic damages as they become more industrialized. At present, unified global flood observation and prediction systems are in their infancy; notwithstanding that global weather forecasting is a mature field. The summary for this session identifies two evolving capabilities that hold promise for development of more sophisticated global flood forecast systems: global hydrologic models and satellite remote sensing (primarily of precipitation, but also of flood inundation). To this I would add the increasing sophistication and accuracy of global precipitation analysis (and forecast) fields from numerical weather prediction models. In this brief overview, I will review progress in all three areas, and especially the evolution of hydrologic data assimilation which integrates modeling and data sources. I will also comment on inter-governmental and inter-agency cooperation, and related issues that have impeded progress in the development and utilization of global flood observation and prediction systems.

  9. A Socio-hydrological Flood Model for the Elbe

    NASA Astrophysics Data System (ADS)

    Barendrecht, M.; Viglione, A.; Kreibich, H.; Vorogushyn, S.; Merz, B.; Bloeschl, G.

    2017-12-01

    Long-term feedbacks between humans and floods may lead to complex phenomena such as coping strategies, levee effects, call effects, adaptation effects, and poverty traps. Dynamic coupled human-flood models are a promising tool to represent such phenomena and the feedbacks leading to them. These socio-hydrological models may play an important role in integrated flood risk management when they are applied to real world case studies. They can help develop hypotheses about the phenomena that have been observed in the case study of interest, by describing the interactions between the social and hydrological variables as well as other relevant variables, such as economic, environmental, political or technical, that play a role in the system. We discuss the case of Dresden where the 2002 flood, which was preceded by a period without floods but was less severe, resulted in a higher damage than the 2013 flood, which was preceded by the 2002 flood and a couple of less severe floods. The lower damage in 2013 may be explained by the fact that society has become aware of the flood risk and has adapted to it. Developing and applying a socio-hydrological flood model to the case of Dresden can help discover whether it is possible that the lower damage is caused by an adaptation effect, or if there are other feedbacks that can explain the observed phenomenon.

  10. Current and future flood risk to railway infrastructure in Europe

    NASA Astrophysics Data System (ADS)

    Bubeck, Philip; Kellermann, Patric; Alfieri, Lorenzo; Feyen, Luc; Dillenardt, Lisa; Thieken, Annegret H.

    2017-04-01

    Railway infrastructure plays an important role in the transportation of freight and passengers across the European Union. According to Eurostat, more than four billion passenger-kilometres were travelled on national and international railway lines of the EU28 in 2014. To further strengthen transport infrastructure in Europe, the European Commission will invest another € 24.05 billion in the transnational transport network until 2020 as part of its new transport infrastructure policy (TEN-T), including railway infrastructure. Floods pose a significant risk to infrastructure elements. Damage data of recent flood events in Europe show that infrastructure losses can make up a considerable share of overall losses. For example, damage to state and municipal infrastructure in the federal state of Saxony (Germany) accounted for nearly 60% of overall losses during the large-scale event in June 2013. Especially in mountainous areas with little usable space available, roads and railway lines often follow floodplains or are located along steep and unsteady slopes. In Austria, for instance, the flood of 2013 caused € 75 million of direct damage to railway infrastructure. Despite the importance of railway infrastructure and its exposure to flooding, assessments of potential damage and risk (i.e. probability * damage) are still in its infancy compared with other sectors, such as the residential or industrial sector. Infrastructure-specific assessments at the regional scale are largely lacking. Regional assessment of potential damage to railway infrastructure has been hampered by a lack of infrastructure-specific damage models and data availability. The few available regional approaches have used damage models that assess damage to various infrastructure elements (e.g. roads, railway, airports and harbours) using one aggregated damage function and cost estimate. Moreover, infrastructure elements are often considerably underrepresented in regional land cover data, such as CORINE, due to their line shapes. To assess current and future damage and risk to railway infrastructure in Europe, we apply the damage model RAIL -' RAilway Infrastructure Loss' that was specifically developed for railway infrastructure using empirical damage data. To adequately and comprehensively capture the line-shaped features of railway infrastructure, the assessment makes use of the open-access data set of openrailway.org. Current and future flood hazard in Europe is obtained with the LISFLOOD-based pan-European flood hazard mapping procedure combined with ensemble projections of extreme streamflow for the current century based on EURO-CORDEX RCP 8.5 climate scenarios. The presentation shows first results of the combination of the hazard data and the model RAIL for Europe.

  11. A data mining approach to derive flood-related economic vulnerability of companies

    NASA Astrophysics Data System (ADS)

    Sieg, Tobias; Kreibich, Heidi; Vogel, Kristin; Merz, Bruno

    2017-04-01

    The assessment of vulnerability gained more and more attention in flood risk research during the recent years. However, there is still not much knowledge available about flood vulnerability of companies and its influencing factors. This study follows the natural sciences concept which defines vulnerability as the degree of loss to a given element at risk resulting from flooding of a given magnitude. Machine learning algorithms like Random Forests (RFs) are promising approaches, since they consider many influencing variables and as such allow for a detailed assessment of flood vulnerability. Only these variables which are meaningful for the differentiation of a certain target variable are used by the derived models. This allows for an identification of relevant damage influencing variables and hence for a more detailed picture of flood vulnerability of companies. This study aims to identify relevant damage influencing variables by means of the variable importance provided by Random Forests. The data sets used are taken from two surveys conducted after the floods in the Elbe and Danube catchments in the years 2002 and 2013 in Germany. Damage to buildings (n = 430), equipment (n = 651) as well as goods and stock (n = 530) are taken into account. The analysis is done for the entire data set as well as for four groups of different company sectors and the corresponding data subsets. Relevant damage influencing variables separated by sector and assets are identified as, for example, the degree of contamination or precautionary measures undertaken before the flood event. The results provide insight into the damage processes and improve data-acquisition in future surveys by, for instance, asking specific questions for company sectors and assets.

  12. Flood of July 1-2, 1987, in north-central Ohio

    USGS Publications Warehouse

    Mayo, R.I.; Mangus, J.P.

    1989-01-01

    During the night of July 1 and early morning of July 2, 1987, an intense summer storm produced flooding on headwater streams of the Scioto, Sandusky, and Mohican River in north-central Ohio. The heaviest flooding and resulting flood damage occurred in a five-county area in the north-central part of the state. From 3 to nearby 6 inches of rain fell in less than 10 hours on rain-saturated soil, and produced flooding that resulted in more than $20 million in damages. Estimated peak discharged for several of the small streams affected ranged from 1 to 2 1/2 times the magnitude of the 50-year flood of these sites.

  13. Floods of September 6, 1960, in eastern Puerto Rico

    USGS Publications Warehouse

    Barnes, Harry Hawthorne; Bogart, Dean Butler

    1961-01-01

    The floods of September 6, 1960, were the greatest known on many streams in eastern Puerto Rico. There were 117 lives lost, 30 persons missing, and 136 injured. Total damage was estimated in excess of $7 million. Several thousand persons were forced from their homes by the floods as 484, houses were destroyed and more than 3,600 others were. damaged. All main highways and most secondary roads were impassable for a short period during the floods and damage to them was heavy. Following the passage of Hurricane Donna off the northeast coast, rains of very high intensity fell over parts of the eastern half of the island, beginning about 9 p.m. September 5. By dawn September 6, rains totaling more than 10 inches over a large area produced floods in every river basin from the Rio Grande de Manati eastward. Flood discharges on the Rio Humacao, Rio Turabo, and Rio Valenciano were the greatest known and rank high among the notable floods on streams that drain from 6 to ]5 square miles. An outstanding feature of the floods was the unusually high magnitude of peak discharges--9 of the 24 peak discharges determined had Myers ratings greater than 80 percent.

  14. Automating the evaluation of flood damages: methodology and potential gains

    NASA Astrophysics Data System (ADS)

    Eleutério, Julian; Martinez, Edgar Daniel

    2010-05-01

    The evaluation of flood damage potential consists of three main steps: assessing and processing data, combining data and calculating potential damages. The first step consists of modelling hazard and assessing vulnerability. In general, this step of the evaluation demands more time and investments than the others. The second step of the evaluation consists of combining spatial data on hazard with spatial data on vulnerability. Geographic Information System (GIS) is a fundamental tool in the realization of this step. GIS software allows the simultaneous analysis of spatial and matrix data. The third step of the evaluation consists of calculating potential damages by means of damage-functions or contingent analysis. All steps demand time and expertise. However, the last two steps must be realized several times when comparing different management scenarios. In addition, uncertainty analysis and sensitivity test are made during the second and third steps of the evaluation. The feasibility of these steps could be relevant in the choice of the extent of the evaluation. Low feasibility could lead to choosing not to evaluate uncertainty or to limit the number of scenario comparisons. Several computer models have been developed over time in order to evaluate the flood risk. GIS software is largely used to realise flood risk analysis. The software is used to combine and process different types of data, and to visualise the risk and the evaluation results. The main advantages of using a GIS in these analyses are: the possibility of "easily" realising the analyses several times, in order to compare different scenarios and study uncertainty; the generation of datasets which could be used any time in future to support territorial decision making; the possibility of adding information over time to update the dataset and make other analyses. However, these analyses require personnel specialisation and time. The use of GIS software to evaluate the flood risk requires personnel with a double professional specialisation. The professional should be proficient in GIS software and in flood damage analysis (which is already a multidisciplinary field). Great effort is necessary in order to correctly evaluate flood damages, and the updating and the improvement of the evaluation over time become a difficult task. The automation of this process should bring great advance in flood management studies over time, especially for public utilities. This study has two specific objectives: (1) show the entire process of automation of the second and third steps of flood damage evaluations; and (2) analyse the induced potential gains in terms of time and expertise needed in the analysis. A programming language is used within GIS software in order to automate hazard and vulnerability data combination and potential damages calculation. We discuss the overall process of flood damage evaluation. The main result of this study is a computational tool which allows significant operational gains on flood loss analyses. We quantify these gains by means of a hypothetical example. The tool significantly reduces the time of analysis and the needs for expertise. An indirect gain is that sensitivity and cost-benefit analyses can be more easily realized.

  15. Brief communication: On-site data collection of damage caused by flash floods: Experiences from Braunsbach, Germany, in May/June 2016

    NASA Astrophysics Data System (ADS)

    Laudan, Jonas; Rözer, Viktor; Sieg, Tobias; Vogel, Kristin; Thieken, Annegret

    2017-04-01

    At the end of May and beginning of June 2016, several municipalities in Southern Germany suffered from severe flash floods and debris flows which have been triggered by intense rainfall in Central Europe. Overall, the insured losses of these events amounted to EUR 1.2 billion in Germany. Especially the strong and unexpected flash flood on May 29th in Braunsbach (Baden Wurttemberg) - a small village counting about 1,000 residents - attracted media and policymakers due to its devastating character. The understanding of damage caused by flash floods requires ex-post collection of relevant but yet sparsely available information, linking process intensities to damage by using adequate methods of data gathering. Thus, on-site data collection was carried out after the flash flood event in Braunsbach, using open source software as helpful and efficient tool for data acquisition and evaluation. A digital survey was designed and conducted by a team of five researchers who investigated all buildings affected by water and debris flows. The collected data includes an estimation of a particular damage class, the inundation depth, and other relevant information. A post - hoc data analysis was done with R 3.3.1 and QGIS 2.14.3, performing both, a Random Forest Model (RF) and Random Generalized Linear Model (RGLM) as well as preparing a Spearman's rank correlation matrix. For visual interpretation and better overview of the study area and analysis results, a "process intensity" map was created, revealing important links of damage driving factors. We find that not only the water depth, which is often considered as only damage driving factor in riverine flood loss modelling, but also the exposition of a building to the flow direction and susceptible building parts like e.g. shop windows seem to be risk factors in flash-flood prone regions. Although no significant correlations were found, the analyses indicate that also building material (i.e. half-timbered or masonry) and structural precaution could play a role on the extent of damage and therefore offer options of damage mitigation. It is revealed that the damage driving as well as damage reducing factors are complex, contingent upon the surrounding and remarkably different from riverine floods. Further, it can be concluded that open source data collection software for mobile use has great potential as a scientific tool to generate extensive valuable data under challenging conditions.

  16. What if quality of damage data is poor: an Entity-Vulnerability approach for flood vulnerability assessment

    NASA Astrophysics Data System (ADS)

    Naso, Susanna; Chen, Albert S.; Djordjević, Slobodan; Aronica, Giuseppe T.

    2015-04-01

    The classical approach to flood defence, aimed at reducing the probability of flooding through hard defences, has been substituted by flood risk management approach which accepts the idea of coping with floods and aims at reducing not only the probability of flooding, but also the consequences. In this view, the concept of vulnerability becomes central, such as the (non-structural) measures for its increment. On 22 November 2011, an exceptional rainstorm hit the Longano catchment (North-East part of Sicily, Italy) producing local heavy rainfall, mud-debris flow and flash flooding. The flash flood involved property, buildings, roads and more than 100 commercial estates have suffered severe damages. Some days after the event, the municipality provided people forms to describe the damages that occurred on their properties. Unfortunately, the lack of common guidelines in compiling them, their coarseness and the impossibility to have monetary information on them (such us damage data from previous events), did not allow the implementation of a detailed damage analysis. What we're developing in this work is a method for a qualitative evaluation of the consequences of floods, based on vulnerability curves for structures and classes of entities at risk. The difficulty in deriving the vulnerability curves for different building typologies, as function of the water depth, was due to the lack of quantitative information both on damages caused by previous events and on buildings' value. To solve the problem we submitted a questionnaire to a team of experts asking for an estimation of building damages to different hypothetical inundation depths. What we wanted to obtain was deriving the vulnerability data from technicians' experience, believing in the fundamental importance of the collaboration among research and professional engineers. Through the elaboration and the synthesis of the experts' estimations we derived the vulnerability curves for different building typologies and for inundations of both short and long duration. At the same time we defined the classes of the variable Entity in function of both buildings' asset value and their importance for society. Once the buildings of different typologies are grouped, a GIS-based tool (using hazard information obtained from hydraulic modelling, building parcels, vulnerability curves and entity classes) is used to collocate each element at risk inside an Entity-Vulnerability matrix. The construction of a E-V matrix allow both to understand the actual situation of flood-prone area (and the possible consequences of a flood event) and to study the effectiveness of non-structural measures, just studying how their implementation modifies the distribution of elements at risk inside it. The proposed approach can be useful for authorities responsible for development and periodical review of adaptive flood risk management plans.

  17. Confronting uncertainty in flood damage predictions

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Kreibich, Heidi; Vogel, Kristin; Merz, Bruno

    2015-04-01

    Reliable flood damage models are a prerequisite for the practical usefulness of the model results. Oftentimes, traditional uni-variate damage models as for instance depth-damage curves fail to reproduce the variability of observed flood damage. Innovative multi-variate probabilistic modelling approaches are promising to capture and quantify the uncertainty involved and thus to improve the basis for decision making. In this study we compare the predictive capability of two probabilistic modelling approaches, namely Bagging Decision Trees and Bayesian Networks. For model evaluation we use empirical damage data which are available from computer aided telephone interviews that were respectively compiled after the floods in 2002, 2005 and 2006, in the Elbe and Danube catchments in Germany. We carry out a split sample test by sub-setting the damage records. One sub-set is used to derive the models and the remaining records are used to evaluate the predictive performance of the model. Further we stratify the sample according to catchments which allows studying model performance in a spatial transfer context. Flood damage estimation is carried out on the scale of the individual buildings in terms of relative damage. The predictive performance of the models is assessed in terms of systematic deviations (mean bias), precision (mean absolute error) as well as in terms of reliability which is represented by the proportion of the number of observations that fall within the 95-quantile and 5-quantile predictive interval. The reliability of the probabilistic predictions within validation runs decreases only slightly and achieves a very good coverage of observations within the predictive interval. Probabilistic models provide quantitative information about prediction uncertainty which is crucial to assess the reliability of model predictions and improves the usefulness of model results.

  18. 33 CFR 203.42 - Inspection of non-Federal flood control works.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps... standards and is capable of providing the intended degree of flood protection. An Acceptable or Minimally...

  19. 33 CFR 203.46 - Restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program... constructed to have appreciable and dependable protection in preventing damage from irregular and unusual..., recreation, fish and wildlife enhancement, land reclamation, habitat restoration, drainage, bank protection...

  20. 33 CFR 203.46 - Restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program... constructed to have appreciable and dependable protection in preventing damage from irregular and unusual..., recreation, fish and wildlife enhancement, land reclamation, habitat restoration, drainage, bank protection...

  1. 33 CFR 203.46 - Restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program... constructed to have appreciable and dependable protection in preventing damage from irregular and unusual..., recreation, fish and wildlife enhancement, land reclamation, habitat restoration, drainage, bank protection...

  2. 33 CFR 203.46 - Restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program... constructed to have appreciable and dependable protection in preventing damage from irregular and unusual..., recreation, fish and wildlife enhancement, land reclamation, habitat restoration, drainage, bank protection...

  3. 33 CFR 203.46 - Restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program... constructed to have appreciable and dependable protection in preventing damage from irregular and unusual..., recreation, fish and wildlife enhancement, land reclamation, habitat restoration, drainage, bank protection...

  4. Geo-infrastructure post-flood damage assessment, repair and mitigation strategies : tech transfer summary.

    DOT National Transportation Integrated Search

    2013-09-01

    The 2011 Missouri river flooding caused damage to many geoinfrastructure : systems including levees, bridge abutments/foundations, : paved and unpaved roadways, culverts, and embankment slopes in : western Iowa. The total reported direct cost to repa...

  5. Developing tools and procedures for the collection and storage of flood damage data in the aftermath of flood events: the Poli-RISPOSTA project

    NASA Astrophysics Data System (ADS)

    Molinari, Daniela; Ballio, Francesco; Mazuran, Mirjana; Arias, Carolina; Minucci, Guido; Atun, Funda; Ardagna, Danilo

    2015-04-01

    According to a recent JRC report (De Groeve et al., Recording disaster losses, 2013), no measure better than loss over time can provide objective understanding of the path towards resilience. Moreover, damage data collected in the aftermath of floods supply the knowledge base on which a blend of actions can be performed, both in the short and mid time after the occurrence of a flood; among them: the identification of priorities for intervention during emergencies, the definition of compensation schemes, the understanding of damage mechanisms and of the fragilities of the flooded areas so as to improve/reform current risk mitigation strategies (also by means of improved flood damage models). Objective "measurement" of flood losses remains inadequate to meet the above objectives. This is due to a number of reasons that include: the diversity of intent for data collection, the lack of standardization on how to collect and storage data (including the lack of agreed definitions) among responsible subjects, and last but not least a lack of legislation to support the collection process. In such a context, the aim of this contribution is to discuss the results from the Poli-RISPOSTA (stRumentI per la protezione civile a Supporto delle POpolazioni nel poST Alluvione) project, a research project founded by Politecnico di Milano which is intended to develop tools and procedures for the collection and storage of high quality, consistent and reliable flood damage data. Specific objectives of Poli-RISPOSTA are: - Develop an operational procedure for collecting, storing and analyzing all damage data, in the aftermath of flood events. Collected data are intended to support a variety of actions, namely: loss accounting, disaster forensic, damage compensation and flood risk modelling; - Develop educational material and modules for training practitioners in the use of the procedure; - Develop enhanced IT tools to support the procedure, easing as much as possible the collection of field data, the creation of databases and the connection between the latter and different regional and municipal databases that already exist for different purposes (from cadastral data, to satellite images, etc.), the processing of collected data. A key principle of Poli-RISPOSTA is developing tools with the direct involvement of all interested parties so as to reach a two-fold objective: producing feasible solutions that re-organise existing practices and integrate them with new ones (whereas they are lacking) and, directly linked to the previous point, supplying the legislative context in which developed tools can be implemented.

  6. Flood risk in a changing world - a coupled transdisciplinary modelling framework for flood risk assessment in an Alpine study area

    NASA Astrophysics Data System (ADS)

    Huttenlau, Matthias; Schneeberger, Klaus; Winter, Benjamin; Pazur, Robert; Förster, Kristian; Achleitner, Stefan; Bolliger, Janine

    2017-04-01

    Devastating flood events have caused substantial economic damage across Europe during past decades. Flood risk management has therefore become a topic of crucial interest across state agencies, research communities and the public sector including insurances. There is consensus that mitigating flood risk relies on impact assessments which quantitatively account for a broad range of aspects in a (changing) environment. Flood risk assessments which take into account the interaction between the drivers climate change, land-use change and socio-economic change might bring new insights to the understanding of the magnitude and spatial characteristic of flood risks. Furthermore, the comparative assessment of different adaptation measures can give valuable information for decision-making. With this contribution we present an inter- and transdisciplinary research project aiming at developing and applying such an impact assessment relying on a coupled modelling framework for the Province of Vorarlberg in Austria. Stakeholder engagement ensures that the final outcomes of our study are accepted and successfully implemented in flood management practice. The study addresses three key questions: (i) What are scenarios of land- use and climate change for the study area? (ii) How will the magnitude and spatial characteristic of future flood risk change as a result of changes in climate and land use? (iii) Are there spatial planning and building-protection measures which effectively reduce future flood risk? The modelling framework has a modular structure comprising modules (i) climate change, (ii) land-use change, (iii) hydrologic modelling, (iv) flood risk analysis, and (v) adaptation measures. Meteorological time series are coupled with spatially explicit scenarios of land-use change to model runoff time series. The runoff time series are combined with impact indicators such as building damages and results are statistically assessed to analyse flood risk scenarios. Thus, the regional flood risk can be expressed in terms of expected annual damage and damages associated with a low probability of occurrence. We consider building protection measures explicitly as part of the consequence analysis of flood risk whereas spatial planning measures are already considered as explicit scenarios in the course of land-use change modelling.

  7. Flood elevations for the Soleduck River at Sol Duc Hot Springs, Clallam County, Washington

    USGS Publications Warehouse

    Nelson, L.M.

    1983-01-01

    Elevations and inundation areas of a 100-year flood of the Soleduck River, Washington, were determined by the U.S. Geological Survey for the area in the vicinity of the Sol Duc Hot Springs resort, a public facility in the Olympic National Park that under Federal law must be located beyond or protected from damage by a 100-year flood. Results show that most flooding could be eliminated by raising parts of an existing dike. In general, little flood damage is expected, except at the southern end of an undeveloped airstrip that could become inundated and hazardous due to flow from a tributary. The airstrip is above the 100-year flood of the Soleduck River.

  8. Numerical simulation of flood barriers

    NASA Astrophysics Data System (ADS)

    Srb, Pavel; Petrů, Michal; Kulhavý, Petr

    This paper deals with testing and numerical simulating of flood barriers. The Czech Republic has been hit by several very devastating floods in past years. These floods caused several dozens of causalities and property damage reached billions of Euros. The development of flood measures is very important, especially for the reduction the number of casualties and the amount of property damage. The aim of flood control measures is the detention of water outside populated areas and drainage of water from populated areas as soon as possible. For new flood barrier design it is very important to know its behaviour in case of a real flood. During the development of the barrier several standardized tests have to be carried out. Based on the results from these tests numerical simulation was compiled using Abaqus software and some analyses were carried out. Based on these numerical simulations it will be possible to predict the behaviour of barriers and thus improve their design.

  9. Public Assistance Worksheets for Damage from 2010 Floods to the East Valley Water District

    EPA Pesticide Factsheets

    East Valley Water District (EVWD) in San Bernardino, California had significant damage due to flooding in December 2010. There was a presidentially-declared disaster. EVWD applied to FEMA under the Public Assistance Grant Program.

  10. The Use of LIDAR and Volunteered Geographic Information to Map Flood Extents and Inundation

    NASA Astrophysics Data System (ADS)

    McDougall, K.; Temple-Watts, P.

    2012-07-01

    Floods are one of the most destructive natural disasters that threaten communities and properties. In recent decades, flooding has claimed more lives, destroyed more houses and ruined more agricultural land than any other natural hazard. The accurate prediction of the areas of inundation from flooding is critical to saving lives and property, but relies heavily on accurate digital elevation and hydrologic models. The 2011 Brisbane floods provided a unique opportunity to capture high resolution digital aerial imagery as the floods neared their peak, allowing the capture of areas of inundation over the various city suburbs. This high quality imagery, together with accurate LiDAR data over the area and publically available volunteered geographic imagery through repositories such as Flickr, enabled the reconstruction of flood extents and the assessment of both area and depth of inundation for the assessment of damage. In this study, approximately 20 images of flood damaged properties were utilised to identify the peak of the flood. Accurate position and height values were determined through the use of RTK GPS and conventional survey methods. This information was then utilised in conjunction with river gauge information to generate a digital flood surface. The LiDAR generated DEM was then intersected with the flood surface to reconstruct the area of inundation. The model determined areas of inundation were then compared to the mapped flood extent from the high resolution digital imagery to assess the accuracy of the process. The paper concludes that accurate flood extent prediction or mapping is possible through this method, although its accuracy is dependent on the number and location of sampled points. The utilisation of LiDAR generated DEMs and DSMs can also provide an excellent mechanism to estimate depths of inundation and hence flood damage

  11. Hispanic health disparities after a flood disaster: results of a population-based survey of individuals experiencing home site damage in El Paso (Texas, USA).

    PubMed

    Collins, Timothy W; Jimenez, Anthony M; Grineski, Sara E

    2013-04-01

    In 2006, El Paso County, a predominantly Hispanic urban area, was affected by a flood disaster; 1,500 homes were damaged. We assessed the health impacts of the disaster upon 475 individuals whose homes were flood-damaged using mail survey data and logistic regression. Substantial proportions of individuals had one or more physical (43 %) or mental (18 %) health problem in the four months following the floods; 28 % had one or more injury or acute effect related to post-flood cleanup. Adverse event experiences, older age, and lower socioeconomic status were significantly associated with negative post-flood health outcomes in all three logistic regression models. A lack of access to healthcare, non-US citizenship, and English proficiency were significant predictors of negative outcomes in both the physical and mental health models, while Hispanic ethnicity (physical), native-birth (mental), and more serious home damage (cleanup) were significant predictors in one model each. The disaster had disproportionate negative health impacts on those who were more exposed, poorer, older, and with constrained resource-access. While a lack of US citizenship and Hispanic ethnicity were associated with higher risks, being less acculturated (i.e., English-deficient, foreign-born) may have protected against health impacts.

  12. Opportunities of probabilistic flood loss models

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Kreibich, Heidi; Lüdtke, Stefan; Vogel, Kristin; Merz, Bruno

    2016-04-01

    Oftentimes, traditional uni-variate damage models as for instance depth-damage curves fail to reproduce the variability of observed flood damage. However, reliable flood damage models are a prerequisite for the practical usefulness of the model results. Innovative multi-variate probabilistic modelling approaches are promising to capture and quantify the uncertainty involved and thus to improve the basis for decision making. In this study we compare the predictive capability of two probabilistic modelling approaches, namely Bagging Decision Trees and Bayesian Networks and traditional stage damage functions. For model evaluation we use empirical damage data which are available from computer aided telephone interviews that were respectively compiled after the floods in 2002, 2005, 2006 and 2013 in the Elbe and Danube catchments in Germany. We carry out a split sample test by sub-setting the damage records. One sub-set is used to derive the models and the remaining records are used to evaluate the predictive performance of the model. Further we stratify the sample according to catchments which allows studying model performance in a spatial transfer context. Flood damage estimation is carried out on the scale of the individual buildings in terms of relative damage. The predictive performance of the models is assessed in terms of systematic deviations (mean bias), precision (mean absolute error) as well as in terms of sharpness of the predictions the reliability which is represented by the proportion of the number of observations that fall within the 95-quantile and 5-quantile predictive interval. The comparison of the uni-variable Stage damage function and the multivariable model approach emphasises the importance to quantify predictive uncertainty. With each explanatory variable, the multi-variable model reveals an additional source of uncertainty. However, the predictive performance in terms of precision (mbe), accuracy (mae) and reliability (HR) is clearly improved in comparison to uni-variable Stage damage function. Overall, Probabilistic models provide quantitative information about prediction uncertainty which is crucial to assess the reliability of model predictions and improves the usefulness of model results.

  13. Evaluating the effectiveness of flood damage mitigation measures by the application of Propensity Score Matching

    NASA Astrophysics Data System (ADS)

    Hudson, P.; Botzen, W. J. W.; Kreibich, H.; Bubeck, P.; Aerts, J. C. J. H.

    2014-01-01

    The employment of damage mitigation measures by individuals is an important component of integrated flood risk management. In order to promote efficient damage mitigation measures, accurate estimates of their damage mitigation potential are required. That is, for correctly assessing the damage mitigation measures' effectiveness from survey data, one needs to control for sources of bias. A biased estimate can occur if risk characteristics differ between individuals who have, or have not, implemented mitigation measures. This study removed this bias by applying an econometric evaluation technique called Propensity Score Matching to a survey of German households along along two major rivers major rivers that were flooded in 2002, 2005 and 2006. The application of this method detected substantial overestimates of mitigation measures' effectiveness if bias is not controlled for, ranging from nearly € 1700 to € 15 000 per measure. Bias-corrected effectiveness estimates of several mitigation measures show that these measures are still very effective since they prevent between € 6700-14 000 of flood damage. This study concludes with four main recommendations regarding how to better apply Propensity Score Matching in future studies, and makes several policy recommendations.

  14. Damage estimation of subterranean building constructions due to groundwater inundation - the GIS-based model approach GRUWAD

    NASA Astrophysics Data System (ADS)

    Schinke, R.; Neubert, M.; Hennersdorf, J.; Stodolny, U.; Sommer, T.; Naumann, T.

    2012-09-01

    The analysis and management of flood risk commonly focuses on surface water floods, because these types are often associated with high economic losses due to damage to buildings and settlements. The rising groundwater as a secondary effect of these floods induces additional damage, particularly in the basements of buildings. Mostly, these losses remain underestimated, because they are difficult to assess, especially for the entire building stock of flood-prone urban areas. For this purpose an appropriate methodology has been developed and lead to a groundwater damage simulation model named GRUWAD. The overall methodology combines various engineering and geoinformatic methods to calculate major damage processes by high groundwater levels. It considers a classification of buildings by building types, synthetic depth-damage functions for groundwater inundation as well as the results of a groundwater-flow model. The modular structure of this procedure can be adapted in the level of detail. Hence, the model allows damage calculations from the local to the regional scale. Among others it can be used to prepare risk maps, for ex-ante analysis of future risks, and to simulate the effects of mitigation measures. Therefore, the model is a multifarious tool for determining urban resilience with respect to high groundwater levels.

  15. Flood of April 1975 at Lansing, Michigan

    USGS Publications Warehouse

    Miller, John B.; Swallow, L.A.

    1975-01-01

    On April 18 between 5 p.m. and 12 p.m. an intense rainstorm fell in the Lansing area resulting in extensive flooding.  The Federal Disaster Assistance Administration estimated that 175 homes were damaged to at least half their value, 4,500 received some damage, with additional losses to schools, utilities, hospitals, and transportation systems.  Early estimates indicated that damages may be as high as $20 million.During the time of flooding the U.S. Geological Survey obtained aerial photography and streamflow data to document the disaster.  This report shows on photomosaic base maps the extent of flooding in the Lansing area.  Areas included are the lower reaches of the Red Cedar River and Sycamore Creek and the Grand River downstream from the confluence of the Red Cedar River.  Little flooding occurred on the Grand River upstream from the Red Cedar so, although aerial photography was obtained for that reach, photomosaics were not prepared.  Streamflow data collected at five gaging stations near Lansing are given.  Information on the magnitude of the flood should be useful in making decisions regarding use of flood plains in the area.  It is one of a series of reports on the April 1975 flood in the Lansing metropolitan area.

  16. Floods in the United States: Magnitude and frequency

    USGS Publications Warehouse

    Jarvis, Clarence S.; ,

    1936-01-01

    From time immemorial floods have transformed beneficent river waters into a menace to humanity. Man's progress toward economic stability has been repeatedly halted or even thrown backward by the interruption of his efforts to make effective use of rivers and of valley lands. This handicap is not imposed by the destructiveness of large rivers alone, or of rivers in widely separated areas, for there are few if any streams, brooks, or rivulets that are not subject to flows beyond their channel capacities. Yet, though man for ages has suffered seriously from recurring floods, he has not been deterred from continuing to extend his activities in areas that are virtually foredoomed to flood damage.Today in the United States serious floods may occur in any section in any year, and even, in some regions, several times a year. Many of these floods leave behind them the tragedy of death and disease and of property irreparably damaged. The aggregate direct property damage caused by floods in this country has been estimated roughly to average $35,000,000 a year. In addition there are serious indirect and intangible losses of great but not precisely calculable magnitude.

  17. Safety in the Chemical Laboratory: Flood Control.

    ERIC Educational Resources Information Center

    Pollard, Bruce D.

    1983-01-01

    Describes events leading to a flood in the Wehr Chemistry Laboratory at Marquette University, discussing steps taken to minimize damage upon discovery. Analyzes the problem of flooding in the chemical laboratory and outlines seven steps of flood control: prevention; minimization; early detection; stopping the flood; evaluation; clean-up; and…

  18. Magnitude and frequency of floods in Nebraska

    USGS Publications Warehouse

    Beckman, Emil W.

    1976-01-01

    Observed maximum flood peaks at 303 gaging stations with 13 or more years of record and significant peaks at 57 short-term stations and 31 miscellaneous sites are useful in designing flood-control works for maximum safety from flood damage. Comparison is made with maximum observed floods in the United States.

  19. Beaver dams, hydrological thresholds, and controlled floods as a management tool in a desert riverine ecosystem, Bill Williams River, Arizona

    USGS Publications Warehouse

    Andersen, D.C.; Shafroth, P.B.

    2010-01-01

    Beaver convert lotic stream habitat to lentic through dam construction, and the process is reversed when a flood or other event causes dam failure. We investigated both processes on a regulated Sonoran Desert stream, using the criterion that average current velocity is < 0.2 m s-1 in a lentic reach. We estimated temporal change in the lotic:lentic stream length ratio by relating beaver pond length (determined by the upstream lentic-lotic boundary position) to dam size, and coupling that to the dam-size frequency distribution and repeated censuses of dams along the 58-km river. The ratio fell from 19:1 when no beaver dams were present to < 3:1 after 7 years of flows favourable for beaver. We investigated the dam failure-flood intensity relationship in three independent trials (experimental floods) featuring peak discharge ranging from 37 to 65 m3 s-1. Major damage (breach ??? 3-m wide) occurred at ??? 20% of monitored dams (n = 7-86) and a similar or higher proportion was moderately damaged. We detected neither a relationship between dam size and damage level nor a flood discharge threshold for initiating major damage. Dam constituent materials appeared to control the probability of major damage at low (attenuated) flood magnitude. We conclude that environmental flows prescribed to sustain desert riparian forest will also reduce beaver-created lentic habitat in a non-linear manner determined by both beaver dam and flood attributes. Consideration of both desirable and undesirable consequences of ecological engineering by beaver is important when optimizing environmental flows to meet ecological and socioeconomic goals. ?? 2010 John Wiley & Sons, Ltd.

  20. Uni- and multi-variable modelling of flood losses: experiences gained from the Secchia river inundation event.

    NASA Astrophysics Data System (ADS)

    Carisi, Francesca; Domeneghetti, Alessio; Kreibich, Heidi; Schröter, Kai; Castellarin, Attilio

    2017-04-01

    Flood risk is function of flood hazard and vulnerability, therefore its accurate assessment depends on a reliable quantification of both factors. The scientific literature proposes a number of objective and reliable methods for assessing flood hazard, yet it highlights a limited understanding of the fundamental damage processes. Loss modelling is associated with large uncertainty which is, among other factors, due to a lack of standard procedures; for instance, flood losses are often estimated based on damage models derived in completely different contexts (i.e. different countries or geographical regions) without checking its applicability, or by considering only one explanatory variable (i.e. typically water depth). We consider the Secchia river flood event of January 2014, when a sudden levee-breach caused the inundation of nearly 200 km2 in Northern Italy. In the aftermath of this event, local authorities collected flood loss data, together with additional information on affected private households and industrial activities (e.g. buildings surface and economic value, number of company's employees and others). Based on these data we implemented and compared a quadratic-regression damage function, with water depth as the only explanatory variable, and a multi-variable model that combines multiple regression trees and considers several explanatory variables (i.e. bagging decision trees). Our results show the importance of data collection revealing that (1) a simple quadratic regression damage function based on empirical data from the study area can be significantly more accurate than literature damage-models derived for a different context and (2) multi-variable modelling may outperform the uni-variable approach, yet it is more difficult to develop and apply due to a much higher demand of detailed data.

  1. What do we gain with Probabilistic Flood Loss Models?

    NASA Astrophysics Data System (ADS)

    Schroeter, K.; Kreibich, H.; Vogel, K.; Merz, B.; Lüdtke, S.

    2015-12-01

    The reliability of flood loss models is a prerequisite for their practical usefulness. Oftentimes, traditional uni-variate damage models as for instance depth-damage curves fail to reproduce the variability of observed flood damage. Innovative multi-variate probabilistic modelling approaches are promising to capture and quantify the uncertainty involved and thus to improve the basis for decision making. In this study we compare the predictive capability of two probabilistic modelling approaches, namely Bagging Decision Trees and Bayesian Networks and traditional stage damage functions which are cast in a probabilistic framework. For model evaluation we use empirical damage data which are available from computer aided telephone interviews that were respectively compiled after the floods in 2002, 2005, 2006 and 2013 in the Elbe and Danube catchments in Germany. We carry out a split sample test by sub-setting the damage records. One sub-set is used to derive the models and the remaining records are used to evaluate the predictive performance of the model. Further we stratify the sample according to catchments which allows studying model performance in a spatial transfer context. Flood damage estimation is carried out on the scale of the individual buildings in terms of relative damage. The predictive performance of the models is assessed in terms of systematic deviations (mean bias), precision (mean absolute error) as well as in terms of reliability which is represented by the proportion of the number of observations that fall within the 95-quantile and 5-quantile predictive interval. The reliability of the probabilistic predictions within validation runs decreases only slightly and achieves a very good coverage of observations within the predictive interval. Probabilistic models provide quantitative information about prediction uncertainty which is crucial to assess the reliability of model predictions and improves the usefulness of model results.

  2. Assessment of mean annual flood damage using simple hydraulic modeling and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Oubennaceur, K.; Agili, H.; Chokmani, K.; Poulin, J.; Marceau, P.

    2016-12-01

    Floods are the most frequent and the most damaging natural disaster in Canada. The issue of assessing and managing the risk related to this disaster has become increasingly crucial for both local and national authorities. Brigham, a municipality located in southern Quebec Province, is one of the heavily affected regions by this disaster because of frequent overflows of the Yamaska River reaching two to three times per year. Since Irene Hurricane which struck the region in 2011, causing considerable socio-economic damage, the implementation of mitigation measures has become a major priority for this municipality. To do this, a preliminary study to evaluate the risk to which this region is exposed is essential. Conventionally, approaches only based on the characterization of the hazard (e.g. floodplains extensive, flood depth) are generally adopted to study the risk of flooding. In order to improve the knowledge of this risk, a Monte Carlo simulation approach combining information on the hazard with vulnerability-related aspects has been developed. This approach integrates three main components: (1) hydrologic modelling aiming to establish a probability-discharge function which associate each measured discharge to its probability of occurrence (2) hydraulic modeling that aims to establish the relationship between the discharge and the water stage at each building (3) damage study that aims to assess the buildings damage using damage functions. The damage is estimated according to the water depth defined as the difference between the water level and the elevation of the building's first floor. The application of the proposed approach allows estimating the annual average cost of damage caused by floods on buildings. The obtained results will be useful for authorities to support their decisions on risk management and prevention against this disaster.

  3. Demand analysis of flood insurance by using logistic regression model and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sidi, P.; Mamat, M. B.; Sukono; Supian, S.; Putra, A. S.

    2018-03-01

    Citarum River floods in the area of South Bandung Indonesia, often resulting damage to some buildings belonging to the people living in the vicinity. One effort to alleviate the risk of building damage is to have flood insurance. The main obstacle is not all people in the Citarum basin decide to buy flood insurance. In this paper, we intend to analyse the decision to buy flood insurance. It is assumed that there are eight variables that influence the decision of purchasing flood assurance, include: income level, education level, house distance with river, building election with road, flood frequency experience, flood prediction, perception on insurance company, and perception towards government effort in handling flood. The analysis was done by using logistic regression model, and to estimate model parameters, it is done with genetic algorithm. The results of the analysis shows that eight variables analysed significantly influence the demand of flood insurance. These results are expected to be considered for insurance companies, to influence the decision of the community to be willing to buy flood insurance.

  4. Epic Flooding in Georgia, 2009

    USGS Publications Warehouse

    Gotvald, Anthony J.; McCallum, Brian E.

    2010-01-01

    Metropolitan Atlanta-September 2009 Floods The epic floods experienced in the Atlanta area in September 2009 were extremely rare. Eighteen streamgages in the Metropolitan Atlanta area had flood magnitudes much greater than the estimated 0.2-percent (500-year) annual exceedance probability. The Federal Emergency Management Agency (FEMA) reported that 23 counties in Georgia were declared disaster areas due to this flood and that 16,981 homes and 3,482 businesses were affected by floodwaters. Ten lives were lost in the flood. The total estimated damages exceed $193 million (H.E. Longenecker, Federal Emergency Management Agency, written commun., November 2009). On Sweetwater Creek near Austell, Ga., just north of Interstate 20, the peak stage was more than 6 feet higher than the estimated peak stage of the 0.2-percent (500-year) flood. Flood magnitudes in Cobb County on Sweetwater, Butler, and Powder Springs Creeks greatly exceeded the estimated 0.2-percent (500-year) floods for these streams. In Douglas County, the Dog River at Ga. Highway 5 near Fairplay had a peak stage nearly 20 feet higher than the estimated peak stage of the 0.2-percent (500-year) flood. On the Chattahoochee River, the U.S. Geological Survey (USGS) gage at Vinings reached the highest level recorded in the past 81 years. Gwinnett, De Kalb, Fulton, and Rockdale Counties also had record flooding.South Georgia March and April 2009 FloodsThe March and April 2009 floods in South Georgia were smaller in magnitude than the September floods but still caused significant damage. No lives were lost in this flood. Approximately $60 million in public infrastructure damage occurred to roads, culverts, bridges and a water treatment facility (Joseph T. McKinney, Federal Emergency Management Agency, written commun., July 2009). Flow at the Satilla River near Waycross, exceeded the 0.5-percent (200-year) flood. Flows at seven other stations in South Georgia exceeded the 1-percent (100-year) flood.

  5. Flood control surveys in the northeast

    Treesearch

    Arthur Bevan

    1947-01-01

    Floods are a grave danger to our Nation's resources. It is estimated that floods cost the United States at least $100 million every year. The recent Mississippi floods, which dramatically brought the seriousness of the situation to public attention, cost half a billion dollars in direct-damages. The Northeast carries a heavy burden of flood losses. In 1936, floods...

  6. Interactive Web-based Floodplain Simulation System for Realistic Experiments of Flooding and Flood Damage

    NASA Astrophysics Data System (ADS)

    Demir, I.

    2013-12-01

    Recent developments in web technologies make it easy to manage and visualize large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The floodplain simulation system is a web-based 3D interactive flood simulation environment to create real world flooding scenarios. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create and modify predefined scenarios, control environmental parameters, and evaluate flood mitigation techniques. The web-based simulation system provides an environment to children and adults learn about the flooding, flood damage, and effects of development and human activity in the floodplain. The system provides various scenarios customized to fit the age and education level of the users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various flooding and land use scenarios.

  7. Ho Chi Minh City adaptation to increasing risk of coastal and fluvial floods

    NASA Astrophysics Data System (ADS)

    Scussolini, Paolo; Lasage, Ralph

    2016-04-01

    Coastal megacities in southeast Asia are a hotspot of vulnerability to floods. In such contexts, the combination of fast socio-economic development and of climate change impacts on precipitation and sea level generates concerns about the flood damage to people and assets. This work focuses on Ho Chi Minh City, Vietnam, for which we estimate the present and future direct risk from river and coastal floods. A model cascade is used that comprises the Saigon river basin and the urban network, plus the land-use-dependent damaging process. Changes in discharge for five return periods are simulated, enabling the probabilistic calculation of the expected annual economic damage to assets, for differnt scenarios of global emissions, local socio-economic growth, and land subsidence, up to year 2100. The implementation of a range of adaptation strategies is simulated, including building dykes, elevating, creating reservoirs, managing water and sediment upstream, flood-proofing, halting groundwater abstraction. Results are presented on 1) the relative weight of each future driver in determining the flood risk of Ho Chi Minh, and 2) the efficiency and feasibility of each adaptation strategy.

  8. From global circulation to flood loss: Coupling models across the scales

    NASA Astrophysics Data System (ADS)

    Felder, Guido; Gomez-Navarro, Juan Jose; Bozhinova, Denica; Zischg, Andreas; Raible, Christoph C.; Ole, Roessler; Martius, Olivia; Weingartner, Rolf

    2017-04-01

    The prediction and the prevention of flood losses requires an extensive understanding of underlying meteorological, hydrological, hydraulic and damage processes. Coupled models help to improve the understanding of such underlying processes and therefore contribute the understanding of flood risk. Using such a modelling approach to determine potentially flood-affected areas and damages requires a complex coupling between several models operating at different spatial and temporal scales. Although the isolated parts of the single modelling components are well established and commonly used in the literature, a full coupling including a mesoscale meteorological model driven by a global circulation one, a hydrologic model, a hydrodynamic model and a flood impact and loss model has not been reported so far. In the present study, we tackle the application of such a coupled model chain in terms of computational resources, scale effects, and model performance. From a technical point of view, results show the general applicability of such a coupled model, as well as good model performance. From a practical point of view, such an approach enables the prediction of flood-induced damages, although some future challenges have been identified.

  9. Applications of flood depth from rapid post-event footprint generation

    NASA Astrophysics Data System (ADS)

    Booth, Naomi; Millinship, Ian

    2015-04-01

    Immediately following large flood events, an indication of the area flooded (i.e. the flood footprint) can be extremely useful for evaluating potential impacts on exposed property and infrastructure. Specifically, such information can help insurance companies estimate overall potential losses, deploy claims adjusters and ultimately assists the timely payment of due compensation to the public. Developing these datasets from remotely sensed products seems like an obvious choice. However, there are a number of important drawbacks which limit their utility in the context of flood risk studies. For example, external agencies have no control over the region that is surveyed, the time at which it is surveyed (which is important as the maximum extent would ideally be captured), and how freely accessible the outputs are. Moreover, the spatial resolution of these datasets can be low, and considerable uncertainties in the flood extents exist where dry surfaces give similar return signals to water. Most importantly of all, flood depths are required to estimate potential damages, but generally cannot be estimated from satellite imagery alone. In response to these problems, we have developed an alternative methodology for developing high-resolution footprints of maximum flood extent which do contain depth information. For a particular event, once reports of heavy rainfall are received, we begin monitoring real-time flow data and extracting peak values across affected areas. Next, using statistical extreme value analyses of historic flow records at the same measured locations, the return periods of the maximum event flow at each gauged location are estimated. These return periods are then interpolated along each river and matched to JBA's high-resolution hazard maps, which already exist for a series of design return periods. The extent and depth of flooding associated with the event flow is extracted from the hazard maps to create a flood footprint. Georeferenced ground, aerial and satellite images are used to establish defence integrity, highlight breach locations and validate our footprint. We have implemented this method to create seven flood footprints, including river flooding in central Europe and coastal flooding associated with Storm Xaver in the UK (both in 2013). The inclusion of depth information allows damages to be simulated and compared to actual damage and resultant loss which become available after the event. In this way, we can evaluate depth-damage functions used in catastrophe models and reduce their associated uncertainty. In further studies, the depth data could be used at an individual property level to calibrate property type specific depth-damage functions.

  10. Fast Flood damage estimation coupling hydraulic modeling and Multisensor Satellite data

    NASA Astrophysics Data System (ADS)

    Fiorini, M.; Rudari, R.; Delogu, F.; Candela, L.; Corina, A.; Boni, G.

    2011-12-01

    Damage estimation requires a good representation of the Elements at risk and their vulnerability, the knowledge of the flooded area extension and the description of the hydraulic forcing. In this work the real time use of a simplified two dimensional hydraulic model constrained by satellite retrieved flooded areas is analyzed. The main features of such a model are computational speed and simple start-up, with no need to insert complex information but a subset of simplified boundary and initial condition. Those characteristics allow the model to be fast enough to be used in real time for the simulation of flooding events. The model fills the gap of information left by single satellite scenes of flooded area, allowing for the estimation of the maximum flooding extension and magnitude. The static information provided by earth observation (like SAR extension of flooded areas at a certain time) are interpreted in a dynamic consistent way and very useful hydraulic information (e.g., water depth, water speed and the evolution of flooded areas)are provided. These information are merged with satellite identification of elements exposed to risk that are characterized in terms of their vulnerability to floods in order to obtain fast estimates of Food damages. The model has been applied in several flooding events occurred worldwide. amongst the other activations in the Mediterranean areas like Veneto (IT) (October 2010), Basilicata (IT) (March 2011) and Shkoder (January 2010 and December 2010) are considered and compared with larger types of floods like the one of Queensland in December 2010.

  11. Developing a Malaysia flood model

    NASA Astrophysics Data System (ADS)

    Haseldine, Lucy; Baxter, Stephen; Wheeler, Phil; Thomson, Tina

    2014-05-01

    Faced with growing exposures in Malaysia, insurers have a need for models to help them assess their exposure to flood losses. The need for an improved management of flood risks has been further highlighted by the 2011 floods in Thailand and recent events in Malaysia. The increasing demand for loss accumulation tools in Malaysia has lead to the development of the first nationwide probabilistic Malaysia flood model, which we present here. The model is multi-peril, including river flooding for thousands of kilometres of river and rainfall-driven surface water flooding in major cities, which may cause losses equivalent to river flood in some high-density urban areas. The underlying hazard maps are based on a 30m digital surface model (DSM) and 1D/2D hydraulic modelling in JFlow and RFlow. Key mitigation schemes such as the SMART tunnel and drainage capacities are also considered in the model. The probabilistic element of the model is driven by a stochastic event set based on rainfall data, hence enabling per-event and annual figures to be calculated for a specific insurance portfolio and a range of return periods. Losses are estimated via depth-damage vulnerability functions which link the insured damage to water depths for different property types in Malaysia. The model provides a unique insight into Malaysian flood risk profiles and provides insurers with return period estimates of flood damage and loss to property portfolios through loss exceedance curve outputs. It has been successfully validated against historic flood events in Malaysia and is now being successfully used by insurance companies in the Malaysian market to obtain reinsurance cover.

  12. A Framework for Flood Risk Analysis and Benefit Assessment of Flood Control Measures in Urban Areas

    PubMed Central

    Li, Chaochao; Cheng, Xiaotao; Li, Na; Du, Xiaohe; Yu, Qian; Kan, Guangyuan

    2016-01-01

    Flood risk analysis is more complex in urban areas than that in rural areas because of their closely packed buildings, different kinds of land uses, and large number of flood control works and drainage systems. The purpose of this paper is to propose a practical framework for flood risk analysis and benefit assessment of flood control measures in urban areas. Based on the concept of disaster risk triangle (hazard, vulnerability and exposure), a comprehensive analysis method and a general procedure were proposed for urban flood risk analysis. Urban Flood Simulation Model (UFSM) and Urban Flood Damage Assessment Model (UFDAM) were integrated to estimate the flood risk in the Pudong flood protection area (Shanghai, China). S-shaped functions were adopted to represent flood return period and damage (R-D) curves. The study results show that flood control works could significantly reduce the flood risk within the 66-year flood return period and the flood risk was reduced by 15.59%. However, the flood risk was only reduced by 7.06% when the flood return period exceeded 66-years. Hence, it is difficult to meet the increasing demands for flood control solely relying on structural measures. The R-D function is suitable to describe the changes of flood control capacity. This frame work can assess the flood risk reduction due to flood control measures, and provide crucial information for strategy development and planning adaptation. PMID:27527202

  13. Modeling pluvial flooding damage in urban environments: spatial relationships between citizens' complaints and overland catchment areas

    NASA Astrophysics Data System (ADS)

    Gaitan, Santiago; ten Veldhuis, Marie-Claire; van de Giesen, Nick

    2013-04-01

    Extreme weather events such as floods and storms are expected to cause severe economic losses in The Netherlands. Cumulative damage due to pluvial flooding can be considerable, especially in lowland areas where this type of floods occurs relatively frequently. Currently, in The Netherlands, water-related damages to property and contents are covered through private insurance. As pluvial flooding is becoming heavier and more likely to occur, sound modelling of damages is required to ensure that insurance systems are able to stand as an adaptation measure. Current damage models based on rainfall intensity, registries of insurance claims, and classifications of building types are unable to fully explain damage variability. Further developments assessing additional explanatory factors and reducing uncertainties, are required in order to significantly explain damage. In this study, urban topography is used as an explanatory factor for modelling of urban pluvial flooding. Flood damage is evaluated based on complaints data, a valuable resource for assessing vulnerability to urban pluvial flooding. Though previous research has shown coincidences between the localization of high complaint counts and large size catchments areas in Rotterdam, additional research is needed to establish the precise spatial relationship of those two variables. This additional task is the focus of the presented work. To that end a data base of complaints, that was made available by the Municipality Administration of the City, will be analysed. It comprises close to 36800 complaints from 2004 to 2011. The geographical position of the registries is aggregated into 4 to 6-digit Postal Code zones, which represents entire streets or relative positions along a street, respectively. The Municipality also provided the DEM, characterized by a spatial resolution of 0.5 m × 0.5 m, a vertical precision of 5 cm, and an accuracy better than two standard deviations of 15 cm. First the localization of complaints will be tested for spatial randomness: the distribution of Global Moran's I will be used as a measure of spatial aggregation of complaints. We expect high values of spatial aggregation, that would confirm the existence of a spatial structure in the distribution of complaints. Then we will probe how much does the extent of catchment areas influence such distribution of complaints. That will be done through both an ordinary least squares regression and a geographically weighted regression. By contrasting the results from these two regressions, the relationship between complaints and size of catchment area across the urban environment will be evaluated. The results will confirm whether complaints have a spatial distribution pattern. Furthermore, the results will provide insight into the importance of the size of catchment areas as a significant factor for complaints distribution, and for the assessment of urban vulnerability to pluvial flooding in the City of Rotterdam.

  14. Capturing changes in flood risk with Bayesian approaches for flood damage assessment

    NASA Astrophysics Data System (ADS)

    Vogel, Kristin; Schröter, Kai; Kreibich, Heidi; Thieken, Annegret; Müller, Meike; Sieg, Tobias; Laudan, Jonas; Kienzler, Sarah; Weise, Laura; Merz, Bruno; Scherbaum, Frank

    2016-04-01

    Flood risk is a function of hazard as well as of exposure and vulnerability. All three components are under change over space and time and have to be considered for reliable damage estimations and risk analyses, since this is the basis for an efficient, adaptable risk management. Hitherto, models for estimating flood damage are comparatively simple and cannot sufficiently account for changing conditions. The Bayesian network approach allows for a multivariate modeling of complex systems without relying on expert knowledge about physical constraints. In a Bayesian network each model component is considered to be a random variable. The way of interactions between those variables can be learned from observations or be defined by expert knowledge. Even a combination of both is possible. Moreover, the probabilistic framework captures uncertainties related to the prediction and provides a probability distribution for the damage instead of a point estimate. The graphical representation of Bayesian networks helps to study the change of probabilities for changing circumstances and may thus simplify the communication between scientists and public authorities. In the framework of the DFG-Research Training Group "NatRiskChange" we aim to develop Bayesian networks for flood damage and vulnerability assessments of residential buildings and companies under changing conditions. A Bayesian network learned from data, collected over the last 15 years in flooded regions in the Elbe and Danube catchments (Germany), reveals the impact of many variables like building characteristics, precaution and warning situation on flood damage to residential buildings. While the handling of incomplete and hybrid (discrete mixed with continuous) data are the most challenging issues in the study on residential buildings, a similar study, that focuses on the vulnerability of small to medium sized companies, bears new challenges. Relying on a much smaller data set for the determination of the model parameters, overly complex models should be avoided. A so called Markov Blanket approach aims at the identification of the most relevant factors and constructs a Bayesian network based on those findings. With our approach we want to exploit a major advantage of Bayesian networks which is their ability to consider dependencies not only pairwise, but to capture the joint effects and interactions of driving forces. Hence, the flood damage network does not only show the impact of precaution on the building damage separately, but also reveals the mutual effects of precaution and the quality of warning for a variety of flood settings. Thus, it allows for a consideration of changing conditions and different courses of action and forms a novel and valuable tool for decision support. This study is funded by the Deutsche Forschungsgemeinschaft (DFG) within the research training program GRK 2043/1 "NatRiskChange - Natural hazards and risks in a changing world" at the University of Potsdam.

  15. Studies of images of short-lived events using ERTS data. [forest fires, oil spills, vegetation damage, volcanoes, storm ridges, earthquakes, and floods

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Detection of short-lived events has continued. Forest fires, oil spills, vegetation damage, volcanoes, storm ridges, earthquakes, and floods have been detected and analyzed.

  16. Palaeoflood hydrology in Europe: towards a better understanding of extreme floods

    NASA Astrophysics Data System (ADS)

    Benito, G.; Thorndycraft, V. R.; Rico, M.; Sheffer, N.; Enzel, Y.

    2003-04-01

    Floods are the most common natural disasters in Europe and, in terms of economic damage, costs are increasing spectacularly with time. Flood risk assessment associated with extreme floods is difficult due to the scarcity of hydrological measurements, that rarely go beyond 1000 years, which is clearly not sufficient for flood management in urban and industrial areas. Besides the use of conventional hydrologic data, the pre-instrumental record can be completed from palaeoflood hydrology or from documentary flood information, or through the combined use of both these tools. Recent developments of palaeoflood hydrology in Europe provide (1) major improvements in flood risk assessment, and (2) a better understanding of long-term flood-climate relationships. Palaeoflood hydrology has been successfully applied in large, medium rivers as well as small ungauged mountain drainage basins. Long-term palaeoflood records from Spain and France show that recent extraordinary flooding (causing huge economic damages) are not the largest ones, but that similar or even greater floods occurred several times in the past. In addition, clusters of floods coinciding in time at several European rivers point out to climatic factors as responsible mechanisms, although in recent time flood magnitude can be magnified by increasing human activity.

  17. Global-scale river flood vulnerability in the last 50 years.

    PubMed

    Tanoue, Masahiro; Hirabayashi, Yukiko; Ikeuchi, Hiroaki

    2016-10-26

    The impacts of flooding are expected to rise due to population increases, economic growth and climate change. Hence, understanding the physical and spatiotemporal characteristics of risk drivers (hazard, exposure and vulnerability) is required to develop effective flood mitigation measures. Here, the long-term trend in flood vulnerability was analysed globally, calculated from the ratio of the reported flood loss or damage to the modelled flood exposure using a global river and inundation model. A previous study showed decreasing global flood vulnerability over a shorter period using different disaster data. The long-term analysis demonstrated for the first time that flood vulnerability to economic losses in upper-middle, lower-middle and low-income countries shows an inverted U-shape, as a result of the balance between economic growth and various historical socioeconomic efforts to reduce damage, leading to non-significant upward or downward trends. We also show that the flood-exposed population is affected by historical changes in population distribution, with changes in flood vulnerability of up to 48.9%. Both increasing and decreasing trends in flood vulnerability were observed in different countries, implying that population growth scenarios considering spatial distribution changes could affect flood risk projections.

  18. Global-scale river flood vulnerability in the last 50 years

    PubMed Central

    Tanoue, Masahiro; Hirabayashi, Yukiko; Ikeuchi, Hiroaki

    2016-01-01

    The impacts of flooding are expected to rise due to population increases, economic growth and climate change. Hence, understanding the physical and spatiotemporal characteristics of risk drivers (hazard, exposure and vulnerability) is required to develop effective flood mitigation measures. Here, the long-term trend in flood vulnerability was analysed globally, calculated from the ratio of the reported flood loss or damage to the modelled flood exposure using a global river and inundation model. A previous study showed decreasing global flood vulnerability over a shorter period using different disaster data. The long-term analysis demonstrated for the first time that flood vulnerability to economic losses in upper-middle, lower-middle and low-income countries shows an inverted U-shape, as a result of the balance between economic growth and various historical socioeconomic efforts to reduce damage, leading to non-significant upward or downward trends. We also show that the flood-exposed population is affected by historical changes in population distribution, with changes in flood vulnerability of up to 48.9%. Both increasing and decreasing trends in flood vulnerability were observed in different countries, implying that population growth scenarios considering spatial distribution changes could affect flood risk projections. PMID:27782160

  19. A framework for global river flood risk assessments

    NASA Astrophysics Data System (ADS)

    Winsemius, H. C.; Van Beek, L. P. H.; Jongman, B.; Ward, P. J.; Bouwman, A.

    2013-05-01

    There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate, which can be used for strategic global flood risk assessments. The framework estimates hazard at a resolution of ~ 1 km2 using global forcing datasets of the current (or in scenario mode, future) climate, a global hydrological model, a global flood-routing model, and more importantly, an inundation downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population) to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population). The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE). We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard estimates has been performed using the Dartmouth Flood Observatory database. This was done by comparing a high return period flood with the maximum observed extent, as well as by comparing a time series of a single event with Dartmouth imagery of the event. Validation of modelled damage estimates was performed using observed damage estimates from the EM-DAT database and World Bank sources. We discuss and show sensitivities of the estimated risks with regard to the use of different climate input sets, decisions made in the downscaling algorithm, and different approaches to establish impact models.

  20. Flood of May 2006 in York County, Maine

    USGS Publications Warehouse

    Stewart, Gregory J.; Kempf, Joshua P.

    2008-01-01

    A stalled low-pressure system over coastal New England on Mother's Day weekend, May 13-15, 2006, released rainfall in excess of 15 inches. This flood (sometimes referred to as the 'Mother's Day flood') caused widespread damage to homes, businesses, roads, and structures in southern Maine. The damage to public property in York County was estimated to be $7.5 million. As a result of these damages, a presidential disaster declaration was enacted on May 25, 2006, for York County, Maine. Peak-flow recurrence intervals for eight of the nine streams studied were calculated to be greater than 500 years. The peak-flow recurrence interval of the remaining stream was calculated to be between a 100-year and a 500-year interval. This report provides a detailed description of the May 2006 flood in York County, Maine. Information is presented on peak streamflows and peak-flow recurrence intervals on nine streams, peak water-surface elevations for 80 high-water marks at 25 sites, hydrologic conditions before and after the flood, comparisons with published Flood Insurance Studies, and places the May 2006 flood in context with historical floods in York County. At sites on several streams, differences were observed between peak flows published in the Flood Insurance Studies and those calculated for this study. The differences in the peak flows from the published Flood Insurance Studies and the flows calculated for this report are within an acceptable range for flows calculated at ungaged locations, with the exception of those for the Great Works River and Merriland River. For sites on the Mousam River, Blacksmith Brook, Ogunquit River, and Cape Neddick River, water-surface elevations from Flood Insurance Studies differed with documented water-surface elevations from the 2006 flood.

  1. Hurricane Harvey Riverine Flooding: Part 2: Integration of Heterogeneous Earth Observation Data for Comparative Analysis with High-Resolution Inundation Boundaries Reconstructed from Flood2D-GPU Model

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Sava, E.; Cervone, G.

    2017-12-01

    Hurricane Harvey has been noted as the wettest cyclone on record for the US as well as the most destructive (so far) for the 2017 hurricane season. An entire year worth of rainfall occurred over the course of a few days. The city of Houston was greatly impacted as the storm lingered over the city for five days, causing a record-breaking 50+ inches of rain as well as severe damage from flooding. Flood model simulations were performed to reconstruct the event in order to better understand, assess, and predict flooding dynamics for the future. Additionally, number of remote sensing platforms, and on ground instruments that provide near real-time data have also been used for flood identification, monitoring, and damage assessment. Although both flood models and remote sensing techniques are able to identify inundated areas, rapid and accurate flood prediction at a high spatio-temporal resolution remains a challenge. Thus a methodological approach which fuses the two techniques can help to better validate what is being modeled and observed. Recent advancements in data fusion techniques of remote sensing with near real time heterogeneous datasets have allowed emergency responders to more efficiently extract increasingly precise and relevant knowledge from the available information. In this work the use of multiple sources of contributed data, coupled with remotely sensed and open source geospatial datasets is demonstrated to generate an understanding of potential damage assessment for the floods after Hurricane Harvey in Harris County, Texas. The feasibility of integrating multiple sources at different temporal and spatial resolutions into hydrodynamic models for flood inundation simulations is assessed. Furthermore the contributed datasets are compared against a reconstructed flood extent generated from the Flood2D-GPU model.

  2. Integrated flood damage modelling in the Ebro river basin under hydrodynamic, socio-economic and environmental factors

    NASA Astrophysics Data System (ADS)

    Foudi, S.; Galarraga, I.; Osés, N.

    2012-04-01

    This paper presents a model of flood damage measurement. It studies the socio-economic and environmental potential damage of floods in the Ebro river basin. We estimate the damage to the urban, rural and environmental sectors. In these sectors, we make distinctions between residential, non residential, cultural, agricultural, public facilities and utilities, environmental and human subsectors. We focus on both the direct, indirect, tangible and intangible impacts. The residential damages refer to the damages on housing, costs of repair and cleaning as direct effects and the re-housing costs as an indirect effect. The non residential and agricultural impacts concern the losses to the economic sectors (industry, business, agricultural): production, capital losses, costs of cleaning and repairs for the direct costs and the consequences of the suspension of activities for the indirect costs. For the human sector, we refer to the physical impacts (injuries and death) in the direct tangible effects and to the posttraumatic stress as indirect intangible impact. The environmental impacts focus on a site of Community Interests (pSCIs) in the case study area. The case study is located the Ebro river basin, Spain. The Ebro river basin is the larger river basin in term of surface and water discharge. The Ebro river system is subject to Atlantic and Mediterranean climatic influences. It gathers most of its water from the north of Spain (in the Pyrenees Mountains) and is the most important river basin of Spain in term of water resources. Most of the flooding occurs during the winter period. Between 1900- 2010, the National Catalogue of Historical Floods identifies 372 events: meanly 33 events every 10 years and up to 58 during the 1990-2000. Natural floods have two origins: (i) persistent rainfalls in large sub basins raised up by high temperature giving rise to a rapid thaw in the Pyrenees, (ii) local rainfalls of short duration and high intensity that gives rise to rapid and wrenching floods. Our integrated model combines hydrologic, land use, environmental and economic data. The combination of the cadastral data with the flood characteristics (flow, depth, duration) for various periods of return enables to draw damage maps expressed as function of flood characteristics (Penning-Rowsell et al. 2005). This methodology also enables to illustrate consequences of risk prevention measures. We can thus measure the value of information in the alert system of Civil Protection Agency, give information on risks for urban development plans and simulate the consequences of hydraulic interventions like river bed cleaning. This methodology would then contribute to match with the requirements of the 2007 EU flood risk Management Directive (2007/60/CE).

  3. Comparing multistate expected damages, option price and cumulative prospect measures for valuing flood protection

    NASA Astrophysics Data System (ADS)

    Farrow, Scott; Scott, Michael

    2013-05-01

    Floods are risky events ranging from small to catastrophic. Although expected flood damages are frequently used for economic policy analysis, alternative measures such as option price (OP) and cumulative prospect value exist. The empirical magnitude of these measures whose theoretical preference is ambiguous is investigated using case study data from Baltimore City. The outcome for the base case OP measure increases mean willingness to pay over the expected damage value by about 3%, a value which is increased with greater risk aversion, reduced by increased wealth, and only slightly altered by higher limits of integration. The base measure based on cumulative prospect theory is about 46% less than expected damages with estimates declining when alternative parameters are used. The method of aggregation is shown to be important in the cumulative prospect case which can lead to an estimate up to 41% larger than expected damages. Expected damages remain a plausible and the most easily computed measure for analysts.

  4. Flood damage in Italy: towards an assessment model of reconstruction costs

    NASA Astrophysics Data System (ADS)

    Sterlacchini, Simone; Zazzeri, Marco; Genovese, Elisabetta; Modica, Marco; Zoboli, Roberto

    2016-04-01

    Recent decades in Italy have seen a very rapid expansion of urbanisation in terms of physical assets, while demographics have remained stable. Both the characteristics of Italian soil and anthropic development, along with repeated global climatic stress, have made the country vulnerable to floods, the intensity of which is increasingly alarming. The combination of these trends will contribute to large financial losses due to property damage in the absence of specific mitigation strategies. The present study focuses on the province of Sondrio in Northern Italy (area of about 3,200 km²), which is home to more than 180,000 inhabitants and the population is growing slightly. It is clearly a hot spot for flood exposure, as it is primarily a mountainous area where floods and flash floods hit frequently. The model we use for assessing potential flood damage determines risk scenarios by overlaying flood hazard maps and economic asset data. In Italy, hazard maps are provided by Regional Authorities through the Hydrogeological System Management Plan (PAI) based on EU Flood Directive guidelines. The PAI in the study area includes both the large plain and the secondary river system and considers three hazard scenarios of Low, Medium and High Frequency associated with return periods of 20, 200 and 500 years and related water levels. By an overlay of PAI maps and residential areas, visualized on a GIS, we determine which existing built-up areas are at risk for flood according to each scenario. Then we investigate the value of physical assets potentially affected by floods in terms of market values, using the database of the Italian Property Market Observatory (OMI), and in terms of reconstruction costs, by considering synthetic cost indexes of predominant building types (from census information) and PAI water height. This study illustrates a methodology to assess flood damage in urban settlements and aims to determine general guidelines that can be extended throughout Italy. The final objective will be to analyse how the loss prospective can change when mitigation measures, including actions to reduce the flood hazard and strategies to prevent potential consequences, are implemented. Flood impacts and the corresponding value of mitigation measures will be assessed by means of a cost-benefit analysis in accordance with the EU Floods Directive.

  5. Flood of July 12-13, 2004, Burlington and Camden Counties, South-Central New Jersey

    USGS Publications Warehouse

    Protz, Amy R.; Reed, Timothy J.

    2006-01-01

    Intense rainfall inundated south-central New Jersey on July 12-13, 2004, causing major flooding with heavy property, road, and bridge damage in Burlington and Camden Counties. Forty-five dams were topped or damaged, or failed completely. The affected areas were in the Rancocas Creek, Cooper River, and Pennsauken Creek Basins. The U.S. Geological Survey (USGS) documented peak stream elevations and flows at 56 selected sites within the affected area. With rainfall totals averaging more than 6 inches throughout the three basins, peak-of-record flood elevations and streamflows occurred at all but one USGS stream gage, where the previous record was tied. Flood-frequency recurrence-intervals ranged from 30 to greater than 100 years and maximum streamflow per square mile ranged from 13.9 to 263 cubic feet per second per square mile (ft3/s/mi2). Peak streamflow at USGS stream gages surrounding the affected basins are associated with considerably lower recurrence intervals and demonstrate the limited extent of the flood. A high tide of about 1 foot above monthly mean high tide did not contribute to high-water conditions. Low ground-water levels prior to the rainfall helped to mitigate flooding in the affected basins. Compared with historical floods in the Rancocas Creek Basin during 1938-40, the July 2004 flood had greater streamflow, but lower stream elevations. Property damage from the event was estimated at $50 million. Governor James E. McGreevy declared a State of Emergency in Burlington and Camden Counties on July 13, 2004. After assessment of the damage by the Federal Emergency Management Agency (FEMA), President George W. Bush declared Burlington and Camden Counties disaster areas on July 16, 2004.

  6. Occurrence of floods and the role of climate during the twentieth century (Calabria, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Petrucci, Olga; Polemio, Maurizio

    2010-05-01

    In region as Calabria (Southern Italy), characterized by mountainous morphology, the areas suitable for agriculture and urban development are represented by narrow river and coastal plains. The human utilization of these areas is often hard fought with rivers and flowing waters; floods cause periodically damage to agricultural activities, roads, rural settlements and, sometimes, to people. The morphological setting of the region is dominated by the presence of a main river network made up of ephemeral streams widely observed in southern Italy, are locally called fiumara. They show river beds that in plain sector are often larger than one kilometer, completely dry for almost the entire summer season and affected, during the winter, by severe flash floods characterized by huge sediment load. Because the migration of river channel through the wide river bed, discharge data are unavailable. A wide archive containing data on historical floods occurred through the past two centuries and the defensive works carried out to cope with flood damage in Calabria has been recently upgraded by using data coming from the Ministry of Public Works. In the present work, for a study area located in the northernmost province of Calabria, the historical series of floods which have occurred since 1800 has been collected. Damage caused by the different flood events have been compared to both rainfall data (if available) and data concerning defensive work construction. The aim is to assess if and (for what fiumara of the study area) works carried out in the past obtained the effect of reducing damage caused by flash floods. Results of the analysis can represent a useful tool to correctly drive the future development of the main plain of the study area.

  7. Urban Flood Management with Integrated Inland-River System in Seoul

    NASA Astrophysics Data System (ADS)

    Moon, Y. I.; Kim, J. S.; Yuk, J. M.

    2015-12-01

    Global warming and climate change have caused significant damage and loss of life worldwide. The pattern of natural disasters has gradually diversified and their frequency is increasing. The impact of climate change on flood risk in urban rivers is of particular interest because these areas are typically densely populated. The occurrence of urban river flooding due to climate change not only causes significant loss of life and property but also causes health and social problems. It is therefore necessary to develop a scientific urban flood management system to cope with and reduce the impacts of climate change, including flood damage. In this study, we are going to introduce Integrated Inland-River Flood Analysis System in Seoul to conduct predictions on flash rain or short-term rainfall by using radar and satellite information and perform prompt and accurate prediction on the inland flooded areas. In addition, this urban flood management system can be used as a tool for decision making of systematic disaster prevention through real-time monitoring.

  8. Flood of July 21, 1975 in Mercer County, New Jersey

    USGS Publications Warehouse

    Stankowski, Stephen J.; Schopp, Robert D.; Velnich, Anthony J.

    1975-01-01

    Intense rainfall during the evening of July 20 and early morning hours of July 21, 1975 caused flooding of unprecedented magnitude in highly urbanized Mercer County, New Jersey. Over 6 inches (152 millimetres) of rainfall was recorded during a 10-hour period at Trenton, the capital of New Jersey. No lives were lost but damages to highways and bridges, to industrial, business, and residential buildings, to farmlands and crops, and to water supply systems were severe. This report illustrates the magnitude of the flood and provides hydrologic data needed for planning and design to control or lessen damages from future floods. It includes discussions of the antecedent conditions and meteorological aspects of the storm; a description of the flood and comparison to previous floods; a summary of flood stages and discharges; a discussion of flood frequency; and photomosaics which show inundated areas. More than 200 high-water marks are described as to location and elevation above mean sea level.

  9. Application of the Flood-IMPAT procedure in the Valle d'Aosta Region, Italy

    NASA Astrophysics Data System (ADS)

    Minucci, Guido; Mendoza, Marina Tamara; Molinari, Daniela; Atun, Funda; Menoni, Scira; Ballio, Francesco

    2016-04-01

    Flood Risk Management Plans (FRMPs) established by European "Floods" Directive (Directive 2007/60/EU) to Member States in order to address all aspects of flood risk management, taking into account costs and benefits of proposed mitigation tools must be reviewed by the same law every six years. This is aimed at continuously increasing the effectiveness of risk management, on the bases of the most advanced knowledge of flood risk and most (economically) feasible solutions, also taking into consideration achievements of the previous management cycle. Within this context, the Flood-IMPAT (i.e. Integrated Meso-scale Procedure to Assess Territorial flood risk) procedure has been developed aiming at overcoming limits of risk maps produced by the Po River Basin Authority and adopted for the first version of the Po River FRMP. The procedure allows the estimation of flood risk at the meso-scale and it is characterized by three main peculiarities. First is its feasibility for the entire Italian territory. Second is the possibility to express risk in monetary terms (i.e. expected damage), at least for those categories of damage for which suitable models are available. Finally, independent modules compose the procedure: each module allows the estimation of a certain type of damage (i.e. direct, indirect, intangibles) on a certain sector (e.g. residential, industrial, agriculture, environment, etc.) separately, guaranteeing flexibility in the implementation. This paper shows the application of the Flood-IMPAT procedure and the recent advancements in the procedure, aiming at increasing its reliability and usability. Through a further implementation of the procedure in the Dora Baltea River Basin (North of Italy), it was possible to test the sensitivity of risk estimates supplied by Flood-IMPAT with respect to different damage models and different approaches for the estimation of assets at risk. Risk estimates were also compared with observed damage data in the investigated areas to identify the most suitable damage model/exposure assessment approach to be implemented in the procedure. In the end, the procedure was adapted to be applied at the micro-scale, in such a way to supply risk estimates, which are coherent with those at the meso-scale. This way the procedure can be first implemented in the whole catchment to identify hotspots; the micro-scale approach can be implemented in a second run to investigate in depth (i) the most risk prone areas and (ii) the possible risk mitigation strategies.

  10. Decision tree analysis of factors influencing rainfall-related building damage

    NASA Astrophysics Data System (ADS)

    Spekkers, M. H.; Kok, M.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.

    2014-04-01

    Flood damage prediction models are essential building blocks in flood risk assessments. Little research has been dedicated so far to damage of small-scale urban floods caused by heavy rainfall, while there is a need for reliable damage models for this flood type among insurers and water authorities. The aim of this paper is to investigate a wide range of damage-influencing factors and their relationships with rainfall-related damage, using decision tree analysis. For this, district-aggregated claim data from private property insurance companies in the Netherlands were analysed, for the period of 1998-2011. The databases include claims of water-related damage, for example, damages related to rainwater intrusion through roofs and pluvial flood water entering buildings at ground floor. Response variables being modelled are average claim size and claim frequency, per district per day. The set of predictors include rainfall-related variables derived from weather radar images, topographic variables from a digital terrain model, building-related variables and socioeconomic indicators of households. Analyses were made separately for property and content damage claim data. Results of decision tree analysis show that claim frequency is most strongly associated with maximum hourly rainfall intensity, followed by real estate value, ground floor area, household income, season (property data only), buildings age (property data only), ownership structure (content data only) and fraction of low-rise buildings (content data only). It was not possible to develop statistically acceptable trees for average claim size, which suggest that variability in average claim size is related to explanatory variables that cannot be defined at the district scale. Cross-validation results show that decision trees were able to predict 22-26% of variance in claim frequency, which is considerably better compared to results from global multiple regression models (11-18% of variance explained). Still, a large part of the variance in claim frequency is left unexplained, which is likely to be caused by variations in data at subdistrict scale and missing explanatory variables.

  11. A Study on Estimation on Flood Warning Trigger Rainfall in medium and small Stream Affected by Urban Effects

    NASA Astrophysics Data System (ADS)

    Youngseok, Song; Moojong, Park; JungHo, Lee; HeeSup, Lee

    2013-04-01

    As extreme floods occur frequently in recent years due to global climate changes, an in sudden local flooding of great volume and short duration is becoming the significant danger and loss of life and property in the Korean Peninsula as well as most parts of the world. The desire for living without hazardous damages grows these days, the city strategy to make the safer community has become an issue. Previously most of flood prevention efforts have been made for relatively large watersheds near to channel flow. However, as economical development and the expansion of city near medium and small stream, human casualty and property by flood occurs frequently. Therefore, to reduce the damage of human lives and property by flood, we develop an assessment method for flood warning trigger rainfall considering urban effect. Considering complex land use, HEC-HMS is used for rural area and SWMM is adopted for sewer networks runoff. And relationship between runoff and stream water level, HEC-RAS is accompanied with runoff results. Proposed flood warning trigger rainfall assessment method shows good agreement with gauged data and could be used for another case to mitigate damage. Acknowledgement: "This research was supported by a grant [NEMA-NH-2011-45] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea." Keyword: HEC-HMS, HEC-RAS, critical precipitation, medium and small stream

  12. Are we preventing flood damage eco-efficiently? An integrated method applied to post-disaster emergency actions.

    PubMed

    Petit-Boix, Anna; Arahuetes, Ana; Josa, Alejandro; Rieradevall, Joan; Gabarrell, Xavier

    2017-02-15

    Flood damage results in economic and environmental losses in the society, but flood prevention also entails an initial investment in infrastructure. This study presents an integrated eco-efficiency approach for assessing flood prevention and avoided damage. We focused on ephemeral streams in the Maresme region (Catalonia, Spain), which is an urbanized area affected by damaging torrential events. Our goal was to determine the feasibility of post-disaster emergency actions implemented after a major event through an integrated hydrologic, environmental and economic approach. Life cycle assessment (LCA) and costing (LCC) were used to determine the eco-efficiency of these actions, and their net impact and payback were calculated by integrating avoided flood damage. Results showed that the actions effectively reduced damage generation when compared to the registered water flows and rainfall intensities. The eco-efficiency of the emergency actions resulted in 1.2kgCO 2 eq. per invested euro. When integrating the avoided damage into the initial investment, negative net impacts were obtained (e.g., -5.2E+05€ and -2.9E+04kgCO 2 eq. per event), which suggests that these interventions contributed with environmental and economic benefits to the society. The economic investment was recovered in two years, whereas the design could be improved to reduce their environmental footprint, which is recovered in 25years. Our method and results highlight the effects of integrating the environmental and economic consequences of decisions at an urban scale and might help the administration and insurance companies in the design of prevention plans and climate change adaptation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. 33 CFR 203.48 - Inspection guidelines for non-Federal flood control works.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...

  14. 33 CFR 203.48 - Inspection guidelines for non-Federal flood control works.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...

  15. 33 CFR 203.44 - Rehabilitation of non-Federal flood control works.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...

  16. 33 CFR 203.44 - Rehabilitation of non-Federal flood control works.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...

  17. 33 CFR 203.44 - Rehabilitation of non-Federal flood control works.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...

  18. 33 CFR 203.44 - Rehabilitation of non-Federal flood control works.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...

  19. 33 CFR 203.44 - Rehabilitation of non-Federal flood control works.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...

  20. 33 CFR 203.48 - Inspection guidelines for non-Federal flood control works.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...

  1. 33 CFR 203.48 - Inspection guidelines for non-Federal flood control works.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...

  2. Summary of floods in the United States during 1959

    USGS Publications Warehouse

    Hendricks, E.L.

    1964-01-01

    This report describes the most outstanding floods that occurred in the United States during 1959.The floods of January-February in Ohio and adjacent States were the most outstanding floods of the year 1959 with respect to area affected, number of streams having maximum discharge of record, rare occurrence of peaks, and great amount of damage caused.Floods in the Rock River basin in southern Wisconsin and northern Illinois during late March and early April produced maximum stages and discharges on many streams. The Rock River at Watertown, Wisc., was the highest in 40 years and Lake Mendota at Madison, Wisc., reached its maximum stage since 1916. Many towns were flooded and thousands of persons were forced from their homes.What is possibly the greatest 24-hour rainfall ever to be noted in Iowa fell August 5-6. The resulting floods inundated an 80-block area in Fort Madison, Iowa, and caused damage estimated at $600,000 in the city. A total of 130,000 acres of land was inundated.Major floods occurred in Texas in the upper Trinity, middle Brazos, middle Colorado, upper Guadalupe, and upper Nueces River basins in early October, following heavy general rains that covered most of Texas. The peak stage on North Bosque River near Clifton was the highest known since 1887. More than \\$1 million in damage was reported for Houston.In addition to the 4 floods mentioned above, 22 others of lesser magnitude are considered important enough to report in this annual summary.

  3. Low cost, multiscale and multi-sensor application for flooded area mapping

    NASA Astrophysics Data System (ADS)

    Giordan, Daniele; Notti, Davide; Villa, Alfredo; Zucca, Francesco; Calò, Fabiana; Pepe, Antonio; Dutto, Furio; Pari, Paolo; Baldo, Marco; Allasia, Paolo

    2018-05-01

    Flood mapping and estimation of the maximum water depth are essential elements for the first damage evaluation, civil protection intervention planning and detection of areas where remediation is needed. In this work, we present and discuss a methodology for mapping and quantifying flood severity over floodplains. The proposed methodology considers a multiscale and multi-sensor approach using free or low-cost data and sensors. We applied this method to the November 2016 Piedmont (northwestern Italy) flood. We first mapped the flooded areas at the basin scale using free satellite data from low- to medium-high-resolution from both the SAR (Sentinel-1, COSMO-Skymed) and multispectral sensors (MODIS, Sentinel-2). Using very- and ultra-high-resolution images from the low-cost aerial platform and remotely piloted aerial system, we refined the flooded zone and detected the most damaged sector. The presented method considers both urbanised and non-urbanised areas. Nadiral images have several limitations, in particular in urbanised areas, where the use of terrestrial images solved this limitation. Very- and ultra-high-resolution images were processed with structure from motion (SfM) for the realisation of 3-D models. These data, combined with an available digital terrain model, allowed us to obtain maps of the flooded area, maximum high water area and damaged infrastructures.

  4. Mapping cropping patterns in irrigated rice fields in West Java: Towards mapping vulnerability to flooding using time-series MODIS imageries

    NASA Astrophysics Data System (ADS)

    Sianturi, Riswan; Jetten, V. G.; Sartohadi, Junun

    2018-04-01

    Information on the vulnerability to flooding is vital to understand the potential damages from flood events. A method to determine the vulnerability to flooding in irrigated rice fields using the Enhanced Vegetation Index (EVI) was proposed in this study. In doing so, the time-series EVI derived from time-series 8 day 500 m spatial resolution MODIS imageries (MOD09A1) was used to generate cropping patterns in irrigated rice fields in West Java. Cropping patterns were derived from the spatial distribution and phenology metrics so that it is possible to show the variation of vulnerability in space and time. Vulnerability curves and cropping patterns were used to determine the vulnerability to flooding in irrigated rice fields. Cropping patterns capture the shift in the vulnerability, which may lead to either an increase or decrease of the degree of damage in rice fields of origin and other rice fields. The comparison of rice field areas between MOD09A1 and ALOS PALSAR and MOD09A1 and Agricultural Statistics showed consistent results with R2 = 0.81 and R2 = 0.93, respectively. The estimated and observed DOYs showed RMSEs = 9.21, 9.29, and 9.69 days for the Start of Season (SOS), heading stage, and End of Season (EOS), respectively. Using the method, one can estimate the relative damage provided available information on the flood depth and velocity. The results of the study may support the efforts to reduce the potential damages from flooding in irrigated rice fields.

  5. Seepage and Piping through Levees and Dikes using 2D and 3D Modeling Codes

    DTIC Science & Technology

    2016-06-01

    by the Hydrologic Systems Branch of the Flood and Storm Protection Division (CEERD-HF), U.S. Army Engineer Research and Development Center, Coastal ...ER D C/ CH L TR -1 6- 6 Flood & Coastal Storm Damage Reduction Program Seepage and Piping through Levees and Dikes Using 2D and 3D...Flood & Coastal Storm Damage Reduction Program ERDC/CHL TR-16-6 June 2016 Seepage and Piping through Levees and Dikes Using 2D and 3D Modeling Codes

  6. Flood impacts on a water distribution network

    NASA Astrophysics Data System (ADS)

    Arrighi, Chiara; Tarani, Fabio; Vicario, Enrico; Castelli, Fabio

    2017-12-01

    Floods cause damage to people, buildings and infrastructures. Water distribution systems are particularly exposed, since water treatment plants are often located next to the rivers. Failure of the system leads to both direct losses, for instance damage to equipment and pipework contamination, and indirect impact, since it may lead to service disruption and thus affect populations far from the event through the functional dependencies of the network. In this work, we present an analysis of direct and indirect damages on a drinking water supply system, considering the hazard of riverine flooding as well as the exposure and vulnerability of active system components. The method is based on interweaving, through a semi-automated GIS procedure, a flood model and an EPANET-based pipe network model with a pressure-driven demand approach, which is needed when modelling water distribution networks in highly off-design conditions. Impact measures are defined and estimated so as to quantify service outage and potential pipe contamination. The method is applied to the water supply system of the city of Florence, Italy, serving approximately 380 000 inhabitants. The evaluation of flood impact on the water distribution network is carried out for different events with assigned recurrence intervals. Vulnerable elements exposed to the flood are identified and analysed in order to estimate their residual functionality and to simulate failure scenarios. Results show that in the worst failure scenario (no residual functionality of the lifting station and a 500-year flood), 420 km of pipework would require disinfection with an estimated cost of EUR 21 million, which is about 0.5 % of the direct flood losses evaluated for buildings and contents. Moreover, if flood impacts on the water distribution network are considered, the population affected by the flood is up to 3 times the population directly flooded.

  7. Delineating Floodplain in North Korea using Remote Sensing and Geographic Information System

    NASA Astrophysics Data System (ADS)

    Lim, J.; Lee, K. S.

    2015-12-01

    Korea has been divided into two countries after World War II. So environmental studies about North Korean are not easy and very limited. There were several flood damages every summer in North Korea since 1995, which induces lots of economic loss and agricultural production decrease. Delineating floodplain is indispensable to estimate the magnitude of flood damage and restore the flooded paddy field after unification. Remote Sensing (RS) can provide opportunity to study inaccessible area. In addition, flooding detection is possible. Several research groups study about flooding disaster using RS. Optical images and microwave images have been used in that field. Also, Digital topographic data have been used for flooding detection. Therefore, the purpose of this study is to investigate the land characteristics of floodplain by delineating floodplain in inaccessible North Korea using Landsat and digital topographic data. Landsat TM 5 images were used in this study. North Korea had severe flooding disaster since 1995. Among them 1995, 2007 and 2012 flooding are known for serious damages. Two Landsat images before and after flooding of each year were used to delineate floodplain. Study areas are Pyongyang City, Nampo City, North and South Hwanghae Province and South Pyongan Province. Floodplain are derived from overlaid classification image and flood-depth map. 1:25,000 scale digital topographic data were used to make flood-depth map. For land cover classification image enhancement and supervised classification with maximum likelihood classifier were used. Training areas were selected by visual interpretation using Daum-map which provides high resolution image of whole North Korea. The spatial characteristics of the floodplain were discussed based on floodplain map delineated in this study.

  8. Analysis of the French insurance market exposure to floods: a stochastic model combining river overflow and surface runoff

    NASA Astrophysics Data System (ADS)

    Moncoulon, D.; Labat, D.; Ardon, J.; Onfroy, T.; Leblois, E.; Poulard, C.; Aji, S.; Rémy, A.; Quantin, A.

    2013-07-01

    The analysis of flood exposure at a national scale for the French insurance market must combine the generation of a probabilistic event set of all possible but not yet occurred flood situations with hazard and damage modeling. In this study, hazard and damage models are calibrated on a 1995-2012 historical event set, both for hazard results (river flow, flooded areas) and loss estimations. Thus, uncertainties in the deterministic estimation of a single event loss are known before simulating a probabilistic event set. To take into account at least 90% of the insured flood losses, the probabilistic event set must combine the river overflow (small and large catchments) with the surface runoff due to heavy rainfall, on the slopes of the watershed. Indeed, internal studies of CCR claim database has shown that approximately 45% of the insured flood losses are located inside the floodplains and 45% outside. 10% other percent are due to seasurge floods and groundwater rise. In this approach, two independent probabilistic methods are combined to create a single flood loss distribution: generation of fictive river flows based on the historical records of the river gauge network and generation of fictive rain fields on small catchments, calibrated on the 1958-2010 Météo-France rain database SAFRAN. All the events in the probabilistic event sets are simulated with the deterministic model. This hazard and damage distribution is used to simulate the flood losses at the national scale for an insurance company (MACIF) and to generate flood areas associated with hazard return periods. The flood maps concern river overflow and surface water runoff. Validation of these maps is conducted by comparison with the address located claim data on a small catchment (downstream Argens).

  9. Agricultural damages and losses from ARkStorm scenario flooding in California

    USGS Publications Warehouse

    Wein, Anne; David Mitchell,; Peters, Jeff; John Rowden,; Johnny Tran,; Alessandra Corsi,; Dinitz, Laura B.

    2016-01-01

    Scientists designed the ARkStorm scenario to challenge the preparedness of California communities for widespread flooding with a historical precedence and increased likelihood under climate change. California is an important provider of vegetables, fruits, nuts, and other agricultural products to the nation. This study analyzes the agricultural damages and losses pertaining to annual crops, perennial crops, and livestock in California exposed to ARkStorm flooding. Statewide, flood damage is incurred on approximately 23% of annual crop acreage, 5% of perennial crop acreage, and 5% of livestock, e.g., dairy, feedlot, and poultry, acreage. The sum of field repair costs, forgone income, and product replacement costs span $3.7 and $7.1 billion (2009) for a range of inundation durations. Perennial crop loss estimates dominate, and the vulnerability of orchards and vineyards has likely increased with recent expansion. Crop reestablishment delays from levee repair and dewatering more than double annual crop losses in the delta islands, assuming the fragile system does not remain permanently flooded. The exposure of almost 200,000 dairy cows to ARkStorm flooding poses livestock evacuation challenges. Read More: http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29NH.1527-6996.0000174

  10. Flood-related work disruption and poor health outcomes among university students.

    PubMed

    Peek-Asa, Corinne; Ramirez, Marizen; Young, Tracy; Cao, YanYan

    2012-12-01

    Globally, floods are the most common and among the most devastating of natural disasters. Natural disasters such as floods impact local businesses, increasing local unemployment by up to 8.2%. Previous research has linked individual losses from disasters with symptoms such as posttraumatic stress disorder. However, little is known about the impact of work disruption and job loss on post-disaster psychological symptoms. University students, who are often living far away from family support structures and have limited resources, may be particularly vulnerable. This study examines student psychological health following a large flood at a university. Students who experienced flood-related job loss or disruption had a higher proportion of psychological symptoms than those who did not experience job loss or disruption, controlling for individual loss such as injury, home loss or evacuation. On June 8, 2008, a major flood affected seven US Midwestern states. A total of two dozen people were killed and 148 injured, although no deaths or serious injuries were reported in the population used for this study. At the study university, operations were closed for one week, and 20 buildings were severely damaged. A cross-sectional survey of all students enrolled during the semester of the flood was conducted. Students were sent an online survey six weeks after the flood. In addition to questions about damage to their homes, the survey asked students if their work was disrupted because of the floods. Symptoms of PTSD were measured through the modified Child PTSD Symptom Scale. Of the 1,231 responding students with complete surveys, 667 (54.2%) reported that their work was disrupted due to the floods. Controlling for gender, ethnicity, grade, and damage to the student's home, students reporting work disruption were more than four times more likely to report PTSD symptoms (95% CI, 2.5-8.2). Work disruption was independently associated with decreases in general mental and physical health following the floods, as well as with increases in alcohol use. Disaster research has focused on damage to individuals and homes, but there has been little focus on work losses. Individuals who lose their jobs may be a vulnerable population post-disaster.

  11. Floods of March 1978, in the Maumee River basin, northeastern Indiana

    USGS Publications Warehouse

    Hoggatt, Richard Earl

    1981-01-01

    Floods in the Maumee River basin in northeastern Indiana in March 1978 resulted in heavy damage in Fort Wayne and surrounding areas. Flood damage in Fort Wayne was estimated by the Mayor to be 11 million dollars. Approximately 15 percent of the city was inundated, and 2,400 of its 190,000 residents were forced to leave their homes. The estimate of damage in Adams and Allen Counties by Civil Defense officials was 44 million dollars. The Maumee River at New Haven exceeded the peak stage of record, 21.4 feet, by 2.2 feet. The peak discharge at this stream-gaging station, 22,400 cubic feet per second, was about equal to that of a 75-year flood. Recurrence intervals of peak flows on streams tributary to the Maumee River ranged from 5 to 50 years. Records of peak and daily discharges and some precipitation data are given in this report. 

  12. 46 CFR 28.580 - Unintentional flooding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Unintentional flooding. 28.580 Section 28.580 Shipping... INDUSTRY VESSELS Stability § 28.580 Unintentional flooding. (a) Applicability. Except for an open boat that... survive the assumed damage and unintentional flooding described in paragraphs (d) and (e) of this section...

  13. 46 CFR 28.580 - Unintentional flooding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Unintentional flooding. 28.580 Section 28.580 Shipping... INDUSTRY VESSELS Stability § 28.580 Unintentional flooding. (a) Applicability. Except for an open boat that... survive the assumed damage and unintentional flooding described in paragraphs (d) and (e) of this section...

  14. 46 CFR 28.580 - Unintentional flooding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Unintentional flooding. 28.580 Section 28.580 Shipping... INDUSTRY VESSELS Stability § 28.580 Unintentional flooding. (a) Applicability. Except for an open boat that... survive the assumed damage and unintentional flooding described in paragraphs (d) and (e) of this section...

  15. 46 CFR 28.580 - Unintentional flooding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Unintentional flooding. 28.580 Section 28.580 Shipping... INDUSTRY VESSELS Stability § 28.580 Unintentional flooding. (a) Applicability. Except for an open boat that... survive the assumed damage and unintentional flooding described in paragraphs (d) and (e) of this section...

  16. Development of a Flood-Warning System and Flood-Inundation Mapping in Licking County, Ohio : Executive Summary Report

    DOT National Transportation Integrated Search

    2012-04-01

    Licking County, Ohio, has experienced numerous floods with the majority of flood damages occurring in the central and south-central areas of the county along four streams: the Licking River, North Fork Licking River, South Fork Licking River, and Rac...

  17. 33 CFR 203.49 - Rehabilitation of Hurricane and Shore Protection Projects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... to the repair/restoration of the HSPP to a pre-storm condition that allows for the adequate functioning of the project, provided that the damage was caused by an extraordinary storm. (2) To be eligible...

  18. 33 CFR 203.49 - Rehabilitation of Hurricane and Shore Protection Projects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... to the repair/restoration of the HSPP to a pre-storm condition that allows for the adequate functioning of the project, provided that the damage was caused by an extraordinary storm. (2) To be eligible...

  19. 33 CFR 203.49 - Rehabilitation of Hurricane and Shore Protection Projects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... to the repair/restoration of the HSPP to a pre-storm condition that allows for the adequate functioning of the project, provided that the damage was caused by an extraordinary storm. (2) To be eligible...

  20. The English National Cohort Study of Flooding and Health: the change in the prevalence of psychological morbidity at year two.

    PubMed

    Jermacane, Daiga; Waite, Thomas David; Beck, Charles R; Bone, Angie; Amlôt, Richard; Reacher, Mark; Kovats, Sari; Armstrong, Ben; Leonardi, Giovanni; James Rubin, G; Oliver, Isabel

    2018-03-07

    The longer term impact of flooding on health is poorly understood. In 2015, following widespread flooding in the UK during winter 2013/14, Public Health England launched the English National Study of Flooding and Health. The study identified a higher prevalence of probable psychological morbidity one year after exposure to flooding. We now report findings after two years. In year two (2016), a self-assessment questionnaire including flooding-related exposures and validated instruments to screen for probable anxiety, depression and post-traumatic stress disorder (PTSD) was sent to all participants who consented to further follow-up. Participants exposure status was categorised according to responses in year one; we assessed for exposure to new episodes of flooding and continuing flood-related problems in respondents homes. We calculated the prevalence and odds ratio for each outcome by exposure group relative to unaffected participants, adjusting for confounders. We used the McNemar test to assess change in outcomes between year one and year two. In year two, 1064 (70%) people responded. The prevalence of probable psychological morbidity remained elevated amongst flooded participants [n = 339] (depression 10.6%, anxiety 13.6%, PTSD 24.5%) and disrupted participants [n = 512] (depression 4.1%, anxiety 6.4%, PTSD 8.9%), although these rates were reduced compared to year one. A greater reduction in anxiety 7.6% (95% confidence interval [CI] 4.6-9.9) was seen than depression 3.8% (95% CI 1.5-6.1) and PTSD: 6.6% (95% CI 3.9-9.2). Exposure to flooding was associated with a higher odds of anxiety (adjusted odds ratio [aOR] 5.2 95%, 95% CI 1.7-16.3) and depression (aOR 8.7, 95% CI 1.9-39.8) but not PTSD. Exposure to disruption caused by flooding was not significantly associated with probable psychological morbidity. Persistent damage in the home as a consequence of the original flooding event was reported by 119 participants (14%). The odds of probable psychological morbidity amongst flooded participants who reported persistent damage, compared with those who were unaffected, were significantly higher than the same comparison amongst flooded participants who did not report persistent damage. This study shows a continuance of probable psychological morbidity at least two years following exposure to flooding. Commissioners and providers of health and social care services should be aware that the increased need in populations may be prolonged. Efforts to resolve persistent damage to homes may reduce the risk of probable psychological morbidity.

  1. Bibliography of forest water yields, flooding issues, and the hydrologic modeling of extreme flood events

    Treesearch

    Mark H. Eisenbies; M.B. Adams; W. Michael Aust; James A. Burger

    2007-01-01

    Floods continue to cause significant damage in the United States and elsewhere, and questions about the causes of flooding continue to be debated. A significant amount of research has been conducted on the relationship between forest management activities and water yield, peak flows, and flooding; somewhat less research has been conducted on the modeling of these...

  2. Optical and Physical Methods for Mapping Flooding with Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Fayne, Jessica Fayne; Bolten, John; Lakshmi, Venkat; Ahamed, Aakash

    2016-01-01

    Flood and surface water mapping is becoming increasingly necessary, as extreme flooding events worldwide can damage crop yields and contribute to billions of dollars economic damages as well as social effects including fatalities and destroyed communities (Xaio et al. 2004; Kwak et al. 2015; Mueller et al. 2016).Utilizing earth observing satellite data to map standing water from space is indispensable to flood mapping for disaster response, mitigation, prevention, and warning (McFeeters 1996; Brakenridge and Anderson 2006). Since the early 1970s(Landsat, USGS 2013), researchers have been able to remotely sense surface processes such as extreme flood events to help offset some of these problems. Researchers have demonstrated countless methods and modifications of those methods to help increase knowledge of areas at risk and areas that are flooded using remote sensing data from optical and radar systems, as well as free publically available and costly commercial datasets.

  3. Lessons Learned from Southeast Asian Floods

    NASA Astrophysics Data System (ADS)

    Osti, R.; Tanaka, S.

    2009-04-01

    At certain scales, flood has always been the lifeline of many people from Southeast Asian countries. People are traditionally accustomed to living with such floods and their livelihood is adjusted accordingly to optimize the benefits from the floods. However, large scale flood occasionally turns into the disaster and causes massive destruction not only in terms of human causalities but also damage to economic, ecological and social harmonies in the region. Although economic growth is prevailing in a relative term, the capacity of people to cope with such extreme events is weakening therefore the flood disaster risk is increasing in time. Recent examples of flood disaster in the region clearly show the increasing severity of disaster impact. This study reveals that there are many factors, which directly or indirectly influence the change. This paper considers the most prominent natural and socio-economic factors and analyzes their trend with respect to flood disasters in each country's context. A regional scale comparative analysis further helps to exchange the know how and to determine what kind of strategy and policy are lacking to manage the floods in a long run. It is also helpful in identifying the critical sectors that should be addressed first to mitigate the potential damage from the floods.

  4. Flood of October 8 and 9, 2005, on Cold River in Walpole, Langdon, and Alstead and on Warren Brook in Alstead, New Hampshire

    USGS Publications Warehouse

    Olson, Scott A.

    2006-01-01

    Southwestern New Hampshire experienced damaging flooding on October 8 and 9, 2005. The flooding was the result of a storm producing at least 7 inches of rain in a 30-hour period. The heavy, intense rainfall resulted in runoff and severe flooding, especially in regions of steep topography that are vulnerable to flash flooding. Some of the worst property damage was in the towns of Alstead, Langdon, and Walpole, New Hampshire along Cold River and Warren Brook. Warren Brook was severely flooded and had flows that exceeded a 100-year recurrence interval upstream of Cooper Hill Road. Downstream of Cooper Hill Road, the flooding was worsened as a result of a sudden release of impounded water, making the flood levels greater than what would be experienced from a 500-year recurrence-interval flood. Along Cold River, upstream of its confluence with Warren Brook, flooding was at approximately a 100-year recurrence interval. Downstream of the confluence of Cold River and Warren Brook, the streamflows, which were swollen by the surge of water from Warren Brook, exceeded a 500year recurrence interval.

  5. Evolving flood patterns in a Mediterranean region (1301-2012) and climatic factors - the case of Catalonia

    NASA Astrophysics Data System (ADS)

    Barrera-Escoda, A.; Llasat, M. C.

    2015-01-01

    Data on flood occurrence and flood impacts for the last seven centuries in the northeastern Iberian Peninsula have been analysed in order to characterise long-term trends, anomalous periods and their relationship with different climatic factors such as precipitation, general circulation and solar activity. Catastrophic floods (those that produce complete or partial destruction of infrastructure close to the river, and major damages in the overflowed area, including some zones away from the channels) do not present a statistically significant trend, whereas extraordinary floods (the channel is overflowed and some punctual severe damages can be produced in the infrastructures placed in the rivercourse or near it, but usually damages are slight) have seen a significant rise, especially from 1850 on, and were responsible for the total increase in flooding in the region. This rise can be mainly attributed to small coastal catchments, which have experienced a marked increase in developed land and population, resulting in changes in land use and greater vulnerability. Changes in precipitation alone cannot explain the variation in flood patterns, although a certain increase was shown in late summer-early autumn, when extraordinary floods are most frequently recorded. The relationship between the North Atlantic circulation and floods is not as strong, due to the important role of mesoscale factors in heavy precipitation in the northwest of the Mediterranean region. However, it can explain the variance to some extent, mainly in relation to the catastrophic floods experienced during the autumn. Solar activity has some impact on changes in catastrophic floods, with cycles related to the quasi-biennial oscillation (QBO) and the Gleissberg solar cycle. In addition, anomalous periods of high flood frequency in autumn generally occurred during periods of increased solar activity. The physical influence of the latter in general circulation patterns, the high troposphere and the stratosphere, has been analysed in order to ascertain its role in causing floods.

  6. Rapid flood loss estimation for large scale floods in Germany

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Kreibich, Heidi; Merz, Bruno

    2013-04-01

    Rapid evaluations of flood events are needed for efficient responses both in emergency management and financial appraisal. Beyond that, closely monitoring and documenting the formation and development of flood events and their impacts allows for an improved understanding and in depth analyses of the interplay between meteorological, hydrological, hydraulic and societal causes leading to flood damage. This contribution focuses on the development of a methodology for the rapid assessment of flood events. In the first place, the focus is on the prediction of damage to residential buildings caused by large scale floods in Germany. For this purpose an operational flood event analysis system is developed. This system has basic spatial thematic data available and supports data capturing about the current flood situation. This includes the retrieval of online gauge data and the integration of remote sensing data. Further, it provides functionalities to evaluate the current flood situation, to assess the hazard extent and intensity and to estimate the current flood impact using the flood loss estimation model FLEMOps+r. The operation of the flood event analysis system will be demonstrated for the past flood event from January 2011 with a focus on the Elbe/Saale region. On this grounds, further requirements and potential for improving the information basis as for instance by including hydrological and /or hydraulic model results as well as information from social sensors will be discussed.

  7. Legal aspects of sinkhole development and flooding in karst terranes: 1. Review and synthesis

    NASA Astrophysics Data System (ADS)

    Quinlan, James F.

    1986-03-01

    Structures built within the area of influence of a sinkhole can be affected by collapse, subsidence, or flooding. Unanticipated property losses may be involved, and litigation commonly ensues. Insurance compensation for damages that result from sinkhole collapse or subsidence in a karst terrane are covered by statute only in Florida and by voluntary agreement of companies operating in Tennessee Liability or insurance compensation for damages resulting from sinkhole flooding is not specifically covered by any state or federal statute. Regulations of the National Flood Insurance Program have been interpreted to allow coverage by this program for homes affected by sinkhole flooding in Bowling Green, Kentucky In the present article, case law, legal concepts of groundwater and surface water, liability, and law review articles relevant to sinkhole litigation are summarized The rationales of plaintiffs and defendants are reviewed Liability for damages have been based on allegations of negligence, breach of various water law doctrines, trespass, nuisance, loss of support, breach of contract, and implied warranty of habitability Defenses against these allegations have been based on the merits of each of them and on caveat emptor Several alternative rationales for claiming liability for losses incurred because of sinkhole development or flooding are proposed and discussed. The little-known Henderson v Wade Sand and Gravel is highly recommended as an alternative leading case that clearly and justifiably gives protection to adjacent landowners, and ties liability for damages caused by groundwater pumpage to nuisance law and related interference with property rights. Several little-known litigated cases of sinkhole development in response to groundwater pumpage will be summarized in a second article at a later date. Concepts of liability are evolving It can be expected that the professional geologist or engineer will have an increasing number of claims made against him or her which allege responsibility for sinkhole-related damages. Such damages can often be prevented by creative zoning, sound engineering, and better husbandry of land.

  8. Using an extended 2D hydrodynamic model for evaluating damage risk caused by extreme rain events: Flash-Flood-Risk-Map (FFRM) Upper Austria

    NASA Astrophysics Data System (ADS)

    Humer, Günter; Reithofer, Andreas

    2016-04-01

    Using an extended 2D hydrodynamic model for evaluating damage risk caused by extreme rain events: Flash-Flood-Risk-Map (FFRM) Upper Austria Considering the increase in flash flood events causing massive damage during the last years in urban but also rural areas [1-4], the requirement for hydrodynamic calculation of flash flood prone areas and possible countermeasures has arisen to many municipalities and local governments. Besides the German based URBAS project [1], also the EU-funded FP7 research project "SWITCH-ON" [5] addresses the damage risk caused by flash floods in the sub-project "FFRM" (Flash Flood Risk Map Upper Austria) by calculating damage risk for buildings and vulnerable infrastructure like schools and hospitals caused by flash-flood driven inundation. While danger zones in riverine flooding are established as an integral part of spatial planning, flash floods caused by overland runoff from extreme rain events have been for long an underrated safety hazard not only for buildings and infrastructure, but man and animals as well. Based on the widespread 2D-model "hydro_as-2D", an extension was developed, which calculates the runoff formation from a spatially and temporally variable precipitation and determines two dimensionally the land surface area runoff and its concentration. The conception of the model is to preprocess the precipitation data and calculate the effective runoff-volume for a short time step of e.g. five minutes. This volume is applied to the nodes of the 2D-model and the calculation of the hydrodynamic model is started. At the end of each time step, the model run is stopped, the preprocessing step is repeated and the hydraulic model calculation is continued. In view of the later use for the whole of Upper Austria (12.000 km²) a model grid of 25x25 m² was established using digital elevation data. Model parameters could be estimated for the small catchment of river Ach, which was hit by an intense rain event with up to 109 mm per hour at 20th of June 2012, based on open data sources of geology, soil and land use. The aim of FFRM is to provide an estimation of the damage risk caused by flash-floods for the whole of Upper Austria. To address the hazard, inundation depths were calculated with the extended 2D-model using design rains with an 100-year return period provided by the Environmental Ministry [7]. The potential damage was calculated using damage functions, which were derived from our experience from damage surveys of past events in Austria and according to guidelines for determination of cost-benefit-ratios for flood protection measures [8]. The greatest difficulty was to get appropriate data for the distribution of houses and industrial plants. Zoning plans provide good information on spatial distribution of residential, commercial and industrial areas, but does not contain information on the kind of industry, which is essential for estimating absolute damage values. To get a first idea detailed information from surveyed areas was intersected with the zoning plan, which provides an average damage in the respective zones. The first results can be found on www.waterviewer.com and will be updated with the further development of the project. [1] URBAS, risk management of extreme flooding events - prediction and management of flash floods in urban areas, www.urbanesturzfluten.de, prompted on 13th of November 2014 [2] Società Meteorologica Italiana (SMI), http://www.nimbus.it/eventi/2013/130624flashfloodRimini.pdf, prompted on 13th of November 2014 [3]Newspaper "Österreich", http://www.oe24.at/oesterreich/chronik/Sturzflut-Regen-legt-Ost-Oesterreich-lahm/1509113, prompted on 13th of November 2014 [4] Newspaper "Oberösterreichische Nachrichten", http://www.nachrichten.at/oberoesterreich/Unwetter-Mure-riss-Strasse-mit-Wohnhaus-in-Gosau-gefaehrdet;art4,911288 , prompted on 13th of November 2014 [5] Sharing Water-related Information to Tackle Changes in the Hydrosphere - for Operational Needs (SWITCH-ON), http://water-switch-on.eu [6] European Commission, directive 2007/60/EC of the European Parliament and the Council of 23rd October 2007 on the assessment and management of flood risks: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:288:0027:0034:en:PDF [7] http://ehyd.gv.at [8] Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management: „Kosten-Nutzen-Untersuchungen im Schutzwaserbau", July 2009

  9. An operational procedure for rapid flood risk assessment in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Kalas, Milan; Salamon, Peter; Bianchi, Alessandra; Alfieri, Lorenzo; Feyen, Luc

    2017-07-01

    The development of methods for rapid flood mapping and risk assessment is a key step to increase the usefulness of flood early warning systems and is crucial for effective emergency response and flood impact mitigation. Currently, flood early warning systems rarely include real-time components to assess potential impacts generated by forecasted flood events. To overcome this limitation, this study describes the benchmarking of an operational procedure for rapid flood risk assessment based on predictions issued by the European Flood Awareness System (EFAS). Daily streamflow forecasts produced for major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in terms of flood-prone areas, economic damage and affected population, infrastructures and cities.An extensive testing of the operational procedure has been carried out by analysing the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-based and report-based flood extent data, while modelled estimates of economic damage and affected population are compared against ground-based estimations. Finally, we evaluate the skill of risk estimates derived from EFAS flood forecasts with different lead times and combinations of probabilistic forecasts. Results highlight the potential of the real-time operational procedure in helping emergency response and management.

  10. How to reduce the vulnerability of properties threatened by flood?

    NASA Astrophysics Data System (ADS)

    Vinet, Freddy; Leone, Frederic; Pelletier, Hugo; Queral, Fanny

    2010-05-01

    Over the last 20 or 30 years, increasing flood damage has compelled stakeholders to reconsider flood prevention. Indeed, the increase in damage emphasizes the failure of the current flood management policies based on river channel management instead of the mitigation of the flood risk. In the aftermath of the recent disasters in France and Europe, national and local authorities fostered an increasing number of initiatives geared towards reducing risks and rectifying the way of managing flood risks. All experts are now convinced that we must reduce risk through the mitigation of vulnerability. In this purpose, the French government and some river basin authorities try to develop programmes and laws intended to reduce the vulnerability of flood-prone buildings, mostly by retrofitting them. Through the results of field studies conducted in France, this presentation focuses on pros and cons of retrofitting. As of now, if many assessment of the vulnerability of buildings have been conducted, only a few huge retrofitting programmes have actually been implemented. Many bottlenecks emerge when implementing concrete measures. These difficulties include technical problems, cost, and the reluctance of many property owners... On the long run, retrofitting may be an efficient way to prevent damage to buildings threatened by floodwater. However current programmes fail to address the specificities of the local context in which such actions are implemented, e.g. accurate appraisal of flooding conditions, awareness of risk, vulnerability of people... The key is to involve all local actors including people threatened by flooding rather than to impose general and inappropriate measures.

  11. Flood loss model transfer: on the value of additional data

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Lüdtke, Stefan; Vogel, Kristin; Kreibich, Heidi; Thieken, Annegret; Merz, Bruno

    2017-04-01

    The transfer of models across geographical regions and flood events is a key challenge in flood loss estimation. Variations in local characteristics and continuous system changes require regional adjustments and continuous updating with current evidence. However, acquiring data on damage influencing factors is expensive and therefore assessing the value of additional data in terms of model reliability and performance improvement is of high relevance. The present study utilizes empirical flood loss data on direct damage to residential buildings available from computer aided telephone interviews that were carried out after the floods in 2002, 2005, 2006, 2010, 2011 and 2013 mainly in the Elbe and Danube catchments in Germany. Flood loss model performance is assessed for incrementally increased numbers of loss data which are differentiated according to region and flood event. Two flood loss modeling approaches are considered: (i) a multi-variable flood loss model approach using Random Forests and (ii) a uni-variable stage damage function. Both model approaches are embedded in a bootstrapping process which allows evaluating the uncertainty of model predictions. Predictive performance of both models is evaluated with regard to mean bias, mean absolute and mean squared errors, as well as hit rate and sharpness. Mean bias and mean absolute error give information about the accuracy of model predictions; mean squared error and sharpness about precision and hit rate is an indicator for model reliability. The results of incremental, regional and temporal updating demonstrate the usefulness of additional data to improve model predictive performance and increase model reliability, particularly in a spatial-temporal transfer setting.

  12. Assessment of the effectiveness of participatory developed adaptation strategies for HCMC

    NASA Astrophysics Data System (ADS)

    Lasage, R.; Veldkamp, T. I. E.; de Moel, H.; Van, T. C.; Phi, H. L.; Vellinga, P.; Aerts, J. C. J. H.

    2014-01-01

    Coastal cities are vulnerable to flooding, and flood risk to coastal cities will increase due to sea-level rise. Moreover, especially Asian cities are subject to considerable population growth and associated urban developments, increasing this risk even more. Empirical data on vulnerability and the cost and benefits of flood risk reducing measures are therefore paramount for sustainable development of these cities. This paper presents an approach to explore the impacts of sea level rise and socio-economic developments on flood risk for the flood prone District 4 in Ho Chi Minh City, Vietnam, and to develop and evaluate the effects of different adaptation strategies (new levees, dry- and wet flood proofing of buildings). A flood damage model was developed to simulate current and future flood risk using the results from a household survey to establish stage-damage curves for residential buildings. the model has been used to assess the effects of several participatory developed adaptation strategies to reduce flood risk, expressed in Expected Annual Damage (EAD). Adaptation strategies were evaluated assuming combinations of both sea level scenarios and land use scenarios. Together with information on costs of these strategies, we calculated the benefit-cost ratio and net present value for the adaptation strategies until 2100, taking into account depreciation rates of 2.5% and 5%. The results of this modeling study indicate that the current flood risk in District 4 is 0.31 million USD yr-1, increasing up to 0.78 million USD yr-1 in 2100. The net present value and benefit-cost ratios using a discount rate of 5% range from USD -107 to -1.5 million, and from 0.086 to 0.796 for the different strategies. Using a discount rate of 2.5% leads to an increase in both net present value and benefit cost ratio. The adaptation strategies wet proofing and dry proofing generate the best results using these economic indicators. The information on different strategies will be used by the government of Ho Chi Minh City for selecting a new flood protection strategy. Future research should focus on gathering empirical data right after a flood on the occurring damage, as this appears to be the most uncertain factor in the risk assessment.

  13. Assessment of the effectiveness of flood adaptation strategies for HCMC

    NASA Astrophysics Data System (ADS)

    Lasage, R.; Veldkamp, T. I. E.; de Moel, H.; Van, T. C.; Phi, H. L.; Vellinga, P.; Aerts, J. C. J. H.

    2014-06-01

    Coastal cities are vulnerable to flooding, and flood risk to coastal cities will increase due to sea-level rise. Moreover, Asian cities in particular are subject to considerable population growth and associated urban developments, increasing this risk even more. Empirical data on vulnerability and the cost and benefits of flood risk reduction measures are therefore paramount for sustainable development of these cities. This paper presents an approach to explore the impacts of sea-level rise and socio-economic developments on flood risk for the flood-prone District 4 in Ho Chi Minh City, Vietnam, and to develop and evaluate the effects of different adaptation strategies (new levees, dry- and wet proofing of buildings and elevating roads and buildings). A flood damage model was developed to simulate current and future flood risk using the results from a household survey to establish stage-damage curves for residential buildings. The model has been used to assess the effects of several participatory developed adaptation strategies to reduce flood risk, expressed in expected annual damage (EAD). Adaptation strategies were evaluated assuming combinations of both sea-level scenarios and land-use scenarios. Together with information on costs of these strategies, we calculated the benefit-cost ratio and net present value for the adaptation strategies until 2100, taking into account depreciation rates of 2.5% and 5%. The results of this modelling study indicate that the current flood risk in District 4 is USD 0.31 million per year, increasing up to USD 0.78 million per year in 2100. The net present value and benefit-cost ratios using a discount rate of 5 % range from USD -107 to -1.5 million, and from 0.086 to 0.796 for the different strategies. Using a discount rate of 2.5% leads to an increase in both net present value and benefit-cost ratio. The adaptation strategies wet-proofing and dry-proofing generate the best results using these economic indicators. The information on different strategies will be used by the government of Ho Chi Minh City to determine a new flood protection strategy. Future research should focus on gathering empirical data right after a flood on the occurring damage, as this appears to be the most uncertain factor in the risk assessment.

  14. 33 CFR 208.32 - Sanford Dam and Lake Meredith, Canadian River, Tex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Lake Meredith in the interest of flood control as follows: (a) Flood control storage in the reservoir... control pool) initially amounts to 462,100 acre-feet. Whenever the reservoir level is within this... as much as practicable the flood damage below the reservoir. All flood control releases shall be made...

  15. 33 CFR 208.32 - Sanford Dam and Lake Meredith, Canadian River, Tex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Lake Meredith in the interest of flood control as follows: (a) Flood control storage in the reservoir... control pool) initially amounts to 462,100 acre-feet. Whenever the reservoir level is within this... as much as practicable the flood damage below the reservoir. All flood control releases shall be made...

  16. Map showing flood-prone areas, greater Denver area, Front Range Urban Corridor, Colorado

    USGS Publications Warehouse

    McCain, J.F.; Hotchkiss, W.R.

    1975-01-01

    The rapid growth of population in the Front Range Urban Corridor of Colorado is causing intense competition for available land resources. One form of competition posing serious problems in indiscriminate development on flood plains along creeks and rivers. Flood plains are natural features of the landscape developed by streams in carry water in excess of channel capacity. Although not used as often by the stream, flood plains are as much a part of the stream system as is the channel. Whenever man competes with this natural function of the flood plain he must inevitably pay the price through property damage and varying degrees of human suffering Flood damages in the United States have been estimated to average about \\$1 billion annually (American Public Works Association, 1966.) This tremendous waste of national resources is borne not only by those citizens in direct contact with floods but also to a lesser degree by all citizens through increased cost of public services. Thus, floods are of concern to the entire community, and solutions to existing or potential problems should be a community effort.

  17. U.S. Coastal Flood Damage Reduction Projects: Federal Authorization and Investment Trends

    NASA Astrophysics Data System (ADS)

    Carter, N. T.

    2015-12-01

    The 2015 U.S. Environmental Protection Agency report Climate Change in the United States: Benefits of Global Action estimated the potential cumulative future economic impacts of storm surge and sea-level rise on U.S. coasts during this century at 5 trillion (2014 dollars) if no adaptation measures are implemented. These impacts drop to 0.8 trillion if investments are made in cost-effective adaptations and protections. Awareness of flood risk and its long-term fiscal impact historically has proven insufficient to motivate pre-disaster land use changes and investments in mitigation and protection. While many adaptations and protections fall largely under state and local authority, some stakeholders are interested in federal coastal flood protection projects, including projects by the U.S. Army Corps of Engineers. Since the 1950s, Congress has authorized the Corps to construct specific coastal projects. The broad vision, strategy, and priorities for the federal role in coastal flood damage reduction projects nonetheless remain ill-defined. This research analyzes (1) the authorization and appropriations trends for Corps coastal storm damage reduction projects, and (2) how Corps feasibility studies account for and address coastal flood hazards. Identified trends include: emergency appropriations for storm-damaged areas outstrip annual investments in coastal flood projects; the rate at which projects are congressionally approved for construction outpaces the rate at which construction is funded; and how coastal protection projects are evaluated in Corps feasibility studies shows variation and change in agency practices. These trends have consequences; they affect public and local expectations when projects begin providing protection benefits, and may influence investments in other adaptation measures. These trends also raise questions for policymakers at all levels and for scientists and practitioners interested in coastal flood resilience.

  18. A 3-D SPH model for simulating water flooding of a damaged floating structure

    NASA Astrophysics Data System (ADS)

    Guo, Kai; Sun, Peng-nan; Cao, Xue-yan; Huang, Xiao

    2017-10-01

    With the quasi-static analysis method, the terminal floating state of a damaged ship is usually evaluated for the risk assessment. But this is not enough since the ship has the possibility to lose its stability during the transient flooding process. Therefore, an enhanced smoothed particle hydrodynamics (SPH) model is applied in this paper to investigate the response of a simplified cabin model under the condition of the transient water flooding. The enhanced SPH model is presented firstly including the governing equations, the diffusive terms, the boundary implementations and then an algorithm regarding the coupling motions of six degrees of freedom (6-DOF) between the structure and the fluid is described. In the numerical results, a non-damaged cabin floating under the rest condition is simulated. It is shown that a stable floating state can be reached and maintained by using the present SPH scheme. After that, three-dimensional (3-D) test cases of the damaged cabin with a hole at different locations are simulated. A series of model tests are also carried out for the validation. Fairly good agreements are achieved between the numerical results and the experimental data. Relevant conclusions are drawn with respect to the mechanism of the responses of the damaged cabin model under water flooding conditions.

  19. Wetland storage to reduce flood damages in the Red River

    Treesearch

    Steven Shultz

    2000-01-01

    The restoration of previously drained wetlands to store water was not found to be an economically feasible strategy to reduce flood related damages in two sub-watersheds of the Red River Valley (the Maple River Watershed in North Dakota, and the Wild Rice Watershed of Minnesota). Restoring wetlands, while providing full ecological services, was less feasible, even...

  20. Uncertainty and sensitivity assessment of flood risk assessments

    NASA Astrophysics Data System (ADS)

    de Moel, H.; Aerts, J. C.

    2009-12-01

    Floods are one of the most frequent and costly natural disasters. In order to protect human lifes and valuable assets from the effect of floods many defensive structures have been build. Despite these efforts economic losses due to catastrophic flood events have, however, risen substantially during the past couple of decades because of continuing economic developments in flood prone areas. On top of that, climate change is expected to affect the magnitude and frequency of flood events. Because these ongoing trends are expected to continue, a transition can be observed in various countries to move from a protective flood management approach to a more risk based flood management approach. In a risk based approach, flood risk assessments play an important role in supporting decision making. Most flood risk assessments assess flood risks in monetary terms (damage estimated for specific situations or expected annual damage) in order to feed cost-benefit analysis of management measures. Such flood risk assessments contain, however, considerable uncertainties. This is the result from uncertainties in the many different input parameters propagating through the risk assessment and accumulating in the final estimate. Whilst common in some other disciplines, as with integrated assessment models, full uncertainty and sensitivity analyses of flood risk assessments are not so common. Various studies have addressed uncertainties regarding flood risk assessments, but have mainly focussed on the hydrological conditions. However, uncertainties in other components of the risk assessment, like the relation between water depth and monetary damage, can be substantial as well. This research therefore tries to assess the uncertainties of all components of monetary flood risk assessments, using a Monte Carlo based approach. Furthermore, the total uncertainty will also be attributed to the different input parameters using a variance based sensitivity analysis. Assessing and visualizing the uncertainties of the final risk estimate will be helpful to decision makers to make better informed decisions and attributing this uncertainty to the input parameters helps to identify which parameters are most important when it comes to uncertainty in the final estimate and should therefore deserve additional attention in further research.

  1. Flood Disaster Risk Reduction in municipality-scale in Rio de Janeiro State

    NASA Astrophysics Data System (ADS)

    Japiassú Viana, Viviane; Formiga Johnsson, Rosa Maria; De Gouvello, Bernard

    2015-04-01

    In Brazil, flood disasters causing human damage, pecuniary loss and environmental damage, are mainly due to greater exposure of the population; urban densification on the riverbanks and margins, incurring vulnerability due to changes in river level and climate changes. This article presents the data and studies required in the Brazilian legal basis and analyzes the scales adopted by planners in contrast to the scales demands by the executing agencies in the context of prevention and adaptation to climate change, particularly to flood disaster reduction in municipality-scale.

  2. Flood Damage Prevention Services of the U.S. Army Corps of Engineers: An Evaluation of Policy Changes and Program Outcomes during 1970-1983 Measured against Criteria of Equity, Efficiency, and Responsiveness.

    DTIC Science & Technology

    1984-02-01

    appropriate. Flood damage prevention activities may be categorized in three major strategy group- ings: 1) modifying flooding, 2) modifying susceptibility...it is a more complex process. He categorizes the forces that interact on the allocation of resources for Corps projects as economic efficiency...outputs to outcomes. It is this relationship that is the essence of the research effort. * 1 bid. p. 8. 2 Lewis A. Froman, ’The Categorization of

  3. Benchmarking an operational procedure for rapid flood mapping and risk assessment in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Salamon, Peter; Kalas, Milan; Bianchi, Alessandra; Feyen, Luc

    2016-04-01

    The development of real-time methods for rapid flood mapping and risk assessment is crucial to improve emergency response and mitigate flood impacts. This work describes the benchmarking of an operational procedure for rapid flood risk assessment based on the flood predictions issued by the European Flood Awareness System (EFAS). The daily forecasts produced for the major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations, based on the hydro-meteorological dataset of EFAS. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in near real-time in terms of flood prone areas, potential economic damage, affected population, infrastructures and cities. An extensive testing of the operational procedure is carried out using the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-derived flood footprints, while ground-based estimations of economic damage and affected population is compared against modelled estimates. We evaluated the skill of flood hazard and risk estimations derived from EFAS flood forecasts with different lead times and combinations. The assessment includes a comparison of several alternative approaches to produce and present the information content, in order to meet the requests of EFAS users. The tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management.

  4. 75 FR 5893 - Suspension of Community Eligibility for Failure To Maintain Adequate Floodplain Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... future flooding. Section 1315 of the National Flood Insurance Act of 1968, as amended (42 U.S.C. 4022... corrected the deficiencies in their flood damage prevention ordinance identified in previous letters to the...

  5. Investigating flood susceptible areas in inaccessible regions using remote sensing and geographic information systems.

    PubMed

    Lim, Joongbin; Lee, Kyoo-Seock

    2017-03-01

    Every summer, North Korea (NK) suffers from floods, resulting in decreased agricultural production and huge economic loss. Besides meteorological reasons, several factors can accelerate flood damage. Environmental studies about NK are difficult because NK is inaccessible due to the division of Korea. Remote sensing (RS) can be used to delineate flood inundated areas in inaccessible regions such as NK. The objective of this study was to investigate the spatial characteristics of flood susceptible areas (FSAs) using multi-temporal RS data and digital elevation model data. Such study will provide basic information to restore FSAs after reunification. Defining FSAs at the study site revealed that rice paddies with low elevation and low slope were the most susceptible areas to flood in NK. Numerous sediments from upper streams, especially streams through crop field areas on steeply sloped hills, might have been transported and deposited into stream channels, thus disturbing water flow. In conclusion, NK floods may have occurred not only due to meteorological factors but also due to inappropriate land use for flood management. In order to mitigate NK flood damage, reforestation is needed for terraced crop fields. In addition, drainage capacity for middle stream channel near rice paddies should be improved.

  6. Flash floods of August 10, 2009, in the Villages of Gowanda and Silver Creek, New York

    USGS Publications Warehouse

    Szabo, Carolyn O.; Coon, William F.; Niziol, Thomas A.

    2011-01-01

    Late during the night of August 9, 2009, two storm systems intersected over western New York and produced torrential rain that caused severe flash flooding during the early morning hours of August 10 in parts of Cattaraugus, Chautauqua, and Erie Counties. Nearly 6 inches of rain fell in 1.5 hours as recorded by a National Weather Service weather observer in Perrysburg, which lies between Gowanda and Silver Creek-the communities that suffered the most damage. This storm intensity had an annual exceedance probability of less than 0.2 percent (recurrence interval greater than 500 years). Although flooding along Cattaraugus Creek occurred elsewhere, Cattaraugus Creek was responsible for very little flooding in Gowanda. Rather the small tributaries, Thatcher Brook and Grannis Brook, caused the flooding in Gowanda, as did Silver Creek and Walnut Creek in the Village of Silver Creek. Damages from the flooding were widespread. Numerous road culverts were washed out, and more than one-quarter of the roads in Cattaraugus County were damaged. Many people were evacuated or rescued in Gowanda and Silver Creek, and two deaths occurred during the flood in Gowanda. The water supplies of both communities were compromised by damages to village reservoirs and water-transmission infrastructures. Water and mud damage to residential and commercial properties was extensive. The tri-county area was declared a Federal disaster area and more than $45 million in Federal disaster assistance was distributed to more than 1,500 individuals and an estimated 1,100 public projects. The combined total estimate of damages from the flash floods was greater than $90 million. Over 240 high-water marks were surveyed by the U.S. Geological Survey; a subset of these marks was used to create flood-water-surface profiles for four streams and to delineate the areal extent of flooding in Gowanda and Silver Creek. Flood elevations exceeded previously defined 0.2-percent annual exceedance probability (500-year recurrence interval) elevations by 2 to 4 feet in Gowanda and as much as 6 to 8 feet in Silver Creek. Most of the high-water marks were used in indirect hydraulic computations to estimate peak flows for four streams. The peak flows in Grannis Brook and Thatcher Brook were computed, using the slope-area method, to be 1,400 and 7,600 cubic feet per second, respectively, and peak flow in Silver Creek was computed, using the width-contraction method, to be 19,500 cubic feet per second. The annual exceedance probabilities for flows in these and other basins with small drainage areas that fell almost entirely within the area of heaviest precipitation were less than 0.2 percent (or recurrence intervals greater than 500 years). The peak flow in Cattaraugus Creek at Gowanda was computed, using the slope-area method, to be 33,200 cubic feet per second with an annual exceedance probability of 2.2 percent (recurrence interval of 45 years).

  7. Modelling farm vulnerability to flooding: A step toward vulnerability mitigation policies appraisal

    NASA Astrophysics Data System (ADS)

    Brémond, P.; Abrami, G.; Blanc, C.; Grelot, F.

    2009-04-01

    Recent catastrophic flood events such as Elbe in 2002 or Rhône in 2003 have shown limits of flood management policies relying on dykes protection: worsening of flood impacts downstream, increased damage by dykes rupture. Those events, among others, contributes to radical changes on the philosophy of flood prevention, with the promotion of new orientations for mitigating flood exposition. Two new trends may have a significant impact on rural areas: floodplain restoration and vulnerability mitigation. The Rhône River program, which is an contract of objectives signed between French Government and local collectivites, is highly illustrative of these new trends and their impact on agricultural sector. In this program, it appears that areas to be concerned by floodplain restoration are agricultural ones, because their supposed vulnerability to flood is expected to be less important to urban areas. As a consequence, agricultural sector is particularly concerned by planned actions on mitigation of assets vulnerability, an important part of the program (financial support of European Union of 7.5 Million euros). Mitigation of agricultural assets vulnerability reveals particularly interesting for two following reasons. Firstly, it is a way to maintain agricultural activities in floodplains yet existing, without promoting flood protection. Secondly, in case of floodplain restoration, vulnerability mitigation is a way for local authorities to compensate over-flooding impacts. In practice, local authorities may financially support farmers for implementing measures to mitigate their farm vulnerability. On the Rhône River, an important work has already been done to identify farm vulnerability to flooding, and propose measures to mitigate it. More than 3 000 farms exposed to flood risk have been identified representing 88 690 ha of agricultural areas which is estimated to generate damage between 400 and 800 Million euros depending on the season of occurrence for a catastrophic flood. In the case of farm activities, vulnerability mitigation consists in implementing measures which can be: physical (equipment or electric power system elevation), organizational (emergency or recovery plan) or financial (insurance). These measures aim at decreasing the total damage incurred by farmers in case of flooding. For instance, if equipment is elevated, it will not suffer direct damage such as degradation. As a consequence, equipment will be available to continue production or recovery tasks, thus, avoiding indirect damage such as delays, indebtedness… The effects of these policies on farms, in particular vulnerability mitigation cannot be appraised using current methodologies mainly because they do not consider farm as a whole and focus on direct damage at the land plot scale (loss of yield). Moreover, since vulnerability mitigation policies are quite recent, few examples of implementation exist and no feedback experience can be processed. Meanwhile, decision makers and financial actors require more justification of the efficiency of public fund by economic appraisal of the projects. On the Rhône River, decision makers asked for an economic evaluation of the program of farm vulnerability mitigation they plan to implement. This implies to identify the effects of the measures to mitigate farm vulnerability, and to classify them by comparing their efficacy (avoided damage) and their cost of implementation. In this presentation, we propose and discuss a conceptual model of vulnerability at the farm scale. The modelling, in Unified Modelling Language, enabled to represent the ties between spatial, organizational and temporal dimensions, which are central to understanding of farm vulnerability and resilience to flooding. Through this modelling, we encompass three goals: To improve the comprehension of farm vulnerability and create a framework that allow discussion with experts of different disciplines as well as with local farmers; To identify data which are needed to implement the model and to collect them, specifically using the focus group method; Based on the conceptual model, to program a mathematical model which will be used to simulate damage (direct and indirect) on farm due to flood. This last objective should enable us to appraise policy to mitigate vulnerability which is planned to be implemented on Rhône River at the individual and regional scale. Finally, we discuss the possibility to use the UML modelling to develop a multi-agent system approach which could be interesting to take into account ties between farmers (solidarity, loan of equipment) or systemic effects due to the damage incurred by economic partners (loss of market share). Keywords vulnerability, UML modelling, farming systems, flood, mitigation policy, economic valuation

  8. Flood damage data gathering: procedures and use

    NASA Astrophysics Data System (ADS)

    Molinari, D.; Aronica, G. T.; Ballio, F.; Berni, N.; Pandolfo, C.

    2012-04-01

    Damage data represents the basis on which flood risk models, re-founding schemes and mitigation activities are grounded on. Nevertheless damage data have been collected so far mainly at the national-regional scale; few databases exist at the local scale and, even if present, no standard exist for their development. On the contrary, risk analyses and mitigation strategies are usually carried out at local scale. This contribution describes the ongoing activity to collect and analyze local damage data coming from past events with recently hit Umbria an Sicily regions (central and south part of Italy respectively). Data from past events will be discussed from two different perspectives. In Italy, procedures to gather damage data after a flood are defined by law. According to this, authors will first question whether or not collected data are suitable to give an exhaustive representation of the total impact the events had on the affected territories. As regards, suggestions are provided about how gathering procedures can improve. On the other hand, collected data will be discussed with respect to their implementation in the definition of depth-damage curves for the Italian context; literature review highlights indeed that no curves are available for Italy. Starting from the knowledge of observed hazard intensity and damage data, available curves from other countries are validated, the objective being to reduce the uncertainty which currently characterise damage estimation. Indeed, a variety of curves can be found in literature and the choice of one curve in place of another can change damage assessment results of one order of magnitude. The validation procedure will allow, in its turn, to face a secondary but key question for the contribution, being the identification of those hazard and vulnerability features that should be recorded and kept updated in a local GIS database to support risk modelling, funding and management. The two areas under investigation are prone to different types of hazard: flash floods with high debris concentration are typical of the Sicilian area whilst riverine floods are common in the Umbria region. This way, reasoning can be made with respect to different hazard and vulnerability aspects.

  9. Optimal Hedging Rule for Reservoir Refill Operation

    NASA Astrophysics Data System (ADS)

    Wan, W.; Zhao, J.; Lund, J. R.; Zhao, T.; Lei, X.; Wang, H.

    2015-12-01

    This paper develops an optimal reservoir Refill Hedging Rule (RHR) for combined water supply and flood operation using mathematical analysis. A two-stage model is developed to formulate the trade-off between operations for conservation benefit and flood damage in the reservoir refill season. Based on the probability distribution of the maximum refill water availability at the end of the second stage, three zones are characterized according to the relationship among storage capacity, expected storage buffer (ESB), and maximum safety excess discharge (MSED). The Karush-Kuhn-Tucker conditions of the model show that the optimality of the refill operation involves making the expected marginal loss of conservation benefit from unfilling (i.e., ending storage of refill period less than storage capacity) as nearly equal to the expected marginal flood damage from levee overtopping downstream as possible while maintaining all constraints. This principle follows and combines the hedging rules for water supply and flood management. A RHR curve is drawn analogously to water supply hedging and flood hedging rules, showing the trade-off between the two objectives. The release decision result has a linear relationship with the current water availability, implying the linearity of RHR for a wide range of water conservation functions (linear, concave, or convex). A demonstration case shows the impacts of factors. Larger downstream flood conveyance capacity and empty reservoir capacity allow a smaller current release and more water can be conserved. Economic indicators of conservation benefit and flood damage compete with each other on release, the greater economic importance of flood damage is, the more water should be released in the current stage, and vice versa. Below a critical value, improving forecasts yields less water release, but an opposing effect occurs beyond this critical value. Finally, the Danjiangkou Reservoir case study shows that the RHR together with a rolling horizon decision approach can lead to a gradual dynamic refilling, indicating its potential for practical use.

  10. Main drivers of flood-risk dynamics along the Po River

    NASA Astrophysics Data System (ADS)

    Domeneghetti, Alessio; Carisi, Francesca; Castellarin, Attilio; Brath, Armando

    2017-04-01

    The increasing frequency with which floods damages are recorded, or reported by media, strengthen the common perception that the flood risk is dramatically increasing in Europe and other areas of the world, due to a combination of different causes, among which climate change is often described as the major factor. However, there is a growing awareness of how anthropogenic pressures, such as uncontrolled urban and industrial expansion on flood-prone areas, may strongly impact the evolution of flood-risk in a given area, increasing potential flood damages and losses. Starting from these considerations, our study aims at shedding some light on the impact and relative importance of different factors controlling the flood risk. Focusing in particular on the middle-lower portion of the River Po, we analyze the evolution of flood hazard in the last half century referring to long streamflow series for different gauging stations located along the study reach ( 450 km), while the modification of anthropogenic pressure is evaluated by referring to land-use and demographic dynamics observed from 1950s. Our study proposes simplified flood-vulnerability indices to be used for large scale flood-risk assessments and, on the basis of these indices, (1) we assess the importance of the different elements contributing to the definition of flood risk and (2) represent the evolution of flood risk in time along the middle and lower portion of the River Po.

  11. The Emergence of Flood Insurance in Canada: Navigating Institutional Uncertainty.

    PubMed

    Thistlethwaite, Jason

    2017-04-01

    Flood insurance has remained unavailable in Canada based on an assessment that it lacks economic viability. In response to Canada's costliest flood event to date in 2013, the Canadian insurance industry has started to develop a framework to expand existing property insurance to cover flood damage. Research on flood insurance has overlooked why and how insurance systems transition to expand insurance coverage without evidence of economic viability. This article will address this gap through a case study on the emergence of flood insurance in Canada, and the approach to its expansion. Between 2013 and 2016, insurance industry officials representing over 60% of premiums collected in Canada were interviewed. These interviews revealed that flood insurance is being expanded in response to institutional pressure, specifically external stakeholder expectations that the insurance industry will adopt a stronger role in managing flood risk through coverage of flood damage. Further evidence of this finding is explored by assessing the emergence of a unique flood insurance model that involves a risk-adjusted and optional product along with an expansion of government policy supporting flood risk mitigation. This approach attempts to balance industry concerns about economic viability with institutional pressure to reduce flood risk through insurance. This analysis builds on existing research by providing the first scholarly analysis of flood insurance in Canada, important "empirical" teeth to existing conceptual analysis on the availability of flood insurance, and the influence of institutional factors on risk analysis within the insurance sector. © 2016 Society for Risk Analysis.

  12. Fusion of Remote Sensing and Non-Authoritative Data for Flood Disaster and Transportation Infrastructure Assessment

    ERIC Educational Resources Information Center

    Schnebele, Emily K.

    2013-01-01

    Flooding is the most frequently occurring natural hazard on Earth; with catastrophic, large scale floods causing immense damage to people, property, and the environment. Over the past 20 years, remote sensing has become the standard technique for flood identification because of its ability to offer synoptic coverage. Unfortunately, remote sensing…

  13. Hydro-Geomorphic Connectivity in Arid Watershed: Anthropogenic Effects and Extreme Flash flood

    NASA Astrophysics Data System (ADS)

    Egozi, Roey

    2017-04-01

    Arid watersheds are excellent settings to study water and sediment connectivity because of spars vegetation and the possibility to make clearer links between climate parameters and topographical changes. However different flood event magnitudes may result in different degrees of connectivity. This even gets more complicated when man made modifications to the drainage system are done without considering the outcomes in terms of the potential of flood damage and risks, i.e. in the case of extreme flash floods. Herein we report on the results from two studies conducted in two different small catchments along the dead sea rift: Wadi A Dalia and Wadi Ras Moakif. The studies conducted as part of a larger project aimed at investigating the floods and damages triggered by a rare storm event occurred at the end of October 2015. This storm event covered all of Israel and characterized with rare rainfall depths and intensities as well as floods with rare pick discharges. Observations and field measurements of bed material, river cross sections and water elevation markers were done and statistical analysis has been performed to estimate the exceed probability of the different measured and estimated hydro-climatic values. In Wadi-A-Dalia the coupling of rare rainfall depths over the watershed area which itself was bare due to over grazing result in a major flood. The severe damage caused by this flood was intensified due to the increase of structural hydrologic connectivity, i.e. flood protection canal discharged higher volumes of water collected from small Wadi systems at the same time. In Wadi Ras Moakif the rainfall cells did not produced rare rainfall, but still a major flood occurred over a very short distance of the main channel transporting huge amount of bed material deposited and blocked the main road along the dead sea western coast. In this case the cause was similar - a modification to the drainage system result in increase structural hydrologic connectivity lead to runoff concentration and higher stream power value. The results suggest that in arid watersheds flood protection measures that involve modifications to the drainage system such that the structural hydrologic connectivity improves with the aim to conduit the volume of water away may fail to provide the protection planned and may cause higher damage to infrastructures. Therefore, hydrologic connectivity should become a parameter in flood control design. Moreover, studying hydrologic connectivity in natural landscapes may provide valid solutions for flood control design projects.

  14. How useful are Swiss flood insurance data for flood vulnerability assessments?

    NASA Astrophysics Data System (ADS)

    Röthlisberger, Veronika; Bernet, Daniel; Zischg, Andreas; Keiler, Margreth

    2015-04-01

    The databases of Swiss flood insurance companies build a valuable but to date rarely used source of information on physical flood vulnerability. Detailed insights into the Swiss flood insurance system are crucial for using the full potential of the different databases for research on flood vulnerability. Insurance against floods in Switzerland is a federal system, the modalities are manly regulated on cantonal level. However there are some common principles that apply throughout Switzerland. First of all coverage against floods (and other particular natural hazards) is an integral part of every fire insurance policy for buildings or contents. This coupling of insurance as well as the statutory obligation to insure buildings in most of the cantons and movables in some of the cantons lead to a very high penetration. Second, in case of damage, the reinstatement costs (value as new) are compensated and third there are no (or little) deductible and co-pay. High penetration and the fact that the compensations represent a large share of the direct, tangible losses of the individual policy holders make the databases of the flood insurance companies a comprehensive and therefore valuable data source for flood vulnerability research. Insurance companies not only store electronically data about losses (typically date, amount of claims payment, cause of damage, identity of the insured object or policyholder) but also about insured objects. For insured objects the (insured) value and the details on the policy and its holder are the main feature to record. On buildings the insurance companies usually computerize additional information such as location, volume, year of construction or purpose of use. For the 19 (of total 26) cantons with a cantonal monopoly insurer the data of these insurance establishments have the additional value to represent (almost) the entire building stock of the respective canton. Spatial referenced insurance data can be used for many aspects of vulnerability and resilience assessments. For instance, the collation of insurance loss data with event documentations containing information on flood intensity allows to develop damage curves. Flood damage curves are fundamental for many risk analysis methodologies but to date only few are published and the spatial and temporal scope of their applicability is subject of discussion. Another possibility of using insurance data lies in the field of assessment exposure, where the analysis of comprehensive insurance portfolio data can improve the understanding of the physical but also the socio-economical vulnerability of a society. The poster spotlights key opportunities and challenges scientists are facing when using insurance data for flood vulnerability assessments.

  15. Costs of landslides and floods in XX Century in a Calabrian town starting from the data stored in the Historical Archive of IRPI (Cosenza)

    NASA Astrophysics Data System (ADS)

    Giampa', Vincenzo; Pasqua, A. Aurora; Petrucci, Olga

    2015-04-01

    The paper firstly presents the historical archive of Cosenza IRPI Section and the historical database that has been built basing on the data contained in it. Then, an application of these data to Catanzaro, the town that is the administrative center of Calabria region (Southern Italy), is presented. The gathering of historical data on past floods and landslides in Cosenza IRPI Section has been started since 1996, and it is still in progress. In 2005, some donations coming from regional and municipal Public Works offices greatly increased the documental corpus, and required a more incisive classification and management that led us to organize the documents in a real historical archive. Documents were sorted according to municipalities they concerned. In this way, for each of the 409 municipalities of Calabria a set of documents, maps and images was available. Collected documents mainly concern damage caused by the occurrence, since XIX century, of phenomena as floods, flash floods and landslides triggered by extreme meteorological events, or even damage caused by strong earthquakes. At the beginning of 2014, the central office of IRPI (Perugia) funded a project aiming to the digitalization of the archive and the subsequent publication of it on a web-platform. In this paper, the procedure adopted to build the archive and implement the database is described. Then, the elaboration of the historical series of data on Catanzaro town, which has been frequently damaged by rainfall-induced landslides and floods, is also presented. Basing on the documents coming from the archive of Ministry Public Works and stored in our Historical Archive, an assessment of costs related to damage that during XX century affected the houses of this town has been performed. The research pointed out the types of most damaging phenomena, the municipal sectors most frequently damaged, and the evolution of damaged areas throughout the years according to the increasing urbanization.

  16. Impacts of climate change on coastal flood risk in England and Wales: 2030-2100.

    PubMed

    Hall, Jim W; Sayers, Paul B; Walkden, Mike J A; Panzeri, Mike

    2006-04-15

    Coastal flood risk is a function of the probability of coastal flooding and the consequential damage. Scenarios of potential changes in coastal flood risk due to changes in climate, society and the economy over the twenty-first century have been analysed using a national-scale quantified flood risk analysis methodology. If it is assumed that there will be no adaptation to increasing coastal flood risk, the expected annual damage in England and Wales due to coastal flooding is predicted to increase from the current 0.5 billion pounds to between 1.0 pound and 13.5 billion pounds, depending on the scenario of climate and socio-economic change. The proportion of national flood risk that is attributable to coastal flooding is projected to increase from roughly 50% to between 60 and 70%. Scenarios of adaptation to increasing risk, by construction of coastal dikes or retreat from coastal floodplains, are analysed. These adaptations are shown to be able to reduce coastal flood risk to between 0.2 pounds and 0.8 billion pounds. The capital cost of the associated coastal engineering works is estimated to be between 12 pounds and 40 billion pounds. Non-structural measures to reduce risk can make a major contribution to reducing the cost and environmental impact of engineering measures.

  17. The development of flood map in Malaysia

    NASA Astrophysics Data System (ADS)

    Zakaria, Siti Fairus; Zin, Rosli Mohamad; Mohamad, Ismail; Balubaid, Saeed; Mydin, Shaik Hussein; MDR, E. M. Roodienyanto

    2017-11-01

    In Malaysia, flash floods are common occurrences throughout the year in flood prone areas. In terms of flood extent, flash floods affect smaller areas but because of its tendency to occur in densely urbanized areas, the value of damaged property is high and disruption to traffic flow and businesses are substantial. However, in river floods especially the river floods of Kelantan and Pahang, the flood extent is widespread and can extend over 1,000 square kilometers. Although the value of property and density of affected population is lower, the damage inflicted by these floods can also be high because the area affected is large. In order to combat these floods, various flood mitigation measures have been carried out. Structural flood mitigation alone can only provide protection levels from 10 to 100 years Average Recurrence Intervals (ARI). One of the economically effective non-structural approaches in flood mitigation and flood management is using a geospatial technology which involves flood forecasting and warning services to the flood prone areas. This approach which involves the use of Geographical Information Flood Forecasting system also includes the generation of a series of flood maps. There are three types of flood maps namely Flood Hazard Map, Flood Risk Map and Flood Evacuation Map. Flood Hazard Map is used to determine areas susceptible to flooding when discharge from a stream exceeds the bank-full stage. Early warnings of incoming flood events will enable the flood victims to prepare themselves before flooding occurs. Properties and life's can be saved by keeping their movable properties above the flood levels and if necessary, an early evacuation from the area. With respect to flood fighting, an early warning with reference through a series of flood maps including flood hazard map, flood risk map and flood evacuation map of the approaching flood should be able to alert the organization in charge of the flood fighting actions and the authority to undertake the necessary decisions, and the general public to be aware of the impending danger. However this paper will only discuss on the generations of Flood Hazard Maps and the use of Flood Risk Map and Flood Evacuation Map by using geospatial data.

  18. Modelling the interaction between flooding events and economic growth

    NASA Astrophysics Data System (ADS)

    Grames, Johanna; Fürnkranz-Prskawetz, Alexia; Grass, Dieter; Viglione, Alberto; Blöschl, Günter

    2016-04-01

    Recently socio-hydrology models have been proposed to analyze the interplay of community risk-coping culture, flooding damage and economic growth. These models descriptively explain the feedbacks between socio-economic development and natural disasters such as floods. Complementary to these descriptive models, we develop a dynamic optimization model, where the inter-temporal decision of an economic agent interacts with the hydrological system. This interdisciplinary approach matches with the goals of Panta Rhei i.e. to understand feedbacks between hydrology and society. It enables new perspectives but also shows limitations of each discipline. Young scientists need mentors from various scientific backgrounds to learn their different research approaches and how to best combine them such that interdisciplinary scientific work is also accepted by different science communities. In our socio-hydrology model we apply a macro-economic decision framework to a long-term flood-scenario. We assume a standard macro-economic growth model where agents derive utility from consumption and output depends on physical capital that can be accumulated through investment. To this framework we add the occurrence of flooding events which will destroy part of the capital. We identify two specific periodic long term solutions and denote them rich and poor economies. Whereas rich economies can afford to invest in flood defense and therefore avoid flood damage and develop high living standards, poor economies prefer consumption instead of investing in flood defense capital and end up facing flood damages every time the water level rises. Nevertheless, they manage to sustain at least a low level of physical capital. We identify optimal investment strategies and compare simulations with more frequent and more intense high water level events.

  19. The role of climate variability in extreme floods in Europe

    NASA Astrophysics Data System (ADS)

    Guimarães Nobre, Gabriela; Aerts, Jeroen C. J. H.; Jongman, Brenden; Ward, Philip J.

    2017-04-01

    Between 1980 and 2015, Europe experienced 18% of worldwide weather-related loss events, which accounted for over US500 billion in damage. Consequently, it is urgent to further develop adaptation strategies to mitigate the consequences of weather-related disasters, such as floods. Europe's capability to prepare for such disasters is challenged by a large range of uncertainties and a limited understanding of the driving forces of hydrometeorological hazards. One of the major sources of uncertainty is the relationship between climate variability and weather-related losses. Previous studies show that climate variability drives temporal changes in hydrometereological variables in Europe. However, their influence on flood risk has received little attention. We investigated the influence of the positive and negative phases of El Niño Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Arctic Oscillation (AO), on the seasonal frequency and intensity of extreme rainfall, and anomalies in flood occurrence and damage compared to the neutral phases of the indices of climate variability. Using statistical methods to analyze relationships between the indices of climate variability and four indicators of flooding, we found that positive and negative phases of NAO and AO are associated with more (or less) frequent and intense seasonal extreme rainfall over large areas of Europe. The relationship between ENSO and both the occurrence of extreme rainfall and intensity of extreme rainfall in Europe is much smaller than the relationship with NAO or AO, but still significant in some regions. We observe that flood damage and flood occurrence have strong links with climate variability, especially in southern and eastern Europe. Therefore, when investigating flooding across Europe, all three indices of climate variability should be considered. Seasonal forecasting of flooding could be enhanced by the inclusion of climate variability indicators .

  20. Rapid assessment of household needs in the Houston area after Tropical Storm Allison.

    PubMed

    Waring, Stephen C; Reynolds, Kaye M; D'Souza, Gypsyamber; Arafat, Raouf R

    2002-09-01

    Tropical Storm Allison, which hit landfall near Galveston, Texas, on June 5, 2001, caused the most severe flood-related damage ever recorded in the Houston metropolitan area. The main goal of the public health response to tropical storm Allison was to evaluate the immediate health needs of the community. To estimate damage and household needs, we conducted a rapid needs assessment in the areas most affected by flooding with use of a modified cluster sampling method facilitated by Geographical Information Systems methodology. A total of 420 households participated in the survey, 210 each from the 2 sampling areas. We found a 4-fold increase in illness among persons living in flooded homes compared with those living in nonflooded homes. These findings suggest a need for rapid resolution of flood-related damage and the possibility that residents should seek temporary housing during clean-up and repair. In addition, we obtained reliable estimates of damage and household needs to help guide relief efforts. The findings underscore the usefulness of a rapid-needs assessment as a tool to identify actual health threats and to facilitate delivery of resources to those with the greatest and most immediate need.

  1. Hurricane Agnes rainfall and floods, June-July 1972

    USGS Publications Warehouse

    Bailey, James F.; Patterson, James Lee; Paulhus, Joseph Louis Hornore

    1975-01-01

    Hurricane Agnes originated in the Caribbean Sea region in mid-June. Circulation barely reached hurricane intensity for a brief period in the Gulf of Mexico. The storm crossed the Florida Panhandle coastline on June 19, 1972, and followed an unusually extended overland trajectory combining with an extratropical system to bring very heavy rain from the Carolinas northward to New York. This torrential rain followed the abnormally wet May weather in the Middle Atlantic States and set the stage for the subsequent major flooding. The record-breaking floods occurred in the Middle Atlantic States in late June and early July 1972. Many streams in the affected area experienced peak discharges several times the previous maxima of record. Estimated recurrence intervals of peak flows at many gaging stations on major rivers and their tributaries exceeded 100 years. The suspended-sediment concentration and load of most flooded streams were also unusually high. The widespread flooding from this storm caused Agnes to be called the most destructive hurricane in United States history, claiming 117 lives and causing damage estimated at $3.1 billion in 12 States. Damage was particularly high in New York, Pennsylvania, Maryland, and Virginia. The detailed life history of Hurricane Agnes, including the tropical depression and tropical storm stages, is traced. Associated rainfalls are analyzed and compared with climatologic recurrence values. These are followed by a detailed description of the flood and streamflows of each affected basin. A summary of peak stages and discharges and comparison data for previous floods at 989 stations are presented. Deaths and flood damage estimates are compiled.

  2. Probabilistic, meso-scale flood loss modelling

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2016-04-01

    Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.

  3. Floods of the Lower Tisza from the late 17th century onwards: frequency, magnitude, seasonality and great flood events

    NASA Astrophysics Data System (ADS)

    Kiss, Andrea

    2016-04-01

    The present paper is based on a recently developed database including contemporary original, administrative, legal and private source materials (published and archival) as well as media reports related to the floods occurred on the lower sections of the Tisza river in Hungary, with special emphasis on the area of Szeged town. The study area is well-represented by contemporary source evidence from the late 17th century onwards, when the town and its broader area was reoccupied from the Ottoman Turkish Empire. Concerning the applied source materials, the main bases of investigation are the administrative (archival) sources such as town council protocols of Szeged and county meeting protocols of Csanád and Csongrád Counties. In these (legal-)administrative documents damaging events (natural/environmental hazards) were systematically recorded. Moreover, other source types such as taxation-related damage accounts as well as private and official reports, letters and correspondence (published, unpublished) were also included. Concerning published evidence, a most important source is flood reports in contemporary newspapers as well as town chronicles and other contemporary narratives. In the presentation the main focus is on the analysis of flood-rich flood-poor periods of the last ca. 330 years; moreover, the seasonality distribution as well as the magnitude of Tisza flood events are also discussed. Another important aim of the poster is to provide a short overview, in the form of case studies, on the greatest flood events (e.g. duration, magnitude, damages, multi-annual consequences), and their further impacts on the urban and countryside development as well as on (changes in) flood defence strategies. In this respect, especially two flood events, the great (1815-)1816 and the catastrophic 1879 flood (shortly with causes and consequences) - that practically erased Szeged town from the ground - are presented in more detail.

  4. Taxation records as a source of information for the study of historical floods in South Moravia, Czech Republic

    NASA Astrophysics Data System (ADS)

    Brázdil, R.; Chromá, K.; Řezníčková, L.; Valášek, H.; Dolák, L.; Stachoň, Z.; Soukalová, E.; Dobrovolný, P.

    2014-07-01

    Since the second half of the 17th century, tax relief has been available to farmers and landowners to offset flood damage to property (buildings) and land (fields, meadows, pastures, gardens) in South Moravia, Czech Republic. Historically, the written applications for this were supported by a relatively efficient bureaucratic process that left a clear data trail of documentation, preserved at several levels: in the communities affected, in regional offices, and in the Moravian Land Office, all of which are to be found in estate and family collections in the Moravian Land Archives in the city of Brno, the provincial capital. As well as detailed information about damage done and administrative responses to it, data is often preserved as to the flood event itself, the time of its occurrence and its impacts, sometimes together with causes and stages. The final flood database based on taxation records is used here to describe the temporal and spatial density of both flood events and the records themselves. The information derived is used to help create long-term flood chronologies for the Rivers Dyje, Jihlava, Svratka and Morava, combining floods interpreted from taxation records with other documentary data and floods derived from later systematic hydrological measurements (water levels, discharges). Common periods of higher flood frequency appear largely in 1821-1850 and 1921-1950, although this shifts to several other decades for individual rivers. Certain uncertainties are inseparable from flood data taxation records: their spatial and temporal incompleteness; the inevitable limitation to larger-scale damage and to the summer half-year; and the different characters of rivers, including land-use changes and channel modifications. Taxation data has great potential for extending our knowledge of past floods for the rest of the Czech Republic as well, not to mention other European countries in which records have survived.

  5. The use of taxation records in assessing historical floods in South Moravia, Czech Republic

    NASA Astrophysics Data System (ADS)

    Brázdil, R.; Chromá, K.; Řezníčková, L.; Valášek, H.; Dolák, L.; Stachoň, Z.; Soukalová, E.; Dobrovolný, P.

    2014-10-01

    Since the second half of the 17th century, tax relief has been available to farmers and landowners to offset flood damage to property (buildings) and land (fields, meadows, pastures, gardens) in South Moravia, Czech Republic. Historically, the written applications for this were supported by a relatively efficient bureaucratic process that left a clear data trail of documentation, preserved at several levels: in the communities affected, in regional offices, and in the Moravian Land Office, all of which are to be found in estate and family collections in the Moravian Land Archives in the city of Brno, the provincial capital. As well as detailed information about damage done and administrative responses to it, data are often preserved as to the flood event itself, the time of its occurrence and its impacts, sometimes together with causes and stages. The final flood database based on taxation records is used here to describe the temporal and spatial density of both flood events and the records themselves. The information derived is used to help create long-term flood chronologies for the rivers Dyje, Jihlava, Svratka and Morava, combining floods interpreted from taxation records with other documentary data and floods derived from later systematic hydrological measurements (water levels, discharges). Common periods of higher flood frequency appear largely in the periods 1821-1850 and 1921-1950, although this shifts to several other decades for individual rivers. A number of uncertainties are inseparable from flood data taxation records: their spatial and temporal incompleteness; the inevitable limitation to larger-scale damage and restriction to the summer half-year; and the different characters of rivers, including land-use changes and channel modifications. Taxation data have considerable potential for extending our knowledge of past floods for the rest of the Czech Republic, not to mention other European countries in which records have survived.

  6. Analysis of the French insurance market exposure to floods: a stochastic model combining river overflow and surface runoff

    NASA Astrophysics Data System (ADS)

    Moncoulon, D.; Labat, D.; Ardon, J.; Leblois, E.; Onfroy, T.; Poulard, C.; Aji, S.; Rémy, A.; Quantin, A.

    2014-09-01

    The analysis of flood exposure at a national scale for the French insurance market must combine the generation of a probabilistic event set of all possible (but which have not yet occurred) flood situations with hazard and damage modeling. In this study, hazard and damage models are calibrated on a 1995-2010 historical event set, both for hazard results (river flow, flooded areas) and loss estimations. Thus, uncertainties in the deterministic estimation of a single event loss are known before simulating a probabilistic event set. To take into account at least 90 % of the insured flood losses, the probabilistic event set must combine the river overflow (small and large catchments) with the surface runoff, due to heavy rainfall, on the slopes of the watershed. Indeed, internal studies of the CCR (Caisse Centrale de Reassurance) claim database have shown that approximately 45 % of the insured flood losses are located inside the floodplains and 45 % outside. Another 10 % is due to sea surge floods and groundwater rise. In this approach, two independent probabilistic methods are combined to create a single flood loss distribution: a generation of fictive river flows based on the historical records of the river gauge network and a generation of fictive rain fields on small catchments, calibrated on the 1958-2010 Météo-France rain database SAFRAN. All the events in the probabilistic event sets are simulated with the deterministic model. This hazard and damage distribution is used to simulate the flood losses at the national scale for an insurance company (Macif) and to generate flood areas associated with hazard return periods. The flood maps concern river overflow and surface water runoff. Validation of these maps is conducted by comparison with the address located claim data on a small catchment (downstream Argens).

  7. All-season flash flood forecasting system for real-time operations

    USDA-ARS?s Scientific Manuscript database

    Flash floods can cause extensive damage to both life and property, especially because they are difficult to predict. Flash flood prediction requires high-resolution meteorologic observations and predictions, as well as calibrated hydrologic models in addition to extensive data handling. We have de...

  8. Floods of December 1961 in Mississippi and adjoining states

    USGS Publications Warehouse

    Shell, James D.

    1962-01-01

    Widespread floods occurred over parts of Mississippi, Louisiana, and Alabama after heavy rains during December 18, 1961. A series of low-pressure systems produced as much as 19 inches of rainfall in some areas. Heavy rainfall, 7 to 11 inches, on December 10 resulted in outstanding floods on small streams in southern Mississippi and southwestern Alabama. Subsequent rains produced multiple floods on small streams and outstanding floods of prolonged duration along the Big Black, upper Pearl, and lower Tombigbee Rivers in Mississippi. At Jackson, Miss., the Pearl River reached the highest stage known. Along the east bank, flood waters topped or breached some of the levee system protecting the Flowood industrial area, but other parts were saved by extensive reinforcement and by emergency operation of the partially completed dam 10 miles upstream. Additional heavy damage to commercial and industrial property was prevented as a result of these measures. Elsewhere, damage was restricted primarily to secondary highways and bridges. Two lives were lost.

  9. Use of Remote Sensing Products for the SERVIR Project

    NASA Technical Reports Server (NTRS)

    Policelli, Frederick S.

    2010-01-01

    The United Nations University (UNU) estimates that floods presently impacts greater than 520 million people per year worldwide, resulting in up to 25,000 annual deaths, extensive homelessness, disaster-induced disease, crop and livestock damage, famine, and other serious harm. Meanwhile, aid agencies such as the International Federation of Red Cross and Red Crescent Societies (IFRC) are increasingly seeking better information concerning flood hazards in order to plan for and help mitigate the effects of damaging floods. There is fertile ground to continue development of better remote sensing and modeling techniques to help manage flood related disasters. Disaster management and humanitarian aid organizations need accurate and timely information for making decisions regarding deployment of relief teams and emergency supplies during major floods. Flood maps based on the use of satellite data have proven extremely valuable to such organizations for identifying the location, extent, and severity of these events. However, despite extraordinary efforts on the part of remote sensing data providers to rapidly deliver such maps, there is typically a delay of several days or even weeks from the on-set of flooding until such maps are available to the disaster management community. This paper summarizes efforts at NASA to address this problem through development of an integrated and automated process of a) flood forecasting b) flood detection, c) satellite data acquisition, d) rapid flood mapping and distribution, and e) validation of flood forecasting and detection products.

  10. Radar-based Quantitative Precipitation Forecasting using Spatial-scale Decomposition Method for Urban Flood Management

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Lee, B.; Nakakita, E.; Lee, G.

    2016-12-01

    Recent climate changes and abnormal weather phenomena have resulted in increased occurrences of localized torrential rainfall. Urban areas in Korea have suffered from localized heavy rainfall, including the notable Seoul flood disaster in 2010 and 2011. The urban hydrological environment has changed in relation to precipitation, such as reduced concentration time, a decreased storage rate, and increased peak discharge. These changes have altered and accelerated the severity of damage to urban areas. In order to prevent such urban flash flood damages, we have to secure the lead time for evacuation through the improvement of radar-based quantitative precipitation forecasting (QPF). The purpose of this research is to improve the QPF products using spatial-scale decomposition method for considering the life time of storm and to assess the accuracy between traditional QPF method and proposed method in terms of urban flood management. The layout of this research is as below. First, this research applies the image filtering to separate the spatial-scale of rainfall field. Second, the separated small and large-scale rainfall fields are extrapolated by each different forecasting method. Third, forecasted rainfall fields are combined at each lead time. Finally, results of this method are evaluated and compared with the results of uniform advection model for urban flood modeling. It is expected that urban flood information using improved QPF will help to reduce casualties and property damage caused by urban flooding through this research.

  11. Management of flood victims: Chainat Province, central Thailand.

    PubMed

    Wisitwong, Anchaleeporn; McMillan, Margaret

    2010-03-01

    This article focuses on the processes of flood management and the experiences of flood victims in Chainat Province, central Thailand, so as to develop knowledge about the future handling of such disasters. A phenomenological qualitative approach was used to describe the processes of providing assistance to flood victims. In-depth interviews and observation were used to collect the data. Criterion sampling was used to select 23 participants. Content analysis of the data revealed that some flood victims could predict flooding based on prior experiences, so they prepared themselves. The data revealed six themes that demonstrated that those who could not predict how floods would impact on them were unprepared and suffered losses and disruption to their daily life. Damaged routes meant people could not go to work, resulting in the loss of income. There was a lack of sanitary appliances and clean drinking water, people were sick, and experienced stress. At the community level, people helped one another, making sandbags and building walls as a defense against water. They formed support groups to enable the processing of stressful experiences. However, later, the water became stagnant and contaminated, creating an offensive smell. The government provided assistance to cut off electricity services, food and water, toilets and health services, and water drainage. In the recovery phase, the victims needed money for investment, employment opportunities, books for children, extra time to pay off loans, reconnection of electricity, surveys of damage, and pensions to deal with damage and recovery.

  12. Contribution of future urbanisation expansion to flood risk changes

    NASA Astrophysics Data System (ADS)

    Bruwier, Martin; Mustafa, Ahmed; Archambeau, Pierre; Erpicum, Sébastien; Pirotton, Michel; Teller, Jacques; Dewals, Benjamin

    2016-04-01

    The flood risk is expected to increase in the future due to climate change and urban development. Climate change modifies flood hazard and urban development influences exposure and vulnerability to floods. While the influence of climate change on flood risk has been studied widely, the impact of urban development also needs to be considered in a sustainable flood risk management approach. The main goal of this study is the determination of the sensitivity of future flood risk to different urban development scenarios at a relatively short-time horizon in the River Meuse basin in Wallonia (Belgium). From the different scenarios, the expected impact of urban development on flood risk is assessed. Three urban expansion scenarios are developed up to 2030 based on a coupled cellular automata (CA) and agent-based (AB) urban expansion model: (i) business-as-usual, (ii) restrictive and (iii) extreme expansion scenarios. The main factor controlling these scenarios is the future urban land demand. Each urban expansion scenario is developed by considering or not high and/or medium flood hazard zones as a constraint for urban development. To assess the model's performance, it is calibrated for the Meuse River valley (Belgium) to simulate urban expansion between 1990 and 2000. Calibration results are then assessed by comparing the 2000 simulated land-use map and the actual 2000 land-use map. The flood damage estimation for each urban expansion scenario is determined for five flood discharges by overlaying the inundation map resulting from a hydraulic computation and the urban expansion map and by using damage curves and specific prices. The hydraulic model Wolf2D has been extensively validated by comparisons between observations and computational results during flood event .This study focuses only on mobile and immobile prices for urban lands, which are associated to the most severe damages caused by floods along the River Meuse. These findings of this study offers tools to drive urban expansion based on numerous policies visions to mitigate future flood risk along the Meuse River. In particular, we assess the impacts on future flood risk of the prohibition of urban development in high and/or medium flood hazard zones. Acknowledgements The research was funded through the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation.

  13. Geospatial Analysis for Flood-Risk Management, Resilience, and US Policy

    NASA Astrophysics Data System (ADS)

    Pinter, N.; Hui, R.; Conrad, D. R.; Schaefer, K.

    2016-12-01

    The National Flood Insurance Program (NFIP) was established in 1968 to curtail unfettered development on US floodplains and spiraling taxpayer expenditures for disaster relief. Currently NFIP underwrites >5 million policies, providing >1.25 trillion in coverage, and taking in >3.5 billion in annual premiums. Cumulative flood-damage payouts to date exceed premiums collected by >$20 billion. Our group has obtained nationwide databases of NFIP flood-damage claims back to 1972, annual policies since 1994, and selective Federal Emergency Management Agency (FEMA) repetitive losses. Attributes include property, claims, and loss characteristics. Other attributes were stripped to maintain policyholder anonymity. At present, locations are to the nearest 0.1° lat/long, zip code, and by community. We combine NFIP data with GIS information from a variety of other sources. Over the past 44 years, 1,625,470 non-zero flood claims are documented. Numbers of claims and losses have increased over time, even with extreme events (Hurricanes Katrina and Sandy) excluded. Flood losses have occurred within 100-year floodplains (1% annual exceedance), in coastal hazard zones, and 25% of claims occur outside of mapped flood-hazard areas. We hypothesize that a many losses outside of FEMA's designated Special Flood Hazard Area (SFHA) correlate with (1) outdated map panels, (2) contrasting levels of enforcement and mitigation by state. Other distributed flood losses represent stormwater/drainage damage. Claim rates substantially exceed 1%, both in and outside the SFHA, and for "pre-FIRM" and "post-FIRM" structures. This suggests that ≥100-year floods are occurring more frequently than statutory frequencies suggest. For US homeowners, this suggests that flood insurance is a good deal in a variety of settings. The NFIP data analyzed here contrasts with our group's previous, largely model-driven research. Such empirical flood data exclude model assumptions, but add dizzying array of human and political factors into the resulting spatial and temporal patterns. Parsing out the hydrologic, climatic, social, and political factors influencing flood risk and resilience is crucial for sound management of NFIP and other programs. The US Congress will debate reauthorization and possible revision of NFIP in 2017.

  14. Grand Lake Saint Marys, Ohio, Survey Report for Flood Control and Allied Purposes. Volume 1.

    DTIC Science & Technology

    1981-08-01

    nuprotected shoreline have reduced the lake depth. A range of structural and, nanatructural flood damage reduction1 usasures wee exmined. Nonstructural masaes ...24 330 Apr 1972 872.67 32 310 Apr 1938 872.42 19 550 Feb 1950 872.42 24 520 Apr 1978 872.17 37 380 Jan 1949 872.08 19 260 Apr 1957 872.08 23 550 Jun...1958 871.92 11 380 May 1933 871.92 5 490 Nov 1972 871.92 9 510 16 . ..... Ie Flood Damages The areas under consideration include Beaver Creek

  15. 46 CFR 42.20-6 - Flooding standard: Type “A” vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Flooding standard: Type âAâ vessels. 42.20-6 Section 42... FOREIGN VOYAGES BY SEA Freeboards § 42.20-6 Flooding standard: Type “A” vessels. (a) Design calculations... specified in § 42.20-12 assuming the damage specified in § 42.20-11 as applied to the following flooding...

  16. 46 CFR 42.20-6 - Flooding standard: Type “A” vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Flooding standard: Type âAâ vessels. 42.20-6 Section 42... FOREIGN VOYAGES BY SEA Freeboards § 42.20-6 Flooding standard: Type “A” vessels. (a) Design calculations... specified in § 42.20-12 assuming the damage specified in § 42.20-11 as applied to the following flooding...

  17. 46 CFR 42.20-6 - Flooding standard: Type “A” vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Flooding standard: Type âAâ vessels. 42.20-6 Section 42... FOREIGN VOYAGES BY SEA Freeboards § 42.20-6 Flooding standard: Type “A” vessels. (a) Design calculations... specified in § 42.20-12 assuming the damage specified in § 42.20-11 as applied to the following flooding...

  18. 46 CFR 42.20-6 - Flooding standard: Type “A” vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Flooding standard: Type âAâ vessels. 42.20-6 Section 42... FOREIGN VOYAGES BY SEA Freeboards § 42.20-6 Flooding standard: Type “A” vessels. (a) Design calculations... specified in § 42.20-12 assuming the damage specified in § 42.20-11 as applied to the following flooding...

  19. 46 CFR 42.20-6 - Flooding standard: Type “A” vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Flooding standard: Type âAâ vessels. 42.20-6 Section 42... FOREIGN VOYAGES BY SEA Freeboards § 42.20-6 Flooding standard: Type “A” vessels. (a) Design calculations... specified in § 42.20-12 assuming the damage specified in § 42.20-11 as applied to the following flooding...

  20. Frequency analyses for recent regional floods in the United States

    USGS Publications Warehouse

    Melcher, Nick B.; Martinez, Patsy G.; ,

    1996-01-01

    During 1993-95, significant floods that resulted in record-high river stages, loss of life, and significant property damage occurred in the United States. The floods were caused by unique global weather patterns that produced large amounts of rain over large areas. Standard methods for flood-frequency analyses may not adequately consider the probability of recurrence of these global weather patterns.

  1. 1973 Mississippi River Flood's Impact on Natural Hardwood Forests and Plantations

    Treesearch

    H. E. Kennedy; R. M. Krinard

    1974-01-01

    Through October, the 1979 Mississippi River flood had not caused extensive damage to natural hardwood forests or plantations that were 1 year or older and had been flooded only during the first 2 months of the growing season. New plantings of cottonwood were virtually destroyed, however, and 1-year-old sweetgum, flooded about 9 months, was killed. All yellow-poplar...

  2. The Financial Benefit of Early Flood Warnings in Europe

    NASA Astrophysics Data System (ADS)

    Pappenberger, Florian; Cloke, Hannah L.; Wetterhall, Fredrik; Parker, Dennis J.; Richardson, David; Thielen, Jutta

    2015-04-01

    Effective disaster risk management relies on science based solutions to close the gap between prevention and preparedness measures. The outcome of consultations on the UNIDSR post-2015 framework for disaster risk reduction highlight the need for cross-border early warning systems to strengthen the preparedness phases of disaster risk management in order to save people's lives and property and reduce the overall impact of severe events. In particular, continental and global scale flood forecasting systems provide vital information to various decision makers with which early warnings of floods can be made. Here the potential monetary benefits of early flood warnings using the example of the European Flood Awareness System (EFAS) are calculated based on pan-European Flood damage data and calculations of potential flood damage reductions. The benefits are of the order of 400 Euro for every 1 Euro invested. Because of the uncertainties which accompany the calculation, a large sensitivity analysis is performed in order to develop an envelope of possible financial benefits. Current EFAS system skill is compared against perfect forecasts to demonstrate the importance of further improving the skill of the forecasts. Improving the response to warnings is also essential in reaping the benefits of flood early warnings.

  3. 46 CFR 170.110 - Stability booklet.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... unintentional flooding. (12) A table of contents and index for the booklet. (13) Each ship condition which, if damage occurs, may require cross-flooding for survival and information concerning the use of any special cross-flooding fittings. (14) The amount and location of fixed ballast. (15) Any other necessary...

  4. 78 FR 75574 - Agency Information Collection Activities: Submission for OMB Review; Comment Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... assist the community to understand the National Flood Insurance Program's (NFIP's) requirements, and implement effective flood loss reductions measures. Communities can achieve cost savings through flood mitigation actions by way of insurance premium discounts and reduced property damage. Affected Public: State...

  5. Quantification of flash flood economic risk using ultra-detailed stage-damage functions and 2-D hydraulic models

    NASA Astrophysics Data System (ADS)

    Garrote, J.; Alvarenga, F. M.; Díez-Herrero, A.

    2016-10-01

    The village of Pajares de Pedraza (Segovia, Spain) is located in the floodplain of the Cega River, a left bank tributary of the Douro River. Repeated flash flood events occur in this small village because of its upstream catchment area, mountainous character and impermeable lithology, which reduce concentration time to just a few hours. River overbank flow has frequently caused flooding and property damage to homes and rural properties, most notably in 1927, 1991, 1996, 2001, 2013 and 2014. Consequently, a detailed analysis was carried out to quantify the economic risk of flash floods in peri-urban and rural areas. Magnitudes and exceedance probabilities were obtained from a flood frequency analysis of maximum discharges. To determine the extent and characteristics of the flooded area, we performed 2D hydraulic modeling (Iber 2.0 software) based on LIDAR (1 m) topography and considering three different scenarios associated with the initial construction (1997) and subsequent extension (2013) of a linear defense structure (rockfill dike or levee) to protect the population. Specific stage-damage functions were expressly developed using in situ data collection for exposed elements, with special emphasis on urban-type categories. The average number of elements and their unit value were established. The relationship between water depth and the height at which electric outlets, furniture, household goods, etc. were located was analyzed; due to its effect on the form of the function. Other nonspecific magnitude-damage functions were used in order to compare both economic estimates. The results indicate that the use of non-specific magnitude-damage functions leads to a significant overestimation of economic losses, partly linked to the use of general economic cost data. Furthermore, a detailed classification and financial assessment of exposed assets is the most important step to ensure a correct estimate of financial losses. In both cases, this should include a consideration of the socio-economic and cultural conditions prevailing in the area, as well as the types of flood that affect it.

  6. A place-based model for assessing the coherence of the flash floods and socio-economic vulnerability across the Contiguous United States (CONUS)

    NASA Astrophysics Data System (ADS)

    Khajehei, S.; Moradkhani, H.

    2017-12-01

    Understanding socio-economic characteristics involving natural hazards potential, vulnerability, and resilience is necessary to address the damages to economy and loss of life from extreme natural hazards. The vulnerability to flash floods is dependent on both biophysical and socio-economic factors. Although the biophysical characteristics (e.g. climate, vegetation, and land use) are informative and useful for predicting spatial and temporal extent of flash floods, they have minimal bearing on predicting when and where flash floods are likely to influence people or damage valuable assets and resources. The socio-economic factors determine spatial and temporal scales of the regions affected by flash floods. In this study, we quantify the socio-economic vulnerability to flash floods across the Contiguous United States (CONUS). A socio-economic vulnerability index was developed, employing Bayesian principal components for each state in the CONUS. For this purpose, extensive sets of social and economic variables from US Census and the Bureau of Economic Analysis were used. We developed maps presenting the coincidence of socio-economic vulnerability and the flash floods records. This product can help inform flash flood prevention, mitigation and recovery planning, as well as reducing the flash flood hazards affecting vulnerable places and population.

  7. The floods of May 17-18, 1985 and October 6-7, 1985 in Puerto Rico

    USGS Publications Warehouse

    Quinones, Ferdinand; Johnson, K.G.

    1987-01-01

    Severe floods occurred in Puerto Rico twice in 1985. During May 15-19, 1985, as much as 25 in. of rainfall produced significant floods along north and north-central basins in the island. A nearly stationary tropical depression affected Puerto Rico during October 5-8, 1985, resulting in 24-hr precipitation totals of as much as 23 in. and severe floods along the south-central coastal areas. During the May 17-18, 1985 event, the areas most seriously affected by flooding were along the north coast. These included the lower reaches of the Rio Grande de Manati and the Rio Grande de Arecibo. Significant flooding also occurred at Utuado and Jayuya. The recurrence interval of most of the flood peaks was generally < 25 yr. The floods of October 6-7, 1985, affected mostly rural areas in southern Puerto Rico, but caused significant loss of life and widespread property damages. Landslides near Ponce, the collapse of a bridge at Rio Coamo, and the destruction of homes near Ponce resulted in about 170 fatalities and > 125 million dollars in damages. Flooding was also severe at Barceloneta on the north coast. Recurrence intervals = or > 100 yr were estimated for peak discharges at several index stations. (Author 's abstract)

  8. Are flood occurrences in Europe linked to specific atmospheric circulation types?

    NASA Astrophysics Data System (ADS)

    Prudhomme, C.; Genevier, M.

    2009-04-01

    Flood damages are amongst the most costly climate-related hazard damages, with annual average flood damage in Europe in the last few decades of around €4bn per year (Barredo, 2007). With such economic and sometimes human losses, it is important to improve our estimations of flood risk for time scales from a few months (for increased preparedness) and to several decades (necessary to establish long-term flood management strategies). This paper investigates links between the occurrence of flood events and the atmospheric circulation patterns that have prevailed in the days leading to the flood. With the recent advances in climate modelling, such links could be exploited to anticipate the extent of potential damages due to flood using seasonal atmospheric forecasts products or future climate projections. The research is undertaken at a pan-European scale and exploits latest research in automatic classification techniques developed within the EU research network COST733 Action. Daily flow data from over 450 sites were used, available from the Global Runoff Data Centre, the European Water Archive, the UK National River Flow Archive and the French Banque Hydro. The atmospheric circulation types were defined following the Objective GrossWetterLagen classification (OGWL) developed by (James, 2007) using the ERA-40 mslp re-analysis, similar to the Hess-Brezowsky subjective classification (Hess and Brezowsky, 1977). Flood events were here defined according to the peak-over-threshold method, selecting the highest independent peaks observed in streamflow time series. The association between flood and atmospheric circulation types is assessed using two indicators. The first indicator calculates the difference between the frequency of occurrence of a circulation type CTi during a flood event to that for any day, expressed in percent. The significance of the anomaly is assessed using the χ2 statistics. The second indicator measures the probability of finding at last k days of N* of CTi using historical frequencies of occurrence. N* represents the number of days preceding a flood when the atmospheric conditions could significantly influence flood production processes, and could be interpreted as an upper limit of the concentration time of the basin. This evaluates the persistence of an atmospheric circulation type CTi prior to a flood event, and the associated level of significance. The indicators are calculated at-site and discussed regionally. Results show significant links with two circulation types related to Cyclonic Westerly (Wz) and the Low over the British Isles (TB), while the anticyclonic north-westerly type (Nea) systematically doesn't occur before any flood event. References Barredo, J.I., 2007. Major flood disasters in Europe: 1950-2005. Natural Hazards and Earth System Sciences, 42 doi: 10.1007/s11069-006-9065-2: 125-148. Hess, P. and Brezowsky, H., 1977. Katalog der Grobwetterlagen Europas 1881-1976. 3 verbesserte und ergäntze Auflage. Ber Dt. Wetterd. 15 (113). James, P.M., 2007. An objective classification method for Hess and Brezowsky Grosswetterlagen over Europe. Theoretical and Applied Climatology, 88(1): 17-42.

  9. Open Source Web-Based Solutions for Disseminating and Analyzing Flood Hazard Information at the Community Level

    NASA Astrophysics Data System (ADS)

    Santillan, M. M.-M.; Santillan, J. R.; Morales, E. M. O.

    2017-09-01

    We discuss in this paper the development, including the features and functionalities, of an open source web-based flood hazard information dissemination and analytical system called "Flood EViDEns". Flood EViDEns is short for "Flood Event Visualization and Damage Estimations", an application that was developed by the Caraga State University to address the needs of local disaster managers in the Caraga Region in Mindanao, Philippines in accessing timely and relevant flood hazard information before, during and after the occurrence of flood disasters at the community (i.e., barangay and household) level. The web application made use of various free/open source web mapping and visualization technologies (GeoServer, GeoDjango, OpenLayers, Bootstrap), various geospatial datasets including LiDAR-derived elevation and information products, hydro-meteorological data, and flood simulation models to visualize various scenarios of flooding and its associated damages to infrastructures. The Flood EViDEns application facilitates the release and utilization of this flood-related information through a user-friendly front end interface consisting of web map and tables. A public version of the application can be accessed at http://121.97.192.11:8082/. The application is currently expanded to cover additional sites in Mindanao, Philippines through the "Geo-informatics for the Systematic Assessment of Flood Effects and Risks for a Resilient Mindanao" or the "Geo-SAFER Mindanao" Program.

  10. Evaluation of levee setbacks for flood-loss reduction, Middle Mississippi River, USA

    NASA Astrophysics Data System (ADS)

    Dierauer, Jennifer; Pinter, Nicholas; Remo, Jonathan W. F.

    2012-07-01

    SummaryOne-dimensional hydraulic modeling and flood-loss modeling were used to test the effectiveness of levee setbacks for flood-loss reduction along the Middle Mississippi River (MMR). Four levee scenarios were assessed: (1) the present-day levee configuration, (2) a 1000 m levee setback, (3) a 1500 m levee setback, and (4) an optimized setback configuration. Flood losses were estimated using FEMA's Hazus-MH (Hazards US Multi-Hazard) loss-estimation software on a structure-by-structure basis for a range of floods from the 2- to the 500-year events. These flood-loss estimates were combined with a levee-reliability model to calculate probability-weighted damage estimates. In the simplest case, the levee setback scenarios tested here reduced flood losses compared to current conditions for large, infrequent flooding events but increased flood losses for smaller, more frequent flood events. These increases occurred because levee protection was removed for some of the existing structures. When combined with buyouts of unprotected structures, levee setbacks reduced flood losses for all recurrence intervals. The "optimized" levee setback scenario, involving a levee configuration manually planned to protect existing high-value infrastructure, reduced damages with or without buyouts. This research shows that levee setbacks in combination with buyouts are an economically viable approach for flood-risk reduction along the study reach and likely elsewhere where levees are widely employed for flood control. Designing a levee setback around existing high-value infrastructure can maximize the benefit of the setback while simultaneously minimizing the costs. The optimized levee setback scenario analyzed here produced payback periods (costs divided by benefits) of less than 12 years. With many aging levees failing current inspections across the US, and flood losses spiraling up over time, levee setbacks are a viable solution for reducing flood exposure and flood levels.

  11. 2013 Flood Waters "Flush" Pharmaceuticals and other Contaminants of Emerging Concern into the Water and Sediment of the South Platte River, Colorado

    NASA Astrophysics Data System (ADS)

    Battaglin, W. A.; Bradley, P. M.; Paschke, S.; Plumlee, G. S.; Kimbrough, R.

    2016-12-01

    In September 2013, heavy rainfall caused severe flooding in Rocky Mountain National Park (ROMO) and environs extending downstream into the main stem of the South Platte River. In ROMO, flooding damaged infrastructure and local roads. In the tributary canyons, flooding damaged homes, septic systems, and roads. On the plains, flooding damaged several wastewater treatment plants. The occurrence and fate of pharmaceuticals and other contaminants of emerging concern (CECs) in streams during flood conditions is poorly understood. We assessed the occurrence and fate of CECs in this flood by collecting water samples (post-peak flow) from 4 headwaters sites in ROMO, 7 sites on tributaries to the South Platte River, and 6 sites on the main stem of the South Platte; and by collecting flood sediment samples (post-flood depositional) from 14 sites on tributaries and 10 sites on the main stem. Water samples were analysed for 110 pharmaceuticals and 69 wastewater indicators. Sediment samples were analysed for 57 wastewater indicators. Concentrations and numbers of CECs detected in water increased markedly as floodwaters moved downstream and some were not diluted despite the large flow increases in downstream reaches of the affected rivers. For example, in the Cache la Poudre River in ROMO, no pharmaceuticals and 1 wastewater indicator compound (camphor) were detected. At Greeley, the Cache la Poudre was transporting 19 pharmaceuticals [total concentration of 0.69 parts-per-billion (ppb)] and 22 wastewater indicators (total concentration of 2.81 ppb). In the South Platte downstream from Greeley, 24 pharmaceuticals (total concentration of 1.47 ppb) and 24 wastewater indicators (total concentration of 2.35 ppb) were detected. Some CECs such as the combustion products pyrene, fluoranthene, and benzo(a)pyrene were detected only at sub-ppb concentrations in water, but were detected at concentrations in the hundreds of ppb in flood sediment samples.

  12. A retrospective analysis of the flash flood in Braunsbach on May 29th, 2016

    NASA Astrophysics Data System (ADS)

    Laudan, Jonas; Öztürk, Ugur; Sieg, Tobias; Wendi, Dadiyorto; Riemer, Adrian; Agarwal, Ankit; Rözer, Viktor; Korup, Oliver; Thieken, Annegret; Vogel, Kristin

    2017-04-01

    At the end of May and early June 2016 several rainstorms caused severe surface water flooding and flash floods, partly accompanied by mud and debris flows, in Central Europe, and especially in southern Germany. On the evening of May 29, 2016, a flood outburst with massive amounts of rubble and muddy sediments hit the town of Braunsbach, Baden-Württemberg, damaging numerous buildings, cars, and town facilities. The DFG Graduate School "Natural hazards and risks in a changing world" (NatRiskChange) at the University of Potsdam investigated the Braunsbach "flash flood" as an exemplary catastrophic event triggered by severe weather. Bringing together scientists from the fields of meteorology, hydrology, geomorphology, flood risk, natural hazards, and mathematics the research team was especially interested in the interplay of causes and triggers leading to the event. Accordingly, the team focused on the entire process chain from heavy precipitation to runoff and flood generation and the geomorphic aftermath. The steep slopes in the catchment area promote the episodic supply of gravel, debris and organic material, which remains stored for decades to millennia, only to be remobilized during rare and extreme runoff events such as in 2016. Field mapping revealed at least 48 landslides as sources of high sediment loads. Nonetheless, numerous scars of river erosion along the tributary creeks into Braunsbach indicate that most of the material carried by the flash flood was due to bank undercutting. The flow also entrained more rubble, trees, cars, and other anthropogenic sediments further downstream. This enhanced solids load increased the physical impact, and hence damage, to buildings. Local effects of flow depth, flow velocity, and exposition of buildings into the advancing non-steady and non-uniform flow caused the damage to exceed that of a clearwater flood with comparable return period. We conclude that, to meaningfully inform the implementation of precautionary measures, a quantitative hazard assessment of similarly extreme flash floods may include more explicitly the effects of high sediment loads and flow-roughness elements.

  13. Health Care Access and Utilization after the 2010 Pakistan Floods.

    PubMed

    Jacquet, Gabrielle A; Kirsch, Thomas; Durrani, Aqsa; Sauer, Lauren; Doocy, Shannon

    2016-10-01

    Introduction The 2010 floods submerged more than one-fifth of Pakistan's land area and affected more than 20 million people. Over 1.6 million homes were damaged or destroyed and 2,946 direct injuries and 1,985 deaths were reported. Infrastructure damage was widespread, including critical disruptions to the power and transportation networks. Hypothesis Damage and loss of critical infrastructure will affect the population's ability to seek and access adequate health care for years to come. This study sought to evaluate factors associated with access to health care in the aftermath of the 2010 Pakistan floods. A population-proportional, randomized cluster-sampling survey method with 80 clusters of 20 (1,600) households of the flood-affected population was used. Heads of households were surveyed approximately six months after flood onset. Multivariate analysis was used to determine significance. A total of 77.8% of households reported needing health services within the first month after the floods. Household characteristics, including rural residence location, large household size, and lower pre- and post-flood income, were significantly associated (P<.05) with inadequate access to health care after the disaster. Households with inadequate access to health care were more likely to have a death or injury in the household. Significantly higher odds of inadequate access to health care were observed in rural populations (adjusted OR 4.26; 95% CI, 1.89-9.61). Adequate health care access after the 2010 Pakistani floods was associated with urban residence location, suggesting that locating health care providers in rural areas may be difficult. Access to health services also was associated with post-flood income level, suggesting health resources are not readily available to households suffering great income losses. Jacquet GA , Kirsch T , Durrani A , Sauer L , Doocy S . Health care access and utilization after the 2010 Pakistan floods. Prehosp Disaster Med. 2016;31(5):485-491.

  14. Post-Disaster Damage Assessment using Remotely Sensed Data for Post Disaster Needs Assessments: Pakistan and Nigeria case studies

    NASA Astrophysics Data System (ADS)

    Saito, Keiko; Lemoine, Guido; Dell'Oro, Luca; Pedersen, Wendi; Nunez-Gomez, Ariel; Dalmasso, Simone; Balbo, Simone; Louvrier, Christophe; Caravaggi, Ivano; de Groeve, Tom; Slayback, Dan; Policelli, Frederick; Brakenridge, Bob; Rashid, Kashif; Gad, Sawsan; Arshad, Raja; Wielinga, Doekle; Parvez, Ayaz; Khan, Haris

    2013-04-01

    Since the launch of high-resolution optical satellites in 1999, remote sensing has increasingly been used in the context of post-disaster damage assessments worldwide. In the immediate aftermath of a natural disaster, particularly when extensive geographical areas are affected, it is often difficult to determine the extent and magnitude of disaster impacts. The Global Facility for Disaster Reduction and Recovery (GFDRR) has been leading efforts to utilise remote sensing techniques during disasters, starting with the 2010 Haiti earthquake. However, remote sensing has mostly been applied to extensive flood events in the context of developing Post-Disaster Needs Assessments (PDNAs). Given that worldwide, floods were the most frequent type of natural disasters between 2000 and 2011, affecting 106 million people in 2011 alone (EM-DAT) , there is clearly significant potential for on-going use of remote sensing techniques. Two case studies will be introduced here, the 2010 Pakistan flood and the 2012 Nigeria flood. The typical approach is to map the maximum cumulative inundation extent, then overlay this hazard information with available exposure datasets. The PDNA methodology itself is applied to a maximum of 15 sectors, of which remote sensing is most useful for housing, agriculture, transportation. Environment and irrigation could be included but these sectors were not covered in these events. The maximum cumulative flood extent is determined using remotely sensed data led by in-country agencies together with international organizations. To enhance this process, GFDRR hosted a SPRINT event in 2012 to tailor daily flood maps derived from MODIS imagery by NASA Goddard's Office of Applied Sciences to this purpose. To estimate the (direct) damage, exposure data for each sector is required. Initially global datasets are used, but these may be supplemented by national level datasets to revise damage estimates, depending on availability. Remote sensed estimates of direct damage are used to confirm field estimates of the magnitude of the damage; thus, the speed of assessment can be balanced not having to achieve high accuracy results. In the future, to increase the speed of remote sensed damage assessments, there is a need for existing exposure information - which can also be used for risk prediction as well as disaster response. However, advances in this area vary significantly by country and sector and therefore efforts to move this agenda forward will significantly improve disaster reduction and recovery.

  15. 33 CFR 203.47 - Modifications to non-Federal flood control works.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Federal construction cost of rehabilitation to preflood level of protection, or $100,000, whichever is... only in cash. In-kind services are not permitted for modification work. (b) Protection of additional...

  16. 33 CFR 203.47 - Modifications to non-Federal flood control works.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Federal construction cost of rehabilitation to preflood level of protection, or $100,000, whichever is... only in cash. In-kind services are not permitted for modification work. (b) Protection of additional...

  17. 33 CFR 203.47 - Modifications to non-Federal flood control works.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Federal construction cost of rehabilitation to preflood level of protection, or $100,000, whichever is... only in cash. In-kind services are not permitted for modification work. (b) Protection of additional...

  18. 33 CFR 203.47 - Modifications to non-Federal flood control works.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Federal construction cost of rehabilitation to preflood level of protection, or $100,000, whichever is... only in cash. In-kind services are not permitted for modification work. (b) Protection of additional...

  19. 33 CFR 203.47 - Modifications to non-Federal flood control works.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Federal construction cost of rehabilitation to preflood level of protection, or $100,000, whichever is... only in cash. In-kind services are not permitted for modification work. (b) Protection of additional...

  20. OHD/HL - Hurricane

    Science.gov Websites

    flooding. While storm surge is always a potential threat, more people have died from inland flooding in the 56 people who perished, 50 drowned due to inland flooding. Satellite image of Hurricane Floyd people drowned. Damages exceeded $750 million. Tropical Storm Claudette (1979) brought 45 inches of rain

  1. 46 CFR 172.195 - Survival conditions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... assumed damage if it meets the following conditions in the final stage of flooding: (a) Final waterline... of an opening through which progressive flooding may take place, such as an air pipe, or an opening... least 3.94 inches (10 cm). (3) Each submerged opening must be weathertight. (d) Progressive flooding. If...

  2. 46 CFR 172.195 - Survival conditions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... assumed damage if it meets the following conditions in the final stage of flooding: (a) Final waterline... of an opening through which progressive flooding may take place, such as an air pipe, or an opening... least 3.94 inches (10 cm). (3) Each submerged opening must be weathertight. (d) Progressive flooding. If...

  3. 46 CFR 172.195 - Survival conditions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... assumed damage if it meets the following conditions in the final stage of flooding: (a) Final waterline... of an opening through which progressive flooding may take place, such as an air pipe, or an opening... least 3.94 inches (10 cm). (3) Each submerged opening must be weathertight. (d) Progressive flooding. If...

  4. EXPERIMENTAL STUDIES ON DIFFICULTY OF EVACUATION FROM UNDERGROUND SPACES UNDER INUNDATED SITUATIONS USING REAL SCALE MODELS

    NASA Astrophysics Data System (ADS)

    Baba, Yasuyuki; Ishigaki, Taisuke; Toda, Keiichi; Nakagawa, Hajime

    Many urbanized cities in Japan are located in alluvial plains, and the vulnerability of urbanized areas to flood disaster is highlighted by flood attacks due to heavy rain fall or typhoons. Underground spaces located in the urbanized area are flood-prone areas, and the intrusion of flood watar into underground space inflicted severe damages on urban functions and infrastructures. In a similar way, low-lying areas like "bowl-shaped" depression and underpasses under highway and railroad bridges are also prone to floods. The underpasses are common sites of accidents of submerged vehicles, and severe damage including human damage occasionally occurs under flooding conditions. To reduce the damage due to inundation in underground space, needless to say, early evacuation is one of the most important countermeasures. This paper shows some experimental results of evacuation tests from underground spaces under inundated situations. The difficulities of the evacuation from underground space has been investigated by using real scale models (door, staircase and vehicle), and the limit for safety evacuation is discussed. From the results, it is found that water depth of 0.3 - 0.4m would be a critical situation for the evacuation from underground space through staircases and door and that 0.7 - 0.8m deep on the ground would be also a critical situation for safety evacuation though the doors of the vehicle. These criteria have some possibility to vary according to different inundated situations, and they are also influenced by the individual variation like the difference of physical strength. This means that these criteria requires cautious stance to use although they show a sort of an index of the limitation for saftty evacuation from underground space.

  5. A Study on Integrated Community Based Flood Mitigation with Remote Sensing Technique in Kota Bharu, Kelantan

    NASA Astrophysics Data System (ADS)

    'Ainullotfi, A. A.; Ibrahim, A. L.; Masron, T.

    2014-02-01

    This study is conducted to establish a community based flood management system that is integrated with remote sensing technique. To understand local knowledge, the demographic of the local society is obtained by using the survey approach. The local authorities are approached first to obtain information regarding the society in the study areas such as the population, the gender and the tabulation of settlement. The information about age, religion, ethnic, occupation, years of experience facing flood in the area, are recorded to understand more on how the local knowledge emerges. Then geographic data is obtained such as rainfall data, land use, land elevation, river discharge data. This information is used to establish a hydrological model of flood in the study area. Analysis were made from the survey approach to understand the pattern of society and how they react to floods while the analysis of geographic data is used to analyse the water extent and damage done by the flood. The final result of this research is to produce a flood mitigation method with a community based framework in the state of Kelantan. With the flood mitigation that involves the community's understanding towards flood also the techniques to forecast heavy rainfall and flood occurrence using remote sensing, it is hope that it could reduce the casualties and damage that might cause to the society and infrastructures in the study area.

  6. Mold exposure and health effects following hurricanes Katrina and Rita.

    PubMed

    Barbeau, Deborah N; Grimsley, L Faye; White, LuAnn E; El-Dahr, Jane M; Lichtveld, Maureen

    2010-01-01

    The extensive flooding in the aftermath of Hurricanes Katrina and Rita created conditions ideal for indoor mold growth, raising concerns about the possible adverse health effects associated with indoor mold exposure. Studies evaluating the levels of indoor and outdoor molds in the months following the hurricanes found high levels of mold growth. Homes with greater flood damage, especially those with >3 feet of indoor flooding, demonstrated higher levels of mold growth compared with homes with little or no flooding. Water intrusion due to roof damage was also associated with mold growth. However, no increase in the occurrence of adverse health outcomes has been observed in published reports to date. This article considers reasons why studies of mold exposure after the hurricane do not show a greater health impact.

  7. Damage and protection cost curves for coastal floods within the 600 largest European cities

    NASA Astrophysics Data System (ADS)

    Prahl, Boris F.; Boettle, Markus; Costa, Luís; Kropp, Jürgen P.; Rybski, Diego

    2018-03-01

    The economic assessment of the impacts of storm surges and sea-level rise in coastal cities requires high-level information on the damage and protection costs associated with varying flood heights. We provide a systematically and consistently calculated dataset of macroscale damage and protection cost curves for the 600 largest European coastal cities opening the perspective for a wide range of applications. Offering the first comprehensive dataset to include the costs of dike protection, we provide the underpinning information to run comparative assessments of costs and benefits of coastal adaptation. Aggregate cost curves for coastal flooding at the city-level are commonly regarded as by-products of impact assessments and are generally not published as a standalone dataset. Hence, our work also aims at initiating a more critical discussion on the availability and derivation of cost curves.

  8. Damage and protection cost curves for coastal floods within the 600 largest European cities.

    PubMed

    Prahl, Boris F; Boettle, Markus; Costa, Luís; Kropp, Jürgen P; Rybski, Diego

    2018-03-20

    The economic assessment of the impacts of storm surges and sea-level rise in coastal cities requires high-level information on the damage and protection costs associated with varying flood heights. We provide a systematically and consistently calculated dataset of macroscale damage and protection cost curves for the 600 largest European coastal cities opening the perspective for a wide range of applications. Offering the first comprehensive dataset to include the costs of dike protection, we provide the underpinning information to run comparative assessments of costs and benefits of coastal adaptation. Aggregate cost curves for coastal flooding at the city-level are commonly regarded as by-products of impact assessments and are generally not published as a standalone dataset. Hence, our work also aims at initiating a more critical discussion on the availability and derivation of cost curves.

  9. Flooding in the middle Koyukuk River basin, Alaska, August 1994

    USGS Publications Warehouse

    Meyer, David F.

    1995-01-01

    During August 1994, a flood on the Koyukuk River, Alaska, inundated the villages of Allakaket and Alatna and parts of Hughes. Topographic maps of the inundated areas, showing peak water-surface elevations and depths of water, indicate that flooding ranged from 2 to more than 10 feet deep in Allakaket, from 8 to more than 10 feet deep in Alatna, and from 0 to more than 10 feet deep in Hughes. Severe damage to buildings occurred in Allakaket and Alatna; minor damage occurred in Hughes, although some homes were irreparably damaged by inundation. Between the mouth of the Kanuti River, about 10 miles downstream from Allakaket, to Hughes, the peak discharge was about 330,000 cubic feet per second. A flow of that magnitude at Hughes has an annual probability of occurrence of 1 percent.

  10. Hurricane Frederic tidal floods of September 12-13, 1979, along the Gulf Coast, Daphne-Point Clear quadrangles, Alabama

    USGS Publications Warehouse

    Scott, John C.; Bohman, Larry R.

    1980-01-01

    Shown on a topographic map are floodmark elevations and approximate areas flooded by Hurricane Frederic tides of September 12-13, 1979, along the eastern shore of Mobile Bay generally from Daphne, Alabama, southward through Fairhope and Point Clear to Mullet Point, Alabama. Buildings and sewalls were damaged by flooding and tidal waves in the vicinity of Fairhope, Alabama. Most fishing piers along the shore were either destroyed or severely damaged. From Fairhope southward, many homes and other buildings, including the Grand Hotel complex at Great Point Clear, were severely damaged. Storm-tide frequency and records of annual maximum tides at Mobile, Alabama, since 1772, are presented. Offshore winds reached about 160 miles per hour. A wind-velocity of about 145 miles per hour was recorded near Dauphin Island, Alabama. (USGS)

  11. A new approach to the assessment of flooding and dampness hazards in cultural heritage, applied to the historic centre of Seville (Spain).

    PubMed

    Ortiz, Rocío; Ortiz, Pilar; Martín, José María; Vázquez, María Auxiliadora

    2016-05-01

    Flooding and dampness have caused considerable damage to historic towns and cities and have become more frequent in recent years. The aim of this paper is to analyse the hazards of flooding and dampness in historic cities to establish a methodology that prioritises preventive conservation actions and restorations. The case study concerns the historic centre of Seville (Spain) and parish churches built between the 13th and 18th centuries. Geographic information system (GIS) software has been used to assess hazards caused by flooding and dampness along with a Delphi consultation process surveying a multidisciplinary group of seven experts-archaeologists, geologists, chemists, architects, engineers and environmentalists-to gain a general overview of the hazards affecting each area of the city. Currently, the historic centre of Seville is at a very low risk of flooding due to the engineering works being undertaken to divert the river course. For flooding to occur, water levels would need to rise over 6 to 12m along the different sections of the defensive walls; as a result, the historic centre has not been flooded since 1961, when these defences broke. However, there is a continual presence of dampness due to the proximity of the river, the presence of underground water and the permeability of the subsoil, resulting in continual damage to the lower sections of the monuments studied. Hence, hazard maps of flooding and dampness need to be dovetailed. This new approach provides tools for decision-makers in the current crisis, allowing them to prioritise strategies that will minimise damage in a town, as the urban unit where territorial policies could be applied. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Methodology to improve process understanding of surface runoff causing damages to buildings by analyzing insurance data records

    NASA Astrophysics Data System (ADS)

    Bernet, Daniel; Prasuhn, Volker; Weingartner, Rolf

    2015-04-01

    Several case studies in Switzerland highlight that many buildings which are damaged by floods are not located within the inundation zones of rivers, but outside the river network. In urban areas, such flooding can be caused by drainage system surcharge, low infiltration capacity of the urbanized landscape etc. However, in rural and peri-urban areas inundations are more likely caused by surface runoff formed on natural and arable land. Such flash floods have very short response time, occur rather diffusely and, thus, are very difficult to observe directly. In our approach, we use data records from private, but mostly from public insurance companies. The latter, present in 19 out of the total 26 Cantons of Switzerland, insure (almost) every building within the respective administrative zones and, in addition, hold a monopoly position. Damage claims, including flood damages, are usually recorded and, thus, data records from such public insurance companies are a very profitable data source to better understand surface runoff leading to damages. Although practitioners agree that this process is relevant, there seems to be a knowledge gap concerning spatial and temporal distributions as well as triggers and influencing factors of such damage events. Within the framework of a research project, we want to address this research gap and improve the understanding of the process chain from surface runoff formation up to possible damages to buildings. This poster introduces the methodology, which will be applied to a dataset including data from the majority of all 19 public insurance companies for buildings in Switzerland, counting over 50'000 damage claims, in order to better understand surface runoff. The goal is to infer spatial and temporal patterns as well as drivers and influencing factors of surface runoff possibly causing damages. In particular, the workflow of data acquisition, harmonization and treatment is outlined. Furthermore associated problems and challenges are discussed. Ultimately, the improved process understanding will be used to develop a new modeling approach.

  13. Estimating the welfare loss to households from natural disasters in developing countries: a contingent valuation study of flooding in Vietnam

    PubMed Central

    Navrud, Ståle; Tuan, Tran Huu; Tinh, Bui Duc

    2012-01-01

    Background Natural disasters have severe impacts on the health and well-being of affected households. However, we find evidence that official damage cost assessments for floods and other natural disasters in Vietnam, where households have little or no insurance, clearly underestimate the total economic damage costs of these events as they do not include the welfare loss from mortality, morbidity and well-being experienced by the households affected by the floods. This should send a message to the local communities and national authorities that higher investments in flood alleviation, reduction and adaptive measures can be justified since the social benefits of these measures in terms of avoided damage costs are higher than previously thought. Methods We pioneer the use of the contingent valuation (CV) approach of willingness-to-contribute (WTC) labour to a flood prevention program, as a measure of the welfare loss experienced by household due to a flooding event. In a face-to-face household survey of 706 households in the Quang Nam province in Central Vietnam, we applied this approach together with reported direct physical damage in order to shed light of the welfare loss experienced by the households. We asked about households’ WTC labour and multiplied their WTC person-days of labour by an estimate for their opportunity cost of time in order to estimate the welfare loss to households from the 2007 floods. Results The results showed that this contingent valuation (CV) approach of asking about willingness-to-pay in-kind avoided the main problems associated with applying CV in developing countries. Conclusion Thus, the CV approach of WTC labour instead of money is promising in terms of capturing the total welfare loss of natural disasters, and promising in terms of further application in other developing countries and for other types of natural disasters. PMID:22761603

  14. Regional flood impact assessment for Kiel and Eckernförde, Germany

    NASA Astrophysics Data System (ADS)

    Shustikova, Iuliia; Viavattene, Christophe; Seiß, Guntram

    2017-04-01

    It is well-observed that extreme flood events bring considerable destruction to coastal communities. The estimates of damage increases when direct and indirect losses are both considered in the assessment. This study applied the INtegrated DisRuption Assessment (INDRA) model which is designed to estimate and compare not only tangible but also intangible losses such as risk to life, recovery mechanisms and household displacement. Multi-criteria analysis (MCA) was performed in order to compare hotspots of high flood risk on the regional scale and detect which impact indicators influence results the most. INDRA allowed assessing the following impact indicators: direct damages to buildings and roads, transport disruption, risk to life and financial recovery mechanisms of private households and businesses. The focus was on two hotspots of flood risk, where direct and indirect impacts from 200 years flood were assessed and analyzed in terms of relative importance to the region. The region here was defined as municipalities located on the Baltic Sea coast within the Schleswig-Holstein state, Germany. The hotspots are the towns of Kiel and Eckernförde. They are urban areas with a high concentration of people and assets, which previously experienced extreme flood events. From the performed investigation it was found out that modeled flood differently impacts Kiel and Eckernförde. The results produced by MCA show that the scores of direct and indirect damage are slightly higher in Eckernförde than in Kiel. Transport disruption is a compelling element in the performed regional impact assessment and demonstrated immense weight. Extreme events may pose significant direct and indirect impacts on the coastal roads, obstructing not only the access to important landmarks such as hospitals, train stations, harbors, etc. but also to contiguous municipalities. Yet, the analysis showed that other impact indicators are rather of local importance and would not cause vast damage on a regional scale. Nonetheless, the study suggests, that these effects should not be underestimated in terms of losses.

  15. Estimating the welfare loss to households from natural disasters in developing countries: a contingent valuation study of flooding in Vietnam.

    PubMed

    Navrud, Ståle; Tuan, Tran Huu; Tinh, Bui Duc

    2012-01-01

    Natural disasters have severe impacts on the health and well-being of affected households. However, we find evidence that official damage cost assessments for floods and other natural disasters in Vietnam, where households have little or no insurance, clearly underestimate the total economic damage costs of these events as they do not include the welfare loss from mortality, morbidity and well-being experienced by the households affected by the floods. This should send a message to the local communities and national authorities that higher investments in flood alleviation, reduction and adaptive measures can be justified since the social benefits of these measures in terms of avoided damage costs are higher than previously thought. We pioneer the use of the contingent valuation (CV) approach of willingness-to-contribute (WTC) labour to a flood prevention program, as a measure of the welfare loss experienced by household due to a flooding event. In a face-to-face household survey of 706 households in the Quang Nam province in Central Vietnam, we applied this approach together with reported direct physical damage in order to shed light of the welfare loss experienced by the households. We asked about households' WTC labour and multiplied their WTC person-days of labour by an estimate for their opportunity cost of time in order to estimate the welfare loss to households from the 2007 floods. The results showed that this contingent valuation (CV) approach of asking about willingness-to-pay in-kind avoided the main problems associated with applying CV in developing countries. Thus, the CV approach of WTC labour instead of money is promising in terms of capturing the total welfare loss of natural disasters, and promising in terms of further application in other developing countries and for other types of natural disasters.

  16. Integrating adaptive behaviour in large-scale flood risk assessments: an Agent-Based Modelling approach

    NASA Astrophysics Data System (ADS)

    Haer, Toon; Aerts, Jeroen

    2015-04-01

    Between 1998 and 2009, Europe suffered over 213 major damaging floods, causing 1126 deaths, displacing around half a million people. In this period, floods caused at least 52 billion euro in insured economic losses making floods the most costly natural hazard faced in Europe. In many low-lying areas, the main strategy to cope with floods is to reduce the risk of the hazard through flood defence structures, like dikes and levees. However, it is suggested that part of the responsibility for flood protection needs to shift to households and businesses in areas at risk, and that governments and insurers can effectively stimulate the implementation of individual protective measures. However, adaptive behaviour towards flood risk reduction and the interaction between the government, insurers, and individuals has hardly been studied in large-scale flood risk assessments. In this study, an European Agent-Based Model is developed including agent representatives for the administrative stakeholders of European Member states, insurers and reinsurers markets, and individuals following complex behaviour models. The Agent-Based Modelling approach allows for an in-depth analysis of the interaction between heterogeneous autonomous agents and the resulting (non-)adaptive behaviour. Existing flood damage models are part of the European Agent-Based Model to allow for a dynamic response of both the agents and the environment to changing flood risk and protective efforts. By following an Agent-Based Modelling approach this study is a first contribution to overcome the limitations of traditional large-scale flood risk models in which the influence of individual adaptive behaviour towards flood risk reduction is often lacking.

  17. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model.

    PubMed

    Jenkins, K; Surminski, S; Hall, J; Crick, F

    2017-10-01

    Climate change and increasing urbanization are projected to result in an increase in surface water flooding and consequential damages in the future. In this paper, we present insights from a novel Agent Based Model (ABM), applied to a London case study of surface water flood risk, designed to assess the interplay between different adaptation options; how risk reduction could be achieved by homeowners and government; and the role of flood insurance and the new flood insurance pool, Flood Re, in the context of climate change. The analysis highlights that while combined investment in property-level flood protection and sustainable urban drainage systems reduce surface water flood risk, the benefits can be outweighed by continued development in high risk areas and the effects of climate change. In our simulations, Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, the scheme does face increasing financial pressure due to rising surface water flood damages. If the intended transition to risk-based pricing is to take place then a determined and coordinated strategy will be needed to manage flood risk, which utilises insurance incentives, limits new development, and supports resilience measures. Our modelling approach and findings are highly relevant for the ongoing regulatory and political approval process for Flood Re as well as for wider discussions on the potential of insurance schemes to incentivise flood risk management and climate adaptation in the UK and internationally. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Automatic domain updating technique for improving computational efficiency of 2-D flood-inundation simulation

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Tachikawa, Y.; Ichikawa, Y.; Yorozu, K.

    2017-12-01

    Flood is one of the most hazardous disasters and causes serious damage to people and property around the world. To prevent/mitigate flood damage through early warning system and/or river management planning, numerical modelling of flood-inundation processes is essential. In a literature, flood-inundation models have been extensively developed and improved to achieve flood flow simulation with complex topography at high resolution. With increasing demands on flood-inundation modelling, its computational burden is now one of the key issues. Improvements of computational efficiency of full shallow water equations are made from various perspectives such as approximations of the momentum equations, parallelization technique, and coarsening approaches. To support these techniques and more improve the computational efficiency of flood-inundation simulations, this study proposes an Automatic Domain Updating (ADU) method of 2-D flood-inundation simulation. The ADU method traces the wet and dry interface and automatically updates the simulation domain in response to the progress and recession of flood propagation. The updating algorithm is as follow: first, to register the simulation cells potentially flooded at initial stage (such as floodplains nearby river channels), and then if a registered cell is flooded, to register its surrounding cells. The time for this additional process is saved by checking only cells at wet and dry interface. The computation time is reduced by skipping the processing time of non-flooded area. This algorithm is easily applied to any types of 2-D flood inundation models. The proposed ADU method is implemented to 2-D local inertial equations for the Yodo River basin, Japan. Case studies for two flood events show that the simulation is finished within two to 10 times smaller time showing the same result as that without the ADU method.

  19. Coastal flood damage and adaptation costs under 21st century sea-level rise.

    PubMed

    Hinkel, Jochen; Lincke, Daniel; Vafeidis, Athanasios T; Perrette, Mahé; Nicholls, Robert James; Tol, Richard S J; Marzeion, Ben; Fettweis, Xavier; Ionescu, Cezar; Levermann, Anders

    2014-03-04

    Coastal flood damage and adaptation costs under 21st century sea-level rise are assessed on a global scale taking into account a wide range of uncertainties in continental topography data, population data, protection strategies, socioeconomic development and sea-level rise. Uncertainty in global mean and regional sea level was derived from four different climate models from the Coupled Model Intercomparison Project Phase 5, each combined with three land-ice scenarios based on the published range of contributions from ice sheets and glaciers. Without adaptation, 0.2-4.6% of global population is expected to be flooded annually in 2100 under 25-123 cm of global mean sea-level rise, with expected annual losses of 0.3-9.3% of global gross domestic product. Damages of this magnitude are very unlikely to be tolerated by society and adaptation will be widespread. The global costs of protecting the coast with dikes are significant with annual investment and maintenance costs of US$ 12-71 billion in 2100, but much smaller than the global cost of avoided damages even without accounting for indirect costs of damage to regional production supply. Flood damages by the end of this century are much more sensitive to the applied protection strategy than to variations in climate and socioeconomic scenarios as well as in physical data sources (topography and climate model). Our results emphasize the central role of long-term coastal adaptation strategies. These should also take into account that protecting large parts of the developed coast increases the risk of catastrophic consequences in the case of defense failure.

  20. Tool for analyzing the vulnerability of buildings to flooding: the case of Switzerland

    NASA Astrophysics Data System (ADS)

    Choffet, Marc; Bianchi, Renzo; Jaboyedoff, Michel; Kölz, Ehrfried; Lateltin, Olivier; Leroi, Eric; Mayis, Arnaud

    2010-05-01

    Whatever the way used to protect property exposed to flood, there exists a residual risk. That is what feedbacks of past flooding show. This residual risk is on one hand linked with the possibility that the protection measures may fail or may not work as intended. The residual risk is on the other hand linked with the possibility that the flood exceeds the chosen level of protection.In many European countries, governments and insurance companies are thinking in terms of vulnerability reduction. This publication will present a new tool to evaluate the vulnerability of buildings in a context of flooding. This tool is developed by the project "Analysis of the vulnerability of buildings to flooding" which is funded by the Foundation for Prevention of Cantonal insurances, Switzerland. It is composed by three modules and it aims to provide a method for reducing the vulnerability of buildings to flooding. The first two modules allow identifying all the elements composing the building and listing it. The third module is dedicated to the choice of efficient risk reducing measures on the basis of cost-benefit analyses. The diagnostic tool for different parts of the building is being developed to allow real estate appraisers, insurance companies and homeowners rapidly assess the vulnerability of buildings in flood prone areas. The tool works with by several databases that have been selected from the collection and analysis of data, information, standards and feedback from risk management, hydrology, architecture, construction, materials engineering, insurance, or economy of construction. A method for determining the local hazard is also proposed, to determine the height of potential floods threatening a building, based on a back analysis of Swiss hazard maps. To calibrate the model, seven cantonal insurance institutions participate in the study by providing data, such as the the amount of damage in flooded areas. The poster will present some results from the development of the tool, such as the amount of damages to buildings and the possibility of analysis offered by the tool. Furthermore, analysis of data from the insurance company led to the emergence of trends in costs of damage due to flooding. Some graphics will be presented in the poster to illustrate the tool design. It will be shown that the tool allow for a census of buildings and the awareness of its vulnerability to flooding. A database development explanation concerning the remediation cost measures and the damage costs are also proposed. Simple and innovative remedial measures could be shown in the poster. By the help of some examples it is shown that the tool allows for an investigation of some interesting perspectives in the development of insurance strategies for building stocks in flood prone areas.

  1. Remote Sensing-Based Quantification of the Impact of Flash Flooding on the Rice Production: A Case Study over Northeastern Bangladesh

    PubMed Central

    Rahaman, Khan Rubayet; Kok, Aaron; Hassan, Quazi K.

    2017-01-01

    The northeastern region of Bangladesh often experiences flash flooding during the pre-harvesting period of the boro rice crop, which is the major cereal crop in the country. In this study, our objective was to delineate the impact of the 2017 flash flood (that initiated on 27 March 2017) on boro rice using multi-temporal Landsat-8 OLI and MODIS data. Initially, we opted to use Landsat-8 OLI data for mapping the damages; however, during and after the flooding event the acquisition of cloud free images were challenging. Thus, we used this data to map the cultivated boro rice acreage considering the planting to mature stages of the crop. Also, in order to map the extent of the damaged boro area, we utilized MODIS data as their 16-day composites provided cloud free information. Our results indicated that both the cultivated and damaged boro area estimates based on satellite data had strong relationships while compared to the ground-based estimates (i.e., r2 values approximately 0.92 for both cases, and RMSE of 18,374 and 9380 ha for cultivated and damaged areas, respectively). Finally, we believe that our study would be critical for planning and ensuring food security for the country. PMID:29036896

  2. Flood risk and cultural heritage: the case study of Florence (Italy)

    NASA Astrophysics Data System (ADS)

    Arrighi, Chiara; Castelli, Fabio; Brugioni, Marcello; Franceschini, Serena; Mazzanti, Bernardo

    2016-04-01

    Cultural heritage plays a key role for communities in terms of both identity and economic value. It is often under serious threat by natural hazards, nevertheless, quantitative assessments of risk are quite uncommon. This work addresses the flood risk assessment to cultural heritage in an exemplary art city, which is Florence, Italy. The risk assessment method here adopted borrows the most common definition of flood risk as the product of hazard, vulnerability and exposure, with some necessary adjustments. The risk estimation is carried out at the building scale for the whole UNESCO site, which coincides with the historical centre of the city. A distinction in macro- and micro-damage categories has been made according to the vulnerability of the objects at risk. Two damage macro-categories are selected namely cultural buildings and contents. Cultural buildings are classified in damage micro-categories as churches/religious complexes, libraries/archives and museums. The damages to the contents are estimated for four micro-categories: paintings, sculptures, books/prints and goldsmith's art. Data from hydraulic simulations for different recurrence scenarios, historical reports of the devastating 1966 flood and the cultural heritage recognition sheets allow estimating and mapping the annual expected number of works of art lost in absence of risk mitigation strategies.

  3. Remote Sensing-Based Quantification of the Impact of Flash Flooding on the Rice Production: A Case Study over Northeastern Bangladesh.

    PubMed

    Ahmed, M Razu; Rahaman, Khan Rubayet; Kok, Aaron; Hassan, Quazi K

    2017-10-14

    The northeastern region of Bangladesh often experiences flash flooding during the pre-harvesting period of the boro rice crop, which is the major cereal crop in the country. In this study, our objective was to delineate the impact of the 2017 flash flood (that initiated on 27 March 2017) on boro rice using multi-temporal Landsat-8 OLI and MODIS data. Initially, we opted to use Landsat-8 OLI data for mapping the damages; however, during and after the flooding event the acquisition of cloud free images were challenging. Thus, we used this data to map the cultivated boro rice acreage considering the planting to mature stages of the crop. Also, in order to map the extent of the damaged boro area, we utilized MODIS data as their 16-day composites provided cloud free information. Our results indicated that both the cultivated and damaged boro area estimates based on satellite data had strong relationships while compared to the ground-based estimates (i.e., r ² values approximately 0.92 for both cases, and RMSE of 18,374 and 9380 ha for cultivated and damaged areas, respectively). Finally, we believe that our study would be critical for planning and ensuring food security for the country.

  4. Muddy floods in Saxony: occurrence, damages and costs

    NASA Astrophysics Data System (ADS)

    Arévalo, S. A.; Reichel, S.; Schindewolf, M.; Schmidt, J.

    2012-04-01

    A muddy flood is a natural hazard with small impact area. Usually a single event covers only a part of a street and some properties, in some cases it might affect up to a whole neighbourhood. Due to this small spatial extend the public awareness is generally low. On the other hand we know from random reports that in some areas, like the Saxon loess belt region, muddy floods do occur repeatedly. The damages caused by muddy floods range from mud covered streets to flooded cellars and houses. Although the awareness of muddy floods in Europe has increased during the last decade, there is still very few information about frequency, spatial extend and the related costs. There have been investigations of muddy flood occurrence in some European countries like England, France, Belgium, Poland and Slovakia, but there is no information available about the muddy flood occurrence in Germany. That is because German state departments do not usually register muddy floods and neither do insurance companies. The only institution that is almost always informed when muddy floods occur are local fire brigades. That is why in this investigation an enquiry of all fire brigades in the study area of the Saxon hilly loess region was performed. The aim was to gain first information about the general dimension of the problem, a temporal and spatial distribution as well as a first appraisal of costs. The obtained database of muddy floods will also serve for further investigation of the problem.

  5. Improvements on flood alleviation in Germany: lessons learned from the Elbe flood in August 2002.

    PubMed

    Petrow, Theresia; Thieken, Annegret H; Kreibich, Heidi; Bahlburg, Cord Heinrich; Merz, Bruno

    2006-11-01

    The increase in damage due to natural disasters is directly related to the number of people who live and work in hazardous areas and continuously accumulate assets. Therefore, land use planning authorities have to manage effectively the establishment and development of settlements in flood-prone areas in order to avoid the further increase of vulnerable assets. Germany faced major destruction during the flood in August 2002 in the Elbe and Danube catchments, and many changes have been suggested in the existing German water and planning regulations. This article presents some findings of a "Lessons Learned" study that was carried out in the aftermath of the flood and discusses the following topics: 1) the establishment of comprehensive hazard maps and flood protection concepts, 2) the harmonization of regulations of flood protection at the federal level, 3) the communication of the flood hazard and awareness strategies, and 4) how damage potential can be minimized through measures of area precaution such as resettlement and risk-adapted land use. Although attempts towards a coordinated and harmonized creation of flood hazard maps and concepts have been made, there is still no uniform strategy at all planning levels and for all states (Laender) of the Federal Republic of Germany. The development and communication of possible mitigation strategies for "unthinkable extreme events" beyond the common safety level of a 100-year flood are needed. In order to establish a sustainable and integrated flood risk management, interdisciplinary and catchment-based approaches are needed.

  6. Heavy winter precipitation in southwest Arizona

    NASA Astrophysics Data System (ADS)

    Guttman, Nathaniel B.; Lee, Jung Jin; Wallis, James R.

    During December 1992, according to the Weekly Climate Bulletin of the Climate Analysis Center in Washington, D.C., heavy precipitation inundated parts of Arizona causing more than 400% of normal precipitation to fall in the southwestern part of the state. Heavy precipitation continued to fall during the next 2 months, causing extensive flooding along the Gila River.Phoenix Weather Service Forecast Office monthly storm data reports indicated flooding along the Santa Cruz and San Pedro Rivers on December 29. From January 7 to 20, roads, bridges, homes, businesses, and farmland suffered considerable flood damage from Graham County westward to Yuma County as rivers and streams swelled. Several thousand people were isolated in their homes as flood waters cut off roads. The January storm data report shows that the combination of a northward-displaced subtropical jet stream, with its abundant moisture supply and associated low pressure disturbances and a southward-displaced polar jet stream, with its storm track, led to the abnormally wet period from late December to mid-January. In February, severe flooding was reported in several areas as water rose in the Painted Rock Reservoir; water accumulating behind the dam produced the largest lake in the state. After exceeding the 2.5 million acre-feet capacity of the reservoir, water began spilling over the dam and damaging homes, crops, farmland, roads, and bridges. About 3,500 residents were evacuated, and the National Guard responded to the flooding with various relief efforts including helicopter support operations. The U.S. and Arizona Departments of Agriculture reported flood damage in excess of $50 million.

  7. The flood of June 2013 in Germany: how much do we know about its impacts?

    NASA Astrophysics Data System (ADS)

    Thieken, Annegret H.; Bessel, Tina; Kienzler, Sarah; Kreibich, Heidi; Müller, Meike; Pisi, Sebastian; Schröter, Kai

    2016-07-01

    In June 2013, widespread flooding and consequent damage and losses occurred in Central Europe, especially in Germany. This paper explores what data are available to investigate the adverse impacts of the event, what kind of information can be retrieved from these data and how well data and information fulfil requirements that were recently proposed for disaster reporting on the European and international levels. In accordance with the European Floods Directive (2007/60/EC), impacts on human health, economic activities (and assets), cultural heritage and the environment are described on the national and sub-national scale. Information from governmental reports is complemented by communications on traffic disruptions and surveys of flood-affected residents and companies. Overall, the impacts of the flood event in 2013 were manifold. The study reveals that flood-affected residents suffered from a large range of impacts, among which mental health and supply problems were perceived more seriously than financial losses. The most frequent damage type among affected companies was business interruption. This demonstrates that the current scientific focus on direct (financial) damage is insufficient to describe the overall impacts and severity of flood events. The case further demonstrates that procedures and standards for impact data collection in Germany are widely missing. Present impact data in Germany are fragmentary, heterogeneous, incomplete and difficult to access. In order to fulfil, for example, the monitoring and reporting requirements of the Sendai Framework for Disaster Risk Reduction 2015-2030 that was adopted in March 2015 in Sendai, Japan, more efforts on impact data collection are needed.

  8. 29 CFR 15.23 - Restrictions on certain claims.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or currency (which includes coin collections) only when lost incident to fire, flood, hurricane... hardware and software only when lost or damaged incident to fire, flood, hurricane, other natural disaster...

  9. 33 CFR 208.34 - Norman Dam and Lake Thunderbird, Little River, Okla.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... amounts to 76,600 acre-feet. Whenever the reservoir level is within this elevation range the flood control... flood damage below the reservoir. In order to accomplish this purpose, flood control releases shall be... of bankfull on the Little River downstream of the reservoir. Controlling bankfull stages and...

  10. 33 CFR 208.34 - Norman Dam and Lake Thunderbird, Little River, Okla.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amounts to 76,600 acre-feet. Whenever the reservoir level is within this elevation range the flood control... flood damage below the reservoir. In order to accomplish this purpose, flood control releases shall be... of bankfull on the Little River downstream of the reservoir. Controlling bankfull stages and...

  11. 46 CFR 42.20-12 - Conditions of equilibrium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... § 42.15-65. (b) Progressive flooding. If pipes, ducts, or tunnels are situated within the assumed extent of damage penetration as defined in § 42.20-11 (a) and (b), progressive flooding cannot extend to..., heel, and trim, is below the lower edge of any opening through which progressive flooding can take...

  12. 46 CFR 42.20-12 - Conditions of equilibrium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... § 42.15-65. (b) Progressive flooding. If pipes, ducts, or tunnels are situated within the assumed extent of damage penetration as defined in § 42.20-11 (a) and (b), progressive flooding cannot extend to..., heel, and trim, is below the lower edge of any opening through which progressive flooding can take...

  13. 46 CFR 42.20-12 - Conditions of equilibrium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... § 42.15-65. (b) Progressive flooding. If pipes, ducts, or tunnels are situated within the assumed extent of damage penetration as defined in § 42.20-11 (a) and (b), progressive flooding cannot extend to..., heel, and trim, is below the lower edge of any opening through which progressive flooding can take...

  14. Effects of climate change on infrastructure [Chapter 11

    Treesearch

    Michael J. Furniss; Natalie J. Little; David L. Peterson

    2018-01-01

    Climatic conditions, particularly extreme rainfall, snowmelt, and flooding, pose substantial risks to infrastructure in and near public lands in the Intermountain Adaptation Partnership (IAP) region (box 11.1). Minor floods happen frequently in the region, and large floods happen occasionally. These events can damage or destroy roads and other infrastructure and affect...

  15. Shortage and surplus of water in the socio-hydrological context

    NASA Astrophysics Data System (ADS)

    Schumann, A.; Nijssen, d.

    2014-09-01

    Balancing the temporal variability of hydrological conditions in the long- and short-term is often essential for steady socio-economic conditions. However, this equilibrium is very fragile in many cases. Hydrological changes or socio-economic changes may destroy it in a short time. If we extend the bearing capacity of socio-hydrological systems we increase, in many cases, the harmful consequences of failures. Here, two case studies are discussed to illustrate these problems. The limited success at adapting water resources to increasing human requirements without consideration of the natural capacities will be discussed with the example of water use for irrigation in northeastern China. The demand for a new planning approach, which is based on a combination of monitoring, model-based impact assessments and spatial distributed planning, is demonstrated. The problems of water surplus, which becomes evident during floods, are discussed in a second case study. It is shown that flood protection depends strongly on expectations of flood characteristics. The gap between the social requirement for complete flood prevention and the remaining risk of flood damage becomes obvious. An increase of risk-awareness would be more sustainable than promises of flood protection, which are the basis for technical measures to affect floods and (or) to prevent flood damages.

  16. Risk-based flood protection planning under climate change and modeling uncertainty: a pre-alpine case study

    NASA Astrophysics Data System (ADS)

    Dittes, Beatrice; Kaiser, Maria; Špačková, Olga; Rieger, Wolfgang; Disse, Markus; Straub, Daniel

    2018-05-01

    Planning authorities are faced with a range of questions when planning flood protection measures: is the existing protection adequate for current and future demands or should it be extended? How will flood patterns change in the future? How should the uncertainty pertaining to this influence the planning decision, e.g., for delaying planning or including a safety margin? Is it sufficient to follow a protection criterion (e.g., to protect from the 100-year flood) or should the planning be conducted in a risk-based way? How important is it for flood protection planning to accurately estimate flood frequency (changes), costs and damage? These are questions that we address for a medium-sized pre-alpine catchment in southern Germany, using a sequential Bayesian decision making framework that quantitatively addresses the full spectrum of uncertainty. We evaluate different flood protection systems considered by local agencies in a test study catchment. Despite large uncertainties in damage, cost and climate, the recommendation is robust for the most conservative approach. This demonstrates the feasibility of making robust decisions under large uncertainty. Furthermore, by comparison to a previous study, it highlights the benefits of risk-based planning over the planning of flood protection to a prescribed return period.

  17. 29 CFR 15.23 - Restrictions on certain claims.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... coin collections) only when lost incident to fire, flood, hurricane, other natural disaster, or by... hardware and software only when lost or damaged incident to fire, flood, hurricane, other natural disaster...

  18. Storm-related mortality--central Texas, October 17-31, 1998.

    PubMed

    2000-02-25

    On October 17, 1998, a series of storms moved across the central and south regions of Texas, dropping up to 22 inches of rain in some areas and spawning several tornados. Sixty Texas counties (24%) reported flooding during October 17-19. Thirty-six counties became eligible for federal and/or state assistance as a result of damages suffered from this storm system during October 17-31. Estimated flood damage was approximately $900 million, including damage to 12,000 homes, 700 businesses, and public property. This report summarizes findings of an epidemiologic investigation of 31 deaths associated with the storm system.

  19. Building vulnerability to hydro-geomorphic hazards: Estimating damage probability from qualitative vulnerability assessment using logistic regression

    NASA Astrophysics Data System (ADS)

    Ettinger, Susanne; Mounaud, Loïc; Magill, Christina; Yao-Lafourcade, Anne-Françoise; Thouret, Jean-Claude; Manville, Vern; Negulescu, Caterina; Zuccaro, Giulio; De Gregorio, Daniela; Nardone, Stefano; Uchuchoque, Juan Alexis Luque; Arguedas, Anita; Macedo, Luisa; Manrique Llerena, Nélida

    2016-10-01

    The focus of this study is an analysis of building vulnerability through investigating impacts from the 8 February 2013 flash flood event along the Avenida Venezuela channel in the city of Arequipa, Peru. On this day, 124.5 mm of rain fell within 3 h (monthly mean: 29.3 mm) triggering a flash flood that inundated at least 0.4 km2 of urban settlements along the channel, affecting more than 280 buildings, 23 of a total of 53 bridges (pedestrian, vehicle and railway), and leading to the partial collapse of sections of the main road, paralyzing central parts of the city for more than one week. This study assesses the aspects of building design and site specific environmental characteristics that render a building vulnerable by considering the example of a flash flood event in February 2013. A statistical methodology is developed that enables estimation of damage probability for buildings. The applied method uses observed inundation height as a hazard proxy in areas where more detailed hydrodynamic modeling data is not available. Building design and site-specific environmental conditions determine the physical vulnerability. The mathematical approach considers both physical vulnerability and hazard related parameters and helps to reduce uncertainty in the determination of descriptive parameters, parameter interdependency and respective contributions to damage. This study aims to (1) enable the estimation of damage probability for a certain hazard intensity, and (2) obtain data to visualize variations in damage susceptibility for buildings in flood prone areas. Data collection is based on a post-flood event field survey and the analysis of high (sub-metric) spatial resolution images (Pléiades 2012, 2013). An inventory of 30 city blocks was collated in a GIS database in order to estimate the physical vulnerability of buildings. As many as 1103 buildings were surveyed along the affected drainage and 898 buildings were included in the statistical analysis. Univariate and bivariate analyses were applied to better characterize each vulnerability parameter. Multiple corresponding analyses revealed strong relationships between the "Distance to channel or bridges", "Structural building type", "Building footprint" and the observed damage. Logistic regression enabled quantification of the contribution of each explanatory parameter to potential damage, and determination of the significant parameters that express the damage susceptibility of a building. The model was applied 200 times on different calibration and validation data sets in order to examine performance. Results show that 90% of these tests have a success rate of more than 67%. Probabilities (at building scale) of experiencing different damage levels during a future event similar to the 8 February 2013 flash flood are the major outcomes of this study.

  20. A flood geodatabase and its climatological applications: the case of Catalonia for the last century

    NASA Astrophysics Data System (ADS)

    Barnolas, M.; Llasat, M. C.

    2007-04-01

    Floods are the natural hazards that produce the highest number of casualties and material damage in the Western Mediterranean. An improvement in flood risk assessment and study of a possible increase in flooding occurrence are therefore needed. To carry out these tasks it is important to have at our disposal extensive knowledge on historical floods and to find an efficient way to manage this geographical data. In this paper we present a complete flood database spanning the 20th century for the whole of Catalonia (NE Spain), which includes documentary information (affected areas and damage) and instrumental information (meteorological and hydrological records). This geodatabase, named Inungama, has been implemented on a GIS (Geographical Information System) in order to display all the information within a given geographical scenario, as well as to carry out an analysis thereof using queries, overlays and calculus. Following a description of the type and amount of information stored in the database and the structure of the information system, the first applications of Inungama are presented. The geographical distribution of floods shows the localities which are more likely to be flooded, confirming that the most affected municipalities are the most densely populated ones in coastal areas. Regarding the existence of an increase in flooding occurrence, a temporal analysis has been carried out, showing a steady increase over the last 30 years.

  1. Increasing extreme water level flood risk as a result of future sea-level rise: A case study on a coastal city in China

    NASA Astrophysics Data System (ADS)

    Feng, A.; Wu, S.

    2016-12-01

    Extreme water levels, caused by the joint occurrence of storm surges and high tides, always lead to super floods along coastlines. In the context of climate change, this study explored the impact of future sea-level rise on the flood risk of extreme water levels. Using Rongcheng City in Shandong Province, China as a case study, flooded area, expected direct damage losses, and affected population and GDP were assessed for 2050 and 2100 under three greenhouse gas concentration Representative Concentration Pathways (RCP) scenarios, 2.6, 4.5, and 8.5. Results indicate that, as a result of sea-level rise induced by climate change, the flooded areas of Rongcheng City would increase by 3.23% to 10.64% in 2050 and by as much as 4.98% to 19.87% in 2100, compared with current recurrence periods. Residential land and farmland are at greatest risk of flooding in terms of exposure and losses than other land-use types, and under a high degree RCP 8.5 scenario, expected damage losses would be between 59.84 billion and 86.45 billion in 2050. Results show that the increase in total direct damage losses would reach an average of 60% in 2100 as a result of a 0.82 m sea-level rise. Similarly, affected population and GDP would increase by between 4.95% and 13.87% and between 3.66% and 10.95% in 2050, and by as much as 7.69% to 29.01% and 5.30% to 20.50% in 2100. This study shows that sea-level rise significantly shortens recurrence periods of extreme water levels, makes extreme flood events more frequent, and exacerbates the risk of future flooding. Our results suggest that, if there is no adaptation, sea-level rise will greatly increase the risk of flooding and severely impact human habitability along coastlines.

  2. The flash flood event in the catchment of the river Weisseritz (eastern Erzgebirge, Saxony) from 12.-14. August 2002 - meteorological and hydrological reasons, damage assesment and disaster managment

    NASA Astrophysics Data System (ADS)

    Goldberg, V.; Bernhofer, Ch.

    2003-04-01

    Between 12. and 14. August 2002 the region of eastern Erzgebirge (Saxony/Eastern Germany) was affected by the heaviest rainfall event recorded since beginning of the measuring period in 1883. The synoptic reason of this event was the advective precipitation due to the strong and very slowly shifting Vb-low "Ilse" combined with a noticeable topographic intensification by north-westerly winds. All stations in the catchment area of the river Weisseritz recorded new all-time records. E.g., at the meteorological station Zinnwald-Georgenfeld situated at the crest of eastern Erzgebirge a daily sum of 312 mm was measured for the 13. August. This value is close to the maximum physically possible rainfall. The intensive rainfall in the catchments of Rote Weisseritz and Wilde Weisseritz led to unexperienced heavy flash floods with large material transport and flow damages. The buffer effect of the existing dam systems was comparatively small because the reserved retaining capacity for flood protection was only about 20 percent of the total capacity. The reservoirs filled quickly due to the very high maximum inflow. So a long-time overflow of the dam system occurred with a maximum of about 300 cubic meters per second at the combined river Weisseritz through the cities of Freital and Dresden (This situation led, e.g., to the flooding of Central Railway Station in Dresden). This water flow is comparable with a medium flow rate of the river Elbe in Dresden, and it is about 300 times higher than the normal drain of the river Weisseritz in Freital! The material damages in the Weisseritz region account for several hundred millions EURO, and several causalties occurred. The damages of the University buildings in Tharandt (including one building of the Department of Meteorology) account for 15 millions EURO alone. The disaster management during the flood was not optimal. For many people, e.g. in Tharandt, there was neither an officially warning nor an organised rescue of movable goods. However, after the flood there was a fast help by the Federal Armed Forces, students and helpers from surrounding villages and municipalities. This flood, as well as the later flood of the Elbe, will be investigated by local and international competence teams to optimize future flood protection.

  3. Flood of January 19-20, 1996 in New York State

    USGS Publications Warehouse

    Lumia, Richard

    1998-01-01

    Heavy rain during January 18-19, 1996, combined with unseasonably warm temperatures that caused rapid snowmelt, resulted in widespread flooding throughout New York State. Damages to highways, bridges, and private property exceeded $100 million. The storm and flooding claimed 10 lives, stranded hundreds of people, destroyed or damaged thousands of homes and businesses, and closed hundreds of roads. Forty-one counties in New York were declared federal disaster areas. The most severely affected region was within and surrounding the Catskill Mountains. Damages and losses within Delaware County alone exceeded $20 million.More than 4.5 inches of rain fell on at least 45 inches of melting snow in the Catskill Mountain region during January 18-19 and caused major flooding in the area. The most destructive flooding was along Schoharie Creek and the East and West Branches of the Delaware River. Record peak discharges occurred at 57 U.S. Geological Survey streamflow-gaging stations throughout New York. Maximum discharges at 15 sites, mostly within the Schoharie Creek and Delaware River basins, had recurrence intervals equal to or greater than 100 years. The storage of significant amounts of floodwater in several reservoirs sharply reduced peak discharges downstream. This report presents a summary of peak stages and discharges, precipitation maps, floodflow hydrographs, inflow-outflow hydrographs for several reservoirs, and flood profiles along 83 miles of Schoharie Creek from its headwaters in the Catskill Mountains to its mouth at the Mohawk River.

  4. Floods of November 1978 to March 1979 in Arizona and west-central New Mexico

    USGS Publications Warehouse

    Aldridge, Byron Neil; Hales, T.A.

    1984-01-01

    Severe flooding occurred in parts of the Little Colorado and Gila River basins as a result of a storm that occurred December 17-20, 1978. The central highlands received 3 to 10 inches of precipitation that was augmented by snowmelt to altitudes of 10,000 feet. The storm was preceded by extremely large amounts of rainfall and runoff in November and was followed by other periods of high runoff in January and March 1979. In some areas flood peaks in November, January, or March were higher than the peak of December 1978. At Winslow, the discharge of the Little Colorado River in December 1978 was the highest since at least 1952. The discharge of the Gila River above the San Francisco River was probably the highest since at least 1891, and in the Safford Valley, the peak was the highest since 1916. The Agua Fria River below Waddell Dam had the highest discharge since 1919. The flood of December 1978 caused 12 deaths and caused damage that was probably in excess of $150 million in Arizona and west-central New Mexico. Damage was estimated to be $51.8 million in Maricopa County, Arizona. Floods caused extensive agricultural damage along the Gila River in Virden Valley in New Mexico and in Duncan, York, and Safford Valleys in Arizona. Duncan, Arizona, was flooded with as much as 7 feet of water. The flood crest on the Gila River in December 1978 moved from Redrock, New Mexico, to Duncan, Arizona, in about 6 hours, which is more rapid than during other recent floods but is comparable to the travel-time recorded in 1941. Travel-time in the reach varies with discharge and is about 14 hours for discharges of 10,000 cubic feet per second and 5 hours for discharges of more than 40,000 cubic feet per second. Water-conservation reservoirs on the Gila, Salt, Verde, and Agua Fria Rivers and a flood-control reservoir on the Gila River had a major influence on the magnitude of floods downstream from the reservoirs. All runoff from the Gila River basin upstream from Coolidge Dam, Arizona, during the floods of November 1978 to January 1979 was stored in San Carlos Reservoir, and major flooding was averted along the Gila River between Coolidge Dam and Salt River. Minor flooding occurred along the Gila River downstream from San Pedro River. Floods in central and western Maricopa Count, Arizona, were caused by the release of water from full reservoirs on the Salt, Verde, and Agua Fria Rivers, but peak discharges and duration of the floods were much less than would have occurred if the reservoirs had not been in place. Flow continued in the Salt River through Phoenix until May 1979. Floodwater was stored in the flood-control reservoir above Painted Rock Dam on the Gila River in order to prevent major damage along the Gila and Colorado Rivers. Water was released from Painted Rock Dam until January 1980. The prolonged flows and reduction in ground-water pumping caused ground-water levels to rise appreciably in many areas.

  5. Damage and protection cost curves for coastal floods within the 600 largest European cities

    PubMed Central

    Prahl, Boris F.; Boettle, Markus; Costa, Luís; Kropp, Jürgen P.; Rybski, Diego

    2018-01-01

    The economic assessment of the impacts of storm surges and sea-level rise in coastal cities requires high-level information on the damage and protection costs associated with varying flood heights. We provide a systematically and consistently calculated dataset of macroscale damage and protection cost curves for the 600 largest European coastal cities opening the perspective for a wide range of applications. Offering the first comprehensive dataset to include the costs of dike protection, we provide the underpinning information to run comparative assessments of costs and benefits of coastal adaptation. Aggregate cost curves for coastal flooding at the city-level are commonly regarded as by-products of impact assessments and are generally not published as a standalone dataset. Hence, our work also aims at initiating a more critical discussion on the availability and derivation of cost curves. PMID:29557944

  6. Future Flood Inundation and Damages from Storm Surge in the Coast of Virginia and Maryland with Projected Climate Change and Sea Level Rise Scenarios

    NASA Astrophysics Data System (ADS)

    Rezaie, A. M.; Ferreira, C.; Walls, M. A.

    2016-12-01

    The recurrent flood risks on coastal areas in the United States (US) due to hurricane wind and storm surge are likely to rise with warmer climate, frequent storms, and increasing coastal population. Recent studies suggested that the global financial losses from hurricanes will be doubled by 2100 due to combined impact of climate change, sea level rise (SLR) and intensified hurricanes. While the predicted average SLR for the Mid-Atlantic region of the US is 2.2 meter, some coastal areas in Virginia (VA) and Maryland (MD) are expected to experience a 0.7 to 1.6m and 0.6 to 1.7m SLR respectively. Nearly 80 percent of the total $5.3 billion property damage by Hurricane Isabel in 2003 was within VA and MD. In order to provide a quantitative assessment of the future flooding and associated damages for projected climate change and SLR scenarios, this study integrated state-of-the-art coastal numerical model ADCIRC with a careful economic valuation exercise of flood damages. The study area covers the entire coastal zone of VA and MD focusing on regions that are in the vicinity of the Chesapeake Bay and the Atlantic Ocean with high susceptibility to storm surge and flooding. Multiple climate change land cover scenarios generated by the United States Geological Survey (USGS) under a series of the IPCC's Emissions Scenarios are incorporated in the modeling approach to integrate climate change whereas local SLR projections are included to provide the regional aspects of future risks. Preliminary results for hurricane Isabel (2003) shows that a 2.3m rise in sea level can cause storm surges rising up to 3-4m in the coastal areas. While a 0.5m SLR makes the range 1-2.5m in the affected areas. It is also seen that higher increase in the sea level not only causes higher range of inundation but a greater extent of flood as well. The projected inland flooding extents are highest for the SRES A2 Scenario. Alongside an estimate of future loss and damage will be prepared to assist in future planning for the coastal areas near the Chesapeake Bay regions and finally progressing in developing a climate resilient coast. Furthermore the estimated damages will be applied to quantify the functionality and benefits of natural and nature-based features for coastal defense for future changes in climate and development.

  7. Precipitation thresholds for triggering floods in Corgo hydrographic basin (Northern Portugal)

    NASA Astrophysics Data System (ADS)

    Santos, Monica; Fragoso, Marcelo

    2016-04-01

    The precipitation is a major cause of natural hazards and is therefore related to the flood events (Borga et al., 2011; Gaál et al., 2014; Wilhelmi & Morss, 2013). The severity of a precipitation event and their potential damage is dependent on the total amount of rain but also on the intensity and duration event (Gaál et al., 2014). In this work, it was established thresholds based on critical combinations: amount / duration of flood events with daily rainfall data for Corgo hydrographic basin, in northern Portugal. In Corgo basin are recorded 31 floods events between 1865 and 2011 (Santos et al., 2015; Zêzere et al., 2014). We determined the minimum, maximum and pre-warning thresholds that define the boundaries so that an event may occur. Additionally, we applied these thresholds to different flood events occurred in the past in the study basin. The results show that the ratio between the flood events and precipitation events that occur above the minimum threshold has relatively low probability of a flood happen. These results may be related to the reduced number of floods events (only those that caused damage reported by the media and produced some type of damage). The maximum threshold is not useful for floods forecasting, since the majority of true positives are below this limit. The retrospective analysis of the thresholds defined suggests that the minimum and pre warning thresholds are well adjusted. The application of rainfall thresholds contribute to minimize possible situations of pre-crisis or immediate crisis, reducing the consequences and the resources involved in emergency response of flood events. References Borga, M., Anagnostou, E. N., Blöschl, G., & Creutin, J. D. (2011). Flash flood forecasting, warning and risk management: the HYDRATE project. Environmental Science & Policy, 14(7), 834-844. doi: 10.1016/j.envsci.2011.05.017 Gaál, L., Molnar, P., & Szolgay, J. (2014). Selection of intense rainfall events based on intensity thresholds and lightning data in Switzerland. Hydrol. Earth Syst. Sci., 18(5), 1561-1573. doi: 10.5194/hess-18-1561-2014 Santos, M., Santos, J. A., & Fragoso, M. (2015). Historical damaging flood records for 1871-2011 in Northern Portugal and underlying atmospheric forcings. Journal of Hydrology, 530, 591-603. doi: 10.1016/j.jhydrol.2015.10.011 Wilhelmi, O. V., & Morss, R. E. (2013). Integrated analysis of societal vulnerability in an extreme precipitation event: A Fort Collins case study. Environmental Science & Policy, 26, 49-62. doi: 10.1016/j.envsci.2012.07.005 Zêzere, J. L., Pereira, S., Tavares, A. O., Bateira, C., Trigo, R. M., Quaresma, I., Santos, P. P., Santos, M., & Verde, J. (2014). DISASTER: a GIS database on hydro-geomorphologic disasters in Portugal. Nat. Hazards, 1-30. doi: 10.1007/s11069-013-1018-y

  8. Study on Public Flood Risk Cognition and Behavioral Response Based on IEC Strategy

    NASA Astrophysics Data System (ADS)

    Shen, Xin; Xu, Xiaofeng; Zhou, Guilin; Pan, Shaolin; Mi, Tengfei

    2017-11-01

    In order to disseminate knowledge and information on flood risks in flood-prone areas, raise public awareness of flood risks and reduce possible damage to the public, a questionnaire survey was coducted among 260 residents of nine selected communities in Jiaozhou City to learn the public awareness and behavioral response to flood risks at different early warning levels. IEC key information of flood risk awareness was modified and formulated through group discussions, in-depth individual interviews and on-site observation. The awareness of residents in the project area was enhanced through the public participation, environmental management and flood management training, which plays a very important role in reducing flood losses.

  9. Flood of June 2008 in Southern Wisconsin

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Peppler, Marie C.; Walker, John F.; Rose, William J.; Waschbusch, Robert J.; Kennedy, James L.

    2008-01-01

    In June 2008, heavy rain caused severe flooding across southern Wisconsin. The floods were aggravated by saturated soils that persisted from unusually wet antecedent conditions from a combination of floods in August 2007, more than 100 inches of snow in winter 2007-08, and moist conditions in spring 2008. The flooding caused immediate evacuations and road closures and prolonged, extensive damages and losses associated with agriculture, businesses, housing, public health and human needs, and infrastructure and transportation. Record gage heights and streamflows occurred at 21 U.S. Geological Survey streamgages across southern Wisconsin from June 7 to June 21. Peak-gage-height data, peak-streamflow data, and flood probabilities are tabulated for 32 USGS streamgages in southern Wisconsin. Peak-gage-height and peak-streamflow data also are tabulated for three ungaged locations. Extensive flooding along the Baraboo River, Kickapoo River, Crawfish River, and Rock River caused particularly severe damages in nine communities and their surrounding areas: Reedsburg, Rock Springs, La Farge, Gays Mills, Milford, Jefferson, Fort Atkinson, Janesville, and Beloit. Flood-peak inundation maps and water-surface profiles were generated for the nine communities in a geographic information system by combining flood high-water marks with available 1-10-meter resolution digital-elevation-model data. The high-water marks used in the maps were a combination of those surveyed during the June flood by communities, counties, and Federal agencies and hundreds of additional marks surveyed in August by the USGS. The flood maps and profiles outline the extent and depth of flooding through the communities and are being used in ongoing (as of November 2008) flood response and recovery efforts by local, county, State, and Federal agencies.

  10. Evaluation of TRMM satellite-based precipitation indexes for flood forecasting over Riyadh City, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Tekeli, Ahmet Emre; Fouli, Hesham

    2016-10-01

    Floods are among the most common disasters harming humanity. In particular, flash floods cause hazards to life, property and any type of structures. Arid and semi-arid regions are equally prone to flash floods like regions with abundant rainfall. Despite rareness of intensive and frequent rainfall events over Kingdom of Saudi Arabia (KSA); an arid/semi-arid region, occasional flash floods occur and result in large amounts of damaging surface runoff. The flooding of 16 November, 2013 in Riyadh; the capital city of KSA, resulted in killing some people and led to much property damage. The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) Real Time (RT) data (3B42RT) are used herein for flash flood forecasting. 3B42RT detected high-intensity rainfall events matching with the distribution of observed floods over KSA. A flood early warning system based on exceedance of threshold limits on 3B42RT data is proposed for Riyadh. Three different indexes: Constant Threshold (CT), Cumulative Distribution Functions (CDF) and Riyadh Flood Precipitation Index (RFPI) are developed using 14-year 3B42RT data from 2000 to 2013. RFPI and CDF with 90% captured the three major flooding events that occurred in February 2005, May 2010 and November 2013 in Riyadh. CT with 3 mm/h intensity indicated the 2013 flooding, but missed those of 2005 and 2010. The methodology implemented herein is a first-step simple and accurate way for flash flood forecasting over Riyadh. The simplicity of the methodology enables its applicability for the TRMM follow-on missions like Global Precipitation Measurement (GPM) mission.

  11. Linking events, science and media for flood and drought management

    NASA Astrophysics Data System (ADS)

    Ding, M.; Wei, Y.; Zheng, H.; Zhao, Y.

    2017-12-01

    Throughout history, floods and droughts have been closely related to the development of human riparian civilization. The socio-economic damage caused by floods/droughts appears to be on the rise and the frequency of floods/droughts increases due to global climate change. In this paper, we take a fresh perspective to examine the (dis)connection between events (floods and droughts), research papers and media reports in globally 42 river basins between 1990 and 2012 for better solutions in floods and droughts management. We collected hydrological data from NOAA/ESPL Physical Sciences Division (PSD) and CPC Merged Analysis of Precipitation (CMAP), all relevant scientific papers from Web of Science (WOS) and media records from Emergency Events Database (EM-DAT) during the study period, presented the temporal variability at annual level of these three groups of data, and analysed the (connection) among these three groups of data in typical river basins. We found that 1) the number of flood related reports on both media and research is much more than those on droughts; 2) the concerns of media reports just focused on partial topics (death, severity and damage) and partial catchments (Mediterranean Sea and Nile River); 3) the scientific contribution on floods and droughts were limited within some river basins such as Nile River Basin, Parana River Basin, Savannah River Basin and Murray-Darling River Basin; 4) the scientific contribution on floods and droughts were limited within only a few of disciplines such as Geology, Environmental Sciences & Ecology, Agriculture, Engineering and Forestry. It is recommended that multiple disciplinary contribution and collaboration should be promoted to achieve comprehensive flood/drought management, and science and media should interactively play their valuable roles and in flood/drought issues. Keywords: Floods, droughts, events, science, media, flood and drought management

  12. Two damaging hydrogeological events in Calabria, September 2000 and November 2015. Comparative analysis of causes and effects

    NASA Astrophysics Data System (ADS)

    Petrucci, Olga; Caloiero, Tommaso; Aurora Pasqua, Angela

    2016-04-01

    Each year, especially during winter season, some episode of intense rain affects Calabria, the southernmost Italian peninsular region, triggering flash floods and mass movements that cause damage and fatalities. This work presents a comparative analysis between two events that affected the southeast sector of the region, in 2000 and 2014, respectively. The event occurred between 9th and 10th of September 2000 is known in Italy as Soverato event, after the name of the municipality where it reached the highest damage severity. In the Soverato area, more than 200 mm of rain that fell in 24 hours caused a disastrous flood that swept away a campsite at about 4 a.m., killing 13 people and hurting 45. Besides, the rain affected a larger area, causing damage in 89 (out of 409) municipalities of the region. Flooding was the most common process, which damaged housing and trading. Landslide mostly affected the road network, housing and cultivations. The most recent event affected the same regional sector between 30th October and 2nd November 2015. The daily rain recorded at some of the rain gauges of the area almost reached 400 mm. Out of the 409 municipalities of Calabria, 109 suffered damage. The most frequent types of processes were both flash floods and landslides. The most heavily damaged element was the road network: the representative picture of the event is a railway bridge destroyed by the river flow. Housing was damaged too, and 486 people were temporarily evacuated from home. The event also caused a victim killed by a flood. The event-centred study approach aims to highlight differences and similarities in both the causes and the effects of the two events that occurred at a temporal distance of 14 years. The comparative analysis focus on three main aspects: the intensity of triggering rain, the modifications of urbanised areas, and the evolution of emergency management. The comparative analysis of rain is made by comparing the return period of both daily and cumulative rain. The modifications of urbanised sectors is obtained by comparing ISTAT (National Statistic Institute of Italy) data and google maps of the affected areas at the time of the occurrence of the events. The emergency management is analysed by comparing the types and extend of civil protection alerts diffused in the two studied cases.

  13. September 2013 Storm and Flood Assessment Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walterscheid, J. C.

    2015-12-21

    Between September 10 and 17, 2013, New Mexico and Colorado received a historically large amount of precipitation (Figure 1). This report assesses the damage caused by flooding along with estimated costs to repair the damage at Los Alamos National Laboratory (the Laboratory) on the Pajarito Plateau. Los Alamos County, New Mexico, received between 200% and 600% of the normal precipitation for this time period (Figure 2), and the Laboratory received approximately 450% percent of its average precipitation for September (Figure 3). As a result, the Laboratory was inundated with rain, including the extremely large, greater-than-1000-yr return period event that occurredmore » between September 12 and 13 (Table 1). With saturated antecedent soil conditions from the September 10 storm, when the September 12 to September 13 storm hit, the flooding was disastrous to the Laboratory’s environmental infrastructure, including access roads, gage stations, watershed controls, control measures installed under the National Pollutant Discharge Elimination System Permit (hereafter, the Individual Permit), and groundwater monitoring wells (Figures 4 through 21). From September 16 to October 1, 2013, the Laboratory completed field assessments of environmental infrastructure and generated descriptions and estimates of the damage, which are presented in spreadsheets in Attachments 1 to 4 of this report. Section 2 of this report contains damage assessments by watershed, including access roads, gage stations, watershed controls, and control measures installed under the Individual Permit. Section 3 contains damage assessments of monitoring wells by the groundwater monitoring groups as established in the Interim Facility-Wide Groundwater Monitoring Plan for Monitoring Year 2014. Section 4 addresses damage and loss of automated samplers. Section 5 addresses sediment sampling needs, and Section 6 is the summary of estimated recovery costs from the significant rain and flooding during September 2013.« less

  14. 77 FR 71404 - Intent To Prepare an Environmental Impact Statement for the Proposed Flood Risk Management Study...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ... Policy Act (NEPA) of 1969 as implemented by the Council on Environmental Quality regulations (40 CFR... specifically, this document will discuss measures to improve flood risk management, navigation, water quality.... The overall goal of the study is to reduce flood risk by saving lives and minimizing property damage...

  15. Effects of forcing uncertainties in the improvement skills of assimilating satellite soil moisture retrievals into flood forecasting models

    USDA-ARS?s Scientific Manuscript database

    Floods have negative impacts on society, causing damages in infrastructures and industry, and in the worst cases, causing loss of human lives. Thus early and accurate warning is crucial to significantly reduce the impacts on public safety and economy. Reliable flood warning can be generated using ...

  16. Controlling flooding and water pollution with upland and streamside vegetation systems

    Treesearch

    Michael Dosskey

    2003-01-01

    Substantial research and development effort in the U.S. is being spent on developing strategies that address flooding and water pollution problems in agricultural areas. Concerns have been raised about the costs of flood damage, degradation of productive farm land, and declining water quality that are now recognized as unintended consequences of intensive, high-yield...

  17. Performance of Oil Infrastructure during Hurricane Harvey

    NASA Astrophysics Data System (ADS)

    Bernier, C.; Kameshwar, S.; Padgett, J.

    2017-12-01

    Three major refining centers - Corpus Christi, Houston, and Beaumont/Port Arthur - were affected during Hurricane Harvey. Damage to oil infrastructure, especially aboveground storage tanks (ASTs), caused the release of more than a million gallons of hazardous chemicals in the environment. The objective of this presentation is to identify and gain a better understanding of the different damage mechanisms that occurred during Harvey in order to avoid similar failures during future hurricane events. First, a qualitative description of the damage suffered by ASTs during Hurricane Harvey is presented. Analysis of aerial imagery and incident reports indicate that almost all spills were caused by rainfall and the associated flooding. The largest spill was caused by two large ASTs that floated due to flooding in the Houston Ship Channel releasing 500,000 gallons of gasoline. The vulnerability of ASTs subjected to flooding was already well known and documented from previous storm events. In addition to flooding, Harvey also exposed the vulnerability of ASTs with external floating roof to extreme rainfall; more than 15 floating roofs sank or tilted due to rain water accumulation on them, releasing pollutants in the atmosphere. Secondly, recent fragility models developed by the authors are presented which allow structural vulnerability assessment of floating roofs during rainfall events and ASTs during flood events. The fragility models are then coupled with Harvey rainfall and flood empirical data to identify the conditions (i.e.: internal liquid height or density, drainage system design and efficiency, etc.) that could have led to the observed failures during Hurricane Harvey. Finally, the conditions causing tank failures are studied to propose mitigation measures to prevent future AST failures during severe storm, flood, or rainfall events.

  18. Up-scaling of multi-variable flood loss models from objects to land use units at the meso-scale

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Schröter, Kai; Merz, Bruno

    2016-05-01

    Flood risk management increasingly relies on risk analyses, including loss modelling. Most of the flood loss models usually applied in standard practice have in common that complex damaging processes are described by simple approaches like stage-damage functions. Novel multi-variable models significantly improve loss estimation on the micro-scale and may also be advantageous for large-scale applications. However, more input parameters also reveal additional uncertainty, even more in upscaling procedures for meso-scale applications, where the parameters need to be estimated on a regional area-wide basis. To gain more knowledge about challenges associated with the up-scaling of multi-variable flood loss models the following approach is applied: Single- and multi-variable micro-scale flood loss models are up-scaled and applied on the meso-scale, namely on basis of ATKIS land-use units. Application and validation is undertaken in 19 municipalities, which were affected during the 2002 flood by the River Mulde in Saxony, Germany by comparison to official loss data provided by the Saxon Relief Bank (SAB).In the meso-scale case study based model validation, most multi-variable models show smaller errors than the uni-variable stage-damage functions. The results show the suitability of the up-scaling approach, and, in accordance with micro-scale validation studies, that multi-variable models are an improvement in flood loss modelling also on the meso-scale. However, uncertainties remain high, stressing the importance of uncertainty quantification. Thus, the development of probabilistic loss models, like BT-FLEMO used in this study, which inherently provide uncertainty information are the way forward.

  19. The physical vulnerability of elements at risk: a methodology based on fluid and classical mechanics

    NASA Astrophysics Data System (ADS)

    Mazzorana, B.; Fuchs, S.; Levaggi, L.

    2012-04-01

    The impacts of the flood events occurred in autumn 2011 in the Italian regions Liguria and Tuscany revived the engagement of the public decision makers to enhance in synergy flood control and land use planning. In this context, the design of efficient flood risk mitigation strategies and their subsequent implementation critically relies on a careful vulnerability analysis of both, the immobile and mobile elements at risk potentially exposed to flood hazards. Based on fluid and classical mechanics notions we developed computation schemes enabling for a dynamic vulnerability and risk analysis facing a broad typological variety of elements at risk. The methodological skeleton consists of (1) hydrodynamic computation of the time-varying flood intensities resulting for each element at risk in a succession of loading configurations; (2) modelling the mechanical response of the impacted elements through static, elasto-static and dynamic analyses; (3) characterising the mechanical response through proper structural damage variables and (4) economic valuation of the expected losses as a function of the quantified damage variables. From a computational perspective we coupled the description of the hydrodynamic flow behaviour and the induced structural modifications of the elements at risk exposed. Valuation methods, suitable to support a correct mapping from the value domains of the physical damage variables to the economic loss values are discussed. In such a way we target to complement from a methodological perspective the existing, mainly empirical, vulnerability and risk assessment approaches to refine the conceptual framework of the cost-benefit analysis. Moreover, we aim to support the design of effective flood risk mitigation strategies by diminishing the main criticalities within the systems prone to flood risk.

  20. A statistical approach to evaluate flood risk at the regional level: an application to Italy

    NASA Astrophysics Data System (ADS)

    Rossi, Mauro; Marchesini, Ivan; Salvati, Paola; Donnini, Marco; Guzzetti, Fausto; Sterlacchini, Simone; Zazzeri, Marco; Bonazzi, Alessandro; Carlesi, Andrea

    2016-04-01

    Floods are frequent and widespread in Italy, causing every year multiple fatalities and extensive damages to public and private structures. A pre-requisite for the development of mitigation schemes, including financial instruments such as insurance, is the ability to quantify their costs starting from the estimation of the underlying flood hazard. However, comprehensive and coherent information on flood prone areas, and estimates on the frequency and intensity of flood events, are not often available at scales appropriate for risk pooling and diversification. In Italy, River Basins Hydrogeological Plans (PAI), prepared by basin administrations, are the basic descriptive, regulatory, technical and operational tools for environmental planning in flood prone areas. Nevertheless, such plans do not cover the entire Italian territory, having significant gaps along the minor hydrographic network and in ungauged basins. Several process-based modelling approaches have been used by different basin administrations for the flood hazard assessment, resulting in an inhomogeneous hazard zonation of the territory. As a result, flood hazard assessments expected and damage estimations across the different Italian basin administrations are not always coherent. To overcome these limitations, we propose a simplified multivariate statistical approach for the regional flood hazard zonation coupled with a flood impact model. This modelling approach has been applied in different Italian basin administrations, allowing a preliminary but coherent and comparable estimation of the flood hazard and the relative impact. Model performances are evaluated comparing the predicted flood prone areas with the corresponding PAI zonation. The proposed approach will provide standardized information (following the EU Floods Directive specifications) on flood risk at a regional level which can in turn be more readily applied to assess flood economic impacts. Furthermore, in the assumption of an appropriate flood risk statistical characterization, the proposed procedure could be applied straightforward outside the national borders, particularly in areas with similar geo-environmental settings.

  1. National Economic Development Procedures Manual - Agricultural Flood Damage,

    DTIC Science & Technology

    1987-10-01

    based on the conceptual framework of the Economic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation...the planning process and the NED evaluacion ’- ". procedures for agriculture, as described in the P&G, are thei presented. Also identified are some...ood Ioss compu t at ion approach de ’(’ op4 t hie f I ond damage for hypothetical frequency flood events and weights the result to I V- II1. + . IV-11

  2. Effects of Flood Control Works Failure in the Missouri River Basin

    DTIC Science & Technology

    2014-06-13

    Project (“BSNP”). Specifically, in order to restore habitat of certain native species in the Missouri River Basin (“the Basin”), the Corps departed...estimated that over $654 million in damages occurred to agricultural and rural areas (U.S. Army Corps of Engineers 1995, 5-5). There was over $65 million...USACE Kansas City District’s civil works boundary, flooding resulted in estimated damages of greater than $2.2 billion, with agricultural and rural

  3. The Impact of Corps Flood Control Reservoirs in the June 2008 Upper Mississippi Flood

    NASA Astrophysics Data System (ADS)

    Charley, W. J.; Stiman, J. A.

    2008-12-01

    The US Army Corps of Engineers is responsible for a multitude of flood control project on the Mississippi River and its tributaries, including levees that protect land from flooding, and dams to help regulate river flows. The first six months of 2008 were the wettest on record in the upper Mississippi Basin. During the first 2 weeks of June, rainfall over the Midwest ranged from 6 to as much as 16 inches, overwhelming the flood protection system, causing massive flooding and damage. Most severely impacted were the States of Iowa, Illinois, Indiana, Missouri, and Wisconsin. In Iowa, flooding occurred on almost every river in the state. On the Iowa River, record flooding occurred from Marshalltown, Iowa, downstream to its confluence with the Mississippi River. At several locations, flooding exceeded the 500-year event. The flooding affected agriculture, transportation, and infrastructure, including homes, businesses, levees, and other water-control structures. It has been estimated that there was at least 7 billion dollars in damages. While the flooding in Iowa was extraordinary, Corps of Engineers flood control reservoirs helped limit damage and prevent loss of life, even though some reservoirs were filled beyond their design capacity. Coralville Reservoir on the Iowa River, for example, filled to 135% of its design flood storage capacity, with stage a record five feet over the crest of the spillway. In spite of this, the maximum reservoir release was limited to 39,500 cfs, while a peak inflow of 57,000 cfs was observed. CWMS, the Corps Water Management System, is used to help regulate Corps reservoirs, as well as track and evaluate flooding and flooding potential. CWMS is a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. It encompasses data collection, validation and transformation, data storage, visualization, real time model simulation for decision-making support, and data dissemination. The system uses precipitation and flow data, collected in real-time, along with forecasted flow from the National Weather Service to model and optimize reservoir operations and forecast downstream flows and stages, providing communities accurate and timely information to aid their flood-fighting. This involves integrating several simulation modeling programs, including HEC-HMS to forecast flows, HEC-ResSim to model reservoir operations and HEC-RAS to compute forecasted stage hydrographs. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using ArcInfo. By varying future precipitation and releases, engineers can evaluate different "What if?" scenarios. The effectiveness of this tool and Corps reservoirs are examined.

  4. The 3D Elevation Program—Flood risk management

    USGS Publications Warehouse

    Carswell, William J.; Lukas, Vicki

    2018-01-25

    Flood-damage reduction in the United States has been a longstanding but elusive societal goal. The national strategy for reducing flood damage has shifted over recent decades from a focus on construction of flood-control dams and levee systems to a three-pronged strategy to (1) improve the design and operation of such structures, (2) provide more accurate and accessible flood forecasting, and (3) shift the Federal Emergency Management Agency (FEMA) National Flood Insurance Program to a more balanced, less costly flood-insurance paradigm. Expanding the availability and use of high-quality, three-dimensional (3D) elevation information derived from modern light detection and ranging (lidar) technologies to provide essential terrain data poses a singular opportunity to dramatically enhance the effectiveness of all three components of this strategy. Additionally, FEMA, the National Weather Service, and the U.S. Geological Survey (USGS) have developed tools and joint program activities to support the national strategy.The USGS 3D Elevation Program (3DEP) has the programmatic infrastructure to produce and provide essential terrain data. This infrastructure includes (1) data acquisition partnerships that leverage funding and reduce duplicative efforts, (2) contracts with experienced private mapping firms that ensure acquisition of consistent, low-cost 3D elevation data, and (3) the technical expertise, standards, and specifications required for consistent, edge-to-edge utility across multiple collection platforms and public access unfettered by individual database designs and limitations.High-quality elevation data, like that collected through 3DEP, are invaluable for assessing and documenting flood risk and communicating detailed information to both responders and planners alike. Multiple flood-mapping programs make use of USGS streamflow and 3DEP data. Flood insurance rate maps, flood documentation studies, and flood-inundation map libraries are products of these programs.

  5. Hurricane Harvey Riverine Flooding: Part 1 - Reconstruction of Hurricane Harvey Flooding for Harris County, TX using a GPU-accelerated 2D flood model for post-flood hazard analysis

    NASA Astrophysics Data System (ADS)

    Kalyanapu, A. J.; Dullo, T. T.; Gangrade, S.; Kao, S. C.; Marshall, R.; Islam, S. R.; Ghafoor, S. K.

    2017-12-01

    Hurricane Harvey that made landfall in the southern Texas this August is one of the most destructive hurricanes during the 2017 hurricane season. During its active period, many areas in coastal Texas region received more than 40 inches of rain. This downpour caused significant flooding resulting in about 77 casualties, displacing more than 30,000 people, inundating hundreds of thousands homes and is currently estimated to have caused more than $70 billion in direct damage. One of the significantly affected areas is Harris County where the city of Houston, TX is located. Covering over two HUC-8 drainage basins ( 2702 mi2), this county experienced more than 80% of its annual average rainfall during this event. This study presents an effort to reconstruct flooding caused by extreme rainfall due to Hurricane Harvey in Harris County, Texas. This computationally intensive task was performed at a 30-m spatial resolution using a rapid flood model called Flood2D-GPU, a graphics processing unit (GPU) accelerated model, on Oak Ridge National Laboratory's (ORNL) Titan Supercomputer. For this task, the hourly rainfall estimates from the National Center for Environmental Prediction Stage IV Quantitative Precipitation Estimate were fed into the Variable Infiltration Capacity (VIC) hydrologic model and Routing Application for Parallel computation of Discharge (RAPID) routing model to estimate flow hydrographs at 69 locations for Flood2D-GPU simulation. Preliminary results of the simulation including flood inundation extents, maps of flood depths and inundation duration will be presented. Future efforts will focus on calibrating and validating the simulation results and assessing the flood damage for better understanding the impacts made by Hurricane Harvey.

  6. Summary of Natural Hazard Statistics for 2017 in the United States

    MedlinePlus

    ... Damage Costs Weather Event Convection Lightning Tornado Thunderstorm Wind Hail Extreme Temperatures Cold Heat Flood Flash Flood ... Drought Dust Storm Dust Devil Rain Fog High Wind Waterspout Fire Weather Mud Slide Volcanic Ash Miscellaneous ...

  7. Summary of Natural Hazard Statistics for 2015 in the United States

    MedlinePlus

    ... Damage Costs Weather Event Convection Lightning Tornado Thunderstorm Wind Hail Extreme Temperatures Cold Heat Flood Flash Flood ... Drought Dust Storm Dust Devil Rain Fog High Wind Waterspout Fire Weather Mud Slide Volcanic Ash Miscellaneous ...

  8. 12. VIEW SHOWING CCC CREWS FREEING FLOOD GATES AT DAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW SHOWING CCC CREWS FREEING FLOOD GATES AT DAM 326 OF ICE TO PREVENT DAMAGE TO STRUCTURE - J. Clark Salyer National Wildlife Refuge, Dam 326, Along Lower Souris River, Kramer, Bottineau County, ND

  9. Study on the water related disaster risks using the future socio-economic scenario in Asia

    NASA Astrophysics Data System (ADS)

    Kiguchi, M.; Hatono, M.; Ikeuchi, H.; Nakamura, S.; Hirabayashi, Y.; Kanae, S.; Oki, T.

    2014-12-01

    In this study, flood risks in the present and the end of the 21st century in Asia are estimated using a future socio-economic scenario. Using the runoff data of 7 GCMs (RCP 8.5) of CMIP5, the river discharge, inundation area, and inundation depth are calculated for the assessment of flood risk. Finally, the flood risk is estimated using a function of damage. The flood frequency in the end of the 21st century in Asia tends to increase. Inundation area in Japan, Taiwan, and Kyrgyz is almost unchanged. At the same time, that in Sri Lanka, Bangladesh, Laos, and Myanmar reached about 1.4-1.6 times compared to present. Damage cost is largely influenced by economic growth, however, we show that it is important that we distinguish the influence of climate change from economic development and evaluate it when we think about an adaptation.

  10. Effects of climate variability on global scale flood risk

    NASA Astrophysics Data System (ADS)

    Ward, P.; Dettinger, M. D.; Kummu, M.; Jongman, B.; Sperna Weiland, F.; Winsemius, H.

    2013-12-01

    In this contribution we demonstrate the influence of climate variability on flood risk. Globally, flooding is one of the worst natural hazards in terms of economic damages; Munich Re estimates global losses in the last decade to be in excess of $240 billion. As a result, scientifically sound estimates of flood risk at the largest scales are increasingly needed by industry (including multinational companies and the insurance industry) and policy communities. Several assessments of global scale flood risk under current and conditions have recently become available, and this year has seen the first studies assessing how flood risk may change in the future due to global change. However, the influence of climate variability on flood risk has as yet hardly been studied, despite the fact that: (a) in other fields (drought, hurricane damage, food production) this variability is as important for policy and practice as long term change; and (b) climate variability has a strong influence in peak riverflows around the world. To address this issue, this contribution illustrates the influence of ENSO-driven climate variability on flood risk, at both the globally aggregated scale and the scale of countries and large river basins. Although it exerts significant and widespread influences on flood peak discharges in many parts of the world, we show that ENSO does not have a statistically significant influence on flood risk once aggregated to global totals. At the scale of individual countries, though, strong relationships exist over large parts of the Earth's surface. For example, we find particularly strong anomalies of flood risk in El Niño or La Niña years (compared to all years) in southern Africa, parts of western Africa, Australia, parts of Central Eurasia (especially for El Niño), the western USA (especially for La Niña), and parts of South America. These findings have large implications for both decadal climate-risk projections and long-term future climate change research. We carried out the research by simulating daily river discharge using a global hydrological model (PCR-GLOBWB), forced with gridded climate reanalysis time-series. From this, we derived peak annual flood volumes for large-scale river basins globally. These were used to force a global inundation model (dynRout) to map inundation extent and depth for return periods between 2 and 1000 years, under El Niño conditions, neutral conditions, and La Niña conditions. Theses flood hazard maps were combined with global datasets on socioeconomic variables such as population and income to represent the socioeconomic exposure to flooding, and depth-damage curves to represent vulnerability.

  11. Adaptation to flood risk: Results of international paired flood event studies

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Di Baldassarre, Giuliano; Vorogushyn, Sergiy; Aerts, Jeroen C. J. H.; Apel, Heiko; Aronica, Giuseppe T.; Arnbjerg-Nielsen, Karsten; Bouwer, Laurens M.; Bubeck, Philip; Caloiero, Tommaso; Chinh, Do T.; Cortès, Maria; Gain, Animesh K.; Giampá, Vincenzo; Kuhlicke, Christian; Kundzewicz, Zbigniew W.; Llasat, Maria Carmen; Mârd, Johanna; Matczak, Piotr; Mazzoleni, Maurizio; Molinari, Daniela; Dung, Nguyen V.; Petrucci, Olga; Schröter, Kai; Slager, Kymo; Thieken, Annegret H.; Ward, Philip J.; Merz, Bruno

    2017-10-01

    As flood impacts are increasing in large parts of the world, understanding the primary drivers of changes in risk is essential for effective adaptation. To gain more knowledge on the basis of empirical case studies, we analyze eight paired floods, that is, consecutive flood events that occurred in the same region, with the second flood causing significantly lower damage. These success stories of risk reduction were selected across different socioeconomic and hydro-climatic contexts. The potential of societies to adapt is uncovered by describing triggered societal changes, as well as formal measures and spontaneous processes that reduced flood risk. This novel approach has the potential to build the basis for an international data collection and analysis effort to better understand and attribute changes in risk due to hydrological extremes in the framework of the IAHSs Panta Rhei initiative. Across all case studies, we find that lower damage caused by the second event was mainly due to significant reductions in vulnerability, for example, via raised risk awareness, preparedness, and improvements of organizational emergency management. Thus, vulnerability reduction plays an essential role for successful adaptation. Our work shows that there is a high potential to adapt, but there remains the challenge to stimulate measures that reduce vulnerability and risk in periods in which extreme events do not occur.

  12. Historical hydrology and database on flood events (Apulia, southern Italy)

    NASA Astrophysics Data System (ADS)

    Lonigro, Teresa; Basso, Alessia; Gentile, Francesco; Polemio, Maurizio

    2014-05-01

    Historical data about floods represent an important tool for the comprehension of the hydrological processes, the estimation of hazard scenarios as a basis for Civil Protection purposes, as a basis of the rational land use management, especially in karstic areas, where time series of river flows are not available and the river drainage is rare. The research shows the importance of the improvement of existing flood database with an historical approach, finalized to collect past or historical floods event, in order to better assess the occurrence trend of floods, in the case for the Apulian region (south Italy). The main source of records of flood events for Apulia was the AVI (the acronym means Italian damaged areas) database, an existing Italian database that collects data concerning damaging floods from 1918 to 1996. The database was expanded consulting newspapers, publications, and technical reports from 1996 to 2006. In order to expand the temporal range further data were collected searching in the archives of regional libraries. About 700 useful news from 17 different local newspapers were found from 1876 to 1951. From a critical analysis of the 700 news collected since 1876 to 1952 only 437 were useful for the implementation of the Apulia database. The screening of these news showed the occurrence of about 122 flood events in the entire region. The district of Bari, the regional main town, represents the area in which the great number of events occurred; the historical analysis confirms this area as flood-prone. There is an overlapping period (from 1918 to 1952) between old AVI database and new historical dataset obtained by newspapers. With regard to this period, the historical research has highlighted new flood events not reported in the existing AVI database and it also allowed to add more details to the events already recorded. This study shows that the database is a dynamic instrument, which allows a continuous implementation of data, even in real time. More details on previous results of this research activity were recently published (Polemio, 2010; Basso et al., 2012; Lonigro et al., 2013) References Basso A., Lonigro T. and Polemio M. (2012) "The improvement of historical database on damaging hydrogeological events in the case of Apulia (Southern Italy)". Rendiconti online della Società Geologica Italiana, 21: 379-380; Lonigro T., Basso A. and Polemio M. (2013) "Historical database on damaging hydrogeological events in Apulia region (Southern Italy)". Rendiconti online della Società Geologica Italiana, 24: 196-198; Polemio M. (2010) "Historical floods and a recent extreme rainfall event in the Murgia karstic environment (Southern Italy)". Zeitschrift für Geomorphologie, 54(2): 195-219.

  13. High resolution mapping of flood hazard for South Korea

    NASA Astrophysics Data System (ADS)

    Ghosh, Sourima; Nzerem, Kechi; Zovi, Francesco; Li, Shuangcai; Mei, Yi; Assteerawatt, Anongnart; Hilberts, Arno; Tillmanns, Stephan; Mitas, Christos

    2015-04-01

    Floods are one of primary natural hazards that affect South Korea. During the past 15 years, catastrophic flood events which mainly have occurred during the rainy and typhoon seasons - especially under condition where soils are already saturated, have triggered substantial property damage with an average annual loss of around US1.2 billion (determined from WAter Management Information System's flood damage database for years 2002-2011) in South Korea. According to Seoul Metropolitan Government, over 16,000 households in the capital city Seoul were inundated during 2010 flood events. More than 10,000 households in Seoul were apparently flooded during one major flood event due to torrential rain in July 2011. Recently in August 2014, a serious flood event due to heavy rainfall hit the Busan region in the south east of South Korea. Addressing the growing needs, RMS has recently released country-wide high resolution combined flood return period maps for post-drainage local "pluvial" inundation and undefended large-scale "fluvial" inundation to aid the government and the insurance industry in the evaluation of comprehensive flood risk. RMS has developed a flood hazard model for South Korea to generate inundation depths and extents for a range of flood return periods. The model is initiated with 30 years of historical meteorological forcing data and calibrated to daily observations at over 100 river gauges across the country. Simulations of hydrologic processes are subsequently performed based on a 2000 year set of stochastic forcing. Floodplain inundation processes are modelled by numerically solving the shallow water equations using finite volume method on GPUs. Taking into account the existing stormwater drainage standards, economic exposure densities, etc., reasonable flood maps are created from inundation model output. Final hazard maps at one arcsec grid resolution can be the basis for both evaluating and managing flood risk, its economic impacts, and insured flood losses in South Korea.

  14. Modelling large floating bodies in urban area flash-floods via a Smoothed Particle Hydrodynamics model

    NASA Astrophysics Data System (ADS)

    Albano, Raffaele; Sole, Aurelia; Mirauda, Domenica; Adamowski, Jan

    2016-10-01

    Large debris, including vehicles parked along floodplains, can cause severe damage and significant loss of life during urban area flash-floods. In this study, the authors validated and applied the Smoothed Particle Hydrodynamics (SPH) model, developed in Amicarelli et al. (2015), which reproduces in 3D the dynamics of rigid bodies driven by free surface flows, to the design of flood mitigation measures. To validate the model, the authors compared the model's predictions to the results of an experimental setup, involving a dam breach that strikes two fixed obstacles and three transportable floating bodies. Given the accuracy of the results, in terms of water depth over time and the time history of the bodies' movements, the SPH model explored in this study was used to analyse the mitigation efficiency of a proposed structural intervention - the use of small barriers (groynes) to prevent the transport of floating bodies. Different groynes configurations were examined to identify the most appropriate design and layout for urban area flash-flood damage mitigation. The authors found that groynes positioned upstream and downstream of each floating body can be effective as a risk mitigation measure for damage resulting from their movement.

  15. Scour damage to Vermont bridges and scour monitoring.

    DOT National Transportation Integrated Search

    2015-06-01

    Scour is by far the primary cause of bridge failures in the United States. Regionally, the : vulnerability of bridges to flood damage became evident from the damage seen to Vermont : bridges in the 2011 Tropical Storm Irene. Successfully mitigating s...

  16. How are flood risk estimates affected by the choice of return-periods?

    NASA Astrophysics Data System (ADS)

    Ward, P. J.; de Moel, H.; Aerts, J. C. J. H.

    2011-12-01

    Flood management is more and more adopting a risk based approach, whereby flood risk is the product of the probability and consequences of flooding. One of the most common approaches in flood risk assessment is to estimate the damage that would occur for floods of several exceedance probabilities (or return periods), to plot these on an exceedance probability-loss curve (risk curve) and to estimate risk as the area under the curve. However, there is little insight into how the selection of the return-periods (which ones and how many) used to calculate risk actually affects the final risk calculation. To gain such insights, we developed and validated an inundation model capable of rapidly simulating inundation extent and depth, and dynamically coupled this to an existing damage model. The method was applied to a section of the River Meuse in the southeast of the Netherlands. Firstly, we estimated risk based on a risk curve using yearly return periods from 2 to 10 000 yr (€ 34 million p.a.). We found that the overall risk is greatly affected by the number of return periods used to construct the risk curve, with over-estimations of annual risk between 33% and 100% when only three return periods are used. In addition, binary assumptions on dike failure can have a large effect (a factor two difference) on risk estimates. Also, the minimum and maximum return period considered in the curve affects the risk estimate considerably. The results suggest that more research is needed to develop relatively simple inundation models that can be used to produce large numbers of inundation maps, complementary to more complex 2-D-3-D hydrodynamic models. It also suggests that research into flood risk could benefit by paying more attention to the damage caused by relatively high probability floods.

  17. Aligning Natural Resource Conservation and Flood Hazard Mitigation in California

    PubMed Central

    Calil, Juliano; Beck, Michael W.; Gleason, Mary; Merrifield, Matthew; Klausmeyer, Kirk; Newkirk, Sarah

    2015-01-01

    Flooding is the most common and damaging of all natural disasters in the United States, and was a factor in almost all declared disasters in U.S. history. Direct flood losses in the U.S. in 2011 totaled $8.41 billion and flood damage has also been on the rise globally over the past century. The National Flood Insurance Program paid out more than $38 billion in claims since its inception in 1968, more than a third of which has gone to the one percent of policies that experienced multiple losses and are classified as “repetitive loss.” During the same period, the loss of coastal wetlands and other natural habitat has continued, and funds for conservation and restoration of these habitats are very limited. This study demonstrates that flood losses could be mitigated through action that meets both flood risk reduction and conservation objectives. We found that there are at least 11,243km2 of land in coastal California, which is both flood-prone and has natural resource conservation value, and where a property/structure buyout and habitat restoration project could meet multiple objectives. For example, our results show that in Sonoma County, the extent of land that meets these criteria is 564km2. Further, we explore flood mitigation grant programs that can be a significant source of funds to such projects. We demonstrate that government funded buyouts followed by restoration of targeted lands can support social, environmental, and economic objectives: reduction of flood exposure, restoration of natural resources, and efficient use of limited governmental funds. PMID:26200353

  18. Flood of April 2-3, 2005, Neversink River Basin, New York

    USGS Publications Warehouse

    Suro, Thomas P.; Firda, Gary D.

    2006-01-01

    Heavy rain on April 2-3, 2005 produced rainfall amounts of 3 inches to almost 6 inches within a 36-hour period throughout the Delaware River basin. Major flooding occurred in the East and West Branches of the Delaware River and their tributaries, the main stem of the Delaware River and the Neversink River, a major tributary to the Delaware River. The resultant flooding damaged hundreds of homes, caused millions of dollars in damage to infrastructure in Orange and Sullivan Counties, and forced more than 1,000 residents to evacuate their homes. A total of 20 New York counties were declared Federal disaster areas. Some of the most extensive flooding occurred along the Neversink and Delaware Rivers in Orange and Sullivan Counties, New York. Disaster recovery assistance from the April 2005 flooding in New York stood at almost $35 million in 2005, at which time more than 3,400 New Yorkers had registered for Federal aid. All U.S. Geological Survey stream-gaging stations on the Neversink River below the Neversink Reservoir recorded peak water-surface elevations higher than those recorded during the September 2004 flooding. Peak water-surface elevations at some study sites on the Neversink River exceeded the 500-year flood elevation as documented in flood-insurance studies by the Federal Emergency Management Agency. Flood peaks at some long-term U.S. Geological Survey stream-gaging stations were the highest ever recorded. Several U.S. Geological Survey stream-gaging stations on the Delaware River also recorded peak water-surface elevations that exceeded those recorded during the September 2004 flooding.

  19. Using Minimax Regret Optimization to Search for Multi-Stakeholder Solutions to Deeply Uncertain Flood Hazards under Climate Change

    NASA Astrophysics Data System (ADS)

    Kirshen, P. H.; Hecht, J. S.; Vogel, R. M.

    2015-12-01

    Prescribing long-term urban floodplain management plans under the deep uncertainty of climate change is a challenging endeavor. To address this, we have implemented and tested with stakeholders a parsimonious multi-stage mixed integer programming (MIP) model that identifies the optimal time period(s) for implementing publicly and privately financed adaptation measures. Publicly funded measures include reach-scale flood barriers, flood insurance, and buyout programs to encourage property owners in flood-prone areas to retreat from the floodplain. Measures privately funded by property owners consist of property-scale floodproofing options, such as raising building foundations, as well as investments in flood insurance or retreat from flood-prone areas. The objective function to minimize the sum of flood control and damage costs in all planning stages for different property types during floods of different severities. There are constraints over time for flow mass balances, construction of flood management alternatives and their cumulative implementation, budget allocations, and binary decisions. Damages are adjusted for flood control investments. In recognition of the deep uncertainty of GCM-derived climate change scenarios, we employ the minimax regret criterion to identify adaptation portfolios robust to different climate change trajectories. As an example, we identify publicly and privately funded adaptation measures for a stylized community based on the estuarine community of Exeter, New Hampshire, USA. We explore the sensitivity of recommended portfolios to different ranges of climate changes, and costs associated with economies of scale and flexible infrastructure design as well as different municipal budget constraints.

  20. Aligning Natural Resource Conservation and Flood Hazard Mitigation in California.

    PubMed

    Calil, Juliano; Beck, Michael W; Gleason, Mary; Merrifield, Matthew; Klausmeyer, Kirk; Newkirk, Sarah

    2015-01-01

    Flooding is the most common and damaging of all natural disasters in the United States, and was a factor in almost all declared disasters in U.S. Direct flood losses in the U.S. in 2011 totaled $8.41 billion and flood damage has also been on the rise globally over the past century. The National Flood Insurance Program paid out more than $38 billion in claims since its inception in 1968, more than a third of which has gone to the one percent of policies that experienced multiple losses and are classified as "repetitive loss." During the same period, the loss of coastal wetlands and other natural habitat has continued, and funds for conservation and restoration of these habitats are very limited. This study demonstrates that flood losses could be mitigated through action that meets both flood risk reduction and conservation objectives. We found that there are at least 11,243km2 of land in coastal California, which is both flood-prone and has natural resource conservation value, and where a property/structure buyout and habitat restoration project could meet multiple objectives. For example, our results show that in Sonoma County, the extent of land that meets these criteria is 564km2. Further, we explore flood mitigation grant programs that can be a significant source of funds to such projects. We demonstrate that government funded buyouts followed by restoration of targeted lands can support social, environmental, and economic objectives: reduction of flood exposure, restoration of natural resources, and efficient use of limited governmental funds.

  1. Floods of May 1981 in west-central Montana

    USGS Publications Warehouse

    Parrett, Charles; Omang, R.J.; Hull, J.A.; Fassler, John W.

    1982-01-01

    Extensive flooding occurred in west-central Montana during May 22-23, 1981, as a result of a series of rainstorms. Flooding was particularly severe in the communities of East Helena, Belt, and Deer Lodge. Although no lives were lost, total flood damages were estimated by the Montana Disaster Emergency Services Division to be in excess of $30 million. Peak discharges were determined at 75 sites in the flooded area. At 25 sites the May 1981 peak discharge exceeded the computed 100-year frequency flood, and at 29 sites, where previous flow records are available, the May 1981 peak discharge exceeded the previous peak of record. (USGS)

  2. Post flood damage data collection and assessment in Albania based on DesInventar methodology

    NASA Astrophysics Data System (ADS)

    Toto, Emanuela; Massabo, Marco; Deda, Miranda; Rossello, Laura

    2015-04-01

    In 2013 in Albania was implemented a collection of disaster losses based on Desinventar. The DesInventar system consists in a methodology and software tool that lead to the systematic collection, documentation and analysis of loss data on disasters. The main sources of information about disasters used for the Albanian database were the Albanian Ministry of Internal Affairs, the National Library and the State archive. Specifically for floods the database created contains nearly 900 datasets, for a period of 148 years (from 1865 to 2013). The data are georeferenced on the administrative units of Albania: Region, Provinces and Municipalities. The datasets describe the events by reporting the date of occurrence, the duration, the localization in administrative units and the cause. Additional information regards the effects and damage that the event caused on people (deaths, injured, missing, affected, relocated, evacuated, victims) and on houses (houses damaged or destroyed). Other quantitative indicators are the losses in local currency or US dollars, the damage on roads, the crops affected , the lost cattle and the involvement of social elements over the territory such as education and health centers. Qualitative indicators simply register the sectors (e.g. transportations, communications, relief, agriculture, water supply, sewerage, power and energy, industries, education, health sector, other sectors) that were affected. Through the queries and analysis of the data collected it was possible to identify the most affected areas, the economic loss, the damage in agriculture, the houses and people affected and many other variables. The most vulnerable Regions for the past floods in Albania were studied and individuated, as well as the rivers that cause more damage in the country. Other analysis help to estimate the damage and losses during the main flood events of the recent years, occurred in 2010 and 2011, and to recognize the most affected sectors. The database was used to find the most frequent drivers that cause floods and to identify the areas with a higher priority for intervention and the areas with a higher economic loss. In future the loss and damage database could address interventions for risk mitigation and decision making processes. Using the database is also possible to build Empirical Loss Exceedance Curves, that permit to find the average number of times for year that a certain level of loss happened. The users of the database information can be researchers, students, citizens and policy makers. The operators of the National Operative Center for Civil Emergencies (Albanian Ministry of Internal Affairs) use the database daily to insert new data. Nowadays in Albania there isn't an entity in charge for the registration of damage and consequences of floods in a systematic and organized way. In this sense, the database DesInventar provides a basis for the future and helps to identify priorities to create a national database.

  3. Developing a bridge scour warning system : technical summary.

    DOT National Transportation Integrated Search

    2016-09-01

    Flooding and scour can be major threats to the integrity of bridges. During flood events, : scour at bridge piers and abutments can undermine the foundations of the bridge, causing : significant damage or even total structure loss. Because scour occu...

  4. Developing a bridge scour warning system : final report.

    DOT National Transportation Integrated Search

    2016-09-01

    Flooding and scour can be major threats to the integrity of bridges. During flood events, scour at bridge piers : and abutments can undermine the foundations of the bridge, causing significant damage or even total structure loss. : Because scour occu...

  5. Modelling multi-hazard hurricane damages on an urbanized coast with a Bayesian Network approach

    USGS Publications Warehouse

    van Verseveld, H.C.W.; Van Dongeren, A. R.; Plant, Nathaniel G.; Jäger, W.S.; den Heijer, C.

    2015-01-01

    Hurricane flood impacts to residential buildings in coastal zones are caused by a number of hazards, such as inundation, overflow currents, erosion, and wave attack. However, traditional hurricane damage models typically make use of stage-damage functions, where the stage is related to flooding depth only. Moreover, these models are deterministic and do not consider the large amount of uncertainty associated with both the processes themselves and with the predictions. This uncertainty becomes increasingly important when multiple hazards (flooding, wave attack, erosion, etc.) are considered simultaneously. This paper focusses on establishing relationships between observed damage and multiple hazard indicators in order to make better probabilistic predictions. The concept consists of (1) determining Local Hazard Indicators (LHIs) from a hindcasted storm with use of a nearshore morphodynamic model, XBeach, and (2) coupling these LHIs and building characteristics to the observed damages. We chose a Bayesian Network approach in order to make this coupling and used the LHIs ‘Inundation depth’, ‘Flow velocity’, ‘Wave attack’, and ‘Scour depth’ to represent flooding, current, wave impacts, and erosion related hazards.The coupled hazard model was tested against four thousand damage observations from a case site at the Rockaway Peninsula, NY, that was impacted by Hurricane Sandy in late October, 2012. The model was able to accurately distinguish ‘Minor damage’ from all other outcomes 95% of the time and could distinguish areas that were affected by the storm, but not severely damaged, 68% of the time. For the most heavily damaged buildings (‘Major Damage’ and ‘Destroyed’), projections of the expected damage underestimated the observed damage. The model demonstrated that including multiple hazards doubled the prediction skill, with Log-Likelihood Ratio test (a measure of improved accuracy and reduction in uncertainty) scores between 0.02 and 0.17 when only one hazard is considered and a score of 0.37 when multiple hazards are considered simultaneously. The LHIs with the most predictive skill were ‘Inundation depth’ and ‘Wave attack’. The Bayesian Network approach has several advantages over the market-standard stage-damage functions: the predictive capacity of multiple indicators can be combined; probabilistic predictions can be obtained, which include uncertainty; and quantitative as well as descriptive information can be used simultaneously.

  6. Simulating storm surge inundation and damage potential within complex port facilities

    NASA Astrophysics Data System (ADS)

    Mawdsley, Robert; French, Jon; Fujiyama, Taku; Achutan, Kamalasudhan

    2017-04-01

    Storm surge inundation of port facilities can cause damage to critical elements of infrastructure, significantly disrupt port operations and cause downstream impacts on vital supply chains. A tidal surge in December 2013 in the North Sea partly flooded the Port of Immingham, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. This flooding caused damage to port and rail transport infrastructure and disrupted operations for several weeks. This research aims to improve resilience to storm surges using hydrodynamic modelling coupled to an agent-based model of port operations. Using the December 2013 event to validate flood extent, depth and duration, we ran a high resolution hydrodynamic simulation using the open source Telemac 2D finite element code. The underlying Digital Elevation Model (DEM) was derived from Environment Agency LiDAR data, with ground truthing of the flood defences along the port frontage. Major infrastructure and buildings are explicitly resolved with varying degrees of permeability. Telemac2D simulations are run in parallel and take only minutes on a single 16 cpu compute node. Inundation characteristics predicted using Telemac 2D differ from a simple Geographical Information System 'bath-tub' analysis of the DEM based upon horizontal application of the maximum water level across the port topography. The hydrodynamic simulation predicts less extensive flooding and more closely matches observed flood extent. It also provides more precise depth and duration curves. Detailed spatial flood depth and duration maps were generated for a range of tide and surge scenarios coupled to mean sea-level rise projections. These inundation scenarios can then be integrated with critical asset databases and an agent-based model of port operation (MARS) that is capable of simulating storm surge disruption along wider supply chains. Port operators are able to act on information from a particular flood scenario to perform adaptive responses (e.g. pre-emptive relocation of equipment), as well as estimate the likely duration of any disruption to port and supply chain operation. High resolution numerical inundation modelling, coupled to accurate storm surge forecasting and an agent based port operation model, thus has the potential to significantly reduce damage and disruption costs associated with storm surge impacts on port infrastructure and systems.

  7. Endangerment of cultural heritage sites by strong rain

    NASA Astrophysics Data System (ADS)

    Krauß, Thomas; Fischer, Peter

    2017-09-01

    Due to climate change extreme weather conditions become more and more frequent in the last years. Especially in Germany nearly every year a large flood event happens. Most of these events are caused by strong rain. There are at most two causes for these floodings: The first is locally strong rain in the area of damage, the second happens at damage sites located near confluxes and strong rain in the upper stream areas of the joining rivers. The amount of damage is often strongly correlated with unreasonable designation of new construction in such endangered regions. Our presented study is based on an earlier project together with a German insurance company. In this project we analyzed correlations of geographical settings with the insurance data of flood damages over ten years. The result of this study was a strong relation of the terrain with the amount and the probability of damages. Further investigations allow us to derive a system for estimating potential endangerment due to strong rain just from suitable digital terrain models (DTMs). In the presented study we apply this method to different types of cultural heritage (CH) sites in Germany and other parts of the world to detect which type of CH sites were build with potential endangerment of strong rain events in mind and which ones are prone to such events.

  8. Annual flood sensitivities to El Niño-Southern Oscillation at the global scale

    USGS Publications Warehouse

    Ward, Philip J.; Eisner, S.; Flörke, M.; Dettinger, Michael D.; Kummu, M.

    2013-01-01

    Floods are amongst the most dangerous natural hazards in terms of economic damage. Whilst a growing number of studies have examined how river floods are influenced by climate change, the role of natural modes of interannual climate variability remains poorly understood. We present the first global assessment of the influence of El Niño–Southern Oscillation (ENSO) on annual river floods, defined here as the peak daily discharge in a given year. The analysis was carried out by simulating daily gridded discharges using the WaterGAP model (Water – a Global Assessment and Prognosis), and examining statistical relationships between these discharges and ENSO indices. We found that, over the period 1958–2000, ENSO exerted a significant influence on annual floods in river basins covering over a third of the world's land surface, and that its influence on annual floods has been much greater than its influence on average flows. We show that there are more areas in which annual floods intensify with La Niña and decline with El Niño than vice versa. However, we also found that in many regions the strength of the relationships between ENSO and annual floods have been non-stationary, with either strengthening or weakening trends during the study period. We discuss the implications of these findings for science and management. Given the strong relationships between ENSO and annual floods, we suggest that more research is needed to assess relationships between ENSO and flood impacts (e.g. loss of lives or economic damage). Moreover, we suggest that in those regions where useful relationships exist, this information could be combined with ongoing advances in ENSO prediction research, in order to provide year-to-year probabilistic flood risk forecasts.

  9. A 320-year long series of Danube floods in Central Hungary (Budapest and Pest County): a frequency-magnitude-seasonality overview

    NASA Astrophysics Data System (ADS)

    Kiss, Andrea; Salinas, Jose; Bloeschl, Guenter

    2015-04-01

    The present paper is based on a recently developed database including contemporary original, administrative, legal and private source materials (published and archival) as well as media reports related to the floods occurred in the town of Budapest (historical towns of Pest, Buda) and Central Hungary (historical Pest-Pilis-Solt County). As for the archival evidence, main bases of investigation are the administrative sources such as town council protocols and county meeting protocols of Budapest and historical Pest-Pilis-Solt County: in these (legal-)administrative documents damaging events (natural/environmental hazards) were systematically recorded. Moreover, other source types such as taxation-related damage accounts as well as private and official reports, letters and correspondence (published, unpublished) were also included. Concerning published evidence, a most important source is flood reports in contemporary newspapers; however, other published sources (e.g. narratives, fund raising circulars etc.; both published and unpublished) also contained useful flood-related information. Beyond providing information on the strength and weaknesses of different sources types and the temporal and spatial distribution of evidence, a general background on the contemporary environmental and hydrological/hydromorphological conditions of the study area (and its changes during and after river regulations) are also provided. However, in the presentation the main focus is on the analysis of flood rich flood poor periods of the last more than 300 years; furthermore, the seasonality distribution as well as the magnitude of Danube flood events - and their spatial differences are discussed. In case of Budapest and Central Hungary, with respect to the greatest flood events, ice jam floods played a rather significant role before river regulation works. Due to this fact the main types of flood events (including their main causes), with special emphasis on ice jam floods, are discussed separate.

  10. A Methodology to Support Decision Making in Flood Plan Mitigation

    NASA Astrophysics Data System (ADS)

    Biscarini, C.; di Francesco, S.; Manciola, P.

    2009-04-01

    The focus of the present document is on specific decision-making aspects of flood risk analysis. A flood is the result of runoff from rainfall in quantities too great to be confined in the low-water channels of streams. Little can be done to prevent a major flood, but we may be able to minimize damage within the flood plain of the river. This broad definition encompasses many possible mitigation measures. Floodplain management considers the integrated view of all engineering, nonstructural, and administrative measures for managing (minimizing) losses due to flooding on a comprehensive scale. The structural measures are the flood-control facilities designed according to flood characteristics and they include reservoirs, diversions, levees or dikes, and channel modifications. Flood-control measures that modify the damage susceptibility of floodplains are usually referred to as nonstructural measures and may require minor engineering works. On the other hand, those measures designed to modify the damage potential of permanent facilities are called non-structural and allow reducing potential damage during a flood event. Technical information is required to support the tasks of problem definition, plan formulation, and plan evaluation. The specific information needed and the related level of detail are dependent on the nature of the problem, the potential solutions, and the sensitivity of the findings to the basic information. Actions performed to set up and lay out the study are preliminary to the detailed analysis. They include: defining the study scope and detail, the field data collection, a review of previous studies and reports, and the assembly of needed maps and surveys. Risk analysis can be viewed as having many components: risk assessment, risk communication and risk management. Risk assessment comprises an analysis of the technical aspects of the problem, risk communication deals with conveying the information and risk management involves the decision process. In the present paper we propose a novel methodology for supporting the priority setting in the assessment of such issues, beyond the typical "expected value" approach. Scientific contribution and management aspects are merged to create a simplified method for plan basin implementation, based on risk and economic analyses. However, the economic evaluation is not the sole criterion for flood-damage reduction plan selection. Among the different criteria that are relevant to the decision process, safety and quality of human life, economic damage, expenses related with the chosen measures and environmental issues should play a fundamental role on the decisions made by the authorities. Some numerical indices, taking in account administrative, technical, economical and risk aspects, are defined and are combined together in a mathematical formula that defines a Priority Index (PI). In particular, the priority index defines a ranking of priority interventions, thus allowing the formulation of the investment plan. The research is mainly focused on the technical factors of risk assessment, providing quantitative and qualitative estimates of possible alternatives, containing measures of the risk associated with those alternatives. Moreover, the issues of risk management are analyzed, in particular with respect to the role of decision making in the presence of risk information. However, a great effort is devoted to make this index easy to be formulated and effective to allow a clear and transparent comparison between the alternatives. Summarizing this document describes a major- steps for incorporation of risk analysis into the decision making process: framing of the problem in terms of risk analysis, application of appropriate tools and techniques to obtain quantified results, use of the quantified results in the choice of structural and non-structural measures. In order to prove the reliability of the proposed methodology and to show how risk-based information can be incorporated into a flood analysis process, its application to some middle italy river basins is presented. The methodology assessment is performed by comparing different scenarios and showing that the optimal decision stems from a feasibility evaluation.

  11. Accounting for Rainfall Spatial Variability in Prediction of Flash Floods

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Kirstetter, P. E.; Gourley, J. J.; Hong, Y.; Vergara, H. J.

    2016-12-01

    Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 20,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. Next the model is used to predict flash flooding characteristics all over the continental U.S., specifically over regions poorly covered by hydrological observations. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).

  12. Estimated flood peak discharges on Twin, Brock, and Lightning creeks, Southwest Oklahoma City, Oklahoma, May 8, 1993

    USGS Publications Warehouse

    Tortorelli, R.L.

    1996-01-01

    The flash flood in southwestern Oklahoma City, Oklahoma, May 8, 1993, was the result of an intense 3-hour rainfall on saturated ground or impervious surfaces. The total precipitation of 5.28 inches was close to the 3-hour, 100-year frequency and produced extensive flooding. The most serious flooding was on Twin, Brock, and Lightning Creeks. Four people died in this flood. Over 1,900 structures were damaged along the 3 creeks. There were about $3 million in damages to Oklahoma City public facilities, the majority of which were in the three basins. A study was conducted to determine the magnitude of the May 8, 1993, flood peak discharge in these three creeks in southwestern Oklahoma City and compare these peaks with published flood estimates. Flood peak-discharge estimates for these creeks were determined at 11 study sites using a step-backwater analysis to match the flood water-surface profiles defined by high-water marks. The unit discharges during peak runoff ranged from 881 cubic feet per second per square mile for Lightning Creek at SW 44th Street to 3,570 cubic feet per second per square mile for Brock Creek at SW 59th Street. The ratios of the 1993 flood peak discharges to the Federal Emergency Management Agency 100-year flood peak discharges ranged from 1.25 to 3.29. The water-surface elevations ranged from 0.2 foot to 5.9 feet above the Federal Emergency Management Agency 500-year flood water-surface elevations. The very large flood peaks in these 3 small urban basins were the result of very intense rainfall in a short period of time, close to 100 percent runoff due to ground surfaces being essentially impervious, and the city streets acting as efficient conveyances to the main channels. The unit discharges compare in magnitude to other extraordinary Oklahoma urban floods.

  13. Notable local floods of 1942-43, Floods of July 18, 1942 in north-central Pennsylvania, with a section on descriptive details of the storm and floods

    USGS Publications Warehouse

    Eisenlohr, William Stewart; Stewart, J.E.

    1952-01-01

    During the night of August 4-5, 1943, a violent thunderstorm of unusual intensity occurred in parts of Braxton, Calhoun, Gilmer, Ritchie, and Wirth Counties in the Little Kanawha River Basin in central West Virginia. Precipitation amounted to as much as 15 inches in 2 hours in some sections. As a result, many small streams and a reach of the Little Kanawha River in the vicinity of Burnsville and Gilmer reached the highest stages known. Computations based on special surveys made at suitable sites on representative small streams in the areas of intense flooding indicate that peak discharges closely approach 50 percent of the Jarvis scale. Twenty-three lives were lost on the small tributaries as numerous homes were swept away by the flood, which developed with incredible rapidity during the early morning hours. Damage estimated at $1,300,000 resulted to farm buildings, crops, land, livestock, railroads, highways, and gas- and oil-producing facilities. Considerable permanent land damage resulted from erosion and deposition of sand and gravel.

  14. Floods of November 1978 to March 1979 in Arizona and west-central New Mexico

    USGS Publications Warehouse

    Aldridge, B.N.; Hales, T.A.

    1983-01-01

    Widespread rainfall of 3 to 9 inches in the mountains area of Arizona and West-Central New Mexico during December 17-20, 1978, caused maximum known discharges on the Gila River in New Mexico and on several streams in Arizona. At Phoenix, the Salt River was the highest since 1920 but was only slightly higher than the flood in March 1978. The Agua Fria River was the highest since 1919. The floods caused 12 deaths and more than $150 million in damage. Damage of $51.8 million occurred in Maricopa County, Arizona. Ten counties in Arizona and three counties in New Mexico wer declared disaster areas. Unusually high volumes of runoff occurred on the Salt, Verde, and Agua Fria Rivers upstream from reservoirs. Overflow from the reservoir systems caused flooding downstream. Storage in the reservoirs on the Salt and Verde River reduced the peak discharge of the Salt River at Phoenix from a potential of about 234,000 cubic feet per second to 126,00 cubic feet per second and greatly reduced the duration of the flood. (USGS)

  15. Floods of January and February 1980 in California

    USGS Publications Warehouse

    Wahl, Kenneth L.; Crippen, John R.; Knott, J.M.

    1980-01-01

    During January and February 1980, storms caused substantial rises in streamflow throughout much of California. In mid-January flooding occurred in the foothills of the Sierra Nevada and in the central coast area. In late January and mid-February, high floodflows in streams in coastal southern California caused much damage and several deaths. The Tijuana River in northern Baja California (Mexico) and southern San Diego County flooded many square miles of lowlands as its flow during two separate flooding episodes exceeded all records. Most reservoirs in San Diego County spilled, several for the first time since their completion. Lake Elsinore, in eastern Riverside County, caused much damage to lakeside property as it filled to an elevation not reached since 1916. The February flooding in southern California was caused by a series of storms separated by short intervals. Some peaks of record were observed, and streamflow throughout the area remained high for a relatively long period. In many streams, the volumes of sustained flow for periods of 7 and 15 consecutive days were the greatest that have occurred during the period of record.

  16. Observed and forecast flood-inundation mapping application-A pilot study of an eleven-mile reach of the White River, Indianapolis, Indiana

    USGS Publications Warehouse

    Kim, Moon H.; Morlock, Scott E.; Arihood, Leslie D.; Kiesler, James L.

    2011-01-01

    Near-real-time and forecast flood-inundation mapping products resulted from a pilot study for an 11-mile reach of the White River in Indianapolis. The study was done by the U.S. Geological Survey (USGS), Indiana Silver Jackets hazard mitigation taskforce members, the National Weather Service (NWS), the Polis Center, and Indiana University, in cooperation with the City of Indianapolis, the Indianapolis Museum of Art, the Indiana Department of Homeland Security, and the Indiana Department of Natural Resources, Division of Water. The pilot project showed that it is technically feasible to create a flood-inundation map library by means of a two-dimensional hydraulic model, use a map from the library to quickly complete a moderately detailed local flood-loss estimate, and automatically run the hydraulic model during a flood event to provide the maps and flood-damage information through a Web graphical user interface. A library of static digital flood-inundation maps was created by means of a calibrated two-dimensional hydraulic model. Estimated water-surface elevations were developed for a range of river stages referenced to a USGS streamgage and NWS flood forecast point colocated within the study reach. These maps were made available through the Internet in several formats, including geographic information system, Keyhole Markup Language, and Portable Document Format. A flood-loss estimate was completed for part of the study reach by using one of the flood-inundation maps from the static library. The Federal Emergency Management Agency natural disaster-loss estimation program HAZUS-MH, in conjunction with local building information, was used to complete a level 2 analysis of flood-loss estimation. A Service-Oriented Architecture-based dynamic flood-inundation application was developed and was designed to start automatically during a flood, obtain near real-time and forecast data (from the colocated USGS streamgage and NWS flood forecast point within the study reach), run the two-dimensional hydraulic model, and produce flood-inundation maps. The application used local building data and depth-damage curves to estimate flood losses based on the maps, and it served inundation maps and flood-loss estimates through a Web-based graphical user interface.

  17. An exploration of factors affecting the long term psychological impact and deterioration of mental health in flooded households.

    PubMed

    Lamond, Jessica Elizabeth; Joseph, Rotimi D; Proverbs, David G

    2015-07-01

    The long term psychological effect of the distress and trauma caused by the memory of damage and losses associated with flooding of communities remains an under researched impact of flooding. This is particularly important for communities that are likely to be repeatedly flooded where levels of mental health disorder will damage long term resilience to future flooding. There are a variety of factors that affect the prevalence of mental health disorders in the aftermath of flooding including pre-existing mental health, socio-economic factors and flood severity. However previous research has tended to focus on the short term impacts immediately following the flood event and much less focus has been given to the longer terms effects of flooding. Understanding of factors affecting the longer term mental health outcomes for flooded households is critical in order to support communities in improving social resilience. Hence, the aim of this study was to explore the characteristics associated with psychological distress and mental health deterioration over the longer term. The research examined responses from a postal survey of households flooded during the 2007 flood event across England. Descriptive statistics, correlation analysis and binomial logistic regression were applied to data representing household characteristics, flood event characteristics and post-flood stressors and coping strategies. These factors were related to reported measures of stress, anxiety, depression and mental health deterioration. The results showed that household income, depth of flooding; having to move out during reinstatement and mitigating actions are related to the prevalence of psycho-social symptoms in previously flooded households. In particular relocation and household income were the most predictive factors. The practical implication of these findings for recovery after flooding are: to consider the preferences of households in terms of the need to move out during restorative building works and the financial resource constraints that may lead to severe mental hardship. In addition the findings suggest that support with installing mitigation measures may lead to improved mental health outcomes for communities at risk. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Flood of May 5 and 6, 1981, Mobile, Alabama

    USGS Publications Warehouse

    Ming, C.O.; Nelson, G.H.

    1981-01-01

    Heavy and intense rainfall in the late evening and early morning hours, May 5 and 6, 1981, caused widespread flooding along streams and low-lying areas in the port city of Mobile, Ala. More than 12 inches of rain fell between 6 p.m. May 5, and 3 a.m. May 6. Damage caused by flooding was estimated by the Mobile Department of Public Works to be millions of dollars. Maximum water surface elevations on streams in the area were 2 to 3 feet higher than those that occurred during a similar flood in April 1980. The approximate extent of flooding delineated on maps using flood profiles obtained by field surveys will provide a basis for formulating effective flood plain zoning that could minimize existing and future flood problems. (USGS)

  19. Comparative Analysis of Emergency Response Operations: Haiti Earthquake in January 2010 and Pakistan’s Flood in 2010

    DTIC Science & Technology

    2011-09-01

    Earthquake, Pakistan, Flood, Emergency Response Operations, International Community, HA/DR, United Nations , FRC, NDMA , ICT 16. PRICE CODE 17. SECURITY...Registration Authority NATO North Atlantic Treaty Organization NDMA National Disaster and Management Authority NDMC National Disaster Management...complicates relief efforts. 6 NDMA Pakistan, “Pakistan Floods-Summary of Damages,” No Author. Accessed 24

  20. Flood of September 22, 1998, in Arecibo and Utuado, Puerto Rico

    USGS Publications Warehouse

    Torres-Sierra, Heriberto

    2002-01-01

    Hurricane Georges made landfall on the southeastern part of Puerto Rico during September 21, 1998. Georges, with maximum sustained winds of 185 kilometers per hour and gusts to 240 kilometers per hour, produced 24-hour total rainfall amounts of 770 millimeters on the island's mountainous interior. Severe flooding affected almost half of the island's 78 municipios during September 21-22, 1998. The most affected municipios were Adjuntas, Aguada, Aguadilla, A?asco, Arecibo, Cayey, Ciales, Comerio, Barceloneta, Dorado, Jayuya, Manati, Mayaguez, Morovis, Orocovis, Patillas, Toa Alta, Toa Baja, and Utuado. The combination of strong winds, intense rainfall and severe flooding caused widespread property damages. More than 20,000 houses were destroyed and more than 100,000 houses sustained damage. Floodwaters and landslides destroyed or damaged many bridges and roads throughout the island. Records indicate that Hurricane Georges induced flood discharges in the Rio Grande de Arecibo Basin that were the largest on record. Floodwaters inundated urban and rural areas, affecting urban subdivisions, businesses, vehicles, bridges, roads, and high-tension electric power lines. To define the extent and depth of inundation, more than 280 high-water marks were identified and surveyed in Arecibo and Utuado. In addition estimates of flood magnitude and frequency were made at selected gaging stations, and flood profiles were developed for certain stream reaches. Flooding was most severe in the towns of Arecibo and Utuado. In Arecibo, the most affected communities were the rural area of San Francisco, the urban subdivisions of Martell, Nolla, and Arecibo Gardens, and the low-lying areas of downtown Arecibo. In these areas, the water depths ranged from 0.6 to 1.8 meters. In Utuado, floodwaters from the Rio Vivi and the Rio Grande de Arecibo inundated the downtown area affecting homes, public facilities, and businesses. In the urban subdivision of Jesus Maria Lago, the depth of flooding exceeded 2.5 meters. Frequency analysis indicates that flood-peak discharges equaled or exceeded the 100-year recurrence interval at five streamflow-gaging stations in the Rio Grande de Arecibo Basin.

  1. Remote-sensing-based rapid assessment of flood crop loss to support USDA flooding decision-making

    NASA Astrophysics Data System (ADS)

    Di, L.; Yu, G.; Yang, Z.; Hipple, J.; Shrestha, R.

    2016-12-01

    Floods often cause significant crop loss in the United States. Timely and objective assessment of flood-related crop loss is very important for crop monitoring and risk management in agricultural and disaster-related decision-making in USDA. Among all flood-related information, crop yield loss is particularly important. Decision on proper mitigation, relief, and monetary compensation relies on it. Currently USDA mostly relies on field surveys to obtain crop loss information and compensate farmers' loss claim. Such methods are expensive, labor intensive, and time consumptive, especially for a large flood that affects a large geographic area. Recent studies have demonstrated that Earth observation (EO) data are useful in post-flood crop loss assessment for a large geographic area objectively, timely, accurately, and cost effectively. There are three stages of flood damage assessment, including rapid assessment, early recovery assessment, and in-depth assessment. EO-based flood assessment methods currently rely on the time-series of vegetation index to assess the yield loss. Such methods are suitable for in-depth assessment but are less suitable for rapid assessment since the after-flood vegetation index time series is not available. This presentation presents a new EO-based method for the rapid assessment of crop yield loss immediately after a flood event to support the USDA flood decision making. The method is based on the historic records of flood severity, flood duration, flood date, crop type, EO-based both before- and immediate-after-flood crop conditions, and corresponding crop yield loss. It hypotheses that a flood of same severity occurring at the same pheonological stage of a crop will cause the similar damage to the crop yield regardless the flood years. With this hypothesis, a regression-based rapid assessment algorithm can be developed by learning from historic records of flood events and corresponding crop yield loss. In this study, historic records of MODIS-based flood and vegetation products and USDA/NASS crop type and crop yield data are used to train the regression-based rapid assessment algorithm. Validation of the rapid assessment algorithm indicates it can predict the yield loss at 90% accuracy, which is accurate enough to support USDA on flood-related quick response and mitigation.

  2. risk factor Inn (INNrisk) - transdisciplinary analysis of the 2005 flood in the province of Tyrol, Austria

    NASA Astrophysics Data System (ADS)

    Kleewein, Klaus; Pfurtscheller, Clemens; Borsdorf, Axel

    2010-05-01

    The transdisciplinary project INNrisk, in collaboration with public risk and disaster management, investigates the severe floods of 22nd and 23rd of August, 2005, and their effects within the federal province of Tyrol. The inundation and accompanying processes (e.g. debris flows, log jams, underwashing of infrastructure) caused by the river Inn and its tributaries created a dangerous situation for Tyrol. The overall economic loss of direct assets is said to amount to ca. 500 million Euros. Climate change has basically been causing a statistical increase of damaging floods within the Alpine Space in recent decades while increasing vulnerability at the same time. The expansion of settlements is one factor in the threat to large numbers of people and growing economic losses. However, the disasters of the last decade provide an opportunity for analysing the flood process in terms of natural-science and geographical aspects as well as in terms of economic and statistical ones. This should lead to a better understanding of triggers and effects in those areas where humans are active and form the basis for mitigation and adaptation strategies. The results of such analyses represent valuable information for public risk and disaster management, particularly in presenting the effects on public and private households. The INNrisk project primarily aims to assess the framework conditions in systemic-legal terms and to analyse human actions during the floods in relation to various plans and the damage potentials resulting from them. The assessed losses depend to a great extent on the actions taken during the emergency and on flood operations by the public emergency management and local fire departments, which are in charge of floods and related processes in the case of Austria. Assessment will be carried out by analysing a database of series of human actions for the duration of the emergeny and increased risk. The project also strives to arrive at a macro- and mesoeconomic assessment of the damages by category (infrastructure, buildings, vehicles, etc.) and sector, as well as gauging potential positive effects on the regional economy. It can be assumed that the main beneficiaries of natural hazard processes in Alpine regions are the building and construction industry, transportation businesses and their suppliers. For this part of the project, a georeferenced database will be designed to get an idea of spatial distribution, loss patterns and local specifics compared with natural scientific parameters of the 2005 flood. An overall analysis serves to identify potential improvements within public disaster management and to sketch damage limitation strategies. The project results are of great value, not just for damage prevention measures against future Inn floods, which are likely to occur more frequently and in greater intensity as a result of global warming, but also for other rivers in the Alps. The results of this research may form the basis for developing effective adaptation strategies to climate change and the resulting potential threats to river valleys.

  3. Distribution of uncertainties at the municipality level for flood risk modelling along the river Meuse: implications for policy-making

    NASA Astrophysics Data System (ADS)

    Pirotton, Michel; Stilmant, Frédéric; Erpicum, Sébastien; Dewals, Benjamin; Archambeau, Pierre

    2016-04-01

    Flood risk modelling has been conducted for the whole course of the river Meuse in Belgium. Major cities, such as Liege (200,000 inh.) and Namur (110,000 inh.), are located in the floodplains of river Meuse. Particular attention has been paid to uncertainty analysis and its implications for decision-making. The modelling chain contains flood frequency analysis, detailed 2D hydraulic computations, damage modelling and risk calculation. The relative importance of each source of uncertainty to the overall results uncertainty has been estimated by considering several alternate options for each step of the analysis: different distributions were considered in the flood frequency analysis; the influence of modelling assumptions and boundary conditions (e.g., steady vs. unsteady) were taken into account for the hydraulic computation; two different landuse classifications and two sets of damage functions were used; the number of exceedance probabilities involved in the risk calculation (by integration of the risk-curves) was varied. In addition, the sensitivity of the results with respect to increases in flood discharges was assessed. The considered increases are consistent with a "wet" climate change scenario for the time horizons 2021-2050 and 2071-2100 (Detrembleur et al., 2015). The results of hazard computation differ significantly between the upper and lower parts of the course of river Meuse in Belgium. In the former, inundation extents grow gradually as the considered flood discharge is increased (i.e. the exceedance probability is reduced), while in the downstream part, protection structures (mainly concrete walls) prevent inundation for flood discharges corresponding to exceedance probabilities of 0.01 and above (in the present climate). For higher discharges, large inundation extents are obtained in the floodplains. The highest values of risk (mean annual damage) are obtained in the municipalities which undergo relatively frequent flooding (upper part of the river), as well as in those of the downstream part of the Meuse in which flow depths in the urbanized floodplains are particularly high when inundation occurs. This is the case of the city of Liege, as a result of a subsidence process following former mining activities. For a given climate scenario, the uncertainty ranges affecting flood risk estimates are significant; but not so much that the results for the different municipalities would overlap substantially. Therefore, these uncertainties do not hamper prioritization in terms of allocation of risk reduction measures at the municipality level. In the present climate, the uncertainties arising from flood frequency analysis have a negligible influence in the upper part of the river, while they have a considerable impact on risk modelling in the lower part, where a threshold effect was observed due to the flood protection structures (sudden transition from no inundation to massive flooding when a threshold discharge is exceeded). Varying the number of exceedance probabilities in the integration of the risk curve has different effects for different municipalities; but it does not change the ranking of the municipalities in terms of flood risk. For the other scenarios, damage estimation contributes most to the overall uncertainties. As shown by this study, the magnitude of the uncertainty and its main origin vary in space and in time. This emphasizes the paramount importance of conducting distributed uncertainty analyses. In the considered study area, prioritization of risk reduction means can be reliably performed despite the modelling uncertainties. Reference Detrembleur, S., Stilmant, F., Dewals, B., Erpicum, S., Archambeau, P., & Pirotton, M. (2015). Impacts of climate change on future flood damage on the river Meuse, with a distributed uncertainty analysis. Natural Hazards, 77(3), 1533-1549. Acknowledgement Part of this research was funded through the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. It was also supported by the NWE Interreg IVB Program.

  4. Accounting for rainfall spatial variability in the prediction of flash floods

    NASA Astrophysics Data System (ADS)

    Saharia, Manabendra; Kirstetter, Pierre-Emmanuel; Gourley, Jonathan J.; Hong, Yang; Vergara, Humberto; Flamig, Zachary L.

    2017-04-01

    Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 15,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. The database has been subjected to rigorous quality control by accounting for radar beam height and percentage snow in basins. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).

  5. Debates—Perspectives on socio-hydrology: Modeling flood risk as a public policy problem

    NASA Astrophysics Data System (ADS)

    Gober, Patricia; Wheater, Howard S.

    2015-06-01

    Socio-hydrology views human activities as endogenous to water system dynamics; it is the interaction between human and biophysical processes that threatens the viability of current water systems through positive feedbacks and unintended consequences. Di Baldassarre et al. implement socio-hydrology as a flood risk problem using the concept of social memory as a vehicle to link human perceptions to flood damage. Their mathematical model has heuristic value in comparing potential flood damages in green versus technological societies. It can also support communities in exploring the potential consequences of policy decisions and evaluating critical policy tradeoffs, for example, between flood protection and economic development. The concept of social memory does not, however, adequately capture the social processes whereby public perceptions are translated into policy action, including the pivotal role played by the media in intensifying or attenuating perceived flood risk, the success of policy entrepreneurs in keeping flood hazard on the public agenda during short windows of opportunity for policy action, and different societal approaches to managing flood risk that derive from cultural values and economic interests. We endorse the value of seeking to capture these dynamics in a simplified conceptual framework, but favor a broader conceptualization of socio-hydrology that includes a knowledge exchange component, including the way modeling insights and scientific results are communicated to floodplain managers. The social processes used to disseminate the products of socio-hydrological research are as important as the research results themselves in determining whether modeling is used for real-world decision making.

  6. Rapid Risk Evaluation (ER2) Using MS Excel Spreadsheet: a Case Study of Fredericton (new Brunswick, Canada)

    NASA Astrophysics Data System (ADS)

    McGrath, H.; Stefanakis, E.; Nastev, M.

    2016-06-01

    Conventional knowledge of the flood hazard alone (extent and frequency) is not sufficient for informed decision-making. The public safety community needs tools and guidance to adequately undertake flood hazard risk assessment in order to estimate respective damages and social and economic losses. While many complex computer models have been developed for flood risk assessment, they require highly trained personnel to prepare the necessary input (hazard, inventory of the built environment, and vulnerabilities) and analyze model outputs. As such, tools which utilize open-source software or are built within popular desktop software programs are appealing alternatives. The recently developed Rapid Risk Evaluation (ER2) application runs scenario based loss assessment analyses in a Microsoft Excel spreadsheet. User input is limited to a handful of intuitive drop-down menus utilized to describe the building type, age, occupancy and the expected water level. In anticipation of local depth damage curves and other needed vulnerability parameters, those from the U.S. FEMA's Hazus-Flood software have been imported and temporarily accessed in conjunction with user input to display exposure and estimated economic losses related to the structure and the content of the building. Building types and occupancies representative of those most exposed to flooding in Fredericton (New Brunswick) were introduced and test flood scenarios were run. The algorithm was successfully validated against results from the Hazus-Flood model for the same building types and flood depths.

  7. Flood damage claims reveal insights about surface runoff in Switzerland

    NASA Astrophysics Data System (ADS)

    Bernet, D. B.; Prasuhn, V.; Weingartner, R.

    2015-12-01

    A few case studies in Switzerland exemplify that not only overtopping water bodies frequently cause damages to buildings. Reportedly, a large share of the total loss due to flooding in Switzerland goes back to surface runoff that is formed and is propagating outside of regular watercourses. Nevertheless, little is known about when, where and why such surface runoff occurs. The described process encompasses surface runoff formation, followed by unchannelised overland flow until a water body is reached. It is understood as a type of flash flood, has short response times and occurs diffusely in the landscape. Thus, the process is difficult to observe and study directly. A promising source indicating surface runoff indirectly are houseowners' damage claims recorded by Swiss Public Insurance Companies for Buildings (PICB). In most of Switzerland, PICB hold a monopoly position and insure (almost) every building. Consequently, PICB generally register all damages to buildings caused by an insured natural hazard (including surface runoff) within the respective zones. We have gathered gapless flood related claim records of most of all Swiss PICB covering more than the last two decades on average. Based on a subset, we have developed a methodology to differentiate claims related to surface runoff from other causes. This allows us to assess the number of claims as well as total loss related to surface runoff and compare these to the numbers of overtopping watercourses. Furthermore, with the good data coverage, we are able to analyze surface runoff related claims in space and time, from which we can infer spatial and temporal characteristics of surface runoff. Although the delivered data of PICB are heterogeneous and, consequently, time-consuming to harmonize, our first results show that exploiting these damage claim records is feasible and worthwhile to learn more about surface runoff in Switzerland.

  8. Values of Flood Hazard Mapping for Disaster Risk Assessment and Communication

    NASA Astrophysics Data System (ADS)

    Sayama, T.; Takara, K. T.

    2015-12-01

    Flood plains provide tremendous benefits for human settlements. Since olden days people have lived with floods and attempted to control them if necessary. Modern engineering works such as building embankment have enabled people to live even in flood prone areas, and over time population and economic assets have concentrated in these areas. In developing countries also, rapid land use change alters exposure and vulnerability to floods and consequently increases disaster risk. Flood hazard mapping is an essential step for any counter measures. It has various objectives including raising awareness of residents, finding effective evacuation routes and estimating potential damages through flood risk mapping. Depending on the objectives and data availability, there are also many possible approaches for hazard mapping including simulation basis, community basis and remote sensing basis. In addition to traditional paper-based hazard maps, Information and Communication Technology (ICT) promotes more interactive hazard mapping such as movable hazard map to demonstrate scenario simulations for risk communications and real-time hazard mapping for effective disaster responses and safe evacuations. This presentation first summarizes recent advancement of flood hazard mapping by focusing on Japanese experiences and other examples from Asian countries. Then it introduces a flood simulation tool suitable for hazard mapping at the river basin scale even in data limited regions. In the past few years, the tool has been practiced by local officers responsible for disaster management in Asian countries. Through the training activities of hazard mapping and risk assessment, we conduct comparative analysis to identify similarity and uniqueness of estimated economic damages depending on topographic and land use conditions.

  9. Flood Scenario Simulation and Disaster Estimation of Ba-Ma Creek Watershed in Nantou County, Taiwan

    NASA Astrophysics Data System (ADS)

    Peng, S. H.; Hsu, Y. K.

    2018-04-01

    The present study proposed several scenario simulations of flood disaster according to the historical flood event and planning requirement in Ba-Ma Creek Watershed located in Nantou County, Taiwan. The simulations were made using the FLO-2D model, a numerical model which can compute the velocity and depth of flood on a two-dimensional terrain. Meanwhile, the calculated data were utilized to estimate the possible damage incurred by the flood disaster. The results thus obtained can serve as references for disaster prevention. Moreover, the simulated results could be employed for flood disaster estimation using the method suggested by the Water Resources Agency of Taiwan. Finally, the conclusions and perspectives are presented.

  10. Medium Range Flood Forecasting for Agriculture Damage Reduction

    NASA Astrophysics Data System (ADS)

    Fakhruddin, S. H. M.

    2014-12-01

    Early warning is a key element for disaster risk reduction. In recent decades, major advancements have been made in medium range and seasonal flood forecasting. This progress provides a great opportunity to reduce agriculture damage and improve advisories for early action and planning for flood hazards. This approach can facilitate proactive rather than reactive management of the adverse consequences of floods. In the agricultural sector, for instance, farmers can take a diversity of options such as changing cropping patterns, applying fertilizer, irrigating and changing planting timing. An experimental medium range (1-10 day) flood forecasting model has been developed for Bangladesh and Thailand. It provides 51 sets of discharge ensemble forecasts of 1-10 days with significant persistence and high certainty. This type of forecast could assist farmers and other stakeholders for differential preparedness activities. These ensembles probabilistic flood forecasts have been customized based on user-needs for community-level application focused on agriculture system. The vulnerabilities of agriculture system were calculated based on exposure, sensitivity and adaptive capacity. Indicators for risk and vulnerability assessment were conducted through community consultations. The forecast lead time requirement, user-needs, impacts and management options for crops were identified through focus group discussions, informal interviews and community surveys. This paper illustrates potential applications of such ensembles for probabilistic medium range flood forecasts in a way that is not commonly practiced globally today.

  11. Estimated value of insurance premium due to Citarum River flood by using Bayesian method

    NASA Astrophysics Data System (ADS)

    Sukono; Aisah, I.; Tampubolon, Y. R. H.; Napitupulu, H.; Supian, S.; Subiyanto; Sidi, P.

    2018-03-01

    Citarum river flood in South Bandung, West Java Indonesia, often happens every year. It causes property damage, producing economic loss. The risk of loss can be mitigated by following the flood insurance program. In this paper, we discussed about the estimated value of insurance premiums due to Citarum river flood by Bayesian method. It is assumed that the risk data for flood losses follows the Pareto distribution with the right fat-tail. The estimation of distribution model parameters is done by using Bayesian method. First, parameter estimation is done with assumption that prior comes from Gamma distribution family, while observation data follow Pareto distribution. Second, flood loss data is simulated based on the probability of damage in each flood affected area. The result of the analysis shows that the estimated premium value of insurance based on pure premium principle is as follows: for the loss value of IDR 629.65 million of premium IDR 338.63 million; for a loss of IDR 584.30 million of its premium IDR 314.24 million; and the loss value of IDR 574.53 million of its premium IDR 308.95 million. The premium value estimator can be used as neither a reference in the decision of reasonable premium determination, so as not to incriminate the insured, nor it result in loss of the insurer.

  12. Usefulness and limitations of global flood risk models

    NASA Astrophysics Data System (ADS)

    Ward, Philip; Jongman, Brenden; Salamon, Peter; Simpson, Alanna; Bates, Paul; De Groeve, Tom; Muis, Sanne; Coughlan de Perez, Erin; Rudari, Roberto; Mark, Trigg; Winsemius, Hessel

    2016-04-01

    Global flood risk models are now a reality. Initially, their development was driven by a demand from users for first-order global assessments to identify risk hotspots. Relentless upward trends in flood damage over the last decade have enhanced interest in such assessments. The adoption of the Sendai Framework for Disaster Risk Reduction and the Warsaw International Mechanism for Loss and Damage Associated with Climate Change Impacts have made these efforts even more essential. As a result, global flood risk models are being used more and more in practice, by an increasingly large number of practitioners and decision-makers. However, they clearly have their limits compared to local models. To address these issues, a team of scientists and practitioners recently came together at the Global Flood Partnership meeting to critically assess the question 'What can('t) we do with global flood risk models?'. The results of this dialogue (Ward et al., 2013) will be presented, opening a discussion on similar broader initiatives at the science-policy interface in other natural hazards. In this contribution, examples are provided of successful applications of global flood risk models in practice (for example together with the World Bank, Red Cross, and UNISDR), and limitations and gaps between user 'wish-lists' and model capabilities are discussed. Finally, a research agenda is presented for addressing these limitations and reducing the gaps. Ward et al., 2015. Nature Climate Change, doi:10.1038/nclimate2742

  13. Floods in the Niger basin - analysis and attribution

    NASA Astrophysics Data System (ADS)

    Aich, V.; Koné, B.; Hattermann, F. F.; Müller, E. N.

    2014-08-01

    This study addresses the increasing flood risk in the Niger basin and assesses the damages that arise from flooding. Statistics from three different sources (EM-DAT, Darthmouth Flood Observatory, NatCat Munich RE) on people affected by floods show positive trends for the entire basin beginning in the 1980s. An assessment of four subregions across the Niger basin indicates even exponential trends for the Sahelian and Sudanian regions. These positive trends for flooding damage match up to a time series of annual maximum discharge (AMAX): the strongest trends in AMAX are detected in the Sahelian and Sudanian regions, where the population is also increasing the fastest and vulnerability generally appears to be very high. The joint effect of these three factors can possibly explain the exponential increase in people affected by floods in these subregions. In a second step, the changes in AMAX are attributed to changes in precipitation and land use via a data-based approach within a hypothesis-testing framework. Analysis of rainfall, heavy precipitation and the runoff coefficient shows a coherent picture of a return to wet conditions in the basin, which we identify as the main driver of the increase in AMAX in the Niger basin. The analysis of flashiness (using the Richards-Baker Index) and the focus on the "Sahel Paradox" of the Sahelian region reveal an additional influence of land-use change, but it seems minor compared to the increase in precipitation.

  14. Ex post damage assessment: an Italian experience

    NASA Astrophysics Data System (ADS)

    Molinari, D.; Menoni, S.; Aronica, G. T.; Ballio, F.; Berni, N.; Pandolfo, C.; Stelluti, M.; Minucci, G.

    2014-04-01

    In recent years, awareness of a need for more effective disaster data collection, storage, and sharing of analyses has developed in many parts of the world. In line with this advance, Italian local authorities have expressed the need for enhanced methods and procedures for post-event damage assessment in order to obtain data that can serve numerous purposes: to create a reliable and consistent database on the basis of which damage models can be defined or validated; and to supply a comprehensive scenario of flooding impacts according to which priorities can be identified during the emergency and recovery phase, and the compensation due to citizens from insurers or local authorities can be established. This paper studies this context, and describes ongoing activities in the Umbria and Sicily regions of Italy intended to identifying new tools and procedures for flood damage data surveys and storage in the aftermath of floods. In the first part of the paper, the current procedures for data gathering in Italy are analysed. The analysis shows that the available knowledge does not enable the definition or validation of damage curves, as information is poor, fragmented, and inconsistent. A new procedure for data collection and storage is therefore proposed. The entire analysis was carried out at a local level for the residential and commercial sectors only. The objective of the next steps for the research in the short term will be (i) to extend the procedure to other types of damage, and (ii) to make the procedure operational with the Italian Civil Protection system. The long-term aim is to develop specific depth-damage curves for Italian contexts.

  15. 105. DAMAGE CONTROL CENTRAL STARBOARD LOOKING TO PORT SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    105. DAMAGE CONTROL CENTRAL - STARBOARD LOOKING TO PORT SHOWING PLOTTING BOARD, FLOODING & FIRE ALARM SYSTEMS AND DRAGE GAUGE. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  16. Unmanned Aerial Vehicle Systems for Remote Estimation of Flooded Areas Based on Complex Image Processing.

    PubMed

    Popescu, Dan; Ichim, Loretta; Stoican, Florin

    2017-02-23

    Floods are natural disasters which cause the most economic damage at the global level. Therefore, flood monitoring and damage estimation are very important for the population, authorities and insurance companies. The paper proposes an original solution, based on a hybrid network and complex image processing, to this problem. As first novelty, a multilevel system, with two components, terrestrial and aerial, was proposed and designed by the authors as support for image acquisition from a delimited region. The terrestrial component contains a Ground Control Station, as a coordinator at distance, which communicates via the internet with more Ground Data Terminals, as a fixed nodes network for data acquisition and communication. The aerial component contains mobile nodes-fixed wing type UAVs. In order to evaluate flood damage, two tasks must be accomplished by the network: area coverage and image processing. The second novelty of the paper consists of texture analysis in a deep neural network, taking into account new criteria for feature selection and patch classification. Color and spatial information extracted from chromatic co-occurrence matrix and mass fractal dimension were used as well. Finally, the experimental results in a real mission demonstrate the validity of the proposed methodologies and the performances of the algorithms.

  17. Unmanned Aerial Vehicle Systems for Remote Estimation of Flooded Areas Based on Complex Image Processing

    PubMed Central

    Popescu, Dan; Ichim, Loretta; Stoican, Florin

    2017-01-01

    Floods are natural disasters which cause the most economic damage at the global level. Therefore, flood monitoring and damage estimation are very important for the population, authorities and insurance companies. The paper proposes an original solution, based on a hybrid network and complex image processing, to this problem. As first novelty, a multilevel system, with two components, terrestrial and aerial, was proposed and designed by the authors as support for image acquisition from a delimited region. The terrestrial component contains a Ground Control Station, as a coordinator at distance, which communicates via the internet with more Ground Data Terminals, as a fixed nodes network for data acquisition and communication. The aerial component contains mobile nodes—fixed wing type UAVs. In order to evaluate flood damage, two tasks must be accomplished by the network: area coverage and image processing. The second novelty of the paper consists of texture analysis in a deep neural network, taking into account new criteria for feature selection and patch classification. Color and spatial information extracted from chromatic co-occurrence matrix and mass fractal dimension were used as well. Finally, the experimental results in a real mission demonstrate the validity of the proposed methodologies and the performances of the algorithms. PMID:28241479

  18. Evaluation methodology for flood damage reduction by preliminary water release from hydroelectric dams

    NASA Astrophysics Data System (ADS)

    Ando, T.; Kawasaki, A.; Koike, T.

    2017-12-01

    IPCC AR5 (2014) reported that rainfall in the middle latitudes of the Northern Hemisphere has been increasing since 1901, and it is claimed that warmer climate will increase the risk of floods. In contrast, world water demand is forecasted to exceed a sustainable supply by 40 percent by 2030. In order to avoid this expectable water shortage, securing new water resources has become an utmost challenge. However, flood risk prevention and the secure of water resources are contradictory. To solve this problem, we can use existing hydroelectric dams not only as energy resources but also for flood control. However, in case of Japan, hydroelectric dams take no responsibility for it, and benefits have not been discussed accrued by controlling flood by hydroelectric dams, namely by using preliminary water release from them. Therefore, our paper proposes methodology for assessing those benefits. This methodology has three stages as shown in Fig. 1. First, RRI model is used to model flood events, taking account of the probability of rainfall. Second, flood damage is calculated using assets in inundation areas multiplied by the inundation depths generated by that RRI model. Third, the losses stemming from preliminary water release are calculated, and adding them to flood damage, overall losses are calculated. We can evaluate the benefits by changing the volume of preliminary release. As a result, shown in Fig. 2, the use of hydroelectric dams to control flooding creates 20 billion Yen benefits, in the probability of three-day-ahead rainfall prediction of the assumed maximum rainfall in Oi River, in the Shizuoka Pref. of Japan. As the third priority in the Sendai Framework for Disaster Risk Reduction 2015-2030, `investing in disaster risk reduction for resilience - public and private investment in disaster risk prevention and reduction through structural and non-structural measures' was adopted. The accuracy of rainfall prediction is the key factor in maximizing the benefits. Therefore, if the accrued 20 billion Yen benefits by adopting this evaluation methodology are invested in improving rainfall prediction, the accuracy of the forecasts will increase and so will the benefits. This positive feedback loop will benefit society. The results of this study may stimulate further discussion on the role of hydroelectric dams in flood control.

  19. Investigation of Flood Risk Assessment in Inaccessible Regions using Multiple Remote Sensing and Geographic Information Systems

    NASA Astrophysics Data System (ADS)

    Lim, J.; Lee, K. S.

    2017-12-01

    Flooding is extremely dangerous when a river overflows to inundate an urban area. From 1995 to 2016, North Korea (NK) experienced annual extensive damage to life and property almost each year due to a levee breach resulting from typhoons and heavy rainfall during the summer monsoon season. Recently, Hoeryeong City (2016) experienced heavy rainfall during typhoon Lionrock and the resulting flood killed and injured many people (68,900) and destroyed numerous buildings and settlements (11,600). The NK state media described it as the biggest national disaster since 1945. Thus, almost all annual repeat occurrences of floods in NK have had a serious impact, which makes it necessary to figure out the extent of floods in restoring the damaged environment. In addition, traditional hydrological model is impractical to delineate Flood Damaged Areas (FDAs) in NK due to the inaccessibility. Under such a situation, multiple optical Remote Sensing (RS) and radar RS along with a Geographic Information System (GIS)-based spatial analysis were utilized in this study (1) to develop modelling FDA delineation using multiple RS and GIS methods and (2) to conduct flood risk assessment in NK. Interpreting high-resolution web-based satellite imagery were also implemented to confirm the results of the study. From the study result, it was found that (1) on August 30th, 2016, an area of 117.2 km2 (8.6%) at Hoeryeong City was inundated. Most floods occurred in flat areas with a lower and middle stream order. (2) In the binary logistic regression model applied in this study, the distance from the nearest stream map and landform map variables are important factors to delineate FDAs because these two factors reflect heterogeneous mountainous NK topography. (3) Total annual flood risk of study area is estimated to be ₩454.13 million NKW ($504,417.24 USD, and ₩576.53 million SKW). The risk of the confluence of the Tumen River and Hoeryeong stream appears to be the highest. (4) High resolution satellite images can be used to confirm study results as ground truth data in this study, which shows the possibility of further application in environmental research of NK. Ultimately, this study provides recommendations to improve flood risk management in NK upon reunification.

  20. Moisture performance of insulated, raised, wood-frame floors : a study of twelve houses in southern Louisiana

    Treesearch

    Samuel V. Glass; Charles G. Carll; Jay P. Curole; Matthew D. Voitier

    2010-01-01

    In flood-prone areas, elevating a building’s floor system above the anticipated flood level can significantly limit the extent of property damage associated with flooding. In hot and humid climates, such as the Gulf Coast region, raised floor systems may, however, be at risk for seasonal moisture accumulation, as the majority of residential buildings in such climates...

  1. 33 CFR 203.15 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., after the structure has been damaged by a flood, hurricane, or coastal storm, to the level of protection... Washington, D.C. Hurricane/Shore Protection Project (HSPP). A flood control project designed and constructed... of hurricanes, tsunamis, and coastal storms. These effects are primarily to protect against wave...

  2. 33 CFR 203.83 - Additional requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... deteriorated components such as outlet structures and pipes, removal of debris, and new construction items such... furnishing flood fight assistance during an emergency. (b) Areas of minor damage, flood control works..., placing sod, or seeding completed work. (d) Adequacy of requirements of local cooperation. In determining...

  3. Guidelines for the adaptation to floods in changing climate

    NASA Astrophysics Data System (ADS)

    Doroszkiewicz, Joanna; Romanowicz, Renata J.

    2017-08-01

    A decrease of flood damages in the future requires not only adaptation to flood caused by present day climate, but also climate change effects on floods should be taken into account. The paper illustrates the need to take into account changing climate conditions in flood adaptation strategies and to apply in practice the concept of integrated water resource management (IWRM). IWRM is based on a number of policy instruments, economic instruments, political signals, and also, on the effects of climate change on floods and collaboration across national, regional and local administrative units. The guidelines for a country adaptation to floods in a changing climate are outlined. A comparison of the adaptive capacities in Poland and Norway is used to illustrate the need for the implementation of proposed guidelines to assure flood risk management under climate change in a sustainable way.

  4. Peak streamflow on selected streams in Arkansas, December 2015

    USGS Publications Warehouse

    Breaker, Brian K.

    2017-01-11

    Heavy rainfall during December 2015 resulted in flooding across parts of Arkansas; rainfall amounts were as high as 12 inches over a period from December 27, 2015, to December 29, 2015. Although precipitation accumulations were highest in northwestern Arkansas, significant flooding occurred in other parts of the State. Flood damage occurred in several counties as water levels rose in streams, and disaster declarations were declared in 32 of the 75 counties in Arkansas.Given the severity of the December 2015 flooding, the U.S. Geological Survey (USGS), in cooperation with the Federal Emergency Management Agency (FEMA), conducted a study to document the meteorological and hydrological conditions prior to and during the flood; compiled flood-peak gage heights, streamflows, and flood probabilities at USGS streamflow-gaging stations; and estimated streamflows and flood probabilities at selected ungaged locations.

  5. Flood mapping with multitemporal MODIS data

    NASA Astrophysics Data System (ADS)

    Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru

    2014-05-01

    Flood is one of the most devastating and frequent disasters resulting in loss of human life and serve damage to infrastructure and agricultural production. Flood is phenomenal in the Mekong River Delta (MRD), Vietnam. It annually lasts from July to November. Information on spatiotemporal flood dynamics is thus important for planners to devise successful strategies for flood monitoring and mitigation of its negative effects. The main objective of this study is to develop an approach for weekly mapping flood dynamics with the Moderate Resolution Imaging Spectroradiometer data in MRD using the water fraction model (WFM). The data processed for 2009 comprises three main steps: (1) data pre-processing to construct smooth time series of the difference in the values (DVLE) between land surface water index (LSWI) and enhanced vegetation index (EVI) using the empirical mode decomposition (EMD), (2) flood derivation using WFM, and (3) accuracy assessment. The mapping results were compared with the ground reference data, which were constructed from Envisat Advanced Synthetic Aperture Radar (ASAR) data. As several error sources, including mixed-pixel problems and low-resolution bias between the mapping results and ground reference data, could lower the level of classification accuracy, the comparisons indicated satisfactory results with the overall accuracy of 80.5% and Kappa coefficient of 0.61, respectively. These results were reaffirmed by a close correlation between the MODIS-derived flood area and that of the ground reference map at the provincial level, with the correlation coefficients (R2) of 0.93. Considering the importance of remote sensing for monitoring floods and mitigating the damage caused by floods to crops and infrastructure, this study eventually leads to the realization of the value of using time-series MODIS DVLE data for weekly flood monitoring in MRD with the aid of EMD and WFM. Such an approach that could provide quantitative information on spatiotemporal flood dynamics for monitoring purposes was completely transferable to other regions in the world.

  6. Summary of floods in the United States during 1963

    USGS Publications Warehouse

    Rostvedt, J.O.; ,

    1968-01-01

    This report describes the most outstanding floods in the United States during 1963. The three most destructive floods occurred in March from Alabama to West Virginia and Ohio, in June in Nebraska, and in August in Buffalo, N.Y.Widespread disastrous floods struck the western slopes of the Appalachian Mountains from Alabama to West Virginia and Ohio as a result of three storms moving over the area during March 4-19. Precipitation during the first storm period, March 4-6, caused some major stream overflows and produced conditions favorable for high runoff from subsequent rainfall. Heavy rainfall on March 11-13 produced record-breaking floods on many streams in Tennessee, Kentucky, Virginia, and West Virginia. Noteworthy floods occurred in the bordering States of Alabama, Georgia, North Carolina, and Ohio. The third storm on If arch 16-19 was .significant because it prolonged the period of flooding and produced high-volume runoff in some areas. Twenty-six lives were lost, and more than 30,000 persons were forced from their homes. Damage to highways, railroads municipal and private property amounted to approximately \\$98 million.Floods of June 24 in small basins in east-central Nebraska were the most severe known in the area. Discharges in many streams greatly exceeded the 50-year flood. Twenty-five cities and villages and more than 600 families suffered property loss. Three lives were lost. Property loss was about \\$13 million.On July 29 the most severe rainstorm in 18 years occurred in western New York. On August 7, rains of near-record magnitude again fell over western New York, and record intensities were recorded in Buffalo for 1-, 2-, and 6-hour storms. The resulting floods on Scajaquada Creek were the highest recorded in a short period of record, and flood damage in Buffalo was estimated at \\$35 million.In addition to the three floods mentioned above, 21 others of lesser magnitude are considered important enough to be included in this annual summary.

  7. Coastal Floods: Urban Planning as a Resilience System

    NASA Astrophysics Data System (ADS)

    Diez Gonzalez, J. J.; Esteban, M. D.; Monnot, J. V.; López Gutiérrez, J. S.; Negro Valdecantos, V.; Calderón, E. J.; Márquez Paniagua, P.; Silvestre, J. M.

    2012-04-01

    Despite some research efforts can be found across the literature, FRe system (Flood resilient system) is still a vaguely defined concept. Therefore, a comprehensive presentation of existing FRe systems would provide valuable contribution in order to illuminate objects laying behind this term. A systematical literature review scanning existing FRe objects will submerge us in a melting pot involving an extremely wide and heterogeneous range of elements like land planning, opening barriers, river channeling, rain forecasting… Carrying out an analyze of the resulting matter and focusing on the nature and spatial range of application of each element, a FRe objects comprehensive typology will be sorted out, leading into the end to a better understanding of the ways human societies can improve their resilience against floods. Coastal areas have been characterized by an urban expansion due mainly to the increase and displacement of the population, being this process highly increasing during the last century. On the other hand, climate has been changing leading to the increase of coastal floods, through both sea level rise and several meteorological phenomena accentuation. And also, other longer term local/regional coastal changes, most occasionally favoring floods, interfere leading to more frequent and intense flood risks and damages. As "living with floods" became an objective in many coastal cities, the previous clas-sification will be put into practice focusing on one particular FRe system scale: Urban Flood Resilience. This resilience can be achieved by means of planning procedures and building infrastructures, but in many cases these measures cannot be enough, having to be complemented with different technologies and systems. With suitable applications, Flood Resilience Systems substantially reduce damages, costs and health impacts associated with flood hazards. The importance of the urban planning as a Flood Resilience System in coastal areas will be analyzed in the research project FP7 - SMARTEST by means of different cases study: cold drop floods (Valencia 1776, 1957 and 1982; and Murcia, 1879 and 1997), hurricanes on Caribbean and western North-Atlantic areas, or to typhoons.

  8. An evaluation of Computational Fluid dynamics model for flood risk analysis

    NASA Astrophysics Data System (ADS)

    Di Francesco, Silvia; Biscarini, Chiara; Montesarchio, Valeria

    2014-05-01

    This work presents an analysis of the hydrological-hydraulic engineering requisites for Risk evaluation and efficient flood damage reduction plans. Most of the research efforts have been dedicated to the scientific and technical aspects of risk assessment, providing estimates of possible alternatives and of the risk associated. In the decision making process for mitigation plan, the contribute of scientist is crucial, due to the fact that Risk-Damage analysis is based on evaluation of flow field ,of Hydraulic Risk and on economical and societal considerations. The present paper will focus on the first part of process, the mathematical modelling of flood events which is the base for all further considerations. The evaluation of potential catastrophic damage consequent to a flood event and in particular to dam failure requires modelling of the flood with sufficient detail so to capture the spatial and temporal evolutions of the event, as well of the velocity field. Thus, the selection of an appropriate mathematical model to correctly simulate flood routing is an essential step. In this work we present the application of two 3D Computational fluid dynamics models to a synthetic and real case study in order to evaluate the correct evolution of flow field and the associated flood Risk . The first model is based on a opensource CFD platform called openFoam. Water flow is schematized with a classical continuum approach based on Navier-Stokes equation coupled with Volume of fluid (VOF) method to take in account the multiphase character of river bottom-water- air systems. The second model instead is based on the Lattice Boltzmann method, an innovative numerical fluid dynamics scheme based on Boltzmann's kinetic equation that represents the flow dynamics at the macroscopic level by incorporating a microscopic kinetic approach. Fluid is seen as composed by particles that can move and collide among them. Simulation results from both models are promising and congruent to experimental results available in literature, thought the LBM model requires less computational effort respect to the NS one.

  9. Revisiting the 1993 historical extreme precipitation and damaging flood event in Central Nepal

    NASA Astrophysics Data System (ADS)

    Marahatta, S.; Adhikari, L.; Pokharel, B.

    2017-12-01

    Nepal is ranked the fourth most climate-vulnerable country in the world and it is prone to different weather-related hazards including droughts, floods, and landslides [Wang et al., 2013; Gillies et al., 2013]. Although extremely vulnerable to extreme weather events, there are no extreme weather warning system established to inform public in Nepal. Nepal has witnessed frequent drought and flood events, however, the extreme precipitation that occurred on 19-20 July 1993 created a devastating flood and landslide making it the worst weather disaster in the history of Nepal. During the second week of July, Nepal and northern India experienced abnormal dry condition due to the shifting of the monsoon trough to central India. The dry weather changed to wet when monsoon trough moved northward towards foothills of the Himalayas. Around the same period, a low pressure center was located over the south-central Nepal. The surface low was supported by the mid-, upper-level shortwave and cyclonic vorticity. A meso-scale convective system created record breaking one day rainfall (540 mm) in the region. The torrential rain impacted the major hydropower reservoir, Bagmati barrage in Karmaiya and triggered many landslides and flash floods. The region had the largest hydropower (Kulekhani hydropower, 92 MW) of the country at that time and the storm event deposited extremely large amount of sediments that reduced one-fourth (4.8 million m3) of reservoir dead storage (12 million m3). The 1-in-1000 years flood damaged the newly constructed barrage and took more than 700 lives. Major highways were damaged cutting off supply of daily needed goods, including food and gas, in the capital city, Kathmandu, for more than a month. In this presentation, the meteorological conditions of the extreme event will be diagnosed and the impact of the sedimentation due to the flood on Kulekhani reservoir and hydropower generation will be discussed.

  10. Flood Hazard Mapping Assessment for Lebanon

    NASA Astrophysics Data System (ADS)

    Abdallah, Chadi; Darwich, Talal; Hamze, Mouin; Zaarour, Nathalie

    2014-05-01

    Of all natural disasters, floods affect the greatest number of people worldwide and have the greatest potential to cause damage. In fact, floods are responsible for over one third of people affected by natural disasters; almost 190 million people in more than 90 countries are exposed to catastrophic floods every year. Nowadays, with the emerging global warming phenomenon, this number is expected to increase, therefore, flood prediction and prevention has become a necessity in many places around the globe to decrease damages caused by flooding. Available evidence hints at an increasing frequency of flooding disasters being witnessed in the last 25 years in Lebanon. The consequences of such events are tragic including annual financial losses of around 15 million dollars. In this work, a hydrologic-hydraulic modeling framework for flood hazard mapping over Lebanon covering 19 watershed was introduced. Several empirical, statistical and stochastic methods to calculate the flood magnitude and its related return periods, where rainfall and river gauge data are neither continuous nor available on a long term basis with an absence of proper river sections that under estimate flows during flood events. TRMM weather satellite information, automated drainage networks, curve numbers and other geometrical characteristics for each basin was prepared using WMS-software and then exported into HMS files to implement the hydrologic modeling (rainfall-runoff) for single designed storm of uniformly distributed depth along each basin. The obtained flow hydrographs were implemented in the hydraulic model (HEC-RAS) where relative water surface profiles are calculated and flood plains are delineated. The model was calibrated using the last flood event of January 2013, field investigation, and high resolution satellite images. Flow results proved to have an accuracy ranging between 83-87% when compared to the computed statistical and stochastic methods. Results included the generation of recurrence flood plain maps of 10, 50 & 100 years intensity maps along with flood hazard maps for each watershed. It is of utmost significance for this study to be effective that the produced flood intensity and hazard maps will be made available to decision-makers, planners and relevant community stakeholders.

  11. Multi-source data fusion and modeling to assess and communicate complex flood dynamics to support decision-making for downstream areas of dams: The 2011 hurricane irene and schoharie creek floods, NY

    NASA Astrophysics Data System (ADS)

    Renschler, Chris S.; Wang, Zhihao

    2017-10-01

    In light of climate and land use change, stakeholders around the world are interested in assessing historic and likely future flood dynamics and flood extents for decision-making in watersheds with dams as well as limited availability of stream gages and costly technical resources. This research evaluates an assessment and communication approach of combining GIS, hydraulic modeling based on latest remote sensing and topographic imagery by comparing the results to an actual flood event and available stream gages. On August 28th 2011, floods caused by Hurricane Irene swept through a large rural area in New York State, leaving thousands of people homeless, devastating towns and cities. Damage was widespread though the estimated and actual floods inundation and associated return period were still unclear since the flooding was artificially increased by flood water release due to fear of a dam break. This research uses the stream section right below the dam between two stream gages North Blenheim and Breakabeen along Schoharie Creek as a case study site to validate the approach. The data fusion approach uses a GIS, commonly available data sources, the hydraulic model HEC-RAS as well as airborne LiDAR data that were collected two days after the flood event (Aug 30, 2011). The aerial imagery of the airborne survey depicts a low flow event as well as the evidence of the record flood such as debris and other signs of damage to validate the hydrologic simulation results with the available stream gauges. Model results were also compared to the official Federal Emergency Management Agency (FEMA) flood scenarios to determine the actual flood return period of the event. The dynamic of the flood levels was then used to visualize the flood and the actual loss of the Old Blenheim Bridge using Google Sketchup. Integration of multi-source data, cross-validation and visualization provides new ways to utilize pre- and post-event remote sensing imagery and hydrologic models to better understand and communicate the complex spatial-temporal dynamics, return periods and potential/actual consequences to decision-makers and the local population.

  12. Development of an anti-flood board to protect the interiors and exteriors of the infrastructure

    NASA Astrophysics Data System (ADS)

    Petru, Michal; Srb, Pavel; Sevcik, Ladislav; Martinec, Tomas; Kulhavy, Petr

    2018-06-01

    This article deals with the development of an anti-flood board to protect the interior and exterior of various infrastructures, such a houses, cottages or industrial buildings. It was designed prototypes and assembled numerical simulations. In Central Europe and in particular in the Czech Republic, floods are an integral part of the natural water cycle and cause great loss of life and great property damage. The development of new types of mobile anti-flood boards is very important as the design solution is developed for flood protection with regard to minimizing weight, cost of production, easy manipulation, simplicity and speed of installation.

  13. Handbook for Federal Insurance Administration: Flood-insurance studies

    USGS Publications Warehouse

    Kennedy, E.J.

    1973-01-01

    A flood insurance study, made for the Federal Insurance Administration (FIA) of the Department of Housing and Urban Development (HUD) is an analysis of flood inundation frequency for all flood plains within the corporate limits of the community being studied. The study is an application of surveying, hydrology, and hydraulics to determine flood insurance premium rates. Much of the surveying needed can be done by private firms, either by ground methods or photogrammetry. Contracts are needed to let large surveys but purchase orders can be used for small ones. Photogrammetric stereo models, digital regression models, and step-backwater models are needed for most studies. Damage survey data are not involved.

  14. Evaluation of Flooding Risk and Engineering Protection Against Floods for Ulan-Ude

    NASA Astrophysics Data System (ADS)

    Borisova, T. A.

    2017-11-01

    The report presents the results of the study on analysis and risk assessment in relation to floods for Ulan-Ude and provides the developed recommendations of the activities for engineering protection of the population and economic installations. The current situation is reviewed and the results of the site survey are shown to identify the challenges and areas of negative water influence along with the existing security system. The report presents a summary of floods and index risk assessment. The articles describes the scope of eventual flooding, underflooding and enumerates the economic installations inside the urban areas’ research-based zones of flooding at the rated levels of water to identify the likeliness of exceedance. The assessment of damage from flood equal to 1% is shown.

  15. Propagation and composition of the flood wave on the upper Mississippi River, 1993

    USGS Publications Warehouse

    Moody, John A.

    1995-01-01

    During spring and summer 1993, record flooding inundated much of the upper Mississippi River Basin. The magnitude of the damages-in terms of property, disrupted business, and personal trauma was unmatched by any other flood disaster in United States history. Property damage alone is expected to exceed $10 billion. Damaged highways and submerged roads disrupted overland transportation throughout the flooded region. The Mississippi and the Missouri Rivers were closed to navigation before, during, and after the flooding. Millions of acres of productive farmland remained under water for weeks during the growing season. Rills and gullies in many tilled fields are the result of the severe erosion that occurred throughout the Midwestern United States farmbelt. The hydrologic effects of extended rainfall throughout the upper Midwestern United States were severe and widespread. The banks and channels of many rivers were severely eroded, and sediment was deposited over large areas of the basin's flood plain. Record flows submerged many areas that had not been affected by previous floods. Industrial and agricultural areas were inundated, which caused concern about the transport and fate of industrial chemicals, sewage effluent, and agricultural chemicals in the floodwaters. The extent and duration of the flooding caused numerous levees to fail. One failed levee on the Raccoon River in Des Moines, Iowa, led to flooding of the city's water treatment plant. As a result, the city was without drinking water for 19 days.As the Nation's principal water-science agency, the U.S. Geological Survey (USGS) is in a unique position to provide an immediate assessment of some of the hydrological effects of the 1993 flood. The USGS maintains a hydrologic data network and conducts extensive water-resources investigations nationwide. Long-term data from this network and information on local and regional hydrology provide the basis for identifying and documenting the effects of the flooding . During the flood, the USGS provided continuous streamflow and related information to the National Weather Service (NWS), the U.S. Army Corps of Engineers, the Federal Emergency Management Agency (FEMA), and many State and local agencies as part of its role to provide basic information on the Nation's surface- and ground-water resources at thousands of locations across the United States. The NWS has used the data in forecasting floods and issuing flood warnings. The data have been used by the Corps of Engineers to operate water diversions, dams, locks, and levees. The FEMA and many State and local emergency management agencies have used USGS hydrologic data and NWS forecasts as part of the basis of their local flood-response activities. In addition, USGS hydrologists are conducting a series of investigations to document the effects of the flooding and to improve understanding of the related processes. The major initial findings from these studies will be reported in this Circular series as results become available.U.S. Geological Survey Circular 1120, Floods in the Upper Mississippi River Basin, 1993, consists of individually published chapters that will document the effects of the 1993 flooding. The series includes data and findings on the magnitude and frequency of peak discharges; precipitation; water-quality characteristics, including nutrients and man-made contaminants; transport of sediment; assessment of sediment deposited on flood plains; effects of inundation on ground-water quality; flood-discharge volume; effects of reservoir storage on flood peaks; stream-channel scour at selected bridges; extent of floodplain inundation; and documentation of geomorphologic changes.

  16. 6. 'ROCKFILLED CRIB 350 FEET LONG, REPAIRING DAMAGES CAUSED BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. 'ROCK-FILLED CRIB 350 FEET LONG, REPAIRING DAMAGES CAUSED BY FLOODS DURING SEASON OF 1927 TO THE DRY GULCH CANAL HEADING.' 1928 - Irrigation Canals in the Uinta Basin, Duchesne, Duchesne County, UT

  17. 33 CFR 203.49 - Rehabilitation of Hurricane and Shore Protection Projects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Shore Protection Projects. 203.49 Section 203.49 Navigation and Navigable Waters CORPS OF ENGINEERS... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Protection Projects. (a) Authority. The Chief of Engineers is authorized to rehabilitate any Federally...

  18. Validation of soil moisture ocean salinity (SMOS) satellite soil moisture products

    USDA-ARS?s Scientific Manuscript database

    The surface soil moisture state controls the partitioning of precipitation into infiltration and runoff. High-resolution observations of soil moisture will lead to improved flood forecasts, especially for intermediate to large watersheds where most flood damage occurs. Soil moisture is also key in d...

  19. 33 CFR 203.49 - Rehabilitation of Hurricane and Shore Protection Projects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Shore Protection Projects. 203.49 Section 203.49 Navigation and Navigable Waters CORPS OF ENGINEERS... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Protection Projects. (a) Authority. The Chief of Engineers is authorized to rehabilitate any Federally...

  20. Increasing Flood Risk due to Run-off Outflow near Estuarine City during Storm Event

    NASA Astrophysics Data System (ADS)

    Son, S.; Lee, C.; Do, K.; Jung, T.

    2017-12-01

    Tropical cyclone easily causes inundation damage to low-lying coastal area and the damage may be amplified due to tide motion, sea-level rise, riverine discharges. Specifically, typhoons are accompanied by intensive rainfall, which will of course raise the river water level and thus enhance the flooding damages. If the tidal cycle coincides the high water, flooding will be even aggravated. In the present study, we simulated storm surge motions at the coastal area considering combined effects of tidal and river discharge with aim to improve the accuracy of flooding prediction. The quasi 3-dimension ocean circulation model, Delf3D was used which solves the unsteady shallow water equation in the 2D and 3D. Since Delft3D is much applicable to accommodate the indirect flooding factors such as riverine discharge and short waves, outer-coupled modeling system was established to account for combined tide-surge-riverine discharge effects. In such integrated system, 11 tidal constituents were input as open boundary condition using TPXO 7.2 model, while the water level per unit time was preliminary calculated by HEC-HMS model and input as the upstream boundary conditions for river inside the domain. Typhoon MAEMI which attacked Masan city located at southern coast of South Korea and caused severe inundation damages in 2003 was selected for the study event. Basic information for typhoon such as path, wind speed, atmospheric pressure every 3 hours was provided by the Korea Meteorological Agency and was adopted. The simulation was implemented with tide and storm surge boundary conditions focusing on the target area, Masan, while the additional consideration on the discharge of the river inside the domain was also made. Simulated water level at the fixed location was compared to the observation for its verification and the extent of inundation areas of Masan were compared between observed and calculated. The marginal contribution of riverine discharge on the flooding area(or depth) was assessed by comparing tide-surge with tide-surge-riverine discharge simulations. Finally, the importance of the specific consideration on the riverine discharge during storm surge modeling can be addressed.

  1. Modifications of natural hazard impacts and hydrological extremes in previous centuries (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Petrucci, Olga; Pasqua, Aurora Angela; Polemio, Maurizio

    2013-04-01

    The present work is based on the use of a wide historical database concerning floods and landslides which occurred in Calabria, a region of southern Italy, since the seventeenth century, and including more than 11,000 records. This database has been built by collecting data coming from different information sources as newspapers, archives of regional and national agencies, scientific and technical reports, on-site surveys reports and information collected by interviewing both people involved and local administrators. This database has been continuously updated by both the results of local historical research and data coming from the daily survey of regional newspapers. Similarly, a wide archive of rainfall data for the same period and the same region has been implemented. In this work, basing on the abovementioned archives, a comparative analysis of floods that occurred in a regional sector over a long period and the climatic data characterizing the same period has been carried out, focusing on the climate trend and aiming to investigate the potential effect of climate variation on the damaging floods trend. The aim was to assess whether the frequency of floods is changing and, if so, whether these changes can be related to either rainfall and/or anthropogenic modifications. In order to assess anthropogenic modifications, the evolution of urbanized sectors of the study area in the last centuries has been reenacted by mean of comparisons, in GIS environment, of historical maps of different epochs. The annual variability of rainfall was discussed using an annual index. Short duration-high intensity rainfalls were characterized considering time series of annual maxima of 1, 3, 6, 12, and 24 hours and daily rainfall. The analysis indicates that, despite a rainfall trend favorable towards a reduction in flood occurrence, floods damage has not decreased. This seems to be mainly the effect of mismanagement of land use modifications. Moreover, the long historical series analyzed allowed us to individuate both the most frequently damaged elements and the frequently damaged geographical sectors of the study area, even with a further in depth on the cases involving people in urbanized sectors.

  2. A Study on the Land Use Characteristics of Urban Medium and Small stream Depending on the Width of stream

    NASA Astrophysics Data System (ADS)

    Seok, Song Young; Ho, Song Yang; Ho, Lee Jung; Moo Jong, Park

    2015-04-01

    Due to the increase of impervious layers caused by increased rainfall and urbanization which were brought about by the climate change after the late 1990s, the flood damage in urban watersheds is rising. The recent flood damage is occurring in medium and small stream rather than in large stream. Particularly, in medium stream which pass the cities, sudden flood occurs due to the short concentration of rainfall and urban areas suffer large damage, even though the flood damage is small, since residential areas and social infrastructures are concentrated. In spite of the importance of medium and small stream to pass the cities, there is no certain standard for classification of natural or urban stream and existing studies are mostly focused on the impervious area among the land use characteristics of watersheds. Most of existing river studies are based on the watershed scale, but in most urban watersheds where stream pass, urban areas are concentrated in the confluence, so urban areas only occupy less than 10% of the whole watershed and there is a high uncertainty in the classification of urban areas, based the watershed of stream. This study aims to suggest a classification standard of medium and small stream between local stream and small stream where suffer flood damage. According to the classified medium and small stream, this study analyzed the stream area to the stream width and distance using Arcgis Buffer tool, based on the stream line, not the existing watershed scale. This study then chose urban watersheds by analyzing the river area at certain intervals from the center of the chosen medium and small stream, in different ways. Among the land use characteristics in urban areas, the impervious area was applied to the selection standard of urban watersheds and the characteristics of urban watersheds were presented by calculating the ratio of the stream area to the impervious area using the Buffer tool. Acknowledgement "This research was supported by a grant [NEMA-NH-2011-45] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea." Keywords: land use, urban watershed, medium and smaill stream, impervious area

  3. Floods of January-February 1957 in southeastern Kentucky and adjacent areas

    USGS Publications Warehouse

    ,

    1964-01-01

    Heavy rains over an extensive area on January 27-February 2, caused extreme flooding in southeastern Kentucky and adjacent areas in West Virginia, Virginia, and Tennessee. Total rainfall for the storm period ranged from 6-9 inches over most of the report area and was 12? inches at the eastern end of the Virginia-Kentucky State line. The principal basins affected by the storm were those of the Big Sandy, Kentucky, Cumberland, and Tennessee Rivers. Maximum discharge of record occurred in many streams. On Levisa Fork near Grundy, Va., the peak discharge of 33,200 cfs was 50 percent greater than the previous maximum in 17 years of record and was 3.3 times the mean annual flood. The peak discharges on-tributaries of the Kentucky River and on ,the Holston and Clinch Rivers were also the greatest of record and .those on the upper Cumberland River were nearly as great as .those during the historic floods of 1918 and 1946. Total flood damage was estimated at $61 million of which $39 million was in the Big Sandy River basin (mostly in Kentucky) and $15 million was in the Kentucky River basin--$52 million of the total damage was in Kentucky.

  4. Flood on the Virgin River, January 1989, in Utah, Arizona, and Nevada

    USGS Publications Warehouse

    Carlson, D.D.; Meyer, D.F.

    1995-01-01

    The impoundment of water in Quail Creek Reservoir in Utah began in April 1985. The drainage area for the reservoir is 78.4 square miles, including Quail Creek and Leeds Creek watersheds. Water also is diverted from the Virgin River above Hurricane, Utah, to supplement the filing of the reservoir. A dike, which is one of the structures impounding water in Quail Creek Reservoir, failed on January 1, 1989. This failure resulted in the release of about 25,000 acre-feet of water into the Virgin River near Hurricane, Utah. Flooding occurred along the Virgin River flood plain in Utah, Arizona, and Nevada. The previous maximum discharge of record was exceeded at three U.S. Geological Survey streamflow-gaging stations, and the flood discharges exceeded the theoretical 100-year flood discharges. Peak discharge estimates ranged from 60,000 to 66,000 cubic feet per second at the three streamflow-gaging stations. Damage to roads, bridges, agricultural land, livestock, irrigation structures, businesses, and residences totaled more than $12 million. The greatest damage was to agricultural and public-works facilities. Washington County, which is in southwestern Utah, was declared a disaster area by President George Bush.

  5. Flood Mitigation and Response: Comparing the Great Midwest Floods of 1993 and 2008

    DTIC Science & Technology

    2010-12-01

    The Galloway Commission ranged the damage between $12 and $16 billion; however, the report admits that its numbers were premature and not all...Foundation, June 18, 2008); Wright (2000); Sharing the Challenge; Galloway , 7; Georgianne Nienaber, “Is ‘Mother Nature’ really to Blame for the...Mattoon. 24 Wright (2000), 80–83; National Flood Programs (2007), 8; Sharing the Challenge (1994); Galloway (2005), 9. Cody and Carter, 7. 11

  6. Flood risk management in Italy: challenges and opportunities for the implementation of the EU Floods Directive (2007/60/EC)

    NASA Astrophysics Data System (ADS)

    Mysiak, J.; Testella, F.; Bonaiuto, M.; Carrus, G.; De Dominicis, S.; Ganucci Cancellieri, U.; Firus, K.; Grifoni, P.

    2013-11-01

    Italy's recent history is punctuated with devastating flood disasters claiming high death toll and causing vast but underestimated economic, social and environmental damage. The responses to major flood and landslide disasters such as the Polesine (1951), Vajont (1963), Firenze (1966), Valtelina (1987), Piedmont (1994), Crotone (1996), Sarno (1998), Soverato (2000), and Piedmont (2000) events have contributed to shaping the country's flood risk governance. Insufficient resources and capacity, slow implementation of the (at that time) novel risk prevention and protection framework, embodied in the law 183/89 of 18 May 1989, increased the reliance on the response and recovery operations of the civil protection. As a result, the importance of the Civil Protection Mechanism and the relative body of norms and regulation developed rapidly in the 1990s. In the aftermath of the Sarno (1998) and Soverato (2000) disasters, the Department for Civil Protection (DCP) installed a network of advanced early warning and alerting centres, the cornerstones of Italy's preparedness for natural hazards and a best practice worth following. However, deep convective clouds, not uncommon in Italy, producing intense rainfall and rapidly developing localised floods still lead to considerable damage and loss of life that can only be reduced by stepping up the risk prevention efforts. The implementation of the EU Floods Directive (2007/60/EC) provides an opportunity to revise the model of flood risk governance and confront the shortcomings encountered during more than 20 yr of organised flood risk management. This brief communication offers joint recommendations towards this end from three projects funded by the 2nd CRUE ERA-NET (http://www.crue-eranet.net/) Funding Initiative: FREEMAN, IMRA and URFlood.

  7. Uncertainty Analysis of A Flood Risk Mapping Procedure Applied In Urban Areas

    NASA Astrophysics Data System (ADS)

    Krause, J.; Uhrich, S.; Bormann, H.; Diekkrüger, B.

    In the framework of IRMA-Sponge program the presented study was part of the joint research project FRHYMAP (flood risk and hydrological mapping). A simple con- ceptual flooding model (FLOODMAP) has been developed to simulate flooded areas besides rivers within cities. FLOODMAP requires a minimum of input data (digital el- evation model (DEM), river line, water level plain) and parameters and calculates the flood extent as well as the spatial distribution of flood depths. of course the simulated model results are affected by errors and uncertainties. Possible sources of uncertain- ties are the model structure, model parameters and input data. Thus after the model validation (comparison of simulated water to observed extent, taken from airborne pictures) the uncertainty of the essential input data set (digital elevation model) was analysed. Monte Carlo simulations were performed to assess the effect of uncertain- ties concerning the statistics of DEM quality and to derive flooding probabilities from the set of simulations. The questions concerning a minimum resolution of a DEM re- quired for flood simulation and concerning the best aggregation procedure of a given DEM was answered by comparing the results obtained using all available standard GIS aggregation procedures. Seven different aggregation procedures were applied to high resolution DEMs (1-2m) in three cities (Bonn, Cologne, Luxembourg). Basing on this analysis the effect of 'uncertain' DEM data was estimated and compared with other sources of uncertainties. Especially socio-economic information and monetary transfer functions required for a damage risk analysis show a high uncertainty. There- fore this study helps to analyse the weak points of the flood risk and damage risk assessment procedure.

  8. Integrating heterogeneous earth observation data for assessment of high-resolution inundation boundaries generated during flood emergencies.

    NASA Astrophysics Data System (ADS)

    Sava, E.; Cervone, G.; Kalyanapu, A. J.; Sampson, K. M.

    2017-12-01

    The increasing trend in flooding events, paired with rapid urbanization and an aging infrastructure is projected to enhance the risk of catastrophic losses and increase the frequency of both flash and large area floods. During such events, it is critical for decision makers and emergency responders to have access to timely actionable knowledge regarding preparedness, emergency response, and recovery before, during and after a disaster. Large volumes of data sets derived from sophisticated sensors, mobile phones, and social media feeds are increasingly being used to improve citizen services and provide clues to the best way to respond to emergencies through the use of visualization and GIS mapping. Such data, coupled with recent advancements in data fusion techniques of remote sensing with near real time heterogeneous datasets have allowed decision makers to more efficiently extract precise and relevant knowledge and better understand how damage caused by disasters have real time effects on urban population. This research assesses the feasibility of integrating multiple sources of contributed data into hydrodynamic models for flood inundation simulation and estimating damage assessment. It integrates multiple sources of high-resolution physiographic data such as satellite remote sensing imagery coupled with non-authoritative data such as Civil Air Patrol (CAP) and `during-event' social media observations of flood inundation in order to improve the identification of flood mapping. The goal is to augment remote sensing imagery with new open-source datasets to generate flood extend maps at higher temporal and spatial resolution. The proposed methodology is applied on two test cases, relative to the 2013 Boulder Colorado flood and the 2015 floods in Texas.

  9. Flood Risk Management: Exploring the Impacts of the Community Rating System Program on Poverty and Income Inequality.

    PubMed

    Noonan, Douglas S; Sadiq, Abdul-Akeem A

    2018-03-01

    Flooding remains a major problem for the United States, causing numerous deaths and damaging countless properties. To reduce the impact of flooding on communities, the U.S. government established the Community Rating System (CRS) in 1990 to reduce flood damages by incentivizing communities to engage in flood risk management initiatives that surpass those required by the National Flood Insurance Program. In return, communities enjoy discounted flood insurance premiums. Despite the fact that the CRS raises concerns about the potential for unevenly distributed impacts across different income groups, no study has examined the equity implications of the CRS. This study thus investigates the possibility of unintended consequences of the CRS by answering the question: What is the effect of the CRS on poverty and income inequality? Understanding the impacts of the CRS on poverty and income inequality is useful in fully assessing the unintended consequences of the CRS. The study estimates four fixed-effects regression models using a panel data set of neighborhood-level observations from 1970 to 2010. The results indicate that median incomes are lower in CRS communities, but rise in floodplains. Also, the CRS attracts poor residents, but relocates them away from floodplains. Additionally, the CRS attracts top earners, including in floodplains. Finally, the CRS encourages income inequality, but discourages income inequality in floodplains. A better understanding of these unintended consequences of the CRS on poverty and income inequality can help to improve the design and performance of the CRS and, ultimately, increase community resilience to flood disasters. © 2017 Society for Risk Analysis.

  10. Strong influence of El Niño Southern Oscillation on flood risk around the world

    USGS Publications Warehouse

    Ward, Philip J.; Jongman, B; Kummu, M.; Dettinger, Mike; Sperna Weiland, F.C; Winsemius, H.C

    2014-01-01

    El Niño Southern Oscillation (ENSO) is the most dominant interannual signal of climate variability and has a strong influence on climate over large parts of the world. In turn, it strongly influences many natural hazards (such as hurricanes and droughts) and their resulting socioeconomic impacts, including economic damage and loss of life. However, although ENSO is known to influence hydrology in many regions of the world, little is known about its influence on the socioeconomic impacts of floods (i.e., flood risk). To address this, we developed a modeling framework to assess ENSO’s influence on flood risk at the global scale, expressed in terms of affected population and gross domestic product and economic damages. We show that ENSO exerts strong and widespread influences on both flood hazard and risk. Reliable anomalies of flood risk exist during El Niño or La Niña years, or both, in basins spanning almost half (44%) of Earth’s land surface. Our results show that climate variability, especially from ENSO, should be incorporated into disaster-risk analyses and policies. Because ENSO has some predictive skill with lead times of several seasons, the findings suggest the possibility to develop probabilistic flood-risk projections, which could be used for improved disaster planning. The findings are also relevant in the context of climate change. If the frequency and/or magnitude of ENSO events were to change in the future, this finding could imply changes in flood-risk variations across almost half of the world’s terrestrial regions.

  11. Strong influence of El Niño Southern Oscillation on flood risk around the world

    PubMed Central

    Ward, Philip J.; Jongman, Brenden; Kummu, Matti; Dettinger, Michael D.; Sperna Weiland, Frederiek C.; Winsemius, Hessel C.

    2014-01-01

    El Niño Southern Oscillation (ENSO) is the most dominant interannual signal of climate variability and has a strong influence on climate over large parts of the world. In turn, it strongly influences many natural hazards (such as hurricanes and droughts) and their resulting socioeconomic impacts, including economic damage and loss of life. However, although ENSO is known to influence hydrology in many regions of the world, little is known about its influence on the socioeconomic impacts of floods (i.e., flood risk). To address this, we developed a modeling framework to assess ENSO’s influence on flood risk at the global scale, expressed in terms of affected population and gross domestic product and economic damages. We show that ENSO exerts strong and widespread influences on both flood hazard and risk. Reliable anomalies of flood risk exist during El Niño or La Niña years, or both, in basins spanning almost half (44%) of Earth’s land surface. Our results show that climate variability, especially from ENSO, should be incorporated into disaster-risk analyses and policies. Because ENSO has some predictive skill with lead times of several seasons, the findings suggest the possibility to develop probabilistic flood-risk projections, which could be used for improved disaster planning. The findings are also relevant in the context of climate change. If the frequency and/or magnitude of ENSO events were to change in the future, this finding could imply changes in flood-risk variations across almost half of the world’s terrestrial regions. PMID:25331867

  12. Flood risk trends in coastal watersheds in South Spain: direct and indirect impact of river regulation

    NASA Astrophysics Data System (ADS)

    Egüen, M.; Polo, M. J.; Gulliver, Z.; Contreras, E.; Aguilar, C.; Losada, M. A.

    2015-06-01

    Spain is one of the world's countries with a large number of reservoirs per inhabitant. This intense regulation of the fluvial network during the 20th century has resulted in a decrease in flood events, a higher availability of water resources, and a high development of the irrigated crop area, even in the drier regions. For decades, flood perception was reduced since the development of reservoirs protected the floodplains of river; this resulted in later occupation of soil by urban, agricultural and industrial uses. In recent years, an increasing perception of flood events is observed, associated to the higher damage associated to extreme events in the now occupied areas, especially in coastal watersheds. This work shows the change on flood risk in the coastal areas of three hydrographic basins in Andalusia (South Spain) during the reservoir expansion period: the Guadalete, Guadalquivir and Guadalhorce river basins. The results differentiate the impact of the regulation level on both the cumulative distribution functions of the fluvial discharge near the river mouth, for different time scales, and the associated damage related to the enhanced soil occupation during this period. The different impact on the final medium and long term flood risk is also assessed in terms of the storage capacity per unit area throughout the basins, the effective annual runoff/precipitation index, the frequency of sea storms, and the human factor (change in social perception of floods), for different intervals in the flood extreme regime. The implications for adaptation actions is also assessed.

  13. Cartographic evidence of the disastrous ice flood of 1809 and its aftermath (Danube River, Slovakia).

    NASA Astrophysics Data System (ADS)

    Pišút, P.

    2009-04-01

    The 18th and early 19th century river maps are important data sources for studying past landscapes. This is not only as a result of improved surveying techniques, but also because they depict landscape during probably the most important climatic and land-use changes since the Middle Ages. In this phase of the increased river activity during the last onset of the so-called Little Ice Age period, several major flood events occured. Local manuscript maps, which often depict the channel in major detail, help us to obtain a better understanding of their geomorphic and other impacts. The catastrophic ice flood, which occured on the Middle Danube river at the end of January 1809 was undoubtedly the most disastrous event of its kind in Slovakia, although it also hit a number of settlements in Lower Austria and Hungary. Several people drowned and the flood also resulted in great damage to settlements and livestock. Devastating effects of this flood particularly as to the towns of Bratislava and Komárno/Komárom were comparable with effects of disastrous floods of February 1830 in Vienna (Austria), March 1838 in Buda/Pest (Hungary) or 1845 flood in Prague (Czech Republic), respectively. In case of the present Slovakian capital Bratislava, on January 29, 1809, two ice barriers suddenly rose the water up to 10 m above the zero level and the river quickly overflowed its banks inundating the low-lying parts of the town. The flood blacked out communications with neighbouring regions. Record-breaking height of water led to breaches of the important right-bank embankment (constructed in 1770s). Through several openings water flooded the right bank, almost completely destroying the adjacent village of Petržalka/Engerau. The damage to Vienna highway levee was so massive that it only could be repaired 16 years later, in 1825-6 (although this was also due to Napoleonic wars). The flood also reactivated the Chorvátske rameno anabranch, 33 years after its abandonment. A number of local manuscript maps depict the river before and after this event. Combined with written literary reports, the maps allow us to describe the course, the devastating effects and the aftermath consequences of the 1809 flood precisely, particularly as to the territory of the city of Bratislava itself. Moreover, many of these maps comprise a wealth of information about flood in their detailed explanatory legends and remarks. The most important maps and plans are those currently deposited in the National Archives of Hungary (= maps from the collection of former Governing Council, the central supervisory authority of the Habsburgs for the Hungarian Kingdom), in the Municipial Archives of Bratislava and the Slovak National Archives, respectively. Effects of the 1809 ice flood, as evidenced by historical maps and plans, can be generally summarised as follows: a) direct destruction (by ice floes) or collapse of houses, bridges, buildings, boat mills, groynes and bank revetments b) heavy lateral erosion of the river channel during this single event (then referred to as „damage to banks") c) breaches of protective dikes d) formation of new water bodies - temporary lakes - created by spilled water on the landside of levees e) reactivation of upstream entrances of some side channels f) pronounced changes of flooplain configuration g) damage to floodplain forest. This research was supported by the Slovak Scientific Grant agency VEGA (Project N. 1/0362/09).

  14. The influence of antecedent conditions on flood risk in sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Bischiniotis, Konstantinos; van den Hurk, Bart; Jongman, Brenden; Coughlan de Perez, Erin; Veldkamp, Ted; de Moel, Hans; Aerts, Jeroen

    2018-01-01

    Most flood early warning systems have predominantly focused on forecasting floods with lead times of hours or days. However, physical processes during longer timescales can also contribute to flood generation. In this study, we follow a pragmatic approach to analyse the hydro-meteorological pre-conditions of 501 historical damaging floods from 1980 to 2010 in sub-Saharan Africa. These are separated into (a) weather timescale (0-6 days) and (b) seasonal timescale conditions (up to 6 months) before the event. The 7-day precipitation preceding a flood event (PRE7) and the standardized precipitation evapotranspiration index (SPEI) are analysed for the two timescale domains, respectively. Results indicate that high PRE7 does not always generate floods by itself. Seasonal SPEIs, which are not directly correlated with PRE7, exhibit positive (wet) values prior to most flood events across different averaging times, indicating a relationship with flooding. This paper provides evidence that bringing together weather and seasonal conditions can lead to improved flood risk preparedness.

  15. Reconstruction of the 1945 Wieringermeer Flood

    NASA Astrophysics Data System (ADS)

    Hoes, O. A. C.; Hut, R. W.; van de Giesen, N. C.; Boomgaard, M.

    2013-03-01

    The present state-of-the-art in flood risk assessment focuses on breach models, flood propagation models, and economic modelling of flood damage. However, models need to be validated with real data to avoid erroneous conclusions. Such reference data can either be historic data, or can be obtained from controlled experiments. The inundation of the Wieringermeer polder in the Netherlands in April 1945 is one of the few examples for which sufficient historical information is available. The objective of this article is to compare the flood simulation with flood data from 1945. The context, the breach growth process and the flood propagation are explained. Key findings for current flood risk management addresses the importance of the drainage canal network during the inundation of a polder, and the uncertainty that follows from not knowing the breach growth parameters. This case study shows that historical floods provide valuable data for the validation of models and reveal lessons that are applicable in current day flood risk management.

  16. Frequent floods in the European Alps coincide with cooler periods of the past 2500 years.

    PubMed

    Glur, Lukas; Wirth, Stefanie B; Büntgen, Ulf; Gilli, Adrian; Haug, Gerald H; Schär, Christoph; Beer, Jürg; Anselmetti, Flavio S

    2013-09-26

    Severe floods triggered by intense precipitation are among the most destructive natural hazards in Alpine environments, frequently causing large financial and societal damage. Potential enhanced flood occurrence due to global climate change would thus increase threat to settlements, infrastructure, and human lives in the affected regions. Yet, projections of intense precipitation exhibit major uncertainties and robust reconstructions of Alpine floods are limited to the instrumental and historical period. Here we present a 2500-year long flood reconstruction for the European Alps, based on dated sedimentary flood deposits from ten lakes in Switzerland. We show that periods with high flood frequency coincide with cool summer temperatures. This wet-cold synchronism suggests enhanced flood occurrence to be triggered by latitudinal shifts of Atlantic and Mediterranean storm tracks. This paleoclimatic perspective reveals natural analogues for varying climate conditions, and thus can contribute to a better understanding and improved projections of weather extremes under climate change.

  17. Floods of September 2010 in Southern Minnesota

    USGS Publications Warehouse

    Ellison, Christopher A.; Sanocki, Chris A.; Lorenz, David L.; Mitton, Gregory B.; Kruse, Gregory A.

    2011-01-01

    During September 22-24, 2010, heavy rainfall ranging from 3 inches to more than 10 inches caused severe flooding across southern Minnesota. The floods were exacerbated by wet antecedent conditions, where summer rainfall totals were as high as 20 inches, exceeding the historical average by more than 4 inches. Widespread flooding that occurred as a result of the heavy rainfall caused evacuations of hundreds of residents, and damages in excess of 64 million dollars to residences, businesses, and infrastructure. In all, 21 counties in southern Minnesota were declared Federal disaster areas. Peak-of-record streamflows were recorded at nine U.S. Geological Survey and three Minnesota Department of Natural Resources streamgages as a result of the heavy rainfall. Flood-peak gage heights, peak streamflows, and annual exceedance probabilities were tabulated for 27 U.S. Geological Survey and 5 Minnesota Department of Natural Resources streamgages and 5 ungaged sites. Flood-peak streamflows in 2010 had annual exceedance probabilities estimated to be less than 0.2 percent (recurrence interval greater than 500 years) at 7 streamgages and less than 1 percent (recurrence interval greater than 100 years) at 5 streamgages and 4 ungaged sites. High-water marks were identified and tabulated for the most severely affected communities of Faribault along the Cannon and Straight Rivers, Owatonna along the Straight River and Maple Creek, Pine Island along the North Branch and Middle Fork Zumbro River, and Zumbro Falls along the Zumbro River. The nearby communities of Hammond, Henderson, Millville, Oronoco, Pipestone, and Rapidan also received extensive flooding and damage but were not surveyed for high-water marks. Flood-peak inundation maps and water-surface profiles for the four most severely affected communities were constructed in a geographic information system by combining high-water-mark data with the highest resolution digital elevation model data available. The flood maps and profiles show the extent and height of flooding through the communities and can be used for flood response and recovery efforts by local, county, State, and Federal agencies.

  18. Past and present floods in South Moravia

    NASA Astrophysics Data System (ADS)

    Brázdil, Rudolf; Chromá, Kateřina; Řezníčková, Ladislava; Valášek, Hubert; Dolák, Lukáš; Stachoň, Zdeněk; Soukalová, Eva; Dobrovolný, Petr

    2015-04-01

    Floods represent the most destructive natural phenomena in the Czech Republic, often causing great material damage or loss of human life. Systematic instrumental measurements of water levels in Moravia (the eastern part of the Czech Republic) started mainly in the 1880s-1890s, while for discharges it was in the 1910s-1920s. Different documentary evidence allows extension of our knowledge about floods prior the instrumental period. The paper presents long-term flood chronologies for four South Moravian rivers: the Jihlava, the Svratka, the Dyje and the Morava. Different documentary data are used to extract floods. Taxation records are of particular importance among them. Since the mid-17th century, damage to property and land (fields, meadows, pastures or gardens) entitled farmers and landowners to request a tax relief. Related documents of this administration process kept mainly in Moravian Land Archives in Brno allow to obtain detail information about floods and their impacts. Selection of floods in the instrumental period is based on calculation of N-year return period of peak water levels and/or peak discharges for selected hydrological stations of the corresponding rivers (with return period of two years and more). Final flood chronologies combine floods derived from both documentary data and hydrological measurements. Despite greater inter-decadal variability, periods of higher flood frequency are c. 1821-1850 and 1921-1950 for all four rivers; for the Dyje and Morava rivers also 1891-1900. Flood frequency fluctuations are further compared with other Central European rivers. Uncertainties in created chronologies with respect to data and methods used for compilation of long-term series and anthropogenic changes in river catchments are discussed. The study is a part of the research project "Hydrometeorological extremes in Southern Moravia derived from documentary evidence" supported by the Grant Agency of the Czech Republic, reg. no. 13-19831S.

  19. Insights from socio-hydrology modelling on dealing with flood risk - Roles of collective memory, risk-taking attitude and trust

    NASA Astrophysics Data System (ADS)

    Viglione, Alberto; Di Baldassarre, Giuliano; Brandimarte, Luigia; Kuil, Linda; Carr, Gemma; Salinas, José Luis; Scolobig, Anna; Blöschl, Günter

    2014-10-01

    The risk coping culture of a community plays a major role in the development of urban floodplains. In this paper we analyse, in a conceptual way, the interplay of community risk coping culture, flooding damage and economic growth. We particularly focus on three aspects: (i) collective memory, i.e., the capacity of the community to keep risk awareness high; (ii) risk-taking attitude, i.e., the amount of risk the community is collectively willing to be exposed to; and (iii) trust of the community in risk reduction measures. To this end, we use a dynamic model that represents the feedback between the hydrological and social system components. Model results indicate that, on the one hand, by under perceiving the risk of flooding (because of short collective memory and too much trust in flood protection structures) in combination with a high risk-taking attitude, community development is severely limited because of high damages caused by flooding. On the other hand, overestimation of risk (long memory and lack of trust in flood protection structures) leads to lost economic opportunities and recession. There are many scenarios of favourable development resulting from a trade-off between collective memory and trust in risk reduction measures combined with a low to moderate risk-taking attitude. Interestingly, the model gives rise to situations in which the development of the community in the floodplain is path dependent, i.e., the history of flooding may lead to community growth or recession.

  20. Application of Medium and Seasonal Flood Forecasts for Agriculture Damage Assessment

    NASA Astrophysics Data System (ADS)

    Fakhruddin, Shamsul; Ballio, Francesco; Menoni, Scira

    2015-04-01

    Early warning is a key element for disaster risk reduction. In recent decades, major advancements have been made in medium range and seasonal flood forecasting. This progress provides a great opportunity to reduce agriculture damage and improve advisories for early action and planning for flood hazards. This approach can facilitate proactive rather than reactive management of the adverse consequences of floods. In the agricultural sector, for instance, farmers can take a diversity of options such as changing cropping patterns, applying fertilizer, irrigating and changing planting timing. An experimental medium range (1-10 day) and seasonal (20-25 days) flood forecasting model has been developed for Thailand and Bangladesh. It provides 51 sets of discharge ensemble forecasts of 1-10 days with significant persistence and high certainty and qualitative outlooks for 20-25 days. This type of forecast could assist farmers and other stakeholders for differential preparedness activities. These ensembles probabilistic flood forecasts have been customized based on user-needs for community-level application focused on agriculture system. The vulnerabilities of agriculture system were calculated based on exposure, sensitivity and adaptive capacity. Indicators for risk and vulnerability assessment were conducted through community consultations. The forecast lead time requirement, user-needs, impacts and management options for crops were identified through focus group discussions, informal interviews and community surveys. This paper illustrates potential applications of such ensembles for probabilistic medium range and seasonal flood forecasts in a way that is not commonly practiced globally today.

  1. What can'(t) we do with global flood risk models?

    NASA Astrophysics Data System (ADS)

    Ward, P.; Jongman, B.; Salamon, P.; Simpson, A.; Bates, P. D.; de Groeve, T.; Muis, S.; Coughlan, E.; Rudari, R.; Trigg, M. A.; Winsemius, H.

    2015-12-01

    Global flood risk models are now a reality. Initially, their development was driven by a demand from users for first-order global assessments to identify risk hotspots. Relentless upward trends in flood damage over the last decade have enhanced interest in such assessments. The adoption of the Sendai Framework for Disaster Risk Reduction and the Warsaw International Mechanism for Loss and Damage Associated with Climate Change Impacts have made these efforts even more essential. As a result, global flood risk models are being used more and more in practice, by an increasingly large number of practitioners and decision-makers. However, they clearly have their limits compared to local models. To address these issues, a team of scientists and practitioners recently came together at the Global Flood Partnership meeting to critically assess the question 'What can('t) we do with global flood risk models?'. The results of this dialogue (Ward et al., 2013) will be presented, opening a discussion on similar broader initiatives at the science-policy interface in other natural hazards. In this contribution, examples are provided of successful applications of global flood risk models in practice (for example together with the World Bank, Red Cross, and UNISDR), and limitations and gaps between user 'wish-lists' and model capabilities are discussed. Finally, a research agenda is presented for addressing these limitations and reducing the gaps. Ward, P.J. et al., 2015. Nature Climate Change, doi:10.1038/nclimate2742.

  2. 46 CFR 174.207 - Damaged stability criteria.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Permeability of spaces. The permeability of a floodable space must be as specified by Table 174.207(b) of this...) Equipped with arrangements, such as stop check-valves, to prevent progressive flooding of the spaces with... permit progressive flooding of the spaces with which they connect. (d) Buoyancy of superstructure. For...

  3. 46 CFR 174.207 - Damaged stability criteria.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Permeability of spaces. The permeability of a floodable space must be as specified by Table 174.207(b) of this...) Equipped with arrangements, such as stop check-valves, to prevent progressive flooding of the spaces with... permit progressive flooding of the spaces with which they connect. (d) Buoyancy of superstructure. For...

  4. 46 CFR 174.207 - Damaged stability criteria.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Permeability of spaces. The permeability of a floodable space must be as specified by Table 174.207(b) of this...) Equipped with arrangements, such as stop check-valves, to prevent progressive flooding of the spaces with... permit progressive flooding of the spaces with which they connect. (d) Buoyancy of superstructure. For...

  5. 46 CFR 174.207 - Damaged stability criteria.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Permeability of spaces. The permeability of a floodable space must be as specified by Table 174.207(b) of this...) Equipped with arrangements, such as stop check-valves, to prevent progressive flooding of the spaces with... permit progressive flooding of the spaces with which they connect. (d) Buoyancy of superstructure. For...

  6. Flooding and intestinal illness due to Clostridium difficile infection: a case-crossover analysis of Massachusetts data, 2003-2007

    EPA Science Inventory

    Background. Climate change has contributed to a rise in extreme weather events, including heavier rainfalls. Floods can cause water bodies to overflow, damage water treatment and drinking water infrastructure, overwhelm sewage treatment facilities, and result in discharges of un...

  7. 46 CFR 172.245 - Survival conditions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... conditions. A vessel is presumed to survive assumed damage if it meets the following conditions in the final..., and trim must be below the lower edge of an opening through which progressive flooding may take place... inches (50 mm) when the vessel is in the equilibrium position. (e) Progressive flooding. In the design...

  8. 46 CFR 172.245 - Survival conditions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... conditions. A vessel is presumed to survive assumed damage if it meets the following conditions in the final..., and trim must be below the lower edge of an opening through which progressive flooding may take place... inches (50 mm) when the vessel is in the equilibrium position. (e) Progressive flooding. In the design...

  9. 46 CFR 172.245 - Survival conditions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... conditions. A vessel is presumed to survive assumed damage if it meets the following conditions in the final..., and trim must be below the lower edge of an opening through which progressive flooding may take place... inches (50 mm) when the vessel is in the equilibrium position. (e) Progressive flooding. In the design...

  10. 30 CFR 220.011 - Schedule of allowable direct and allocable joint costs and credits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... household applicances, and purchases of insurance against damages to or loss of personal property are... approval. (h) Damages and losses to NPSL property. All costs necessary for the repair or replacement of NPSL property made necessary because of damages or losses incurred by fire, flood, storm, theft...

  11. Satellite imagery maps Hurricane Katrina-induced flooding and oil slicks

    USGS Publications Warehouse

    Rykhus, Russell P.

    2005-01-01

    Katrina also caused major damage to the region's oil and natural gas production and refining capabilities. On 2 September 2005, the Associated Press reported that Katrina had damaged 58 oil platforms, 30 of which were reported lost; one damaged platform had been blown nearly 100 km from its original location.

  12. Floods of December 1964 and January 1965 in the Far Western States; Part 1 Description

    USGS Publications Warehouse

    Waananen, A.O.; Harris, D.D.; Williams, R.C.

    1971-01-01

    The floods of December 1964 and January 1965 in the Far Western States were extreme; in many areas, the greatest in the history of recorded streamflow and substantially greater than those of December 1955. An unusually large area--Oregon, most of Idaho, northern California, southern Washington, and small areas in western and northern Nevada--was involved. It exceeded the area flooded in 1955. Outstanding features included recordbreaking peak discharges, high sediment concentrations, large sediment loads, and extensive flood damage. The loss of 47 lives and direct property damage of more than $430 million was attributable to the floods. Yet, storage in reservoirs and operation of flood-control facilities were effective in preventing far greater damages in many areas, particularly in the Central Valley in California and the Willamette River basin in Oregon. The floods were caused by three principal storms during the period December 19 to January 31. The December 19-23 storm was the greatest in overall intensity and areal extent. Crests occurred on many major streams December 23, 1964, 9 years to the day after the great flood of December 23, 1955. The January 2-7 storm produced extreme floods in some basins in California. The January 21-31 storm produced maximum stages in some streams in northeastern Oregon and southeastern Washington and a repetition of high flows in part of the Willamette River basin and in some basins in coastal Oregon. All the storms, and particularly the warm torrential rain December 21-23, reflected the combined effect of moist unstable airmasses, strong west-southwest winds, and mountain ranges oriented nearly at right angles to the flow of air. High air temperatures and strong winds associated with the storms caused melting of snow, and the meltwater augmented the rain that fell on frozen ground. The coastal areas of northern California and southern Oregon had measurable rain on as many as 50 days in December and January. A maximum precipitation of nearly 69 inches in the 2-month period was recorded in southern Oregon, and recorded runoff at several streamflow-measurement stations indicates that greater precipitation probably occurred at higher altitudes in these areas. Flood runoff in streams, not affected by regulation, exceeded any previously recorded throughout much of the area. Some streams that had particularly notable floods are: Deep and Plush Creeks in the Great Basin ix Oregon, where the maximum flows were nearly twice those of the record floods of 1963 ; Thomes Creek, a west-side Sacramento River tributary in the Central Valley, where the maximum flow was 160 percent of the record peak of 1955; Eel, Klamath, and Smith Rivers in north-coastal California, where the catastrophic peak flows were about 1-1/3 times the floods of 1955 and the legendary winter floods of 1861-62 and inundated, damaged, or destroyed nearly all communities along the main rivers; Grande Ronde River in the lower Snake River basin, where the peak discharge at La Grande was 1.6 times the previous maximum flow during 57 years of record; John Day River in the lower Columbia River basin, where the peak discharge at the McDonald Ferry gaging station exceeded the historic peak of 1894; many Willamette River tributaries, where maximum flows exceeded previous record flows; and the Rogue River in coastal Oregon, where the maximum flow of about 500,000 cfs below the Illinois River near Agness was 86,000 cfs greater than the previous maximum in a 74-year record. The partly regulated flow of the Willamette River far exceeded that in 1955. The suspended-sediment concentration and load of most streams greatly exceeded any that had been measured previously in the flood area. In Idaho, Washington, and Oregon, the ground thaw that preceded the period of high runoff resulted in conditions conducive to severe erosion of the uplands and subsequent deposition on flooded stream terraces. The greatest concentrations of suspended sedimen

  13. Point pattern analysis applied to flood and landslide damage events in Switzerland (1972-2009)

    NASA Astrophysics Data System (ADS)

    Barbería, Laura; Schulte, Lothar; Carvalho, Filipe; Peña, Juan Carlos

    2017-04-01

    Damage caused by meteorological and hydrological extreme events depends on many factors, not only on hazard, but also on exposure and vulnerability. In order to reach a better understanding of the relation of these complex factors, their spatial pattern and underlying processes, the spatial dependency between values of damage recorded at sites of different distances can be investigated by point pattern analysis. For the Swiss flood and landslide damage database (1972-2009) first steps of point pattern analysis have been carried out. The most severe events have been selected (severe, very severe and catastrophic, according to GEES classification, a total number of 784 damage points) and Ripley's K-test and L-test have been performed, amongst others. For this purpose, R's library spatstat has been used. The results confirm that the damage points present a statistically significant clustered pattern, which could be connected to prevalence of damages near watercourses and also to rainfall distribution of each event, together with other factors. On the other hand, bivariate analysis shows there is no segregated pattern depending on process type: flood/debris flow vs landslide. This close relation points to a coupling between slope and fluvial processes, connectivity between small-size and middle-size catchments and the influence of spatial distribution of precipitation, temperature (snow melt and snow line) and other predisposing factors such as soil moisture, land-cover and environmental conditions. Therefore, further studies will investigate the relationship between the spatial pattern and one or more covariates, such as elevation, distance from watercourse or land use. The final goal will be to perform a regression model to the data, so that the adjusted model predicts the intensity of the point process as a function of the above mentioned covariates.

  14. Hydrometeorological Hazards: Monitoring, Forecasting, Risk Assessment, and Socioeconomic Responses

    NASA Technical Reports Server (NTRS)

    Wu, Huan; Huang, Maoyi; Tang, Qiuhong; Kirschbaum, Dalia B.; Ward, Philip

    2017-01-01

    Hydrometeorological hazards are caused by extreme meteorological and climate events, such as floods, droughts, hurricanes,tornadoes, or landslides. They account for a dominant fraction of natural hazards and occur in all regions of the world, although the frequency and intensity of certain hazards and societies vulnerability to them differ between regions. Severe storms, strong winds, floods, and droughts develop at different spatial and temporal scales, but all can become disasters that cause significant infrastructure damage and claim hundreds of thousands of lives annually worldwide. Oftentimes, multiple hazards can occur simultaneously or trigger cascading impacts from one extreme weather event. For example, in addition to causing injuries, deaths, and material damage, a tropical storm can also result in flooding and mudslides, which can disrupt water purification and sewage disposal systems, cause overflow of toxic wastes, andincrease propagation of mosquito-borne diseases.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Huan; Huang, Maoyi; Tang, Qiuhong

    Hydrometeorological hazards are caused by extreme meteorological and climate events, such as floods, droughts, hurricanes, tornadoes, or landslides. They account for a dominant fraction of natural hazards and occur in all regions of the world, although the frequency and intensity of certain hazards, and society’s vulnerability to them, differs between regions. Severe storms, strong winds, floods and droughts develop at different spatial and temporal scales, but all can become disasters that cause significant infrastructure damage and claim hundreds of thousands of lives annually worldwide. Oftentimes, multiple hazards can occur simultaneously or trigger cascading impacts from one extreme weather event. Formore » example, in addition to causing injuries, deaths and material damage, a tropical storm can also result in flooding and mudslides, which can disrupt water purification and sewage disposal systems, cause overflow of toxic wastes, and increase propagation of mosquito-borne diseases.« less

  16. Flood of December 25, 1987, in Millington, Tennessee and vicinity

    USGS Publications Warehouse

    Lewis, James G.; Gamble, Charles R.

    1989-01-01

    Intense rainfall totaling 9.2 in. in a 12-hour period on December 24-25, 1987, and 14.8 in for the period December 24-27 caused record floods in Millington, Tennessee and vicinity. The peak discharge of Big Creek at Raleigh-Millington Road was almost twice the discharge of the 100-year flood discharge and that of Loosahatchie River near Arlington was about equal to the 50-year flood discharge. The inundated area and flood elevations are depicted on a map of Millington, Tennessee and vicinity. Water surface profiles for the peak of December 25, 1987, for Loosahatchie River, Big Creek, Royster Creek, North Fork Creek, Casper Creek, and an unnamed tributary to Big Creek are shown. Flood damages and cleanup costs for this record flood have been estimated at about $9.2 million. (USGS)

  17. [Climate changes, floods, and health consequences].

    PubMed

    Michelozzi, Paola; de' Donato, Francesca

    2014-02-01

    In the European Region, floods are the most common natural disaster, causing extensive damage and disruption. In Italy, it has been estimated that over 68% of municipalities are at high hydrogeological risk and with the recent intense rainfall events local populations have been facing severe disruptions. The health consequences of floods are wide ranging and are dependent upon the vulnerability of the environment and the local population. Health effects can be a direct or indirect consequence of flooding. The immediate health impacts of floods include drowning, heart attacks, injuries and hypothermia. The indirect effects include, injuries and infections, water-borne infectious disease, mental health problems, respiratory disease and allergies in both the medium and long term after a flood. Future efforts should be addressed to integrate health preparedness and prevention measures into emergency flood plans and hydrological warning systems.

  18. Conceptualization of a Collaborative Decision Making for Flood Disaster Management

    NASA Astrophysics Data System (ADS)

    Nur Aishah Zubir, Siti; Thiruchelvam, Sivadass; Nasharuddin Mustapha, Kamal; Che Muda, Zakaria; Ghazali, Azrul; Hakimie, Hazlinda; Razak, Normy Norfiza Abdul; Aziz Mat Isa, Abdul; Hasini, Hasril; Sahari, Khairul Salleh Mohamed; Mat Husin, Norhayati; Ezanee Rusli, Mohd; Sabri Muda, Rahsidi; Mohd Sidek, Lariyah; Basri, Hidayah; Tukiman, Izawati

    2016-03-01

    Flooding is the utmost major natural hazard in Malaysia in terms of populations affected, frequency, area extent, flood duration and social economic damage. The recent flood devastation towards the end of 2014 witnessed almost 250,000 people being displaced from eight states in Peninsular Malaysia. The affected victims required evacuation within a short period of time to the designated evacuation centres. An effective and efficient flood disaster management would assure non-futile efforts for life-saving. Effective flood disaster management requires collective and cooperative emergency teamwork from various government agencies. Intergovernmental collaborations among government agencies at different levels have become part of flood disaster management due to the need for sharing resources and coordinating efforts. Collaborative decision making during disaster is an integral element in providing prompt and effective response for evacuating the victims.

  19. Flood of June 22-24, 2006, in North-Central Ohio, With Emphasis on the Cuyahoga River Near Independence

    USGS Publications Warehouse

    Sherwood, James M.; Ebner, Andrew D.; Koltun, G.F.; Astifan, Brian M.

    2007-01-01

    Heavy rains caused severe flooding on June 22-24, 2006, and damaged approximately 4,580 homes and 48 businesses in Cuyahoga County. Damage estimates in Cuyahoga County for the two days of flooding exceed $47 million; statewide damage estimates exceed $150 million. Six counties (Cuyahoga, Erie, Huron, Lucas, Sandusky, and Stark) in northeast Ohio were declared Federal disaster areas. One death, in Lorain County, was attributed to the flooding. The peak streamflow of 25,400 cubic feet per second and corresponding peak gage height of 23.29 feet were the highest recorded at the U.S. Geological Survey (USGS) streamflow-gaging station Cuyahoga River at Independence (04208000) since the gaging station began operation in 1922, exceeding the previous peak streamflow of 24,800 cubic feet per second that occurred on January 22, 1959. An indirect calculation of the peak streamflow was made by use of a step-backwater model because all roads leading to the gaging station were inundated during the flood and field crews could not reach the station to make a direct measurement. Because of a statistically significant and persistent positive trend in the annual-peak-streamflow time series for the Cuyahoga River at Independence, a method was developed and applied to detrend the annual-peak-streamflow time series prior to the traditional log-Pearson Type III flood-frequency analysis. Based on this analysis, the recurrence interval of the computed peak streamflow was estimated to be slightly less than 100 years. Peak-gage-height data, peak-streamflow data, and recurrence-interval estimates for the June 22-24, 2006, flood are tabulated for the Cuyahoga River at Independence and 10 other USGS gaging stations in north-central Ohio. Because flooding along the Cuyahoga River near Independence and Valley View was particularly severe, a study was done to document the peak water-surface profile during the flood from approximately 2 miles downstream from the USGS streamflow-gaging station at Independence to approximately 2 miles upstream from the gaging station. High-water marks were identified and flagged in the field. Third-order-accuracy surveys were used to determine elevations of the high-water marks, and the data were tabulated and plotted.

  20. August, 2002 - floods events, affected areas revitalisation and prevention for the future in the central Bohemian region, Czech Republic

    NASA Astrophysics Data System (ADS)

    Bina, L.; Vacha, F.; Vodova, J.

    2003-04-01

    Central Bohemian Region is located in a shape of a ring surrounding the capitol of Prague. Its total territorial area is 11.014 sq.km and population of 1 130.000 inhabitants. According to EU nomenclature of regional statistical units, the Central Bohemian Region is classified as an independent NUTS II. Bohemia's biggest rivers, Vltava and Labe form the region's backbone dividing it along a north-south line, besides that there are Sazava and Berounka, the two big headwaters of Vltava, which flow through the region and there also are some cascade man made lakes and 2 important big dams - Orlik and Slapy on the Vltava River in the area of the region. Overflowing of these rivers and their feeders including cracking of high-water dams during the floods in August 2002 caused total or partial destruction or damage of more than 200 towns and villages and total losses to the extend of 450 mil. EUR. The worst impact was on damaged or destroyed human dwellings, social infrastructure (schools, kindergartens, humanitarian facilities) and technical infrastructure (roads, waterworks, power distribution). Also businesses were considerably damaged including transport terminals in the area of river ports. Flowage of Spolana Neratovice chemical works caused critical environmental havoc. Regional crisis staff with regional Governor in the lead worked continuously during the floods and a regional integrated rescue system was subordinated to it. Due to the huge extent of the floods the crisis staff coordinated its work with central bodies of state including the Government and single "power" resorts (army, interior, transport). Immediately after floods a regional - controlled management was set up including an executive body for regional revitalisation which is connected to state coordinating resort - Ministry for Local Development, EU sources and humanitarian aid. In addition to a program of regional revitalisation additional preventive flood control programs are being developed including fields of: urban planning revision, river flow measures, revision of operation mode of dams, modification of waterworks' conception in areas liable to flooding and finally a program of power sources prevention during emergency situation (this program had been started before the floods). Regional establishment puts emphasis on preparation of preventive projects and management mentioned. An international co-operation of regions affected by floods and possibly building of joint teams for prevention measures proposal would be very effective and useful.

Top