Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim
2011-01-01
Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.
NASA Astrophysics Data System (ADS)
Hudson, P.; Botzen, W. J. W.; Kreibich, H.; Bubeck, P.; Aerts, J. C. J. H.
2014-07-01
The employment of damage mitigation measures (DMMs) by individuals is an important component of integrated flood risk management. In order to promote efficient damage mitigation measures, accurate estimates of their damage mitigation potential are required. That is, for correctly assessing the damage mitigation measures' effectiveness from survey data, one needs to control for sources of bias. A biased estimate can occur if risk characteristics differ between individuals who have, or have not, implemented mitigation measures. This study removed this bias by applying an econometric evaluation technique called propensity score matching (PSM) to a survey of German households along three major rivers that were flooded in 2002, 2005, and 2006. The application of this method detected substantial overestimates of mitigation measures' effectiveness if bias is not controlled for, ranging from nearly EUR 1700 to 15 000 per measure. Bias-corrected effectiveness estimates of several mitigation measures show that these measures are still very effective since they prevent between EUR 6700 and 14 000 of flood damage per flood event. This study concludes with four main recommendations regarding how to better apply propensity score matching in future studies, and makes several policy recommendations.
NASA Astrophysics Data System (ADS)
Hudson, P.; Botzen, W. J. W.; Kreibich, H.; Bubeck, P.; Aerts, J. C. J. H.
2014-01-01
The employment of damage mitigation measures by individuals is an important component of integrated flood risk management. In order to promote efficient damage mitigation measures, accurate estimates of their damage mitigation potential are required. That is, for correctly assessing the damage mitigation measures' effectiveness from survey data, one needs to control for sources of bias. A biased estimate can occur if risk characteristics differ between individuals who have, or have not, implemented mitigation measures. This study removed this bias by applying an econometric evaluation technique called Propensity Score Matching to a survey of German households along along two major rivers major rivers that were flooded in 2002, 2005 and 2006. The application of this method detected substantial overestimates of mitigation measures' effectiveness if bias is not controlled for, ranging from nearly € 1700 to € 15 000 per measure. Bias-corrected effectiveness estimates of several mitigation measures show that these measures are still very effective since they prevent between € 6700-14 000 of flood damage. This study concludes with four main recommendations regarding how to better apply Propensity Score Matching in future studies, and makes several policy recommendations.
Hardmeyer, Kent; Spencer, Michael A
2007-04-01
This article provides an overview of the use of risk-based analysis (RBA) in flood damage assessment, and it illustrates the use of Geographic Information Systems (GIS) in identifying flood-prone areas, which can aid in flood-mitigation planning assistance. We use RBA to calculate expected annual flood damages in an urban watershed in the state of Rhode Island, USA. The method accounts for the uncertainty in the three primary relationships used in computing flood damage: (1) the probability that a given flood will produce a given amount of floodwater, (2) the probability that a given amount of floodwater will reach a certain stage or height, and (3) the probability that a certain stage of floodwater will produce a given amount of damage. A greater than 50% increase in expected annual flood damage is estimated for the future if previous development patterns continue and flood-mitigation measures are not taken. GIS is then used to create a map that shows where and how often floods might occur in the future, which can help (1) identify priority areas for flood-mitigation planning assistance and (2) disseminate information to public officials and other decision-makers.
Modelling farm vulnerability to flooding: A step toward vulnerability mitigation policies appraisal
NASA Astrophysics Data System (ADS)
Brémond, P.; Abrami, G.; Blanc, C.; Grelot, F.
2009-04-01
Recent catastrophic flood events such as Elbe in 2002 or Rhône in 2003 have shown limits of flood management policies relying on dykes protection: worsening of flood impacts downstream, increased damage by dykes rupture. Those events, among others, contributes to radical changes on the philosophy of flood prevention, with the promotion of new orientations for mitigating flood exposition. Two new trends may have a significant impact on rural areas: floodplain restoration and vulnerability mitigation. The Rhône River program, which is an contract of objectives signed between French Government and local collectivites, is highly illustrative of these new trends and their impact on agricultural sector. In this program, it appears that areas to be concerned by floodplain restoration are agricultural ones, because their supposed vulnerability to flood is expected to be less important to urban areas. As a consequence, agricultural sector is particularly concerned by planned actions on mitigation of assets vulnerability, an important part of the program (financial support of European Union of 7.5 Million euros). Mitigation of agricultural assets vulnerability reveals particularly interesting for two following reasons. Firstly, it is a way to maintain agricultural activities in floodplains yet existing, without promoting flood protection. Secondly, in case of floodplain restoration, vulnerability mitigation is a way for local authorities to compensate over-flooding impacts. In practice, local authorities may financially support farmers for implementing measures to mitigate their farm vulnerability. On the Rhône River, an important work has already been done to identify farm vulnerability to flooding, and propose measures to mitigate it. More than 3 000 farms exposed to flood risk have been identified representing 88 690 ha of agricultural areas which is estimated to generate damage between 400 and 800 Million euros depending on the season of occurrence for a catastrophic flood. In the case of farm activities, vulnerability mitigation consists in implementing measures which can be: physical (equipment or electric power system elevation), organizational (emergency or recovery plan) or financial (insurance). These measures aim at decreasing the total damage incurred by farmers in case of flooding. For instance, if equipment is elevated, it will not suffer direct damage such as degradation. As a consequence, equipment will be available to continue production or recovery tasks, thus, avoiding indirect damage such as delays, indebtedness⦠The effects of these policies on farms, in particular vulnerability mitigation cannot be appraised using current methodologies mainly because they do not consider farm as a whole and focus on direct damage at the land plot scale (loss of yield). Moreover, since vulnerability mitigation policies are quite recent, few examples of implementation exist and no feedback experience can be processed. Meanwhile, decision makers and financial actors require more justification of the efficiency of public fund by economic appraisal of the projects. On the Rhône River, decision makers asked for an economic evaluation of the program of farm vulnerability mitigation they plan to implement. This implies to identify the effects of the measures to mitigate farm vulnerability, and to classify them by comparing their efficacy (avoided damage) and their cost of implementation. In this presentation, we propose and discuss a conceptual model of vulnerability at the farm scale. The modelling, in Unified Modelling Language, enabled to represent the ties between spatial, organizational and temporal dimensions, which are central to understanding of farm vulnerability and resilience to flooding. Through this modelling, we encompass three goals: To improve the comprehension of farm vulnerability and create a framework that allow discussion with experts of different disciplines as well as with local farmers; To identify data which are needed to implement the model and to collect them, specifically using the focus group method; Based on the conceptual model, to program a mathematical model which will be used to simulate damage (direct and indirect) on farm due to flood. This last objective should enable us to appraise policy to mitigate vulnerability which is planned to be implemented on Rhône River at the individual and regional scale. Finally, we discuss the possibility to use the UML modelling to develop a multi-agent system approach which could be interesting to take into account ties between farmers (solidarity, loan of equipment) or systemic effects due to the damage incurred by economic partners (loss of market share). Keywords vulnerability, UML modelling, farming systems, flood, mitigation policy, economic valuation
Flood loss assessment in Can Tho City, Vietnam
NASA Astrophysics Data System (ADS)
Do, T. C.; Kreibich, H.
2012-04-01
Floods are recurring events in the Lower Mekong Basin resulting in loss of life and property, causing damage to agriculture and rural infrastructure, and disrupting social and economic activities. Flood management and mitigation has become a priority issue at the national and regional levels. Besides, it is expected that large areas of the Mekong delta, the Red River delta and the central coast will be flooded by sea-level rise due to climate change. Can Tho City is ranked under the five most flood-tide-influenced cities of Vietnam. It is the biggest city in the Mekong delta and it is located near the Hau river. Like other region of the Mekong delta, Can Tho suffers due to floods from upstream and flood tides from the sea. In the flood season large rural areas of the city are flooded, particularly during tidal days. Flood risk management policy includes preparative measures for living with floods and to minimise the damage caused by floods as well as to take advantage of floods for sustainable development. An intensive literature review, including administrative reports as well as expert interviews have been undertaken to gain more insight into flood characteristics, their consequences and risk mitigation. Therefore, flood damaging processes and trends have been reviewed for Can Tho City and the Mekong Basin in Vietnam. Additionally, suitable flood damage estimation methodologies have been collected as important input for flood risk analyses. On this basis it has been investigated which flood risk mitigation and management strategies promise to be effective in Can Tho City, Vietnam.
Strategically placing green infrastructure: cost-effective land conservation in the floodplain.
Kousky, Carolyn; Olmstead, Sheila M; Walls, Margaret A; Macauley, Molly
2013-04-16
Green infrastructure approaches have attracted increased attention from local governments as a way to lower flood risk and provide an array of other environmental services. The peer-reviewed literature, however, offers few estimates of the economic impacts of such approaches at the watershed scale. We estimate the avoided flood damages and the costs of preventing development of floodplain parcels in the East River Watershed of Wisconsin's Lower Fox River Basin. Results suggest that the costs of preventing conversion of all projected floodplain development would exceed the flood damage mitigation benefits by a substantial margin. However, targeting of investments to high-benefit, low-cost parcels can reverse this equation, generating net benefits. The analysis demonstrates how any flood-prone community can use a geographic-information-based model to estimate the flood damage reduction benefits of green infrastructure, compare them to the costs, and target investments to design cost-effective nonstructural flood damage mitigation policies.
Geo-infrastructure damage assessment, repair and mitigation strategies.
DOT National Transportation Integrated Search
2013-09-01
The 2011 Missouri River flooding caused significant damage to many geo-infrastructure systems including levees, bridge : abutments/foundations, paved and unpaved roadways, culverts, and embankment slopes in western Iowa. The flooding resulted in : cl...
DOT National Transportation Integrated Search
2013-09-01
The 2011 Missouri river flooding caused damage to many geoinfrastructure : systems including levees, bridge abutments/foundations, : paved and unpaved roadways, culverts, and embankment slopes in : western Iowa. The total reported direct cost to repa...
NASA Astrophysics Data System (ADS)
Albano, Raffaele; Sole, Aurelia; Mirauda, Domenica; Adamowski, Jan
2016-10-01
Large debris, including vehicles parked along floodplains, can cause severe damage and significant loss of life during urban area flash-floods. In this study, the authors validated and applied the Smoothed Particle Hydrodynamics (SPH) model, developed in Amicarelli et al. (2015), which reproduces in 3D the dynamics of rigid bodies driven by free surface flows, to the design of flood mitigation measures. To validate the model, the authors compared the model's predictions to the results of an experimental setup, involving a dam breach that strikes two fixed obstacles and three transportable floating bodies. Given the accuracy of the results, in terms of water depth over time and the time history of the bodies' movements, the SPH model explored in this study was used to analyse the mitigation efficiency of a proposed structural intervention - the use of small barriers (groynes) to prevent the transport of floating bodies. Different groynes configurations were examined to identify the most appropriate design and layout for urban area flash-flood damage mitigation. The authors found that groynes positioned upstream and downstream of each floating body can be effective as a risk mitigation measure for damage resulting from their movement.
Flood damage: a model for consistent, complete and multipurpose scenarios
NASA Astrophysics Data System (ADS)
Menoni, Scira; Molinari, Daniela; Ballio, Francesco; Minucci, Guido; Mejri, Ouejdane; Atun, Funda; Berni, Nicola; Pandolfo, Claudia
2016-12-01
Effective flood risk mitigation requires the impacts of flood events to be much better and more reliably known than is currently the case. Available post-flood damage assessments usually supply only a partial vision of the consequences of the floods as they typically respond to the specific needs of a particular stakeholder. Consequently, they generally focus (i) on particular items at risk, (ii) on a certain time window after the occurrence of the flood, (iii) on a specific scale of analysis or (iv) on the analysis of damage only, without an investigation of damage mechanisms and root causes. This paper responds to the necessity of a more integrated interpretation of flood events as the base to address the variety of needs arising after a disaster. In particular, a model is supplied to develop multipurpose complete event scenarios. The model organizes available information after the event according to five logical axes. This way post-flood damage assessments can be developed that (i) are multisectoral, (ii) consider physical as well as functional and systemic damage, (iii) address the spatial scales that are relevant for the event at stake depending on the type of damage that has to be analyzed, i.e., direct, functional and systemic, (iv) consider the temporal evolution of damage and finally (v) allow damage mechanisms and root causes to be understood. All the above features are key for the multi-usability of resulting flood scenarios. The model allows, on the one hand, the rationalization of efforts currently implemented in ex post damage assessments, also with the objective of better programming financial resources that will be needed for these types of events in the future. On the other hand, integrated interpretations of flood events are fundamental to adapting and optimizing flood mitigation strategies on the basis of thorough forensic investigation of each event, as corroborated by the implementation of the model in a case study.
Economic valuation of flood mitigation services: A case study from the Otter Creek, VT.
NASA Astrophysics Data System (ADS)
Galford, G. L.; Ricketts, T.; Bryan, K. L.; ONeil-Dunne, J.; Polasky, S.
2014-12-01
The ecosystem services provided by wetlands are widely recognized but difficult to quantify. In particular, estimating the effect of landcover and land use on downstream flood outcomes remains challenging, but is increasingly important in light of climate change predictions of increased precipitation in many areas. Economic valuation can help incorporate ecosystem services into decisions and enable communities to plan for climate and flood resiliency. Here we estimate the economic value of Otter Creek wetlands for Middlebury, VT in mitigating the flood that followed Tropical Storm Irene, as well as for ten historic floods. Observationally, hydrographs above and below the wetlands in the case of each storm indicated the wetlands functioned as a temporary reservoir, slowing the delivery of water to Middlebury. We compare observed floods, based on Middlebury's hydrograph, with simulated floods for scenarios without wetlands. To simulate these "without wetlands" scenarios, we assume the same volume of water was delivered to Middlebury, but in a shorter time pulse similar to a hydrograph upstream of the wetlands. For scenarios with and without wetlands, we map the spatial extent of flooding using LiDAR digital elevation data. We then estimate flood depth at each affected building, and calculate monetary losses as a function of the flood depth and house value using established depth damage relationships. For example, we expect damages equal to 20% of the houses value for a flood depth of two feet in a two-story home with a basement. We define the value of flood mitigation services as the difference in damages between the with and without wetlands scenario, and find that the Otter Creek wetlands reduced flood damage in Middlebury by 88% following Hurricane Irene. Using the 10 additional historic floods, we estimate an ongoing mean value of $400,000 in avoided damages per year. Economic impacts of this magnitude stress the importance of wetland conservation and warrant the consideration of ecosystem services in land use decisions. Our study indicates that here and elsewhere, green infrastructure may have to potential to increase the resilience of communities to projected changes in climate.
Evaluation of urban flood damages in climate and land use changes: Case Studies from Southeast Asia
NASA Astrophysics Data System (ADS)
Kefi, M.; Binaya, M. K.; Kumar, P.; Fukushi, K.
2017-12-01
Urbanization, changes in land use and global warming increase the threat of natural disasters such as flooding. In recent decades, it was observed a rise of intensity and frequency of flood events. The exposure both of people and the national economy to flood hazards is amplified and can induce serious economic and social damages. For this reason, local governments adopted several strategies to cope with flood risk in urban areas in particular, but a better comprehension of the flood hazard factors may enhance the efficiency of mitigating measures overall. For this research, a spatial analysis is applied to estimate future direct flood damage for 2030 in three Southeast Asian megacities: Jakarta (Indonesia), Metro-Manila (Philippines) and Hanoi (Vietnam). This comprehensive method combined flood characteristics (flood depth) obtained from flood simulation using FLO-2D, land use generated from supervised classification and remote sensing products, property value of affected buildings and flood damage rate derived from flood depth function. This function is established based on field surveys with local people affected by past flood events. Additionally, two scenarios were analyzed to simulate the future conditions. The first one is related to climate change and it is based on several General Circulation Models (GCMs). However, the second one is establish to point out the effect of adaptation strategies. The findings shows that the climate change combined with the expansion of built-up areas increase the vulnerability of urban areas to flooding and the economic damage. About 16%, 8% and 19% of flood inundation areas are expected to increase respectively in Metro-Manila, Jakarta and Hanoi. However, appropriate flood control measures can be helpful to reduce the impact of natural disaster. Furthermore, flood damage maps are generated at a large scale, which can be helpful to local stakeholders when prioritizing their mitigation strategies on urban disaster resilience.
Prediction and mitigation of scour and scour damage to Vermont bridges.
DOT National Transportation Integrated Search
2017-02-20
Over 300 Vermont bridges were damaged in the 2011 Tropical Storm Irene and many experienced significant scour. Successfully mitigating bridge scour in future flooding events depends on our ability to reliably estimate scour potential, design safe and...
Damage-reducing measures to manage flood risks in a changing climate
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Bubeck, Philip; Van Vliet, Mathijs; De Moel, Hans
2014-05-01
Damage due to floods has increased during the last few decades, and further increases are expected in several regions due to climate change and a growing vulnerability. To address the projected increase in flood risk, a combination of structural and non-structural flood risk mitigation measures is considered as a promising adaptation strategy. Such a combination takes into account that flood defence systems may fail, and prepare for unexpected crisis situations via land-use planning, building construction, evacuation and disaster response. Non-structural flood risk mitigation measures like shielding with water shutters or sand bags, building fortification or safeguarding of hazardous substances are often voluntary: they demand self-dependent action by the population at risk (Bubeck et al. 2012; 2013). It is believed that these measures are especially effective in areas with frequent flood events and low flood water levels, but some types of measures showed a significant damage-reducing effect also during extreme flood events, such as the Elbe River flood in August 2002 in Germany (Kreibich et al. 2005; 2011). Despite the growing importance of damage-reducing measures, information is still scarce about factors that motivate people to undertake such measures, the state of implementation of various non-structural measures in different countries and their damage reducing effects. Thus, we collected information and undertook an international review about this topic in the framework of the Dutch KfC project "Climate proof flood risk management". The contribution will present an overview about the available information on damage-reducing measures and draw conclusions for practical flood risk management in a changing climate. References: Bubeck, P., Botzen, W. J. W., Suu, L. T. T., Aerts, J. C. J. H. (2012): Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam. Journal of Flood Risk Management, 5, 4, 295-302 Bubeck, P., Botzen, W. J. W., Kreibich, H., Aerts, J. C. J. H. (2013) Detailed insights into the influence of flood-coping appraisals on mitigation behaviour. Global Environmental Change. DOI:10.1016/j.gloenvcha.2013.05.009. Kreibich, H., Thieken, A. H., Petrow, T., Müller, M., Merz, B. (2005): Flood loss reduction of private households due to building precautionary measures - Lessons Learned from the Elbe flood in August 2002. NHESS, 5, 1, 117-126. Kreibich, H., Christenberger, S., Schwarze, R. (2011) Economic motivation of households to undertake private precautionary measures against floods. NHESS, 11, 2, 309-321.
Approach for Assessing Direct Flood Damages
NASA Astrophysics Data System (ADS)
Gaňová, Lenka; Zeleňáková, Martina; Słyś, Daniel; Purcz, Pavol
2014-11-01
This article presents a methodological approach to flood direct tangible damage - damage to assets and direct intangible damage - environmental damage and loss of life assessment. The assessment of flood risk is an essential part of the risk management approach, which is the conceptual basis for the EU directive 2007/60/ES on the assessment and management of flood risk. The purpose of this directive is to establish a framework for the assessment and management of flood risk, aiming at the reduction of the adverse consequences for human health, the environment, cultural heritage and economic activity associated with flood in the community. Overall, an accurate estimation of negative effects on assets, environment and people is important in order to be able to determine the economy, environmental and social flood risk level in a system and the effects of risk mitigation measures.
Identifying the impact of the built environment on flood damage in Texas.
Brody, Samuel D; Zahran, Sammy; Highfield, Wesley E; Grover, Himanshu; Vedlitz, Arnold
2008-03-01
Floods continue to pose the greatest threat to the property and safety of human communities among all natural hazards in the United States. This study examines the relationship between the built environment and flood impacts in Texas, which consistently sustains the most damage from flooding of any other state in the country. Specifically, we calculate property damage resulting from 423 flood events between 1997 and 2001 at the county level. We identify the effect of several built environment measures, including wetland alteration, impervious surface, and dams on reported property damage while controlling for biophysical and socio-economic characteristics. Statistical results suggest that naturally occurring wetlands play a particularly important role in mitigating flood damage. These findings provide guidance to planners and flood managers on how to alleviate most effectively the costly impacts of foods at the community level.
Kick, Edward L; Fraser, James C; Fulkerson, Gregory M; McKinney, Laura A; De Vries, Daniel H
2011-07-01
Of all natural disasters, flooding causes the greatest amount of economic and social damage. The United States' Federal Emergency Management Agency (FEMA) uses a number of hazard mitigation grant programmes for flood victims, including mitigation offers to relocate permanently repetitive flood loss victims. This study examines factors that help to explain the degree of difficulty repetitive flood loss victims experience when they make decisions about relocating permanently after multiple flood losses. Data are drawn from interviews with FEMA officials and a survey of flood victims from eight repetitive flooding sites. The qualitative and quantitative results show the importance of rational choices by flood victims in their mitigation decisions, as they relate to financial variables, perceptions of future risk, attachments to home and community, and the relationships between repetitive flood loss victims and the local flood management officials who help them. The results offer evidence to suggest the value of a more community-system approach to FEMA relocation practices. © 2011 The Author(s). Disasters © Overseas Development Institute, 2011.
NASA Astrophysics Data System (ADS)
Laudan, Jonas; Rözer, Viktor; Sieg, Tobias; Vogel, Kristin; Thieken, Annegret H.
2017-12-01
Flash floods are caused by intense rainfall events and represent an insufficiently understood phenomenon in Germany. As a result of higher precipitation intensities, flash floods might occur more frequently in future. In combination with changing land use patterns and urbanisation, damage mitigation, insurance and risk management in flash-flood-prone regions are becoming increasingly important. However, a better understanding of damage caused by flash floods requires ex post collection of relevant but yet sparsely available information for research. At the end of May 2016, very high and concentrated rainfall intensities led to severe flash floods in several southern German municipalities. The small town of Braunsbach stood as a prime example of the devastating potential of such events. Eight to ten days after the flash flood event, damage assessment and data collection were conducted in Braunsbach by investigating all affected buildings and their surroundings. To record and store the data on site, the open-source software bundle KoBoCollect was used as an efficient and easy way to gather information. Since the damage driving factors of flash floods are expected to differ from those of riverine flooding, a post-hoc data analysis was performed, aiming to identify the influence of flood processes and building attributes on damage grades, which reflect the extent of structural damage. Data analyses include the application of random forest, a random general linear model and multinomial logistic regression as well as the construction of a local impact map to reveal influences on the damage grades. Further, a Spearman's Rho correlation matrix was calculated. The results reveal that the damage driving factors of flash floods differ from those of riverine floods to a certain extent. The exposition of a building in flow direction shows an especially strong correlation with the damage grade and has a high predictive power within the constructed damage models. Additionally, the results suggest that building materials as well as various building aspects, such as the existence of a shop window and the surroundings, might have an effect on the resulting damage. To verify and confirm the outcomes as well as to support future mitigation strategies, risk management and planning, more comprehensive and systematic data collection is necessary.
NASA Astrophysics Data System (ADS)
'Ainullotfi, A. A.; Ibrahim, A. L.; Masron, T.
2014-02-01
This study is conducted to establish a community based flood management system that is integrated with remote sensing technique. To understand local knowledge, the demographic of the local society is obtained by using the survey approach. The local authorities are approached first to obtain information regarding the society in the study areas such as the population, the gender and the tabulation of settlement. The information about age, religion, ethnic, occupation, years of experience facing flood in the area, are recorded to understand more on how the local knowledge emerges. Then geographic data is obtained such as rainfall data, land use, land elevation, river discharge data. This information is used to establish a hydrological model of flood in the study area. Analysis were made from the survey approach to understand the pattern of society and how they react to floods while the analysis of geographic data is used to analyse the water extent and damage done by the flood. The final result of this research is to produce a flood mitigation method with a community based framework in the state of Kelantan. With the flood mitigation that involves the community's understanding towards flood also the techniques to forecast heavy rainfall and flood occurrence using remote sensing, it is hope that it could reduce the casualties and damage that might cause to the society and infrastructures in the study area.
Future property damage from flooding: sensitivities to economy and climate change
Liu, Jing; Hertel, Thomas; Diffenbaugh, Noah; ...
2015-08-09
Using a unique dataset for Indiana counties during the period 1995-2012, we estimate the effects of flood hazard, asset exposure, and social vulnerability on property damage. This relationship then is combined with the expected level of future flood risks to project property damage from flooding in 2030 under various scenarios. We compare these scenario projections to identify which risk management strategy offers the greatest potential to mitigate flooding loss. Results show that by 2030, county level flooding hazard measured by extreme flow volume and frequency will increase by an average of 16.2% and 7.4%, respectively. The total increase in propertymore » damages projected under different model specifications range from 13.3% to 20.8%. Across models future damages consistently exhibit the highest sensitivity to future increases in asset exposure, reinforcing the importance of non-structural measures in managing floodplain development.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-12
... assist the community to understand the National Flood Insurance Program's (NFIP's) requirements, and implement effective flood loss reductions measures. Communities can achieve cost savings through flood mitigation actions by way of insurance premium discounts and reduced property damage. Affected Public: State...
Flood damage in Italy: towards an assessment model of reconstruction costs
NASA Astrophysics Data System (ADS)
Sterlacchini, Simone; Zazzeri, Marco; Genovese, Elisabetta; Modica, Marco; Zoboli, Roberto
2016-04-01
Recent decades in Italy have seen a very rapid expansion of urbanisation in terms of physical assets, while demographics have remained stable. Both the characteristics of Italian soil and anthropic development, along with repeated global climatic stress, have made the country vulnerable to floods, the intensity of which is increasingly alarming. The combination of these trends will contribute to large financial losses due to property damage in the absence of specific mitigation strategies. The present study focuses on the province of Sondrio in Northern Italy (area of about 3,200 km²), which is home to more than 180,000 inhabitants and the population is growing slightly. It is clearly a hot spot for flood exposure, as it is primarily a mountainous area where floods and flash floods hit frequently. The model we use for assessing potential flood damage determines risk scenarios by overlaying flood hazard maps and economic asset data. In Italy, hazard maps are provided by Regional Authorities through the Hydrogeological System Management Plan (PAI) based on EU Flood Directive guidelines. The PAI in the study area includes both the large plain and the secondary river system and considers three hazard scenarios of Low, Medium and High Frequency associated with return periods of 20, 200 and 500 years and related water levels. By an overlay of PAI maps and residential areas, visualized on a GIS, we determine which existing built-up areas are at risk for flood according to each scenario. Then we investigate the value of physical assets potentially affected by floods in terms of market values, using the database of the Italian Property Market Observatory (OMI), and in terms of reconstruction costs, by considering synthetic cost indexes of predominant building types (from census information) and PAI water height. This study illustrates a methodology to assess flood damage in urban settlements and aims to determine general guidelines that can be extended throughout Italy. The final objective will be to analyse how the loss prospective can change when mitigation measures, including actions to reduce the flood hazard and strategies to prevent potential consequences, are implemented. Flood impacts and the corresponding value of mitigation measures will be assessed by means of a cost-benefit analysis in accordance with the EU Floods Directive.
NASA Astrophysics Data System (ADS)
Youngseok, Song; Moojong, Park; JungHo, Lee; HeeSup, Lee
2013-04-01
As extreme floods occur frequently in recent years due to global climate changes, an in sudden local flooding of great volume and short duration is becoming the significant danger and loss of life and property in the Korean Peninsula as well as most parts of the world. The desire for living without hazardous damages grows these days, the city strategy to make the safer community has become an issue. Previously most of flood prevention efforts have been made for relatively large watersheds near to channel flow. However, as economical development and the expansion of city near medium and small stream, human casualty and property by flood occurs frequently. Therefore, to reduce the damage of human lives and property by flood, we develop an assessment method for flood warning trigger rainfall considering urban effect. Considering complex land use, HEC-HMS is used for rural area and SWMM is adopted for sewer networks runoff. And relationship between runoff and stream water level, HEC-RAS is accompanied with runoff results. Proposed flood warning trigger rainfall assessment method shows good agreement with gauged data and could be used for another case to mitigate damage. Acknowledgement: "This research was supported by a grant [NEMA-NH-2011-45] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea." Keyword: HEC-HMS, HEC-RAS, critical precipitation, medium and small stream
Recent changes in flood damage in the United States from observations and ACME model
NASA Astrophysics Data System (ADS)
Leng, G.; Leung, L. R.
2017-12-01
Despite efforts to mitigate flood hazards in flood-prone areas, survey- and report-based flood databases show that flood damage has increased and emerged as one of the most costly disaster in the United States since the 1990s. Understanding the mechanism driving the changes in flood damage is therefore critical for reducing flood risk. In this study, we first conduct a comprehensive analysis of the changing characteristics of flood damage at local, state and country level. Results show a significant increasing trend in the number of flood hazards, causing economic losses of up to $7 billion per year. The ratio of flood events that caused tangible economical cost to the total flood events has exhibited a non-significant increasing trend before 2007 followed by a significant decrease, indicating a changing vulnerability to floods. Analysis also reveals distinct spatial and temporal patterns in the threshold intensity of flood hazards with tangible economical cost. To understand the mechanism behind the increasing flood damage, we develop a flood damage economic model coupled with the integrated hydrological modeling system of ACME that features a river routing model with an inundation parameterization and a water use and regulation model. The model is evaluated over the country against historical records. Several numerical experiments are then designed to explore the mechanisms behind the recent changes in flood damage from the perspective of flood hazard, exposure and vulnerability, which constitute flood damage. The role of human activities such as reservoir operations and water use in modifying regional floods are also explored using the new tool, with the goal of improving understanding and modeling of vulnerability to flood hazards.
Aligning Natural Resource Conservation and Flood Hazard Mitigation in California
Calil, Juliano; Beck, Michael W.; Gleason, Mary; Merrifield, Matthew; Klausmeyer, Kirk; Newkirk, Sarah
2015-01-01
Flooding is the most common and damaging of all natural disasters in the United States, and was a factor in almost all declared disasters in U.S. history. Direct flood losses in the U.S. in 2011 totaled $8.41 billion and flood damage has also been on the rise globally over the past century. The National Flood Insurance Program paid out more than $38 billion in claims since its inception in 1968, more than a third of which has gone to the one percent of policies that experienced multiple losses and are classified as “repetitive loss.” During the same period, the loss of coastal wetlands and other natural habitat has continued, and funds for conservation and restoration of these habitats are very limited. This study demonstrates that flood losses could be mitigated through action that meets both flood risk reduction and conservation objectives. We found that there are at least 11,243km2 of land in coastal California, which is both flood-prone and has natural resource conservation value, and where a property/structure buyout and habitat restoration project could meet multiple objectives. For example, our results show that in Sonoma County, the extent of land that meets these criteria is 564km2. Further, we explore flood mitigation grant programs that can be a significant source of funds to such projects. We demonstrate that government funded buyouts followed by restoration of targeted lands can support social, environmental, and economic objectives: reduction of flood exposure, restoration of natural resources, and efficient use of limited governmental funds. PMID:26200353
Aligning Natural Resource Conservation and Flood Hazard Mitigation in California.
Calil, Juliano; Beck, Michael W; Gleason, Mary; Merrifield, Matthew; Klausmeyer, Kirk; Newkirk, Sarah
2015-01-01
Flooding is the most common and damaging of all natural disasters in the United States, and was a factor in almost all declared disasters in U.S. Direct flood losses in the U.S. in 2011 totaled $8.41 billion and flood damage has also been on the rise globally over the past century. The National Flood Insurance Program paid out more than $38 billion in claims since its inception in 1968, more than a third of which has gone to the one percent of policies that experienced multiple losses and are classified as "repetitive loss." During the same period, the loss of coastal wetlands and other natural habitat has continued, and funds for conservation and restoration of these habitats are very limited. This study demonstrates that flood losses could be mitigated through action that meets both flood risk reduction and conservation objectives. We found that there are at least 11,243km2 of land in coastal California, which is both flood-prone and has natural resource conservation value, and where a property/structure buyout and habitat restoration project could meet multiple objectives. For example, our results show that in Sonoma County, the extent of land that meets these criteria is 564km2. Further, we explore flood mitigation grant programs that can be a significant source of funds to such projects. We demonstrate that government funded buyouts followed by restoration of targeted lands can support social, environmental, and economic objectives: reduction of flood exposure, restoration of natural resources, and efficient use of limited governmental funds.
The development of flood map in Malaysia
NASA Astrophysics Data System (ADS)
Zakaria, Siti Fairus; Zin, Rosli Mohamad; Mohamad, Ismail; Balubaid, Saeed; Mydin, Shaik Hussein; MDR, E. M. Roodienyanto
2017-11-01
In Malaysia, flash floods are common occurrences throughout the year in flood prone areas. In terms of flood extent, flash floods affect smaller areas but because of its tendency to occur in densely urbanized areas, the value of damaged property is high and disruption to traffic flow and businesses are substantial. However, in river floods especially the river floods of Kelantan and Pahang, the flood extent is widespread and can extend over 1,000 square kilometers. Although the value of property and density of affected population is lower, the damage inflicted by these floods can also be high because the area affected is large. In order to combat these floods, various flood mitigation measures have been carried out. Structural flood mitigation alone can only provide protection levels from 10 to 100 years Average Recurrence Intervals (ARI). One of the economically effective non-structural approaches in flood mitigation and flood management is using a geospatial technology which involves flood forecasting and warning services to the flood prone areas. This approach which involves the use of Geographical Information Flood Forecasting system also includes the generation of a series of flood maps. There are three types of flood maps namely Flood Hazard Map, Flood Risk Map and Flood Evacuation Map. Flood Hazard Map is used to determine areas susceptible to flooding when discharge from a stream exceeds the bank-full stage. Early warnings of incoming flood events will enable the flood victims to prepare themselves before flooding occurs. Properties and life's can be saved by keeping their movable properties above the flood levels and if necessary, an early evacuation from the area. With respect to flood fighting, an early warning with reference through a series of flood maps including flood hazard map, flood risk map and flood evacuation map of the approaching flood should be able to alert the organization in charge of the flood fighting actions and the authority to undertake the necessary decisions, and the general public to be aware of the impending danger. However this paper will only discuss on the generations of Flood Hazard Maps and the use of Flood Risk Map and Flood Evacuation Map by using geospatial data.
A review of risk perceptions and other factors that influence flood mitigation behavior.
Bubeck, P; Botzen, W J W; Aerts, J C J H
2012-09-01
In flood risk management, a shift can be observed toward more integrated approaches that increasingly address the role of private households in implementing flood damage mitigation measures. This has resulted in a growing number of studies into the supposed positive relationship between individual flood risk perceptions and mitigation behavior. Our literature review shows, however, that, actually, this relationship is hardly observed in empirical studies. Two arguments are provided as an explanation. First, on the basis of protection motivation theory, a theoretical framework is discussed suggesting that individuals' high-risk perceptions need to be accompanied by coping appraisal to result in a protective response. Second, it is pointed out that possible feedback from already-adopted mitigation measures on risk perceptions has hardly been considered by current studies. In addition, we also provide a review of factors that drive precautionary behavior other than risk perceptions. It is found that factors such as coping appraisal are consistently related to mitigation behavior. We conclude, therefore, that the current focus on risk perceptions as a means to explain and promote private flood mitigation behavior is not supported on either theoretical or empirical grounds. © 2012 Society for Risk Analysis.
Scour damage to Vermont bridges and scour monitoring.
DOT National Transportation Integrated Search
2015-06-01
Scour is by far the primary cause of bridge failures in the United States. Regionally, the : vulnerability of bridges to flood damage became evident from the damage seen to Vermont : bridges in the 2011 Tropical Storm Irene. Successfully mitigating s...
NASA Astrophysics Data System (ADS)
Wobus, Cameron; Gutmann, Ethan; Jones, Russell; Rissing, Matthew; Mizukami, Naoki; Lorie, Mark; Mahoney, Hardee; Wood, Andrew W.; Mills, David; Martinich, Jeremy
2017-12-01
A growing body of work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus potentially increasing flood damages in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) to estimate changes in the frequency of modeled 1 % annual exceedance probability (1 % AEP, or 100-year) flood events at 57 116 stream reaches across the contiguous United States (CONUS). We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations and trajectories of future damages that vary substantially depending on the greenhouse gas (GHG) emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches USD 4 billion per year by 2100 (in undiscounted 2014 dollars), suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long term in terms of reduced flood damages. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages on a national scale. Our approach relies on a series of simplifications that could ultimately affect damage estimates (e.g., use of statistical downscaling, reliance on a nationwide hydrologic model, and linking damage estimates only to 1 % AEP floods). Although future work is needed to test the sensitivity of our results to these methodological choices, our results indicate that monetary damages from inland flooding could be significantly reduced through substantial GHG mitigation.
How to reduce the vulnerability of properties threatened by flood?
NASA Astrophysics Data System (ADS)
Vinet, Freddy; Leone, Frederic; Pelletier, Hugo; Queral, Fanny
2010-05-01
Over the last 20 or 30 years, increasing flood damage has compelled stakeholders to reconsider flood prevention. Indeed, the increase in damage emphasizes the failure of the current flood management policies based on river channel management instead of the mitigation of the flood risk. In the aftermath of the recent disasters in France and Europe, national and local authorities fostered an increasing number of initiatives geared towards reducing risks and rectifying the way of managing flood risks. All experts are now convinced that we must reduce risk through the mitigation of vulnerability. In this purpose, the French government and some river basin authorities try to develop programmes and laws intended to reduce the vulnerability of flood-prone buildings, mostly by retrofitting them. Through the results of field studies conducted in France, this presentation focuses on pros and cons of retrofitting. As of now, if many assessment of the vulnerability of buildings have been conducted, only a few huge retrofitting programmes have actually been implemented. Many bottlenecks emerge when implementing concrete measures. These difficulties include technical problems, cost, and the reluctance of many property owners... On the long run, retrofitting may be an efficient way to prevent damage to buildings threatened by floodwater. However current programmes fail to address the specificities of the local context in which such actions are implemented, e.g. accurate appraisal of flooding conditions, awareness of risk, vulnerability of people... The key is to involve all local actors including people threatened by flooding rather than to impose general and inappropriate measures.
NASA Astrophysics Data System (ADS)
Wobus, C. W.; Gutmann, E. D.; Jones, R.; Rissing, M.; Mizukami, N.; Lorie, M.; Mahoney, H.; Wood, A.; Mills, D.; Martinich, J.
2017-12-01
A growing body of recent work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus increasing monetary damages from flooding in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) to estimate changes in the frequency of modeled 1% annual exceedance probability flood events at 57,116 locations across the contiguous United States (CONUS). We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century, under two greenhouse gas (GHG) emissions scenarios. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations, and trajectories of future damages that vary substantially depending on the GHG emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches $4 billion per year by 2100 (in undiscounted 2014 dollars), suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long-term in terms of reduced flood risk. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages at a national scale. Our approach relies on a series of simplifications that could ultimately affect damage estimates (e.g., use of statistical downscaling, reliance on a nationwide hydrologic model, and linking damage estimates only to 1% AEP floods). Although future work is needed to test the sensitivity of our results to these methodological choices, our results suggest that monetary damages from inland flooding could be substantially reduced through more aggressive GHG mitigation policies.
Isla Hispaniola: A trans-boundary flood risk mitigation plan
NASA Astrophysics Data System (ADS)
Brandimarte, Luigia; Brath, Armando; Castellarin, Attilio; Baldassarre, Giuliano Di
It is sadly known that over the past decades Isla Hispaniola (Haiti and the Dominican Republic) has been exposed to the devastating passage of several hurricanes and tropical storms. Territories that are economically weak and extremely poor in terms of natural resources have been shaken by severe flood events that caused the loss of thousands of human lives, displacement of people and damage to the environment. On May 24th 2004, the flooding of the trans-boundary river Soliette killed over 1000 Haitian and Dominican people, wiping out villages and leaving behind desolation and poverty. After this catastrophic flood event, the General Direction for Development and Cooperation of the Italian Department of Foreign Affairs funded through the Istituto Italo-Latino Americano (IILA, www.iila.org) an international cooperation initiative (ICI), coordinated and directed by the University of Bologna. The ICI involved Haitian and Dominican institutions and was twofold: (a) institutional capacity building on flood risk management and mitigation measures and policies; (b) hydrological and hydraulic analysis of the May 2004 flood event aimed at formulating a suitable and affordable flood risk mitigation plan, consisting of structural and non-structural measures.
Impact of social preparedness on flood early warning systems
NASA Astrophysics Data System (ADS)
Girons Lopez, M.; Di Baldassarre, G.; Seibert, J.
2017-01-01
Flood early warning systems play a major role in the disaster risk reduction paradigm as cost-effective methods to mitigate flood disaster damage. The connections and feedbacks between the hydrological and social spheres of early warning systems are increasingly being considered as key aspects for successful flood mitigation. The behavior of the public and first responders during flood situations, determined by their preparedness, is heavily influenced by many behavioral traits such as perceived benefits, risk awareness, or even denial. In this study, we use the recency of flood experiences as a proxy for social preparedness to assess its impact on the efficiency of flood early warning systems through a simple stylized model and implemented this model using a simple mathematical description. The main findings, which are based on synthetic data, point to the importance of social preparedness for flood loss mitigation, especially in circumstances where the technical forecasting and warning capabilities are limited. Furthermore, we found that efforts to promote and preserve social preparedness may help to reduce disaster-induced losses by almost one half. The findings provide important insights into the role of social preparedness that may help guide decision-making in the field of flood early warning systems.
Use of Space Technology in Flood Mitigation (Western Province, Zambia)
NASA Astrophysics Data System (ADS)
Mulando, A.
2001-05-01
Disasters, by definition are events that appear suddenly and with little warning. They are usually short lived, with extreme events bringing death, injury and destruction of buildings and communications. Their aftermath can be as damaging as their physical effects through destruction of sanitation and water supplies, destruction of housing and breakdown of transport for food, temporary shelter and emergency services. Since floods are one of the natural disasters which endanger both life and property, it becomes vital to know its extents and where the hazards exists. Flood disasters manifest natural processes on a larger scale and information provided by Remote Sensing is a most appropriate input to analysis of actual events and investigations of potential risks. An analytical and qualitative image processing and interpretation of Remotely Sensed data as well as other data such as rainfall, population, settlements not to mention but a few should be used to derive good mitigation strategies. Since mitigation is the cornerstone of emergency management, it therefore becomes a sustained action that will reduce or eliminate long term risks to people and property from natural hazards such as floods and their effects. This will definitely involve keeping of homes and other sensitive structures away from flood plains. Promotion of sound land use planning based on this known hazard, "FLOODS" is one such form of mitigation that can be applied in flood affected areas within flood plain. Therefore future mitigation technologies and procedures should increasingly be based on the use of flood extent information provided by Remote Sensing Satellites like the NOAA AVHRR as well as information on the designated flood hazard and risk areas.
Assessment of big floods in the Eastern Black Sea Basin of Turkey.
Yüksek, Ömer; Kankal, Murat; Üçüncü, Osman
2013-01-01
In this study, general knowledge and some details of the floods in Eastern Black Sea Basin of Turkey are presented. Brief hydro-meteorological analysis of selected nine floods and detailed analysis of the greatest flood are given. In the studied area, 51 big floods have taken place between 1955-2005 years, causing 258 deaths and nearly US $500,000,000 of damage. Most of the floods have occurred in June, July and August. It is concluded that especially for the rainstorms that have caused significantly damages, the return periods of the rainfall heights and resultant flood discharges have gone up to 250 and 500 years, respectively. A general agreement is observed between the return periods of rains and resultant floods. It is concluded that there has been no significant climate change to cause increases in flood harms. The most important human factors to increase the damage are determined as wrong and illegal land use, deforestation and wrong urbanization and settlement, psychological and technical factors. Some structural and non-structural measures to mitigate flood damages are also included in the paper. Structural measures include dykes and flood levees. Main non-structural measures include flood warning system, modification of land use, watershed management and improvement, flood insurance, organization of flood management studies, coordination between related institutions and education of the people and informing of the stakeholders.
Development of Integrated Flood Analysis System for Improving Flood Mitigation Capabilities in Korea
NASA Astrophysics Data System (ADS)
Moon, Young-Il; Kim, Jong-suk
2016-04-01
Recently, the needs of people are growing for a more safety life and secure homeland from unexpected natural disasters. Flood damages have been recorded every year and those damages are greater than the annual average of 2 trillion won since 2000 in Korea. It has been increased in casualties and property damages due to flooding caused by hydrometeorlogical extremes according to climate change. Although the importance of flooding situation is emerging rapidly, studies related to development of integrated management system for reducing floods are insufficient in Korea. In addition, it is difficult to effectively reduce floods without developing integrated operation system taking into account of sewage pipe network configuration with the river level. Since the floods result in increasing damages to infrastructure, as well as life and property, structural and non-structural measures should be urgently established in order to effectively reduce the flood. Therefore, in this study, we developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting for supporting synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information in Korea. Keywords: Flooding, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011686022015)" Rural Development Administration, Republic of Korea
Arrighi, Chiara; Rossi, Lauro; Trasforini, Eva; Rudari, Roberto; Ferraris, Luca; Brugioni, Marcello; Franceschini, Serena; Castelli, Fabio
2018-02-01
Flood risk mitigation usually requires a significant investment of public resources and cost-effectiveness should be ensured. The assessment of the benefits of hydraulic works requires the quantification of (i) flood risk in absence of measures, (ii) risk in presence of mitigation works, (iii) investments to achieve acceptable residual risk. In this work a building-scale is adopted to estimate direct tangible flood losses to several building classes (e.g. residential, industrial, commercial, etc.) and respective contents, exploiting various sources of public open data in a GIS environment. The impact simulations for assigned flood hazard scenarios are computed through the RASOR platform which allows for an extensive characterization of the properties and their vulnerability through libraries of stage-damage curves. Recovery and replacement costs are estimated based on insurance data, market values and socio-economic proxies. The methodology is applied to the case study of Florence (Italy) where a system of retention basins upstream of the city is under construction to reduce flood risk. Current flood risk in the study area (70 km 2 ) is about 170 Mio euros per year without accounting for people, infrastructures, cultural heritage and vehicles at risk. The monetary investment in the retention basins is paid off in about 5 years. However, the results show that although hydraulic works are cost-effective, a significant residual risk has to be managed and the achievement of the desired level of acceptable risk would require about 1 billion euros of investments. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Zhang, Xiaodong; Kirilenko, Andrei; Lim, Howe; Teng, Williams
2010-01-01
This slide presentation reviews work to combine the hydrological models and remote sensing observations to monitor Devils Lake in North Dakota, to assist in flood damage mitigation. This reports on the use of a distributed rainfall-runoff model, HEC-HMS, to simulate the hydro-dynamics of the lake watershed, and used NASA's remote sensing data, including the TRMM Multi-Satellite Precipitation Analysis (TMPA) and AIRS surface air temperature, to drive the model.
Assessing and Mitigating Hurricane Storm Surge Risk in a Changing Environment
NASA Astrophysics Data System (ADS)
Lin, N.; Shullman, E.; Xian, S.; Feng, K.
2017-12-01
Hurricanes have induced devastating storm surge flooding worldwide. The impacts of these storms may worsen in the coming decades because of rapid coastal development coupled with sea-level rise and possibly increasing storm activity due to climate change. Major advances in coastal flood risk management are urgently needed. We present an integrated dynamic risk analysis for flooding task (iDraft) framework to assess and manage coastal flood risk at the city or regional scale, considering integrated dynamic effects of storm climatology change, sea-level rise, and coastal development. We apply the framework to New York City. First, we combine climate-model projected storm surge climatology and sea-level rise with engineering- and social/economic-model projected coastal exposure and vulnerability to estimate the flood damage risk for the city over the 21st century. We derive temporally-varying risk measures such as the annual expected damage as well as temporally-integrated measures such as the present value of future losses. We also examine the individual and joint contributions to the changing risk of the three dynamic factors (i.e., sea-level rise, storm change, and coastal development). Then, we perform probabilistic cost-benefit analysis for various coastal flood risk mitigation strategies for the city. Specifically, we evaluate previously proposed mitigation measures, including elevating houses on the floodplain and constructing flood barriers at the coast, by comparing their estimated cost and probability distribution of the benefit (i.e., present value of avoided future losses). We also propose new design strategies, including optimal design (e.g., optimal house elevation) and adaptive design (e.g., flood protection levels that are designed to be modified over time in a dynamic and uncertain environment).
NASA Astrophysics Data System (ADS)
Shim, J. B.; Won, C. Y.; Park, J.; Lee, K.
2017-12-01
Korea experiences frequent flood disasters, which cause considerable economic losses and damages to towns and farms. Especially, a regional torrential storm is about 98.5mm/hr on September 21, 2010 in Seoul. The storm exceeds the capacity of urban drainage system of 75mm/hr, and 9,419 houses. How to monitor and control the urban flood disasters is an important issue in Korea. To mitigate the flood damage, a customizing system was developed to estimate urban floods and inundation using by integrating drainage system data and river information database which are managed by local governments and national agencies. In the case of Korean urban city, there are a lot of detention ponds and drainage pumping stations on end of drainage system and flow is going into river. The drainage pumping station, it is very important hydraulic facility for flood control between river and drainage system. So, it is possible to occur different patterns of flood inundation according to operation rule of drainage pumping station. A flood disaster is different damage as how to operate drainage pumping station and plan operation rule.
Flood prediction, its risk and mitigation for the Babura River with GIS
NASA Astrophysics Data System (ADS)
Tarigan, A. P. M.; Hanie, M. Z.; Khair, H.; Iskandar, R.
2018-03-01
This paper describes the flood prediction along the Babura River, the catchment of which is within the comparatively larger watershed of the Deli River which crosses the centre part of Medan City. The flood plain and ensuing inundation area were simulated using HECRAS based on the available data of rainfall, catchment, and river cross-sections. The results were shown in a GIS format in which the city map of Medan and other infrastructure layers were stacked for spatial analysis. From the resulting GIS, it can be seen that 13 sub-districts were likely affected by the flood, and then the risk calculation of the flood damage could be estimated. In the spirit of flood mitigation thoughts, 6 locations of evacuation centres were identified and 15 evacuation routes were recommended to reach the centres. It is hoped that the flood prediction and its risk estimation in this study will inspire the preparedness of the stakeholders for the probable threat of flood disaster.
Flood damage estimation of companies: A comparison of Stage-Damage-Functions and Random Forests
NASA Astrophysics Data System (ADS)
Sieg, Tobias; Kreibich, Heidi; Vogel, Kristin; Merz, Bruno
2017-04-01
The development of appropriate flood damage models plays an important role not only for the damage assessment after an event but also to develop adaptation and risk mitigation strategies. So called Stage-Damage-Functions (SDFs) are often applied as a standard approach to estimate flood damage. These functions assign a certain damage to the water depth depending on the use or other characteristics of the exposed objects. Recent studies apply machine learning algorithms like Random Forests (RFs) to model flood damage. These algorithms usually consider more influencing variables and promise to depict a more detailed insight into the damage processes. In addition they provide an inherent validation scheme. Our study focuses on direct, tangible damage of single companies. The objective is to model and validate the flood damage suffered by single companies with SDFs and RFs. The data sets used are taken from two surveys conducted after the floods in the Elbe and Danube catchments in the years 2002 and 2013 in Germany. Damage to buildings (n = 430), equipment (n = 651) as well as goods and stock (n = 530) are taken into account. The model outputs are validated via a comparison with the actual flood damage acquired by the surveys and subsequently compared with each other. This study investigates the gain in model performance with the use of additional data and the advantages and disadvantages of the RFs compared to SDFs. RFs show an increase in model performance with an increasing amount of data records over a comparatively large range, while the model performance of the SDFs is already saturated for a small set of records. In addition, the RFs are able to identify damage influencing variables, which improves the understanding of damage processes. Hence, RFs can slightly improve flood damage predictions and provide additional insight into the underlying mechanisms compared to SDFs.
NASA Astrophysics Data System (ADS)
Wang, X.
2017-12-01
The Pearl River Delta (PRD) in China, the summer rain storm occurs frequently, the flood damage is very serious. Damage assessment is the basis of scientific decision-making in disaster mitigation. All approaches of flood damage analysis contain uncertainties due to the inaccuracies and generalisations used, the lack of data aggravates this problem, making methods very rough. This study presents a detailed flood damage assessment framework in Pearl River Delta rural area, using 2017 "5.7" heavy rain storm event to simulate the process and estimate the flood loss in resident building and property, agriculture production. The framework integrates four modules,1) utilize the remote sensing and statistical yearbook and so on to construct the disaster bearing bodies GIS database; 2) using hydraulics model to simulate the flood extent and depth spatial distribution;3)through field investigation to obtain the flood loss data for all kinds of hazard-affected body, using statistical analysis method to get the damage curves;4)Integrate flood scenarios, disaster bearing bodies GIS database and damage curves to calculate the flood loss estimation value. Using this methodology, in the 2017 "5.7" heavy rain storm event, Huashan Town flood damage loss is underestimate compared with the government report, because of not considering the damage of water conservancy facilities. But the disaster loss value on the spatial distribution is consistent with actual situation. In terms of aggregated values in the whole town, the model is capable of obtaining figures that are within the same order of magnitude. This study produce a flood damage assessment framework taking into account the regional characteristics of PRD rural area, provide a template for future practice. This study only considers the current impacts, the framework should be improved by taking into account socio-economic and climatic changes, as well as implementing adaptation measures to be applied to assess the potential future damages. Key words: Heavy rain storm; flood; damage assessment; Pearl River Delta; rural area
Modelling the effectiveness of grass buffer strips in managing muddy floods under a changing climate
NASA Astrophysics Data System (ADS)
Mullan, Donal; Vandaele, Karel; Boardman, John; Meneely, John; Crossley, Laura H.
2016-10-01
Muddy floods occur when rainfall generates runoff on agricultural land, detaching and transporting sediment into the surrounding natural and built environment. In the Belgian Loess Belt, muddy floods occur regularly and lead to considerable economic costs associated with damage to property and infrastructure. Mitigation measures designed to manage the problem have been tested in a pilot area within Flanders and were found to be cost-effective within three years. This study assesses whether these mitigation measures will remain effective under a changing climate. To test this, the Water Erosion Prediction Project (WEPP) model was used to examine muddy flooding diagnostics (precipitation, runoff, soil loss and sediment yield) for a case study hillslope in Flanders where grass buffer strips are currently used as a mitigation measure. The model was run for present day conditions and then under 33 future site-specific climate scenarios. These future scenarios were generated from three earth system models driven by four representative concentration pathways and downscaled using quantile mapping and the weather generator CLIGEN. Results reveal that under the majority of future scenarios, muddy flooding diagnostics are projected to increase, mostly as a consequence of large scale precipitation events rather than mean changes. The magnitude of muddy flood events for a given return period is also generally projected to increase. These findings indicate that present day mitigation measures may have a reduced capacity to manage muddy flooding given the changes imposed by a warming climate with an enhanced hydrological cycle. Revisions to the design of existing mitigation measures within existing policy frameworks are considered the most effective way to account for the impacts of climate change in future mitigation planning.
NASA Astrophysics Data System (ADS)
Demir, I.
2013-12-01
Recent developments in web technologies make it easy to manage and visualize large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The floodplain simulation system is a web-based 3D interactive flood simulation environment to create real world flooding scenarios. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create and modify predefined scenarios, control environmental parameters, and evaluate flood mitigation techniques. The web-based simulation system provides an environment to children and adults learn about the flooding, flood damage, and effects of development and human activity in the floodplain. The system provides various scenarios customized to fit the age and education level of the users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various flooding and land use scenarios.
NASA Astrophysics Data System (ADS)
Albano, R.; Sole, A.; Mancusi, L.; Cantisani, A.; Perrone, A.
2017-12-01
The considerable increase of flood damages in the the past decades has shifted in Europe the attention from protection against floods to managing flood risks. In this context, the expected damages assessment represents a crucial information within the overall flood risk management process. The present paper proposes an open source software, called FloodRisk, that is able to operatively support stakeholders in the decision making processes with a what-if approach by carrying out the rapid assessment of the flood consequences, in terms of direct economic damage and loss of human lives. The evaluation of the damage scenarios, trough the use of the GIS software proposed here, is essential for cost-benefit or multi-criteria analysis of risk mitigation alternatives. However, considering that quantitative assessment of flood damages scenarios is characterized by intrinsic uncertainty, a scheme has been developed to identify and quantify the role of the input parameters in the total uncertainty of flood loss model application in urban areas with mild terrain and complex topography. By the concept of parallel models, the contribution of different module and input parameters to the total uncertainty is quantified. The results of the present case study have exhibited a high epistemic uncertainty on the damage estimation module and, in particular, on the type and form of the utilized damage functions, which have been adapted and transferred from different geographic and socio-economic contexts because there aren't depth-damage functions that are specifically developed for Italy. Considering that uncertainty and sensitivity depend considerably on local characteristics, the epistemic uncertainty associated with the risk estimate is reduced by introducing additional information into the risk analysis. In the light of the obtained results, it is evident the need to produce and disseminate (open) data to develop micro-scale vulnerability curves. Moreover, the urgent need to push forward research into the implementation of methods and models for the assimilation of uncertainties in decision-making processes emerges.
Flood Mitigation and Response: Comparing the Great Midwest Floods of 1993 and 2008
2010-12-01
The Galloway Commission ranged the damage between $12 and $16 billion; however, the report admits that its numbers were premature and not all...Foundation, June 18, 2008); Wright (2000); Sharing the Challenge; Galloway , 7; Georgianne Nienaber, “Is ‘Mother Nature’ really to Blame for the...Mattoon. 24 Wright (2000), 80–83; National Flood Programs (2007), 8; Sharing the Challenge (1994); Galloway (2005), 9. Cody and Carter, 7. 11
Optical and Physical Methods for Mapping Flooding with Satellite Imagery
NASA Technical Reports Server (NTRS)
Fayne, Jessica Fayne; Bolten, John; Lakshmi, Venkat; Ahamed, Aakash
2016-01-01
Flood and surface water mapping is becoming increasingly necessary, as extreme flooding events worldwide can damage crop yields and contribute to billions of dollars economic damages as well as social effects including fatalities and destroyed communities (Xaio et al. 2004; Kwak et al. 2015; Mueller et al. 2016).Utilizing earth observing satellite data to map standing water from space is indispensable to flood mapping for disaster response, mitigation, prevention, and warning (McFeeters 1996; Brakenridge and Anderson 2006). Since the early 1970s(Landsat, USGS 2013), researchers have been able to remotely sense surface processes such as extreme flood events to help offset some of these problems. Researchers have demonstrated countless methods and modifications of those methods to help increase knowledge of areas at risk and areas that are flooded using remote sensing data from optical and radar systems, as well as free publically available and costly commercial datasets.
Flood damage data gathering: procedures and use
NASA Astrophysics Data System (ADS)
Molinari, D.; Aronica, G. T.; Ballio, F.; Berni, N.; Pandolfo, C.
2012-04-01
Damage data represents the basis on which flood risk models, re-founding schemes and mitigation activities are grounded on. Nevertheless damage data have been collected so far mainly at the national-regional scale; few databases exist at the local scale and, even if present, no standard exist for their development. On the contrary, risk analyses and mitigation strategies are usually carried out at local scale. This contribution describes the ongoing activity to collect and analyze local damage data coming from past events with recently hit Umbria an Sicily regions (central and south part of Italy respectively). Data from past events will be discussed from two different perspectives. In Italy, procedures to gather damage data after a flood are defined by law. According to this, authors will first question whether or not collected data are suitable to give an exhaustive representation of the total impact the events had on the affected territories. As regards, suggestions are provided about how gathering procedures can improve. On the other hand, collected data will be discussed with respect to their implementation in the definition of depth-damage curves for the Italian context; literature review highlights indeed that no curves are available for Italy. Starting from the knowledge of observed hazard intensity and damage data, available curves from other countries are validated, the objective being to reduce the uncertainty which currently characterise damage estimation. Indeed, a variety of curves can be found in literature and the choice of one curve in place of another can change damage assessment results of one order of magnitude. The validation procedure will allow, in its turn, to face a secondary but key question for the contribution, being the identification of those hazard and vulnerability features that should be recorded and kept updated in a local GIS database to support risk modelling, funding and management. The two areas under investigation are prone to different types of hazard: flash floods with high debris concentration are typical of the Sicilian area whilst riverine floods are common in the Umbria region. This way, reasoning can be made with respect to different hazard and vulnerability aspects.
Comparing flood loss models of different complexity
NASA Astrophysics Data System (ADS)
Schröter, Kai; Kreibich, Heidi; Vogel, Kristin; Riggelsen, Carsten; Scherbaum, Frank; Merz, Bruno
2013-04-01
Any deliberation on flood risk requires the consideration of potential flood losses. In particular, reliable flood loss models are needed to evaluate cost-effectiveness of mitigation measures, to assess vulnerability, for comparative risk analysis and financial appraisal during and after floods. In recent years, considerable improvements have been made both concerning the data basis and the methodological approaches used for the development of flood loss models. Despite of that, flood loss models remain an important source of uncertainty. Likewise the temporal and spatial transferability of flood loss models is still limited. This contribution investigates the predictive capability of different flood loss models in a split sample cross regional validation approach. For this purpose, flood loss models of different complexity, i.e. based on different numbers of explaining variables, are learned from a set of damage records that was obtained from a survey after the Elbe flood in 2002. The validation of model predictions is carried out for different flood events in the Elbe and Danube river basins in 2002, 2005 and 2006 for which damage records are available from surveys after the flood events. The models investigated are a stage-damage model, the rule based model FLEMOps+r as well as novel model approaches which are derived using data mining techniques of regression trees and Bayesian networks. The Bayesian network approach to flood loss modelling provides attractive additional information concerning the probability distribution of both model predictions and explaining variables.
The physical vulnerability of elements at risk: a methodology based on fluid and classical mechanics
NASA Astrophysics Data System (ADS)
Mazzorana, B.; Fuchs, S.; Levaggi, L.
2012-04-01
The impacts of the flood events occurred in autumn 2011 in the Italian regions Liguria and Tuscany revived the engagement of the public decision makers to enhance in synergy flood control and land use planning. In this context, the design of efficient flood risk mitigation strategies and their subsequent implementation critically relies on a careful vulnerability analysis of both, the immobile and mobile elements at risk potentially exposed to flood hazards. Based on fluid and classical mechanics notions we developed computation schemes enabling for a dynamic vulnerability and risk analysis facing a broad typological variety of elements at risk. The methodological skeleton consists of (1) hydrodynamic computation of the time-varying flood intensities resulting for each element at risk in a succession of loading configurations; (2) modelling the mechanical response of the impacted elements through static, elasto-static and dynamic analyses; (3) characterising the mechanical response through proper structural damage variables and (4) economic valuation of the expected losses as a function of the quantified damage variables. From a computational perspective we coupled the description of the hydrodynamic flow behaviour and the induced structural modifications of the elements at risk exposed. Valuation methods, suitable to support a correct mapping from the value domains of the physical damage variables to the economic loss values are discussed. In such a way we target to complement from a methodological perspective the existing, mainly empirical, vulnerability and risk assessment approaches to refine the conceptual framework of the cost-benefit analysis. Moreover, we aim to support the design of effective flood risk mitigation strategies by diminishing the main criticalities within the systems prone to flood risk.
NASA Astrophysics Data System (ADS)
Changnon, Stanley A.
1999-03-01
A record-breaking 24-h rainstorm on 17-18 July 1996 was centered on south Chicago and its southern and western suburbs, areas with a population of 3.4 million. The resulting flash flooding in Chicago and 21 suburbs broke all-time records in the region and brought the Illinois and Mississippi Rivers above flood stage. More than 4300 persons were evacuated from the flooded zones and 35000 homes experienced flood damage. Six persons were killed and the total estimated cost of the flood (losses and recovery actions) was 645 million, ranking as Illinois' second most costly weather disaster on record after the 1993 flood. Extensive damages and travel delays occurred on metropolitan transportation systems (highways and railroads). Commuters were unable to reach Chicago for up to three days and more than 300 freight trains were delayed or rerouted. Communities dealt with removal of flood-damaged materials, as well as damage to streets, bridges, and sewage treatment and water treatment plants. Reduced crop yields in adjacent rural areas represented a 67 million loss of farm income. Conflicts between communities developed over blame for the flooding due to inadequate storage capacity resulting in new regional flood planning. Federal and state aid ultimately reached 265 million, 41% of the storm costs. More than 85000 individuals received assistance, and 222 structures have been relocated under the federal Hazard Mitigation Grant Program at a cost of 19.6 million.
Application of the Flood-IMPAT procedure in the Valle d'Aosta Region, Italy
NASA Astrophysics Data System (ADS)
Minucci, Guido; Mendoza, Marina Tamara; Molinari, Daniela; Atun, Funda; Menoni, Scira; Ballio, Francesco
2016-04-01
Flood Risk Management Plans (FRMPs) established by European "Floods" Directive (Directive 2007/60/EU) to Member States in order to address all aspects of flood risk management, taking into account costs and benefits of proposed mitigation tools must be reviewed by the same law every six years. This is aimed at continuously increasing the effectiveness of risk management, on the bases of the most advanced knowledge of flood risk and most (economically) feasible solutions, also taking into consideration achievements of the previous management cycle. Within this context, the Flood-IMPAT (i.e. Integrated Meso-scale Procedure to Assess Territorial flood risk) procedure has been developed aiming at overcoming limits of risk maps produced by the Po River Basin Authority and adopted for the first version of the Po River FRMP. The procedure allows the estimation of flood risk at the meso-scale and it is characterized by three main peculiarities. First is its feasibility for the entire Italian territory. Second is the possibility to express risk in monetary terms (i.e. expected damage), at least for those categories of damage for which suitable models are available. Finally, independent modules compose the procedure: each module allows the estimation of a certain type of damage (i.e. direct, indirect, intangibles) on a certain sector (e.g. residential, industrial, agriculture, environment, etc.) separately, guaranteeing flexibility in the implementation. This paper shows the application of the Flood-IMPAT procedure and the recent advancements in the procedure, aiming at increasing its reliability and usability. Through a further implementation of the procedure in the Dora Baltea River Basin (North of Italy), it was possible to test the sensitivity of risk estimates supplied by Flood-IMPAT with respect to different damage models and different approaches for the estimation of assets at risk. Risk estimates were also compared with observed damage data in the investigated areas to identify the most suitable damage model/exposure assessment approach to be implemented in the procedure. In the end, the procedure was adapted to be applied at the micro-scale, in such a way to supply risk estimates, which are coherent with those at the meso-scale. This way the procedure can be first implemented in the whole catchment to identify hotspots; the micro-scale approach can be implemented in a second run to investigate in depth (i) the most risk prone areas and (ii) the possible risk mitigation strategies.
A knowledge integration approach to flood vulnerability
NASA Astrophysics Data System (ADS)
Mazzorana, Bruno; Fuchs, Sven
2014-05-01
Understanding, qualifying and quantifying vulnerability is an essential need for implementing effective and efficient flood risk mitigation strategies; in particular if possible synergies between different mitigation alternatives, such as active and passive measures, should be achieved. In order to combine different risk management options it is necessary to take an interdisciplinary approach to vulnerability reduction, and as a result the affected society may be willing to accept a certain degree of self-responsibility. However, due to differing mono-disciplinary approaches and regional foci undertaken until now, different aspects of vulnerability to natural hazards in general and to floods in particular remain uncovered and as a result the developed management options remain sub-optimal. Taking an even more fundamental viewpoint, the empirical vulnerability functions used in risk assessment specifically fail to capture physical principles of the damage-generating mechanisms to the build environment. The aim of this paper is to partially close this gap by discussing a balanced knowledge integration approach which can be used to resolve the multidisciplinary disorder in flood vulnerability research. Modelling techniques such as mathematical-physical modelling of the flood hazard impact to and response from the building envelope affected, and formative scenario analyses of possible consequences in terms of damage and loss are used in synergy to provide an enhanced understanding of vulnerability and to render the derived knowledge into interdisciplinary mitigation strategies. The outlined formal procedure allows for a convincing knowledge alignment of quantified, but partial, information about vulnerability as a result of the application of physical and engineering notions and valuable, but often underspecified, qualitative argumentation strings emerging from the adopted socio-economic viewpoint.
The Importance of Studying Past Extreme Floods to Prepare for Uncertain Future Extremes
NASA Astrophysics Data System (ADS)
Burges, S. J.
2016-12-01
Hoyt and Langbein, 1955 in their book `Floods' wrote: " ..meteorologic and hydrologic conditions will combine to produce superfloods of unprecedented magnitude. We have every reason to believe that in most rivers past floods may not be an accurate measure of ultimate flood potentialities. It is this superflood with which we are always most concerned". I provide several examples to offer some historical perspective on assessing extreme floods. In one example, flooding in the Miami Valley, OH in 1913 claimed 350 lives. The engineering and socio-economic challenges facing the Morgan Engineering Co in how to mitigate against future flood damage and loss of life when limited information was available provide guidance about ways to face an uncertain hydroclimate future, particularly one of a changed climate. A second example forces us to examine mixed flood populations and illustrates the huge uncertainty in assigning flood magnitude and exceedance probability to extreme floods in such cases. There is large uncertainty in flood frequency estimates; knowledge of the total flood hydrograph, not the peak flood flow rate alone, is what is needed for hazard mitigation assessment or design. Some challenges in estimating the complete flood hydrograph in an uncertain future climate, including demands on hydrologic models and their inputs, are addressed.
Mitigation of Flood Hazards Through Modification of Urban Channels and Floodplains
NASA Astrophysics Data System (ADS)
Miller, A. J.; Lee, G.; Bledsoe, B. P.; Stephens, T.
2017-12-01
Small urban watersheds with high percent impervious cover and dense road and storm-drain networks are highly responsive to short-duration high-intensity rainfall events that lead to flash floods. The Baltimore metropolitan area has some of the flashiest urban watersheds in the conterminous U.S., high frequency of channel incision in affected areas, and a large number of watershed restoration projects designed to restore ecosystem services through reconnection of the channel with the floodplain. A question of key importance in these and other urban watersheds is to what extent we can mitigate flood hazards and urban stream syndrome through restoration activities that modify the channel and valley floor. Local and state governments have invested resources in repairing damage caused by extreme events like the July 30, 2016 Ellicott City flood in the Tiber River watershed, as well as more frequent high flows in other local urban streams. Recent reports have investigated how much flood mitigation may be achieved through modification of the channel and floodplain to enhance short-term storage of flood waters on the valley floor or in other subsurface structures, as compared with increasing stormwater management in the headwaters. Ongoing research conducted as part of the UWIN (Urban Water Innovation Network) program utilizes high-resolution topographic point clouds derived by processing of photographs from hand-held cameras or video frames from drone overflights. These are used both to track geomorphic change and to assess flood response with 2d hydraulic modeling tools under alternative mitigation scenarios. Assessment metrics include variations in inundation extent, water depth, hydrograph attenuation, and temporal and spatial characteristics of the 2d depth-averaged velocity field. Examples from diverse urban watersheds are presented to illustrate the range of anticipated outcomes and potential constraints on the effectiveness of downstream vs. headwater mitigation efforts.
Dealing with Natural Disasters: Preparedness versus Post-Event Response
NASA Astrophysics Data System (ADS)
Sitar, N.
2015-12-01
Management or mitigation of natural disasters is comprised of two distinct elements: disaster preparedness and disaster response. Fundamentally disasters fall into two categories: 1) those whose timing can be predicted and evaluated in advance, such as hurricanes, floods, tsunamis, or even sea level rise; and 2) those that can be anticipated based on analysis, but their exact timing is unknown, such as earthquakes and landslides. Consequently, the type of response and options available for scientific and engineering consultation are fundamentally different. The common aspects of all natural disasters is that there is evidence of past events either historical or geologic, or both. Thus, given past evidence, scientists and engineers have an opportunity to recommend and guide development and implementation of long term or permanent mitigation measures, such as improving the resiliency of the infrastructure and emergency preparedness. However, the appropriate mitigation measures are very much a function of the type of event. Severe atmospheric events, such as hurricanes, typically can be predicted several days in advance and scientists and engineers have a role in guiding preparation of specific additional, temporary, mitigation measures and selective evacuation, as appropriate. In contrast, while earthquake potential of a given region may be well recognized, the actual timing of the event is an unknown and, consequently, the primary defense is in developing sufficiently resilient infrastructure which can be enhanced with early warning systems. Similarly, the type of damage caused by flooding, e.g. hurricane and tsunami, is significantly different from the type of damage caused by an earthquake in that flooding damage is pervasive affecting large contiguous areas wiping out all infrastructure whereas earthquake or landslide damage tends to be clustered with many elements of infrastructure remaining fully or somewhat operable. This distinction is very important when it comes to the type of technical guidance that is needed following such events. This presentation highlights lessons learned from post-event reconnaissance as a part of the NSF-funded Geotechnical Extreme Event Reconnaissance (GEER) over the last two decades.
NASA Astrophysics Data System (ADS)
Schinke, R.; Neubert, M.; Hennersdorf, J.; Stodolny, U.; Sommer, T.; Naumann, T.
2012-09-01
The analysis and management of flood risk commonly focuses on surface water floods, because these types are often associated with high economic losses due to damage to buildings and settlements. The rising groundwater as a secondary effect of these floods induces additional damage, particularly in the basements of buildings. Mostly, these losses remain underestimated, because they are difficult to assess, especially for the entire building stock of flood-prone urban areas. For this purpose an appropriate methodology has been developed and lead to a groundwater damage simulation model named GRUWAD. The overall methodology combines various engineering and geoinformatic methods to calculate major damage processes by high groundwater levels. It considers a classification of buildings by building types, synthetic depth-damage functions for groundwater inundation as well as the results of a groundwater-flow model. The modular structure of this procedure can be adapted in the level of detail. Hence, the model allows damage calculations from the local to the regional scale. Among others it can be used to prepare risk maps, for ex-ante analysis of future risks, and to simulate the effects of mitigation measures. Therefore, the model is a multifarious tool for determining urban resilience with respect to high groundwater levels.
Global-scale river flood vulnerability in the last 50 years.
Tanoue, Masahiro; Hirabayashi, Yukiko; Ikeuchi, Hiroaki
2016-10-26
The impacts of flooding are expected to rise due to population increases, economic growth and climate change. Hence, understanding the physical and spatiotemporal characteristics of risk drivers (hazard, exposure and vulnerability) is required to develop effective flood mitigation measures. Here, the long-term trend in flood vulnerability was analysed globally, calculated from the ratio of the reported flood loss or damage to the modelled flood exposure using a global river and inundation model. A previous study showed decreasing global flood vulnerability over a shorter period using different disaster data. The long-term analysis demonstrated for the first time that flood vulnerability to economic losses in upper-middle, lower-middle and low-income countries shows an inverted U-shape, as a result of the balance between economic growth and various historical socioeconomic efforts to reduce damage, leading to non-significant upward or downward trends. We also show that the flood-exposed population is affected by historical changes in population distribution, with changes in flood vulnerability of up to 48.9%. Both increasing and decreasing trends in flood vulnerability were observed in different countries, implying that population growth scenarios considering spatial distribution changes could affect flood risk projections.
Global-scale river flood vulnerability in the last 50 years
Tanoue, Masahiro; Hirabayashi, Yukiko; Ikeuchi, Hiroaki
2016-01-01
The impacts of flooding are expected to rise due to population increases, economic growth and climate change. Hence, understanding the physical and spatiotemporal characteristics of risk drivers (hazard, exposure and vulnerability) is required to develop effective flood mitigation measures. Here, the long-term trend in flood vulnerability was analysed globally, calculated from the ratio of the reported flood loss or damage to the modelled flood exposure using a global river and inundation model. A previous study showed decreasing global flood vulnerability over a shorter period using different disaster data. The long-term analysis demonstrated for the first time that flood vulnerability to economic losses in upper-middle, lower-middle and low-income countries shows an inverted U-shape, as a result of the balance between economic growth and various historical socioeconomic efforts to reduce damage, leading to non-significant upward or downward trends. We also show that the flood-exposed population is affected by historical changes in population distribution, with changes in flood vulnerability of up to 48.9%. Both increasing and decreasing trends in flood vulnerability were observed in different countries, implying that population growth scenarios considering spatial distribution changes could affect flood risk projections. PMID:27782160
1985-07-30
Flooding of Maline Creek in and around St. Louis, Missouri has been a problem. In an effort to provide significant flood damage mitigation, increase...miles of environmental/recreational trails. The sediment transport characteristics of Maline Creek , were qualitatively evaluated and the effect of...erosion and sedimentation of loess soils since they are common to the Maline Creek watershed.
Brody, Samuel D; Zahran, Sammy; Highfield, Wesley E; Bernhardt, Sarah P; Vedlitz, Arnold
2009-06-01
Floods continue to inflict the most damage upon human communities among all natural hazards in the United States. Because localized flooding tends to be spatially repetitive over time, local decisionmakers often have an opportunity to learn from previous events and make proactive policy adjustments to reduce the adverse effects of a subsequent storm. Despite the importance of understanding the degree to which local jurisdictions learn from flood risks and under what circumstances, little if any empirical, longitudinal research has been conducted along these lines. This article addresses the research gap by examining the change in local flood mitigation policies in Florida from 1999 to 2005. We track 18 different mitigation activities organized into four series of activities under the Federal Emergency Management Agency's (FEMA) Community Rating System (CRS) for every local jurisdiction in Florida participating in the FEMA program on a yearly time step. We then identify the major factors contributing to policy changes based on CRS scores over the seven-year study period. Using multivariate statistical models to analyze both natural and social science data, we isolate the effects of several variables categorized into the following groups: hydrologic conditions, flood disaster history, socioeconomic and human capital controls. Results indicate that local jurisdictions do in fact learn from histories of flood risk and this process is expedited under specific conditions.
Lessons Learned from Southeast Asian Floods
NASA Astrophysics Data System (ADS)
Osti, R.; Tanaka, S.
2009-04-01
At certain scales, flood has always been the lifeline of many people from Southeast Asian countries. People are traditionally accustomed to living with such floods and their livelihood is adjusted accordingly to optimize the benefits from the floods. However, large scale flood occasionally turns into the disaster and causes massive destruction not only in terms of human causalities but also damage to economic, ecological and social harmonies in the region. Although economic growth is prevailing in a relative term, the capacity of people to cope with such extreme events is weakening therefore the flood disaster risk is increasing in time. Recent examples of flood disaster in the region clearly show the increasing severity of disaster impact. This study reveals that there are many factors, which directly or indirectly influence the change. This paper considers the most prominent natural and socio-economic factors and analyzes their trend with respect to flood disasters in each country's context. A regional scale comparative analysis further helps to exchange the know how and to determine what kind of strategy and policy are lacking to manage the floods in a long run. It is also helpful in identifying the critical sectors that should be addressed first to mitigate the potential damage from the floods.
Flood mapping with multitemporal MODIS data
NASA Astrophysics Data System (ADS)
Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru
2014-05-01
Flood is one of the most devastating and frequent disasters resulting in loss of human life and serve damage to infrastructure and agricultural production. Flood is phenomenal in the Mekong River Delta (MRD), Vietnam. It annually lasts from July to November. Information on spatiotemporal flood dynamics is thus important for planners to devise successful strategies for flood monitoring and mitigation of its negative effects. The main objective of this study is to develop an approach for weekly mapping flood dynamics with the Moderate Resolution Imaging Spectroradiometer data in MRD using the water fraction model (WFM). The data processed for 2009 comprises three main steps: (1) data pre-processing to construct smooth time series of the difference in the values (DVLE) between land surface water index (LSWI) and enhanced vegetation index (EVI) using the empirical mode decomposition (EMD), (2) flood derivation using WFM, and (3) accuracy assessment. The mapping results were compared with the ground reference data, which were constructed from Envisat Advanced Synthetic Aperture Radar (ASAR) data. As several error sources, including mixed-pixel problems and low-resolution bias between the mapping results and ground reference data, could lower the level of classification accuracy, the comparisons indicated satisfactory results with the overall accuracy of 80.5% and Kappa coefficient of 0.61, respectively. These results were reaffirmed by a close correlation between the MODIS-derived flood area and that of the ground reference map at the provincial level, with the correlation coefficients (R2) of 0.93. Considering the importance of remote sensing for monitoring floods and mitigating the damage caused by floods to crops and infrastructure, this study eventually leads to the realization of the value of using time-series MODIS DVLE data for weekly flood monitoring in MRD with the aid of EMD and WFM. Such an approach that could provide quantitative information on spatiotemporal flood dynamics for monitoring purposes was completely transferable to other regions in the world.
Assessment of the Economic Benefits from Flood Damage Mitigation by Relocation and Evacuation
1985-02-01
conclusion from examining relocation studies is the importance of the new use of evacuated land to economic feasibility. The final section provides...Implementation Studies . (March 10, 1983). Principles and Guidelines (P&G) carrys over the basic guidance provided under Revised Principles and...management measures in all survey studies , including small projects. (Rescinded) ER 1120-2-117 (17 August 1970), "Alternatives in Flood
Disaster mitigation at drainage basin of Kuranji Padang City
NASA Astrophysics Data System (ADS)
Utama, L.; Yamin, M.
2017-06-01
Floods is flooding of effect of exit water groove river because big river debit sudden its accomodation energy, happened swiftly knock over areas which is debasement, in river basin and hollow. Flow debris or which is recognized with galodo have knock over river of Kuranji year 2012 in Padang city. Area is floods disaster are: 19 Sub-District in 7 district, and hard that is district of Pauh and district of Nanggalo. Governmental claim tired loss of Rp 263,9 Billion while Government of Provinsi West Sumatera appraise loss estimated by Fourty Billion Rupiah (Padang Ekspress 28 July 2012), with detail of damage house counted 878 unit, damage religious service house 15 unit, damage irrigation 12 unit, damage bridge 6 unit, damage school 2 unit, damage health post 1 unit. Result of calculation, by using rainfall of year 2003 until year 2015 with method Gumbel, Hasper and Wedwen, got high rainfall plan is 310,00 mm, and method Melchior and Hasper floods is 1125,86 m³ / second. From result of study analyse at Citra map of correlation and image to parameters cause of floods, and use software Watershed Modelling System (WMS) this region have two class that is middle susceptance and low susceptance. Middle susceptance area is there are in middle river and downstream river, with inclination level off. Low susceptance area there is middle river. Area which have potency result the happening of floods is headwaters, because having keen ramp storey level ( 45 - 55%) and is hilly. For the mitigasi of floods disaster determined by three area evacuate that are: Sub-District Of Kelurahan Limau Manis District Of Pauh, Sub-District Of Surau Gadang District Of Nanggalo, and Sub-District Of Lambung Bukik District of Pauh, in the form of map.
44 CFR 78.5 - Flood Mitigation Plan development.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate a...
44 CFR 78.5 - Flood Mitigation Plan development.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate a...
44 CFR 78.5 - Flood Mitigation Plan development.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate a...
Impact of Atmospheric Aerosols on Solar Photovoltaic Electricity Generation in China
NASA Astrophysics Data System (ADS)
Li, X.; Mauzerall, D. L.; Wagner, F.; Peng, W.; Yang, J.
2016-12-01
Hurricanes have induced devastating storm surge flooding worldwide. The impacts of these storms may worsen in the coming decades because of rapid coastal development coupled with sea-level rise and possibly increasing storm activity due to climate change. Major advances in coastal flood risk management are urgently needed. We present an integrated dynamic risk analysis for flooding task (iDraft) framework to assess and manage coastal flood risk at the city or regional scale, considering integrated dynamic effects of storm climatology change, sea-level rise, and coastal development. We apply the framework to New York City. First, we combine climate-model projected storm surge climatology and sea-level rise with engineering- and social/economic-model projected coastal exposure and vulnerability to estimate the flood damage risk for the city over the 21st century. We derive temporally-varying risk measures such as the annual expected damage as well as temporally-integrated measures such as the present value of future losses. We also examine the individual and joint contributions to the changing risk of the three dynamic factors (i.e., sea-level rise, storm change, and coastal development). Then, we perform probabilistic cost-benefit analysis for various coastal flood risk mitigation strategies for the city. Specifically, we evaluate previously proposed mitigation measures, including elevating houses on the floodplain and constructing flood barriers at the coast, by comparing their estimated cost and probability distribution of the benefit (i.e., present value of avoided future losses). We also propose new design strategies, including optimal design (e.g., optimal house elevation) and adaptive design (e.g., flood protection levels that are designed to be modified over time in a dynamic and uncertain environment).
Ahearn, Elizabeth A.; Lombard, Pamela J.
2014-01-01
Flint Brook, a tributary to the Third Branch White River in Roxbury, Vermont, has a history of flooding the Vermont Fish and Wildlife Department’s Roxbury Fish Culture Station (the hatchery) and surrounding infrastructure. Flooding resulting from tropical storm Irene on August 28–29, 2011, caused widespread destruction in the region, including extensive and costly damages to the State-owned hatchery and the transportation infrastructure in the Town of Roxbury, Vermont. Sections of State Route 12A were washed out, and several bridges and culverts on Oxbow Road, Thurston Hill Road, and the New England Central Railroad in Roxbury were heavily damaged. Record high peak-discharge estimates of 2,140 cubic feet per second (ft3/s) and 4,320 ft3/s were calculated for Flint Brook at its confluence with the Third Branch White River and for the Third Branch White River at about 350 feet (ft) downstream from the hatchery, respectively. The annual exceedance probabilities (AEPs) of the peak discharges for Flint Brook and the Third Branch White River were less than 0.2 percent (less than a one in 500 chance of occurring in a given year). Hydrologic and hydraulic analyses of Flint Brook and the Third Branch White River were done to investigate flooding at the hatchery in Roxbury and support efforts by the Federal Emergency Management Agency to assist State and local mitigation and reconstruction efforts. During the August 2011 flood, the majority of flow from Flint Brook (97 percent or 2,070 ft3/s) diverged from its primary watercourse due to a retaining wall failure immediately upstream of Oxbow Road and inundated the hatchery. Although a minor amount of flow from the Third Branch White River could have overtopped State Route 12A and spilled into the hatchery, the Third Branch White River did not cause flood damages or exacerbate flooding at the hatchery during the August 2011 flood. The Third Branch White River which flows adjacent to the hatchery does not flood the hatchery for the 10-, 2-, 1, or 0.2-percent annual exceedance probabilities. The simulated water-surface elevations for August 2011 flood equal the elevations of State Route 12A about 500 ft downstream of Thurston Hill Road adjacent to the troughs between the rearing ponds. Four flood mitigation alternatives being considered by the Vermont Agency of Transportation to improve the hydraulic performance of Flint Brook and reduce the risk of flooding at the hatchery include: (A) no changes to the infrastructure or existing alignment of Flint Brook (existing conditions [2014]), (B) structural changes to the bridges and the existing retaining wall along Flint Brook, (C) realignment of Flint Brook to flow along the south side of Oxbow Road to accommodate larger stream discharges, and (D) a diversion channel for flows greater than 1-percent annual exceedance probability. Although the 10-, 2-, and 1-percent AEP floods do not flood the hatchery under alternative A (no changes to the infrastructure), the 0.2-percent AEP flow still poses a flooding threat to the hatchery because flow will continue to overtop the existing retaining wall and flood the hatchery. Under the other mitigation alternatives (B, C, and D) that include some variation of structural changes to bridges, a retaining wall, and (or) channel, the peak discharges for the 10-, 2-, 1-, and 0.2-percent annual exceedance probabilities do not flood the hatchery. Water-surface profiles and flood inundation maps of the August 2011 flood and the 10-, 2-, 1-, and 0.2-percent AEPs for four mitigation alternatives were developed for Flint Brook and the Third Branch White River in the vicinity of the hatchery and can be used by the Federal, State, and local agencies to better understand the potential for future flooding at the hatchery.
Urban Flood Risk Insurance Models as a Strategy for Proactive Water Management Policies
NASA Astrophysics Data System (ADS)
Graciosa, M. C.; Mendiondo, E. M.
2006-12-01
To improve the water management through hydrological sciences, novel integration strategies could be underpinned to bridge up both engineering and economics. This is especially significant in developing nations where hydrologic extremes are expressive while the financial resources to mitigate that variability are scarce. One example of this problem is related to floods and their global and regional consequences. Floods mainly cause disasters in terms of human and material losses. In 2002, more than 30% of extreme climatic events occurred worldwide were floods, representing 42% of fatalities and 66% of material losses, mostly related to reactive policies. Throughout the last century, hydrological variability and rapidly growing of urban areas have developed new environmental problems in Brazilian cities, such as inundation occurrences on non-planned river basins. One of the causes of flood impacts is that public funds (national, state or municipal) have barely introduced wise proactive polices to follow up rapidly growing urban areas. Inexistent flood-risk-transfer mechanisms have caused the so-called `flood poverty cycle' due to reactive polices that have been increasing flood losses and, sometimes, became flood disasters. Flood risk management (FRM) is part of pro-active policies to mitigate inundation losses, in order to sustain environmental, social and economic aspects. Concepts and principles of FRM are part of a process that encompasses three phases: (1) preparedness stage, that consists in structural and non-structural actions to prevent and protect potential risk areas, such as early warning systems and scenarios development; (2) control stage, that refers to help actions and protection facilities during the event, and (3) restoration stage, that is related to rebuild affected areas, restore the river dynamics and transfer the socio-economic risks through flood insurances. Flood risk insurances agree to the goals of losses mitigation programs. Their use is more common in basins affected by alluvial floods. However, most of losses occur in urban areas, as a consequence of flash floods. Quantification of losses is an important basis of flood mitigation programs. It is also a complex task, which involves setting values on not easily quantifiable goods and determining risk and damage curves. This work proposes a flood insurance risk model coupled with a hydrological model as an incentive-based mechanism for achieving economically efficient flood management to be applied in Brazilian urban basins. It consists of integrating an insurance model and hydrological modeling of peak discharge warnings. It sets up curves, such as: water level versus discharge, water level versus inundation areas, and inundation area versus damage. It considers the prediction of future scenarios in order to evaluate the behavior of the insurance fund under climate variability. By using different probability distribution is compared the solvency and efficiency of the flood insurance fund for each premium-covered situation. The methodology is outlined to provide resources for the FRM restoration phase. Results are depicted from an experimental river basin sited on a rapid growing urban area, with some lessons learned valid to approach in other urban basins. This example is envisaged to foster resilience in the integration of hydrological science with policy and economic approaches. KEY WORDS: Flood risks management; flood insurance; hydrological modeling.
Lim, Joongbin; Lee, Kyoo-Seock
2017-03-01
Every summer, North Korea (NK) suffers from floods, resulting in decreased agricultural production and huge economic loss. Besides meteorological reasons, several factors can accelerate flood damage. Environmental studies about NK are difficult because NK is inaccessible due to the division of Korea. Remote sensing (RS) can be used to delineate flood inundated areas in inaccessible regions such as NK. The objective of this study was to investigate the spatial characteristics of flood susceptible areas (FSAs) using multi-temporal RS data and digital elevation model data. Such study will provide basic information to restore FSAs after reunification. Defining FSAs at the study site revealed that rice paddies with low elevation and low slope were the most susceptible areas to flood in NK. Numerous sediments from upper streams, especially streams through crop field areas on steeply sloped hills, might have been transported and deposited into stream channels, thus disturbing water flow. In conclusion, NK floods may have occurred not only due to meteorological factors but also due to inappropriate land use for flood management. In order to mitigate NK flood damage, reforestation is needed for terraced crop fields. In addition, drainage capacity for middle stream channel near rice paddies should be improved.
The 100-year flood seems to be changing. Can we really tell?
NASA Astrophysics Data System (ADS)
Ceres, R. L., Jr.; Forest, C. E.; Keller, K.
2017-12-01
Widespread flooding from Hurricane Harvey greatly exceeded the Federal Emergency Management Agency's 100-year flood levels. In the US, this flood level is often used as an important line of demarcation where areas above this level are considered safe, while areas below the line are at risk and require additional flood risk mitigation. In the wake of Harvey's damage, the US media has highlighted at least two important questions. First, has the 100-year flood level changed? Second, is the 100-year flood level a good metric for determining flood risk? To address the first question, we use an Observation System Simulation Experiment of storm surge flood levels and find that gradual changes to the 100-year storm surge level may not be reliably detected over the long lifespans expected of major flood risk mitigation strategies. Additionally, we find that common extreme value analysis models lead to biased results and additional uncertainty when incorrect assumptions are used for the underlying statistical model. These incorrect assumptions can lead to examples of negative learning. Addressing the second question, these findings further challenge the validity of using simple return levels such as the 100-year flood as a decision tool for assessing flood risk. These results indicate risk management strategies must account for such uncertainties to build resilient and robust planning tools that stakeholders desperately need.
Lamond, Jessica Elizabeth; Joseph, Rotimi D; Proverbs, David G
2015-07-01
The long term psychological effect of the distress and trauma caused by the memory of damage and losses associated with flooding of communities remains an under researched impact of flooding. This is particularly important for communities that are likely to be repeatedly flooded where levels of mental health disorder will damage long term resilience to future flooding. There are a variety of factors that affect the prevalence of mental health disorders in the aftermath of flooding including pre-existing mental health, socio-economic factors and flood severity. However previous research has tended to focus on the short term impacts immediately following the flood event and much less focus has been given to the longer terms effects of flooding. Understanding of factors affecting the longer term mental health outcomes for flooded households is critical in order to support communities in improving social resilience. Hence, the aim of this study was to explore the characteristics associated with psychological distress and mental health deterioration over the longer term. The research examined responses from a postal survey of households flooded during the 2007 flood event across England. Descriptive statistics, correlation analysis and binomial logistic regression were applied to data representing household characteristics, flood event characteristics and post-flood stressors and coping strategies. These factors were related to reported measures of stress, anxiety, depression and mental health deterioration. The results showed that household income, depth of flooding; having to move out during reinstatement and mitigating actions are related to the prevalence of psycho-social symptoms in previously flooded households. In particular relocation and household income were the most predictive factors. The practical implication of these findings for recovery after flooding are: to consider the preferences of households in terms of the need to move out during restorative building works and the financial resource constraints that may lead to severe mental hardship. In addition the findings suggest that support with installing mitigation measures may lead to improved mental health outcomes for communities at risk. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
PoliRisposta: Overcoming present limits of flood damage data
NASA Astrophysics Data System (ADS)
Molinari, Daniela; Mazuran, Mirjana; Arias, Carolina; Minucci, Guido; Atun, Funda; Ardagna, Danilo
2014-05-01
Already in the Fifties, US researchers identified the main weakness of flood records in the inadequacy of flood damage data. The recent seminar "Flood damage survey and assessment: which priorities for future research and practice?", held at Politecnico di Milano on 24-25 January 2012, highlighted that poor and insufficient flood loss data is still a matter of concern. In detail, participants concluded that the lack of damage data and of innovative approaches for their analysis (e.g. multivariate approaches, data mining) is one of the main causes of the shortcomings of present risk assessment tools; among them: the uncertainty of flood risk predictions and the limited capacity of estimating damages apart from the direct ones to residential sector (i.e. indirect/intangible damages). On the other hand, flood damage data collected in the aftermath of a disastrous event can support a variety of actions besides the validation/definition of damage models: the identification of priorities for intervention during emergencies, the creation of complete event scenarios on the bases of which understating the fragilities of the flooded areas as well as defining compensation schemes. However, few efforts have been addressed so far on the improvement of the way in which data are presently collected and stored. The aim of this presentation is to discuss first results of Poli-RISPOSTA (stRumentI per la protezione civile a Supporto delle POpolazioni nel poST Alluvione), a research project founded by Politecnico di Milano which is just intended to develop tools and procedures for the collection and storage of high quality, consistent and reliable flood damage data. In detail, specific objectives of Poli-RISPOSTA are: - Develop an operational procedure for collecting, storing and analyzing all damage data, in the aftermath of flood event, including: damage to infrastructures and public facilities, damage suffered by citizens and their dwellings and goods, and to economic activities; - Develop educational material and modules for training practitioners in the use of the procedure; - Develop enhanced IT tools (both hardware and software) to support the procedure, easing as much as possible the collection of field data, the creation of databases and the connection between the latter and different regional and municipal databases that already exist for different purposes (from cadastral data, to satellite images, etc.). Results will be discussed with respect to first applications in the Umbria Region (Central Italy). Emphasis will be put on the utility of results for damage modelling, risk mitigation and emergency management.
Optimal bridge retrofit strategy to enhance disaster resilience of highway transportation systems.
DOT National Transportation Integrated Search
2014-07-01
This study evaluated the resilience of highway bridges under the multihazard scenario of earthquake in the presence of : flood-induced scour. To mitigate losses incurred from bridge damage during extreme events, bridge retrofit strategies are : selec...
An Agent-Based Model of Evolving Community Flood Risk.
Tonn, Gina L; Guikema, Seth D
2018-06-01
Although individual behavior plays a major role in community flood risk, traditional flood risk models generally do not capture information on how community policies and individual decisions impact the evolution of flood risk over time. The purpose of this study is to improve the understanding of the temporal aspects of flood risk through a combined analysis of the behavioral, engineering, and physical hazard aspects of flood risk. Additionally, the study aims to develop a new modeling approach for integrating behavior, policy, flood hazards, and engineering interventions. An agent-based model (ABM) is used to analyze the influence of flood protection measures, individual behavior, and the occurrence of floods and near-miss flood events on community flood risk. The ABM focuses on the following decisions and behaviors: dissemination of flood management information, installation of community flood protection, elevation of household mechanical equipment, and elevation of homes. The approach is place based, with a case study area in Fargo, North Dakota, but is focused on generalizable insights. Generally, community mitigation results in reduced future damage, and individual action, including mitigation and movement into and out of high-risk areas, can have a significant influence on community flood risk. The results of this study provide useful insights into the interplay between individual and community actions and how it affects the evolution of flood risk. This study lends insight into priorities for future work, including the development of more in-depth behavioral and decision rules at the individual and community level. © 2017 Society for Risk Analysis.
44 CFR 78.6 - Flood Mitigation Plan approval process.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...
44 CFR 78.6 - Flood Mitigation Plan approval process.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...
44 CFR 78.6 - Flood Mitigation Plan approval process.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...
A 500-year history of floods in the semi arid basins of south-eastern Spain
NASA Astrophysics Data System (ADS)
Sánchez García, Carlos; Schulte, Lothar; Peña, Juan Carlos; Carvalho, Filpe; Brembilla, Carla
2016-04-01
Floods are one of the natural hazards with higher incidence in the south-eastern Spain, the driest region in Europe, causing fatalities, damage of infrastructure and economic losses. Flash-floods in semi arid environments are related to intensive rainfall which can last from few hours to days. These floods are violent and destructive because of their high discharges, sediment transport and aggradation processes in the flood plain. Also during historical times floods affected the population in the south-eastern Spain causing sever damage or in some cases the complete destruction of towns. Our studies focus on the flood reconstruction from historical sources of the Almanzora, Aguas and Antas river basins, which have a surface between 260-2600 km2. We have also compiled information from the Andarax river and compared the flood series with the Guadalentín and Segura basins from previous studies (Benito et. al., 2010 y Machado et al., 2011). Flood intensities have been classified in four levels according to the type of damage: 1) ordinary floods that only affect agriculture plots; 2) extraordinary floods which produce some damage to buildings and hydraulic infrastructure; 3) catastrophic floods which caused sever damage, fatalities and partial or complete destruction of towns. A higher damage intensity of +1 magnitude was assigned when the event is recorded from more than one major sub-basin (stretches and tributaries such as Huércal-Overa basin) or catchment (e.g. Antas River). In total 102 incidences of damages and 89 floods were reconstructed in the Almanzora (2.611 km2), Aguas (539 km2), Antas (261 km2) and Andarax (2.100 km2) catchments. The Almanzora River was affected by 36 floods (1550-2012). The highest events for the Almanzora River were in 1580, 1879, 1973 and 2012 producing many fatalities and destruction of several towns. In addition, we identified four flood-clusters 1750-1780, 1870-1900, 1960-1977 and 1989-2012 which coincides with the periods of increased flood frequencies in the Andarax catchment. However, only the 1870-1900 flood-cluster is synchronic with the Guadalentín and Segura flood-periods, whereas the rest of flood-episodes are non-synchronic. The 2012 event, the largest flood in the Almanzora river since the 1973 event, produced in the lower stretch less damage than in the middle stretch because of structural mitigation measures such as reservoir and artificial river channelling. However, in the lower Antas and Aguas rivers the situation is different. The damages increased in 2012 as a result from the increased exposure of tourism infrastructure in the floodplain near the coastline during the last two decades. Traditional settlements of rural societies were located also in the lower river stretches at a higher elevation (e.g. fluvial terraces, glacis, slopes) like today in the higher and middle catchments.
44 CFR 78.6 - Flood Mitigation Plan approval process.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood Mitigation Plan approval..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...
Developing a Malaysia flood model
NASA Astrophysics Data System (ADS)
Haseldine, Lucy; Baxter, Stephen; Wheeler, Phil; Thomson, Tina
2014-05-01
Faced with growing exposures in Malaysia, insurers have a need for models to help them assess their exposure to flood losses. The need for an improved management of flood risks has been further highlighted by the 2011 floods in Thailand and recent events in Malaysia. The increasing demand for loss accumulation tools in Malaysia has lead to the development of the first nationwide probabilistic Malaysia flood model, which we present here. The model is multi-peril, including river flooding for thousands of kilometres of river and rainfall-driven surface water flooding in major cities, which may cause losses equivalent to river flood in some high-density urban areas. The underlying hazard maps are based on a 30m digital surface model (DSM) and 1D/2D hydraulic modelling in JFlow and RFlow. Key mitigation schemes such as the SMART tunnel and drainage capacities are also considered in the model. The probabilistic element of the model is driven by a stochastic event set based on rainfall data, hence enabling per-event and annual figures to be calculated for a specific insurance portfolio and a range of return periods. Losses are estimated via depth-damage vulnerability functions which link the insured damage to water depths for different property types in Malaysia. The model provides a unique insight into Malaysian flood risk profiles and provides insurers with return period estimates of flood damage and loss to property portfolios through loss exceedance curve outputs. It has been successfully validated against historic flood events in Malaysia and is now being successfully used by insurance companies in the Malaysian market to obtain reinsurance cover.
Remote-sensing-based rapid assessment of flood crop loss to support USDA flooding decision-making
NASA Astrophysics Data System (ADS)
Di, L.; Yu, G.; Yang, Z.; Hipple, J.; Shrestha, R.
2016-12-01
Floods often cause significant crop loss in the United States. Timely and objective assessment of flood-related crop loss is very important for crop monitoring and risk management in agricultural and disaster-related decision-making in USDA. Among all flood-related information, crop yield loss is particularly important. Decision on proper mitigation, relief, and monetary compensation relies on it. Currently USDA mostly relies on field surveys to obtain crop loss information and compensate farmers' loss claim. Such methods are expensive, labor intensive, and time consumptive, especially for a large flood that affects a large geographic area. Recent studies have demonstrated that Earth observation (EO) data are useful in post-flood crop loss assessment for a large geographic area objectively, timely, accurately, and cost effectively. There are three stages of flood damage assessment, including rapid assessment, early recovery assessment, and in-depth assessment. EO-based flood assessment methods currently rely on the time-series of vegetation index to assess the yield loss. Such methods are suitable for in-depth assessment but are less suitable for rapid assessment since the after-flood vegetation index time series is not available. This presentation presents a new EO-based method for the rapid assessment of crop yield loss immediately after a flood event to support the USDA flood decision making. The method is based on the historic records of flood severity, flood duration, flood date, crop type, EO-based both before- and immediate-after-flood crop conditions, and corresponding crop yield loss. It hypotheses that a flood of same severity occurring at the same pheonological stage of a crop will cause the similar damage to the crop yield regardless the flood years. With this hypothesis, a regression-based rapid assessment algorithm can be developed by learning from historic records of flood events and corresponding crop yield loss. In this study, historic records of MODIS-based flood and vegetation products and USDA/NASS crop type and crop yield data are used to train the regression-based rapid assessment algorithm. Validation of the rapid assessment algorithm indicates it can predict the yield loss at 90% accuracy, which is accurate enough to support USDA on flood-related quick response and mitigation.
Assessment of mean annual flood damage using simple hydraulic modeling and Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Oubennaceur, K.; Agili, H.; Chokmani, K.; Poulin, J.; Marceau, P.
2016-12-01
Floods are the most frequent and the most damaging natural disaster in Canada. The issue of assessing and managing the risk related to this disaster has become increasingly crucial for both local and national authorities. Brigham, a municipality located in southern Quebec Province, is one of the heavily affected regions by this disaster because of frequent overflows of the Yamaska River reaching two to three times per year. Since Irene Hurricane which struck the region in 2011, causing considerable socio-economic damage, the implementation of mitigation measures has become a major priority for this municipality. To do this, a preliminary study to evaluate the risk to which this region is exposed is essential. Conventionally, approaches only based on the characterization of the hazard (e.g. floodplains extensive, flood depth) are generally adopted to study the risk of flooding. In order to improve the knowledge of this risk, a Monte Carlo simulation approach combining information on the hazard with vulnerability-related aspects has been developed. This approach integrates three main components: (1) hydrologic modelling aiming to establish a probability-discharge function which associate each measured discharge to its probability of occurrence (2) hydraulic modeling that aims to establish the relationship between the discharge and the water stage at each building (3) damage study that aims to assess the buildings damage using damage functions. The damage is estimated according to the water depth defined as the difference between the water level and the elevation of the building's first floor. The application of the proposed approach allows estimating the annual average cost of damage caused by floods on buildings. The obtained results will be useful for authorities to support their decisions on risk management and prevention against this disaster.
Code of Federal Regulations, 2011 CFR
2011-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.1 Purpose. (a... the hazard mitigation grant programs made available under the National Flood Insurance Act of 1968, as... Repetitive Loss (SRL) and Flood Mitigation Assistance (FMA) grant programs mitigate losses from floods...
Code of Federal Regulations, 2014 CFR
2014-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.1 Purpose. (a... the hazard mitigation grant programs made available under the National Flood Insurance Act of 1968, as... Repetitive Loss (SRL) and Flood Mitigation Assistance (FMA) grant programs mitigate losses from floods...
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.1 Purpose. (a... the hazard mitigation grant programs made available under the National Flood Insurance Act of 1968, as... Repetitive Loss (SRL) and Flood Mitigation Assistance (FMA) grant programs mitigate losses from floods...
Code of Federal Regulations, 2013 CFR
2013-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.1 Purpose. (a... the hazard mitigation grant programs made available under the National Flood Insurance Act of 1968, as... Repetitive Loss (SRL) and Flood Mitigation Assistance (FMA) grant programs mitigate losses from floods...
NASA Astrophysics Data System (ADS)
McKinney, D. C.; Cuellar, A. D.
2015-12-01
Climate change has accelerated glacial retreat in high altitude glaciated regions of Nepal leading to the growth and formation of glacier lakes. Glacial lake outburst floods (GLOF) are sudden events triggered by an earthquake, moraine failure or other shock that causes a sudden outflow of water. These floods are catastrophic because of their sudden onset, the difficulty predicting them, and enormous quantity of water and debris rapidly flooding downstream areas. Imja Lake in the Himalaya of Nepal has experienced accelerated growth since it first appeared in the 1960s. Communities threatened by a flood from Imja Lake have advocated for projects to adapt to the increasing threat of a GLOF. Nonetheless, discussions surrounding projects for Imja have not included a rigorous analysis of the potential consequences of a flood, probability of an event, or costs of mitigation projects in part because this information is unknown or uncertain. This work presents a demonstration of a decision making methodology developed to rationally analyze the risks posed by Imja Lake and the various adaptation projects proposed using available information. In this work the authors use decision analysis, data envelopement analysis (DEA), and sensitivity analysis to assess proposed adaptation measures that would mitigate damage in downstream communities from a GLOF. We use an existing hydrodynamic model of the at-risk area to determine how adaptation projects will affect downstream flooding and estimate fatalities using an empirical method developed for dam failures. The DEA methodology allows us to estimate the value of a statistical life implied by each project given the cost of the project and number of lives saved to determine which project is the most efficient. In contrast the decision analysis methodology requires fatalities to be assigned a cost but allows the inclusion of uncertainty in the decision making process. We compare the output of these two methodologies and determine the sensitivity of the conclusions to changes in uncertain input parameters including project cost, value of a statistical life, and time to a GLOF event.
78 FR 54801 - Gulf Coast Restoration Trust Fund
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-06
..., including port infrastructure. (g) Coastal flood protection and related infrastructure. (h) Promotion of... protection of natural resources, mitigation of damage to fish and wildlife, and workforce development and job..., marine and wildlife habitats, beaches, coastal wetlands, and economy of the Gulf Coast. The Council will...
TRADING ALLOWANCES FOR STORMWATER CONTROL: HYDROLOGY AND OPPORTUNITY COSTS
Excess stormwater runoff is a serious problem in a large number of urban areas, causing flooding, water pollution, groundwater recharge deficits and ecological damage to urban streams. It has been posited that to mitigate the effects of excess stormwater runoff, policy makers...
TRADING ALLOWANCES FOR STORMWATER CONTROL: HYDROLOGY AND OPPORTUNITY COSTS
Excess stormwater runoff is a serious problem in a large number of urban areas, causing flooding, water pollution, groundwater recharge deficits and ecological damage to urban streams. It has been posited that to mitigate the effects of excess stormwater runoff, policy makers cou...
An operational procedure for rapid flood risk assessment in Europe
NASA Astrophysics Data System (ADS)
Dottori, Francesco; Kalas, Milan; Salamon, Peter; Bianchi, Alessandra; Alfieri, Lorenzo; Feyen, Luc
2017-07-01
The development of methods for rapid flood mapping and risk assessment is a key step to increase the usefulness of flood early warning systems and is crucial for effective emergency response and flood impact mitigation. Currently, flood early warning systems rarely include real-time components to assess potential impacts generated by forecasted flood events. To overcome this limitation, this study describes the benchmarking of an operational procedure for rapid flood risk assessment based on predictions issued by the European Flood Awareness System (EFAS). Daily streamflow forecasts produced for major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in terms of flood-prone areas, economic damage and affected population, infrastructures and cities.An extensive testing of the operational procedure has been carried out by analysing the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-based and report-based flood extent data, while modelled estimates of economic damage and affected population are compared against ground-based estimations. Finally, we evaluate the skill of risk estimates derived from EFAS flood forecasts with different lead times and combinations of probabilistic forecasts. Results highlight the potential of the real-time operational procedure in helping emergency response and management.
NASA Astrophysics Data System (ADS)
Khajehei, S.; Moradkhani, H.
2017-12-01
Understanding socio-economic characteristics involving natural hazards potential, vulnerability, and resilience is necessary to address the damages to economy and loss of life from extreme natural hazards. The vulnerability to flash floods is dependent on both biophysical and socio-economic factors. Although the biophysical characteristics (e.g. climate, vegetation, and land use) are informative and useful for predicting spatial and temporal extent of flash floods, they have minimal bearing on predicting when and where flash floods are likely to influence people or damage valuable assets and resources. The socio-economic factors determine spatial and temporal scales of the regions affected by flash floods. In this study, we quantify the socio-economic vulnerability to flash floods across the Contiguous United States (CONUS). A socio-economic vulnerability index was developed, employing Bayesian principal components for each state in the CONUS. For this purpose, extensive sets of social and economic variables from US Census and the Bureau of Economic Analysis were used. We developed maps presenting the coincidence of socio-economic vulnerability and the flash floods records. This product can help inform flash flood prevention, mitigation and recovery planning, as well as reducing the flash flood hazards affecting vulnerable places and population.
Flood of July 12-13, 2004, Burlington and Camden Counties, South-Central New Jersey
Protz, Amy R.; Reed, Timothy J.
2006-01-01
Intense rainfall inundated south-central New Jersey on July 12-13, 2004, causing major flooding with heavy property, road, and bridge damage in Burlington and Camden Counties. Forty-five dams were topped or damaged, or failed completely. The affected areas were in the Rancocas Creek, Cooper River, and Pennsauken Creek Basins. The U.S. Geological Survey (USGS) documented peak stream elevations and flows at 56 selected sites within the affected area. With rainfall totals averaging more than 6 inches throughout the three basins, peak-of-record flood elevations and streamflows occurred at all but one USGS stream gage, where the previous record was tied. Flood-frequency recurrence-intervals ranged from 30 to greater than 100 years and maximum streamflow per square mile ranged from 13.9 to 263 cubic feet per second per square mile (ft3/s/mi2). Peak streamflow at USGS stream gages surrounding the affected basins are associated with considerably lower recurrence intervals and demonstrate the limited extent of the flood. A high tide of about 1 foot above monthly mean high tide did not contribute to high-water conditions. Low ground-water levels prior to the rainfall helped to mitigate flooding in the affected basins. Compared with historical floods in the Rancocas Creek Basin during 1938-40, the July 2004 flood had greater streamflow, but lower stream elevations. Property damage from the event was estimated at $50 million. Governor James E. McGreevy declared a State of Emergency in Burlington and Camden Counties on July 13, 2004. After assessment of the damage by the Federal Emergency Management Agency (FEMA), President George W. Bush declared Burlington and Camden Counties disaster areas on July 16, 2004.
Benchmarking an operational procedure for rapid flood mapping and risk assessment in Europe
NASA Astrophysics Data System (ADS)
Dottori, Francesco; Salamon, Peter; Kalas, Milan; Bianchi, Alessandra; Feyen, Luc
2016-04-01
The development of real-time methods for rapid flood mapping and risk assessment is crucial to improve emergency response and mitigate flood impacts. This work describes the benchmarking of an operational procedure for rapid flood risk assessment based on the flood predictions issued by the European Flood Awareness System (EFAS). The daily forecasts produced for the major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations, based on the hydro-meteorological dataset of EFAS. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in near real-time in terms of flood prone areas, potential economic damage, affected population, infrastructures and cities. An extensive testing of the operational procedure is carried out using the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-derived flood footprints, while ground-based estimations of economic damage and affected population is compared against modelled estimates. We evaluated the skill of flood hazard and risk estimations derived from EFAS flood forecasts with different lead times and combinations. The assessment includes a comparison of several alternative approaches to produce and present the information content, in order to meet the requests of EFAS users. The tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management.
Use of Remote Sensing Products for the SERVIR Project
NASA Technical Reports Server (NTRS)
Policelli, Frederick S.
2010-01-01
The United Nations University (UNU) estimates that floods presently impacts greater than 520 million people per year worldwide, resulting in up to 25,000 annual deaths, extensive homelessness, disaster-induced disease, crop and livestock damage, famine, and other serious harm. Meanwhile, aid agencies such as the International Federation of Red Cross and Red Crescent Societies (IFRC) are increasingly seeking better information concerning flood hazards in order to plan for and help mitigate the effects of damaging floods. There is fertile ground to continue development of better remote sensing and modeling techniques to help manage flood related disasters. Disaster management and humanitarian aid organizations need accurate and timely information for making decisions regarding deployment of relief teams and emergency supplies during major floods. Flood maps based on the use of satellite data have proven extremely valuable to such organizations for identifying the location, extent, and severity of these events. However, despite extraordinary efforts on the part of remote sensing data providers to rapidly deliver such maps, there is typically a delay of several days or even weeks from the on-set of flooding until such maps are available to the disaster management community. This paper summarizes efforts at NASA to address this problem through development of an integrated and automated process of a) flood forecasting b) flood detection, c) satellite data acquisition, d) rapid flood mapping and distribution, and e) validation of flood forecasting and detection products.
TRADING ALLOWANCES FOR STORMWATER CONTROL: ACCOUNTING FOR CONTINUOUS HYDROLOGY AND OPPORTUNITY COSTS
Excess stormwater runoff is a serious problem in a large number of urban areas, causing flooding, water pollution, groundwater recharge deficits and ecological damage to urban streams. It has been posited that to mitigate the effects of excess stormwater runoff, policy makers cou...
Flood risk and cultural heritage: the case study of Florence (Italy)
NASA Astrophysics Data System (ADS)
Arrighi, Chiara; Castelli, Fabio; Brugioni, Marcello; Franceschini, Serena; Mazzanti, Bernardo
2016-04-01
Cultural heritage plays a key role for communities in terms of both identity and economic value. It is often under serious threat by natural hazards, nevertheless, quantitative assessments of risk are quite uncommon. This work addresses the flood risk assessment to cultural heritage in an exemplary art city, which is Florence, Italy. The risk assessment method here adopted borrows the most common definition of flood risk as the product of hazard, vulnerability and exposure, with some necessary adjustments. The risk estimation is carried out at the building scale for the whole UNESCO site, which coincides with the historical centre of the city. A distinction in macro- and micro-damage categories has been made according to the vulnerability of the objects at risk. Two damage macro-categories are selected namely cultural buildings and contents. Cultural buildings are classified in damage micro-categories as churches/religious complexes, libraries/archives and museums. The damages to the contents are estimated for four micro-categories: paintings, sculptures, books/prints and goldsmith's art. Data from hydraulic simulations for different recurrence scenarios, historical reports of the devastating 1966 flood and the cultural heritage recognition sheets allow estimating and mapping the annual expected number of works of art lost in absence of risk mitigation strategies.
The Emergence of Flood Insurance in Canada: Navigating Institutional Uncertainty.
Thistlethwaite, Jason
2017-04-01
Flood insurance has remained unavailable in Canada based on an assessment that it lacks economic viability. In response to Canada's costliest flood event to date in 2013, the Canadian insurance industry has started to develop a framework to expand existing property insurance to cover flood damage. Research on flood insurance has overlooked why and how insurance systems transition to expand insurance coverage without evidence of economic viability. This article will address this gap through a case study on the emergence of flood insurance in Canada, and the approach to its expansion. Between 2013 and 2016, insurance industry officials representing over 60% of premiums collected in Canada were interviewed. These interviews revealed that flood insurance is being expanded in response to institutional pressure, specifically external stakeholder expectations that the insurance industry will adopt a stronger role in managing flood risk through coverage of flood damage. Further evidence of this finding is explored by assessing the emergence of a unique flood insurance model that involves a risk-adjusted and optional product along with an expansion of government policy supporting flood risk mitigation. This approach attempts to balance industry concerns about economic viability with institutional pressure to reduce flood risk through insurance. This analysis builds on existing research by providing the first scholarly analysis of flood insurance in Canada, important "empirical" teeth to existing conceptual analysis on the availability of flood insurance, and the influence of institutional factors on risk analysis within the insurance sector. © 2016 Society for Risk Analysis.
Measuring flood footprint of a regional economy - A case study for the UK flooding
NASA Astrophysics Data System (ADS)
Guan, D.
2013-12-01
Analysis of the urban economy and society is central to understanding the broad impacts of flooding and to identify cost-effective adaptation and mitigation measures. Assessments of the flooding impacts on cities have traditionally focused on the initial impact on people and assets. These initial estimates (so-called ';direct damage') are useful both in understanding the immediate implications of damage, and in marshalling the pools of capital and supplies required for re-building after an event. Since different economies as well as societies are coupled, especially under the current economic crisis, any small-scale damage may be multiplied and cascaded throughout wider economic systems and social networks. The direct and indirect damage is currently not evaluated well and could be captured by quantification of what we call the flood footprint. Flooding in one location can impact the whole UK economy. Neglecting these knock-on costs (i.e. the true footprint of the flood) means we might be ignoring the economic benefits and beneficiaries of flood risk management interventions. In 2007, for example, floods cost the economy about £3.2 bn directly, but the wider effect might actually add another 50% to 250% to that. Flood footprint is a measure of the exclusive total socioeconomic impact that is directly and indirectly caused by a flood event to the flooding region and wider economic systems and social networks. We adopt the UK 2012 flooding. An input-output basic dynamic inequalities (BDI) model is used to assess the impact of the floodings on the level of a Yorkshire economy, accounting for interactions between industries through demand and supply of intermediate consumption goods with a circular flow. After the disaster the economy will be unbalanced. The recovery process finishes when the economy is completely balance, i.e., when labour production capacity equals demands and production and all the variables reach pre-disaster levels. The analysis is carried out focusing on 42 sectors. Most regional data have been produced from the Multisectoral Dynamic Model of the UK economy. The flooding caused a 3.56% direct damage in the Yorkshire economy, while the indirect accounted for 14.58%.Utilities and transportation where the sectors that suffered the greatest direct impact. This impact indirectly transferred through business and supply chain to services, construction and primary industries.
NASA Astrophysics Data System (ADS)
Domeneghetti, Alessio; Castellarin, Attilio; Brath, Armando
2013-04-01
The European Flood Directive (2007/60/EC) has fostered the development of innovative and sustainable approaches and methodologies for flood-risk mitigation and management. Furthermore, concerning flood-risk mitigation, the increasing awareness of how the anthropogenic pressures (e.g. demographic and land-use dynamics, uncontrolled urban and industrial expansion on flood-prone area) could strongly increase potential flood damages and losses has triggered a paradigm shift from "defending the territory against flooding" (e.g. by means of levee system strengthening and heightening) to "living with floods" (e.g. promoting compatible land-uses or adopting controlled flooding strategies of areas located outside the main embankments). The assessment of how socio-economic dynamics may influence flood-risk represents a fundamental skill that should be considered for planning a sustainable industrial and urban development of flood-prone areas, reducing their vulnerability and therefore minimizing socio-economic and ecological losses due to large flood events. These aspects, which are of fundamental importance for Institutions and public bodies in charge of Flood Directive requirements, need to be considered through a holistic approach at river basin scale. This study focuses on the evaluation of large-scale flood-risk mitigation strategies for the middle-lower reach of River Po (~350km), the longest Italian river and the largest in terms of streamflow. Due to the social and economical importance of the Po River floodplain (almost 40% of the total national gross product results from this area), our study aims at investigating the potential of combining simplified vulnerability indices with a quasi-2D model for the definition of sustainable and robust flood-risk mitigation strategies. Referring to past (1954) and recent (2006) land-use data sets (e.g. CORINE) we propose simplified vulnerability indices for assessing potential flood-risk of industrial and urbanized flood prone areas taking into account altimetry and population density, and we analyze the modification of flood-risk occurred during last decades due to the demographic dynamics of the River Po floodplains. Flood hazard associated to a high magnitude event (i.e. return period of about 500 year) was estimated by means of a quasi-2D hydraulic model set up for the middle-lower portion of the Po River and for its major tributaries. The results of the study highlight how coupling a large-scale numerical model with the proposed flood-vulnerability indices could be a useful tool for decision-makers when they are called to define sustainable spatial development plans for the study area, or when they need to identify priorities in the organization of civil protection actions during a major flood event that could include the necessity of controlled flooding of flood-prone areas located outside the main embankment system.
Economic motivation of households to undertake private precautionary measures against floods
NASA Astrophysics Data System (ADS)
Kreibich, H.; Christenberger, S.; Schwarze, R.
2011-02-01
Flood damage is on the increase due to a combination of growing vulnerability and a changing climate. This trend can be mitigated only through significantly improved flood risk management which, alongside the efforts of public authorities, will include improvements in the mitigation measures adopted by private households. Economically "reasonable" efforts to self-insure and self-protect should be expected from households before the government steps in with publicly-funded relief programmes. To gain a deeper understanding of the benefits of households' precautionary measures, telephone interviews with private home owners were conducted in the Elbe and Danube catchments in Germany after the floods of 2002 and again after the floods in 2005 and 2006. Only detached, solid single-family houses were included in this study, which is based on 759 interviews. In addition, market-based cost assessments were solicited based on a "model building". Expert interviews and a literature review - including catalogues and price lists for building materials and household appliances - were used as back-up information for the cost assessments. The comparison of costs and benefits shows that large investments, such as building a sealed cellar, are only economically efficient if the building is flooded very frequently, that is, if it is located in a high flood risk area. In such areas it would be preferable in economic terms not to build a new house at all - or else to build a house without a cellar. Small investments, however, such as oil tank protection, can prevent serious damage at low cost. Such investments are still profitable even if the building is flooded every 50 years or less on average. It could be argued that these low-cost measures should be made mandatory through the enforcement of building codes. Financial incentives built into insurance contracts coupled with limits set on governmental relief programmes would provide an economic motivation for people to invest in precautionary measures.
76 FR 53926 - Missouri; Major Disaster and Related Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-30
... have determined that the damage in certain areas of the State of Missouri resulting from flooding... eligible to apply for assistance under the Hazard Mitigation Grant Program. (The following Catalog of... declaration of a major disaster for the State of Missouri (FEMA-4012-DR), dated August 12, 2011, and related...
76 FR 47221 - Ohio; Major Disaster and Related Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-04
... determined that the damage in certain areas of the State of Ohio resulting from severe storms and flooding... apply for assistance under the Hazard Mitigation Grant Program. (The following Catalog of Federal... of a major disaster for the State of Ohio (FEMA-4002-DR), dated July 13, 2011, and related...
NASA Astrophysics Data System (ADS)
Huttenlau, Matthias; Schneeberger, Klaus; Winter, Benjamin; Pazur, Robert; Förster, Kristian; Achleitner, Stefan; Bolliger, Janine
2017-04-01
Devastating flood events have caused substantial economic damage across Europe during past decades. Flood risk management has therefore become a topic of crucial interest across state agencies, research communities and the public sector including insurances. There is consensus that mitigating flood risk relies on impact assessments which quantitatively account for a broad range of aspects in a (changing) environment. Flood risk assessments which take into account the interaction between the drivers climate change, land-use change and socio-economic change might bring new insights to the understanding of the magnitude and spatial characteristic of flood risks. Furthermore, the comparative assessment of different adaptation measures can give valuable information for decision-making. With this contribution we present an inter- and transdisciplinary research project aiming at developing and applying such an impact assessment relying on a coupled modelling framework for the Province of Vorarlberg in Austria. Stakeholder engagement ensures that the final outcomes of our study are accepted and successfully implemented in flood management practice. The study addresses three key questions: (i) What are scenarios of land- use and climate change for the study area? (ii) How will the magnitude and spatial characteristic of future flood risk change as a result of changes in climate and land use? (iii) Are there spatial planning and building-protection measures which effectively reduce future flood risk? The modelling framework has a modular structure comprising modules (i) climate change, (ii) land-use change, (iii) hydrologic modelling, (iv) flood risk analysis, and (v) adaptation measures. Meteorological time series are coupled with spatially explicit scenarios of land-use change to model runoff time series. The runoff time series are combined with impact indicators such as building damages and results are statistically assessed to analyse flood risk scenarios. Thus, the regional flood risk can be expressed in terms of expected annual damage and damages associated with a low probability of occurrence. We consider building protection measures explicitly as part of the consequence analysis of flood risk whereas spatial planning measures are already considered as explicit scenarios in the course of land-use change modelling.
44 CFR 78.5 - Flood Mitigation Plan development.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood Mitigation Plan development. 78.5 Section 78.5 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY... MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate a...
44 CFR 78.5 - Flood Mitigation Plan development.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood Mitigation Plan development. 78.5 Section 78.5 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY... MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate a...
Wieczorek, G.F.; Larsen, M.C.; Eaton, L.S.; Morgan, B.A.; Blair, J.L.
2001-01-01
Heavy rainfall from the storm of December 14-16, 1999 triggered thousands of landslides on steep slopes of the Sierra de Avila north of Caracas, Venezuela. In addition to landslides, heavy rainfall caused flooding and massive debris flows that damaged coastal communities in the State of Vargas along the Caribbean Sea. Examination of the rainfall pattern obtained from the GOES-8 satellite showed that the pattern of damage was generally consistent with the area of heaviest rainfall. Field observations of the severely affected drainage basins and historical records indicate that previous flooding and massive debris-flow events of similar magnitude to that of December 1999 have occurred throughout this region. The volume of debris-flow deposits and the large boulders that the flows transported qualifies the 1999 event amongst the largest historical rainfall-induced debris flows documented worldwide.
U.S. Coastal Flood Damage Reduction Projects: Federal Authorization and Investment Trends
NASA Astrophysics Data System (ADS)
Carter, N. T.
2015-12-01
The 2015 U.S. Environmental Protection Agency report Climate Change in the United States: Benefits of Global Action estimated the potential cumulative future economic impacts of storm surge and sea-level rise on U.S. coasts during this century at 5 trillion (2014 dollars) if no adaptation measures are implemented. These impacts drop to 0.8 trillion if investments are made in cost-effective adaptations and protections. Awareness of flood risk and its long-term fiscal impact historically has proven insufficient to motivate pre-disaster land use changes and investments in mitigation and protection. While many adaptations and protections fall largely under state and local authority, some stakeholders are interested in federal coastal flood protection projects, including projects by the U.S. Army Corps of Engineers. Since the 1950s, Congress has authorized the Corps to construct specific coastal projects. The broad vision, strategy, and priorities for the federal role in coastal flood damage reduction projects nonetheless remain ill-defined. This research analyzes (1) the authorization and appropriations trends for Corps coastal storm damage reduction projects, and (2) how Corps feasibility studies account for and address coastal flood hazards. Identified trends include: emergency appropriations for storm-damaged areas outstrip annual investments in coastal flood projects; the rate at which projects are congressionally approved for construction outpaces the rate at which construction is funded; and how coastal protection projects are evaluated in Corps feasibility studies shows variation and change in agency practices. These trends have consequences; they affect public and local expectations when projects begin providing protection benefits, and may influence investments in other adaptation measures. These trends also raise questions for policymakers at all levels and for scientists and practitioners interested in coastal flood resilience.
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... each State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... each State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... each State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... each State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
Code of Federal Regulations, 2013 CFR
2013-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.1 Purpose... of the Flood Mitigation Assistance (FMA) program, authorized by Sections 1366 and 1367 of the... eliminate claims under the National Flood Insurance Program (NFIP) through mitigation activities. The...
Code of Federal Regulations, 2014 CFR
2014-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.1 Purpose... of the Flood Mitigation Assistance (FMA) program, authorized by Sections 1366 and 1367 of the... eliminate claims under the National Flood Insurance Program (NFIP) through mitigation activities. The...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78... State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance with... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.1 Purpose... of the Flood Mitigation Assistance (FMA) program, authorized by Sections 1366 and 1367 of the... eliminate claims under the National Flood Insurance Program (NFIP) through mitigation activities. The...
Code of Federal Regulations, 2011 CFR
2011-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.1 Purpose... of the Flood Mitigation Assistance (FMA) program, authorized by Sections 1366 and 1367 of the... eliminate claims under the National Flood Insurance Program (NFIP) through mitigation activities. The...
Vulnerability of bridges to scour: insights from an international expert elicitation workshop
NASA Astrophysics Data System (ADS)
Lamb, Rob; Aspinall, Willy; Odbert, Henry; Wagener, Thorsten
2017-08-01
Scour (localised erosion) during flood events is one of the most significant threats to bridges over rivers and estuaries, and has been the cause of numerous bridge failures, with damaging consequences. Mitigation of the risk of bridges being damaged by scour is therefore important to many infrastructure owners, and is supported by industry guidance. Even after mitigation, some residual risk remains, though its extent is difficult to quantify because of the uncertainties inherent in the prediction of scour and the assessment of the scour risk. This paper summarises findings from an international expert workshop on bridge scour risk assessment that explores uncertainties about the vulnerability of bridges to scour. Two specialised structured elicitation methods were applied to explore the factors that experts in the field consider important when assessing scour risk and to derive pooled expert judgements of bridge failure probabilities that are conditional on a range of assumed scenarios describing flood event severity, bridge and watercourse types and risk mitigation protocols. The experts' judgements broadly align with industry good practice, but indicate significant uncertainty about quantitative estimates of bridge failure probabilities, reflecting the difficulty in assessing the residual risk of failure. The data and findings presented here could provide a useful context for the development of generic scour fragility models and their associated uncertainties.
Improvements on flood alleviation in Germany: lessons learned from the Elbe flood in August 2002.
Petrow, Theresia; Thieken, Annegret H; Kreibich, Heidi; Bahlburg, Cord Heinrich; Merz, Bruno
2006-11-01
The increase in damage due to natural disasters is directly related to the number of people who live and work in hazardous areas and continuously accumulate assets. Therefore, land use planning authorities have to manage effectively the establishment and development of settlements in flood-prone areas in order to avoid the further increase of vulnerable assets. Germany faced major destruction during the flood in August 2002 in the Elbe and Danube catchments, and many changes have been suggested in the existing German water and planning regulations. This article presents some findings of a "Lessons Learned" study that was carried out in the aftermath of the flood and discusses the following topics: 1) the establishment of comprehensive hazard maps and flood protection concepts, 2) the harmonization of regulations of flood protection at the federal level, 3) the communication of the flood hazard and awareness strategies, and 4) how damage potential can be minimized through measures of area precaution such as resettlement and risk-adapted land use. Although attempts towards a coordinated and harmonized creation of flood hazard maps and concepts have been made, there is still no uniform strategy at all planning levels and for all states (Laender) of the Federal Republic of Germany. The development and communication of possible mitigation strategies for "unthinkable extreme events" beyond the common safety level of a 100-year flood are needed. In order to establish a sustainable and integrated flood risk management, interdisciplinary and catchment-based approaches are needed.
Summary of floods in the United States during 1969
Reid, J.K.
1975-01-01
The most outstanding floods in the United States during 1969 are described in chronological order. The areas most seriously affected by flooding were: Central and southern California (January and February); the upper Midwestern States of North Dakota, South Dakota, Minnesota, Iowa, Wisconsin, and Illinois (April); north-central Ohio (July); Mississippi, Alabama, and Virginia (Hurricane Camille in August); and Florida and Georgia (September). Severe floods in central and southern California were caused by three storms during January and February. At least 60 lives were lost. Homes and property were destroyed or damaged, by rainstorms, floods, and mudflows. Many floods approached or exceeded the maximum known. The severe flood damage was due partly to recent home construction in floodprone areas. The April floods in the upper Midwestern States of North Dakota, South Dakota, Minnesota, Iowa, Wisconsin, and Illinois were expected because of a large accumulation of snow containing as much as 8 inches of water. Flood-protection procedures, together with cool temperatures, had a mitigating effect on the flood. The floods were the largest since the late 1800's, and their recurrence intervals exceeded 50 years at many of the gaged sites. Estimates of flood damage were about $147 million. More than a million acres of rich agricultural land were inundated, thousands of culverts and bridges were washed out, 23,000 people were forced from their homes and 11 lives were lost in the six-State flood area. Intense rainstorms and wind with gusts as much as 100 miles per hour, July 4-5, caused record floods in north-central Ohio, July 4-8. The storm and floods left trees uprooted, more than $66 million in damage, and 41 deaths. In many places the floods were the largest of record. Together with the wind and rainstorm, the hydrologic conditions were among the most significant experienced in the area. Hurricane Camille was the most intense hurricane on record to enter the United States mainland. It struck the Mississippi-Alabama coast on August 18, with tidal waves as high as 25 feet above mean sea level and wind velocities more than 190 miles per hour. Tidal wave and flood damage was about $1.3 billion. In Mississippi the known dead totaled 139 and 76 other persons were missing. The hurricane intensity decreased as it moved inland until it merged with severe rainstorms over the Appalachian mountains. The intensified hurricane then caused record-breaking floods of streams in a 50-mile-wide area as it moved eastward from Sulphur Springs, W. Va., to Fredericksburg, Va. Total flood damage in Virginia exceeded $116 million. There were 113 known deaths, 102 injuries, and 39 people missing. A tropical storm that was nearly stationary over northwest Florida for about 48 hours, September 20-23 produced record rains and floods. Near Quincy, Fla., the total rainfall for the period exceeded 20 inches. On Little River near Quincy, the peak discharge was nearly twice the previous maximum of record and was three times that of a 50-year flood. Flood damage to agricultural lands, bridges, culverts, and roads was about $1.7 million.
The role of climate variability in extreme floods in Europe
NASA Astrophysics Data System (ADS)
Guimarães Nobre, Gabriela; Aerts, Jeroen C. J. H.; Jongman, Brenden; Ward, Philip J.
2017-04-01
Between 1980 and 2015, Europe experienced 18% of worldwide weather-related loss events, which accounted for over US500 billion in damage. Consequently, it is urgent to further develop adaptation strategies to mitigate the consequences of weather-related disasters, such as floods. Europe's capability to prepare for such disasters is challenged by a large range of uncertainties and a limited understanding of the driving forces of hydrometeorological hazards. One of the major sources of uncertainty is the relationship between climate variability and weather-related losses. Previous studies show that climate variability drives temporal changes in hydrometereological variables in Europe. However, their influence on flood risk has received little attention. We investigated the influence of the positive and negative phases of El Niño Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Arctic Oscillation (AO), on the seasonal frequency and intensity of extreme rainfall, and anomalies in flood occurrence and damage compared to the neutral phases of the indices of climate variability. Using statistical methods to analyze relationships between the indices of climate variability and four indicators of flooding, we found that positive and negative phases of NAO and AO are associated with more (or less) frequent and intense seasonal extreme rainfall over large areas of Europe. The relationship between ENSO and both the occurrence of extreme rainfall and intensity of extreme rainfall in Europe is much smaller than the relationship with NAO or AO, but still significant in some regions. We observe that flood damage and flood occurrence have strong links with climate variability, especially in southern and eastern Europe. Therefore, when investigating flooding across Europe, all three indices of climate variability should be considered. Seasonal forecasting of flooding could be enhanced by the inclusion of climate variability indicators .
NASA Astrophysics Data System (ADS)
Chuang, H.-K.; Lin, M.-L.; Huang, W.-C.
2012-04-01
The Typhoon Morakot on August 2009 brought more than 2,000 mm of cumulative rainfall in southern Taiwan, the extreme rainfall event caused serious damage to the Kaoping River basin. The losses were mostly blamed on the landslides along sides of the river, and shifting of the watercourse even led to the failure of roads and bridges, as well as flooding and levees damage happened around the villages on flood bank and terraces. Alluvial fans resulted from debris flow of stream feeders blocked the main watercourse and debris dam was even formed and collapsed. These disasters have highlighted the importance of identification and map the watercourse alteration, surface features of flood plain area and artificial structures soon after the catastrophic typhoon event for natural hazard mitigation. Interpretation of remote sensing images is an efficient approach to acquire spatial information for vast areas, therefore making it suitable for the differentiation of terrain and objects near the vast flood plain areas in a short term. The object-oriented image analysis program (Definiens Developer 7.0) and multi-band high resolution satellite images (QuickBird, DigitalGlobe) was utilized to interpret the flood plain features from Liouguei to Baolai of the the Kaoping River basin after Typhoon Morakot. Object-oriented image interpretation is the process of using homogenized image blocks as elements instead of pixels for different shapes, textures and the mutual relationships of adjacent elements, as well as categorized conditions and rules for semi-artificial interpretation of surface features. Digital terrain models (DTM) are also employed along with the above process to produce layers with specific "landform thematic layers". These layers are especially helpful in differentiating some confusing categories in the spectrum analysis with improved accuracy, such as landslides and riverbeds, as well as terraces, riverbanks, which are of significant engineering importance in disaster mitigation. In this study, an automatic and fast image interpretation process for eight surface features including main channel, secondary channel, sandbar, flood plain, river terrace, alluvial fan, landslide, and the nearby artificial structures in the mountainous flood plain is proposed. Images along timelines can even be compared in order to differentiate historical events such as village inundations, failure of roads, bridges and levees, as well as alternation of watercourse, and therefore can be used as references for safety evaluation of engineering structures near rivers, disaster prevention and mitigation, and even future land-use planning. Keywords: Flood plain area, Remote sensing, Object-oriented, Surface feature interpretation, Terrain analysis, Thematic layer, Typhoon Morakot
NASA Astrophysics Data System (ADS)
Laudan, Jonas; Rözer, Viktor; Sieg, Tobias; Vogel, Kristin; Thieken, Annegret
2017-04-01
At the end of May and beginning of June 2016, several municipalities in Southern Germany suffered from severe flash floods and debris flows which have been triggered by intense rainfall in Central Europe. Overall, the insured losses of these events amounted to EUR 1.2 billion in Germany. Especially the strong and unexpected flash flood on May 29th in Braunsbach (Baden Wurttemberg) - a small village counting about 1,000 residents - attracted media and policymakers due to its devastating character. The understanding of damage caused by flash floods requires ex-post collection of relevant but yet sparsely available information, linking process intensities to damage by using adequate methods of data gathering. Thus, on-site data collection was carried out after the flash flood event in Braunsbach, using open source software as helpful and efficient tool for data acquisition and evaluation. A digital survey was designed and conducted by a team of five researchers who investigated all buildings affected by water and debris flows. The collected data includes an estimation of a particular damage class, the inundation depth, and other relevant information. A post - hoc data analysis was done with R 3.3.1 and QGIS 2.14.3, performing both, a Random Forest Model (RF) and Random Generalized Linear Model (RGLM) as well as preparing a Spearman's rank correlation matrix. For visual interpretation and better overview of the study area and analysis results, a "process intensity" map was created, revealing important links of damage driving factors. We find that not only the water depth, which is often considered as only damage driving factor in riverine flood loss modelling, but also the exposition of a building to the flow direction and susceptible building parts like e.g. shop windows seem to be risk factors in flash-flood prone regions. Although no significant correlations were found, the analyses indicate that also building material (i.e. half-timbered or masonry) and structural precaution could play a role on the extent of damage and therefore offer options of damage mitigation. It is revealed that the damage driving as well as damage reducing factors are complex, contingent upon the surrounding and remarkably different from riverine floods. Further, it can be concluded that open source data collection software for mobile use has great potential as a scientific tool to generate extensive valuable data under challenging conditions.
NASA Astrophysics Data System (ADS)
Muhonda, P.; Mabiza, C.; Makurira, H.; Kujinga, K.; Nhapi, I.; Goldin, J.; Mashauri, D. A.
In recent years, the frequency of occurrence of floods has increased in Southern Africa. An increase in the frequency of extreme events is partly attributed to climate change. Floods negatively impact on livelihoods, especially those classified as poor, mainly by reducing livelihood options and also contributing to reduced crop yields. In response to these climatic events, governments within Southern Africa have formulated policies which try to mitigate the impacts of floods. Floods can be deadly, often occurring at short notice, lasting for short periods, and causing widespread damage to infrastructure. This study analysed institutional mechanisms in Mbire District of Zimbabwe which aim at mitigating the impact of floods. The study used both quantitative (i.e. questionnaires) and qualitative (i.e. key informant interviews, focus group discussions and observations) data collection methods. Secondary data such as policy and legislation documents and operational manuals of organisations that support communities affected by disasters were reviewed. Qualitative data was analysed using the thematic approach and social network analysis using UCINET 6. Quantitative data were analysed using SPSS 19.0. The study found out that there exists institutional framework that has been developed at the national and local level to support communities in the study area in response to the impacts of floods. This is supported by various pieces of legislation that are housed in different government departments. However, the existing institutional framework does not effectively strengthen disaster management mechanisms at the local level. Lack of financial resources and appropriate training and skills to undertake flood management activities reduce the capacity of communities and disaster management organisations to effectively mitigate the impacts of floods. The study also found that there are inadequate hydro-meteorological stations to enable accurate forecasts. Even in those cases where forecasts predicting extreme weather events have been made, communities have difficulties accessing and interpreting such forecasts due to inadequate communication systems. Such factors reduce the preparedness of communities to deal with extreme weather events.
Home wreckers in search of moisture
Carol A. Clausen; Frederick Green
2002-01-01
Research at the Forest Products Laboratory (FPL) related to durability and disaster mitigation includes damage by decay fungi and termites and contamination by mold fungi. All these household pests are attracted to excess moisture, which can result from inadequate surface drying of condensation, leaks in pipes and foundations, poor ventila-tion, or flooding. Homeowners...
76 FR 54480 - Louisiana; Major Disaster and Related Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-01
... have determined that the damage in certain areas of the State of Louisiana resulting from flooding... State of Louisiana are eligible to apply for assistance under the Hazard Mitigation Grant Program. The... declaration of a major disaster for the State of Louisiana (FEMA-4015-DR), dated August 18, 2011, and related...
76 FR 63940 - Kansas; Major Disaster and Related Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-14
... follows: I have determined that the damage in certain areas of the State of Kansas resulting from flooding... Act for Public Assistance and Hazard Mitigation will be limited to 75 percent of the total eligible... declaration of a major disaster for the State of Kansas (FEMA-4035-DR), dated September 23, 2011, and related...
76 FR 44346 - Vermont; Major Disaster and Related Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-25
... determined that the damage in certain areas of the State of Vermont resulting from severe storms and flooding... within the State of Vermont are eligible to apply for assistance under the Hazard Mitigation Grant... declaration of a major disaster for the State of Vermont (FEMA-1995-DR), dated June 15, 2011, and related...
76 FR 44029 - Iowa; Major Disaster and Related Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... determined that the damage in certain areas of the State of Iowa resulting from flooding beginning on May 25... eligible to apply for assistance under the Hazard Mitigation Grant Program. The following Catalog of... of a major disaster for the State of Iowa (FEMA-1998-DR), dated June 27, 2011, and related...
75 FR 52963 - Illinois; Major Disaster and Related Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-30
... the damage in certain areas of the State of Illinois resulting from severe storms and flooding during... declaration of a major disaster for the State of Illinois (FEMA-1935-DR), dated August 19, 2010, and related... assistance is supplemental, any Federal funds provided under the Stafford Act for Hazard Mitigation and Other...
NASA Astrophysics Data System (ADS)
Wilkinson, Mark; Welton, Phil; Kerr, Peter; Quinn, Paul; Jonczyk, Jennine
2010-05-01
From 2000 to 2009 there have been a high number of flood events throughout Northern Europe. Meanwhile, there is a demand for land in which to construct homes and businesses on, which is encroaching on land which is prone to flooding. Nevertheless, flood defences usually protect us from this hazard. However, the severity of floods and this demand for land has increased the number of homes which have been flooded in the past ten years. Public spending on flood defences can only go so far which targets the large populations first. Small villages and communities, where in many cases normal flood defences are not cost effective, tend to wait longer for flood mitigation strategies. The Belford Burn (Northumberland, UK) catchment is a small rural catchment that drains an area of 6 km2. It flows through the village of Belford. There is a history of flooding in Belford, with records of flood events dating back to 1877. Normal flood defences are not suitable for this catchment as it failed the Environment Agency (EA) cost benefit criteria for support. There was a desire by the local EA Flood Levy Team and the Northumbria Regional Flood Defence Committee at the Environment Agency to deliver an alternative catchment-based solution to the problem. The EA North East Flood Levy team and Newcastle University have created a partnership to address the flood problem using soft engineered runoff management features. Farm Integrated Runoff Management (FIRM) plans manage flow paths directly by storing slowing and filtering runoff at source on farms. The features are multipurpose addressing water quality, trapping sediment, creating new habitats and storing and attenuating flood flow. Background rainfall and stream stage data have been collected since November 2007. Work on the first mitigation features commenced in July 2008. Since that date five flood events have occurred in the catchment. Two of these flood events caused widespread damage in other areas of the county. However, in Belford only two houses were flooded. Data from the catchment and mitigation features showed that the defence measures resulted in an increase in travel time of the peak and attenuated high flows which would have usually travelled quickly down the channel to the village. For example, the pilot feature appears to have increased the travel time of a flood peak at the top of the catchment from 20 minutes to 35 minutes over a 1 km stretch of channel. There are currently ten active mitigation features present in the catchment. More features are planned for construction this year. Early data from the catchment indicates that the runoff attenuation features are having an impact on reducing flood flows in the channel and also slowing down the flood peak. At the same time the multi-purpose aspects of the features are apparent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaulieu, R A
The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and themore » western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US-Mexico border; and decreased eutrophication (excessive plant growth and decay) in the Gulf of Mexico to name a few. The National Smart Water Grid{trademark} will pay for itself in a single major flood event.« less
NASA Astrophysics Data System (ADS)
Molinari, Daniela; Ballio, Francesco; Mazuran, Mirjana; Arias, Carolina; Minucci, Guido; Atun, Funda; Ardagna, Danilo
2015-04-01
According to a recent JRC report (De Groeve et al., Recording disaster losses, 2013), no measure better than loss over time can provide objective understanding of the path towards resilience. Moreover, damage data collected in the aftermath of floods supply the knowledge base on which a blend of actions can be performed, both in the short and mid time after the occurrence of a flood; among them: the identification of priorities for intervention during emergencies, the definition of compensation schemes, the understanding of damage mechanisms and of the fragilities of the flooded areas so as to improve/reform current risk mitigation strategies (also by means of improved flood damage models). Objective "measurement" of flood losses remains inadequate to meet the above objectives. This is due to a number of reasons that include: the diversity of intent for data collection, the lack of standardization on how to collect and storage data (including the lack of agreed definitions) among responsible subjects, and last but not least a lack of legislation to support the collection process. In such a context, the aim of this contribution is to discuss the results from the Poli-RISPOSTA (stRumentI per la protezione civile a Supporto delle POpolazioni nel poST Alluvione) project, a research project founded by Politecnico di Milano which is intended to develop tools and procedures for the collection and storage of high quality, consistent and reliable flood damage data. Specific objectives of Poli-RISPOSTA are: - Develop an operational procedure for collecting, storing and analyzing all damage data, in the aftermath of flood events. Collected data are intended to support a variety of actions, namely: loss accounting, disaster forensic, damage compensation and flood risk modelling; - Develop educational material and modules for training practitioners in the use of the procedure; - Develop enhanced IT tools to support the procedure, easing as much as possible the collection of field data, the creation of databases and the connection between the latter and different regional and municipal databases that already exist for different purposes (from cadastral data, to satellite images, etc.), the processing of collected data. A key principle of Poli-RISPOSTA is developing tools with the direct involvement of all interested parties so as to reach a two-fold objective: producing feasible solutions that re-organise existing practices and integrate them with new ones (whereas they are lacking) and, directly linked to the previous point, supplying the legislative context in which developed tools can be implemented.
NASA Astrophysics Data System (ADS)
Tanaka, T.; Tachikawa, Y.; Ichikawa, Y.; Yorozu, K.
2017-12-01
Flood is one of the most hazardous disasters and causes serious damage to people and property around the world. To prevent/mitigate flood damage through early warning system and/or river management planning, numerical modelling of flood-inundation processes is essential. In a literature, flood-inundation models have been extensively developed and improved to achieve flood flow simulation with complex topography at high resolution. With increasing demands on flood-inundation modelling, its computational burden is now one of the key issues. Improvements of computational efficiency of full shallow water equations are made from various perspectives such as approximations of the momentum equations, parallelization technique, and coarsening approaches. To support these techniques and more improve the computational efficiency of flood-inundation simulations, this study proposes an Automatic Domain Updating (ADU) method of 2-D flood-inundation simulation. The ADU method traces the wet and dry interface and automatically updates the simulation domain in response to the progress and recession of flood propagation. The updating algorithm is as follow: first, to register the simulation cells potentially flooded at initial stage (such as floodplains nearby river channels), and then if a registered cell is flooded, to register its surrounding cells. The time for this additional process is saved by checking only cells at wet and dry interface. The computation time is reduced by skipping the processing time of non-flooded area. This algorithm is easily applied to any types of 2-D flood inundation models. The proposed ADU method is implemented to 2-D local inertial equations for the Yodo River basin, Japan. Case studies for two flood events show that the simulation is finished within two to 10 times smaller time showing the same result as that without the ADU method.
Social vulnerability and the natural and built environment: a model of flood casualties in Texas.
Zahran, Sammy; Brody, Samuel D; Peacock, Walter Gillis; Vedlitz, Arnold; Grover, Himanshu
2008-12-01
Studies on the impacts of hurricanes, tropical storms, and tornados indicate that poor communities of colour suffer disproportionately in human death and injury.(2) Few quantitative studies have been conducted on the degree to which flood events affect socially vulnerable populations. We address this research void by analysing 832 countywide flood events in Texas from 1997-2001. Specifically, we examine whether geographic localities characterised by high percentages of socially vulnerable populations experience significantly more casualties due to flood events, adjusting for characteristics of the natural and built environment. Zero-inflated negative binomial regression models indicate that the odds of a flood casualty increase with the level of precipitation on the day of a flood event, flood duration, property damage caused by the flood, population density, and the presence of socially vulnerable populations. Odds decrease with the number of dams, the level of precipitation on the day before a recorded flood event, and the extent to which localities have enacted flood mitigation strategies. The study concludes with comments on hazard-resilient communities and protection of casualty-prone populations.
Natural Disasters and Adaptive Capacity. OECD Development Centre Working Paper No. 237
ERIC Educational Resources Information Center
Dayton-Johnson, Jeff
2004-01-01
Natural disasters (droughts, earthquakes, epidemics, floods, wind storms) damage wellbeing, both in their immediate and long-term aftermath, and because the insecurity of exposure to disasters is in itself harmful to risk-averse people. As such, mitigating and coping with the risk of natural disasters is a pressing issue for economic development.…
The financial management of catastrophic flood risks in emerging-economy countries.
Kunreuther, Howard C; Linnerooth-Bayer, Joanne
2003-06-01
This article examines the potential of pre- and post-disaster instruments for funding disaster response and recovery and for creating incentives for flood loss mitigation in countries with emerging or transition economies. As a concrete case, we discuss the disaster recovery arrangements following the 1997 flood disaster in Poland. We examine the advantages and limitations of hedging instruments, which are instruments for transferring the risk to investors either through insurance or capital market-based securities. We compare these mechanisms with financing instruments whereby the government sets aside funds prior to a disaster or taps its own funding sources after the event occurs. We show how hedging instruments can be designed to create incentives for the mitigation of damage to public infrastructure using the flood proofing of a water-treatment plant on the hypothetical Topping River as an illustrative example. We conclude that hedging instruments can be an attractive alternative to financing instruments that have been traditionally used in the poorer, emerging-economy countries to fund disaster recovery. Since very poor countries are likely to have difficulty paying the price of protection prior to a disaster, we suggest that international lending institutions consider innovations for subsidizing these payments.
Estimated value of insurance premium due to Citarum River flood by using Bayesian method
NASA Astrophysics Data System (ADS)
Sukono; Aisah, I.; Tampubolon, Y. R. H.; Napitupulu, H.; Supian, S.; Subiyanto; Sidi, P.
2018-03-01
Citarum river flood in South Bandung, West Java Indonesia, often happens every year. It causes property damage, producing economic loss. The risk of loss can be mitigated by following the flood insurance program. In this paper, we discussed about the estimated value of insurance premiums due to Citarum river flood by Bayesian method. It is assumed that the risk data for flood losses follows the Pareto distribution with the right fat-tail. The estimation of distribution model parameters is done by using Bayesian method. First, parameter estimation is done with assumption that prior comes from Gamma distribution family, while observation data follow Pareto distribution. Second, flood loss data is simulated based on the probability of damage in each flood affected area. The result of the analysis shows that the estimated premium value of insurance based on pure premium principle is as follows: for the loss value of IDR 629.65 million of premium IDR 338.63 million; for a loss of IDR 584.30 million of its premium IDR 314.24 million; and the loss value of IDR 574.53 million of its premium IDR 308.95 million. The premium value estimator can be used as neither a reference in the decision of reasonable premium determination, so as not to incriminate the insured, nor it result in loss of the insurer.
44 CFR 78.13 - Grant administration.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... deposit the amounts in the National Flood Mitigation Fund if the applicant has not provided the...
44 CFR 78.13 - Grant administration.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... deposit the amounts in the National Flood Mitigation Fund if the applicant has not provided the...
44 CFR 78.13 - Grant administration.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... deposit the amounts in the National Flood Mitigation Fund if the applicant has not provided the...
44 CFR 78.13 - Grant administration.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... deposit the amounts in the National Flood Mitigation Fund if the applicant has not provided the...
44 CFR 78.13 - Grant administration.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... deposit the amounts in the National Flood Mitigation Fund if the applicant has not provided the...
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
44 CFR 79.5 - Application process.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS.... (3) Participation in these flood mitigation grant programs is voluntary, and States may elect not to...
44 CFR 79.5 - Application process.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS.... (3) Participation in these flood mitigation grant programs is voluntary, and States may elect not to...
44 CFR 79.5 - Application process.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS.... (3) Participation in these flood mitigation grant programs is voluntary, and States may elect not to...
44 CFR 79.5 - Application process.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS.... (3) Participation in these flood mitigation grant programs is voluntary, and States may elect not to...
44 CFR 79.5 - Application process.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS.... (3) Participation in these flood mitigation grant programs is voluntary, and States may elect not to...
Developing a GIS based integrated approach to flood management in Trinidad, West Indies.
Ramlal, Bheshem; Baban, Serwan M J
2008-09-01
Trinidad and Tobago is plagued with a perennial flooding problem. The higher levels of rainfall in the wet season often lead to extensive flooding in the low-lying areas of the country. This has lead to significant damage to livestock, agricultural produce, homes and businesses particularly in the Caparo River Basin. Clearly, there is a need for developing flood mitigation and management strategies to manage flooding in the areas most affected. This paper utilizes geographic information systems to map the extent of the flooding, estimate soil loss due to erosion and estimate sediment loading in the rivers in the Caparo River Basin. In addition, the project required the development of a watershed management plan and a flood control plan. The results indicate that flooding was caused by several factors including clear cutting of vegetative cover, especially in areas of steep slopes that lead to sediment filled rivers and narrow waterways. Other factors include poor agricultural practices, and uncontrolled development in floodplains. Recommendations to manage floods in the Caparo River Basin have been provided.
NASA Astrophysics Data System (ADS)
Minakawa, H.; Masumoto, T.
2013-12-01
Hiroki Minakawa, Takao Masumoto National Institute for Rural Engineering (NIRE), NARO, Japan Flooding is one type of nature disaster, and is caused by heavy rainfall events. In the future, the risk of flooding is predicted to increase due to global climate change. Immediate measures such as strengthening drainage capacity are needed to minimize the damage caused by more frequent flooding, so a quantitative evaluation method of flood risks is needed to discuss countermeasure against these problems. At the same time, rice is an important crop for food production in Japan. However, paddy fields are often damaged by flooding because they are principally spread in lower part of the basin. Therefore, it is also important to assess the damages to paddy fields. This study discusses a method for evaluating a relationship between the risk of flood damage and the scale of heavy rainfall. We also developed a method of estimating the economic effect of a reduction in rice yield by flooding. First, we developed a drainage analysis model that incorporates kinematic and diffusive runoff models for calculating water level in channels and paddies. Next, heavy rainfall data for drainage analyses were generated by using a diurnal rainfall pattern generator. The generator can create hourly data of heavy rainfall, and internal pattern of them is different each. These data were input to the drainage model to estimate flood risk. Simultaneously, we tried to clarify economic losses of a rice yields caused by flooding. Here, the reduction scale in rice yield which shows relations between flooding situation (e.g. water level, duration of submersion etc.) and damage of rice is available to calculate reduction of rice yield. In this study, we created new reduction scales through a pseudo-flooding experiment under real inundation conditions. The methodology of the experiment was as follow: We chose the popular Japanese rice cultivar Koshihikari for this experiment. An experimental arena was constructed in a rice paddy plot, which consisted of two zones, one in which the rice was cultivated as usual with normal water levels, and a flood zone, which was used for submerging rice plants. The flood zone, which was designed to reproduce actual flood disaster conditions in paddy fields, can be filled with water to a depth of 0.3, 0.6 or 0.9 m above ground level, and is divided into two plots, a clean water part and a turbid water part. Thus, the experimental conditions can vary according to 1) the development stage of rice, 2) complete or incomplete submersion, 3) clean or turbid water, and 4) duration of submergence. Finally, the reduction scales were formulated by using the resultant data and it was found that rice is most sensitive to damage during the development stage. Flood risk was evaluated by using calculated water level on each paddy. Here, the averaged duration of inundation to a depth of more than 0.3 m was used as the criteria for flood occurrence. The results indicated that the duration increased with larger heavy rainfall amounts. Furthermore, the damage to rice was predicted to increase especially in low-lying paddy fields. Mitigation measures, such as revising drainage planning and/or changing design standards for the capacity of drainage pumps may be necessary in the future.
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
Performance of Oil Infrastructure during Hurricane Harvey
NASA Astrophysics Data System (ADS)
Bernier, C.; Kameshwar, S.; Padgett, J.
2017-12-01
Three major refining centers - Corpus Christi, Houston, and Beaumont/Port Arthur - were affected during Hurricane Harvey. Damage to oil infrastructure, especially aboveground storage tanks (ASTs), caused the release of more than a million gallons of hazardous chemicals in the environment. The objective of this presentation is to identify and gain a better understanding of the different damage mechanisms that occurred during Harvey in order to avoid similar failures during future hurricane events. First, a qualitative description of the damage suffered by ASTs during Hurricane Harvey is presented. Analysis of aerial imagery and incident reports indicate that almost all spills were caused by rainfall and the associated flooding. The largest spill was caused by two large ASTs that floated due to flooding in the Houston Ship Channel releasing 500,000 gallons of gasoline. The vulnerability of ASTs subjected to flooding was already well known and documented from previous storm events. In addition to flooding, Harvey also exposed the vulnerability of ASTs with external floating roof to extreme rainfall; more than 15 floating roofs sank or tilted due to rain water accumulation on them, releasing pollutants in the atmosphere. Secondly, recent fragility models developed by the authors are presented which allow structural vulnerability assessment of floating roofs during rainfall events and ASTs during flood events. The fragility models are then coupled with Harvey rainfall and flood empirical data to identify the conditions (i.e.: internal liquid height or density, drainage system design and efficiency, etc.) that could have led to the observed failures during Hurricane Harvey. Finally, the conditions causing tank failures are studied to propose mitigation measures to prevent future AST failures during severe storm, flood, or rainfall events.
44 CFR 78.11 - Minimum project eligibility criteria.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD... activity in an approved Flood Mitigation Plan does not mean it meets FMA eligibility criteria. Projects... with the Flood Mitigation Plan; the type of project being proposed must be identified in the plan. (f...
44 CFR 78.11 - Minimum project eligibility criteria.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD... activity in an approved Flood Mitigation Plan does not mean it meets FMA eligibility criteria. Projects... with the Flood Mitigation Plan; the type of project being proposed must be identified in the plan. (f...
44 CFR 78.11 - Minimum project eligibility criteria.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD... activity in an approved Flood Mitigation Plan does not mean it meets FMA eligibility criteria. Projects... with the Flood Mitigation Plan; the type of project being proposed must be identified in the plan. (f...
44 CFR 78.11 - Minimum project eligibility criteria.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD... activity in an approved Flood Mitigation Plan does not mean it meets FMA eligibility criteria. Projects... with the Flood Mitigation Plan; the type of project being proposed must be identified in the plan. (f...
A Methodology to Support Decision Making in Flood Plan Mitigation
NASA Astrophysics Data System (ADS)
Biscarini, C.; di Francesco, S.; Manciola, P.
2009-04-01
The focus of the present document is on specific decision-making aspects of flood risk analysis. A flood is the result of runoff from rainfall in quantities too great to be confined in the low-water channels of streams. Little can be done to prevent a major flood, but we may be able to minimize damage within the flood plain of the river. This broad definition encompasses many possible mitigation measures. Floodplain management considers the integrated view of all engineering, nonstructural, and administrative measures for managing (minimizing) losses due to flooding on a comprehensive scale. The structural measures are the flood-control facilities designed according to flood characteristics and they include reservoirs, diversions, levees or dikes, and channel modifications. Flood-control measures that modify the damage susceptibility of floodplains are usually referred to as nonstructural measures and may require minor engineering works. On the other hand, those measures designed to modify the damage potential of permanent facilities are called non-structural and allow reducing potential damage during a flood event. Technical information is required to support the tasks of problem definition, plan formulation, and plan evaluation. The specific information needed and the related level of detail are dependent on the nature of the problem, the potential solutions, and the sensitivity of the findings to the basic information. Actions performed to set up and lay out the study are preliminary to the detailed analysis. They include: defining the study scope and detail, the field data collection, a review of previous studies and reports, and the assembly of needed maps and surveys. Risk analysis can be viewed as having many components: risk assessment, risk communication and risk management. Risk assessment comprises an analysis of the technical aspects of the problem, risk communication deals with conveying the information and risk management involves the decision process. In the present paper we propose a novel methodology for supporting the priority setting in the assessment of such issues, beyond the typical "expected value" approach. Scientific contribution and management aspects are merged to create a simplified method for plan basin implementation, based on risk and economic analyses. However, the economic evaluation is not the sole criterion for flood-damage reduction plan selection. Among the different criteria that are relevant to the decision process, safety and quality of human life, economic damage, expenses related with the chosen measures and environmental issues should play a fundamental role on the decisions made by the authorities. Some numerical indices, taking in account administrative, technical, economical and risk aspects, are defined and are combined together in a mathematical formula that defines a Priority Index (PI). In particular, the priority index defines a ranking of priority interventions, thus allowing the formulation of the investment plan. The research is mainly focused on the technical factors of risk assessment, providing quantitative and qualitative estimates of possible alternatives, containing measures of the risk associated with those alternatives. Moreover, the issues of risk management are analyzed, in particular with respect to the role of decision making in the presence of risk information. However, a great effort is devoted to make this index easy to be formulated and effective to allow a clear and transparent comparison between the alternatives. Summarizing this document describes a major- steps for incorporation of risk analysis into the decision making process: framing of the problem in terms of risk analysis, application of appropriate tools and techniques to obtain quantified results, use of the quantified results in the choice of structural and non-structural measures. In order to prove the reliability of the proposed methodology and to show how risk-based information can be incorporated into a flood analysis process, its application to some middle italy river basins is presented. The methodology assessment is performed by comparing different scenarios and showing that the optimal decision stems from a feasibility evaluation.
Geospatial Analysis for Flood-Risk Management, Resilience, and US Policy
NASA Astrophysics Data System (ADS)
Pinter, N.; Hui, R.; Conrad, D. R.; Schaefer, K.
2016-12-01
The National Flood Insurance Program (NFIP) was established in 1968 to curtail unfettered development on US floodplains and spiraling taxpayer expenditures for disaster relief. Currently NFIP underwrites >5 million policies, providing >1.25 trillion in coverage, and taking in >3.5 billion in annual premiums. Cumulative flood-damage payouts to date exceed premiums collected by >$20 billion. Our group has obtained nationwide databases of NFIP flood-damage claims back to 1972, annual policies since 1994, and selective Federal Emergency Management Agency (FEMA) repetitive losses. Attributes include property, claims, and loss characteristics. Other attributes were stripped to maintain policyholder anonymity. At present, locations are to the nearest 0.1° lat/long, zip code, and by community. We combine NFIP data with GIS information from a variety of other sources. Over the past 44 years, 1,625,470 non-zero flood claims are documented. Numbers of claims and losses have increased over time, even with extreme events (Hurricanes Katrina and Sandy) excluded. Flood losses have occurred within 100-year floodplains (1% annual exceedance), in coastal hazard zones, and 25% of claims occur outside of mapped flood-hazard areas. We hypothesize that a many losses outside of FEMA's designated Special Flood Hazard Area (SFHA) correlate with (1) outdated map panels, (2) contrasting levels of enforcement and mitigation by state. Other distributed flood losses represent stormwater/drainage damage. Claim rates substantially exceed 1%, both in and outside the SFHA, and for "pre-FIRM" and "post-FIRM" structures. This suggests that ≥100-year floods are occurring more frequently than statutory frequencies suggest. For US homeowners, this suggests that flood insurance is a good deal in a variety of settings. The NFIP data analyzed here contrasts with our group's previous, largely model-driven research. Such empirical flood data exclude model assumptions, but add dizzying array of human and political factors into the resulting spatial and temporal patterns. Parsing out the hydrologic, climatic, social, and political factors influencing flood risk and resilience is crucial for sound management of NFIP and other programs. The US Congress will debate reauthorization and possible revision of NFIP in 2017.
Unequal Recovery? Federal Resource Distribution after a Midwest Flood Disaster
Muñoz, Cristina E.; Tate, Eric
2016-01-01
Following severe flooding in 2008, three Iowa communities acquired over 1000 damaged properties to support disaster recovery and mitigation. This research applies a distributive justice framework to analyze the distribution of disaster recovery funds for property acquisition. Two research questions drive the analysis: (1) how does recovery vary by acquisition funding source; and (2) what is the relationship between recovery and vulnerable populations? Through spatial econometric modeling, relative recovery is compared between two federal programs that funded the acquisitions, and across socially vulnerable populations. The results indicate both distributive and temporal inequalities in the allocation of federal recovery funds. In particular, Latino and elderly populations were associated with lower recovery rates. Recommendations for future research in flood recovery and acquisitions are provided. PMID:27196921
Unequal Recovery? Federal Resource Distribution after a Midwest Flood Disaster.
Muñoz, Cristina E; Tate, Eric
2016-05-17
Following severe flooding in 2008, three Iowa communities acquired over 1000 damaged properties to support disaster recovery and mitigation. This research applies a distributive justice framework to analyze the distribution of disaster recovery funds for property acquisition. Two research questions drive the analysis: (1) how does recovery vary by acquisition funding source; and (2) what is the relationship between recovery and vulnerable populations? Through spatial econometric modeling, relative recovery is compared between two federal programs that funded the acquisitions, and across socially vulnerable populations. The results indicate both distributive and temporal inequalities in the allocation of federal recovery funds. In particular, Latino and elderly populations were associated with lower recovery rates. Recommendations for future research in flood recovery and acquisitions are provided.
NASA Astrophysics Data System (ADS)
Taubenböck, H.; Wurm, M.; Netzband, M.; Zwenzner, H.; Roth, A.; Rahman, A.; Dech, S.
2011-02-01
Estimating flood risks and managing disasters combines knowledge in climatology, meteorology, hydrology, hydraulic engineering, statistics, planning and geography - thus a complex multi-faceted problem. This study focuses on the capabilities of multi-source remote sensing data to support decision-making before, during and after a flood event. With our focus on urbanized areas, sample methods and applications show multi-scale products from the hazard and vulnerability perspective of the risk framework. From the hazard side, we present capabilities with which to assess flood-prone areas before an expected disaster. Then we map the spatial impact during or after a flood and finally, we analyze damage grades after a flood disaster. From the vulnerability side, we monitor urbanization over time on an urban footprint level, classify urban structures on an individual building level, assess building stability and quantify probably affected people. The results show a large database for sustainable development and for developing mitigation strategies, ad-hoc coordination of relief measures and organizing rehabilitation.
A Coupled Community-Level Assessment of Social and Physical Vulnerability to Hurricane Disasters
NASA Astrophysics Data System (ADS)
Kim, J. H.; Sutley, E. J.; Chowdhury, A. G.; Hamideh, S.
2017-12-01
A significant portion of the U.S. building inventory exists in hurricane- and flood-prone regions. The accompanying storm surge and rising water levels often result in the inundation of residential homes, particularly those occupied by low income households and forcing displacement. In order to mitigate potential damages, a popular design technique is to elevate the structure using piers or piles to above the base flood elevation. This is observed for single-family and multi-family homes, including manufactured homes and post-disaster temporary housing, albeit at lower elevations. Although this design alleviates potential flood damage, it affects the wind-structure interaction by subjecting the structure to higher wind speeds due to its increased height and also having a path for the wind to pass underneath the structure potentially creating new vulnerabilities to wind loading. The current ASCE 7 Standard (2016) does not include a methodology for addressing the modified aerodynamics and estimating wind loads for elevated structures, and thus the potential vulnerability during high wind events is unaccounted for in design. Using experimentally measured wind pressures on elevated and non-elevated residential building models, tax data, and census data, a coupled vulnerability assessment is performed at the community-level. Galveston, Texas is selected as the case study community. Using the coupled assessment model, a hindcast of 2008 Hurricane Ike is used for predicting physical damage and household dislocation. The predicted results are compared with the actual outcomes of the 2008 hurricane disaster. Recommendations are made (1) for code adoption based on the experimentally measured wind loads, and (2) for mitigation actions and policies that would could decrease population dislocation and promote recovery.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.6... develop or update the flood portion of any mitigation plan. Planning grants are not eligible for funding... requirement. (1) States must have an approved State Mitigation Plan meeting the requirements of §§ 201.4 or...
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.6... develop or update the flood portion of any mitigation plan. Planning grants are not eligible for funding... requirement. (1) States must have an approved State Mitigation Plan meeting the requirements of §§ 201.4 or...
Code of Federal Regulations, 2014 CFR
2014-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.6... develop or update the flood portion of any mitigation plan. Planning grants are not eligible for funding... requirement. (1) States must have an approved State Mitigation Plan meeting the requirements of §§ 201.4 or...
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.6 Eligibility... develop or update the flood portion of any mitigation plan. Planning grants are not eligible for funding... requirement. (1) States must have an approved State Mitigation Plan meeting the requirements of §§ 201.4 or...
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Pech, Ina; Schröter, Kai; Müller, Meike; Thieken, Annegret
2016-04-01
Early warning is essential for protecting people and mitigating damage in case of flood events. However, early warning is only helpful if the flood-endangered parties are reached by the warning and if they know how to react effectively. Finding suitable methods for communicating helpful warnings to the "last mile" remains a challenge, but not much information is available. Surveys were undertaken after the August 2002 and the June 2013 floods in Germany, asking affected private households and companies about warnings they received and emergency measures they undertook. Results show, that in 2002 early warning did not work well: in too many areas warnings came too late or were too imprecise and many people (27%) and companies (45%) did not receive a flood warning. Afterwards, the warning systems were significantly improved, so that in 2013 only a small share of the affected people (7%) and companies (7 %) was not reached by any warning. Additionally, private households and companies were hardly aware of the flood risk in the Elbe catchment before 2002, mainly due to a lack of flood experience. For instance, in 2002 only 14% of private households clearly knew how to protect themselves and their assets when the warning reached them, in 2013 this fraction was 46 %. Although the share of companies which had an emergency plan in place had increased from 10 % in 2002 to 26 % in 2013, and the share of those conducting regular emergency exercises had increased from 4 % to 13 %, there is still plenty of room for improvement. Therefore, integrated early warning systems from monitoring through to the reaction of the affected parties as well as effective risk and emergency communication need continuous further improvement to protect people and mitigate residual risks in case of floods.
Hong, Haoyuan; Tsangaratos, Paraskevas; Ilia, Ioanna; Liu, Junzhi; Zhu, A-Xing; Chen, Wei
2018-06-01
In China, floods are considered as the most frequent natural disaster responsible for severe economic losses and serious damages recorded in agriculture and urban infrastructure. Based on the international experience prevention of flood events may not be completely possible, however identifying susceptible and vulnerable areas through prediction models is considered as a more visible task with flood susceptibility mapping being an essential tool for flood mitigation strategies and disaster preparedness. In this context, the present study proposes a novel approach to construct a flood susceptibility map in the Poyang County, JiangXi Province, China by implementing fuzzy weight of evidence (fuzzy-WofE) and data mining methods. The novelty of the presented approach is the usage of fuzzy-WofE that had a twofold purpose. Firstly, to create an initial flood susceptibility map in order to identify non-flood areas and secondly to weight the importance of flood related variables which influence flooding. Logistic Regression (LR), Random Forest (RF) and Support Vector Machines (SVM) were implemented considering eleven flood related variables, namely: lithology, soil cover, elevation, slope angle, aspect, topographic wetness index, stream power index, sediment transport index, plan curvature, profile curvature and distance from river network. The efficiency of this new approach was evaluated using area under curve (AUC) which measured the prediction and success rates. According to the outcomes of the performed analysis, the fuzzy WofE-SVM model was the model with the highest predictive performance (AUC value, 0.9865) which also appeared to be statistical significant different from the other predictive models, fuzzy WofE-RF (AUC value, 0.9756) and fuzzy WofE-LR (AUC value, 0.9652). The proposed methodology and the produced flood susceptibility map could assist researchers and local governments in flood mitigation strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
Communication strategies to address geohydrological risks: the POLARIS web initiative in Italy
NASA Astrophysics Data System (ADS)
Salvati, Paola; Pernice, Umberto; Bianchi, Cinzia; Marchesini, Ivan; Fiorucci, Federica; Guzzetti, Fausto
2016-06-01
Floods and landslides are common phenomena that cause serious damage and pose a severe threat to the population of Italy. The social and economic impact of floods and landslides in Italy is severe, and strategies to target the mitigation of the effects of these phenomena are needed. In the last few years, the scientific community has started to use web technology to communicate information on geohydrological hazards and the associated risks. However, the communication is often targeted at technical experts. In the attempt to communicate relevant information on geohydrological hazards with potential human consequences to a broader audience, we designed the POpoLazione A RISchio (POLARIS) website. POLARIS publishes accurate information on geohydrological risk to the population of Italy, including periodic reports on landslide and flood risk, analyses of specific damaging events and blog posts on landslide and flood events. By monitoring the access to POLARIS in the 21-month period between January 2014 and October 2015, we found that access increased during particularly damaging geohydrological events and immediately after the website was advertised by press releases. POLARIS demonstrates that the scientific community can implement suitable communication strategies that address different societal audiences, exploiting the role of mass media and social media. The strategies can help multiple audiences understand how risks can be reduced through appropriate measures and behaviours, contributing to increasing the resilience of the population to geohydrological risk.
Insurability and mitigation of flood losses in private households in Germany.
Thieken, Annegret H; Petrow, Theresia; Kreibich, Heidi; Merz, Bruno
2006-04-01
In Germany, flood insurance is provided by private insurers as a supplement to building or contents insurance. This article presents the results of a survey of insurance companies with regard to eligibility conditions for flood insurance changes after August 2002, when a severe flood caused 1.8 billion euro of insured losses in the Elbe and the Danube catchment areas, and the general role of insurance in flood risk management in Germany. Besides insurance coverage, governmental funding and public donations played an important role in loss compensation after the August 2002 flood. Therefore, this article also analyzes flood loss compensation, risk awareness, and mitigation in insured and uninsured private households. Insured households received loss compensation earlier. They also showed slightly better risk awareness and mitigation strategies. Appropriate incentives should be combined with flood insurance in order to strengthen future private flood loss mitigation. However, there is some evidence that the surveyed insurance companies do little to encourage precautionary measures. To overcome this problem, flood hazards and mitigation strategies should be better communicated to both insurance companies and property owners.
A statistical approach to evaluate flood risk at the regional level: an application to Italy
NASA Astrophysics Data System (ADS)
Rossi, Mauro; Marchesini, Ivan; Salvati, Paola; Donnini, Marco; Guzzetti, Fausto; Sterlacchini, Simone; Zazzeri, Marco; Bonazzi, Alessandro; Carlesi, Andrea
2016-04-01
Floods are frequent and widespread in Italy, causing every year multiple fatalities and extensive damages to public and private structures. A pre-requisite for the development of mitigation schemes, including financial instruments such as insurance, is the ability to quantify their costs starting from the estimation of the underlying flood hazard. However, comprehensive and coherent information on flood prone areas, and estimates on the frequency and intensity of flood events, are not often available at scales appropriate for risk pooling and diversification. In Italy, River Basins Hydrogeological Plans (PAI), prepared by basin administrations, are the basic descriptive, regulatory, technical and operational tools for environmental planning in flood prone areas. Nevertheless, such plans do not cover the entire Italian territory, having significant gaps along the minor hydrographic network and in ungauged basins. Several process-based modelling approaches have been used by different basin administrations for the flood hazard assessment, resulting in an inhomogeneous hazard zonation of the territory. As a result, flood hazard assessments expected and damage estimations across the different Italian basin administrations are not always coherent. To overcome these limitations, we propose a simplified multivariate statistical approach for the regional flood hazard zonation coupled with a flood impact model. This modelling approach has been applied in different Italian basin administrations, allowing a preliminary but coherent and comparable estimation of the flood hazard and the relative impact. Model performances are evaluated comparing the predicted flood prone areas with the corresponding PAI zonation. The proposed approach will provide standardized information (following the EU Floods Directive specifications) on flood risk at a regional level which can in turn be more readily applied to assess flood economic impacts. Furthermore, in the assumption of an appropriate flood risk statistical characterization, the proposed procedure could be applied straightforward outside the national borders, particularly in areas with similar geo-environmental settings.
Contribution of future urbanisation expansion to flood risk changes
NASA Astrophysics Data System (ADS)
Bruwier, Martin; Mustafa, Ahmed; Archambeau, Pierre; Erpicum, Sébastien; Pirotton, Michel; Teller, Jacques; Dewals, Benjamin
2016-04-01
The flood risk is expected to increase in the future due to climate change and urban development. Climate change modifies flood hazard and urban development influences exposure and vulnerability to floods. While the influence of climate change on flood risk has been studied widely, the impact of urban development also needs to be considered in a sustainable flood risk management approach. The main goal of this study is the determination of the sensitivity of future flood risk to different urban development scenarios at a relatively short-time horizon in the River Meuse basin in Wallonia (Belgium). From the different scenarios, the expected impact of urban development on flood risk is assessed. Three urban expansion scenarios are developed up to 2030 based on a coupled cellular automata (CA) and agent-based (AB) urban expansion model: (i) business-as-usual, (ii) restrictive and (iii) extreme expansion scenarios. The main factor controlling these scenarios is the future urban land demand. Each urban expansion scenario is developed by considering or not high and/or medium flood hazard zones as a constraint for urban development. To assess the model's performance, it is calibrated for the Meuse River valley (Belgium) to simulate urban expansion between 1990 and 2000. Calibration results are then assessed by comparing the 2000 simulated land-use map and the actual 2000 land-use map. The flood damage estimation for each urban expansion scenario is determined for five flood discharges by overlaying the inundation map resulting from a hydraulic computation and the urban expansion map and by using damage curves and specific prices. The hydraulic model Wolf2D has been extensively validated by comparisons between observations and computational results during flood event .This study focuses only on mobile and immobile prices for urban lands, which are associated to the most severe damages caused by floods along the River Meuse. These findings of this study offers tools to drive urban expansion based on numerous policies visions to mitigate future flood risk along the Meuse River. In particular, we assess the impacts on future flood risk of the prohibition of urban development in high and/or medium flood hazard zones. Acknowledgements The research was funded through the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation.
Mitigation of Debris Flow Damage--Â A Case Study of Debris Flow Damage
NASA Astrophysics Data System (ADS)
Lin, J. C.; Jen, C. H.
Typhoon Toraji caused more than 30 casualties in Central Taiwan on the 31st July 2001. It was the biggest Typhoon since the Chi-Chi earthquake of 1999 with huge amounts of rainfall. Because of the influence of the earthquake, loose debris falls and flows became major hazards in Central Taiwan. Analysis of rainfall data and sites of slope failure show that damage from these natural hazards were enhanced as a result of the Chi-Chi earthquake. Three main types of hazard occurred in Central Taiwan: land- slides, debris flows and gully erosion. Landslides occurred mainly along hill slopes and banks of channels. Many dams and houses were destroyed by flooding. Debris flows occurred during typhoon periods and re-activated ancient debris depositions. Many new gullies were therefore developed from deposits loosened and shaken by the earthquake. This paper demonstrates the geological/geomorphological background of the hazard area, and reviews methods of damage mitigation in central Taiwan. A good example is Hsi-Tou, which had experienced no gully erosion for more than 40 years. The area experienced much gully erosion as a result of the combined effects of earth- quake and typhoon. Although Typhoon Toraji produced only 30% of the rainfall of Typhoon Herb of 1996, it caused more damage in the Hsi-Tou area. The mitigation of debris flow hazards in Hsi-tou area is discussed in this paper.
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.2... organization, that has zoning and building code jurisdiction over a particular area having special flood..., that is designated to develop and administer a mitigation plan by political subdivisions, all of which...
Code of Federal Regulations, 2010 CFR
2010-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78... organization, that has zoning and building code jurisdiction over a particular area having special flood..., that is designated to develop and administer a mitigation plan by political subdivisions, all of which...
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78... organization, that has zoning and building code jurisdiction over a particular area having special flood..., that is designated to develop and administer a mitigation plan by political subdivisions, all of which...
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78... organization, that has zoning and building code jurisdiction over a particular area having special flood..., that is designated to develop and administer a mitigation plan by political subdivisions, all of which...
Code of Federal Regulations, 2014 CFR
2014-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78... organization, that has zoning and building code jurisdiction over a particular area having special flood..., that is designated to develop and administer a mitigation plan by political subdivisions, all of which...
44 CFR 78.6 - Flood Mitigation Plan approval process.
Code of Federal Regulations, 2010 CFR
2010-10-01
... approval process. 78.6 Section 78.6 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY... MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood... reasons for non-approval and offer suggestions for improvement. ...
NASA Astrophysics Data System (ADS)
Lusiana, N.
2013-12-01
Abstract Floods haves frequently hit Indonesia and have had greater negative impacts. In Javaboth the area affected by flooding and the amount of damage caused by floods have increased. At least, five factors, affect the flooding in Indonesia, including rainfall, reduced retention capacity of the watershed, erroneous design of river channel development, silting-up of the river, and erroneous regional layout. The level of the disastrous risks can be evaluated based on the extent of the threat and susceptibility of a region. One methode for risk assessment is Geographical Information System (GIS)-based mapping. Objectives of this research are: 1) evaluating current flood risk in susceptible areas, 2) applying supported land-based layout as effort to mitigate floodrisk, and 3) evaluating floodrisk for the period 2031 in the Tempuran floodplain of Ponorogo Regency. Result show that the area categorized as high risk covers 104. 6 ha (1. 2%), moderate risk covers 2512. 9 ha (28. 4%), low risk covers 3140. 8 ha (35. 5%), and the lowest risk covers 3096. 1 (34. 9%). Using Regional Layout Design for the years 2011 - 2031, the high risk area covers 67. 9 ha (0.8%), moderate risk covers 3033 ha (34. 3%), low risk covers 2770. 8 ha (31, 3%), and the lowest risk covers 2982. 6 ha (34%). Based on supported land suitability, the high-risk areais only 2. 9 ha (0.1%), moderate risk covers of 426. 1 ha (4. 8%), low risk covers 4207. 4 ha (47. 5%), and the lowest risk covers 4218 ha (47. 6%). Flood risk can be mitigated by applying supported land-based layout as shown by the reduced high-risk area, and the fact that > 90% of the areas are categorized as low or lowest risk of disaster. Keywords : Carrying Capacity, Land Capacity, Flood Risk
NASA Astrophysics Data System (ADS)
Kinoshita, Youhei; Tanoue, Masahiro; Watanabe, Satoshi; Hirabayashi, Yukiko
2018-01-01
This study represents the first attempt to quantify the effects of autonomous adaptation on the projection of global flood hazards and to assess future flood risk by including this effect. A vulnerability scenario, which varies according to the autonomous adaptation effect for conventional disaster mitigation efforts, was developed based on historical vulnerability values derived from flood damage records and a river inundation simulation. Coupled with general circulation model outputs and future socioeconomic scenarios, potential future flood fatalities and economic loss were estimated. By including the effect of autonomous adaptation, our multimodel ensemble estimates projected a 2.0% decrease in potential flood fatalities and an 821% increase in potential economic losses by 2100 under the highest emission scenario together with a large population increase. Vulnerability changes reduced potential flood consequences by 64%-72% in terms of potential fatalities and 28%-42% in terms of potential economic losses by 2100. Although socioeconomic changes made the greatest contribution to the potential increased consequences of future floods, about a half of the increase of potential economic losses was mitigated by autonomous adaptation. There is a clear and positive relationship between the global temperature increase from the pre-industrial level and the estimated mean potential flood economic loss, while there is a negative relationship with potential fatalities due to the autonomous adaptation effect. A bootstrapping analysis suggests a significant increase in potential flood fatalities (+5.7%) without any adaptation if the temperature increases by 1.5 °C-2.0 °C, whereas the increase in potential economic loss (+0.9%) was not significant. Our method enables the effects of autonomous adaptation and additional adaptation efforts on climate-induced hazards to be distinguished, which would be essential for the accurate estimation of the cost of adaptation to climate change.
The Generation of a Stochastic Flood Event Catalogue for Continental USA
NASA Astrophysics Data System (ADS)
Quinn, N.; Wing, O.; Smith, A.; Sampson, C. C.; Neal, J. C.; Bates, P. D.
2017-12-01
Recent advances in the acquisition of spatiotemporal environmental data and improvements in computational capabilities has enabled the generation of large scale, even global, flood hazard layers which serve as a critical decision-making tool for a range of end users. However, these datasets are designed to indicate only the probability and depth of inundation at a given location and are unable to describe the likelihood of concurrent flooding across multiple sites.Recent research has highlighted that although the estimation of large, widespread flood events is of great value to flood mitigation and insurance industries, to date it has been difficult to deal with this spatial dependence structure in flood risk over relatively large scales. Many existing approaches have been restricted to empirical estimates of risk based on historic events, limiting their capability of assessing risk over the full range of plausible scenarios. Therefore, this research utilises a recently developed model-based approach to describe the multisite joint distribution of extreme river flows across continental USA river gauges. Given an extreme event at a site, the model characterises the likelihood neighbouring sites are also impacted. This information is used to simulate an ensemble of plausible synthetic extreme event footprints from which flood depths are extracted from an existing global flood hazard catalogue. Expected economic losses are then estimated by overlaying flood depths with national datasets defining asset locations, characteristics and depth damage functions. The ability of this approach to quantify probabilistic economic risk and rare threshold exceeding events is expected to be of value to those interested in the flood mitigation and insurance sectors.This work describes the methodological steps taken to create the flood loss catalogue over a national scale; highlights the uncertainty in the expected annual economic vulnerability within the USA from extreme river flows; and presents future developments to the modelling approach.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.2... special flood hazards, and is participating in the NFIP; or (2) A political subdivision of a State, or other authority that is designated by a political subdivision to develop and administer a mitigation...
44 CFR 79.4 - Availability of funding.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... is declared pursuant to the Robert T. Stafford Disaster Relief and Emergency Assistance Act for flood... Share. All mitigation activities approved under the grant will be subject to the following cost-share...
44 CFR 79.4 - Availability of funding.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... is declared pursuant to the Robert T. Stafford Disaster Relief and Emergency Assistance Act for flood... Share. All mitigation activities approved under the grant will be subject to the following cost-share...
44 CFR 79.4 - Availability of funding.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... is declared pursuant to the Robert T. Stafford Disaster Relief and Emergency Assistance Act for flood... Share. All mitigation activities approved under the grant will be subject to the following cost-share...
44 CFR 79.4 - Availability of funding.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... is declared pursuant to the Robert T. Stafford Disaster Relief and Emergency Assistance Act for flood... Share. All mitigation activities approved under the grant will be subject to the following cost-share...
44 CFR 79.4 - Availability of funding.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... is declared pursuant to the Robert T. Stafford Disaster Relief and Emergency Assistance Act for flood... Share. All mitigation activities approved under the grant will be subject to the following cost-share...
NASA Technical Reports Server (NTRS)
Chien, Steve; Mclaren, David; Doubleday, Joshua; Tran, Daniel; Tanpipat, Veerachai; Chitradon, Royol; Boonya-aroonnet, Surajate; Thanapakpawin, Porranee; Mandl, Daniel
2012-01-01
Several space-based assets (Terra, Aqua, Earth Observing One) have been integrated into a sensorweb to monitor flooding in Thailand. In this approach, the Moderate Imaging Spectrometer (MODIS) data from Terra and Aqua is used to perform broad-scale monitoring to track flooding at the regional level (250m/pixel) and EO-1 is autonomously tasked in response to alerts to acquire higher resolution (30m/pixel) Advanced Land Imager (ALI) data. This data is then automatically processed to derive products such as surface water extent and volumetric water estimates. These products are then automatically pushed to organizations in Thailand for use in damage estimation, relief efforts, and damage mitigation. More recently, this sensorweb structure has been used to request imagery, access imagery, and process high-resolution (several m to 30m), targetable asset imagery from commercial assets including Worldview-2, Ikonos, Radarsat-2, Landsat-7, and Geo-Eye-1. We describe the overall sensorweb framework as well as new workflows and products made possible via these extensions.
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Ross, Kenton W.; Graham, William D.
2007-01-01
Hurricane Katrina hit southwestern Mississippi on August 29, 2005, at 9:45 a.m. CDT as a category 3 storm with surges up to approx. 9 m and sustained winds of approx. 120 mph. The hurricane's wind, rain, and flooding devastated several coastal towns, from New Orleans through Mobile. The storm also caused significant damage to infrastructure and vegetation of NASA's SSC (Stennis Space Center). Storm recovery at SSC involved not only repairs of critical infrastructure but also forest damage mitigation (via timber harvests and control burns to reduce fire risk). This presentation discusses an effort to use commercially available high spatial resolution multispectral IKONOS data for vegetation damage assessment, based on data collected over SSC on September 2, 2005.
44 CFR 78.9 - Planning grant approval process.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.9 Planning grant approval process. The State POC will evaluate and approve applications for Planning Grants. Funds will be provided only for the flood portion of any mitigation plan, and...
44 CFR 78.9 - Planning grant approval process.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.9 Planning grant approval process. The State POC will evaluate and approve applications for Planning Grants. Funds will be provided only for the flood portion of any mitigation plan, and...
44 CFR 78.9 - Planning grant approval process.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.9 Planning grant approval process. The State POC will evaluate and approve applications for Planning Grants. Funds will be provided only for the flood portion of any mitigation plan, and...
44 CFR 78.9 - Planning grant approval process.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.9 Planning grant approval process. The State POC will evaluate and approve applications for Planning Grants. Funds will be provided only for the flood portion of any mitigation plan, and...
44 CFR 78.9 - Planning grant approval process.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.9 Planning grant approval process. The State POC will evaluate and approve applications for Planning Grants. Funds will be provided only for the flood portion of any mitigation plan, and...
Integrated analysis considered mitigation cost, damage cost and adaptation cost in Northeast Asia
NASA Astrophysics Data System (ADS)
Park, J. H.; Lee, D. K.; Kim, H. G.; Sung, S.; Jung, T. Y.
2015-12-01
Various studies show that raising the temperature as well as storms, cold snap, raining and drought caused by climate change. And variety disasters have had a damage to mankind. The world risk report(2012, The Nature Conservancy) and UNU-EHS (the United Nations University Institute for Environment and Human Security) reported that more and more people are exposed to abnormal weather such as floods, drought, earthquakes, typhoons and hurricanes over the world. In particular, the case of Korea, we influenced by various pollutants which are occurred in Northeast Asian countries, China and Japan, due to geographical meteorological characteristics. These contaminants have had a significant impact on air quality with the pollutants generated in Korea. Recently, around the world continued their effort to reduce greenhouse gas and to improve air quality in conjunction with the national or regional development goals priority. China is also working on various efforts in accordance with the international flows to cope with climate change and air pollution. In the future, effect of climate change and air quality in Korea and Northeast Asia will be change greatly according to China's growth and mitigation policies. The purpose of this study is to minimize the damage caused by climate change on the Korean peninsula through an integrated approach taking into account the mitigation and adaptation plan. This study will suggest a climate change strategy at the national level by means of a comprehensive economic analysis of the impacts and mitigation of climate change. In order to quantify the impact and damage cost caused by climate change scenarios in a regional scale, it should be priority variables selected in accordance with impact assessment of climate change. The sectoral impact assessment was carried out on the basis of selected variables and through this, to derive the methodology how to estimate damage cost and adaptation cost. And then, the methodology was applied in Korea. Finally, we build an integrated analysis considered mitigation cost, damage cost, and adaptation cost by climate change
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-04
... program/project performance for Flood Mitigation Assistance program, Severe Repetitive Loss, Repetitive Flood Claim, and Pre-Disaster Mitigation activities. DATES: Comments must be submitted on or before... INFORMATION: This collection of information is necessary to implement grants for the Flood Mitigation...
Meteorological Hazard Assessment and Risk Mitigation in Rwanda.
NASA Astrophysics Data System (ADS)
Nduwayezu, Emmanuel; Jaboyedoff, Michel; Bugnon, Pierre-Charles; Nsengiyumva, Jean-Baptiste; Horton, Pascal; Derron, Marc-Henri
2015-04-01
Between 10 and 13 April 2012, heavy rains hit sectors adjacent to the Vulcanoes National Park (Musanze District in the Northern Province and Nyabihu and Rubavu Districts in the Western Province of RWANDA), causing floods that affected about 11,000 persons. Flooding caused deaths and injuries among the affected population, and extensive damage to houses and properties. 348 houses were destroyed and 446 were partially damaged or have been underwater for several days. Families were forced to leave their flooded homes and seek temporal accommodation with their neighbors, often in overcrowded places. Along the West-northern border of RWANDA, Virunga mountain range consists of 6 major volcanoes. Mount Karisimbi is the highest volcano at 4507m. The oldest mountain is mount Sabyinyo which rises 3634m. The hydraulic network in Musanze District is formed by temporary torrents and permanent watercourses. Torrents surge during strong storms, and are provoked by water coming downhill from the volcanoes, some 20 km away. This area is periodically affected by flooding and landslides because of heavy rain (Rwanda has 2 rainy seasons from February to April and from September to November each year in general and 2 dry seasons) striking the Volcano National Park. Rain water creates big water channels (in already known torrents or new ones) that impact communities, agricultural soils and crop yields. This project aims at identifying hazardous and risky areas by producing susceptibility maps for floods, debris flow and landslides over this sector. Susceptibility maps are being drawn using field observations, during and after the 2012 events, and an empirical model of propagation for regional susceptibility assessments of debris flows (Flow-R). Input data are 10m and 30m resolution DEMs, satellite images, hydrographic network, and some information on geological substratum and soil occupation. Combining susceptibility maps with infrastructures, houses and population density maps will be used in identifying the most risky areas. Finally, based on practical experiences in this kind of field and produced documents some recommendations for low-cost mitigation measures will be proposed. Reference: MIDIMAR, Impacts of floods and landslides on socio-economic development profile. Case study: Musanze District. Kigali, June 2012.
NASA Astrophysics Data System (ADS)
Cuellar, A. D.; McKinney, D. C.
2014-12-01
Climate change has accelerated glacial retreat in high altitude glaciated regions of Peru leading to the growth and formation of glacier lakes. Glacial lake outburst floods (GLOF) are sudden events triggered by an earthquake, avalanche into the lake or other shock that causes a sudden outflow of water. These floods are catastrophic because of their sudden onset, the difficulty predicting them, and enormous quantity of water and debris rapidly flooding downstream areas. Palcacocha Lake in the Peruvian Andes has experienced accelerated growth since it burst in 1941 and threatens the major city of Huaraz and surrounding communities. Since the 1941 flood stakeholders have advocated for projects to adapt to the increasing threat posed by Palcacocha Lake. Nonetheless, discussions surrounding projects for Palcacocha have not included a rigorous analysis of the potential consequences of a flood, probability of an event, or costs of mitigation projects. This work presents the first step to rationally analyze the risks posed by Palcacocha Lake and the various adaptation projects proposed. In this work the authors use decision analysis to asses proposed adaptation measures that would mitigate damage in downstream communities from a GLOF. We use an existing hydrodynamic model of the at-risk area to determine how adaptation projects will affect downstream flooding. Flood characteristics are used in the HEC-FIA software to estimate fatalities and injuries from an outburst flood, which we convert to monetary units using the value of a statistical life. We combine the monetary consequences of a GLOF with the cost of the proposed projects and a diffuse probability distribution for the likelihood of an event to estimate the expected cost of the adaptation plans. From this analysis we found that lowering the lake level by 15 meters has the least expected cost of any proposal despite uncertainty in the effect of lake lowering on flooding downstream.
Hu, Maochuan; Sayama, Takahiro; Zhang, Xingqi; Tanaka, Kenji; Takara, Kaoru; Yang, Hong
2017-05-15
Low impact development (LID) has attracted growing attention as an important approach for urban flood mitigation. Most studies evaluating LID performance for mitigating floods focus on the changes of peak flow and runoff volume. This paper assessed the performance of LID practices for mitigating flood inundation hazards as retrofitting technologies in an urbanized watershed in Nanjing, China. The findings indicate that LID practices are effective for flood inundation mitigation at the watershed scale, and especially for reducing inundated areas with a high flood hazard risk. Various scenarios of LID implementation levels can reduce total inundated areas by 2%-17% and areas with a high flood hazard level by 6%-80%. Permeable pavement shows better performance than rainwater harvesting against mitigating urban waterlogging. The most efficient scenario is combined rainwater harvesting on rooftops with a cistern capacity of 78.5 mm and permeable pavement installed on 75% of non-busy roads and other impervious surfaces. Inundation modeling is an effective approach to obtaining the information necessary to guide decision-making for designing LID practices at watershed scales. Copyright © 2017 Elsevier Ltd. All rights reserved.
Making Supply Chains Resilient to Floods Using a Bayesian Network
NASA Astrophysics Data System (ADS)
Haraguchi, M.
2015-12-01
Natural hazards distress the global economy by disrupting the interconnected supply chain networks. Manufacturing companies have created cost-efficient supply chains by reducing inventories, streamlining logistics and limiting the number of suppliers. As a result, today's supply chains are profoundly susceptible to systemic risks. In Thailand, for example, the GDP growth rate declined by 76 % in 2011 due to prolonged flooding. Thailand incurred economic damage including the loss of USD 46.5 billion, approximately 70% of which was caused by major supply chain disruptions in the manufacturing sector. Similar problems occurred after the Great East Japan Earthquake and Tsunami in 2011, the Mississippi River floods and droughts during 2011 - 2013, and Hurricane Sandy in 2012. This study proposes a methodology for modeling supply chain disruptions using a Bayesian network analysis (BNA) to estimate expected values of countermeasures of floods, such as inventory management, supplier management and hard infrastructure management. We first performed a spatio-temporal correlation analysis between floods and extreme precipitation data for the last 100 years at a global scale. Then we used a BNA to create synthetic networks that include variables associated with the magnitude and duration of floods, major components of supply chains and market demands. We also included decision variables of countermeasures that would mitigate potential losses caused by supply chain disruptions. Finally, we conducted a cost-benefit analysis by estimating the expected values of these potential countermeasures while conducting a sensitivity analysis. The methodology was applied to supply chain disruptions caused by the 2011 Thailand floods. Our study demonstrates desirable typical data requirements for the analysis, such as anonymized supplier network data (i.e. critical dependencies, vulnerability information of suppliers) and sourcing data(i.e. locations of suppliers, and production rates and volume), and data from previous experiences (i.e. companies' risk mitigation strategy decisions).
An evaluation of Computational Fluid dynamics model for flood risk analysis
NASA Astrophysics Data System (ADS)
Di Francesco, Silvia; Biscarini, Chiara; Montesarchio, Valeria
2014-05-01
This work presents an analysis of the hydrological-hydraulic engineering requisites for Risk evaluation and efficient flood damage reduction plans. Most of the research efforts have been dedicated to the scientific and technical aspects of risk assessment, providing estimates of possible alternatives and of the risk associated. In the decision making process for mitigation plan, the contribute of scientist is crucial, due to the fact that Risk-Damage analysis is based on evaluation of flow field ,of Hydraulic Risk and on economical and societal considerations. The present paper will focus on the first part of process, the mathematical modelling of flood events which is the base for all further considerations. The evaluation of potential catastrophic damage consequent to a flood event and in particular to dam failure requires modelling of the flood with sufficient detail so to capture the spatial and temporal evolutions of the event, as well of the velocity field. Thus, the selection of an appropriate mathematical model to correctly simulate flood routing is an essential step. In this work we present the application of two 3D Computational fluid dynamics models to a synthetic and real case study in order to evaluate the correct evolution of flow field and the associated flood Risk . The first model is based on a opensource CFD platform called openFoam. Water flow is schematized with a classical continuum approach based on Navier-Stokes equation coupled with Volume of fluid (VOF) method to take in account the multiphase character of river bottom-water- air systems. The second model instead is based on the Lattice Boltzmann method, an innovative numerical fluid dynamics scheme based on Boltzmann's kinetic equation that represents the flow dynamics at the macroscopic level by incorporating a microscopic kinetic approach. Fluid is seen as composed by particles that can move and collide among them. Simulation results from both models are promising and congruent to experimental results available in literature, thought the LBM model requires less computational effort respect to the NS one.
44 CFR 79.3 - Responsibilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... oversight to all FEMA-related hazard mitigation programs and grants, including: (1) Issue program... Indian tribal governments regarding the mitigation and grants management process; (5) Review and approve...
44 CFR 79.3 - Responsibilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... oversight to all FEMA-related hazard mitigation programs and grants, including: (1) Issue program... Indian tribal governments regarding the mitigation and grants management process; (5) Review and approve...
44 CFR 79.3 - Responsibilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... oversight to all FEMA-related hazard mitigation programs and grants, including: (1) Issue program... Indian tribal governments regarding the mitigation and grants management process; (5) Review and approve...
44 CFR 79.3 - Responsibilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.3...-related hazard mitigation programs and grants, including: (1) Issue program implementation procedures, as... governments regarding the mitigation and grants management process; (5) Review and approve State, Indian...
44 CFR 79.3 - Responsibilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... oversight to all FEMA-related hazard mitigation programs and grants, including: (1) Issue program... Indian tribal governments regarding the mitigation and grants management process; (5) Review and approve...
A participatory approach of flood vulnerability assessment in the Banat Plain, Romania
NASA Astrophysics Data System (ADS)
Balteanu, Dan; Costache, Andra; Sima, Mihaela; Dumitrascu, Monica; Dragota, Carmen; Grigorescu, Ines
2014-05-01
The Banat Plain (western Romania) is a low, alluvial plain affected by neotectonic subsidence movements, being a critical region in terms of exposure to floods. The latest extreme event was the historic floods occcured in the spring of 2005, which caused significant economic damage in several rural communities. The response to 2005 floods has highlighted a number of weaknesses in the management of hazards, such as the deficiencies of the early warning system, people awareness or the inefficiency of some mitigation measures, besides the past structural measures which are obsolete. For a better understanding of the local context of vulnerability and communities resilience to floods, the quantitative assessment of human vulnerability to floods was supplemented with a participatory research, in which there were involved five rural settlements from the Banat Plain (comprising 15 villages and a population of over 12,000 inhabitants). Thus, in the spring of 2013, a questionnaire-based survey was conducted in approx. 100 households of the affected communities and structured interviews were held with local authorities, in the framework of VULMIN project, funded by the Ministry of National Education. The questionnaire was designed based on a pilot survey conducted in 2005, several months after the flood, and was focused on two major issues: a) perception of the local context of vulnerability to environmental change and extreme events; b) perception of human vulnerability to floods (personal experience, post-disaster rehabilitation, awareness, worrying and opinion on the measures aimed to prevent and mitigate the effects of flooding). The results were correlated with a number of specific variables of the households included in the sample, such as: household structure; income source; income level; location of the dwelling in relation to floodplains. In this way, we were able to draw general conclusions about the way in which local people perceive the extreme events, such as floods, on the one hand. On the other hand, there were highlighted differences in perception between the respondents, caused by their different degree of socio-economic vulnerability. Although exposure to floods remains a significant problem in the Banat Plain, statistical analysis of the results revealed that respondents tended to relate mainly to newly produced extreme climatic events (droughts, heat waves, storms), when being asked to mention natural hazards threatening the studied region. Moreover, the comparison of the results of the two surveys conducted in the region (in 2005 and 2013) indicated that the relationship between the components of risk perception has changed over time. Thus, the directly proportional relationship between awareness, worry and preparedness, emphasized in 2005, is currently absent. The implementation of flood mitigation measures appears to be only the result of mechanisms put into service at the institutional level, after the events of 2005. Although currently there may be an improvement in flood response and mitigation in the region, compared to 2005, the low level of awareness and the fact that exposure to floods is not yet perceived as a threat can jeopardize the resilience and adaptation of rural communities to floods in the Banat Plain.
The Effects of Saltwater Intrusion to Flood Mitigation Project
NASA Astrophysics Data System (ADS)
Azida Abu Bakar, Azinoor; Khairudin Khalil, Muhammad
2018-03-01
The objective of this study is to determine the effects of saltwater intrusion to flood mitigation project located in the flood plains in the district of Muar, Johor. Based on the studies and designs carried out, one of the effective flood mitigation options identified is the Kampung Tanjung Olak bypass and Kampung Belemang bypass at the lower reaches of Sungai Muar. But, the construction of the Kampung Belemang and Tanjung Olak bypass, while speeding up flood discharges, may also increase saltwater intrusion during drought low flows. Establishing the dynamics of flooding, including replicating the existing situation and the performance with prospective flood mitigation interventions, is most effectively accomplished using computer-based modelling tools. The finding of this study shows that to overcome the problem, a barrage should be constructed at Sungai Muar to solve the saltwater intrusion and low yield problem of the river.
Kim, Moon H.; Morlock, Scott E.; Arihood, Leslie D.; Kiesler, James L.
2011-01-01
Near-real-time and forecast flood-inundation mapping products resulted from a pilot study for an 11-mile reach of the White River in Indianapolis. The study was done by the U.S. Geological Survey (USGS), Indiana Silver Jackets hazard mitigation taskforce members, the National Weather Service (NWS), the Polis Center, and Indiana University, in cooperation with the City of Indianapolis, the Indianapolis Museum of Art, the Indiana Department of Homeland Security, and the Indiana Department of Natural Resources, Division of Water. The pilot project showed that it is technically feasible to create a flood-inundation map library by means of a two-dimensional hydraulic model, use a map from the library to quickly complete a moderately detailed local flood-loss estimate, and automatically run the hydraulic model during a flood event to provide the maps and flood-damage information through a Web graphical user interface. A library of static digital flood-inundation maps was created by means of a calibrated two-dimensional hydraulic model. Estimated water-surface elevations were developed for a range of river stages referenced to a USGS streamgage and NWS flood forecast point colocated within the study reach. These maps were made available through the Internet in several formats, including geographic information system, Keyhole Markup Language, and Portable Document Format. A flood-loss estimate was completed for part of the study reach by using one of the flood-inundation maps from the static library. The Federal Emergency Management Agency natural disaster-loss estimation program HAZUS-MH, in conjunction with local building information, was used to complete a level 2 analysis of flood-loss estimation. A Service-Oriented Architecture-based dynamic flood-inundation application was developed and was designed to start automatically during a flood, obtain near real-time and forecast data (from the colocated USGS streamgage and NWS flood forecast point within the study reach), run the two-dimensional hydraulic model, and produce flood-inundation maps. The application used local building data and depth-damage curves to estimate flood losses based on the maps, and it served inundation maps and flood-loss estimates through a Web-based graphical user interface.
Smart disaster mitigation in Thailand
NASA Astrophysics Data System (ADS)
Aimmanee, S.; Ekkawatpanit, C.; Asanuma, H.
2016-04-01
Thailand is notoriously exposed to several natural disasters, from heavy thunder storms to earthquakes and tsunamis, since it is located in the tropical area and has tectonic cracks underneath the ground. Besides these hazards flooding, despite being less severe, occurs frequently, stays longer than the other disasters, and affects a large part of the national territory. Recently in 2011 have also been recorded the devastating effects of major flooding causing the economic damages and losses around 50 billion dollars. Since Thailand is particularly exposed to such hazards, research institutions are involved in campaigns about monitoring, prevention and mitigation of the effects of such phenomena, with the aim to secure and protect human lives, and secondly, the remarkable cultural heritage. The present paper will first make a brief excursus on the main Thailand projects aimed at the mitigation of natural disasters, referring to projects of national and international relevance, being implemented, such as the ESCAP1999 (flow regime regulation and water conservation). Adaptable devices such as foldable flood barriers and hydrodynamically supported temporary banks have been utilized when flooding. In the second part of the paper, will be described some new ideas concerning the use of smart and biomimicking column structures capable of high-velocity water interception and velocity detection in the case of tsunami. The pole configuration is composite cylindrical shell structure embedded with piezoceramic sensor. The vortex shedding of the flow around the pole induces the vibration and periodically strains the piezoelectric element, which in turn generates the electrical sensorial signal. The internal space of the shell is filled with elastic foam to enhance the load carrying capability due to hydrodynamic application. This more rigid outer shell inserted with soft core material resemble lotus stem in nature in order to prolong local buckling and ovalization of column cross-section when subjected to flexural moments. Finally it will be proposed as a warning and mitigation system that can be used on sea coasts vulnerable to potential tsunamis.
Characterisation of flooding in Alexandria in October 2015 and suggested mitigating measures
NASA Astrophysics Data System (ADS)
Bhattacharya, Biswa; Zevenbergen, Chris; Wahaab, R. A. Wahaab R. A.; Elbarki, W. A. I. Elbarki W. A. I.; Busker, T. Busker T.; Salinas Rodriguez, C. N. A. Salinas Rodriguez C. N. A.
2017-04-01
In October 2015 Alexandria (Egypt) experienced exceptional flooding. The flooding was caused by heavy rainfall in a short period of time in a city which normally does not receive a large amount of rainfall. The heavy rainfall caused a tremendous volume of runoff, which the city's drainage system was unable to drain off to the Mediterranean Sea. Seven people have died due to the flood, and there were huge direct and indirect damages. The city does not have a flood forecasting system. An analysis with rainfall forecast from the European Centre for Medium Range Weather Forecast (ECMWF) showed that the extreme rainfall could have been forecasted about a week back. Naturally, if a flood forecasting model was in place the flooding could have been predicted well in advance. Alexandria, along with several other Arab cities, are not prepared at all for natural hazards. Preparedness actions leading to improved adaptation and resilience are not in place. The situation is being further exacerbated with rapid urbanisation and climate change. The local authorities estimate that about 30000 new buildings have been (illegally) constructed during the last five years at a location near the main pumping station (Max Point). This issue may have a very serious adverse effect on hydrology and requires further study to estimate the additional runoff from the newly urbanised areas. The World Bank has listed Alexandria as one of the five coastal cities, which may have very significant risk of coastal flooding due to the climate change. Setting up of a flood forecasting model along with an evidence-based research on the drainage system's capacity is seen as immediate actions that can significantly improve the preparedness of the city towards flooding. Furthermore, the region has got a number of large lakes, which potentially can be used to store extra water as a flood mitigation measure. Two water bodies, namely the Maryot Lake and the Airport Lake, are identified from which water can be pumped out in advance to keep storage available in case of flooding. Keywords: Alexandria, flood, Egypt, rainfall, forecasting.
Weary, David J.
2015-01-01
Rocks with potential for karst formation are found in all 50 states. Damage due to karst subsidence and sinkhole collapse is a natural hazard of national scope. Repair of damage to buildings, highways, and other infrastructure represents a significant national cost. Sparse and incomplete data show that the average cost of karst-related damages in the United States over the last 15 years is estimated to be at least $300,000,000 per year and the actual total is probably much higher. This estimate is lower than the estimated annual costs for other natural hazards; flooding, hurricanes and cyclonic storms, tornadoes, landslides, earthquakes, or wildfires, all of which average over $1 billion per year. Very few state organizations track karst subsidence and sinkhole damage mitigation costs; none occurs at the Federal level. Many states discuss the karst hazard in their State hazard mitigation plans, but seldom include detailed reports of subsidence incidents or their mitigation costs. Most State highway departments do not differentiate karst subsidence or sinkhole collapse from other road repair costs. Amassing of these data would raise the estimated annual cost considerably. Information from insurance organizations about sinkhole damage claims and payouts is also not readily available. Currently there is no agency with a mandate for developing such data. If a more realistic estimate could be made, it would illuminate the national scope of this hazard and make comparison with costs of other natural hazards more realistic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Ootegem, Luc; SHERPPA — Ghent University; Verhofstadt, Elsy
Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimationmore » technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks.« less
NASA Astrophysics Data System (ADS)
Zaharia, Liliana; Costache, Romulus; Prăvălie, Remus; Ioana-Toroimac, Gabriela
2017-04-01
Given that floods continue to cause yearly significant worldwide human and material damages, flood risk mitigation is a key issue and a permanent challenge in developing policies and strategies at various spatial scales. Therefore, a basic phase is elaborating hazard and flood risk maps, documents which are an essential support for flood risk management. The aim of this paper is to develop an approach that allows for the identification of flash-flood and flood-prone susceptible areas based on computing and mapping of two indices: FFPI (Flash-Flood Potential Index) and FPI (Flooding Potential Index). These indices are obtained by integrating in a GIS environment several geographical variables which control runoff (in the case of the FFPI) and favour flooding (in the case of the FPI). The methodology was applied in the upper (mountainous) and middle (hilly) catchment of the Prahova River, a densely populated and socioeconomically well-developed area which has been affected repeatedly by water-related hazards over the past decades. The resulting maps showing the spatialization of the FFPI and FPI allow for the identification of areas with high susceptibility to flashfloods and flooding. This approach can provide useful mapped information, especially for areas (generally large) where there are no flood/hazard risk maps. Moreover, the FFPI and FPI maps can constitute a preliminary step for flood risk and vulnerability assessment.
Quantifying the Influence of Urbanization on a Coastal Floodplain
NASA Astrophysics Data System (ADS)
Sebastian, A.; Juan, A.; Bedient, P. B.
2016-12-01
The U.S. Gulf Coast is the fastest growing region in the United States; between 1960 and 2010, the number of housing units along the Gulf of Mexico increased by 246%, vastly outpacing growth in other parts of the country (NOAA 2013). Numerous studies have shown that increases in impervious surface associated with urbanization reduce infiltration and increase surface runoff. While empirical evidence suggests that changes in land use are leading to increased flood damage in overland areas, earlier studies have largely focused on the impacts of urbanization on surface runoff and watershed hydrology, rather than quantifying its influence on the spatial extent of flooding. In this study, we conduct a longitudinal assessment of the evolution of flood risk since 1970 in an urbanizing coastal watershed. Utilizing the distributed hydrologic model, Vflo®, in combination with the hydraulic model, HEC-RAS, we quantify the impact of localized land use/land cover (LULC) change on the spatial extent of flooding in the watershed and the underlying flood hazard structure. The results demonstrate that increases in impervious cover between 1970 and 2010 (34%) and 2010 and 2040 (18%) increase the size of the floodplain by 26 and 17%, respectively. Furthermore, the results indicate that the depth and frequency of flooding in neighborhoods within the 1% floodplain have increased substantially (see attached figure). Finally, this analysis provides evidence that outdated FEMA floodplain maps could be underestimating the extent of the floodplain by upwards of 25%, depending on the rate of urbanization in the watershed; and, that by incorporating physics-based distributed hydrologic models into floodplain studies, floodplain maps can be easily updated to reflect the most recent LULC information available. The methods presented in this study have important implications for the development of mitigation strategies in coastal areas, such as deterring future development in flood prone areas and directing flood mitigation efforts in already flood prone communities. ReferencesNational Oceanic and Atmospheric Administration (NOAA). (2013). National Coastal Population Report: Population Trends from 1970 to 2020.
The establishment of experimental watershed in Taiwan
NASA Astrophysics Data System (ADS)
Wang, Yu-Chi; Tsung, Shun-Chung; Wang, Hau-Wei; Chen, Cheng-Hsin; Chang, Ya-Chi; Ho, Jui-Yi; Lee, Shih-Chiang; Hong, Jian-Hao
2015-04-01
The rainfall distribution in Taiwan is non-uniform in space and unsteady in time. The water level in the river usually rises rapidly due to the steep slope gradient in the upland area of the watershed. In addition, urbanization and high rainfall intensity result in an increase in surface runoff and decrease the time of concentration. All of these lead to flooding-related disasters and influence people's lives. Thus, the establishment of a more complete hydro-information will increase our understanding of the characteristics of watersheds, prevent disasters, and mitigate damages. To overcome these deficiencies, the Water Resources Agency (WRA), Ministry of Economic Affairs has identified Yilan and Dianbao River Basin to develop a long-term monitoring, then Taiwan Typhoon and Flood Research Institute is responsible for this project. The monitoring sites had been installed in 2012. The sensors for monitoring include rainfall gauge, water level sensor, water surface velocity sensor and pressure-type water depth sensor. Totally, there are 73 sites in the experimental watershed, including the sites installed by the Central Weather Bureau and the Water Resources Agency. Over 30 million data have been collected and validated. Most of data have been passed the processes and considered reliable data. Then, three types of models are applied including rainfall-runoff, river routing and two-dimensional flood models. The simulation results can properly fit the monitored data in these selected events and indicates these models are proper for the experimental watersheds and suitable used for real-time warning. Finally, for purpose of hydrological monitoring and disaster mitigation, a website has been created to show the monitoring data. The users can login and browse the real time monitoring data and figure of temporal data in the past 24 hours and get the information for flood mitigation and emergent evacuation.
NASA Astrophysics Data System (ADS)
Allen, G. H.; David, C. H.; Andreadis, K. M.; Emery, C. M.; Famiglietti, J. S.
2017-12-01
Earth observing satellites provide valuable near real-time (NRT) information about flood occurrence and magnitude worldwide. This NRT information can be used in early flood warning systems and other flood management applications to save lives and mitigate flood damage. However, these NRT products are only useful to early flood warning systems if they are quickly made available, with sufficient time for flood mitigation actions to be implemented. More specifically, NRT data latency, or the time period between the satellite observation and when the user has access to the information, must be less than the time it takes a flood to travel from the flood observation location to a given downstream point of interest. Yet the paradigm that "lower latency is always better" may not necessarily hold true in river systems due to tradeoffs between data latency and data quality. Further, the existence of statistical breaks in the global distribution of flood wave travel time (i.e. a jagged statistical distribution) would represent preferable latencies for river-observation NRT remote sensing products. Here we present a global analysis of flood wave velocity (i.e. flow celerity) and travel time. We apply a simple kinematic wave model to a global hydrography dataset and calculate flow wave celerity and travel time during bankfull flow conditions. Bankfull flow corresponds to the condition of maximum celerity and thus we present the "worst-case scenario" minimum flow wave travel time. We conduct a similar analysis with respect to the time it takes flood waves to reach the next downstream city, as well as the next downstream reservoir. Finally, we conduct these same analyses, but with regards to the technical capabilities of the planned Surface Water and Ocean Topography (SWOT) satellite mission, which is anticipated to provide waterbody elevation and extent measurements at an unprecedented spatial and temporal resolution. We validate these results with discharge records from paired USGS gauge stations located along a diverse collection of river reaches. These results provide a scientific rationale for optimizing the utility of existing and future NRT river-observation products.
Uncertainty in flood damage estimates and its potential effect on investment decisions
NASA Astrophysics Data System (ADS)
Wagenaar, D. J.; de Bruijn, K. M.; Bouwer, L. M.; de Moel, H.
2016-01-01
This paper addresses the large differences that are found between damage estimates of different flood damage models. It explains how implicit assumptions in flood damage functions and maximum damages can have large effects on flood damage estimates. This explanation is then used to quantify the uncertainty in the damage estimates with a Monte Carlo analysis. The Monte Carlo analysis uses a damage function library with 272 functions from seven different flood damage models. The paper shows that the resulting uncertainties in estimated damages are in the order of magnitude of a factor of 2 to 5. The uncertainty is typically larger for flood events with small water depths and for smaller flood events. The implications of the uncertainty in damage estimates for flood risk management are illustrated by a case study in which the economic optimal investment strategy for a dike segment in the Netherlands is determined. The case study shows that the uncertainty in flood damage estimates can lead to significant over- or under-investments.
Improving flood risk mapping in Italy: the FloodRisk open-source software
NASA Astrophysics Data System (ADS)
Albano, Raffaele; Mancusi, Leonardo; Craciun, Iulia; Sole, Aurelia; Ozunu, Alexandru
2017-04-01
Time and again, floods around the world illustrate the devastating impact they can have on societies. Furthermore, the expectation that the flood damages can increase over time with climate, land-use change and social growth in flood prone-areas has raised the public and other stakeholders' (governments, international organization, re-insurance companies and emergency responders) awareness for the need to manage risks in order to mitigate their causes and consequences. In this light, the choice of appropriate measures, the assessment of the costs and effects of such measures, and their prioritization are crucial for decision makers. As a result, a priori flood risk assessment has become a key part of flood management practices with the aim of minimizing the total costs related to the risk management cycle. In this context, The EU Flood Directive 2007/60 requires the delineation of flood risk maps on the bases of most appropriate and advanced tools, with particular attention on limiting required economic efforts. The main aim of these risk maps is to provide the required knowledge for the development of flood risk management plans (FRMPs) by considering both costs and benefits of alternatives and results from consultation with all interested parties. In this context, this research project developed a free and open-source (FOSS) GIS software, called FloodRisk, to operatively support stakeholders in their compliance with the FRMPs. FloodRisk aims to facilitate the development of risk maps and the evaluation and management of current and future flood risk for multi-purpose applications. This new approach overcomes the limits of the expert-drive qualitative (EDQ) approach currently adopted in several European countries, such as Italy, which does not permit a suitable evaluation of the effectiveness of risk mitigation strategies, because the vulnerability component cannot be properly assessed. Moreover, FloodRisk is also able to involve the citizens in the flood management process, enhancing their awareness. This FOSS approach can promotes transparency and accountability through a process of "guided discovery". Moreover, the immediacy with which information is presented by the qualitative flood risk map, can facilitate and speed up the process of knowledge acquisition. An application of FloodRisk model is showed on a pilot case in "Serio" Valley, (North Italy), and its strengths and limits, in terms of additional efforts required in its application compared with EDQ procedure, have been highlighted focusing on the utility of the results provided for the development of FRMPs. Although they still present limits which prevent the FloodRisk application without critically consider the peculiarities of the investigated area in terms of available knowledge on hazard, exposure and vulnerability, the proposed approach surely produces an increase in available knowledge of flood risk and its drivers. This further information cannot be neglected for defining risk mitigation objectives and strategies. Hence, considering the ongoing efforts in the improvement of data availability and quality, FloodRisk could be a suitable tool for the next revision of flood risk maps due by December 2019, supporting effectively Italian and EU practitioners in the delineation of FRMPs (and for flood risk management in general).
Surging Seas Risk Finder: A Tool for Local-Scale Flood Risk Assessments in Coastal Cities
NASA Astrophysics Data System (ADS)
Kulp, S. A.; Strauss, B.
2015-12-01
Local decision makers in coastal cities require accurate, accessible, and thorough assessments of flood exposure risk within their individual municipality, in their efforts to mitigate against damage due to future sea level rise. To fill this need, we have developed Climate Central's Surging Seas Risk Finder, an interactive data toolkit which presents our sea level rise and storm surge analysis for every coastal town, city, county, and state within the USA. Using this tool, policy makers can easily zoom in on their local place of interest to receive a detailed flood risk assessment, which synthesizes a wide range of features including total population, socially vulnerable population, housing, property value, road miles, power plants, schools, hospitals, and many other critical facilities. Risk Finder can also be used to identify specific points of interest in danger of exposure at different flood levels. Additionally, this tool provides localized storm surge probabilities and sea level rise projections at tidal gauges along the coast, so that users can quickly understand the risk of flooding in their area over the coming decades.
User's guide for MAGIC-Meteorologic and hydrologic genscn (generate scenarios) input converter
Ortel, Terry W.; Martin, Angel
2010-01-01
Meteorologic and hydrologic data used in watershed modeling studies are collected by various agencies and organizations, and stored in various formats. Data may be in a raw, un-processed format with little or no quality control, or may be checked for validity before being made available. Flood-simulation systems require data in near real-time so that adequate flood warnings can be made. Additionally, forecasted data are needed to operate flood-control structures to potentially mitigate flood damages. Because real-time data are of a provisional nature, missing data may need to be estimated for use in floodsimulation systems. The Meteorologic and Hydrologic GenScn (Generate Scenarios) Input Converter (MAGIC) can be used to convert data from selected formats into the Hydrologic Simulation System-Fortran hourly-observations format for input to a Watershed Data Management database, for use in hydrologic modeling studies. MAGIC also can reformat the data to the Full Equations model time-series format, for use in hydraulic modeling studies. Examples of the application of MAGIC for use in the flood-simulation system for Salt Creek in northeastern Illinois are presented in this report.
Hydrologic and Hydraulic Analyses of Selected Streams in Lorain County, Ohio, 2003
Jackson, K. Scott; Ostheimer, Chad J.; Whitehead, Matthew T.
2003-01-01
Hydrologic and hydraulic analyses were done for selected reaches of nine streams in Lorain County Ohio. To assess the alternatives for flood-damage mitigation, the Lorain County Engineer and the U.S. Geological Survey (USGS) initiated a cooperative study to investigate aspects of the hydrology and hydraulics of the nine streams. Historical streamflow data and regional regression equations were used to estimate instantaneous peak discharges for floods having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Explanatory variables used in the regression equations were drainage area, main-channel slope, and storage area. Drainage areas of the nine stream reaches studied ranged from 1.80 to 19.3 square miles. The step-backwater model HEC-RAS was used to determine water-surface-elevation profiles for the 10-year-recurrence-interval (10-year) flood along a selected reach of each stream. The water-surface pro-file information was used then to generate digital mapping of flood-plain boundaries. The analyses indicate that at the 10-year flood elevation, road overflow results at numerous hydraulic structures along the nine streams.
NASA Astrophysics Data System (ADS)
Seok, Song Young; Ho, Song Yang; Ho, Lee Jung; Moo Jong, Park
2015-04-01
Due to the increase of impervious layers caused by increased rainfall and urbanization which were brought about by the climate change after the late 1990s, the flood damage in urban watersheds is rising. The recent flood damage is occurring in medium and small stream rather than in large stream. Particularly, in medium stream which pass the cities, sudden flood occurs due to the short concentration of rainfall and urban areas suffer large damage, even though the flood damage is small, since residential areas and social infrastructures are concentrated. In spite of the importance of medium and small stream to pass the cities, there is no certain standard for classification of natural or urban stream and existing studies are mostly focused on the impervious area among the land use characteristics of watersheds. Most of existing river studies are based on the watershed scale, but in most urban watersheds where stream pass, urban areas are concentrated in the confluence, so urban areas only occupy less than 10% of the whole watershed and there is a high uncertainty in the classification of urban areas, based the watershed of stream. This study aims to suggest a classification standard of medium and small stream between local stream and small stream where suffer flood damage. According to the classified medium and small stream, this study analyzed the stream area to the stream width and distance using Arcgis Buffer tool, based on the stream line, not the existing watershed scale. This study then chose urban watersheds by analyzing the river area at certain intervals from the center of the chosen medium and small stream, in different ways. Among the land use characteristics in urban areas, the impervious area was applied to the selection standard of urban watersheds and the characteristics of urban watersheds were presented by calculating the ratio of the stream area to the impervious area using the Buffer tool. Acknowledgement "This research was supported by a grant [NEMA-NH-2011-45] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea." Keywords: land use, urban watershed, medium and smaill stream, impervious area
NASA Astrophysics Data System (ADS)
Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi
2018-01-01
As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG) emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model - Storm Water Management Model - was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020-2040 compared to the volume in 1971-2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. This study highlights the importance of accounting for local adaptation when coping with future urban floods.
Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi
2018-01-15
As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG)more » emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. Furthermore, this study highlights the importance of accounting for local adaptation when coping with future urban floods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi
As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG)more » emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. Furthermore, this study highlights the importance of accounting for local adaptation when coping with future urban floods.« less
NASA Astrophysics Data System (ADS)
Erkens, G.; Bucx, T.; Dam, R.; de Lange, G.; Lambert, J.
2015-11-01
In many coastal and delta cities land subsidence now exceeds absolute sea level rise up to a factor of ten. A major cause for severe land subsidence is excessive groundwater extraction related to rapid urbanization and population growth. Without action, parts of Jakarta, Ho Chi Minh City, Bangkok and numerous other coastal cities will sink below sea level. Land subsidence increases flood vulnerability (frequency, inundation depth and duration of floods), with floods causing major economic damage and loss of lives. In addition, differential land movement causes significant economic losses in the form of structural damage and high maintenance costs for (infra)structure. The total damage worldwide is estimated at billions of dollars annually. As subsidence is often spatially variable and can be caused by multiple processes, an assessment of subsidence in delta cities needs to answer questions such as: what are the main causes? What is the current subsidence rate and what are future scenarios (and interaction with other major environmental issues)? Where are the vulnerable areas? What are the impacts and risks? How can adverse impacts be mitigated or compensated for? Who is involved and responsible to act? In this study a quick-assessment of subsidence is performed on the following mega-cities: Jakarta, Ho Chi Minh City, Dhaka, New Orleans and Bangkok. Results of these case studies will be presented and compared, and a (generic) approach how to deal with subsidence in current and future subsidence-prone areas is provided.
SATO, Shinji
2015-01-01
Characteristics of the 2011 Tohoku Tsunami have been revealed by collaborative tsunami surveys extensively performed under the coordination of the Joint Tsunami Survey Group. The complex behaviors of the mega-tsunami were characterized by the unprecedented scale and the low occurrence frequency. The limitation and the performance of tsunami countermeasures were described on the basis of tsunami surveys, laboratory experiments and numerical analyses. These findings contributed to the introduction of two-level tsunami hazards to establish a new strategy for tsunami disaster mitigation, combining structure-based flood protection designed by the Level-1 tsunami and non-structure-based damage reduction planned by the Level-2 tsunami. PMID:26062739
Sato, Shinji
2015-01-01
Characteristics of the 2011 Tohoku Tsunami have been revealed by collaborative tsunami surveys extensively performed under the coordination of the Joint Tsunami Survey Group. The complex behaviors of the mega-tsunami were characterized by the unprecedented scale and the low occurrence frequency. The limitation and the performance of tsunami countermeasures were described on the basis of tsunami surveys, laboratory experiments and numerical analyses. These findings contributed to the introduction of two-level tsunami hazards to establish a new strategy for tsunami disaster mitigation, combining structure-based flood protection designed by the Level-1 tsunami and non-structure-based damage reduction planned by the Level-2 tsunami.
Zhou, Qianqian; Leng, Guoyong; Feng, Leyang
2017-07-13
Understanding historical changes in flood damage and the underlying mechanisms is critical for predicting future changes for better adaptations. In this study, a detailed assessment of flood damage for 1950–1999 is conducted at the state level in the conterminous United States (CONUS). Geospatial datasets on possible influencing factors are then developed by synthesizing natural hazards, population, wealth, cropland and urban area to explore the relations with flood damage. A considerable increase in flood damage in CONUS is recorded for the study period which is well correlated with hazards. Comparably, runoff indexed hazards simulated by the Variable Infiltration Capacity (VIC) modelmore » can explain a larger portion of flood damage variations than precipitation in 84% of the states. Cropland is identified as an important factor contributing to increased flood damage in central US while urbanland exhibits positive and negative relations with total flood damage and damage per unit wealth in 20 and 16 states, respectively. Altogether, flood damage in 34 out of 48 investigated states can be predicted at the 90% confidence level. In extreme cases, ~76% of flood damage variations can be explained in some states, highlighting the potential of future flood damage prediction based on climate change and socioeconomic scenarios.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qianqian; Leng, Guoyong; Feng, Leyang
Understanding historical changes in flood damage and the underlying mechanisms is critical for predicting future changes for better adaptations. In this study, a detailed assessment of flood damage for 1950–1999 is conducted at the state level in the conterminous United States (CONUS). Geospatial datasets on possible influencing factors are then developed by synthesizing natural hazards, population, wealth, cropland and urban area to explore the relations with flood damage. A considerable increase in flood damage in CONUS is recorded for the study period which is well correlated with hazards. Comparably, runoff indexed hazards simulated by the Variable Infiltration Capacity (VIC) modelmore » can explain a larger portion of flood damage variations than precipitation in 84% of the states. Cropland is identified as an important factor contributing to increased flood damage in central US while urbanland exhibits positive and negative relations with total flood damage and damage per unit wealth in 20 and 16 states, respectively. Altogether, flood damage in 34 out of 48 investigated states can be predicted at the 90% confidence level. In extreme cases, ~76% of flood damage variations can be explained in some states, highlighting the potential of future flood damage prediction based on climate change and socioeconomic scenarios.« less
Risk-based zoning for urbanizing floodplains.
Porse, Erik
2014-01-01
Urban floodplain development brings economic benefits and enhanced flood risks. Rapidly growing cities must often balance the economic benefits and increased risks of floodplain settlement. Planning can provide multiple flood mitigation and environmental benefits by combining traditional structural measures such as levees, increasingly popular landscape and design features (green infrastructure), and non-structural measures such as zoning. Flexibility in both structural and non-structural options, including zoning procedures, can reduce flood risks. This paper presents a linear programming formulation to assess cost-effective urban floodplain development decisions that consider benefits and costs of development along with expected flood damages. It uses a probabilistic approach to identify combinations of land-use allocations (residential and commercial development, flood channels, distributed runoff management) and zoning regulations (development zones in channel) to maximize benefits. The model is applied to a floodplain planning analysis for an urbanizing region in the Baja Sur peninsula of Mexico. The analysis demonstrates how (1) economic benefits drive floodplain development, (2) flexible zoning can improve economic returns, and (3) cities can use landscapes, enhanced by technology and design, to manage floods. The framework can incorporate additional green infrastructure benefits, and bridges typical disciplinary gaps for planning and engineering.
Analysis of flash flood parameters and human impacts in the US from 2006 to 2012
NASA Astrophysics Data System (ADS)
Špitalar, Maruša; Gourley, Jonathan J.; Lutoff, Celine; Kirstetter, Pierre-Emmanuel; Brilly, Mitja; Carr, Nicholas
2014-11-01
Several different factors external to the natural hazard of flash flooding can contribute to the type and magnitude of their resulting damages. Human exposure, vulnerability, fatality and injury rates can be minimized by identifying and then mitigating the causative factors for human impacts. A database of flash flooding was used for statistical analysis of human impacts across the U.S. 21,549 flash flood events were analyzed during a 6-year period from October 2006 to 2012. Based on the information available in the database, physical parameters were introduced and then correlated to the reported human impacts. Probability density functions of the frequency of flash flood events and the PDF of occurrences weighted by the number of injuries and fatalities were used to describe the influence of each parameter. The factors that emerged as the most influential on human impacts are short flood durations, small catchment sizes in rural areas, vehicles, and nocturnal events with low visibility. Analyzing and correlating a diverse range of parameters to human impacts give us important insights into what contributes to fatalities and injuries and further raises questions on how to manage them.
Flood Management and Protection from the Social Point of View: Case Study from Ukraine
NASA Astrophysics Data System (ADS)
Manukalo, V.; Gerasymenko, H.
2012-12-01
Defining Issue According to the statistics presented by the Ministry of Emergencies of Ukraine, river floods have imposed the most severe damages to the sectors of economy and the human communities in Ukraine. But, an adaptability and a vulnerability of Ukrainian society to floods are still poorly understood. Results Presentation In the response to increasing flood losses in the country between 1998 and 2008, the State Hydrometeorological Service of Ukraine, which is subordinate to the Ministry of Emergencies, in the cooperation with the National Academy of Sciences of Ukraine have carried out the research study focusing on public views on the problem of river floods for Ukraine. Aims of this study were: a) exploring the main sources of information on water-related hazards and the level of knowledge useful in a flood crisis situation in different groups of peoples; b) learning what the various population groups think of the most significant causes and consequences of flood damages and the role of various central/governmental/ and local authorities in an elaboration and implementation of mitigation measures. Public attitudes towards various prevention and mitigation strategies, as well as sources of emerging conflict were also revealed. The results of study have given a possibility to compare points of view of population groups which: a) living in the low- and high- flood risk areas; b) living in the urban and rural areas; c) having the different levels of education. The responses from 2550 residents have been analyzed and summarized. Among the most important findings of this study can be indicated following: a) on the one hand, the level of knowledge of some aspects of flood problem (impact of climate variation and change, adaptation measures) of the general public should be improved, on the other hand, the most of peoples understand that floods are the significant economical and ecological problem; b) views of the public on the problem differ very much with regard to their regions of residence (low- or high- flood risk areas, cities or villages), education level; c) a lot of peoples don't know distribution of duties between governmental bodies on central and local levels in the field of flood management and protection; d) the most of peoples don't know which Ukrainian governmental bodies are responsible for the elaboration of National adaptation strategy to the expected climate change; e) many recipient estimate as inefficient activities of Ukrainian authorities on local, national and international levels as well as a public participation in the flood management and protection policy. The results of this study have been rather unexpected for Ukrainian central and local governmental bodies responsible for flood management and protection policies. This underlines the importance of having the alternative flood risk management and protection policies studied not only from aspects of technical and economic rational, but also from that of social acceptability, before any decision is made. Practical Application Results of study have been used in preparation of: a) the State Program on the protection against floods in the Dniester, Prut and Siret river basins; b) of the "National Action Plan for Adaptation to Climate Change for period 2011-2015".
NASA Astrophysics Data System (ADS)
Qi, Wei
2017-11-01
Cost-benefit analysis is commonly used for engineering planning and design problems in practice. However, previous cost-benefit based design flood estimation is based on stationary assumption. This study develops a non-stationary cost-benefit based design flood estimation approach. This approach integrates a non-stationary probability distribution function into cost-benefit analysis, and influence of non-stationarity on expected total cost (including flood damage and construction costs) and design flood estimation can be quantified. To facilitate design flood selections, a 'Risk-Cost' analysis approach is developed, which reveals the nexus of extreme flood risk, expected total cost and design life periods. Two basins, with 54-year and 104-year flood data respectively, are utilized to illustrate the application. It is found that the developed approach can effectively reveal changes of expected total cost and extreme floods in different design life periods. In addition, trade-offs are found between extreme flood risk and expected total cost, which reflect increases in cost to mitigate risk. Comparing with stationary approaches which generate only one expected total cost curve and therefore only one design flood estimation, the proposed new approach generate design flood estimation intervals and the 'Risk-Cost' approach selects a design flood value from the intervals based on the trade-offs between extreme flood risk and expected total cost. This study provides a new approach towards a better understanding of the influence of non-stationarity on expected total cost and design floods, and could be beneficial to cost-benefit based non-stationary design flood estimation across the world.
NASA Astrophysics Data System (ADS)
Nkwunonwo, U. C.; Whitworth, M.; Baily, B.
2016-02-01
Urban flooding has been and will continue to be a significant problem for many cities across the developed and developing world. Crucial to the amelioration of the effects of these floods is the need to formulate a sound flood management policy, which is driven by knowledge of the frequency and magnitude of impacts of these floods. Within the area of flood research, attempts are being made to gain a better understanding of the causes, impacts, and pattern of urban flooding. According to the United Nations office for disaster reduction (UNISDR), flood risk is conceptualized on the basis of three integral components which are frequently adopted during flood damage estimation. These components are: probability of flood hazard, the level of exposure, and vulnerabilities of elements at risk. Reducing the severity of each of these components is the objective of flood risk management under the UNISDR guideline and idea of "living with floods". On the basis of this framework, the present research reviews flood risk within the Lagos area of Nigeria over the period 1968-2012. During this period, floods have caused harm to millions of people physically, emotionally, and economically. Arguably over this period the efforts of stakeholders to address the challenges appear to have been limited by, amongst other things, a lack of reliable data, a lack of awareness amongst the population affected, and a lack of knowledge of flood risk mitigation. It is the aim of this research to assess the current understanding of flood risk and management in Lagos and to offer recommendations towards future guidance.
Shao, Wanyun; Xian, Siyuan; Lin, Ning; Kunreuther, Howard; Jackson, Nida; Goidel, Kirby
2017-01-01
Over the past several decades, the economic damage from flooding in the coastal areas has greatly increased due to rapid coastal development coupled with possible climate change impacts. One effective way to mitigate excessive economic losses from flooding is to purchase flood insurance. Only a minority of coastal residents however have taken this preventive measure. Using original survey data for all coastal counties of the United States Gulf Coast merged with contextual data, this study examines the effects of external influences and perceptions of flood-related risks on individuals' voluntary behaviors to purchase flood insurance. It is found that the estimated flood hazard conveyed through the U.S. Federal Emergency Management Agency's (FEMA's) flood maps, the intensities and consequences of past storms and flooding events, and perceived flood-related risks significantly affect individual's voluntary purchase of flood insurance. This behavior is also influenced by home ownership, trust in local government, education, and income. These findings have several important policy implications. First, FEMA's flood maps have been effective in conveying local flood risks to coastal residents, and correspondingly influencing their decisions to voluntarily seek flood insurance in the U.S. Gulf Coast. Flood maps therefore should be updated frequently to reflect timely and accurate information about flood hazards. Second, policy makers should design strategies to increase homeowners' trust in the local government, to better communicate flood risks with residents, to address the affordability issue for the low-income, and better inform less educated homeowners through various educational programs. Future studies should examine the voluntary flood insurance behavior across countries that are vulnerable to flooding. Copyright © 2016 Elsevier Ltd. All rights reserved.
Uncertainty in flood damage estimates and its potential effect on investment decisions
NASA Astrophysics Data System (ADS)
Wagenaar, Dennis; de Bruijn, Karin; Bouwer, Laurens; de Moel, Hans
2015-04-01
This paper addresses the large differences that are found between damage estimates of different flood damage models. It explains how implicit assumptions in flood damage models can lead to large uncertainties in flood damage estimates. This explanation is used to quantify this uncertainty with a Monte Carlo Analysis. This Monte Carlo analysis uses a damage function library with 272 functions from 7 different flood damage models. This results in uncertainties in the order of magnitude of a factor 2 to 5. This uncertainty is typically larger for small water depths and for smaller flood events. The implications of the uncertainty in damage estimates for flood risk management are illustrated by a case study in which the economic optimal investment strategy for a dike segment in the Netherlands is determined. The case study shows that the uncertainty in flood damage estimates can lead to significant over- or under-investments.
Uncertainty in flood damage estimates and its potential effect on investment decisions
NASA Astrophysics Data System (ADS)
Wagenaar, D. J.; de Bruijn, K. M.; Bouwer, L. M.; De Moel, H.
2015-01-01
This paper addresses the large differences that are found between damage estimates of different flood damage models. It explains how implicit assumptions in flood damage models can lead to large uncertainties in flood damage estimates. This explanation is used to quantify this uncertainty with a Monte Carlo Analysis. As input the Monte Carlo analysis uses a damage function library with 272 functions from 7 different flood damage models. This results in uncertainties in the order of magnitude of a factor 2 to 5. The resulting uncertainty is typically larger for small water depths and for smaller flood events. The implications of the uncertainty in damage estimates for flood risk management are illustrated by a case study in which the economic optimal investment strategy for a dike segment in the Netherlands is determined. The case study shows that the uncertainty in flood damage estimates can lead to significant over- or under-investments.
Flood damage curves for consistent global risk assessments
NASA Astrophysics Data System (ADS)
de Moel, Hans; Huizinga, Jan; Szewczyk, Wojtek
2016-04-01
Assessing potential damage of flood events is an important component in flood risk management. Determining direct flood damage is commonly done using depth-damage curves, which denote the flood damage that would occur at specific water depths per asset or land-use class. Many countries around the world have developed flood damage models using such curves which are based on analysis of past flood events and/or on expert judgement. However, such damage curves are not available for all regions, which hampers damage assessments in those regions. Moreover, due to different methodologies employed for various damage models in different countries, damage assessments cannot be directly compared with each other, obstructing also supra-national flood damage assessments. To address these problems, a globally consistent dataset of depth-damage curves has been developed. This dataset contains damage curves depicting percent of damage as a function of water depth as well as maximum damage values for a variety of assets and land use classes (i.e. residential, commercial, agriculture). Based on an extensive literature survey concave damage curves have been developed for each continent, while differentiation in flood damage between countries is established by determining maximum damage values at the country scale. These maximum damage values are based on construction cost surveys from multinational construction companies, which provide a coherent set of detailed building cost data across dozens of countries. A consistent set of maximum flood damage values for all countries was computed using statistical regressions with socio-economic World Development Indicators from the World Bank. Further, based on insights from the literature survey, guidance is also given on how the damage curves and maximum damage values can be adjusted for specific local circumstances, such as urban vs. rural locations, use of specific building material, etc. This dataset can be used for consistent supra-national scale flood damage assessments, and guide assessment in countries where no damage model is currently available.
New insights into flood warning reception and emergency response by affected parties
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Müller, Meike; Schröter, Kai; Thieken, Annegret H.
2017-11-01
Flood damage can be mitigated if the parties at risk are reached by flood warnings and if they know how to react appropriately. To gain more knowledge about warning reception and emergency response of private households and companies, surveys were undertaken after the August 2002 and the June 2013 floods in Germany. Despite pronounced regional differences, the results show a clear overall picture: in 2002, early warnings did not work well; e.g. many households (27 %) and companies (45 %) stated that they had not received any flood warnings. Additionally, the preparedness of private households and companies was low in 2002, mainly due to a lack of flood experience. After the 2002 flood, many initiatives were launched and investments undertaken to improve flood risk management, including early warnings and an emergency response in Germany. In 2013, only a small share of the affected households (5 %) and companies (3 %) were not reached by any warnings. Additionally, private households and companies were better prepared. For instance, the share of companies which have an emergency plan in place has increased from 10 % in 2002 to 34 % in 2013. However, there is still room for improvement, which needs to be triggered mainly by effective risk and emergency communication. The challenge is to continuously maintain and advance an integrated early warning and emergency response system even without the occurrence of extreme floods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei; Lu, Hui; Ruby Leung, L.
Water resources management, in particular flood control, in the Mekong River Basin (MRB) faces two key challenges in the 21st century: climate change and dam construction. A large scale distributed Geomorphology-Based Hydrological Model coupled with a simple reservoir regulation model (GBHM-MK-SOP) is used to investigate the relative effects of climate change and dam construction on the flood characteristics in the MRB. Results suggest an increase in both flood magnitude and frequency under climate change, which is more severe in the upstream basin and increases over time. However, dam construction and stream regulation reduce flood risk consistently throughout this century, withmore » more obvious effects in the upstream basin where larger reservoirs will be located. The flood mitigation effect of dam regulation dominates over the flood intensification effect of climate change before 2060, but the latter emerges more prominently after 2060 and dominates the flood risk especially in the lower basin.« less
Siegrist, Michael; Gutscher, Heinz
2008-06-01
Past research indicates that personal flood experience is an important factor in motivating mitigation behavior. It is not fully clear, however, why such experience is so important. This study tested the hypothesis that people without flooding experience underestimate the negative affect evoked by such an event. People who were affected by a severe recent flood disaster were compared with people who were not affected, but who also lived in flood-prone areas. Face-to-face interviews with open and closed questions were conducted (n= 201). Results suggest that people without flood experience envisaged the consequences of a flood differently from people who had actually experienced severe losses due to a flood. People who were not affected strongly underestimated the negative affect associated with a flood. Based on the results, it can be concluded that risk communication must not focus solely on technical aspects; in order to trigger motivation for mitigation behavior, successful communication must also help people to envisage the negative emotional consequences of natural disasters.
Regional Risk Evaluation of Flood Disasters for the Trunk-Highway in Shaanxi, China
Qi, Hong-Liang; Tian, Wei-Ping; Li, Jia-Chun
2015-01-01
Due to the complicated environment there are various types of highway disasters in Shaanxi Province (China). The damages caused are severe, losses are heavy, and have rapidly increased over the years, especially those caused by flood disasters along the rivers in mountainous areas. Therefore, research on risk evaluations, which play important roles in the prevention and mitigation of highway disasters are very important. An evaluation model was established based on the superposition theory of regional influencing factors to highway flood disasters. Based on the formation mechanism and influencing factors of highway flood disasters, the main influencing factors were selected. These factors include rainstorms, terrain slopes, soil types, vegetation coverage and regional river density, which are based on evaluation indexes from climate conditions and underlying surface of the basin. A regional risk evaluation of highway flood disasters in Shaanxi was established using GIS. The risk index was divided into five levels using statistical methods, in accordance with the regional characteristics of highway flood disasters. Considering the difference in upfront investments, road grade, etc, between expressways and trunk-highways in China, a regional risk evaluation of trunk-highway flood disasters was completed. The evaluation results indicate that the risk evaluation is consistent with the actual situation. PMID:26528994
Regional Risk Evaluation of Flood Disasters for the Trunk-Highway in Shaanxi, China.
Qi, Hong-Liang; Tian, Wei-Ping; Li, Jia-Chun
2015-10-29
Due to the complicated environment there are various types of highway disasters in Shaanxi Province (China). The damages caused are severe, losses are heavy, and have rapidly increased over the years, especially those caused by flood disasters along the rivers in mountainous areas. Therefore, research on risk evaluations, which play important roles in the prevention and mitigation of highway disasters are very important. An evaluation model was established based on the superposition theory of regional influencing factors to highway flood disasters. Based on the formation mechanism and influencing factors of highway flood disasters, the main influencing factors were selected. These factors include rainstorms, terrain slopes, soil types, vegetation coverage and regional river density, which are based on evaluation indexes from climate conditions and underlying surface of the basin. A regional risk evaluation of highway flood disasters in Shaanxi was established using GIS. The risk index was divided into five levels using statistical methods, in accordance with the regional characteristics of highway flood disasters. Considering the difference in upfront investments, road grade, etc, between expressways and trunk-highways in China, a regional risk evaluation of trunk-highway flood disasters was completed. The evaluation results indicate that the risk evaluation is consistent with the actual situation.
44 CFR 206.252 - Insurance requirements for facilities damaged by flood.
Code of Federal Regulations, 2010 CFR
2010-10-01
... facilities damaged by flood. 206.252 Section 206.252 Emergency Management and Assistance FEDERAL EMERGENCY... Assistance Insurance Requirements § 206.252 Insurance requirements for facilities damaged by flood. (a) Where an insurable building damaged by flooding is located in a special flood hazard area identified for...
Fan, Qin; Davlasheridze, Meri
2016-06-01
Climate change is expected to worsen the negative effects of natural disasters like floods. The negative impacts, however, can be mitigated by individuals' adjustments through migration and relocation behaviors. Previous literature has identified flood risk as one significant driver in relocation decisions, but no prior study examines the effect of the National Flood Insurance Program's voluntary program-the Community Rating System (CRS)-on residential location choice. This article fills this gap and tests the hypothesis that flood risk and the CRS-creditable flood control activities affect residential location choices. We employ a two-stage sorting model to empirically estimate the effects. In the first stage, individuals' risk perception and preference heterogeneity for the CRS activities are considered, while mean effects of flood risk and the CRS activities are estimated in the second stage. We then estimate heterogeneous marginal willingness to pay (WTP) for the CRS activities by category. Results show that age, ethnicity and race, educational attainment, and prior exposure to risk explain risk perception. We find significant values for the CRS-creditable mitigation activities, which provides empirical evidence for the benefits associated with the program. The marginal WTP for an additional credit point earned for public information activities, including hazard disclosure, is found to be the highest. Results also suggest that water amenities dominate flood risk. Thus, high amenity values may increase exposure to flood risk, and flood mitigation projects should be strategized in coastal regions accordingly. © 2015 Society for Risk Analysis.
Probabilistic Flood Maps to support decision-making: Mapping the Value of Information
NASA Astrophysics Data System (ADS)
Alfonso, L.; Mukolwe, M. M.; Di Baldassarre, G.
2016-02-01
Floods are one of the most frequent and disruptive natural hazards that affect man. Annually, significant flood damage is documented worldwide. Flood mapping is a common preimpact flood hazard mitigation measure, for which advanced methods and tools (such as flood inundation models) are used to estimate potential flood extent maps that are used in spatial planning. However, these tools are affected, largely to an unknown degree, by both epistemic and aleatory uncertainty. Over the past few years, advances in uncertainty analysis with respect to flood inundation modeling show that it is appropriate to adopt Probabilistic Flood Maps (PFM) to account for uncertainty. However, the following question arises; how can probabilistic flood hazard information be incorporated into spatial planning? Thus, a consistent framework to incorporate PFMs into the decision-making is required. In this paper, a novel methodology based on Decision-Making under Uncertainty theories, in particular Value of Information (VOI) is proposed. Specifically, the methodology entails the use of a PFM to generate a VOI map, which highlights floodplain locations where additional information is valuable with respect to available floodplain management actions and their potential consequences. The methodology is illustrated with a simplified example and also applied to a real case study in the South of France, where a VOI map is analyzed on the basis of historical land use change decisions over a period of 26 years. Results show that uncertain flood hazard information encapsulated in PFMs can aid decision-making in floodplain planning.
NASA Astrophysics Data System (ADS)
Aswathanarayana, U.
2001-05-01
The proneness of a country or region to a given natural hazard depends upon its geographical location, physiography, geological and structural setting, landuse/landcover situation, and biophysical and socioeconomic environments (e.g. cyclones and floods in Bangladesh, earthquakes in Turkey, drought in Sub-Saharan Africa). While the natural hazards themselves cannot be prevented, it is possible to mitigate their adverse effects, by a knowledge-based, environmentally-sustainable approach, involving the stakeholder communities: (i) by being prepared: on the basis of the understanding of the land conditions which are prone to a given hazard and the processes which could culminate in damage to life and property (e.g. planting of dense-rooted vegetation belts to protect against landslides in the earthquake-prone areas), (ii) by avoiding improper anthropogenic activities that may exacerbate a hazard (e.g. deforestation accentuating the floods and droughts), and (iii) by putting a hazard to a beneficial use, where possible (groundwater recharging of flood waters), etc. Mitigation strategies need to be custom-made for each country/region by integrating the biophysical and socioeconomic components. The proposed paradigm is illustrated in respect of Extreme Weather Events (EWEs), which is based on the adoption of three approaches: (i) Typology approach, involving the interpretation of remotely sensed data, to predict (say) temporal and spatial distribution of precipitation, (ii) "black box" approach, whereby the potential environmental consequences of an EWE are projected on the basis of previously known case histories, and (iii) Information Technology approach, to translate advanced technical information in the form of "virtual" do-it-yourself steps understandable to lay public.
NASA Astrophysics Data System (ADS)
Wang, Y.; Chang, J.; Guo, A.
2017-12-01
Traditional flood risk analysis focuses on the probability of flood events exceeding the design flood of downstream hydraulic structures while neglecting the influence of sedimentation in river channels on flood control systems. Given this focus, a univariate and copula-based bivariate hydrological risk framework focusing on flood control and sediment transport is proposed in the current work. Additionally, the conditional probabilities of occurrence of different flood events under various extreme precipitation scenarios are estimated by exploiting the copula model. Moreover, a Monte Carlo-based algorithm is used to evaluate the uncertainties of univariate and bivariate hydrological risk. Two catchments located on the Loess plateau are selected as study regions: the upper catchments of the Xianyang and Huaxian stations (denoted as UCX and UCH, respectively). The results indicate that (1) 2-day and 3-day consecutive rainfall are highly correlated with the annual maximum flood discharge (AMF) in UCX and UCH, respectively; and (2) univariate and bivariate return periods, risk and reliability for the purposes of flood control and sediment transport are successfully estimated. Sedimentation triggers higher risks of damaging the safety of local flood control systems compared with the AMF, exceeding the design flood of downstream hydraulic structures in the UCX and UCH. Most importantly, there was considerable sampling uncertainty in the univariate and bivariate hydrologic risk analysis, which would greatly challenge measures of future flood mitigation. The proposed hydrological risk framework offers a promising technical reference for flood risk analysis in sandy regions worldwide.
NASA Astrophysics Data System (ADS)
Gingerich, Stephen B.; Voss, Clifford I.; Johnson, Adam G.
2017-08-01
An unprecedented set of hydrologic observations was collected after the Dec 2008 seawater-flooding event on Roi-Namur, Kwajalein Atoll, Republic of the Marshall Islands. By two days after the seawater flooding that occurred at the beginning of dry season, the observed salinity of water withdrawn by the island's main skimming well increased to 100% seawater concentration, but by ten days later already decreased to only 10-20% of seawater fraction. However, the damaging impact on the potability of the groundwater supply (when pumped water had concentrations above 1% seawater fraction) lasted 22 months longer. The data collected make possible analyses of the hydrologic factors that control recovery and management of the groundwater-supply quality on Roi-Namur and on similar low-lying islands. With the observed data as a guide, three-dimensional numerical-model simulation analyses reveal how recovery is controlled by the island's hydrology. These also allow evaluation of the efficacy of basic water-quality management/mitigation alternatives and elucidate how groundwater withdrawal and timing of the seawater-flooding event affect the length of recovery. Simulations show that, as might be expected, by adding surplus captured rainwater as artificial recharge, the freshwater-lens recovery period (after which potable groundwater may again be produced) can be shortened, with groundwater salinity remaining lower even during the dry season, a period during which no artificial recharge is applied. Simulations also show that the recovery period is not lengthened appreciably by groundwater withdrawals during recovery. Simulations further show that had the flooding event occurred at the start of the wet season, the recovery period would have been about 25% (5.5 months) shorter than actually occurred during the monitored flood that occurred at the dry-season start. Finally, analyses show that artificial recharge improves freshwater-lens water quality, making possible longer use of groundwater as a water supply throughout each year, even when no seawater flooding has occurred.
Gingerich, Stephen B.; Voss, Clifford I.; Johnson, Adam G.
2017-01-01
An unprecedented set of hydrologic observations was collected after the Dec 2008 seawater-flooding event on Roi-Namur, Kwajalein Atoll, Republic of the Marshall Islands. By two days after the seawater flooding that occurred at the beginning of dry season, the observed salinity of water withdrawn by the island’s main skimming well increased to 100% seawater concentration, but by ten days later already decreased to only 10–20% of seawater fraction. However, the damaging impact on the potability of the groundwater supply (when pumped water had concentrations above 1% seawater fraction) lasted 22 months longer. The data collected make possible analyses of the hydrologic factors that control recovery and management of the groundwater-supply quality on Roi-Namur and on similar low-lying islands.With the observed data as a guide, three-dimensional numerical-model simulation analyses reveal how recovery is controlled by the island’s hydrology. These also allow evaluation of the efficacy of basic water-quality management/mitigation alternatives and elucidate how groundwater withdrawal and timing of the seawater-flooding event affect the length of recovery. Simulations show that, as might be expected, by adding surplus captured rainwater as artificial recharge, the freshwater-lens recovery period (after which potable groundwater may again be produced) can be shortened, with groundwater salinity remaining lower even during the dry season, a period during which no artificial recharge is applied. Simulations also show that the recovery period is not lengthened appreciably by groundwater withdrawals during recovery. Simulations further show that had the flooding event occurred at the start of the wet season, the recovery period would have been about 25% (5.5 months) shorter than actually occurred during the monitored flood that occurred at the dry-season start. Finally, analyses show that artificial recharge improves freshwater-lens water quality, making possible longer use of groundwater as a water supply throughout each year, even when no seawater flooding has occurred.
NASA Astrophysics Data System (ADS)
Bösmeier, Annette; Glaser, Rüdiger; Stahl, Kerstin; Himmelsbach, Iso; Schönbein, Johannes
2017-04-01
Future estimations of flood hazard and risk for developing optimal coping and adaption strategies inevitably include considerations of the frequency and magnitude of past events. Methods of historical climatology represent one way of assessing flood occurrences beyond the period of instrumental measurements and can thereby substantially help to extend the view into the past and to improve modern risk analysis. Such historical information can be of additional value and has been used in statistical approaches like Bayesian flood frequency analyses during recent years. However, the derivation of quantitative values from vague descriptive information of historical sources remains a crucial challenge. We explored possibilities of parametrization of descriptive flood related data specifically for the assessment of historical floods in a framework that combines a hermeneutical approach with mathematical and statistical methods. This study forms part of the transnational, Franco-German research project TRANSRISK2 (2014 - 2017), funded by ANR and DFG, with the focus on exploring the floods history of the last 300 years for the regions of Upper and Middle Rhine. A broad data base of flood events had been compiled, dating back to AD 1500. The events had been classified based on hermeneutical methods, depending on intensity, spatial dimension, temporal structure, damages and mitigation measures associated with the specific events. This indexed database allowed the exploration of a link between descriptive data and quantitative information for the overlapping time period of classified floods and instrumental measurements since the end of the 19th century. Thereby, flood peak discharges as a quantitative measure of the severity of a flood were used to assess the discharge intervals for flood classes (upper and lower thresholds) within different time intervals for validating the flood classification, as well as examining the trend in the perception threshold over time. Furthermore, within a suitable time period, flood classes and other quantifiable indicators of flood intensity (number of damaged locations mentioned in historical sources, general availability of reports associated with a specific event) were combined with available peak discharges measurements. We argue that this information can be considered as 'expert knowledge' and used it to develop a fuzzy rule based model for deriving peak discharge estimates of pre-instrumental events that can finally be introduced into a flood frequency analysis.
44 CFR 78.7 - Grant application procedures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.7 Grant application procedures. States will apply for Technical Assistance and...
44 CFR 78.7 - Grant application procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.7 Grant application procedures. States will apply for Technical Assistance and...
44 CFR 78.8 - Grant funding limitations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.8 Grant funding limitations. (a) The Administrator will allocate the available...
44 CFR 78.8 - Grant funding limitations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.8 Grant funding limitations. (a) The Administrator will allocate the available...
44 CFR 78.8 - Grant funding limitations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.8 Grant funding limitations. (a) The Administrator will allocate the available...
44 CFR 78.8 - Grant funding limitations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.8 Grant funding limitations. (a) The Administrator will allocate the available...
44 CFR 78.7 - Grant application procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.7 Grant application procedures. States will apply for Technical Assistance and...
44 CFR 78.8 - Grant funding limitations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.8 Grant funding limitations. (a) The Administrator will allocate the available...
44 CFR 78.7 - Grant application procedures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.7 Grant application procedures. States will apply for Technical Assistance and...
44 CFR 78.7 - Grant application procedures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.7 Grant application procedures. States will apply for Technical Assistance and...
NASA Astrophysics Data System (ADS)
Bostenaru Dan, M.
2009-04-01
This special issue includes selected papers on the topic of earthquake impact from the sessions held in 2004 in Nice, France and in 2005 in Vienna, Austria at the first and respectivelly the second European Geosciences Union General Assembly. Since its start in 1999, in the Hague, Netherlands, the hazard of earthquakes has been the most popular of the session. The respective calls in 2004 was for: Nature's forces including earthquakes, floods, landslides, high winds and volcanic eruptions can inflict losses to urban settlements and man-made structures such as infrastructure. In Europe, recent years have seen such significant losses from earthquakes in south and south-eastern Europe, floods in central Europe, and wind storms in western Europe. Meanwhile, significant progress has been made in understanding disasters. Several scientific fields contribute to a holistic approach in the evaluation of capacities, vulnerabilities and hazards, the main factors on mitigating urban disasters due to natural hazards. An important part of the session is devoted to assessment of earthquake shaking and loss scenarios, including both physical damage and human causalities. Early warning and rapid damage evaluation are of utmost importance for addressing the safety of many essential facilities, for emergency management of events and for disaster response. In case of earthquake occurrence strong motion networks, data processing and interpretation lead to preliminary estimation (scenarios) of geographical distribution of damages. Factual information on inflicted damage, like those obtained from shaking maps or aerial imagery permit a confrontation with simulation maps of damage in order to define a more accurate picture of the overall losses. Most recent developments towards quantitative and qualitative simulation of natural hazard impacts on urban areas, which provide decision-making support for urban disaster management, and success stories of and lessons learned from disaster mitigation will be presented. The session includes contributions showing methodological and modelling approaches from scientists in geophysical/seismological, hydrological, remote sensing, civil engineering, insurance, and urbanism, amongst other fields, as well as presentations from practitioners working on specific case studies, regarding analysis of recent events and their impact on cities as well as re-evaluation of past events from the point of view of long-time recovery. In 2005 it was called for: Most strategies for both preparedness and emergency management in case of disaster mitigation are related to urban planning. While natural, engineering and social sciences contribute to the evaluation of the impact of earthquakes and their secondary events (including tsunamis, earthquake triggered landslides, or fire), floods, landslides, high winds, and volcanic eruptions on urban areas, there are the instruments of urban planning which are to be employed for both visualisation as well as development and implementation of strategy concepts for pre- and postdisaster intervention. The evolution of natural systems towards extreme conditions is taken into consideration so far at it concerns the damaging impact on urban areas and infrastructure and the impact on the natural environment of interventions to reduce such damaging impact.
Winters, Karl E.; Baldys, Stanley
2011-01-01
In cooperation with the City of Wichita Falls, the U.S. Geological Survey assessed channel changes on the Wichita River at Wichita Falls, Texas, and modeled historical floods to investigate possible causes and potential mitigation alternatives to higher flood stages in recent (2007 and 2008) floods. Extreme flooding occurred on the Wichita River on June 30, 2007, inundating 167 homes in Wichita Falls. Although a record flood stage was reached in June 2007, the peak discharge was much less than some historical floods at Wichita Falls. Streamflow and stage data from two gages on the Wichita River and one on Holliday Creek were used to assess the interaction of the two streams. Changes in the Wichita River channel were evaluated using historical aerial and ground photography, comparison of recent and historical cross sections, and comparison of channel roughness coefficients with those from earlier studies. The floods of 2007 and 2008 were modeled using a one-dimensional step-backwater model. Calibrated channel roughness was larger for the 2007 flood compared to the 2008 flood, and the 2007 flood peaked about 4 feet higher than the 2008 flood. Calibration of the 1941 flood yielded a channel roughness coefficient (Manning's n) of 0.030, which represents a fairly clean natural channel. The step-backwater model was also used to evaluate the following potential mitigation alternatives: (1) increasing the capacity of the bypass channel near River Road in Wichita Falls, Texas; (2) removal of obstructions near the Scott Avenue and Martin Luther King Junior Boulevard bridges in Wichita Falls, Texas; (3) widening of aggraded channel banks in the reach between Martin Luther King Junior Boulevard and River Road; and (4) reducing channel bank and overbank roughness. Reductions in water-surface elevations ranged from 0.1 foot to as much as 3.0 feet for the different mitigation alternatives. The effects of implementing a combination of different flood-mitigation alternatives were not investigated.
Geohazard assessment through the analysis of historical alluvial events in Southern Italy
NASA Astrophysics Data System (ADS)
Esposito, Eliana; Violante, Crescenzo
2015-04-01
The risk associated with extreme water events such as flash floods, results from a combination of overflows and landslides hazards. A multi-hazard approach have been utilized to analyze the 1773 flood that occurred in conjunction with heavy rainfall, causing major damage in terms of lost lives and economic cost over an area of 200 km2, including both the coastal strip between Salerno and Maiori and the Apennine hinterland, Campania region - Southern Italy. This area has been affected by a total of 40 flood events over the last five centuries, 26 of them occurred between 1900 and 2000. Streamflow events have produced severe impacts on Cava de' Tirreni (SA) and its territory and in particular four catastrophic floods in 1581, 1773, 1899 and 1954, caused a pervasive pattern of destruction. In the study area, rainstorm events typically occur in small and medium-sized fluvial system, characterized by small catchment areas and high-elevation drainage basins, causing the detachment of large amount of volcaniclastic and siliciclastic covers from the carbonate bedrock. The mobilization of these deposits (slope debris) mixed with rising floodwaters along the water paths can produce fast-moving streamflows of large proportion with significant hazardous implications (Violante et al., 2009). In this context the study of 1773 historical flood allows the detection and the definition of those areas where catastrophic events repeatedly took place over the time. Moreover, it improves the understanding of the phenomena themselves, including some key elements in the management of risk mitigation, such as the restoration of the damage suffered by the buildings and/or the environmental effects caused by the floods.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-20
...--Flood Mitigation Assistance, Severe Repetitive Loss, Repetitive Flood Claim, and Pre- Disaster... Request, OMB No. 1660-0072; Mitigation Grants Program/ eGrants AGENCY: Federal Emergency Management Agency... . SUPPLEMENTARY INFORMATION: Collection of Information Title: Mitigation Grants Program/eGrants. Type of...
2014-09-09
influences of changes in extreme sea levels as they affect the four mission areas of USACE: storm damage reduction, flood risk mitigation, ecosystems...winds and surface pressure can occur on the scale of the inundation area under investigation, cyclonic climatologies and more sophisticated inundation...Federal and State agencies (particularly the Bureau of Meteorology) providing forecast data (e.g. DIPNR, 2005, Appendix N). In more developed areas of
Post flood damage data collection and assessment in Albania based on DesInventar methodology
NASA Astrophysics Data System (ADS)
Toto, Emanuela; Massabo, Marco; Deda, Miranda; Rossello, Laura
2015-04-01
In 2013 in Albania was implemented a collection of disaster losses based on Desinventar. The DesInventar system consists in a methodology and software tool that lead to the systematic collection, documentation and analysis of loss data on disasters. The main sources of information about disasters used for the Albanian database were the Albanian Ministry of Internal Affairs, the National Library and the State archive. Specifically for floods the database created contains nearly 900 datasets, for a period of 148 years (from 1865 to 2013). The data are georeferenced on the administrative units of Albania: Region, Provinces and Municipalities. The datasets describe the events by reporting the date of occurrence, the duration, the localization in administrative units and the cause. Additional information regards the effects and damage that the event caused on people (deaths, injured, missing, affected, relocated, evacuated, victims) and on houses (houses damaged or destroyed). Other quantitative indicators are the losses in local currency or US dollars, the damage on roads, the crops affected , the lost cattle and the involvement of social elements over the territory such as education and health centers. Qualitative indicators simply register the sectors (e.g. transportations, communications, relief, agriculture, water supply, sewerage, power and energy, industries, education, health sector, other sectors) that were affected. Through the queries and analysis of the data collected it was possible to identify the most affected areas, the economic loss, the damage in agriculture, the houses and people affected and many other variables. The most vulnerable Regions for the past floods in Albania were studied and individuated, as well as the rivers that cause more damage in the country. Other analysis help to estimate the damage and losses during the main flood events of the recent years, occurred in 2010 and 2011, and to recognize the most affected sectors. The database was used to find the most frequent drivers that cause floods and to identify the areas with a higher priority for intervention and the areas with a higher economic loss. In future the loss and damage database could address interventions for risk mitigation and decision making processes. Using the database is also possible to build Empirical Loss Exceedance Curves, that permit to find the average number of times for year that a certain level of loss happened. The users of the database information can be researchers, students, citizens and policy makers. The operators of the National Operative Center for Civil Emergencies (Albanian Ministry of Internal Affairs) use the database daily to insert new data. Nowadays in Albania there isn't an entity in charge for the registration of damage and consequences of floods in a systematic and organized way. In this sense, the database DesInventar provides a basis for the future and helps to identify priorities to create a national database.
NASA Astrophysics Data System (ADS)
Schubert, J. E.; Gallien, T.; Shakeri Majd, M.; Sanders, B. F.
2012-12-01
Globally, over 20 million people currently reside below high tide levels and 200 million are below storm tide levels. Future climate change along with the pressures of urbanization will exacerbate flooding in low lying coastal communities. In Southern California, coastal flooding is triggered by a combination of high tides, storm surge, and waves and recent research suggests that a current 100 year flood event may be experienced on a yearly basis by 2050 due to sea level rise adding a positive offset to return levels. Currently, Southern California coastal communities mitigate the threat of beach overwash, and consequent backshore flooding, with a combination of planning and operational activities such as protective beach berm construction. Theses berms consist of temporary alongshore sand dunes constructed days or hours before an extreme tide or wave event. Hydraulic modeling in urbanized embayments has shown that coastal flooding predictions are extremely sensitive to the presence of coastal protective infrastructure, requiring parameterization of the hard infrastructure elevations at centimetric accuracy. Beach berms are an example of temporary dynamic structures which undergo severe erosion during extreme events and are typically not included in flood risk assessment. Currently, little is known about the erosion process and performance of these structures, which adds uncertainty to flood hazard delineation and flood forecasts. To develop a deeper understanding of beach berm erosion dynamics, three trapezoidal shaped berms, approximately 35 m long and 1.5 m high, were constructed and failure during rising tide conditions was observed using terrestrial laser scanning. Concurrently, real-time kinematic GPS, high-definition time lapse photography, a local tide gauge and wave climate data were collected. The result is a rich and unique observational dataset capturing berm erosion dynamics. This poster highlights the data collected and presents methods for processing and leveraging multi-sensor field observation data. The data obtained from this study will be used to support the development and validation of a numerical beach berm overtopping and overwash model that will allow for improved predictions of coastal flood damage during winter storms and large swells.
Improving flash flood frequency analyses by using non-systematic dendrogeomorphic data
NASA Astrophysics Data System (ADS)
Mediero, Luis; María Bodoque, Jose; Garrote, Julio; Ballesteros-Cánovas, Juan Antonio; Aroca-Jimenez, Estefania
2017-04-01
Flash floods have a rapid hydrological response in catchments with short lag times, characterized by ''peaky'' hydrographs. The peak flows are reached within a few hours, thus giving little or no advance warning to prevent and mitigate flood damage. As a result, flash floods may result in a high social risk, as shown for instance by the 1997 Biescas disaster in Spain. The analysis and management of flood risk are clearly conditioned by data availability, especially in mountain areas where usually flash-floods occur. Nevertheless, in mountain basins there is often short data series available that are not accurate in terms of statistical significance. In addition, when flow data is ready for use maximum annual values are generally not as reliable as average flow values, since conventional stream gauge stations may not record the extreme floods, leading to gaps in the time series. Dendrogeomorphology has been shown to be especially useful for improving flood frequency analyses in catchments where short flood series limit the use of conventional hydrological methods. This study presents pros and cons of using a given probability distribution function, such as the Generalized Extreme Value (GEV), and Bayesian Markov Chain Monte Carlo (MCMC) methods to account for non-systematic data provided by dendrogeomorphic techniques, in order to asses flood quantile estimates accuracy. To this end, we have considered a set of locations in Central Spain, where systematic flow available at a gauging site can be extended with non-systematic data obtained from implementation of dendrogeomorphic techniques.
44 CFR 79.7 - Offers and appeals under the SRL program.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.7 Offers and appeals under the SRL program. (a) Consultation. States and communities... mitigation activity. These consultations shall be initiated in the early stages of the project development...
44 CFR 79.7 - Offers and appeals under the SRL program.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.7 Offers and appeals under the SRL program. (a) Consultation. States and communities... mitigation activity. These consultations shall be initiated in the early stages of the project development...
44 CFR 79.7 - Offers and appeals under the SRL program.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.7 Offers and appeals under the SRL program. (a) Consultation. States and communities... mitigation activity. These consultations shall be initiated in the early stages of the project development...
44 CFR 79.7 - Offers and appeals under the SRL program.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.7 Offers and appeals under the SRL program. (a) Consultation. States and communities... mitigation activity. These consultations shall be initiated in the early stages of the project development...
Local Communities and Glacial Lake Outburst Flood Mitigation: Lessons from Peru
NASA Astrophysics Data System (ADS)
Carey, Mark
2010-05-01
Discourse in recent years among scientists and non-scientists increasingly promotes the involvement of local people in hazard mitigation, including inhabitants of floodplains in valleys below moraine-dammed glacial lakes. Despite advances in understanding human vulnerability to glacial lake outburst floods, there has been much less research on how these vulnerable populations are involved (or ignored) in the actual outburst flood mitigation process. Which groups should be involved? Are they in fact participating? Is that involvement successful? Peru's Cordillera Blanca mountain range provides an ideal site to help answer these questions because its moraine-dammed glacial lakes have produced more than a dozen outburst floods since ~1860. After floods in 1941, 1945, and 1950 killed approximately 6,000, the national government created a state agency, which still exists today, to monitor glacial lakes and prevent future outburst floods. Using this region as a case study to answer the above questions, this paper has three components. First, it provides historical examples of local people's participation in disaster mitigation, but shows that the outcome of such local involvement frequently turned out differently than scientists, engineers, and planners anticipated. Second, it shows the challenges and difficulties of involving local groups. Recent efforts in workshops, aid projects, and government programs show only limited success in community participation in disaster mitigation agendas. Third, the paper suggests that in many cases local indigenous people, as icons of the Andean region but often not the most vulnerable group, are disproportionately victimized and tacitly invited into disaster mitigation discussions. Poor urban residents inhabiting floodplains are often neglected, even though they are the most vulnerable to outburst floods. As other world regions such as the Himalayas increasingly contend with potential glacial lake outburst floods, these lessons from the Peruvian Andes may help make mitigation efforts elsewhere more successful and less contentious.
NASA Astrophysics Data System (ADS)
Guo, Aijun; Chang, Jianxia; Wang, Yimin; Huang, Qiang; Zhou, Shuai
2018-05-01
Traditional flood risk analysis focuses on the probability of flood events exceeding the design flood of downstream hydraulic structures while neglecting the influence of sedimentation in river channels on regional flood control systems. This work advances traditional flood risk analysis by proposing a univariate and copula-based bivariate hydrological risk framework which incorporates both flood control and sediment transport. In developing the framework, the conditional probabilities of different flood events under various extreme precipitation scenarios are estimated by exploiting the copula-based model. Moreover, a Monte Carlo-based algorithm is designed to quantify the sampling uncertainty associated with univariate and bivariate hydrological risk analyses. Two catchments located on the Loess plateau are selected as study regions: the upper catchments of the Xianyang and Huaxian stations (denoted as UCX and UCH, respectively). The univariate and bivariate return periods, risk and reliability in the context of uncertainty for the purposes of flood control and sediment transport are assessed for the study regions. The results indicate that sedimentation triggers higher risks of damaging the safety of local flood control systems compared with the event that AMF exceeds the design flood of downstream hydraulic structures in the UCX and UCH. Moreover, there is considerable sampling uncertainty affecting the univariate and bivariate hydrologic risk evaluation, which greatly challenges measures of future flood mitigation. In addition, results also confirm that the developed framework can estimate conditional probabilities associated with different flood events under various extreme precipitation scenarios aiming for flood control and sediment transport. The proposed hydrological risk framework offers a promising technical reference for flood risk analysis in sandy regions worldwide.
44 CFR 78.10 - Project grant approval process.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.10 Project grant approval process. The State POC will solicit applications from...
44 CFR 78.10 - Project grant approval process.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.10 Project grant approval process. The State POC will solicit applications from...
44 CFR 78.10 - Project grant approval process.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.10 Project grant approval process. The State POC will solicit applications from...
44 CFR 78.10 - Project grant approval process.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.10 Project grant approval process. The State POC will solicit applications from...
44 CFR 78.10 - Project grant approval process.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.10 Project grant approval process. The State POC will solicit applications from...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strzepek, K.; Neumann, Jim; Smith, Joel
Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less
Strzepek, K.; Neumann, Jim; Smith, Joel; ...
2014-11-29
Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less
Policy Implications and Suggestions on Administrative Measures of Urban Flood
NASA Astrophysics Data System (ADS)
Lee, S. V.; Lee, M. J.; Lee, C.; Yoon, J. H.; Chae, S. H.
2017-12-01
The frequency and intensity of floods are increasing worldwide as recent climate change progresses gradually. Flood management should be policy-oriented in urban municipalities due to the characteristics of urban areas with a lot of damage. Therefore, the purpose of this study is to prepare a flood susceptibility map by using data mining model and make a policy suggestion on administrative measures of urban flood. Therefore, we constructed a spatial database by collecting relevant factors including the topography, geology, soil and land use data of the representative city, Seoul, the capital city of Korea. Flood susceptibility map was constructed by applying the data mining models of random forest and boosted tree model to input data and existing flooded area data in 2010. The susceptibility map has been validated using the 2011 flood area data which was not used for training. The predictor importance value of each factor to the results was calculated in this process. The distance from the water, DEM and geology showed a high predictor importance value which means to be a high priority for flood preparation policy. As a result of receiver operating characteristic (ROC), random forest model showed 78.78% and 79.18% accuracy of regression and classification and boosted tree model showed 77.55% and 77.26% accuracy of regression and classification, respectively. The results show that the flood susceptibility maps can be applied to flood prevention and management, and it also can help determine the priority areas for flood mitigation policy by providing useful information to policy makers.
NASA Astrophysics Data System (ADS)
Kleewein, Klaus; Pfurtscheller, Clemens; Borsdorf, Axel
2010-05-01
The transdisciplinary project INNrisk, in collaboration with public risk and disaster management, investigates the severe floods of 22nd and 23rd of August, 2005, and their effects within the federal province of Tyrol. The inundation and accompanying processes (e.g. debris flows, log jams, underwashing of infrastructure) caused by the river Inn and its tributaries created a dangerous situation for Tyrol. The overall economic loss of direct assets is said to amount to ca. 500 million Euros. Climate change has basically been causing a statistical increase of damaging floods within the Alpine Space in recent decades while increasing vulnerability at the same time. The expansion of settlements is one factor in the threat to large numbers of people and growing economic losses. However, the disasters of the last decade provide an opportunity for analysing the flood process in terms of natural-science and geographical aspects as well as in terms of economic and statistical ones. This should lead to a better understanding of triggers and effects in those areas where humans are active and form the basis for mitigation and adaptation strategies. The results of such analyses represent valuable information for public risk and disaster management, particularly in presenting the effects on public and private households. The INNrisk project primarily aims to assess the framework conditions in systemic-legal terms and to analyse human actions during the floods in relation to various plans and the damage potentials resulting from them. The assessed losses depend to a great extent on the actions taken during the emergency and on flood operations by the public emergency management and local fire departments, which are in charge of floods and related processes in the case of Austria. Assessment will be carried out by analysing a database of series of human actions for the duration of the emergeny and increased risk. The project also strives to arrive at a macro- and mesoeconomic assessment of the damages by category (infrastructure, buildings, vehicles, etc.) and sector, as well as gauging potential positive effects on the regional economy. It can be assumed that the main beneficiaries of natural hazard processes in Alpine regions are the building and construction industry, transportation businesses and their suppliers. For this part of the project, a georeferenced database will be designed to get an idea of spatial distribution, loss patterns and local specifics compared with natural scientific parameters of the 2005 flood. An overall analysis serves to identify potential improvements within public disaster management and to sketch damage limitation strategies. The project results are of great value, not just for damage prevention measures against future Inn floods, which are likely to occur more frequently and in greater intensity as a result of global warming, but also for other rivers in the Alps. The results of this research may form the basis for developing effective adaptation strategies to climate change and the resulting potential threats to river valleys.
NASA Astrophysics Data System (ADS)
Patel, Dhruvesh; Ramirez, Jorge; Srivastava, Prashant; Bray, Michaela; Han, Dawei
2017-04-01
Surat, known as the diamond city of Gujart is situated 100 km downstream of Ukai dam and near the mouth of river Tapi and affected by the flood at every alternate year. The city experienced catastrophic floods in 1933, 1959, 1968, 1970, 1994, 1998 and 2006. It is estimated that a single flood event during August 6-12, 2006 in Surat and Hazira twin-city, caused heavy damages, resulted in the death of 300 people and property damage worth € 289 million. The peak discharge of 25768 m3 s-1 release from Ukai dam was responsible for the disastrous flood in Surat city. To identifylow lying areas prone to inundation and reduce the uncertainty in flood mitigation measures, HEC-RAS based 1D/2D Couple hydrodynamic modeling is carried out for Surat city. Release from the Ukai dam and tidal level of the sea are considered for upstream and downstream boundary condition. 299 surveyed cross-sections have been considered for 1D modeling, whereas a topographic map at 0.5 m contour interval was used to produce a 5 m grid and SRTM (30 & 90 m) grid has been considered for Suart and Lower Tapi Basin (LTB). Flow is simulated under unsteady conditions, calibrated for the year 1998 and validated for the year 2006. The simulated result shows that the 9th August 18.00 hr was the worst day for Surat city and maximum 75-77 % area was under inundation. Most of the flooded area experienced 0.25 m/s water velocity with the duration of 90 hr. Due to low velocity and high duration of the flood, a low lying area within the west zone and south-west zone of the city was badly affected by the flood, whereas the south zone and south-east zone was least. Simulated results show good correlation when compared with an observed flood level map. The simulated results will be helpful to improve the flood resilience strategy at Surat city and reduce the uncertainty for flood inundation mapping for future dam releases. The present case study shows the applicability of 1D/2D coupled hydrodynamic modeling for flood inundation mapping and can be applied for flood assessment at locations with similar geographical conditions.
NASA Astrophysics Data System (ADS)
Tapales, Ben Joseph; Mendoza, Jerico; Uichanco, Christopher; Mahar Francisco Amante Lagmay, Alfredo; Moises, Mark Anthony; Delmendo, Patricia; Eneri Tingin, Neil
2015-04-01
Flooding has been a perennial problem in the city of Marikina. These incidences result in human and economic losses. In response to this, the city has been investing in their flood disaster mitigation program in the past years. As a result, flooding in Marikina was reduced by 31% from 1992 to 2004. [1] However, these measures need to be improved so as to mitigate the effects of floods with more than 100 year return period, such as the flooding brought by tropical storm Ketsana in 2009 which generated 455mm of rains over a 24-hour period. Heavy rainfall caused the streets to be completely submerged in water, leaving at least 70 people dead in the area. In 2012, the Southwest monsoon, enhanced by a typhoon, brought massive rains with an accumulated rainfall of 472mm for 22-hours, a number greater than that which was experienced during Ketsana. At this time, the local government units were much more prepared in mitigating the risk with the use of early warning and evacuation measures, resulting to zero casualty in the area. Their urban disaster management program, however, can be further improved through the integration of high-resolution 2D flood hazard maps in the city's flood disaster management. The use of these maps in flood disaster management is essential in reducing flood-related risks. This paper discusses the importance and advantages of integrating flood maps in structural and non-structural mitigation measures in the case of Marikina City. Flood hazard maps are essential tools in predicting the frequency and magnitude of floods in an area. An information that may be determined with the use of these maps is the locations of evacuation areas, which may be accurately positioned using high-resolution 2D flood hazard maps. Evacuation of people in areas that are not vulnerable of being inundated is one of the unnecessary measures that may be prevented and thus optimizing mitigation efforts by local government units. This paper also discusses proposals for a more efficient exchange of information, allowing for flood simulations to be utilized in local flood disaster management programs. The success of these systems relies heavily on the knowledge of the people involved. As environmental changes create more significant impacts, the need to adapt to these is vital for man's safety. [1] Pacific Disaster Center
NASA Astrophysics Data System (ADS)
Tapales, B. J. M.; Mendoza, J.; Uichanco, C.; Lagmay, A. M. F. A.; Moises, M. A.; Delmendo, P.; Tingin, N. E.
2014-12-01
Flooding has been a perennial problem in the city of Marikina. These incidences result in human and economic losses. In response to this, the city has been investing in their flood disaster mitigation program in the past years. As a result, flooding in Marikina was reduced by 31% from 1992 to 2004. [1] However, these measures need to be improved so as to mitigate the effects of floods with more than 100 year return period, such as the flooding brought by tropical storm Ketsana in 2009 which generated 455mm of rains over a 24-hour period. Heavy rainfall caused the streets to be completely submerged in water, leaving at least 70 people dead in the area. In 2012, the Southwest monsoon, enhanced by a typhoon, brought massive rains with an accumulated rainfall of 472mm for 22-hours, a number greater than that which was experienced during Ketsana. At this time, the local government units were much more prepared in mitigating the risk with the use of early warning and evacuation measures, resulting to zero casualty in the area. Their urban disaster management program, however, can be further improved through the integration of high-resolution 2D flood hazard maps in the city's flood disaster management. The use of these maps in flood disaster management is essential in reducing flood-related risks. This paper discusses the importance and advantages of integrating flood maps in structural and non-structural mitigation measures in the case of Marikina City. Flood hazard maps are essential tools in predicting the frequency and magnitude of floods in an area. An information that may be determined with the use of these maps is the locations of evacuation areas, which may be accurately positioned using high-resolution 2D flood hazard maps. Evacuation of areas that are not vulnerable of being inundated is one of the unnecessary measures that may be prevented and thus optimizing mitigation efforts by local government units. This paper also discusses proposals for a more efficient exchange of information, allowing for flood simulations to be utilized in local flood disaster management programs. The success of these systems relies heavily on the knowledge of the people involved. As environmental changes create more significant impacts, the need to adapt to these is vital for man's safety. [1] Pacific Disaster Center
Applications of ASFCM(Assessment System of Flood Control Measurement) in Typhoon Committee Members
NASA Astrophysics Data System (ADS)
Kim, C.
2013-12-01
Due to extreme weather environment such as global warming and greenhouse effect, the risks of having flood damage has been increased with larger scale of flood damages. Therefore, it became necessary to consider modifying climate change, flood damage and its scale to the previous dimension measurement evaluation system. In this regard, it is needed to establish a comprehensive and integrated system to evaluate the most optimized measures for flood control through eliminating uncertainties of socio-economic impacts. Assessment System of Structural Flood Control Measures (ASFCM) was developed for determining investment priorities of the flood control measures and establishing the social infrastructure projects. ASFCM consists of three modules: 1) the initial setup and inputs module, 2) the flood and damage estimation module, and 3) the socio-economic analysis module. First, we have to construct the D/B for flood damage estimation, which is the initial and input data about the estimation unit, property, historical flood damages, and applied area's topographic & hydrological data. After that, it is important to classify local characteristic for constructing flood damage data. Five local characteristics (big city, medium size city, small city, farming area, and mountain area) are classified by criterion of application (population density). Next step is the floodplain simulation with HEC-RAS which is selected to simulate inundation. Through inputting the D/B and damage estimation, it is able to estimate the total damage (only direct damage) that is the amount of cost to recover the socio-economic activities back to the safe level before flood did occur. The last module suggests the economic analysis index (B/C ratio) with Multidimensional Flood Damage Analysis. Consequently, ASFCM suggests the reference index in constructing flood control measures and planning non-structural systems to reduce water-related damage. It is possible to encourage flood control planners and managers to consider and apply the socio-economic analysis results. ASFCM was applied in Republic of Korea, Thailand and Philippines to review efficiency and applicability. Figure 1. ASFCM Application(An-yang Stream, Republic of Korea)
Holmes, Robert R.; Koenig, Todd A.; Rydlund, Jr., Paul H.; Heimann, David C.
2016-09-13
OverviewHeavy rainfall resulted in major flooding in the Meramec River Basin in eastern Missouri during late December 2015 through early January 2016. Cumulative rainfall from December 14 to 29, 2015, ranged from 7.6 to 12.3 inches at selected precipitation stations in the basin with flooding driven by the heaviest precipitation (3.9–9.7 inches) between December 27 and 29, 2015. Financial losses from flooding included damage to homes and other structures, damage to roads, and debris removal. Eight of 11 counties in the basin were declared a Federal Disaster Area.The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers and St. Louis Metropolitan Sewer District, operates multiple streamgages along the Meramec River and its primary tributaries including the Bourbeuse River and Big River. The period of record for streamflow at streamgages in the basin included in this report ranges from 24 to 102 years. Instrumentation in a streamgage shelter automatically makes observations of stage using a variety of methods (submersible pressure transducer, non-submersible pressure transducer, or non-contact radar). These observations are recorded autonomously at a predetermined programmed frequency (typically either 15 or 30 minutes) dependent on drainage-area size and concomitant flashiness of the stream. Although stage data are important, streamflow data are equally or more important for streamflow forecasting, water-quality constituent loads computation, flood-frequency analysis, and flood mitigation planning. Streamflows are computed from recorded stage data using an empirically determined relation between stage and streamflow termed a “rating.” Development and verification of the rating requires periodic onsite discrete measurements of streamflow throughout time and over the range of stages to define local hydraulic conditions.The purpose of this report is to examine characteristics of flooding that occurred in the Meramec River Basin in December 2015–January 2016 including peak stages, peak streamflows, and the flood-frequency statistics associated with the peak flows. A comparison between the December 2015–January 2016 flood and a similar flood in December 1982 in the Meramec River Basin also is included.
NASA Astrophysics Data System (ADS)
Qiao, C.; Huang, Q.; Chen, T.; Zhang, X.
2017-12-01
In the context of global warming, the snowmelt flood events in the mountainous area of the middle and high latitudes are increasingly frequent and create severe casualties and property damages. Carrying out the prediction and risk assessment of the snowmelt flood is of great importance in the water resources management, the flood warning and prevention. Based on the remote sensing and GIS techniques, the relationships of the variables influencing the snowmelt flood such as the snow area, the snow depth, the air temperature, the precipitation, the land topography and land covers are analyzed and a prediction and damage assessment model for snowmelt floods is developed. This model analyzes and predicts the flood submerging area, flood depth, flood grade, and the damages of different underlying surfaces in the study area in a given time period based on the estimation of snowmelt amount, the snowmelt runoff, the direction and velocity of the flood. Then it was used to predict a snowmelt flood event in the Ertis River Basin in northern Xinjiang, China, during March and June, 2005 and to assess its damages including the damages of roads, transmission lines, settlements caused by the floods and the possible landslides using the hydrological and meteorological data, snow parameter data, DEM data and land use data. A comparison was made between the prediction results from this model and observation data including the flood measurement and its disaster loss data, which suggests that this model performs well in predicting the strength and impact area of snowmelt flood and its damage assessment. This model will be helpful for the prediction and damage assessment of snowmelt flood events in the mountainous area in the middle and high latitudes in spring, which has great social and economic significance because it provides a relatively reliable method for snowmelt flood prediction and reduces the possible damages caused by snowmelt floods.
To what extent can green infrastructure mitigate downstream flooding in a peri-urban catchment?
NASA Astrophysics Data System (ADS)
Schubert, J. E.; Burns, M.; Sanders, B. F.; Flethcher, T.
2016-12-01
In this research, we couple an urban hydrologic model (MUSIC, eWater, AUS) with a fine resolution 2D hydrodynamic model (BreZo, UC Irvine, USA) to test to what extent retrofitting an urban watershed with stormwater control measures (SCMs) can propagate flood management benefits downstream. Our study site is the peri-urban Little Stringybark Creek (LSC) catchment in eastern Melbourne, AUS, with an area of 4.5 km2 and connected impervious area of 9%. Urban development is mainly limited to the upper 2 km2of the catchment. Since 2009 the LSC catchment has been the subject of a large-scale experiment aiming to restore morenatural flow by implementing over 300 SCMs, such as rain tanks and infiltration trenches, resulting in runoff from 50% of connected impervious areas now being intercepted by some form of SCM. For our study we calibrated the hydrologic and hydraulic models based on current catchment conditions, then we developed models representing alternative SCM scenarios including a complete lack of SCMs versus a full implementation of SCMs. Flow in the hydrologic/hydraulic models is forced using a range of synthetic rainfall events with annual exceedance probabilities (AEPs) between 63-1% and durations between 10 min to 24 hr. Metrics of SCM efficacy in changing flood regime include flood depths and extents, flow intensity (m2/s), flood duration, and critical storm duration leading to maximum flood conditions. Results indicate that across the range of AEPs tested and for storm durations equal or less than 3 hours, current SCM conditions reduce downstream flooded area on average by 29%, while a full implementation of SCMs would reduce downstream flooded area on average by 91%. A full implementation of SCMs could also lower maximum flow intensities by 83% on average, reducing damage potential to structures in the flow path and increasing the ability for vehicles to evacuate flooded streets. We also found that for storm durations longer than 3 hours, the SCMs capacity to retain rainfall runoff volumes is much decreased, with a full implementation of SCMs only reducing flooded area by 8% and flow intensity by 5.5%. Therefore additional measures are required for downstream flood hazard mitigation from long duration events.
Disseminating near-real-time hazards information and flood maps in the Philippines through Web-GIS.
A Lagmay, Alfredo Mahar Francisco; Racoma, Bernard Alan; Aracan, Ken Adrian; Alconis-Ayco, Jenalyn; Saddi, Ivan Lester
2017-09-01
The Philippines being a locus of tropical cyclones, tsunamis, earthquakes and volcanic eruptions, is a hotbed of disasters. These natural hazards inflict loss of lives and costly damage to property. Situated in a region where climate and geophysical tempest is common, the Philippines will inevitably suffer from calamities similar to those experienced recently. With continued development and population growth in hazard prone areas, it is expected that damage to infrastructure and human losses would persist and even rise unless appropriate measures are immediately implemented by government. In 2012, the Philippines launched a responsive program for disaster prevention and mitigation called the Nationwide Operational Assessment of Hazards (Project NOAH), specifically for government warning agencies to be able to provide a 6hr lead-time warning to vulnerable communities against impending floods and to use advanced technology to enhance current geo-hazard vulnerability maps. To disseminate such critical information to as wide an audience as possible, a Web-GIS using mashups of freely available source codes and application program interface (APIs) was developed and can be found in the URLs http://noah.dost.gov.ph and http://noah.up.edu.ph/. This Web-GIS tool is now heavily used by local government units in the Philippines in their disaster prevention and mitigation efforts and can be replicated in countries that have a proactive approach to address the impacts of natural hazards but lack sufficient funds. Copyright © 2017. Published by Elsevier B.V.
Shao, Wanyun; Xian, Siyuan; Lin, Ning; Small, Mitchell J
2017-10-01
The economic damage from coastal flooding has dramatically increased over the past several decades, owing to rapid development in shoreline areas and possible effects of climate change. To respond to these trends, it is imperative for policy makers to understand individuals' support for flood adaptation policy. Using original survey data for all coastal counties of the United States Gulf Coast merged with contextual data on flood risk, this study investigates coastal residents' support for two adaptation policy measures: incentives for relocation and funding for educational programs on emergency planning and evacuation. Specifically, this study explores the interactive relationships among contextual flood risks, perceived flood risks and policy support for flood adaptation, with the effects of social-demographic variables being controlled. Age, gender, race and partisanship are found to significantly affect individuals' policy support for both adaptation measures. The contextual flooding risks, indicated by distance from the coast, maximum wind speed and peak height of storm surge associated with the last hurricane landfall, and percentage of high-risk flood zone per county, are shown to impact one's perceptions of risk, which in turn influence one's support for both policy measures. The key finding -risk perception mediates the impact of contextual risk conditions on public support for flood management policies - highlights the need to ensure that the public is well informed by the latest scientific, engineering and economic knowledge. To achieve this, more information on current and future flood risks and options available for mitigation as well as risk communication tools are needed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yanosky, Thomas M.
1983-01-01
Ash trees along the Potomac River flood plain near Washington, D.C., were studied to determine changes in wood anatomy related to flood damage, and anomalous growth was compared to flood records for April 15 to August 31, 1930-79. Collectively, anatomical evidence was detected for 33 of the 34 growing-season floods during the study period. Evidence of 12 floods prior to 1930 was also noted, including catastrophic ones in 1889 and 1924. Trees damaged after the transition from earlywood to latewood growth typically formed ' flood rings ' of enlarged vessels within the latewood zone. Trees damaged near the beginning of the growth year developed flood rings within, or contiguous with, the earlywood. Both patterns are assumed to have developed when flood-damaged trees produced a second crop of leaves. Trees damaged by high-magnitude floods developed well formed flood rings along the entire height and around the entire circumference of the stem. Small floods were generally associated wtih diffuse or discontinuous anomalies restricted to stem apices. Frequency of flood rings was positively related to flood magnitude, and time of flood generation during the tree-growth season was estimated from the radial position of anomalous growth relative to annual ring width. Reconstructing tree heights in a year of flood-ring formation gives a minimum stage estimate along local stream reaches. Some trees provided evidence of numerous floods. Those with the greatest number of flood rings grew on frequently flooded surfaces subject to flood-flow velocities of at least 1 m/s, and more typically greater than 2 m/s. Tree size, more than age, was related to flood-ring formation. Trees kept small by frequent flood damage had more flood rings than taller trees of comparable age. (USGS)
Challenges of Modeling Flood Risk at Large Scales
NASA Astrophysics Data System (ADS)
Guin, J.; Simic, M.; Rowe, J.
2009-04-01
Flood risk management is a major concern for many nations and for the insurance sector in places where this peril is insured. A prerequisite for risk management, whether in the public sector or in the private sector is an accurate estimation of the risk. Mitigation measures and traditional flood management techniques are most successful when the problem is viewed at a large regional scale such that all inter-dependencies in a river network are well understood. From an insurance perspective the jury is still out there on whether flood is an insurable peril. However, with advances in modeling techniques and computer power it is possible to develop models that allow proper risk quantification at the scale suitable for a viable insurance market for flood peril. In order to serve the insurance market a model has to be event-simulation based and has to provide financial risk estimation that forms the basis for risk pricing, risk transfer and risk management at all levels of insurance industry at large. In short, for a collection of properties, henceforth referred to as a portfolio, the critical output of the model is an annual probability distribution of economic losses from a single flood occurrence (flood event) or from an aggregation of all events in any given year. In this paper, the challenges of developing such a model are discussed in the context of Great Britain for which a model has been developed. The model comprises of several, physically motivated components so that the primary attributes of the phenomenon are accounted for. The first component, the rainfall generator simulates a continuous series of rainfall events in space and time over thousands of years, which are physically realistic while maintaining the statistical properties of rainfall at all locations over the model domain. A physically based runoff generation module feeds all the rivers in Great Britain, whose total length of stream links amounts to about 60,000 km. A dynamical flow routing algorithm propagates the flows for each simulated event. The model incorporates a digital terrain model (DTM) at 10m horizontal resolution, which is used to extract flood plain cross-sections such that a one-dimensional hydraulic model can be used to estimate extent and elevation of flooding. In doing so the effect of flood defenses in mitigating floods are accounted for. Finally a suite of vulnerability relationships have been developed to estimate flood losses for a portfolio of properties that are exposed to flood hazard. Historical experience indicates that a for recent floods in Great Britain more than 50% of insurance claims occur outside the flood plain and these are primarily a result of excess surface flow, hillside flooding, flooding due to inadequate drainage. A sub-component of the model addresses this issue by considering several parameters that best explain the variability of claims off the flood plain. The challenges of modeling such a complex phenomenon at a large scale largely dictate the choice of modeling approaches that need to be adopted for each of these model components. While detailed numerically-based physical models exist and have been used for conducting flood hazard studies, they are generally restricted to small geographic regions. In a probabilistic risk estimation framework like our current model, a blend of deterministic and statistical techniques have to be employed such that each model component is independent, physically sound and is able to maintain the statistical properties of observed historical data. This is particularly important because of the highly non-linear behavior of the flooding process. With respect to vulnerability modeling, both on and off the flood plain, the challenges include the appropriate scaling of a damage relationship when applied to a portfolio of properties. This arises from the fact that the estimated hazard parameter used for damage assessment, namely maximum flood depth has considerable uncertainty. The uncertainty can be attributed to various sources among which are imperfections in the hazard modeling, inherent errors in the DTM, lack of accurate information on the properties that are being analyzed, imperfections in the vulnerability relationships, inability of the model to account for local mitigation measures that are usually undertaken when a real event is unfolding and lack of details in the claims data that are used for model calibration. Nevertheless, the model once calibrated provides a very robust framework for analyzing relative and absolute risk. The paper concludes with key economic statistics of flood risk for Great Britain as a whole including certain large loss-causing scenarios affecting the greater London region. The model estimates a total financial loss of 5.6 billion GBP to all properties at a 1% annual aggregate exceedance probability level.
Information and education as a basis of risk mitigation for the citizens of Catalonia
NASA Astrophysics Data System (ADS)
Guamis, J.; Burckhart, K.; Grau, A.
2009-09-01
The General Directorate for Civil Protection of the Catalan Government is in charge of the drawing up and validation of plans that identify risk and establish a joint system of response actions to minimize the consequences of damages caused by emergencies. The risks covered are natural (fire, snow, flooding, heat,...) and human (chemical industry, transport of dangerous goods,...) ones. In the special case of flooding, an Emergency Flood Plan for Catalonia (INUNCAT) exists. Its aim is to minimize the effects and damages to people, property or the environment due to floods within the region of Catalonia. In the following, the actions on active prevention currently realized by Civil Protection in this Mediterranean region regarding risk mitigation of flooding are described. Special emphasis is laid on the prevention of risk situations through advanced information and education which aim at diminishing the vulnerability of the population. The preparedness of the population to face a serious flooding depends highly on the level of the citizens’ self-protection. Therefore the collection and dissemination of recommendations on adequate behaviour is crucial. The Catalan Government realizes different activities to foster the understanding and the correct behaviour of the citizens in case of flooding. Informative sessions to target groups, opinion studies, mass media communication and itinerant exhibitions are some of the elements applied to increase social consciousness and mitigate the vulnerability of the population. Among these, sensitization campaigns play a crucial role. A coherent system of information and education is adhered to these campaigns. Informative material (posters, leaflets, web sites) and sessions are part of the activities which are addressed to different social group and aim at rising the population’s awareness on the risk of flooding. Multidisciplinary presentations and expert speeches on adequate behaviour are given to stakeholders in those areas which are potentially affected by flooding or which are situated downriver of big water reservoirs. These stakeholders act as multipliers to pass on the recommendations emitted by the Catalan Government. Mass communication is a means of reaching a wide part of the population. TV spots, radio announcements and newspaper advertisements on correct behaviour in a certain emergency do already exist for certain risks, but are still missing in the case of flooding. The realization of opinion studies contribute to a better understanding of the citizens’ risk perception. The opinion study includes questions like: What do you know about recommendations on behaviour during flooding? or What would you do if you found themselves in an emergency? When contrasting the results, the effectiveness of existing campaigns is put on proof and the content and canal of future campaigns can be determined. The General Directorate for Civil Protection has created an itinerant exhibition as an additional activity to increase the populations’ consciousness on the potential risks in the Mediterranean region of Catalonia. It includes the main preventive measures the citizens have to take in case of an emergency and depicts recommendations for self-protection. The exhibition is displayed at municipal level and is designated to approach the maximum number of citizens. The participation in European projects, such as RINAMED, is a way to increase the interchange of know-how and strengthen international communication. In the case of RINAMED the objective was to provide the citizens living in the Mediterranean areas with a better knowledge of the natural risks. The joint effort of the different member regions contributed to establish a common frame of prevention and information in order to increase risk preparedness in the Mediterranean area. For future improvement and advances regarding educational and informative tasks, one of the aims is to obtain direct involvement of the population and to reach specific target groups through opinion leaders. Moreover the need to build partnership or strengthen existing cooperation, i.e. interdisciplinary participation of different institutions, such as for example the Red Cross, should help to rise social consciousness and reach the maximum number of citizens. A direct interaction with the citizens and an involvement of the population will be an effective way to educate vulnerable population and thereby mitigate negative social impacts.
Flood risk assessment of potential casualties in a global scale
NASA Astrophysics Data System (ADS)
Diaz Loaiza, Andres; Englhardt, Johanna; Boekhorst, Ellen; Ward, Philip; Aerts, Jeroen
2017-04-01
Flood risk assessment of potential casualties in a global scale. M. Andres Diaz-Loaiza (1), Johanna Englhardt (1), Ellen de Boekhorst (1), Philip J. Ward (1) and Jeroen Aerts (1) (1) Institute for Environmental Studies, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands. andres.diazloaiza@vu.nl Floods are one of the most dangerous natural disasters for humanity, affecting many people every year. Quantitative risk models on a global scale are nowadays available tools for institutions and actors in charge of risk management in order to plan possible mitigation measures in case of flood risk events. Many of these models have been focus on potential economic damage, population and GDP exposure, but the potential casualties assessment has been left aside. This is partially due to the complexity of the problem itself, in which several variables like the age of a pedestrian (drag/exposed to a flood event), or his weight and swimming experience can be decisive for the complete understanding of the problem. In the present work is presented the advances for the development of a methodology in order to include in the GLOFRIS model a new indicator in case of flood risk events. Preliminary analysis relating the GDP with the potential casualties shows that undeveloped countries have more susceptibility to loss of life in case of flood events. This because the GDP indicator evidences as well the protection measures available in a country.
NASA Astrophysics Data System (ADS)
Zatarain-Salazar, J.; Reed, P. M.; Quinn, J.
2017-12-01
This study characterizes how changes in reservoir operations can be used to better balance growing flood intensities and the conflicting multi-sectorial demands in the Lower Susequehanna River Basin (LSRB), USA. Tensions in the LSRB are increasing with urban population pressures, evolving energy demands, and growing flood-based infrastructure vulnerabilities. This study explores how re-operation of the Conowingo Reservoir, located in the LSRB, can improve the balance between competing demands for hydropower production, urban water supply to Chester, PA and Baltimore, MD, cooling water supply for the Peach Bottom Atomic Power Plant, recreation, federal environmental flow requirements and improved mitigation of growing flood hazards. The LSRB is also one of the most flood prone basins in the US, impacted by hurricanes and rain-on-snow induced flood events causing on average $100 million in economic losses and infrastructure damages to downstream settlements every year. The purpose of this study is to evaluate the consequences of mathematical formulation choices, uncertainty characterization and the value of information when defining the Conowingo reservoir's multi-purpose operations. This work seeks to strike a balance between the complexity and the efficacy of rival framings for the problem formulations used to discover effective operating policies. More broadly, the problem of intensifying urban floods in reservoir systems with complex multi-sectoral demands is broadly relevant to developed river basins globally.
Satellite images of the September 2013 flood event in Lyons, Colorado
Cole, Christopher J.; Friesen, Beverly A.; Wilds, Stanley; Noble, Suzanne; Warner, Harumi; Wilson, Earl M.
2013-01-01
The U.S. Geological Survey (USGS) Special Applications Science Center (SASC) produced an image base map showing high-resolution remotely sensed data over Lyons, Colorado—a city that was severely affected by the flood event that occurred throughout much of the Colorado Front Range in September of 2013. The 0.5-meter WorldView-2 data products were created from imagery collected by DigitalGlobe on September 13 and September 24, 2013, during and following the flood event. The images shown on this map were created to support flood response efforts, specifically for use in determining damage assessment and mitigation decisions. The raw, unprocessed imagery were orthorectified and pan-sharpened to enhance mapping accuracy and spatial resolution, and reproduced onto a cartographic base map. These maps are intended to provide a snapshot representation of post-flood ground conditions, which may be useful to decisionmakers and the general public. The SASC also provided data processing and analysis support for other Colorado flood-affected areas by creating cartographic products, geo-corrected electro-optical and radar image mosaics, and GIS water cover files for use by the Colorado National Guard, the National Park Service, the U.S. Forest Service, and the flood response community. All products for this International Charter event were uploaded to the USGS Hazards Data Distribution System (HDDS) website (http://hdds.usgs.gov/hdds2/) for distribution.
NASA Astrophysics Data System (ADS)
Cortès, Maria; Turco, Marco; Llasat-Botija, Montserrat; Llasat, Maria Carmen
2018-03-01
Floods in the Mediterranean region are often surface water floods, in which intense precipitation is usually the main driver. Determining the link between the causes and impacts of floods can make it easier to calculate the level of flood risk. However, up until now, the limitations in quantitative observations for flood-related damages have been a major obstacle when attempting to analyse flood risk in the Mediterranean. Flood-related insurance damage claims for the last 20 years could provide a proxy for flood impact, and this information is now available in the Mediterranean region of Catalonia, in northeast Spain. This means a comprehensive analysis of the links between flood drivers and impacts is now possible. The objective of this paper is to develop and evaluate a methodology to estimate flood damages from heavy precipitation in a Mediterranean region. Results show that our model is able to simulate the probability of a damaging event as a function of precipitation. The relationship between precipitation and damage provides insights into flood risk in the Mediterranean and is also promising for supporting flood management strategies.
NASA Astrophysics Data System (ADS)
Wilkinson, M.; Quinn, P. F.; Jonczyk, J.
2010-12-01
The increased risk from flooding continues to be of concern to governments all around the world and flood protection is becoming more of a challenge. In the UK, climate change projections indicate more extremes within the weather systems. In addition, there is an increased demand for using land in urban areas beside channels. These developments both put pressure on our flood defences and there is a need for new solutions to managing flood risk. There is currently support within the England and Wales Environment Agency for sustainable flood management solutions such as storage ponds, wetlands, beaver dams and willow riparian features (referred to here as Runoff Attenuation Features, or RAFs). However the effectiveness of RAFs are not known at the catchment scale since they have only really been trailed at the plot scale. These types of mitigation measure can offer benefits to water quality and create ecological habitats. The village of Belford, situated in the Belford Burn catchment (6km2), northern England, has suffered from numerous flood events. In addition, the catchment suffers from water quality issues within the channel and high sediment loads are having an impact on the ecology of the nearby estuary. There was a desire by the Local Environment Agency Flood Levy team to deliver an alternative catchment-based solution to the problem. With funding from the Northumbria Regional Flood Defence Committee, the Environment Agency North East Local Levy team and Newcastle University have created a partnership to address the flood problem trailing soft engineered RAF’s at the catchment scale. The partnership project, “Belford proactive flood solutions” is testing novel techniques in reducing flood risk in small sub-catchments for the Environment Agency. The project provides the information needed to understand whether the multi-functional mitigation measures are working at the sub-catchment scale. Data suggest that the mitigation measures present have delayed the overall travel time of the flood peak in the catchment by 33%. The current maximum flood storage capacity of all the features stands at around 15,000 m3. The evidence also suggests that a dam like in-stream mitigation measure can significantly reduce sediment load. Other benefits of some mitigation features include large increase in the population of water voles over the past two years. The scheme also acts as a demonstration site for interested stakeholders where they can learn about this approach to flood risk management and see the multipurpose benefits. As the project has progressed and lessons have been learnt, it has been possible to develop a runoff management toolkit for implementing these mitigation measures in other catchments of similar size. Already, the local Environment Agency has utilised the tools and recently applied similar mitigation measures to other catchments. On-going modelling exercises in the project are using the data to explore the up-scaling of the features to larger catchments.
Porter, K.; Jones, Lucile M.; Ross, Stephanie L.; Borrero, J.; Bwarie, J.; Dykstra, D.; Geist, Eric L.; Johnson, L.; Kirby, Stephen H.; Long, K.; Lynett, P.; Miller, K.; Mortensen, Carl E.; Perry, S.; Plumlee, G.; Real, C.; Ritchie, L.; Scawthorn, C.; Thio, H.K.; Wein, Anne; Whitmore, P.; Wilson, R.; Wood, Nathan J.; Ostbo, Bruce I.; Oates, Don
2013-01-01
The U.S. Geological Survey and several partners operate a program called Science Application for Risk Reduction (SAFRR) that produces (among other things) emergency planning scenarios for natural disasters. The scenarios show how science can be used to enhance community resiliency. The SAFRR Tsunami Scenario describes potential impacts of a hypothetical, but realistic, tsunami affecting California (as well as the west coast of the United States, Alaska, and Hawaii) for the purpose of informing planning and mitigation decisions by a variety of stakeholders. The scenario begins with an Mw 9.1 earthquake off the Alaska Peninsula. With Pacific basin-wide modeling, we estimate up to 5m waves and 10 m/sec currents would strike California 5 hours later. In marinas and harbors, 13,000 small boats are damaged or sunk (1 in 3) at a cost of $350 million, causing navigation and environmental problems. Damage in the Ports of Los Angeles and Long Beach amount to $110 million, half of it water damage to vehicles and containerized cargo. Flooding of coastal communities affects 1800 city blocks, resulting in $640 million in damage. The tsunami damages 12 bridge abutments and 16 lane-miles of coastal roadway, costing $85 million to repair. Fire and business interruption losses will substantially add to direct losses. Flooding affects 170,000 residents and workers. A wide range of environmental impacts could occur. An extensive public education and outreach program is underway, as well as an evaluation of the overall effort.
Flood Impact Assessment in the Surrounding Area of Suvarnabhumi Airport, Thailand
NASA Astrophysics Data System (ADS)
Tingsanchali, Tawatchai; Eng, D.
2009-03-01
The existence of the Second Bangkok International Airport (SBIA) or the Suvarnabhumi International Airport induces more adverse effect to the flooding situation in its surrounding area. Due to limited drainage capacity, during a heavy storm, flooding in the surrounding area occurs over the area. The objective of the study is to find the most suitable flood control and drainage system that can drain floodwater from the surrounding area of 624 sq. km with minimum flood damages and impact to social and living conditions of the people in the study area. This study involves the application of MIKE FLOOD hydrodynamic model for determining the relative effects of flood control and drainage system in the surrounding area of the airport. The results of the study show that flood damages mostly occur in the central and downstream parts of the study area where drainage is insufficient. Flood depth and duration are main parameters used for the estimation of flood losses. Flood mitigation and management in the surrounding area of SBIA is planned by pumping water of 100 m3/s from Klong Samrong canal inside the study area through the proposed drainage channel to the Gulf of Thailand. The existing dikes along boundaries of the study area can protect water from the outer area to enter into the surrounding area of the airport. Flood simulation shows that a canal with capacity of 100 m3/s and a pumping station at the downstream end of the canal are required to cope with the drainage capacity for the flood of 100 years return period. A flood drainage channel of capacity of 100 m3/s is designed and will be constructed to drain flood from Klong Samrong to the sea. On the other hand, the embankment along the proposed drainage canal project improves traffic flow in the vicinity of the airport. On economic benefit, the project investment cost is Baht 8,410 million. The project benefit cost ratio is 2.12 with the economic internal rate of return of 15.61%. The construction period is 4 years. Environmental and social impacts are investigated and counter measures are proposed to reduce the impacts. The study considers compensating scheme for people who are directly affected by the flood drainage project and those who will lose their lands or their professions. Considerations are also extended to people who are indirectly affected by the project. Institutional framework is recommended to be established to manage flood control and drainage and water resources in the surrounding area of the airport.
Urban sprawl and flooding in southern California
Rantz, S.E.
1970-01-01
The floods of January 1969 in south-coastal California provide a timely example of the effect of urban sprawl on flood damage. Despite recordbreaking, or near recordbreaking, stream discharges, damage was minimal in the older developed areas that are protected against inundation and debris damage by carefully planned flood-control facilities, including debris basins and flood-conveyance channels. By contrast, heavy damage occurred in areas of more recent urban sprawl, where the hazards of inundation and debris or landslide damage have not been taken into consideration, and where the improvement and development of drainage or flood-control facilities have not kept pace with expanding urbanization.
A new modelling framework and mitigation measures for increased resilience to flooding
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Alexakis, Athanasios; Solley, Mark
2015-04-01
Flooding in rivers and estuaries is amongst the most significant challenges our society has yet to tackle effectively. Use of floodwall systems is one of the potential measures that can be used to mitigate the detrimental socio-economical and ecological impacts and alleviate the associated costs of flooding. This work demonstrates the utility of such systems for a case study via appropriate numerical simulations, in addition to conducting scaled flume experiments towards obtaining a better understanding of the performance and efficiency of the flood-wall systems. At first, the results of several characteristic inundation modeling scenarios and flood mitigation options, for a flood-prone region in Scotland. In particular, the history and hydrology of the area are discussed and the assumptions and hydraulic model input (model geometry including instream hydraulic structures -such as bridges and weirs- river and floodplain roughness, initial and boundary conditions) are presented, followed by the model results. Emphasis is given on the potential improvements brought about by mitigating flood risk using flood-wall systems. Further, the implementation of the floodwall in mitigating flood risk is demonstrated via appropriate numerical modeling, utilizing HEC-RAS to simulate the effect of a river's rising stage during a flood event, for a specific area. The later part of this work involves the design, building and utilization of a scaled physical model of a flood-wall system. These experiments are carried out at one of the research flumes in the Water Engineering laboratory of the University of Glasgow. These involve an experimental investigation where the increase of force applied on the floodwall is measured for different degrees of deflection of the water in the stream, under the maximum flow discharge that can be carried through without exceeding the floodwall height (and accounting for the effect of super-elevation). These results can be considered upon the implementation phase of floodwalls, when the floodwalls are placed at any arrangement other than parallel to the flow (e.g. along river bends in meandering channels or at river junctions). Such considerations can lead to site-specific optimal designs of direct flood defenses with the rising floodwall system, both in terms of product performance as well as cost efficiency.
Flood Impacts on People: from Hazard to Risk Maps
NASA Astrophysics Data System (ADS)
Arrighi, C.; Castelli, F.
2017-12-01
The mitigation of adverse consequences of floods on people is crucial for civil protection and public authorities. According to several studies, in the developed countries the majority of flood-related fatalities occurs due to inappropriate high risk behaviours such as driving and walking in floodwaters. In this work both the loss of stability of vehicles and pedestrians in floodwaters are analysed. Flood hazard is evaluated, based on (i) a 2D inundation model of an urban area, (ii) 3D hydrodynamic simulations of water flows around vehicles and human body and (iii) a dimensional analysis of experimental activity. Exposure and vulnerability of vehicles and population are assessed exploiting several sources of open GIS data in order to produce risk maps for a testing case study. The results show that a significant hazard to vehicles and pedestrians exists in the study area. Particularly high is the hazard to vehicles, which are likely to be swept away by flood flow, possibly aggravate damages to structures and infrastructures and locally alter the flood propagation. Exposure and vulnerability analysis identifies some structures such as schools and public facilities, which may attract several people. Moreover, some shopping facilities in the area, which attract both vehicular and pedestrians' circulation are located in the highest flood hazard zone.The application of the method demonstrates that, at municipal level, such risk maps can support civil defence strategies and education to active citizenship, thus contributing to flood impact reduction to population.
NASA Astrophysics Data System (ADS)
Lopez-Martinez, Francisco; Perez-Morales, Alfredo; Gil-Guirado, Salvador; Illan-Fernandez, Emilio Jose
2017-04-01
Since the 1960's, the Spanish Mediterranean coastal area is one of the main tourist destinations in the world and one of the highest rates of population, building and economic growth of Spain. Despite this growth have involved a lot of preventive flood management measures, especially structural measures (dams, water derivations, channelling, etc…), the area has registered an increase in the intensity, frequency and economic losses related to floods in recent decades. However, according to climatic records, this trend is more related to an exposure multiplication derived from economic growth than with the increase of extreme rainfall events produced by climate change. Within this framework it is interesting to evaluate how local governments (institution responsible for the process of spatial planning) have influence on exposure through allowing the construction in flood-prone areas. In this regard, this study quantifies the evolution of number of housing in flood-prone areas according to the cadastral information and the hydrological modelling data for the return periods of 10, 50, 100 and 500 years, respectively. Results highlight an increase in the number of building in flood-prone areas over the years. This increase in physical and economic exposure without any non-structural risk mitigation measure is one of the main factors for flood events. Therefore, results report that local governments did not consider the floodable areas into spatial planning and have made future scenarios characterized by an increase in the number of floods and their consequential damages.
Advances in using satellite altimetry to observe storm surge
NASA Astrophysics Data System (ADS)
Han, Guoqi
2017-04-01
Storm surges are the major cause for coastal flooding, resulting in catastrophic damage to properties and loss of life in coastal communities. Thus it is important to utilize new technology to enhance our capabilities of observing storm surges and ultimately to improve our capacity for forecasting storm surges and mitigating damage and loss. In this talk we first review traditional methods of monitoring storm surges. We then provide examples of storm surges observed by nadir satellite altimetry, during Hurricane Sandy and Igor, as well as typhoon and cyclone events. We further evaluate satellite results against tide-gauge data and explain storm surge features. Finally, we discuss the potential of a wide-swath altimetry mission, the Surface Water and Ocean Topography (SWOT), for observing storm surges.
Summary of floods in the United States during 1958
Hendricks, E.L.
1964-01-01
This report describes the most outstanding floods that occurred in the United States during 1958.A series of storms from January 23 to February 16 brought large amounts of precipitation to northern California and produced damaging floods, particularly in the Lower Sacramento Valley where losses totaled about \\$12 million.Major floods, notable because of the large area affected, occurred on many small streams in central and south Texas, following heavy general rains in late February. Extensive flooding occurred along the Gulf Coastal plain on the lower reaches of the major streams from the Brazos River to the Nueces River. Two lives were lost, and property damage exceeded \\$1 million.Damaging floods of April 1-7 followed one of the wettest winters in California history. Swollen streams overflowed their banks throughout the central part of the State, and discharge peaks on many streams exceeded those .of the floods of December 1955. Most severely flooded was the San Francisco Bay area. Total flood damage was estimated at \\$23 million.The storms and floods of April-May in Louisiana and adjacent States outranked all other floods in the United States during 1958 with respect to intensity of rain over a large area, number of streams having maximum discharge of record, rare occurrence of peaks, and great amount (\\$21 million) of resultant damage.Heavy rains on June 8-15 caused one of the greatest summer floods of record in central Indiana. Peak discharges were high and of rare occurrences. Failure of numerous levees along the Wabash River caused great damage. Crop damage alone was estimated at \\$48 million.Intense rains of July 1-2 caused record-breaking floods in southwestern Iowa. Rapid rises and the great magnitude of the floods on small streams resulted in 18 deaths and many injuries. Six towns and cities along the East Nishnabotna River and its tributaries were particularly hard hit; rural damage was also high. Total damage was estimated at \\$15 million.Heavy rains (as much as 40 inches during the last 2 weeks in September) from the middle of September to the middle of October caused destructive floods along the Rio Grande in Texas and Mexico. Many communities were isolated by the flood waters, and damage to crops was great.In addition to the 7 floods mentioned above, 21 others of lesser magnitude are reported in this annual summary.
Coupling Radar Rainfall Estimation and Hydrological Modelling For Flash-flood Hazard Mitigation
NASA Astrophysics Data System (ADS)
Borga, M.; Creutin, J. D.
Flood risk mitigation is accomplished through managing either or both the hazard and vulnerability. Flood hazard may be reduced through structural measures which alter the frequency of flood levels in the area. The vulnerability of a community to flood loss can be mitigated through changing or regulating land use and through flood warning and effective emergency response. When dealing with flash-flood hazard, it is gener- ally accepted that the most effective way (and in many instances the only affordable in a sustainable perspective) to mitigate the risk is by reducing the vulnerability of the involved communities, in particular by implementing flood warning systems and community self-help programs. However, both the inherent characteristics of the at- mospheric and hydrologic processes involved in flash-flooding and the changing soci- etal needs provide a tremendous challenge to traditional flood forecasting and warning concepts. In fact, the targets of these systems are traditionally localised like urbanised sectors or hydraulic structures. Given the small spatial scale that characterises flash floods and the development of dispersed urbanisation, transportation, green tourism and water sports, human lives and property are exposed to flash flood risk in a scat- tered manner. This must be taken into consideration in flash flood warning strategies and the investigated region should be considered as a whole and every section of the drainage network as a potential target for hydrological warnings. Radar technology offers the potential to provide information describing rain intensities almost contin- uously in time and space. Recent research results indicate that coupling radar infor- mation to distributed hydrologic modelling can provide hydrologic forecasts at all potentially flooded points of a region. Nevertheless, very few flood warning services use radar data more than on a qualitative basis. After a short review of current under- standing in this area, two issues are examined: advantages and caveats of using radar rainfall estimates in operational flash flood forecasting, methodological problems as- sociated to the use of hydrological models for distributed flash flood forecasting with rainfall input estimated from radar.
Impact of urbanization on flood of Shigu creek in Dongguan city
NASA Astrophysics Data System (ADS)
Pan, Luying; Chen, Yangbo; Zhang, Tao
2018-06-01
Shigu creek is a highly urbanized small watershed in Dongguan City. Due to rapid urbanization, quick flood response has been observed, which posted great threat to the flood security of Dongguan City. To evaluate the impact of urbanization on the flood changes of Shigu creek is very important for the flood mitigation of Shigu creek, which will provide insight for flood planners and managers for if to build a larger flood mitigation system. In this paper, the Land cover/use changes of Shigu creek from 1987-2015 induced by urbanization was first extracted from a local database, then, the Liuxihe model, a physically based distributed hydrological model, is employed to simulate the flood processes impacted by urbanization. Precipitation of 3 storms was used for flood processes simulation. The results show that the runoff coefficient and peak flow have increased sharply.
The impact of floods in hospital and mitigation measures: A literature review
NASA Astrophysics Data System (ADS)
Yusoff, N. A.; Shafii, H.; Omar, R.
2017-11-01
In late December 2014, the flood was most significant and largest recorded specifically in the Kelantan, Malaysia. It was considered to be a “tsunami like disaster” in which 202,000 victims were displaced and causing widespread collapse of public infrastructure. Flooding of hospital results in interruption of business, loss of infrastructure, such as electrical power and water supplies, increased difficulty in providing routine medical and increased patient admissions and nursing care for patients with chronic diseases, such as renal failure, diabetes, cancer, cystic fibrosis and mental illness. The aimed of this paper to identify the best of measures for reduce the risk of flood in hospital. Method of this paper uses the previous study result. Several related previous study can be used as measures to mitigation flood risk in Malaysian hospitals. Early stage research of related studies hope to help add more information to assist researchers in reducing the risk of flooding in hospital. The findings with proper pre-event preparation framework for mitigation flood risk of hospitals, the continuing medical services can be provided to patient especially during emergency.
33 CFR 203.50 - Nonstructural alternatives to rehabilitation of flood control works.
Code of Federal Regulations, 2014 CFR
2014-07-01
... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... rehabilitation, repair, or restoration of flood control works damaged by floods or coastal storms. (b) Policy. (1...
Code of Federal Regulations, 2014 CFR
2014-10-01
... SECURITY DISASTER ASSISTANCE MITIGATION PLANNING § 201.2 Definitions. Administrator means the head of the Federal Emergency Management Agency, or his/her designated representative. Flood Mitigation Assistance (FMA) means the program authorized by section 1366 of the National Flood Insurance Act of 1968, as...
44 CFR 78.14 - Alternative procedures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Alternative procedures. 78.14 Section 78.14 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION...
Code of Federal Regulations, 2010 CFR
2010-10-01
... SECURITY DISASTER ASSISTANCE MITIGATION PLANNING § 201.2 Definitions. Administrator means the head of the Federal Emergency Management Agency, or his/her designated representative. Flood Mitigation Assistance (FMA) means the program authorized by section 1366 of the National Flood Insurance Act of 1968, as...
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY DISASTER ASSISTANCE MITIGATION PLANNING § 201.2 Definitions. Administrator means the head of the Federal Emergency Management Agency, or his/her designated representative. Flood Mitigation Assistance (FMA) means the program authorized by section 1366 of the National Flood Insurance Act of 1968, as...
44 CFR 79.9 - Grant administration.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Grant administration. 79.9 Section 79.9 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS...
44 CFR 79.9 - Grant administration.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Grant administration. 79.9 Section 79.9 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS...
44 CFR 79.9 - Grant administration.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Grant administration. 79.9 Section 79.9 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS...
44 CFR 78.14 - Alternative procedures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Alternative procedures. 78.14 Section 78.14 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION...
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY DISASTER ASSISTANCE MITIGATION PLANNING § 201.2 Definitions. Administrator means the head of the Federal Emergency Management Agency, or his/her designated representative. Flood Mitigation Assistance (FMA) means the program authorized by section 1366 of the National Flood Insurance Act of 1968, as...
44 CFR 79.9 - Grant administration.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Grant administration. 79.9 Section 79.9 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS...
44 CFR 78.14 - Alternative procedures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Alternative procedures. 78.14 Section 78.14 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION...
44 CFR 78.14 - Alternative procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Alternative procedures. 78.14 Section 78.14 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION...
44 CFR 79.9 - Grant administration.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Grant administration. 79.9 Section 79.9 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS...
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY DISASTER ASSISTANCE MITIGATION PLANNING § 201.2 Definitions. Administrator means the head of the Federal Emergency Management Agency, or his/her designated representative. Flood Mitigation Assistance (FMA) means the program authorized by section 1366 of the National Flood Insurance Act of 1968, as...
44 CFR 78.14 - Alternative procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Alternative procedures. 78.14 Section 78.14 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION...
Mitigating flood exposure: Reducing disaster risk and trauma signature.
Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval
2013-01-01
Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city's worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods . We applied the "trauma signature analysis" (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results . Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion . In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation.
Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs Jr, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval
2013-01-01
Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city’s worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods. We applied the “trauma signature analysis” (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results. Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion. In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation. PMID:28228985
Methodology of Historical Flood Evaluation from Korean Historical Documents during AD 1392 to 1910
NASA Astrophysics Data System (ADS)
Cho, H. B.; Kim, H.; Noh, S.; Jang, C.
2007-12-01
Study on extreme flood events has critical limitation of shortage of historical data because modern systematic data don't implement long time series. The historical documentary records hence can be one of the important sources to contribute additional information on extreme flood events which had occurred before the instrumental observations began. For the proper data mining, documentary records satisfying following four conditions are preferred. 1. Long enough time series, 2. Official archives covering over all Korean peninsular, 3. Abundant enough record number, and 4. Detailed damage description. The Annals of Choson Dynasty includes about 500 years and 511 number of flood records during Choson Dynasty in ancient Korea. According to the annals, there were highly dense flood damage records in the middle of 17th century and the largest human damage and residence damage occurred in 1739 and 1856 respectively. Another source is Jeungbo-Munheonbigo. Jeungbo-Munheonbigo is a taxonomic document categorized by the themes such as cultures, social systems, and climates as well as contains 79 number of flood damage records. An effective way to analyze those historical floods without water level data is to classify and categorize the flood damage records because all records are written in descriptive way. Consequently, 556 records are categorized into 10 items by flood damage types and each categorized record is classified into three grades by numerical level that is how much the record is expressed in numerical way. These grouping results are applied to decide reasonable period range to get detailed information from entire inspection period. In addition, Historical Flood Evaluation Index (HFEI) thereby can be derived from the processes in quantitative and statistical ways to evaluate the magnitude of each ancient flood. In this research, flood damage evaluation is mainly focused on the damage of human beings and residences. Also degree ranges based on cumulative probability are induced with two damage inventory. HFEI by conditional weighted factors is applied to every flood record and to analysis for flood distribution in annual series.
NASA Astrophysics Data System (ADS)
Wahyudi, S. I.; Adi, H. P.
2018-04-01
Many areas of the northern coastal in Central Java, Indonesia, have been suffering from damage. One of the areas is Jepara, which has been experiencing this kind of damage for 7.6 kilometres from total 72 kilometres long beach. All damages are mostly caused by coastal erosion, sedimentation, environment and tidal flooding. Several efforts have been done, such as replanting mangroves, building revetment and groins, but it still could not mitigated the coastal damage. The purposes of this study are to map the coastal damages, to analyze handling priority and to determine coastal protection model. The method used are by identifying and plotting the coastal damage on the map, assessing score of each variable, and determining the handling priority and suitable coastal protection model. There are five levels of coastal damage used in this study, namely as light damage, medium, heavy, very heavy, and extremely heavy. Based on the priority assessment of coastal damage, it needs to be followed up by designing in detail and implementing through soft structure for example mangrove, sand nourishes and hard structure, such as breakwater, groins and revetment.
Extreme Mississippi River Floods in the Late Holocene: Reconstructions and Simulations
NASA Astrophysics Data System (ADS)
Munoz, S. E.; Giosan, L.; Donnelly, J. P.; Dee, S.
2016-12-01
Extreme flooding of the Mississippi River is costly in both economic and social terms. Despite ambitious engineering projects conceived in the early 20th century to mitigate damage from extreme floods, economic losses due to flooding have increased over recent years. Forecasting extreme flood occurrence over seasonal or longer time-scales remains a major challenge - especially in light of shifts in hydroclimatic conditions expected in response to continued greenhouse forcing. Here, we present findings from a series of paleoflood records that span the late Holocene derived from laminated sediments deposited in abandoned channels of the Mississippi River. These sedimentary archives record individual overbank floods as unique events beds with upward fining that we identify using grain-size analysis, bulk geochemistry, and radiography. We use sedimentological characteristics to reconstruct flood magnitude by calibrating our records against instrumental streamflow data from nearby gauging stations. We also use the Last Millennium Experiments of the Community Earth System Model (CESM-LME) and historical reanalysis data to examine the state of climate system around river discharge extremes. Our paleo-flood records exhibit strong non-stationarities in flood frequency and magnitude that are associated with fluctuations in the frequency of the El Niño-Southern Oscillation (ENSO), because the warm ENSO phase is associated with increased surface water storage of the lower Mississippi basin that leads to enhanced runoff delivery to the main channel. We also show that the early 20th century was a period of anomalously high flood frequency and magnitude due to the combined effects of river engineering and natural climate variability. Our findings imply that flood risk along the lower Mississippi River is tightly coupled to the frequency of ENSO, highlighting the need for robust projections of ENSO variability under greenhouse warming.
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Ross, Kenton W.; Graham, William D.
2006-01-01
Hurricane Katrina inflicted widespread damage to vegetation in southwestern coastal Mississippi upon landfall on August 29, 2005. Storm damage to surface vegetation types at the NASA John C. Stennis Space Center (SSC) was mapped and quantified using IKONOS data originally acquired on September 2, 2005, and later obtained via a Department of Defense ClearView contract. NASA SSC management required an assessment of the hurricane s impact to the 125,000-acre buffer zone used to mitigate rocket engine testing noise and vibration impacts and to manage forestry and fire risk. This study employed ERDAS IMAGINE software to apply traditional classification techniques to the IKONOS data. Spectral signatures were collected from multiple ISODATA classifications of subset areas across the entire region and then appended to a master file representative of major targeted cover type conditions. The master file was subsequently used with the IKONOS data and with a maximum likelihood algorithm to produce a supervised classification later refined using GIS-based editing. The final results enabled mapped, quantitative areal estimates of hurricane-induced damage according to general surface cover type. The IKONOS classification accuracy was assessed using higher resolution aerial imagery and field survey data. In-situ data and GIS analysis indicate that the results compare well to FEMA maps of flooding extent. The IKONOS classification also mapped open areas with woody storm debris. The detection of such storm damage categories is potentially useful for government officials responsible for hurricane disaster mitigation.
NASA Astrophysics Data System (ADS)
Metcalfe, Peter; Beven, Keith; Hankin, Barry; Lamb, Rob
2018-04-01
Enhanced hillslope storage is utilised in natural
flood management in order to retain overland storm run-off and to reduce connectivity between fast surface flow pathways and the channel. Examples include excavated ponds, deepened or bunded accumulation areas, and gullies and ephemeral channels blocked with wooden barriers or debris dams. The performance of large, distributed networks of such measures is poorly understood. Extensive schemes can potentially retain large quantities of run-off, but there are indications that much of their effectiveness can be attributed to desynchronisation of sub-catchment flood waves. Inappropriately sited measures may therefore increase, rather than mitigate, flood risk. Fully distributed hydrodynamic models have been applied in limited studies but introduce significant computational complexity. The longer run times of such models also restrict their use for uncertainty estimation or evaluation of the many potential configurations and storm sequences that may influence the timings and magnitudes of flood waves. Here a simplified overland flow-routing module and semi-distributed representation of enhanced hillslope storage is developed. It is applied to the headwaters of a large rural catchment in Cumbria, UK, where the use of an extensive network of storage features is proposed as a flood mitigation strategy. The models were run within a Monte Carlo framework against data for a 2-month period of extreme flood events that caused significant damage in areas downstream. Acceptable realisations and likelihood weightings were identified using the GLUE uncertainty estimation framework. Behavioural realisations were rerun against the catchment model modified with the addition of the hillslope storage. Three different drainage rate parameters were applied across the network of hillslope storage. The study demonstrates that schemes comprising widely distributed hillslope storage can be modelled effectively within such a reduced complexity framework. It shows the importance of drainage rates from storage features while operating through a sequence of events. We discuss limitations in the simplified representation of overland flow-routing and representation and storage, and how this could be improved using experimental evidence. We suggest ways in which features could be grouped more strategically and thus improve the performance of such schemes.
NASA Astrophysics Data System (ADS)
Kooperman, G. J.; Hoffman, F. M.; Koven, C.; Lindsay, K. T.; Swann, A. L. S.; Randerson, J. T.
2017-12-01
Climate change is expected to increase the frequency of intense flooding events, and thus the risk of flood-related mortality, infrastructure damage, and economic loss. Assessments of future flooding from global climate models based only on precipitation intensity and temperature neglect important processes that occur within the land-surface, particularly the impacts of plant-physiological responses to rising CO2. Higher CO2 reduces stomatal conductance, leading to less water loss through transpiration and higher soil moisture. For a given precipitation rate, higher soil moisture decreases the amount of rainwater that infiltrates the surface and increases runoff. Here we assess the relative impacts of plant-physiological and radiative-greenhouse effects on changes in extreme runoff intensity over tropical continents using the Community Earth System Model. We find that extreme percentile rates increase significantly more than mean runoff in response to higher CO2. Plant-physiological effects contribute to only a small increase in precipitation intensity, but are a dominant driver of runoff intensification, contributing to one-half of the 99th percentile runoff intensity change and one-third of the 99.9th percentile change. Comprehensive assessments of future flooding risk need to account for the physiological as well as radiative impacts of CO2 in order to better inform flood prediction and mitigation practices.
How do I know if I’ve improved my continental scale flood early warning system?
NASA Astrophysics Data System (ADS)
Cloke, Hannah L.; Pappenberger, Florian; Smith, Paul J.; Wetterhall, Fredrik
2017-04-01
Flood early warning systems mitigate damages and loss of life and are an economically efficient way of enhancing disaster resilience. The use of continental scale flood early warning systems is rapidly growing. The European Flood Awareness System (EFAS) is a pan-European flood early warning system forced by a multi-model ensemble of numerical weather predictions. Responses to scientific and technical changes can be complex in these computationally expensive continental scale systems, and improvements need to be tested by evaluating runs of the whole system. It is demonstrated here that forecast skill is not correlated with the value of warnings. In order to tell if the system has been improved an evaluation strategy is required that considers both forecast skill and warning value. The combination of a multi-forcing ensemble of EFAS flood forecasts is evaluated with a new skill-value strategy. The full multi-forcing ensemble is recommended for operational forecasting, but, there are spatial variations in the optimal forecast combination. Results indicate that optimizing forecasts based on value rather than skill alters the optimal forcing combination and the forecast performance. Also indicated is that model diversity and ensemble size are both important in achieving best overall performance. The use of several evaluation measures that consider both skill and value is strongly recommended when considering improvements to early warning systems.
Statistical analysis of the uncertainty related to flood hazard appraisal
NASA Astrophysics Data System (ADS)
Notaro, Vincenza; Freni, Gabriele
2015-12-01
The estimation of flood hazard frequency statistics for an urban catchment is of great interest in practice. It provides the evaluation of potential flood risk and related damage and supports decision making for flood risk management. Flood risk is usually defined as function of the probability, that a system deficiency can cause flooding (hazard), and the expected damage, due to the flooding magnitude (damage), taking into account both the exposure and the vulnerability of the goods at risk. The expected flood damage can be evaluated by an a priori estimation of potential damage caused by flooding or by interpolating real damage data. With regard to flood hazard appraisal several procedures propose to identify some hazard indicator (HI) such as flood depth or the combination of flood depth and velocity and to assess the flood hazard corresponding to the analyzed area comparing the HI variables with user-defined threshold values or curves (penalty curves or matrixes). However, flooding data are usually unavailable or piecemeal allowing for carrying out a reliable flood hazard analysis, therefore hazard analysis is often performed by means of mathematical simulations aimed at evaluating water levels and flow velocities over catchment surface. As results a great part of the uncertainties intrinsic to flood risk appraisal can be related to the hazard evaluation due to the uncertainty inherent to modeling results and to the subjectivity of the user defined hazard thresholds applied to link flood depth to a hazard level. In the present work, a statistical methodology was proposed for evaluating and reducing the uncertainties connected with hazard level estimation. The methodology has been applied to a real urban watershed as case study.
Large-scale application of the flood damage model RAilway Infrastructure Loss (RAIL)
NASA Astrophysics Data System (ADS)
Kellermann, Patric; Schönberger, Christine; Thieken, Annegret H.
2016-11-01
Experience has shown that river floods can significantly hamper the reliability of railway networks and cause extensive structural damage and disruption. As a result, the national railway operator in Austria had to cope with financial losses of more than EUR 100 million due to flooding in recent years. Comprehensive information on potential flood risk hot spots as well as on expected flood damage in Austria is therefore needed for strategic flood risk management. In view of this, the flood damage model RAIL (RAilway Infrastructure Loss) was applied to estimate (1) the expected structural flood damage and (2) the resulting repair costs of railway infrastructure due to a 30-, 100- and 300-year flood in the Austrian Mur River catchment. The results were then used to calculate the expected annual damage of the railway subnetwork and subsequently analysed in terms of their sensitivity to key model assumptions. Additionally, the impact of risk aversion on the estimates was investigated, and the overall results were briefly discussed against the background of climate change and possibly resulting changes in flood risk. The findings indicate that the RAIL model is capable of supporting decision-making in risk management by providing comprehensive risk information on the catchment level. It is furthermore demonstrated that an increased risk aversion of the railway operator has a marked influence on flood damage estimates for the study area and, hence, should be considered with regard to the development of risk management strategies.
Flood damage assessment using computer-assisted analysis of color infrared photography
Anderson, William H.
1978-01-01
Use of digitized aerial photographs for flood damage assessment in agriculture is new and largely untested. However, under flooding circumstances similar to the 1975 Red River Valley flood, computer-assisted techniques can be extremely useful, especially if detailed crop damage estimates are needed within a relatively short period of time.Airphoto interpretation techniques, manual or computer-assisted, are not intended to replace conventional ground survey and sampling procedures. But their use should be considered a valuable addition to the tools currently available for assessing agricultural flood damage.
Uncertainty estimation of long-range ensemble forecasts of snowmelt flood characteristics
NASA Astrophysics Data System (ADS)
Kuchment, L.
2012-04-01
Long-range forecasts of snowmelt flood characteristics with the lead time of 2-3 months have important significance for regulation of flood runoff and mitigation of flood damages at almost all large Russian rivers At the same time, the application of current forecasting techniques based on regression relationships between the runoff volume and the indexes of river basin conditions can lead to serious errors in forecasting resulted in large economic losses caused by wrong flood regulation. The forecast errors can be caused by complicated processes of soil freezing and soil moisture redistribution, too high rate of snow melt, large liquid precipitation before snow melt. or by large difference of meteorological conditions during the lead-time periods from climatologic ones. Analysis of economic losses had shown that the largest damages could, to a significant extent, be avoided if the decision makers had an opportunity to take into account predictive uncertainty and could use more cautious strategies in runoff regulation. Development of methodology of long-range ensemble forecasting of spring/summer floods which is based on distributed physically-based runoff generation models has created, in principle, a new basis for improving hydrological predictions as well as for estimating their uncertainty. This approach is illustrated by forecasting of the spring-summer floods at the Vyatka River and the Seim River basins. The application of the physically - based models of snowmelt runoff generation give a essential improving of statistical estimates of the deterministic forecasts of the flood volume in comparison with the forecasts obtained from the regression relationships. These models had been used also for the probabilistic forecasts assigning meteorological inputs during lead time periods from the available historical daily series, and from the series simulated by using a weather generator and the Monte Carlo procedure. The weather generator consists of the stochastic models of daily temperature and precipitation. The performance of the probabilistic forecasts were estimated by the ranked probability skill scores. The application of Monte Carlo simulations using weather generator has given better results then using the historical meteorological series.
NASA Astrophysics Data System (ADS)
Hussin, Haydar; van Westen, Cees; Reichenbach, Paola
2013-04-01
Local and regional authorities in mountainous areas that deal with hydro-meteorological hazards like landslides and floods try to set aside budgets for emergencies and risk mitigation. However, future losses are often not calculated in a probabilistic manner when allocating budgets or determining how much risk is acceptable. The absence of probabilistic risk estimates can create a lack of preparedness for reconstruction and risk reduction costs and a deficiency in promoting risk mitigation and prevention in an effective way. The probabilistic risk of natural hazards at local scale is usually ignored all together due to the difficulty in acknowledging, processing and incorporating uncertainties in the estimation of losses (e.g. physical damage, fatalities and monetary loss). This study attempts to set up a working framework for a probabilistic risk assessment (PRA) of landslides and floods at a municipal scale using the Fella river valley (Eastern Italian Alps) as a multi-hazard case study area. The emphasis is on the evaluation and determination of the uncertainty in the estimation of losses from multi-hazards. To carry out this framework some steps are needed: (1) by using physically based stochastic landslide and flood models we aim to calculate the probability of the physical impact on individual elements at risk, (2) this is then combined with a statistical analysis of the vulnerability and monetary value of the elements at risk in order to include their uncertainty in the risk assessment, (3) finally the uncertainty from each risk component is propagated into the loss estimation. The combined effect of landslides and floods on the direct risk to communities in narrow alpine valleys is also one of important aspects that needs to be studied.
Nateghi, Roshanak; Bricker, Jeremy D; Guikema, Seth D; Bessho, Akane
2016-01-01
The Pacific coast of the Tohoku region of Japan experiences repeated tsunamis, with the most recent events having occurred in 1896, 1933, 1960, and 2011. These events have caused large loss of life and damage throughout the coastal region. There is uncertainty about the degree to which seawalls reduce deaths and building damage during tsunamis in Japan. On the one hand they provide physical protection against tsunamis as long as they are not overtopped and do not fail. On the other hand, the presence of a seawall may induce a false sense of security, encouraging additional development behind the seawall and reducing evacuation rates during an event. We analyze municipality-level and sub-municipality-level data on the impacts of the 1896, 1933, 1960, and 2011 tsunamis, finding that seawalls larger than 5 m in height generally have served a protective role in these past events, reducing both death rates and the damage rates of residential buildings. However, seawalls smaller than 5 m in height appear to have encouraged development in vulnerable areas and exacerbated damage. We also find that the extent of flooding is a critical factor in estimating both death rates and building damage rates, suggesting that additional measures, such as multiple lines of defense and elevating topography, may have significant benefits in reducing the impacts of tsunamis. Moreover, the area of coastal forests was found to be inversely related to death and destruction rates, indicating that forests either mitigated the impacts of these tsunamis, or displaced development that would otherwise have been damaged.
Nateghi, Roshanak; Bricker, Jeremy D.; Guikema, Seth D.; Bessho, Akane
2016-01-01
The Pacific coast of the Tohoku region of Japan experiences repeated tsunamis, with the most recent events having occurred in 1896, 1933, 1960, and 2011. These events have caused large loss of life and damage throughout the coastal region. There is uncertainty about the degree to which seawalls reduce deaths and building damage during tsunamis in Japan. On the one hand they provide physical protection against tsunamis as long as they are not overtopped and do not fail. On the other hand, the presence of a seawall may induce a false sense of security, encouraging additional development behind the seawall and reducing evacuation rates during an event. We analyze municipality-level and sub-municipality-level data on the impacts of the 1896, 1933, 1960, and 2011 tsunamis, finding that seawalls larger than 5 m in height generally have served a protective role in these past events, reducing both death rates and the damage rates of residential buildings. However, seawalls smaller than 5 m in height appear to have encouraged development in vulnerable areas and exacerbated damage. We also find that the extent of flooding is a critical factor in estimating both death rates and building damage rates, suggesting that additional measures, such as multiple lines of defense and elevating topography, may have significant benefits in reducing the impacts of tsunamis. Moreover, the area of coastal forests was found to be inversely related to death and destruction rates, indicating that forests either mitigated the impacts of these tsunamis, or displaced development that would otherwise have been damaged. PMID:27508461
44 CFR 79.8 - Allowable costs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Allowable costs. 79.8 Section 79.8 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.8...
44 CFR 79.8 - Allowable costs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Allowable costs. 79.8 Section 79.8 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.8...
44 CFR 79.8 - Allowable costs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Allowable costs. 79.8 Section 79.8 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.8...
44 CFR 79.8 - Allowable costs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Allowable costs. 79.8 Section 79.8 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.8...
NASA Astrophysics Data System (ADS)
Moon, Young-Il; Kim, Jong-Suk
2015-04-01
Due to rapid urbanization and climate change, the frequency of concentrated heavy rainfall has increased, causing urban floods that result in casualties and property damage. As a consequence of natural disasters that occur annually, the cost of damage in Korea is estimated to be over two billion US dollars per year. As interest in natural disasters increase, demands for a safe national territory and efficient emergency plans are on the rise. In addition to this, as a part of the measures to cope with the increase of inland flood damage, it is necessary to build a systematic city flood prevention system that uses technology to quantify flood risk as well as flood forecast based on both rivers and inland water bodies. Despite the investment and efforts to prevent landside flood damage, research and studies of landside-river combined hydro-system is at its initial stage in Korea. Therefore, the purpose of this research introduces the causes of flood damage in Seoul and shows a flood forecasting and warning system in urban streams of Seoul. This urban flood forecasting and warning system conducts prediction on flash rain or short-term rainfall by using radar and satellite information and performs prompt and accurate prediction on the inland flooded area and also supports synthetic decision-making for prevention through real-time monitoring. Although we cannot prevent damage from typhoons or localized heavy rain, we can minimize that damage with accurate and timely forecast and a prevention system. To this end, we developed a flood forecasting and warning system, so in case of an emergency there is enough time for evacuation and disaster control. Keywords: urban flooding, flood risk, inland-river system, Korea Acknowledgments This research was supported by a grant (13AWMP-B066744-01) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.
NASA Astrophysics Data System (ADS)
Bernet, Daniel B.; Prasuhn, Volker; Weingartner, Rolf
2017-09-01
Surface water floods (SWFs) have received increasing attention in the recent years. Nevertheless, we still know relatively little about where, when and why such floods occur and cause damage, largely due to a lack of data but to some degree also because of terminological ambiguities. Therefore, in a preparatory step, we summarize related terms and identify the need for unequivocal terminology across disciplines and international boundaries in order to bring the science together. Thereafter, we introduce a large (n = 63 117), long (10-33 years) and representative (48 % of all Swiss buildings covered) data set of spatially explicit Swiss insurance flood claims. Based on registered flood damage to buildings, the main aims of this study are twofold: First, we introduce a method to differentiate damage caused by SWFs and fluvial floods based on the geographical location of each damaged object in relation to flood hazard maps and the hydrological network. Second, we analyze the data with respect to their spatial and temporal distributions aimed at quantitatively answering the fundamental questions of how relevant SWF damage really is, as well as where and when it occurs in space and time. This study reveals that SWFs are responsible for at least 45 % of the flood damage to buildings and 23 % of the associated direct tangible losses, whereas lower losses per claim are responsible for the lower loss share. The Swiss lowlands are affected more heavily by SWFs than the alpine regions. At the same time, the results show that the damage claims and associated losses are not evenly distributed within each region either. Damage caused by SWFs occurs by far most frequently in summer in almost all regions. The normalized SWF damage of all regions shows no significant upward trend between 1993 and 2013. We conclude that SWFs are in fact a highly relevant process in Switzerland that should receive similar attention like fluvial flood hazards. Moreover, as SWF damage almost always coincides with fluvial flood damage, we suggest considering SWFs, like fluvial floods, as integrated processes of our catchments.
A new survey tool to assess pluvial damage to residential buildings
NASA Astrophysics Data System (ADS)
Rözer, Viktor; Spekkers, Matthieu; ten Veldhuis, Marie-Claire; Kreibich, Heidi
2017-04-01
Pluvial floods have caused severe damage to urban dwellings in Europe and elsewhere in recent years. These type of flood events are caused by storm events with exceptionally high rainfall rates, which lead to inundation of streets and buildings and are commonly associated with a failure of the urban drainage system. Therefore, pluvial floods often happen with little warning and in areas that are not obviously prone to flooding. With a predicted increase in extreme weather events as well as an ongoing urbanization, pluvial flood damage is expected to increase in the future. So far little research was done on the adverse consequences of pluvial floods, as empirical damage data of pluvial flooding is scarce. Therefore, a newly developed survey tool to assess pluvial flood damage as well as the results of a comparison between two international pluvial flood case studies are presented. The questionnaire used in the two study areas was developed with the aim to create a harmonized transnational pluvial flood damage survey that can potentially be extended to other European countries. New indicator variables have been developed to account for different national and regional standards in building structure, early warning, socio-economic data and recovery. The surveys comprise interviews with 510 households in the Münster area (Germany) and 349 households in Amsterdam (the Netherlands), which were affected by the heavy rainfall events on July 28 2014. The respondents were asked more than 80 questions about the damage to their building structure and contents, as well as on topics such as early warning, emergency and precautionary measures, building properties and hazard characteristics. A comparison of the two surveys revealed strong similarities concerning damage reducing effects and the popularity of precautionary measures, besides significant differences between the mean water levels inside the house as well as the median of the building structure and content damage. A comparison between the relative damage contributions for different entry points of water into the house indicates an effect of regional distinctions in building topology on the total damage. The results of this comparison give important insights for the development and transferability of pluvial flood damage models.
Use of documentary sources on past flood events for flood risk management and land planning
NASA Astrophysics Data System (ADS)
Cœur, Denis; Lang, Michel
2008-09-01
The knowledge of past catastrophic events can improve flood risk mitigation policy, with a better awareness against risk. As such historical information is usually available in Europe for the past five centuries, historians are able to understand how past society dealt with flood risk, and hydrologists can include information on past floods into an adapted probabilistic framework. In France, Flood Risk Mitigation Maps are based either on the largest historical known flood event or on the 100-year flood event if it is greater. Two actions can be suggested in terms of promoting the use of historical information for flood risk management: (1) the development of a regional flood data base, with both historical and current data, in order to get a good feedback on recent events and to improve the flood risk education and awareness; (2) the commitment to keep a persistent/perennial management of a reference network of hydrometeorological observations for climate change studies.
NASA Astrophysics Data System (ADS)
Bianchizza, C.; Del Bianco, D.; Pellizzoni, L.; Scolobig, A.
2012-04-01
Flood risk mitigation decisions pose key challenges not only from a technical but also from a social, economic and political viewpoint. There is an increasing demand for improving the quality of these processes by including different stakeholders - and especially by involving the local residents in the decision making process - and by guaranteeing the actual improvement of local social capacities during and after the decision making. In this paper we analyse two case studies of flood risk mitigation decisions, Malborghetto-Valbruna and Vipiteno-Sterzing, in the Italian Alps. In both of them, mitigation works have been completed or planned, yet following completely different approaches especially in terms of responses of residents and involvement of local authorities. In Malborghetto-Valbruna an 'interventionist' approach (i.e. leaning towards a top down/technocratic decision process) was used to make decisions after the flood event that affected the municipality in the year 2003. In Vipiteno-Sterzing, a 'participatory' approach (i.e. leaning towards a bottom-up/inclusive decision process) was applied: decisions about risk mitigation measures were made by submitting different projects to the local citizens and by involving them in the decision making process. The analysis of the two case studies presented in the paper is grounded on the results of two research projects. Structured and in-depth interviews, as well as questionnaire surveys were used to explore residents' and local authorities' orientations toward flood risk mitigation. Also a SWOT analysis (Strengths, Weaknesses, Opportunities and Threats) involving key stakeholders was used to better understand the characteristics of the communities and their perception of flood risk mitigation issues. The results highlight some key differences between interventionist and participatory approaches, together with some implications of their adoption in the local context. Strengths and weaknesses of the two approaches, as well as key challenges for the future are also discussed.
44 CFR 67.4 - Proposed flood elevation determination.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Proposed flood elevation..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.4 Proposed flood elevation determination. The Federal...
44 CFR 67.4 - Proposed flood elevation determination.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.4 Proposed flood elevation determination. The Federal... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Proposed flood elevation...
78 FR 43899 - Changes in Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
..., ``Flood Insurance.'') Dated: July 2, 2013. Roy E. Wright, Deputy Associate Administrator for Mitigation...] Changes in Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: New or modified Base (1% annual-chance) Flood Elevations (BFEs), base flood depths...
44 CFR 67.4 - Proposed flood elevation determination.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.4 Proposed flood elevation determination. The Federal... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Proposed flood elevation...
Hydrologic and hydraulic flood forecasting constrained by remote sensing data
NASA Astrophysics Data System (ADS)
Li, Y.; Grimaldi, S.; Pauwels, V. R. N.; Walker, J. P.; Wright, A. J.
2017-12-01
Flooding is one of the most destructive natural disasters, resulting in many deaths and billions of dollars of damages each year. An indispensable tool to mitigate the effect of floods is to provide accurate and timely forecasts. An operational flood forecasting system typically consists of a hydrologic model, converting rainfall data into flood volumes entering the river system, and a hydraulic model, converting these flood volumes into water levels and flood extents. Such a system is prone to various sources of uncertainties from the initial conditions, meteorological forcing, topographic data, model parameters and model structure. To reduce those uncertainties, current forecasting systems are typically calibrated and/or updated using ground-based streamflow measurements, and such applications are limited to well-gauged areas. The recent increasing availability of spatially distributed remote sensing (RS) data offers new opportunities to improve flood forecasting skill. Based on an Australian case study, this presentation will discuss the use of 1) RS soil moisture to constrain a hydrologic model, and 2) RS flood extent and level to constrain a hydraulic model.The GRKAL hydrological model is calibrated through a joint calibration scheme using both ground-based streamflow and RS soil moisture observations. A lag-aware data assimilation approach is tested through a set of synthetic experiments to integrate RS soil moisture to constrain the streamflow forecasting in real-time.The hydraulic model is LISFLOOD-FP which solves the 2-dimensional inertial approximation of the Shallow Water Equations. Gauged water level time series and RS-derived flood extent and levels are used to apply a multi-objective calibration protocol. The effectiveness with which each data source or combination of data sources constrained the parameter space will be discussed.
The Influence of Landslides on Channel Flood Response: A Case Study from the Colorado Front Range
NASA Astrophysics Data System (ADS)
Bennett, G. L.; Ryan, S. E.; Sholtes, J.; Rathburn, S. L.
2016-12-01
Studies have identified the role of thresholds and gradients in stream power in inducing geomorphic change during floods. At much longer time scales, empirical and modeling studies suggest the role of landslides in modifying channel response to external forcing (e.g. tectonic uplift); landslide-delivered sediment may behave as a tool, enhancing channel incision, or as cover, reducing channel incision. However, the influence of landslides on channel response to an individual flood event remains to be elucidated. Here we explore the influence of landslides on channel response to a 200-yr flood in Colorado, USA. From 9 - 15th September 2013 up to 450 mm of rain fell across a 100 km-wide swath of the Colorado Front Range, triggering >1000 landslides and inducing major flooding in several catchments. The flood caused extensive channel erosion, deposition and planform change, resulting in significant damage to property and infrastructure and even loss of life. We use a combination of pre and post flood LiDAR and field mapping to quantify geomorphic change in several catchments spanning the flooded region. We make a reach-by-reach analysis of channel geomorphic change metrics (e.g. volume of erosion) in relation to landslide sediment input and total stream power as calculated from radar-based rainfall measurements. Preliminary results suggest that landslide-sediment input may complicate the predictive relationship between channel erosion and stream power. Low volumes of landslide sediment input appear to enhance channel erosion (a tools effect), whilst very large volumes appear to reduce channel erosion (a cover effect). These results have implications for predicting channel response to floods and for flood planning and mitigation.
44 CFR 206.253 - Insurance requirements for facilities damaged by disasters other than flood.
Code of Federal Regulations, 2010 CFR
2010-10-01
... facilities damaged by disasters other than flood. 206.253 Section 206.253 Emergency Management and Assistance... by disasters other than flood. (a) Prior to approval of a Federal grant for the restoration of a facility and its contents which were damaged by a disaster other than flood, the Grantee shall notify the...
NASA Astrophysics Data System (ADS)
Valchev, Nikolay; Eftimova, Petya; Andreeva, Nataliya; Prodanov, Bogdan
2017-04-01
Coastal zone is among the fastest evolving areas worldwide. Ever increasing population inhabiting coastal settlements develops often conflicting economic and societal activities. The existing imbalance between the expansion of these activities, on one hand, and the potential to accommodate them in a sustainable manner, on the other, becomes a critical problem. Concurrently, coasts are affected by various hydro-meteorological phenomena such as storm surges, heavy seas, strong winds and flash floods, which intensities and occurrence frequency is likely to increase due to the climate change. This implies elaboration of tools capable of quick prediction of impact of those phenomena on the coast and providing solutions in terms of disaster risk reduction measures. One such tool is Bayesian network. Proposed paper describes the set-up of such network for Varna Bay (Bulgaria, Western Black Sea). It relates near-shore storm conditions to their onshore flood potential and ultimately to relevant impact as relative damage on coastal and manmade environment. Methodology for set-up and training of the Bayesian network was developed within RISC-KIT project (Resilience-Increasing Strategies for Coasts - toolKIT). Proposed BN reflects the interaction between boundary conditions, receptors, hazard, and consequences. Storm boundary conditions - maximum significant wave height and peak surge level, were determined on the basis of their historical and projected occurrence. The only hazard considered in this study is flooding characterized by maximum inundation depth. BN was trained with synthetic events created by combining estimated boundary conditions. Flood impact was modeled with the process-based morphodynamical model XBeach. Restaurants, sport and leisure facilities, administrative buildings, and car parks were introduced in the network as receptors. Consequences (impact) are estimated in terms of relative damage caused by given inundation depth. National depth-damage (susceptibility) curves were used to define the percentage of damage ranked as low, moderate, high and very high. Besides previously described components, BN includes also two hazard influencing disaster risk reduction (DRR) measures: re-enforced embankment of Varna Port wall and beach nourishment. As a result of training process the network is able to evaluate spatially varying hazards and damages for specific storm conditions. Moreover, it is able to predict where on the site the highest impact would occur and to quantify the mitigation capacity of proposed DRR measures. For example, it is estimated that storm impact would be considerably reduced in present conditions but vulnerability would be still high in climate change perspective.
NASA Astrophysics Data System (ADS)
Erkens, G.; Stuurman, R.; De Lange, G.; Bucx, T.; Lambert, J.
2014-12-01
In many coastal cities land subsidence now exceeds absolute sea level rise up to a factor of ten. Without action, parts of Jakarta, Ho Chi Minh City, Bangkok and numerous other coastal cities will continue to sink, even below sea level. The ever increasing industrial and domestic demand for water in these cities results in excessive groundwater extraction, causing severe subsidence. In addition, coastal cities are often faced with larger natural subsidence, as they are built on thick sequences of soft soil. The impacts of subsidence are further exacerbated by climate-induced sea level rise. Land subsidence results in two types damage: foremost it increases flood vulnerability (frequency, inundation depth and duration of floods), with floods causing major economic damage and loss of lives. Secondly, differential land movement causes significant economic losses in the form of structural damage and high maintenance costs of roads and transportation networks, sewage systems, buildings and foundations. The total damage worldwide is estimated at billions of dollars annually. To survey the extent of groundwater associated subsidence, we conducted a quick-assessment of subsidence in a series of mega-cities (Jakarta, Ho Chi Minh City, Dhaka, New Orleans and Bangkok). For each city research questions included: what are the main causes, how much is the current subsidence rate and what are predictions, where are the vulnerable areas, what are the impacts and risks, how can adverse impacts can be mitigated or compensated for, and what governmental bodies are involved and responsible to act? Using the assessment, this paper discusses subsidence modelling and measurement results from the selected cities. The focus is on the importance of delayed settlement after increases in hydraulic heads, the role of the subsurface composition for subsidence rates and best practice solutions for subsiding cities. For the latter, urban (ground)water management, adaptive flood risk management and related spatial planning strategies are just examples of the options available. The discussions in this paper form the building blocks for a much-needed research agenda that aims to deliver a strategy to deal with subsidence in current and future subsidence-prone areas.
44 CFR 206.253 - Insurance requirements for facilities damaged by disasters other than flood.
Code of Federal Regulations, 2011 CFR
2011-10-01
... facilities damaged by disasters other than flood. 206.253 Section 206.253 Emergency Management and Assistance... ASSISTANCE Public Assistance Insurance Requirements § 206.253 Insurance requirements for facilities damaged... facility and its contents which were damaged by a disaster other than flood, the Grantee shall notify the...
Field Testing of Energy-Efficient Flood-Damage-Resistant Residential Envelope Systems Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aglan, H.
2005-08-04
The primary purpose of the project was to identify materials and methods that will make the envelope of a house flood damage resistant. Flood damage resistant materials and systems are intended to be used to repair houses subsequent to flooding. This project was also intended to develop methods of restoring the envelopes of houses that have been flooded but are repairable and may be subject to future flooding. Then if the house floods again, damage will not be as extensive as in previous flood events and restoration costs and efforts will be minimized. The purpose of the first pair ofmore » field tests was to establish a baseline for typical current residential construction practice. The first test modules used materials and systems that were commonly found in residential envelopes throughout the U.S. The purpose of the second pair of field tests was to begin evaluating potential residential envelope materials and systems that were projected to be more flood-damage resistant and restorable than the conventional materials and systems tested in the first pair of tests. The purpose of testing the third slab-on-grade module was to attempt to dry flood proof the module (no floodwater within the structure). If the module could be sealed well enough to prevent water from entering, then this would be an effective method of making the interior materials and systems flood damage resistant. The third crawl space module was tested in the same manner as the previous modules and provided an opportunity to do flood tests of additional residential materials and systems. Another purpose of the project was to develop the methodology to collect representative, measured, reproducible (i.e. scientific) data on how various residential materials and systems respond to flooding conditions so that future recommendations for repairing flood damaged houses could be based on scientific data. An additional benefit of collecting this data is that it will be used in the development of a standard test procedure which could lead to the certification of building materials and systems as flood damage resistant.« less
Flood Damages- savings potential for Austrian municipalities and evidence of adaptation
NASA Astrophysics Data System (ADS)
Unterberger, C.
2016-12-01
Recent studies show that the number of extreme precipitation events has increased globally and will continue to do so in the future. These observations are particularly true for central, northern and north-eastern Europe. These changes in the patterns of extreme events have direct repercussions for policy makers. Rojas et al. (2013) find that until 2080, annual damages could increase by a factor of 17 (from €5,5 bn/year today to € 98 bn/year in 2080) in the event that no adaptation measures are taken. Steininger et al. (2015) find that climate and weather induced extreme events account for an annual current welfare loss of about € 1 billion in Austria. As a result, policy makers will need to understand the interaction between hazard, exposure and vulnerability, with the goal of achieving flood risk reduction. Needed is a better understanding of where exposure, vulnerability and eventually flood risk are highest, i.e. where to reduce risk first and which factors drive existing flood risk. This article analyzes direct flood losses as reported by 1153 Austrian municipalities between 2005 and 2013. To achieve comparability between flood damages and municipalities' ordinary spending, a "vulnerability threshold" is introduced suggesting that flood damages should be lower than 5% of municipalities' average annual ordinary spending. It is found that the probability that flood damages exceed this vulnerability threshold is 12%. To provide a reliable estimate for that exceedance probability the joint distribution of damages and spending is modelled by means of a copula approach. Based on the joint distribution, a Monte Carlo simulation is conducted to derive uncertainty ranges for the exceedance probability. To analyze the drivers of flood damages and the effect they have on municipalities' spending, two linear regression models are estimated. Hereby obtained results suggest that damages increase significantly for those municipalities located along the shores of the river Danube and decrease significantly for municipalities that experienced floods in the past- indicating successful adaptation. As for the relationship between flood damages and municipalities' spending, the regression results indicate that flood damages have a significant positive impact.
Environmental and medical geochemistry in urban disaster response and preparedness
Plumlee, Geoffrey S.; Morman, Suzette A.; Cook, A.
2012-01-01
History abounds with accounts of cities that were destroyed or significantly damaged by natural or anthropogenic disasters, such as volcanic eruptions, earthquakes, wildland–urban wildfires, hurricanes, tsunamis, floods, urban firestorms, terrorist attacks, and armed conflicts. Burgeoning megacities place ever more people in the way of harm from future disasters. In addition to the physical damage, casualties, and injuries they cause, sudden urban disasters can also release into the environment large volumes of potentially hazardous materials. Environmental and medical geochemistry investigations help us to (1) understand the sources and environmental behavior of disaster materials, (2) assess potential threats the materials pose to the urban environment and health of urban populations, (3) develop strategies for their cleanup/disposal, and (4) anticipate and mitigate potential environmental and health effects from future urban disasters.
How can we deal with ANN in flood forecasting? As a simulation model or updating kernel!
NASA Astrophysics Data System (ADS)
Hassan Saddagh, Mohammad; Javad Abedini, Mohammad
2010-05-01
Flood forecasting and early warning, as a non-structural measure for flood control, is often considered to be the most effective and suitable alternative to mitigate the damage and human loss caused by flood. Forecast results which are output of hydrologic, hydraulic and/or black box models should secure accuracy of flood values and timing, especially for long lead time. The application of the artificial neural network (ANN) in flood forecasting has received extensive attentions in recent years due to its capability to capture the dynamics inherent in complex processes including flood. However, results obtained from executing plain ANN as simulation model demonstrate dramatic reduction in performance indices as lead time increases. This paper is intended to monitor the performance indices as it relates to flood forecasting and early warning using two different methodologies. While the first method employs a multilayer neural network trained using back-propagation scheme to forecast output hydrograph of a hypothetical river for various forecast lead time up to 6.0 hr, the second method uses 1D hydrodynamic MIKE11 model as forecasting model and multilayer neural network as updating kernel to monitor and assess the performance indices compared to ANN alone in light of increase in lead time. Results presented in both graphical and tabular format indicate superiority of MIKE11 coupled with ANN as updating kernel compared to ANN as simulation model alone. While plain ANN produces more accurate results for short lead time, the errors increase expeditiously for longer lead time. The second methodology provides more accurate and reliable results for longer forecast lead time.
The study of past damaging hydrogeological events for damage susceptibility zonation
NASA Astrophysics Data System (ADS)
Petrucci, O.; Pasqua, A. A.
2008-08-01
Damaging Hydrogeological Events are defined as periods during which phenomena, such as landslides, floods and secondary floods, cause damage to people and the environment. A Damaging Hydrogeological Event which heavily damaged Calabria (Southern Italy) between December 1972, and January 1973, has been used to test a procedure to be utilised in the zonation of a province according to damage susceptibility during DHEs. In particular, we analyzed the province of Catanzaro (2391 km2), an administrative district composed of 80 municipalities, with about 370 000 inhabitants. Damage, defined in relation to the reimbursement requests sent to the Department of Public Works, has been quantified using a procedure based on a Local Damage Index. The latter, representing classified losses, has been obtained by multiplying the value of the damaged element and the percentage of damage affecting it. Rainfall has been described by the Maximum Return Period of cumulative rainfall, for both short (1, 3, 5, 7, 10 consecutive days) and long duration (30, 60, 90, 180 consecutive days), recorded during the event. Damage index and population density, presumed to represent the location of vulnerable elements, have been referred to Thiessen polygons associated to rain gauges working at the time of the event. The procedure allowed us to carry out a preliminary classification of the polygons composing the province according to their susceptibility to damage during DHEs. In high susceptibility polygons, severe damage occurs during rainfall characterised by low return periods; in medium susceptibility polygons maximum return period rainfall and induced damage show equal levels of exceptionality; in low susceptibility polygons, high return period rainfall induces a low level of damage. The east and west sectors of the province show the highest susceptibility, while polygons of the N-NE sector show the lowest susceptibility levels, on account of both the low population density and high average rainfall characterizing these mountainous areas. The future analysis of further DHEs, using the tested procedure, can strengthen the obtained zonation. Afterwards, the results can prove useful in establishing civil defence plans, emergency management, and prioritizing hazard mitigation measures.
A global assessment of the societal impacts of glacier outburst floods
NASA Astrophysics Data System (ADS)
Carrivick, Jonathan L.; Tweed, Fiona S.
2016-09-01
Glacier outburst floods are sudden releases of large amounts of water from a glacier. They are a pervasive natural hazard worldwide. They have an association with climate primarily via glacier mass balance and their impacts on society partly depend on population pressure and land use. Given the ongoing changes in climate and land use and population distributions there is therefore an urgent need to discriminate the spatio-temporal patterning of glacier outburst floods and their impacts. This study presents data compiled from 20 countries and comprising 1348 glacier floods spanning 10 centuries. Societal impacts were assessed using a relative damage index based on recorded deaths, evacuations, and property and infrastructure destruction and disruption. These floods originated from 332 sites; 70% were from ice-dammed lakes and 36% had recorded societal impact. The number of floods recorded has apparently reduced since the mid-1990s in all major world regions. Two thirds of sites that have produced > 5 floods (n = 32) have floods occurring progressively earlier in the year. Glacier floods have directly caused at least: 7 deaths in Iceland, 393 deaths in the European Alps, 5745 deaths in South America and 6300 deaths in central Asia. Peru, Nepal and India have experienced fewer floods yet higher levels of damage. One in five sites in the European Alps has produced floods that have damaged farmland, destroyed homes and damaged bridges; 10% of sites in South America have produced glacier floods that have killed people and damaged infrastructure; 15% of sites in central Asia have produced floods that have inundated farmland, destroyed homes, damaged roads and damaged infrastructure. Overall, Bhutan and Nepal have the greatest national-level economic consequences of glacier flood impacts. We recommend that accurate, full and standardised monitoring, recording and reporting of glacier floods is essential if spatio-temporal patterns in glacier flood occurrence, magnitude and societal impact are to be better understood. We note that future modelling of the global impact of glacier floods cannot assume that the same trends will continue and will need to consider combining land-use change with probability distributions of geomorphological responses to climate change and to human activity.
Summary of floods in the United States during 1962
Rostvedt, J.O.
1968-01-01
This report describes the most outstanding floods in the United Spates during 1962. The most damaging floods during the year occurred in February in southern Idaho and northern Nevada and Utah, and during the latter part of February and the early part of March in Kentucky and in the Cumberland River basin in Tennessee.The floods in Idaho and adjacent areas of Nevada and Utah resulted from a combination of prolonged low-intensity rainfall, moderate amounts of snow on low-altitude areas, a period of high temperatures, and a glaze of ice over deeply frozen ground. The floods affected some of the most valuable agricultural land in the region and some of the most heavily populated areas in Idaho. Damage in Idaho was estimated at more than \\$7 million.The floods in Kentucky and Tennessee were caused by two storms; precipitation exceeded 7 inches at places during the second storm. Damage in Kentucky totaled about \\$7 million.Recordbreaking snowmelt floods occurred in March and April in southeastern South Dakota and adjacent areas. Many peak discharges were much greater than those that can be expected to occur on an average of once in 25 years. Peak discharges on the Floyd River and the Big Sioux River were the greatest snowmelt floods since 1881. Damage in South Dakota was estimated at \\$4 million.Heavy rains during May and intense rains in early June caused flooding in Minnesota on tributaries of the Red River of the North. Peak discharges exceeded previous maximums at some areas in the basins of the Buffalo, Clearwater, and Wild Rice Rivers. Damage from the floods of May and June in Minnesota was about \\$5 million.The greatest flood since 1920 in Rapid City, S. Dak., caused at out $600,000 damage in July. The great runoff of 3,300 cubic feet per second, from a relatively small area downstream from Pactola Reservoir, resulted from rainfall having an intensity greater than that for a 100-year recurrence interval.Floods caused almost \\$3 million damage in three river basins' in western Florida in September. The greatest damage was in Sarasota where from 3 to 7 feet of water flooded homes and stores. About 70,000 acres of farmland and woodland was inundated.Unusual floods of September in southern Arizona flooded areas up to 10 miles wide. Damage, which totaled about \\$3 million, was almost entirely to farms, as the flood area is sparsely populated.In addition to the floods just mentioned, 15 others of lesser magnitude are considered outstanding enough to be included in this annual summary.
44 CFR 67.8 - Appeal procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.8 Appeal procedure. (a) If a community appeals the proposed flood...
44 CFR 67.8 - Appeal procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.8 Appeal procedure. (a) If a community appeals the proposed flood elevation...
Probabilistic flood damage modelling at the meso-scale
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno
2014-05-01
Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.
Morita, M
2011-01-01
Global climate change is expected to affect future rainfall patterns. These changes should be taken into account when assessing future flooding risks. This study presents a method for quantifying the increase in flood risk caused by global climate change for use in urban flood risk management. Flood risk in this context is defined as the product of flood damage potential and the probability of its occurrence. The study uses a geographic information system-based flood damage prediction model to calculate the flood damage caused by design storms with different return periods. Estimation of the monetary damages these storms produce and their return periods are precursors to flood risk calculations. The design storms are developed from modified intensity-duration-frequency relationships generated by simulations of global climate change scenarios (e.g. CGCM2A2). The risk assessment method is applied to the Kanda River basin in Tokyo, Japan. The assessment provides insights not only into the flood risk cost increase due to global warming, and the impact that increase may have on flood control infrastructure planning.
Assessing the operation rules of a reservoir system based on a detailed modelling-chain
NASA Astrophysics Data System (ADS)
Bruwier, M.; Erpicum, S.; Pirotton, M.; Archambeau, P.; Dewals, B.
2014-09-01
According to available climate change scenarios for Belgium, drier summers and wetter winters are expected. In this study, we focus on two muti-purpose reservoirs located in the Vesdre catchment, which is part of the Meuse basin. The current operation rules of the reservoirs are first analysed. Next, the impacts of two climate change scenarios are assessed and enhanced operation rules are proposed to mitigate these impacts. For this purpose, an integrated model of the catchment was used. It includes a hydrological model, one-dimensional and two-dimensional hydraulic models of the river and its main tributaries, a model of the reservoir system and a flood damage model. Five performance indicators of the reservoir system have been defined, reflecting its ability to provide sufficient drinking, to control floods, to produce hydropower and to reduce low-flow condition. As shown by the results, enhanced operation rules may improve the drinking water potential and the low-flow augmentation while the existing operation rules are efficient for flood control and for hydropower production.
Assessing the operation rules of a reservoir system based on a detailed modelling chain
NASA Astrophysics Data System (ADS)
Bruwier, M.; Erpicum, S.; Pirotton, M.; Archambeau, P.; Dewals, B. J.
2015-03-01
According to available climate change scenarios for Belgium, drier summers and wetter winters are expected. In this study, we focus on two multi-purpose reservoirs located in the Vesdre catchment, which is part of the Meuse basin. The current operation rules of the reservoirs are first analysed. Next, the impacts of two climate change scenarios are assessed and enhanced operation rules are proposed to mitigate these impacts. For this purpose, an integrated model of the catchment was used. It includes a hydrological model, one-dimensional and two-dimensional hydraulic models of the river and its main tributaries, a model of the reservoir system and a flood damage model. Five performance indicators of the reservoir system have been defined, reflecting its ability to provide sufficient drinking water, to control floods, to produce hydropower and to reduce low-flow conditions. As shown by the results, enhanced operation rules may improve the drinking water potential and the low-flow augmentation while the existing operation rules are efficient for flood control and for hydropower production.
Freni, G; La Loggia, G; Notaro, V
2010-01-01
Due to the increased occurrence of flooding events in urban areas, many procedures for flood damage quantification have been defined in recent decades. The lack of large databases in most cases is overcome by combining the output of urban drainage models and damage curves linking flooding to expected damage. The application of advanced hydraulic models as diagnostic, design and decision-making support tools has become a standard practice in hydraulic research and application. Flooding damage functions are usually evaluated by a priori estimation of potential damage (based on the value of exposed goods) or by interpolating real damage data (recorded during historical flooding events). Hydraulic models have undergone continuous advancements, pushed forward by increasing computer capacity. The details of the flooding propagation process on the surface and the details of the interconnections between underground and surface drainage systems have been studied extensively in recent years, resulting in progressively more reliable models. The same level of was advancement has not been reached with regard to damage curves, for which improvements are highly connected to data availability; this remains the main bottleneck in the expected flooding damage estimation. Such functions are usually affected by significant uncertainty intrinsically related to the collected data and to the simplified structure of the adopted functional relationships. The present paper aimed to evaluate this uncertainty by comparing the intrinsic uncertainty connected to the construction of the damage-depth function to the hydraulic model uncertainty. In this way, the paper sought to evaluate the role of hydraulic model detail level in the wider context of flood damage estimation. This paper demonstrated that the use of detailed hydraulic models might not be justified because of the higher computational cost and the significant uncertainty in damage estimation curves. This uncertainty occurs mainly because a large part of the total uncertainty is dependent on depth-damage curves. Improving the estimation of these curves may provide better results in term of uncertainty reduction than the adoption of detailed hydraulic models.
An overview of road damages due to flooding: Case study in Kedah state, Malaysia
NASA Astrophysics Data System (ADS)
Ismail, Muhd Shahril Nizam; Ghani, Abdul Naser Abdul
2017-10-01
Flooding occurs frequently in many countries including Malaysia. Floods in Malaysia are usually due to heavy and prolonged rainfall, uncontrolled development, and drainage systems that are not being monitored. Road damage due to flooding event can cause huge expenditures for the post-flooding rehabilitation and maintenance. The required maintenance and rehabilitation could upset the original life cycle cost estimations. Data on road statistics were obtained from the Highway Planning Division, Ministry of Works Malaysia and data on flooding was collected from the Department of Irrigation and Drainage Malaysia for events between 2012 and 2015. The pilot sites were selected based on its historical cases of floods that caused road damages in Kedah. The pilot site indicated that the impact of flooding on road infrastructures systems can be used to plan better road design and maintenances. It also revealed that it costs more than RM 1 million to reinstate roads damaged by flooding in a typical district annually.
Chinh, Do Thi; Bubeck, Philip; Dung, Nguyen Viet; Kreibich, Heidi
2016-10-01
Floods frequently cause substantial economic and human losses, particularly in developing countries. For the development of sound flood risk management schemes that reduce flood consequences, detailed insights into the different components of the flood risk management cycle, such as preparedness, response, flood impact analyses and recovery, are needed. However, such detailed insights are often lacking: commonly, only (aggregated) data on direct flood damage are available. Other damage categories such as losses owing to the disruption of production processes are usually not considered, resulting in incomplete risk assessments and possibly inappropriate recommendations for risk management. In this paper, data from 858 face-to-face interviews among flood-prone households and small businesses in Can Tho city in the Vietnamese Mekong Delta are presented to gain better insights into the damage caused by the 2011 flood event and its management by households and businesses. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.
NASA Astrophysics Data System (ADS)
Haer, Toon; Botzen, Wouter; de Moel, Hans; Aerts, Jeroen
2015-04-01
In the period 1998-2009, floods triggered roughly 52 billion euro in insured economic losses making floods the most costly natural hazard in Europe. Climate change and socio/economic trends are expected to further aggrevate floods losses in many regions. Research shows that flood risk can be significantly reduced if households install protective measures, and that the implementation of such measures can be stimulated through flood insurance schemes and subsidies. However, the effectiveness of such incentives to stimulate implementation of loss-reducing measures greatly depends on the decision process of individuals and is hardly studied. In our study, we developed an Agent-Based Model that integrates flood damage models, insurance mechanisms, subsidies, and household behaviour models to assess the effectiveness of different economic tools on stimulating households to invest in loss-reducing measures. Since the effectiveness depends on the decision making process of individuals, the study compares different household decision models ranging from standard economic models, to economic models for decision making under risk, to more complex decision models integrating economic models and risk perceptions, opinion dynamics, and the influence of flood experience. The results show the effectiveness of incentives to stimulate investment in loss-reducing measures for different household behavior types, while assuming climate change scenarios. It shows how complex decision models can better reproduce observed real-world behaviour compared to traditional economic models. Furthermore, since flood events are included in the simulations, the results provide an analysis of the dynamics in insured and uninsured losses for households, the costs of reducing risk by implementing loss-reducing measures, the capacity of the insurance market, and the cost of government subsidies under different scenarios. The model has been applied to the City of Rotterdam in The Netherlands.
Estimating monetary damages from flooding in the United States under a changing climate
A national-scale analysis of potential changes in monetary damages from flooding under climate change. The approach uses empirically based statistical relationships between historical precipitation and flood damage records from 18 hydrologic regions of the United States, along w...
NASA Astrophysics Data System (ADS)
Sanders, B. F.; Gallegos, H. A.; Schubert, J. E.
2011-12-01
The Baldwin Hills dam-break flood and associated structural damage is investigated in this study. The flood caused high velocity flows exceeding 5 m/s which destroyed 41 wood-framed residential structures, 16 of which were completed washed out. Damage is predicted by coupling a calibrated hydrodynamic flood model based on the shallow-water equations to structural damage models. The hydrodynamic and damage models are two-way coupled so building failure is predicted upon exceedance of a hydraulic intensity parameter, which in turn triggers a localized reduction in flow resistance which affects flood intensity predictions. Several established damage models and damage correlations reported in the literature are tested to evaluate the predictive skill for two damage states defined by destruction (Level 2) and washout (Level 3). Results show that high-velocity structural damage can be predicted with a remarkable level of skill using established damage models, but only with two-way coupling of the hydrodynamic and damage models. In contrast, when structural failure predictions have no influence on flow predictions, there is a significant reduction in predictive skill. Force-based damage models compare well with a subset of the damage models which were devised for similar types of structures. Implications for emergency planning and preparedness as well as monetary damage estimation are discussed.
On the potential of RST approach for a continuous monitoring of flooded areas
NASA Astrophysics Data System (ADS)
Faruolo, Mariapia; Coviello, Irina; Lacava, Teodosio; Pergola, Nicola; Tramutoli, Valerio
2010-05-01
In recent decades many efforts have been made in the field of remote sensing for the management of flood risk. In fact, among all natural disasters floods are probably the most frequent, causing high human suffering and large losses. All activities designed to mitigate and manage flood risk, in order to be effective and to help civil protection agencies in limiting losses of life, human suffering and damages, need of timely information about the onset of floods, their extent, intensity and duration. At present, sensors aboard meteorological satellites, mainly thanks to their high temporal resolution, may furnish frequent and updated images, ensuring a continuous monitoring of areas involved by a flood. In particular, optical instruments on board polar satellites, like NOAA-AVHRR (National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer) and more recently EOS-MODIS (Earth Observing System-Moderate Resolution Imaging Spectroradiometer) have been used for dynamic flood monitoring. A robust methodology for satellite based flood monitoring and detection, named RST (Robust Satellite Technique), has been recently developed and implemented using data acquired by AVHRR and MODIS to identify flooded areas with reliability and timeliness. Such an approach, based on a multi-temporal analysis of co-located satellite records and an automatic change detection scheme, has been used to analyze floods occurred in different geographic areas and observational conditions. In detail, in order to identify flooded areas within the region of interest, the spectral behavior of water in the visible (VIS) and near infrared (NIR) bands of such satellite systems has been successfully exploited. Starting from these satisfactory results, the main purpose of this paper is to show, in the case of several flooding events occurred recently in different parts of the world, the achievements arising from the use of such methodology also to data acquired in the thermal infrared (TIR) region in order to guarantee a continuous monitoring of flooded areas both during night and day.
44 CFR 73.4 - Restoration of flood insurance coverage.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Restoration of flood... AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1316 OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 § 73.4 Restoration of flood insurance...
44 CFR 61.5 - Special terms and conditions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.5 Special terms and conditions. (a) No new flood insurance or renewal of flood... other authority to be in violation of any flood plain, mudslide (i.e., mudflow) or flood-related erosion...
44 CFR 61.17 - Group Flood Insurance Policy.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.17 Group Flood Insurance Policy. (a) A Group Flood Insurance Policy (GFIP) is a... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Group Flood Insurance Policy...
44 CFR 61.17 - Group Flood Insurance Policy.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.17 Group Flood Insurance Policy. (a) A Group Flood Insurance Policy (GFIP) is a... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Group Flood Insurance Policy...
44 CFR 67.3 - Establishment and maintenance of a flood elevation determination docket (FEDD).
Code of Federal Regulations, 2014 CFR
2014-10-01
... MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.3 Establishment and maintenance of a flood elevation determination docket (FEDD). The Federal Insurance... of a flood elevation determination docket (FEDD). 67.3 Section 67.3 Emergency Management and...
44 CFR 67.3 - Establishment and maintenance of a flood elevation determination docket (FEDD).
Code of Federal Regulations, 2012 CFR
2012-10-01
... MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.3 Establishment and maintenance of a flood elevation determination docket (FEDD). The Federal Insurance... of a flood elevation determination docket (FEDD). 67.3 Section 67.3 Emergency Management and...
44 CFR 73.3 - Denial of flood insurance coverage.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1316 OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 § 73.3 Denial of flood insurance... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Denial of flood insurance...
44 CFR 61.17 - Group Flood Insurance Policy.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.17 Group Flood Insurance Policy. (a) A Group Flood Insurance Policy (GFIP) is a... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Group Flood Insurance Policy...
44 CFR 61.17 - Group Flood Insurance Policy.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.17 Group Flood Insurance Policy. (a) A Group Flood Insurance Policy (GFIP) is a... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Group Flood Insurance Policy...
44 CFR 61.17 - Group Flood Insurance Policy.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.17 Group Flood Insurance Policy. (a) A Group Flood Insurance Policy (GFIP) is a... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Group Flood Insurance Policy...
44 CFR 73.4 - Restoration of flood insurance coverage.
Code of Federal Regulations, 2014 CFR
2014-10-01
... AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1316 OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 § 73.4 Restoration of flood insurance... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Restoration of flood...
44 CFR 61.5 - Special terms and conditions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.5 Special terms and conditions. (a) No new flood insurance or renewal of flood... other authority to be in violation of any flood plain, mudslide (i.e., mudflow) or flood-related erosion...
44 CFR 73.3 - Denial of flood insurance coverage.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1316 OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 § 73.3 Denial of flood insurance... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Denial of flood insurance...
44 CFR 61.5 - Special terms and conditions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.5 Special terms and conditions. (a) No new flood insurance or renewal of flood... other authority to be in violation of any flood plain, mudslide (i.e., mudflow) or flood-related erosion...
44 CFR 73.4 - Restoration of flood insurance coverage.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1316 OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 § 73.4 Restoration of flood insurance... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Restoration of flood insurance...
Deasy, Clare; Titman, Andrew; Quinton, John N
2014-01-01
As a result of several serious flood events which have occurred since 2000, flooding across Europe is now receiving considerable public and media attention. The impact of land use on hydrology and flood response is significantly under-researched, and the links between land use change and flooding are still unclear. This study considers runoff data available from studies of arable in-field land use management options, applied with the aim of reducing diffuse pollution from arable land, in order to investigate whether these treatments also have potential to reduce downstream flooding. Intensive monitoring of 17 hillslope treatment areas produced a record of flood peak data covering different mitigation treatments for runoff which occurred in the winter of 2007-2008. We investigated event total runoff responses to rainfall, peak runoff, and timing of the runoff peaks from replicates of different treatments, in order to assess whether there is a significant difference in flood peak response between different mitigation options which could be used to mitigate downstream flood risk. A mixed-modelling approach was adopted in order to determine whether differences observed in runoff response were significant. The results of this study suggest that changes in land use management using arable in-field mitigation treatments can affect local-scale runoff generation, with differences observed in the size, duration and timing of flood peaks as a result of different management practices, but the study was unable to allow significant treatment effects to be determined. We suggest that further field studies of the effects of changes in land use and land use management need to upscale towards farm and catchment scale experiments which consider high quality before-and-after data over longer temporal timescales. This type of data collection is essential in order to allow appropriate land use management decisions to be made. Copyright © 2013 Elsevier Ltd. All rights reserved.
DamaGIS: a multisource geodatabase for collection of flood-related damage data
NASA Astrophysics Data System (ADS)
Saint-Martin, Clotilde; Javelle, Pierre; Vinet, Freddy
2018-06-01
Every year in France, recurring flood events result in several million euros of damage, and reducing the heavy consequences of floods has become a high priority. However, actions to reduce the impact of floods are often hindered by the lack of damage data on past flood events. The present paper introduces a new database for collection and assessment of flood-related damage. The DamaGIS database offers an innovative bottom-up approach to gather and identify damage data from multiple sources, including new media. The study area has been defined as the south of France considering the high frequency of floods over the past years. This paper presents the structure and contents of the database. It also presents operating instructions in order to keep collecting damage data within the database. This paper also describes an easily reproducible method to assess the severity of flood damage regardless of the location or date of occurrence. A first analysis of the damage contents is also provided in order to assess data quality and the relevance of the database. According to this analysis, despite its lack of comprehensiveness, the DamaGIS database presents many advantages. Indeed, DamaGIS provides a high accuracy of data as well as simplicity of use. It also has the additional benefit of being accessible in multiple formats and is open access. The DamaGIS database is available at https://doi.org/10.5281/zenodo.1241089.
Risk-trading in flood management: An economic model.
Chang, Chiung Ting
2017-09-15
Although flood management is no longer exclusively a topic of engineering, flood mitigation continues to be associated with hard engineering options. Flood adaptation or the capacity to adapt to flood risk, as well as a demand for internalizing externalities caused by flood risk between regions, complicate flood management activities. Even though integrated river basin management has long been recommended to resolve the above issues, it has proven difficult to apply widely, and sometimes even to bring into existence. This article explores how internalization of externalities as well as the realization of integrated river basin management can be encouraged via the use of a market-based approach, namely a flood risk trading program. In addition to maintaining efficiency of optimal resource allocation, a flood risk trading program may also provide a more equitable distribution of benefits by facilitating decentralization. This article employs a graphical analysis to show how flood risk trading can be implemented to encourage mitigation measures that increase infiltration and storage capacity. A theoretical model is presented to demonstrate the economic conditions necessary for flood risk trading. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nakatsugawa, M.; Kobayashi, Y.; Okazaki, R.; Taniguchi, Y.
2017-12-01
This research aims to improve accuracy of water level prediction calculations for more effective river management. In August 2016, Hokkaido was visited by four typhoons, whose heavy rainfall caused severe flooding. In the Tokoro river basin of Eastern Hokkaido, the water level (WL) at the Kamikawazoe gauging station, which is at the lower reaches exceeded the design high-water level and the water rose to the highest level on record. To predict such flood conditions and mitigate disaster damage, it is necessary to improve the accuracy of prediction as well as to prolong the lead time (LT) required for disaster mitigation measures such as flood-fighting activities and evacuation actions by residents. There is the need to predict the river water level around the peak stage earlier and more accurately. Previous research dealing with WL prediction had proposed a method in which the WL at the lower reaches is estimated by the correlation with the WL at the upper reaches (hereinafter: "the water level correlation method"). Additionally, a runoff model-based method has been generally used in which the discharge is estimated by giving rainfall prediction data to a runoff model such as a storage function model and then the WL is estimated from that discharge by using a WL discharge rating curve (H-Q curve). In this research, an attempt was made to predict WL by applying the Random Forest (RF) method, which is a machine learning method that can estimate the contribution of explanatory variables. Furthermore, from the practical point of view, we investigated the prediction of WL based on a multiple correlation (MC) method involving factors using explanatory variables with high contribution in the RF method, and we examined the proper selection of explanatory variables and the extension of LT. The following results were found: 1) Based on the RF method tuned up by learning from previous floods, the WL for the abnormal flood case of August 2016 was properly predicted with a lead time of 6 h. 2) Based on the contribution of explanatory variables, factors were selected for the MC method. In this way, plausible prediction results were obtained.
The role of floodplain restoration in mitigating flood risk, Lower Missouri River, USA
Jacobson, Robert B.; Lindner, Garth; Bitner, Chance; Hudson, Paul F.; Middelkoop, Hans
2015-01-01
Recent extreme floods on the Lower Missouri River have reinvigorated public policy debate about the potential role of floodplain restoration in decreasing costs of floods and possibly increasing other ecosystem service benefits. The first step to addressing the benefits of floodplain restoration is to understand the interactions of flow, floodplain morphology, and land cover that together determine the biophysical capacity of the floodplain. In this article we address interactions between ecological restoration of floodplains and flood-risk reduction at 3 scales. At the scale of the Lower Missouri River corridor (1300 km) floodplain elevation datasets and flow models provide first-order calculations of the potential for Missouri River floodplains to store floods of varying magnitude and duration. At this same scale assessment of floodplain sand deposition from the 2011 Missouri River flood indicates the magnitude of flood damage that could potentially be limited by floodplain restoration. At the segment scale (85 km), 1-dimensional hydraulic modeling predicts substantial stage reductions with increasing area of floodplain restoration; mean stage reductions range from 0.12 to 0.66 m. This analysis also indicates that channel widening may contribute substantially to stage reductions as part of a comprehensive strategy to restore floodplain and channel habitats. Unsteady 1-dimensional flow modeling of restoration scenarios at this scale indicates that attenuation of peak discharges of an observed hydrograph from May 2007, of similar magnitude to a 10 % annual exceedance probability flood, would be minimal, ranging from 0.04 % (with 16 % floodplain restoration) to 0.13 % (with 100 % restoration). At the reach scale (15–20 km) 2-dimensional hydraulic models of alternative levee setbacks and floodplain roughness indicate complex processes and patterns of flooding including substantial variation in stage reductions across floodplains depending on topographic complexity and hydraulic roughness. Detailed flow patterns captured in the 2-dimensional model indicate that most floodplain storage occurs on the rising limb of the flood as water flows into floodplain bottoms from downstream; at a later time during the rising limb this pattern is reversed and the entire bottom conveys discharge down the valley. These results indicate that flood-risk reduction by attenuation is likely to be small on a large river like the Missouri and design strategies to optimize attenuation and ecological restoration should focus on frequent floods (20–50 % annual exceedance probability). Local stage reductions are a more certain benefit of floodplain restoration but local effects are highly dependent on magnitude of flood discharge and how floodplain vegetation communities contribute to hydraulic roughness. The most certain flood risk reduction benefit of floodplain restoration is avoidance of flood damages to crops and infrastructure.
Enhancement of global flood damage assessments using building material based vulnerability curves
NASA Astrophysics Data System (ADS)
Englhardt, Johanna; de Ruiter, Marleen; de Moel, Hans; Aerts, Jeroen
2017-04-01
This study discusses the development of an enhanced approach for flood damage and risk assessments using vulnerability curves that are based on building material information. The approach draws upon common practices in earthquake vulnerability assessments, and is an alternative for land-use or building occupancy approach in flood risk assessment models. The approach is of particular importance for studies where there is a large variation in building material, such as large scale studies or studies in developing countries. A case study of Ethiopia is used to demonstrate the impact of the different methodological approaches on direct damage assessments due to flooding. Generally, flood damage assessments use damage curves for different land-use or occupancy types (i.e. urban or residential and commercial classes). However, these categories do not necessarily relate directly to vulnerability of damage by flood waters. For this, the construction type and building material may be more important, as is used in earthquake risk assessments. For this study, we use building material classification data of the PAGER1 project to define new building material based vulnerability classes for flood damage. This approach will be compared to the widely applied land-use based vulnerability curves such as used by De Moel et al. (2011). The case of Ethiopia demonstrates and compares the feasibility of this novel flood vulnerability method on a country level which holds the potential to be scaled up to a global level. The study shows that flood vulnerability based on building material also allows for better differentiation between flood damage in urban and rural settings, opening doors to better link to poverty studies when such exposure data is available. Furthermore, this new approach paves the road to the enhancement of multi-risk assessments as the method enables the comparison of vulnerability across different natural hazard types that also use material-based vulnerability curves. Finally, this approach allows for more accuracy in estimating losses as a result of direct damages. 1 http://earthquake.usgs.gov/data/pager/
BILLBOARD EXPRESSING LOCAL HUMOR CONCERNING FLOOD DAMAGE TO WALNUT STREET ...
BILLBOARD EXPRESSING LOCAL HUMOR CONCERNING FLOOD DAMAGE TO WALNUT STREET BRIDGE, I-83 SOUTHBOUND, LOOKING WEST. BILLBOARD EXPRESSING LOCAL HUMOR CONCERNING FLOOD DAMAGE TO WALNUT STREET BRIDGE, I-83 SOUTHBOUND, LOOKING WEST. - Walnut Street Bridge, Spanning Susquehanna River at Walnut Street (State Route 3034), Harrisburg, Dauphin County, PA
44 CFR 206.252 - Insurance requirements for facilities damaged by flood.
Code of Federal Regulations, 2011 CFR
2011-10-01
... facilities damaged by flood. 206.252 Section 206.252 Emergency Management and Assistance FEDERAL EMERGENCY... Assistance Insurance Requirements § 206.252 Insurance requirements for facilities damaged by flood. (a) Where... insurance policy. (b) The reduction stated above shall not apply to a PNP facility which could not be...
1984-02-01
Project Report/ Environmental Assessment Beaver Brook, Keene, New Hampshire I ~ j~j~i iii ii.. A Flood Damage Reduction AD-A 14 3 376 I , W " FEBRUARY...STATEMENT (of tme abestwee enteed to Sleok I0. Of dlfieme W booer IS. SUPPLEMENTARY MOTES 2 volume set: vol 1- Flood Damage Reduction - vol 2- Flood Damage...that are considered reasonably characteristic of the region, excluding extremely rare combinations. 2 ,4INN (0 ( w a 12 7’ PLATE * -..- ~ -- - 7 ’ k 47
NASA Technical Reports Server (NTRS)
Edwardo, H. A.; Moulis, F. R.; Merry, C. J.; Mckim, H. L.; Kerber, A. G.; Miller, M. A.
1985-01-01
The Pittsburgh District, Corps of Engineers, has conducted feasibility analyses of various procedures for performing flood damage assessments along the main stem of the Ohio River. Procedures using traditional, although highly automated, techniques and those based on geographic information systems have been evaluated at a test site, the City of New Martinsville, Wetzel County, WV. The flood damage assessments of the test site developed from an automated, conventional structure-by-structure appraisal served as the ground truth data set. A geographic information system was developed for the test site which includes data on hydraulic reach, ground and reference flood elevations, and land use/cover. Damage assessments were made using land use mapping developed from an exhaustive field inspection of each tax parcel. This ground truth condition was considered to provide the best comparison of flood damages to the conventional approach. Also, four land use/cover data sets were developed from Thematic Mapper Simulator (TMS) and Landsat-4 Thematic Mapper (TM) data. One of these was also used to develop a damage assessment of the test site. This paper presents the comparative absolute and relative accuracies of land use/cover mapping and flood damage assessments, and the recommended role of geographic information systems aided by remote sensing for conducting flood damage assessments and updates along the main stem of the Ohio River.
Emerson, Joanne B; Keady, Patricia B; Brewer, Tess E; Clements, Nicholas; Morgan, Emily E; Awerbuch, Jonathan; Miller, Shelly L; Fierer, Noah
2015-03-03
Flood-damaged homes typically have elevated microbial loads, and their occupants have an increased incidence of allergies, asthma, and other respiratory ailments, yet the microbial communities in these homes remain under-studied. Using culture-independent approaches, we characterized bacterial and fungal communities in homes in Boulder, CO, USA 2-3 months after the historic September, 2013 flooding event. We collected passive air samples from basements in 50 homes (36 flood-damaged, 14 non-flooded), and we sequenced the bacterial 16S rRNA gene (V4-V5 region) and the fungal ITS1 region from these samples for community analyses. Quantitative PCR was used to estimate the abundances of bacteria and fungi in the passive air samples. Results indicate significant differences in bacterial and fungal community composition between flooded and non-flooded homes. Fungal abundances were estimated to be three times higher in flooded, relative to non-flooded homes, but there were no significant differences in bacterial abundances. Penicillium (fungi) and Pseudomonadaceae and Enterobacteriaceae (bacteria) were among the most abundant taxa in flooded homes. Our results suggest that bacterial and fungal communities continue to be affected by flooding, even after relative humidity has returned to baseline levels and remediation has removed any visible evidence of flood damage.
NASA Astrophysics Data System (ADS)
Jung, E.; Yoon, H.
2016-12-01
Natural disasters are substantial source of social and economic damage around the globe. The amount of damage is larger when such catastrophe events happen in urbanized areas where the wealth is concentrated. Disasters cause losses in real estate assets, incurring additional cost of repair and maintenance of the properties. For this reason, natural hazard risk such as flooding and landslide is regarded as one of the important determinants of homebuyers' choice and preference. In this research, we aim to reveal whether the past records of flood affect real estate market values in Busan, Korea in 2014, under a hypothesis that homebuyers' perception of natural hazard is reflected on housing values, using the Mahalanobis-metric matching method. Unlike conventionally used hedonic pricing model to estimate capitalization of flood risk into the sales price of properties, the analytical method we adopt here enables inferring causal effects by efficiently controlling for observed/unobserved omitted variable bias. This matching approach pairs each inundated property (treatment variable) with a non-inundated property (control variable) with the closest Mahalanobis distance between them, and comparing their effects on residential property sales price (outcome variable). As a result, we expect price discounts for inundated properties larger than the one for comparable non-inundated properties. This research will be valuable in establishing the mitigation policies of future climate change to relieve the possible negative economic consequences from the disaster by estimating how people perceive and respond to natural hazard. This work was supported by the Korea Environmental Industry and Technology Institute (KEITI) under Grant (No. 2014-001-310007).
NASA Astrophysics Data System (ADS)
Brandolini, P.; Cevasco, A.; Firpo, M.; Robbiano, A.; Sacchini, A.
2012-04-01
Over the past century the municipal area of Genoa has been affected by recurring flood events and several landslides that have caused severe damage to urbanized areas on both the coastal-fluvial plains and surrounding slopes, sometimes involving human casualties. The analysis of past events' annual distribution indicates that these phenomena have occurred with rising frequency in the last seventy years, following the main land use change due to the development of harbour, industrial, and residential areas, which has strongly impacted geomorphological processes. Consequently, in Genoa, civil protection activities are taking on an increasing importance for geo-hydrological risk mitigation. The current legislative framework assigns a key role in disaster prevention to municipalities, emergency plan development, as well as response action coordination in disaster situations. In view of the geomorphological and environmental complexity of the study area and referring to environmental laws, geo-hydrological risk mitigation strategies adopted by local administrators for civil protection purposes are presented as examples of current land/urban management related to geo-hydrological hazards. Adopted measures have proven to be effective on several levels (planning, management, structure, understanding, and publication) in different cases. Nevertheless, the last flooding event (4 November 2011) has shown that communication and public information concerning the perception of geo-hydrological hazard can be improved.
Soong, David T.; Straub, Timothy D.; Murphy, Elizabeth A.
2006-01-01
Results of hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kane County, Illinois, indicate that the 100-year and 500-year flood plains range from approximately 25 acres in the tributary F watershed (a headwater subbasin at the northeastern corner of the watershed) to almost 1,800 acres in Blackberry Creek main stem. Based on 1996 land-cover data, most of the land in the 100-year and 500-year flood plains was cropland, forested and wooded land, and grassland. A relatively small percentage of urban land was in the flood plains. The Blackberry Creek watershed has undergone rapid urbanization in recent decades. The population and urbanized lands in the watershed are projected to double from the 1990 condition by 2020. Recently, flood-induced damage has occurred more frequently in urbanized areas of the watershed. There are concerns about the effect of urbanization on flood peaks and volumes, future flood-mitigation plans, and potential effects on the water quality and stream habitats. This report describes the procedures used in developing the hydrologic models, estimating the flood-peak discharge magnitudes and recurrence intervals for flood-hazard analysis, developing the hydraulic model, and the results of the analysis in graphical and tabular form. The hydrologic model, Hydrological Simulation Program-FORTRAN (HSPF), was used to perform the simulation of continuous water movements through various patterns of land uses in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and to determine the 100-year floodway. The hydraulic model was calibrated and verified using high water marks and observed inundation maps for the July 17-18, 1996, flood event. Digital maps of the 100-year and 500-year flood plains and the 100-year floodway for each tributary and the main stem of Blackberry Creek were compiled.
NASA Astrophysics Data System (ADS)
Darma Tarigan, Suria
2016-01-01
Flooding is caused by excessive rainfall flowing downstream as cumulative surface runoff. Flooding event is a result of complex interaction of natural system components such as rainfall events, land use, soil, topography and channel characteristics. Modeling flooding event as a result of interaction of those components is a central theme in watershed management. The model is usually used to test performance of various management practices in flood mitigation. There are various types of management practices for flood mitigation including vegetative and structural management practices. Existing hydrological model such as SWAT and HEC-HMS models have limitation to accommodate discrete management practices such as infiltration well, small farm reservoir, silt pits in its analysis due to the lumped structure of these models. Aim of this research is to use raster spatial analysis functions of Geo-Information System (RGIS-HM) to model flooding event in Ciliwung watershed and to simulate impact of discrete management practices on surface runoff reduction. The model was validated using flooding data event of Ciliwung watershed on 29 January 2004. The hourly hydrograph data and rainfall data were available during period of model validation. The model validation provided good result with Nash-Suthcliff efficiency of 0.8. We also compared the RGIS-HM with Netlogo Hydrological Model (NL-HM). The RGIS-HM has similar capability with NL-HM in simulating discrete management practices in watershed scale.
NASA Astrophysics Data System (ADS)
Herman, J. D.; Steinschneider, S.; Nayak, M. A.
2017-12-01
Short-term weather forecasts are not codified into the operating policies of federal, multi-purpose reservoirs, despite their potential to improve service provision. This is particularly true for facilities that provide flood protection and water supply, since the potential flood damages are often too severe to accept the risk of inaccurate forecasts. Instead, operators must maintain empty storage capacity to mitigate flood risk, even if the system is currently in drought, as occurred in California from 2012-2016. This study investigates the potential for forecast-informed operating rules to improve water supply efficiency while maintaining flood protection, combining state-of-the-art weather hindcasts with a novel tree-based policy optimization framework. We hypothesize that forecasts need only accurately predict the occurrence of a storm, rather than its intensity, to be effective in regions like California where wintertime, synoptic-scale storms dominate the flood regime. We also investigate the potential for downstream groundwater injection to improve the utility of forecasts. These hypotheses are tested in a case study of Folsom Reservoir on the American River. Because available weather hindcasts are relatively short (10-20 years), we propose a new statistical framework to develop synthetic forecasts to assess the risk associated with inaccurate forecasts. The efficiency of operating policies is tested across a range of scenarios that include varying forecast skill and additional groundwater pumping capacity. Results suggest that the combined use of groundwater storage and short-term weather forecasts can substantially improve the tradeoff between water supply and flood control objectives in large, multi-purpose reservoirs in California.
Compound flooding: examples, methods, and challenges
NASA Astrophysics Data System (ADS)
Wahl, T.
2017-12-01
When different climatic extremes occur simultaneously or in close succession, the impacts to the environment, built infrastructure and society at large are often significantly escalated. These events are collectively referred to as "compound" events. Although they are typically regarded as highly "surprising" when they occur, the dependencies and multi-scale nature of many climate phenomena mean that such events occur much more likely than might be expected by random chance alone. However, despite their high impacts, compound extremes are not, or only poorly covered in current risk analysis frameworks and policy agendas. Floods in particular, which are among the most dangerous and costly natural hazards, are rarely a function of just one driver. Rather, they often arise through the joint occurrence of different source mechanisms. This can include oceanographic drivers such as tides, storm surges, or waves, as well as hydrologic drivers such as rainfall runoff (pluvial) or river discharge (fluvial). Often, two or more of these flood drivers affect the same region and are correlated with each other, which needs to be accounted for in flood risk assessments. This presentation will briefly introduce the different types of compound flooding along with recent examples from around the globe where those high impact events led to substantial damages and loss of lives. A broad overview will be provided of existing statistical modelling tools to identify and simulate dependencies between flood drivers, for example when calculating joint probabilities. Finally, some of the most pressing challenges in developing improved strategies to assess and mitigate the risks of climatic compound extremes, and compound flooding in particular, will be discussed.
Floods of August and September 2004 in Eastern Ohio: FEMA Disaster Declaration 1556
Ebner, Andrew D.; Straub, David E.; Lageman, Jonathan D.
2008-01-01
A band of severe thunderstorms at the end of August 2004 and the passage of the remnants of Hurricanes Frances and Ivan during September 2004 caused severe flooding in eastern Ohio during August and September 2004. Record peak streamflow occurred at 12 U.S. Geological Survey (USGS) streamgages. Damages caused by the flooding produced by these storms were severe enough for 21 counties in eastern Ohio to be declared Federal disaster areas. In all, there were 4 storm- or flood-related deaths, 2,563 private structures damaged or destroyed, and an estimated $81 million in damages. This report describes the meteorological factors that resulted in severe flooding in eastern Ohio during August 27-September 27, 2004, and examines the damages caused by the storms and flooding. Peak-stage, peak-streamflow, and recurrence-interval data are reported for selected USGS streamgages. Flood profiles determined by the USGS are presented for selected streams.
Using Decision Support System to Find Suitable Sites for Groundwater Artificial Recharge
NASA Astrophysics Data System (ADS)
Ghasemian, D.; Winter, C. L.; Kheirkhah Zarkesh, M. M.; Moradi, H. R.
2014-12-01
Some parts of Iran are considered as one of the driest regions of the world, where water is a limiting factor for lasting life therefore using seasonal floodwaters is very important in these arid regions. On the other hand, special attention has been paid to artificial groundwater recharge in these regions. Floodwater spreading on the permeable terrain is one of the flood control and utilization methods. Determination of appropriate site for water spreading is one of the most important stages of this project. Parameters considered in the selection of groundwater artificial recharge locations are diverse and complex. These factors consist of earth sciences (geology, geomorphology and soils), hydrology (runoff, sediment yield, infiltration and groundwater conditions) and socio-economic aspects (irrigated agriculture, flood damage mitigation, environment, job creation and so on). Hence, decision making depends on criteria of diverse nature. The goal of this study is defining a Decision Support System for floodwater site selection in Shahriary area. Four main criteria were selected in this research which are floodwater characters, infiltration, water applications and flood damage. In order to determine the weight of factors, Analytical Hierarchy Process was used. The results showed that soil texture and floodwater volume of infiltration are the most important factors. After providing output maps which had been defined in five scenarios, Kappa Index was used to evaluate the model. Based on the obtained results, the maps showed an acceptable agreement with control zones.
The framework of a UAS-aided flash flood modeling system for coastal regions
NASA Astrophysics Data System (ADS)
Zhang, H.; Xu, H.
2016-02-01
Flash floods cause severe economic damage and are one of the leading causes of fatalities connected with natural disasters in the Gulf Coast region. Current flash flood modeling systems rely on empirical hydrological models driven by precipitation estimates only. Although precipitation is the driving factor for flash floods, soil moisture, urban drainage system and impervious surface have been recognized to have significant impacts on the development of flash floods. We propose a new flash flooding modeling system that integrates 3-D hydrological simulation with satellite and multi-UAS observations. It will have three advantages over existing modeling systems. First, it will incorporate 1-km soil moisture data through integrating satellite images from European SMOS mission and NASA's SMAP mission. The utilization of high-resolution satellite images will provide essential information to determine antecedent soil moisture condition, which is an essential control on flood generation. Second, this system is able to adjust flood forecasting based on real-time inundation information collected by multi-UAS. A group of UAS will be deployed during storm events to capture the changing extent of flooded areas and water depth at multiple critical locations simultaneously. Such information will be transmitted to a hydrological model to validate and improve flood simulation. Third, the backbone of this system is a state-of-the-art 3-D hydrological model that assimilates the hydrological information from satellites and multi-UAS. The model is able to address surface water-groundwater interactions and reflect the effects of various infrastructures. Using Web-GIS technologies, the modeling results will be available online as interactive flood maps accessible to the public. To support the development and verification of this modeling system, surface and subsurface hydrological observations will be conducted in a number of small watersheds in the Coastal Bend region. We envision this system will provide an innovative means to benefit the forecasting, evaluation and mitigation of flash floods in costal regions.
Flash flood characterisation of the Haor area of Bangladesh
NASA Astrophysics Data System (ADS)
Bhattacharya, B.; Suman, A.
2012-04-01
Haors are large bowl-shaped flood plain depressions located mostly in north-eastern part of Bangladesh covering about 25% of the entire region. During dry season haors are used for agriculture and during rainy season it is used as fisheries. Haors have profound ecological importance. About 8000 migratory wild birds visit the area annually. Some of the haors are declared at Ramsar sites. Haors are frequently affected by the flash floods due to hilly topography and steep slope of the rivers draining the area. These flash floods spill onto low-lying flood plain lands in the region, inundating crops, damaging infrastructure by erosion and often causing loss of lives and properties. Climate change is exacerbating the situation. For appropriate risk mitigation mechanism it is necessary to explore flood characteristics of that region. The area is not at all studied well. Under a current project a numerical 1D2D model based on MIKE Flood is developed to study the flooding characteristics and estimate the climate change impacts on the haor region. Under this study the progression of flood levels at some key haors in relation to the water level data at specified gauges in the region is analysed. As the region is at the border with India so comparing with the gauges at the border with India is carried out. The flooding in the Haor area is associated with the rainfall in the upstream catchment in India (Meghalaya, Barak and Tripura basins in India). The flood propagation in some of the identified haors in relation to meteorological forcing in the three basins in India is analysed as well. Subsequently, a ranking of haors is done based on individual risks. Based on the IPCC recommendation the precipitation scenario in the upstream catchments under climate change is considered. The study provides the fundamental inputs for preparing a flood risk management plan of the region.
44 CFR 60.12 - Flood plain management criteria for State-owned properties in special hazard areas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.12 Flood plain management criteria for State-owned properties in... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood plain management...
44 CFR 60.12 - Flood plain management criteria for State-owned properties in special hazard areas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.12 Flood plain management criteria for State-owned properties in... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood plain management...
44 CFR 60.12 - Flood plain management criteria for State-owned properties in special hazard areas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.12 Flood plain management criteria for State-owned properties in... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood plain management...
44 CFR 60.12 - Flood plain management criteria for State-owned properties in special hazard areas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.12 Flood plain management criteria for State-owned properties in... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plain management...
44 CFR 60.12 - Flood plain management criteria for State-owned properties in special hazard areas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.12 Flood plain management criteria for State-owned properties in... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood plain management...
Assessment of flood risk in Tokyo metropolitan area
NASA Astrophysics Data System (ADS)
Hirano, J.; Dairaku, K.
2013-12-01
Flood is one of the most significant natural hazards in Japan. The Tokyo metropolitan area has been affected by several large flood disasters. Therefore, investigating potential flood risk in Tokyo metropolitan area is important for development of adaptation strategy for future climate change. We aim to develop a method for evaluating flood risk in Tokyo Metropolitan area by considering effect of historical land use and land cover change, socio-economic change, and climatic change. Ministry of land, infrastructure, transport and tourism in Japan published 'Statistics of flood', which contains data for flood causes, number of damaged houses, area of wetted surface, and total amount of damage for each flood at small municipal level. By using these flood data, we estimated damage by inundation inside a levee for each prefecture based on a statistical method. On the basis of estimated damage, we developed flood risk curves in the Tokyo metropolitan area, representing relationship between damage and exceedance probability of flood for the period 1976-2008 for each prefecture. Based on the flood risk curve, we attempted evaluate potential flood risk in the Tokyo metropolitan area and clarify the cause for regional difference of flood risk. By analyzing flood risk curves, we found out regional differences of flood risk. We identified high flood risk in Tokyo and Saitama prefecture. On the other hand, flood risk was relatively low in Ibaraki and Chiba prefecture. We found that these regional differences of flood risk can be attributed to spatial distribution of entire property value and ratio of damaged housing units in each prefecture.We also attempted to evaluate influence of climate change on potential flood risk by considering variation of precipitation amount and precipitation intensity in the Tokyo metropolitan area. Results shows that we can evaluate potential impact of precipitation change on flood risk with high accuracy by using our methodology. Acknowledgments This study is conducted as part of the research subject "Vulnerability and Adaptation to Climate Change in Water Hazard Assessed Using Regional Climate Scenarios in the Tokyo Region' (National Research Institute for Earth Science and Disaster Prevention; PI: Koji Dairaku) of Research Program on Climate Change Adaptation (RECCA) and was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan
Uncorrected land-use planning highlighted by flooding: the Alba case study (Piedmont, Italy)
NASA Astrophysics Data System (ADS)
Luino, F.; Turconi, L.; Petrea, C.; Nigrelli, G.
2012-07-01
Alba is a town of over 30 000 inhabitants located along the Tanaro River (Piedmont, northwestern Italy) and is famous for its wine and white truffles. Many important industries and companies are based in Alba, including the famous confectionery group Ferrero. The town suffered considerably from a flood that occurred on 5-6 November 1994. Forty-eight percent of the urban area was inundated, causing severe damage and killing nine people. After the flood, the Alba area was analysed in detail to determine the reasons for its vulnerability. Information on serious floods in this area since 1800 was gathered from official records, state technical office reports, unpublished documents in the municipal archives, and articles published in local and national newspapers. Maps, plans and aerial photographs (since 1954) were examined to reconstruct Alba's urban development over the last two centuries and the planform changes of the Tanaro River. The results were compared with the effects of the November 1994 flood, which was mapped from aerial photographs taken immediately after the flood, field surveys and eyewitness reports. The territory of Alba was subdivided into six categories: residential; public service; industrial, commercial and hotels; sports areas, utilities and standards (public gardens, parks, athletics grounds, private and public sport clubs); aggregate plants and dumps; and agriculture and riverine strip. The six categories were then grouped into three classes with different flooding-vulnerability levels according to various parameters. Using GIS, the three river corridors along the Tanaro identified by the Autorità di Bacino del Fiume Po were overlaid on the three classes to produce a final map of the risk areas. This study shows that the historic floods and their dynamics have not been duly considered in the land-use planning of Alba. The zones that were most heavily damaged in the 1994 flood were those that were frequently affected in the past and sites of more recent urbanisation. Despite recurrent severe flooding of the Tanaro River and its tributaries, areas along the riverbed and its paleochannels have been increasingly used for infrastructure and building (e.g., roads, a municipal dump, a prison, natural aggregate plants, a nomad camp), which has often interfered with the natural spread of the floodwaters. Since the 1994 flood, many remedial projects have been completed along the Tanaro and its tributaries, including levees, bank protection, concrete walls and floodway channels. In spite of these costly projects, some areas remain at high risk for flooding. The method used, which considered historical data, river corridors identified by hydraulic calculations, geomorphological aspects and land-use planning, can indicate with good accuracy flood-prone areas and in consequence to be an useful tool for the coherent planning of urban expansion and the mitigation of flood risk.
44 CFR 61.14 - Standard Flood Insurance Policy Interpretations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.14 Standard Flood Insurance Policy Interpretations. (a... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Standard Flood Insurance...
44 CFR 61.14 - Standard Flood Insurance Policy Interpretations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.14 Standard Flood Insurance Policy Interpretations. (a... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Standard Flood Insurance...
44 CFR 67.5 - Right of appeal.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD... community where a proposed flood elevation determination has been made pursuant to section 1363 of the National Flood Insurance Act of 1968, as amended, who believes his property rights to be adversely affected...
44 CFR 59.2 - Description of program.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program GENERAL PROVISIONS General § 59.2 Description of program. (a) The National Flood Insurance Act of 1968 was enacted by title... previously unavailable flood insurance protection to property owners in flood-prone areas. Mudslide (as...
44 CFR 59.2 - Description of program.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program GENERAL PROVISIONS General § 59.2 Description of program. (a) The National Flood Insurance Act of 1968 was enacted by title... previously unavailable flood insurance protection to property owners in flood-prone areas. Mudslide (as...
44 CFR 59.2 - Description of program.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program GENERAL PROVISIONS General § 59.2 Description of program. (a) The National Flood Insurance Act of 1968 was enacted by title... previously unavailable flood insurance protection to property owners in flood-prone areas. Mudslide (as...
44 CFR 60.7 - Revisions of criteria for flood plain management regulations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations...
44 CFR 60.7 - Revisions of criteria for flood plain management regulations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations...
44 CFR 60.7 - Revisions of criteria for flood plain management regulations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations...
44 CFR 59.2 - Description of program.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program GENERAL PROVISIONS General § 59.2 Description of program. (a) The National Flood Insurance Act of 1968 was enacted by title... previously unavailable flood insurance protection to property owners in flood-prone areas. Mudslide (as...
44 CFR 61.14 - Standard Flood Insurance Policy Interpretations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.14 Standard Flood Insurance Policy Interpretations. (a... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Standard Flood Insurance...
44 CFR 60.7 - Revisions of criteria for flood plain management regulations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations...
44 CFR 67.5 - Right of appeal.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD... community where a proposed flood elevation determination has been made pursuant to section 1363 of the National Flood Insurance Act of 1968, as amended, who believes his property rights to be adversely affected...
44 CFR 61.14 - Standard Flood Insurance Policy Interpretations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.14 Standard Flood Insurance Policy Interpretations. (a... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Standard Flood Insurance...
44 CFR 61.14 - Standard Flood Insurance Policy Interpretations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.14 Standard Flood Insurance Policy Interpretations. (a... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Standard Flood Insurance...
NASA Astrophysics Data System (ADS)
Wang, Wei; Lu, Hui; Ruby Leung, L.; Li, Hong-Yi; Zhao, Jianshi; Tian, Fuqiang; Yang, Kun; Sothea, Khem
2017-10-01
Water resources management, in particular flood control, in the Lancang-Mekong River Basin (LMRB) faces two key challenges in the 21st century: climate change and dam construction. A large-scale distributed Geomorphology-Based Hydrological Model coupled with a simple reservoir regulation model (GBHM-LMK-SOP) is used to investigate the relative effects of climate change and dam construction on the flood characteristics in the LMRB. Results suggest an increase in both flood magnitude and frequency under climate change, which is more severe in the upstream basin and increases over time. However, stream regulation by dam reduces flood risk consistently throughout this century, with more obvious effects in the upstream basin where larger reservoirs will be located. The flood mitigation effect of dam regulation dominates over the flood intensification effect of climate change before 2060, but the latter emerges more prominently after 2060 and dominates the flood risk especially in the lower basin.
Towards a Flood Severity Index
NASA Astrophysics Data System (ADS)
Kettner, A.; Chong, A.; Prades, L.; Brakenridge, G. R.; Muir, S.; Amparore, A.; Slayback, D. A.; Poungprom, R.
2017-12-01
Flooding is the most common natural hazard worldwide, affecting 21 million people every year. In the immediate moments following a flood event, humanitarian actors like the World Food Program need to make rapid decisions ( 72 hrs) on how to prioritize affected areas impacted by such an event. For other natural disasters like hurricanes/cyclones and earthquakes, there are industry-recognized standards on how the impacted areas are to be classified. Shake maps, quantifying peak ground motion, from for example the US Geological Survey are widely used for assessing earthquakes. Similarly, cyclones are tracked by Joint Typhoon Warning Center (JTWC) and Global Disaster Alert and Coordination System (GDACS) who release storm nodes and tracks (forecasted and actual), with wind buffers and classify the event according to the Saffir-Simpson Hurricane Wind Scale. For floods, the community is usually able to acquire unclassified data of the flood extent as identified from satellite imagery. Most often no water discharge hydrograph is available to classify the event into recurrence intervals simply because there is no gauging station, or the gauging station was unable to record the maximum discharge due to overtopping or flood damage. So, the question remains: How do we methodically turn a flooded area into classified areas of different gradations of impact? Here, we present a first approach towards developing a global applicable flood severity index. The flood severity index is set up such that it considers relatively easily obtainable physical parameters in a short period of time like: flood frequency (relating the current flood to historical events) and magnitude, as well as land cover, slope, and where available pre-event simulated flood depth. The scale includes categories ranging from very minor flooding to catastrophic flooding. We test and evaluate the postulated classification scheme against a set of past flood events. Once a severity category is determined, socio-economic data, such as population density, infrastructure, urbanization or equivalent information, is required for humanitarian actors to respond properly. In the end, expanded monitoring of floods, improved mitigation measures, but also effective communication of the severity of an event has the potential to reduce loss of life in future flood events.
NASA Astrophysics Data System (ADS)
Sidi, P.; Mamat, M.; Sukono; Supian, S.
2017-01-01
Floods have always occurred in the Citarum river basin. The adverse effects caused by floods can cover all their property, including the destruction of houses. The impact due to damage to residential buildings is usually not small. Indeed, each of flooding, the government and several social organizations providing funds to repair the building. But the donations are given very limited, so it cannot cover the entire cost of repair was necessary. The presence of insurance products for property damage caused by the floods is considered very important. However, if its presence is also considered necessary by the public or not? In this paper, the factors that affect the supply and demand of insurance product for damaged building due to floods are analyzed. The method used in this analysis is the ordinal logistic regression. Based on the analysis that the factors that affect the supply and demand of insurance product for damaged building due to floods, it is included: age, economic circumstances, family situations, insurance motivations, and lifestyle. Simultaneously that the factors affecting supply and demand of insurance product for damaged building due to floods mounted to 65.7%.
Analysis of the 2011 Mekong flood in Can Tho city
NASA Astrophysics Data System (ADS)
Do, Thi-Chinh; Bubeck, Philip; Nguyen, Viet-Dung; Kreibich, Heidi
2014-05-01
Floods in the Mekong delta occur on a recurring basis during the flood season from July to November, and regular inundations of large areas are a prerequisite for the livelihoods of about 17 million people in the Vietnamese delta. At the same time, large-scale flood events above usual water levels pose a serious hazard that repeatedly caused severe economic damage and losses of life in past decades. The flood event in 2011 in the Mekong Delta heavily impacted Can Tho City and caused substantial damage to various economic sectors. Data from face to face interviews with 480 flood-affected households and 378 small businesses were analysed to gain detailed insights into flood preparedness, early warning, emergency measures, flood impacts and recovery before, during and after the 2011 flood in Can Tho city. Amongst other things, the findings reveal that damage to households is high, often exceeding the amount of several months of income, despite a relatively high level of preparedness. In terms of small businesses, it is found that higher losses indeed occur due to the disruption of production processes compared with direct damage.
Urban flood risk mitigation: from vulnerability assessment to resilient city
NASA Astrophysics Data System (ADS)
Serre, D.; Barroca, B.
2009-04-01
Urban flood risk mitigation: from vulnerability assessment to resilient city Bruno Barroca1, Damien Serre2 1Laboratory of Urban Engineering, Environment and Building (L G U E H) - Université de Marne-la-Vallée - Pôle Ville, 5, Bd Descartes - Bâtiment Lavoisier - 77454 Marne la Vallée Cedex 2 - France 2City of Paris Engineering School, Construction - Environment Department, 15 rue Fénelon, 75010 Paris, France In France, as in Europe and more generally throughout the world, river floods have been increasing in frequency and severity over the last ten years, and there are more instances of rivers bursting their banks, aggravating the impact of the flooding of areas supposedly protected by flood defenses. Despite efforts made to well maintain the flood defense assets, we often observe flood defense failures leading to finally increase flood risk in protected area during major flood events. Furthermore, flood forecasting models, although they benefit continuous improvements, remain partly inaccurate due to uncertainties populated all along data calculation processes. These circumstances obliged stakeholders and the scientific communities to manage flood risk by integrating new concepts like stakes management, vulnerability assessments and more recently urban resilience development. Definitively, the goal is to reduce flood risk by managing of course flood defenses and improving flood forecasting models, but also stakes and vulnerability of flooded areas to achieve urban resilience face to flood events. Vulnerability to flood is essentially concentrated in urban areas. Assessing vulnerability of a city is very difficult. Indeed, urban area is a complex system composed by a sum of technical sub-systems as complex as the urban area itself. Assessing city vulnerability consists in talking into account each sub system vulnerability and integrating all direct and indirect impacts generally depending from city shape and city spatial organization. At this time, although some research activities have been undertaken, there are no specific methods and tools to assess flood vulnerability at the scale of the city. Indeed, by studying literature we can list some vulnerability indicators and a few Geographic Information System (GIS) tools. But generally indicators and GIS are not developed specifically at the city scale: often a regional scale is used. Analyzing vulnerability at this scale needs more accurate and formalized indicators and GIS tools. The second limit of existing GIS is temporal: even if vulnerability could be assessed and localized through GIS, such tools cannot assist city managers in their decision to efficiency recover after a severe flood event. Due to scale and temporal limits, methods and tools available to assess urban vulnerability need large improvements. Talking into account all these considerations and limits, our research is focusing on: • vulnerability indicators design; • recovery scenarios design; • GIS for city vulnerability assessment and recovery scenarios. Dealing with vulnerability indicators, the goal is to design a set of indicators of city sub systems. Sub systems are seen like assets of high value and complex and interdependent infrastructure networks (i.e. power supplies, communications, water, transport etc.). The infrastructure networks are critical for the continuity of economic activities as well as for the people's basic living needs. Their availability is also required for fast and effective recovery after flood disasters. The severity of flood damage therefore largely depends on the degree that both high value assets and critical urban infrastructure are affected, either directly or indirectly. To face the challenge of designing indicators, a functional model of the city system (and sub systems) has to be built to analyze the system response to flood solicitation. Then, a coherent and an efficient set of vulnerability of indicators could be built up. With such methods city stakeholders will be informed on how and how much their systems are vulnerable. It is a first level of information that has to be completed to become a real decision making tool. Indeed, we have seen that major floods cause almost always failures in the flood defense system. So potentially the city could face a flood event and managers recovery works. Knowing the vulnerability of the city, direct and indirect impacts, how can managers optimize recovery actions? Our research will focus first on proposing recovery scenarios based on the city system and second on vulnerability indicators to first limit damages during floods and to speed up recovery actions. At last, a GIS will be developed to assist stakeholders to take spatial measures to reduce city system weakness before a flood event and to help them to decide on how to optimize recovery actions after a flood event. Dealing with these two temporal scales will allow obtaining more flood resilient cities.
Flood risk assessment and mapping for the Lebanese watersheds
NASA Astrophysics Data System (ADS)
Abdallah, Chadi; Hdeib, Rouya
2016-04-01
Of all natural disasters, floods affect the greatest number of people worldwide and have the greatest potential to cause damage. Nowadays, with the emerging global warming phenomenon, this number is expected to increase. The Eastern Mediterranean area, including Lebanon (10452 Km2, 4.5 M habitant), has witnessed in the past few decades an increase frequency of flooding events. This study profoundly assess the flood risk over Lebanon covering all the 17 major watersheds and a number of small sub-catchments. It evaluate the physical direct tangible damages caused by floods. The risk assessment and evaluation process was carried out over three stages; i) Evaluating Assets at Risk, where the areas and assets vulnerable to flooding are identified, ii) Vulnerability Assessment, where the causes of vulnerability are assessed and the value of the assets are provided, iii) Risk Assessment, where damage functions are established and the consequent damages of flooding are estimated. A detailed Land CoverUse map was prepared at a scale of 1/ 1 000 using 0.4 m resolution satellite images within the flood hazard zones. The detailed field verification enabled to allocate and characterize all elements at risk, identify hotspots, interview local witnesses, and to correlate and calibrate previous flood damages with the utilized models. All filed gathered information was collected through Mobile Application and transformed to be standardized and classified under GIS environment. Consequently; the general damage evaluation and risk maps at different flood recurrence periods (10, 50, 100 years) were established. Major results showed that floods in a winter season (December, January, and February) of 10 year recurrence and of water retention ranging from 1 to 3 days can cause total damages (losses) that reach 1.14 M for crop lands and 2.30 M for green houses. Whereas, it may cause 0.2 M to losses in fruit trees for a flood retention ranging from 3 to 5 days. These numbers differs according to the flooding season, cultivation type and the agro-climatic zone. The flood damage equivalence to constructions summed up to reach 32 M for residential structures, 29 M for non-residential structures, and 5 M for the Syrian refugees tents, while structures' content losses were estimated at 27M, 54M, 7 M respectively for the same flood frequency. The total length of affected road networks during flooding is 1589km with an estimated cost of 565M. The total number of affected population reached 82,000 while the number of effected vehicles is 62,000 for a 50year recurrence period
Cigrand, Charles V.
2018-03-26
The U.S. Geological Survey (USGS) in cooperation with the city of West Branch and the Herbert Hoover National Historic Site of the National Park Service assessed flood-mitigation scenarios within the West Branch Wapsinonoc Creek watershed. The scenarios are intended to demonstrate several means of decreasing peak streamflows and improving the conveyance of overbank flows from the West Branch Wapsinonoc Creek and its tributary Hoover Creek where they flow through the city and the Herbert Hoover National Historic Site located within the city.Hydrologic and hydraulic models of the watershed were constructed to assess the flood-mitigation scenarios. To accomplish this, the models used the U.S. Army Corps of Engineers Hydrologic Engineering Center-Hydrologic Modeling System (HEC–HMS) version 4.2 to simulate the amount of runoff and streamflow produced from single rain events. The Hydrologic Engineering Center-River Analysis System (HEC–RAS) version 5.0 was then used to construct an unsteady-state model that may be used for routing streamflows, mapping areas that may be inundated during floods, and simulating the effects of different measures taken to decrease the effects of floods on people and infrastructure.Both models were calibrated to three historic rainfall events that produced peak streamflows ranging between the 2-year and 10-year flood-frequency recurrence intervals at the USGS streamgage (05464942) on Hoover Creek. The historic rainfall events were calibrated by using data from two USGS streamgages along with surveyed high-water marks from one of the events. The calibrated HEC–HMS model was then used to simulate streamflows from design rainfall events of 24-hour duration ranging from a 20-percent to a 1-percent annual exceedance probability. These simulated streamflows were incorporated into the HEC–RAS model.The unsteady-state HEC–RAS model was calibrated to represent existing conditions within the watershed. HEC–RAS model simulations with the existing conditions and streamflows from the design rainfall events were then done to serve as a baseline for evaluating flood-mitigation scenarios. After these simulations were completed, three different flood-mitigation scenarios were developed with HEC–RAS: a detention-storage scenario, a conveyance improvement scenario, and a combination of both. In the detention-storage scenario, four in-channel detention structures were placed upstream from the city of West Branch to attenuate peak streamflows. To investigate possible improvements to conveying floodwaters through the city of West Branch, a section of abandoned railroad embankment and an old truss bridge were removed in the model, because these structures were producing backwater areas during flooding events. The third scenario combines the detention and conveyance scenarios so their joint efficiency could be evaluated. The scenarios with the design rainfall events were run in the HEC–RAS model so their flood-mitigation effects could be analyzed across a wide range of flood magnitudes.
NASA Astrophysics Data System (ADS)
Khazai, Bijan; Bessel, Tina; Möhrle, Stella; Dittrich, André; Schröter, Kai; Mühr, Bernhard; Elmer, Florian; Kunz-Plapp, Tina; Trieselmann, Werner; Kunz, Michael
2014-05-01
Within its current research activity on near real time Forensic Disaster Analysis (FDA), researchers from the Center for Disaster Management and Risk Reduction Technology (CEDIM) aim to identify major risk drivers and to understand the root causes of disaster and infer the implications for disaster mitigation. A key component of this activity is the development of rapid assessment tools which allow for a science based estimate of disaster impacts. The central European flood in June 2013 caused in Germany severe damage to buildings, infrastructure and agricultural lands and has had a great impact on people, transportation and the economy. In many areas thousands of people were evacuated. Electrical grid and local water supply utilities failed during the floods. Furthermore, traffic was disrupted in the interregional transportation network including federal highways and long distance railways. CEDIM analysed the impact and management of the flood event within an FDA activity. An analysis on the amount and spatial distribution of flood-related Twitter messages in Germany revealed a high interest in the flood in the social media. Furthermore, an analysis of the resilience of selected affected areas in Germany has been carried out to assess the impact of the flood on the district level. The resilience indicator is based on social, economic and institutional indicators which are supplemented with information on the number of people evacuated and transportation disruptions. Combined with the magnitude of the event, an index is calculated that allows for a rapid initial but preliminary estimate of the flood impact. Results show high resilience of the administrative districts along the Danube while heavy impacts are seen along the Mulde and Elbe.
NASA Astrophysics Data System (ADS)
Kontar, Y. Y.
2016-12-01
In Alaska and the Sakha Republic (Siberia), multiple communities are exposed to flooding every spring. A bilateral and multidisciplinary team was established, as part of the U.S. State Department FY2015-16 U.S.-Russia Peer-to-Peer Dialogue Initiative, to conduct the project Reducing Spring Flood Impacts for Wellbeing of Communities of the North. The project comprised community-based participatory research, education, and cultural activities that used flood sites in Alaska and Siberia as case studies. A diverse and bilateral team (community leaders, scientists, students, and emergency managers) was established to share experiences and identify best practices in mitigating the risk of and improving response to floods.This science-community collaboration has inspired a dialogue between present and future decision makers and community residents. Preliminary analysis revealed that community members in both regions are interested in collaborations with scientists to reduce flood risks and impacts. They are eager to share their experiences. However, scientists have to earn the trust of and develop a rapport with local leaders beforehand. Conflicts arise when communities perceive scientists as governmental representatives due to the fact that most scientific funds come from federal and state grants. Scientists are also held responsible for disasters, due to their roles in disaster forecasting and warnings. In both regions, impacted populations often blame the government for flood impacts; not unreasonably. Originally nomadic, native populations were forced to settle in floodplains by governments. Now, exposed to floods, they regard damage reimbursement as a predominantly governmental responsibility. Scientists can offer long-term solutions that would benefit communities at risk and governmental entities. However, it is important for scientists not to impose solutions, but instead initiate and maintain a dialogue about alternatives, especially as sensitive as relocation.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-01
... Investigation Study (Previously Advertised as the Skagit River Flood Damage Reduction Study), Skagit County, WA... advertised as the Skagit River Flood Damage Reduction Study), Skagit County, Washington. This extension will... Investigation Study (previously advertised as the Skagit River Flood Damage Reduction Study), Skagit County...
A dimension reduction method for flood compensation operation of multi-reservoir system
NASA Astrophysics Data System (ADS)
Jia, B.; Wu, S.; Fan, Z.
2017-12-01
Multiple reservoirs cooperation compensation operations coping with uncontrolled flood play vital role in real-time flood mitigation. This paper come up with a reservoir flood compensation operation index (ResFCOI), which formed by elements of flood control storage, flood inflow volume, flood transmission time and cooperation operations period, then establish a flood cooperation compensation operations model of multi-reservoir system, according to the ResFCOI to determine a computational order of each reservoir, and lastly the differential evolution algorithm is implemented for computing single reservoir flood compensation optimization in turn, so that a dimension reduction method is formed to reduce computational complexity. Shiguan River Basin with two large reservoirs and an extensive uncontrolled flood area, is used as a case study, results show that (a) reservoirs' flood discharges and the uncontrolled flood are superimposed at Jiangjiaji Station, while the formed flood peak flow is as small as possible; (b) cooperation compensation operations slightly increase in usage of flood storage capacity in reservoirs, when comparing to rule-based operations; (c) it takes 50 seconds in average when computing a cooperation compensation operations scheme. The dimension reduction method to guide flood compensation operations of multi-reservoir system, can make each reservoir adjust its flood discharge strategy dynamically according to the uncontrolled flood magnitude and pattern, so as to mitigate the downstream flood disaster.
NASA Astrophysics Data System (ADS)
Longo, Elisa; Tito Aronica, Giuseppe; Di Baldassarre, Giuliano; Mukolwe, Micah
2015-04-01
Flooding is one of the most impactful natural hazards. In particular, by looking at the data of damages from natural hazards in Europe collected in the International Disaster Database (EM-DAT) one can see a significant increase over the past four decades of both frequency of floods and associated economic damages. Similarly, dramatic trends are also found by analyzing other types of flood losses, such as the number of people affected by floods, homeless, injured or killed. To deal with the aforementioned increase of flood risk, more and more efforts are being made to promote integrated flood risk management, for instance, at the end of 2007, the European Community (EC) issued the Flood Directive (F.D.) 2007/60/EC. One of the major innovations was that the F.D. 2007/60/C requires Member State to carry out risk maps and then take appropriate measures to reduce the evaluated risk. The main goal of this research was to estimate flood damaging using a computer code based on a recently developed method (KULTURisk, www.kulturisk.eu) and to compare the estimated damage with the observed one. The study area was the municipality of Eilenburg, which in 2002 was subjected to a destructive flood event. Were produced flood damage maps with new procedures (e.g. KULTURisk) and compared the estimates with observed data. This study showed the possibility to extend the lesson learned with the Eilenburg case study in other similar contexts. The outcomes of this test provided interesting insights about the flood risk mapping, which are expected to contribute to raise awareness to the flooding issues,to plan (structural and/or non-structural) measures of flood risk reduction and to support better land-use and urban planning.
NASA Astrophysics Data System (ADS)
Grelot, Frédéric; Agenais, Anne-Laurence; Brémond, Pauline
2015-04-01
In France, since 2011, it is mandatory for local communities to conduct cost-benefit analysis (CBA) of their flood management projects, to make them eligible for financial support from the State. Meanwhile, as a support, the French Ministry in charge of Environment proposed a methodology to fulfill CBA. Like for many other countries, this methodology is based on the estimation of flood damage. However, existing models to estimate flood damage were judged not convenient for a national-wide use. As a consequence, the French Ministry in charge of Environment launched studies to develop damage models for different sectors, such as: residential sector, public infrastructures, agricultural sector, and commercial and industrial sector. In this presentation, we aim at presenting and discussing methodological choices of those damage models. They all share the same principle: no sufficient data from past events were available to build damage models on a statistical analysis, so modeling was based on expert knowledge. We will focus on the model built for agricultural activities and more precisely for agricultural lands. This model was based on feedback from 30 agricultural experts who experienced floods in their geographical areas. They were selected to have a representative experience of crops and flood conditions in France. The model is composed of: (i) damaging functions, which reveal physiological vulnerability of crops, (ii) action functions, which correspond to farmers' decision rules for carrying on crops after a flood, and (iii) economic agricultural data, which correspond to featured characteristics of crops in the geographical area where the flood management project studied takes place. The two first components are generic and the third one is specific to the area studied. It is, thus, possible to produce flood damage functions adapted to different agronomic and geographical contexts. In the end, the model was applied to obtain a pool of damage functions giving damage in euros by hectare for 14 agricultural lands categories. As a conclusion, we will discuss the validation step of the model. Although the model was validated by experts, we analyse how it could gain insight from comparison with past events.
NASA Astrophysics Data System (ADS)
Grelot, Frédéric; Agenais, Anne-Laurence; Brémond, Pauline
2014-05-01
In France, since 2011, it is mandatory for local communities to conduct cost-benefit analysis (CBA) of their flood management projects, to make them eligible for financial support from the State. Meanwhile, as a support, the French Ministry in charge of Environment proposed a methodology to fulfill CBA. Like for many other countries, this methodology is based on the estimation of flood damage. Howerver, existing models to estimate flood damage were judged not convenient for a national-wide use. As a consequence, the French Ministry in charge of Environment launched studies to develop damage models for different sectors, such as: residential sector, public infrastructures, agricultural sector, and commercial and industrial sector. In this presentation, we aim at presenting and discussing methodological choices of those damage models. They all share the same principle: no sufficient data from past events were available to build damage models on a statistical analysis, so modeling was based on expert knowledge. We will focus on the model built for agricultural activities and more precisely for agricultural lands. This model was based on feedback from 30 agricultural experts who experienced floods in their geographical areas. They were selected to have a representative experience of crops and flood conditions in France. The model is composed of: (i) damaging functions, which reveal physiological vulnerability of crops, (ii) action functions, which correspond to farmers' decision rules for carrying on crops after a flood, and (iii) economic agricultural data, which correspond to featured characteristics of crops in the geographical area where the flood management project studied takes place. The two first components are generic and the third one is specific to the area studied. It is, thus, possible to produce flood damage functions adapted to different agronomic and geographical contexts. In the end, the model was applied to obtain a pool of damage functions giving damage in euros by hectare for 14 agricultural lands categories. As a conclusion, we will discuss the validation step of the model. Although the model was validated by experts, we analyse how it could gain insight from comparison with past events.
Flood Losses Associated with Winter Storms in the U.S. Northeast
NASA Astrophysics Data System (ADS)
Ting, M.; Shimkus, C.
2015-12-01
Winter storms pose a number of hazards to coastal communities in the U.S. Northeast including heavy rain, snow, strong wind, cold temperatures, and flooding. These hazards can cause millions in property damages from one storm alone. This study addresses the impacts of winter storms from 2001 - 2012 on coastal counties in the U.S. Northeast and underscores the significant economic consequences extreme winter storms have on property. The analysis on the types of hazards (floods, strong wind, snow, etc.) and associated damage from the National Climatic Data Center Storm Events Database indicates that floods were responsible for the highest damages. This finding suggests that winter storm vulnerability could grow in the future as precipitation intensity increases and sea level rise exacerbate flood losses. Flood loss maps are constructed based on damage amount, which can be compared to the flood exposure maps constructed by the NOAA Office of Coastal Management. Interesting agreements and discrepancies exist between the two methods, which warrant further examination. Furthermore, flood losses often came from storms characterized as heavy precipitation storms and strong surge storms, and sometimes both, illustrating the compounding effect of flood risks in the region. While New Jersey counties experienced the most damage per unit area, there is no discernable connection between population density and damage amount, which suggests that societal impacts may rely less on population characteristics and more on infrastructure types and property values, which vary throughout the region.
44 CFR 60.24 - Planning considerations for flood-related erosion-prone areas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... flood-related erosion-prone areas. 60.24 Section 60.24 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Additional Considerations in Managing Flood-Prone...
44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Standard Flood Hazard... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.16 Standard Flood Hazard Determination...
44 CFR 61.13 - Standard Flood Insurance Policy.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.13 Standard Flood Insurance Policy. (a) Incorporation of forms. Each of the... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Standard Flood Insurance...
44 CFR 61.13 - Standard Flood Insurance Policy.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.13 Standard Flood Insurance Policy. (a) Incorporation of forms. Each of the... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Standard Flood Insurance...
44 CFR 59.22 - Prerequisites for the sale of flood insurance.
Code of Federal Regulations, 2013 CFR
2013-10-01
... flood insurance. 59.22 Section 59.22 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program GENERAL PROVISIONS Eligibility Requirements § 59.22 Prerequisites for the sale of flood insurance. (a) To...
44 CFR 61.13 - Standard Flood Insurance Policy.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.13 Standard Flood Insurance Policy. (a) Incorporation of forms. Each of the... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Standard Flood Insurance...
44 CFR 59.22 - Prerequisites for the sale of flood insurance.
Code of Federal Regulations, 2011 CFR
2011-10-01
... flood insurance. 59.22 Section 59.22 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program GENERAL PROVISIONS Eligibility Requirements § 59.22 Prerequisites for the sale of flood insurance. (a) To...
44 CFR 59.22 - Prerequisites for the sale of flood insurance.
Code of Federal Regulations, 2012 CFR
2012-10-01
... flood insurance. 59.22 Section 59.22 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program GENERAL PROVISIONS Eligibility Requirements § 59.22 Prerequisites for the sale of flood insurance. (a) To...
44 CFR 59.22 - Prerequisites for the sale of flood insurance.
Code of Federal Regulations, 2014 CFR
2014-10-01
... flood insurance. 59.22 Section 59.22 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program GENERAL PROVISIONS Eligibility Requirements § 59.22 Prerequisites for the sale of flood insurance. (a) To...
44 CFR 61.13 - Standard Flood Insurance Policy.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.13 Standard Flood Insurance Policy. (a) Incorporation of forms. Each of the... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Standard Flood Insurance...
Why near-miss events can decrease an individual's protective response to hurricanes.
Dillon, Robin L; Tinsley, Catherine H; Cronin, Matthew
2011-03-01
Prior research shows that when people perceive the risk of some hazardous event to be low, they are unlikely to engage in mitigation activities for the potential hazard. We believe one factor that can lower inappropriately (from a normative perspective) people's perception of the risk of a hazard is information about prior near-miss events. A near-miss occurs when an event (such as a hurricane), which had some nontrivial probability of ending in disaster (loss of life, property damage), does not because good fortune intervenes. People appear to mistake such good fortune as an indicator of resiliency. In our first study, people with near-miss information were less likely to purchase flood insurance, and this was shown for both participants from the general population and individuals with specific interests in risk and natural disasters. In our second study, we consider a different mitigation decision, that is, to evacuate from a hurricane, and vary the level of statistical probability of hurricane damage. We still found a strong effect for near-miss information. Our research thus shows how people who have experienced a similar situation but escape damage because of chance will make decisions consistent with a perception that the situation is less risky than those without the past experience. We end by discussing the implications for risk communication. © 2010 Society for Risk Analysis.
Use of Citizen Science and Social Media to Improve Wind Hazard and Damage Characterization
NASA Astrophysics Data System (ADS)
Lombardo, F.; Meidani, H.
2017-12-01
Windstorm losses are significant in the U.S. annually and cause damage worldwide. A large percentage of losses are caused by localized events (e.g., tornadoes). In order to better mitigate these losses improvement is needed in understanding the hazard characteristics and physical damage. However, due to the small-scale nature of these events the resolution of the dedicated measuring network does not capture most occurrences. As a result damage-based assessments are sometimes used to gauge intensity. These damage assessments often suffer from a lack of available manpower, inability to arrive at the scene rapidly and difficulty accessing a damaged site. The use and rapid dissemination of social media, the power of crowds engaged in scientific endeavors, and the public's awareness of their vulnerabilities point to a paradigm shift in how hazards can be sensed in a rapid manner. In this way, `human-sensor' data has the potential to radically improve fundamental understanding of hazard and disasters and resolve some of the existing challenges in wind hazard and damage characterization. Data from social media outlets such as Twitter have been used to aid in damage assessments from hazards such as flood and earthquake, however, the reliability and uncertainty of participatory sensing has been questioned and has been called the `biggest challenge' for its sustained use. This research proposes to investigate the efficacy of both citizen science applications and social media data to represent wind hazards and associated damage. Research has focused on a two-phase approach: 1) to have citizen scientists perform their own `damage survey' (i.e., questionnaire) with known damage to assess uncertainty in estimation and 2) downloading and analysis of social media text and imagery streams to ascertain the possibility of performing `unstructured damage surveys'. Early results have shown that the untrained public can estimate tornado damage levels in residential structures with some accuracy. In addition, valuable windstorm hazard and damage information in both text and imagery can be extracted and archived from Twitter in an automated fashion. Information extracted from these sources will feed into advances in hazard and disaster modeling, social-cognitive theories of human behavior and decision-making for hazard mitigation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Revision of flood insurance rate maps to reflect base flood elevations caused by proposed encroachments. 65.12 Section 65.12... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL...
44 CFR 63.4 - Property not covered.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.4 Property not covered. Benefits... the Standard Flood Insurance Policy (SFIP). ...
44 CFR 63.4 - Property not covered.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.4 Property not covered. Benefits... the Standard Flood Insurance Policy (SFIP). ...
44 CFR 63.4 - Property not covered.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.4 Property not covered. Benefits... the Standard Flood Insurance Policy (SFIP). ...
44 CFR 63.4 - Property not covered.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.4 Property not covered. Benefits... the Standard Flood Insurance Policy (SFIP). ...
44 CFR 63.4 - Property not covered.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.4 Property not covered. Benefits... the Standard Flood Insurance Policy (SFIP). ...
NASA Astrophysics Data System (ADS)
Koarai, M.; Okatani, T.; Nakano, T.; Nakamura, T.; Hasegawa, M.
2012-07-01
The great earthquake occurred in Tohoku District, Japan on 11th March, 2011. This earthquake is named "the 2011 off the Pacific coast of Tohoku Earthquake", and the damage by this earthquake is named "the Great East Japan Earthquake". About twenty thousand people were killed or lost by the tsunami of this earthquake, and large area was flooded and a large number of buildings were destroyed by the tsunami. The Geospatial Information Authority of Japan (GSI) has provided the data of tsunami flooded area interpreted from aerial photos taken just after the great earthquake. This is fundamental data of tsunami damage and very useful for consideration of reconstruction planning of tsunami damaged area. The authors analyzed the relationship among land use, landform classification, DEMs data flooded depth of the tsunami flooded area by the Great East Japan Earthquake in the Sendai Plain using GIS. Land use data is 100 meter grid data of National Land Information Data by the Ministry of Land, Infrastructure, Transportation and Tourism (MLIT). Landform classification data is vector data of Land Condition Map produced by GSI. DEMs data are 5 meters grid data measured with LiDAR by GSI after earthquake. Especially, the authors noticed the relationship between tsunami hazard damage and flooded depth. The authors divided tsunami damage into three categories by interpreting aerial photos; first is the completely destroyed area where almost wooden buildings were lost, second is the heavily damaged area where a large number of houses were destroyed by the tsunami, and third is the flooded only area where houses were less destroyed. The flooded depth was measured by photogrammetric method using digital image taken by Mobile Mapping System (MMS). The result of these geographic analyses show the distribution of tsunami damage level is as follows: 1) The completely destroyed area was located within 1km area from the coastline, flooded depth of this area is over 4m, and no relationship between damaged area and landform classification. 2) The heavily damaged area was observed up to 3 or 4km from the coastline. Flooded depth of this area is over 1.5m, and there is a good relationship between damaged area and height of DEMs. 3) The flood only area was observed up to 4 or 5km from the coastline. Flooded depth of this area was less than 1.5m, and there is a good relationship between damaged area and landform. For instance, a certain area in valley plain or flooded plain was not affected by the tsunami, even though an area with almost the same height in coastal plain or delta was flooded. These results mean that it is important for tsunami disaster management to consider not only DEMs but also landform classification.
44 CFR 60.5 - Flood plain management criteria for flood-related erosion-prone areas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood plain management criteria for flood-related erosion-prone areas. 60.5 Section 60.5 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION...
44 CFR 63.12 - Setback and community flood plain management requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.12... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Setback and community flood...
44 CFR 63.12 - Setback and community flood plain management requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.12... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Setback and community flood...
44 CFR 63.12 - Setback and community flood plain management requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.12... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Setback and community flood...
44 CFR 63.12 - Setback and community flood plain management requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.12... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Setback and community flood...
44 CFR 63.12 - Setback and community flood plain management requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.12... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Setback and community flood...
44 CFR 60.5 - Flood plain management criteria for flood-related erosion-prone areas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood plain management criteria for flood-related erosion-prone areas. 60.5 Section 60.5 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION...
NASA Astrophysics Data System (ADS)
Tootle, G. A.; Gutenson, J. L.; Zhu, L.; Ernest, A. N. S.; Oubeidillah, A.; Zhang, X.
2015-12-01
The National Flood Interoperability Experiment (NFIE) held June 3-July 17, 2015 at the National Water Center (NWC) in Tuscaloosa, Alabama sought to demonstrate an increase in flood predictive capacity for the coterminous United States (CONUS). Accordingly, NFIE-derived technologies and workflows offer the ability to forecast flood damage and economic consequence estimates that coincide with the hydrologic and hydraulic estimations these physics-based models generate. A model providing an accurate prediction of damage and economic consequences is a valuable asset when allocating funding for disaster response, recovery, and relief. Damage prediction and economic consequence assessment also offer an adaptation planning mechanism for defending particularly valuable or vulnerable structures. The NFIE, held at the NWC on The University of Alabama (UA) campus led to the development of this large scale flow and inundation forecasting framework. Currently, the system can produce 15-hour lead-time forecasts for the entire coterminous United States (CONUS). A concept which is anticipated to become operational as of May 2016 within the NWC. The processing of such a large-scale, fine resolution model is accomplished in a parallel computing environment using large supercomputing clusters. Traditionally, flood damage and economic consequence assessment is calculated in a desktop computing environment with a ménage of meteorology, hydrology, hydraulic, and damage assessment tools. In the United States, there are a range of these flood damage/ economic consequence assessment software's available to local, state, and federal emergency management agencies. Among the more commonly used and freely accessible models are the Hydrologic Engineering Center's Flood Damage Reduction Analysis (HEC-FDA), Flood Impact Assessment (HEC-FIA), and Federal Emergency Management Agency's (FEMA's) United States Multi-Hazard (Hazus-MH). All of which exist only in a desktop environment. With this, authors submit an initial framework for estimating damage and economic consequences to floods using flow and inundation products from the NFIE framework. This adaptive system utilizes existing nationwide datasets describing location and use of structures and can take assimilate a range of data resolutions.
Spatial Information in Support of 3D Flood Damage Assessment of Buildings at Micro Level: A Review
NASA Astrophysics Data System (ADS)
Amirebrahimi, S.; Rajabifard, A.; Sabri, S.; Mendis, P.
2016-10-01
Floods, as the most common and costliest natural disaster around the globe, have adverse impacts on buildings which are considered as major contributors to the overall economic damage. With emphasis on risk management methods for reducing the risks to structures and people, estimating damage from potential flood events becomes an important task for identifying and implementing the optimal flood risk-reduction solutions. While traditional Flood Damage Assessment (FDA) methods focus on simple representation of buildings for large-scale damage assessment purposes, recent emphasis on buildings' flood resilience resulted in development of a sophisticated method that allows for a detailed and effective damage evaluation at the scale of building and its components. In pursuit of finding the suitable spatial information model to satisfy the needs of implementing such frameworks, this article explores the technical developments for an effective representation of buildings, floods and other required information within the built environment. The search begins with the Geospatial domain and investigates the state-of-the-art and relevant developments from data point of view in this area. It is further extended to other relevant disciplines in the Architecture, Engineering and Construction domain (AEC/FM) and finally, even some overlapping areas between these domains are considered and explored.
NASA Astrophysics Data System (ADS)
Jetten, Victor; van Westen, Cees; Ettema, Janneke; van den Bout, Bastian
2016-04-01
Disaster Risk Management combines the effects of natural hazards in time and space, with elements at risk, such as ourselves, infrastructure or other elements that have a value in our society. The risk in this case is defined as the sum of potential consequences of one or more hazards and can be expressed as potential damages. Generally, we attempt to reduce risk by better risk management, such as increase of resilience, protection and spatial planning. Caribbean islands are hit by hurricanes and tropical storms with a frequency of 1 to 2 every 10 years, with devastating consequences in terms of flash floods and landslides. The islands basically consist of a central (volcanic) mountain range, with medium and small sized catchments radiating outward towards the ocean. The coastal zone is inhabited, while the ring road network is essential for functioning of the island. An example of a case study is given for the island of Saint Lucia. Recorded rainfall intensities during tropical storms of 12 rainfall stations surpass 200 mm/h, causing immediate flash floods. Very often however, sediment is a forgotten variable in flash flood management: protection and mitigation measures as well as spatial planning all focus on the hydrology, the extent and depth of flood water, and sometimes of flood velocities. With recent developments, the opensource model LISEM includes hydrology and runoff, flooding, and erosion, transport and deposition both in runoff, channel flow and flood waters. We will discuss the practical solutions we implemented in connecting slopes, river channels and floodplains in terms of water and sediment, and the strength and weaknesses we have encountered so far. Catchment analysis shows two main effects: on the one hand in almost all cases upstream flooding serves as a temporary water storage that prevents further damage downstream, while on the other hand, erosion upstream often blocks bridges and decreases channel storage downstream, which increases the flood potential considerably during the event, and if not cleared properly during the next event. To understand this it is essential to simulate the catchment as one integrated unit, study connectivity and sources and sinks. We will show how from these simulations, how sustainable hazard and risk reduction strategies can be derived. The example comes from the Worldbank technical assistance project CHARIM, that is currently conducted by the University of Twente (the Netherlands), University of Bristol, (UK) and the University of the West Indies (Trinidad and Tobago) in 4 Caribbean islands and Belize.
Boudaghpour, Siamak; Bagheri, Majid; Bagheri, Zahra
2014-01-01
High flood occurrences with large environmental damages have a growing trend in Iran. Dynamic movements of water during a flood cause different environmental damages in geographical areas with different characteristics such as topographic conditions. In general, environmental effects and damages caused by a flood in an area can be investigated from different points of view. The current essay is aiming at detecting environmental effects of flood occurrences in Halilrood catchment area of Kerman province in Iran using flood zone mapping techniques. The intended flood zone map was introduced in four steps. Steps 1 to 3 pave the way to calculate and estimate flood zone map in the understudy area while step 4 determines the estimation of environmental effects of flood occurrence. Based on our studies, wide range of accuracy for estimating the environmental effects of flood occurrence was introduced by using of flood zone mapping techniques. Moreover, it was identified that the existence of Jiroft dam in the study area can decrease flood zone from 260 hectares to 225 hectares and also it can decrease 20% of flood peak intensity. As a result, 14% of flood zone in the study area can be saved environmentally.
Floods of May and June 2004 in Central and Eastern Ohio: FEMA Disaster Declaration 1519
Ebner, Andrew D.; Straub, David E.; Lageman, Jonathan D.
2008-01-01
Several severe thunderstorms that passed through Ohio between May 17 and June 17, 2004, produced large amounts of rain in an already wet central and eastern Ohio, resulting in flooding in this region from May 18 to June 21, 2004. Record peak streamflow occurred at three U.S. Geological Survey (USGS) streamgages. Damages caused by the flooding resulting from these storms were severe enough that 25 counties in central and eastern Ohio were declared Federal disaster areas. In all, there were two storm- or flood-related deaths, 3,529 private structures damaged or destroyed, and an estimated $43 million in damages. This report describes the meteorological factors that resulted in severe flooding in central and eastern Ohio between May 18 and June 21, 2004, and addresses the damages caused by the storms and flooding. Peak-stage, peak-streamflow, and recurrence-interval data are reported for selected USGS streamgages. Flood profiles determined by the USGS are presented for selected streams.