Science.gov

Sample records for flood monitoring system

  1. GSM & web-based flood monitoring system

    NASA Astrophysics Data System (ADS)

    Pagatpat, J. C.; Arellano, A. C.; Gerasta, O. J.

    2015-06-01

    The purpose of this project is to develop a local real-time river flood monitoring and warning system for the selected communities near MandulogRiver. This study focuses only on the detection and early warning alert system (via website and/or cell phone text messages) that alerts local subscribers of potential flood events. Furthermore, this system is interactive wherein all non-registered subscribers could inquire the actual water level of the desired area location they want to monitor. An estimated time a particular river waterway will overflow is also included in the analyses. The hardware used in the design is split into several parts namely: the water level detector, GSM module, and microcontroller development board.

  2. Development of a global flood monitoring system using ATMS data

    NASA Astrophysics Data System (ADS)

    Temimi, M.; Tesfagiorgis, K. B.; Lacava, T.; Khanbilvardi, R.

    2013-12-01

    The objective of this study is to develop an operational global flood monitoring system using NPP-ATMS microwave brightness temperature measurements. The operational tool is based on a microwave-based soil wetness index (SWI). Swath-wise brightness temperatures (BT) of ATMS 89 GHz and 23 GHz channels are routinely downloaded from NOAA's CLASS. Each swath data is resampled to a regular grid of 35 km by 35 km using the nearest neighborhood technique to produce daily global brightness temperature maps. Global values of SWI are calculated using the difference in BT between the 89 and 23 GHz channels. Using these daily SWI values, we implemented the Robust Satellite Technique (RST) to calculate the Soil Wetness Variational Index (SWVI) which is dependent on the mean and standard deviation of SWIs of the same months of previous years using ATMS data. These SWVI values are influenced by changes in surface conditions. The determined mean and standard deviation values of SWI that were used to estimate the SWVI were determined on a monthly basis to mitigate the impact of the seasonal variation of the vegetation cover and surface conditions on the microwave signal. The determined SWVI using ATMS data showed significant sensitivity to inundation and allows for capturing changes in wet areas (inundation, flooding or very wet surface) across the globe. Snow and ice on the ground were masked out using a threshold-based approach that uses microwave brightness temperature observations. The advantage of the new ATMS sensor with respect to the older AMSU sensor that has similar channels consists of narrower orbit gaps and better spatial coverage and resolution. We nevertheless adapted the developed tool to AMSU data to investigate time series of inundation records across the globe since 2002. The obtained maps were verified against historical flood events in Australia and other parts of the world. Relationship between determined inundation and measured discharge was analyzed. A

  3. Developing a flood monitoring system from remotely sensed data for the Limpopo basin

    USGS Publications Warehouse

    Asante, K.O.; Macuacua, R.D.; Artan, G.A.; Lietzow, R.W.; Verdin, J.P.

    2007-01-01

    This paper describes the application of remotely sensed precipitation to the monitoring of floods in a region that regularly experiences extreme precipitation and flood events, often associated with cyclonic systems. Precipitation data, which are derived from spaceborne radar aboard the National Aeronautics and Space Administration's Tropical Rainfall Measuring Mission and from National Oceanic and Atmospheric Administration's infrared-based products, are used to monitor areas experiencing extreme precipitation events that are defined as exceedance of a daily mean areal average value of 50 mm over a catchment. The remotely sensed precipitation data are also ingested into a hydrologic model that is parameterized using spatially distributed elevation, soil, and land cover data sets that are available globally from remote sensing and in situ sources. The resulting stream-flow is classified as an extreme flood event when flow anomalies exceed 1.5 standard deviations above the short-term mean. In an application in the Limpopo basin, it is demonstrated that the use of satellite-derived precipitation allows for the identification of extreme precipitation and flood events, both in terms of relative intensity and spatial extent. The system is used by water authorities in Mozambique to proactively initiate independent flood hazard verification before generating flood warnings. The system also serves as a supplementary information source when in situ gauging systems are disrupted. This paper concludes that remotely sensed precipitation and derived products greatly enhance the ability of water managers in the Limpopo basin to monitor extreme flood events and provide at-risk communities with early warning information. ?? 2007 IEEE.

  4. A conceptual framework for space-borne flood detection/monitoring system

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Adler, R.; Huffman, G.; Negri, A.

    2006-05-01

    Floods account for the largest number of natural disasters and affect more people than any other types of natural disasters in many regions of the world. Heavy rainfall is the primary causative factor for floods in many temperate and tropical regions across the world. Advances in flood monitoring/forecasting have been constrained by the difficulty of estimating rainfall continuously over space (catchment-, national-, continental-, or even global-scale areas) and time (daily to hourly). In many countries around the world, satellite-based precipitation estimation may be the best source of rainfall data due to insufficient hydrometeorological networks, long delays in data transmission and absence of data sharing in many trans-boundary river basins. In this presentation, a conceptual framework for utilizing space-borne data sets in testing of global flood detection/monitoring systems is proposed to evaluate options and implement a first-cut (prototype) macro- scale flood detection algorithm. Three major components included in this framework are 1) NASA TRMM- based Multi-satellite Precipitation Analysis (TMPA), a state-of-the-art quasi-global precipitation at fine time and space scales (3-hr, 0.25¢X × 0.25¢X latitude¡Vlongitude) over the latitude band 50¢XN-S; 2) land surface characteristics: elevation aggregated from a 30 arc-second digital elevation model (DEM) of the world, DEM- based derivatives of hydrologic parameters (flow direction, flow accumulation, slope, basin, river network etc.); 3) a spatially distributed rainfall-runoff model to generate surface runoff and route excess precipitation from upper stream to outlet. This framework is evaluated with several flooding events worldwide. It is planned that this preliminary work will lead to wide interdisciplinary efforts and multi-agency collaboration to improve existing regional decision support systems, leading to a near real-time space-borne flood detection/monitoring/forecasting system for disaster

  5. Further Evaluation of a Satellite-based Real-time Global Flood Monitoring System

    NASA Astrophysics Data System (ADS)

    Wu, H.; Adler, R. F.; Tian, Y.; Hong, Y.; Policelli, F.

    2011-12-01

    A real-time global flood monitoring system (GFMS) driven by Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) rainfall was further developed with a relatively more physically based hydrological model. The performance in flood detection of this new version of the GFMS was evaluated against available flood event archives (Wu et al, 2011). This new GFMS is quantitatively evaluated in terms of flood event detection during the TRMM era (1998-2010) using a global retrospective simulation (3-hourly and 1/8 degree spatial resolution) with the TMPA 3B42V6 rainfall. Four methods were explored to define flood events from the model results, including three percentile-based statistic methods and a Log Pearson-III flood frequency curve method. The evaluation showed the GFMS detection performance improves with longer flood durations and larger affected areas. The impact of dams was detected in the validation statistics. The presence of dams tends to result in more false alarms and false alarm duration. The GFMS statistics for flood durations > 3 days and for areas without dams vary across the four identification methods, but center around a POD of ~ 0.70 and a FAR of ~ 0.65. When both flood events-based categorical verification metrics and flood duration metrics are considered, a method using the 95th percentile runoff depth plus two parameters related to variability and basin size (method 3) may be more suitable for application to our routine, real-time flood calculations. The evaluation showed the GFMS detection performance improves with longer flood durations and larger affected areas. The new GFMS (operationally available at http://trmm.gsfc.nasa.gov/) improved not only the flood detection performance, but also in the presentation of flood evolution (start, development and recession) in the drainage network. The new GFMS is further evaluated with more quantitative flood properties including flood peak timing, peak stage, peak volumes

  6. Best Practice for Rainfall Measurement, Torrential Flood Monitoring and Real Time Alerting System in Serbia

    NASA Astrophysics Data System (ADS)

    Stefanovic, Milutin; Milojevic, Mileta; Zlatanovic, Nikola

    2014-05-01

    Serbia occupies 88.000 km2 and its confined zone menaced with torrent flood occupies 50.000km2. Floods on large rivers and torrents are the most frequent natural disasters in Serbia. This is the result of a geographic position and relief of Serbia. Therefore, defense from these natural disasters has been institutionalized since the 19th century. Through its specialized bodies and public companies, the State organized defense from floods on large rivers and protection of international and other main roads. The Topčiderska River is one of a number of rivers in Serbia that is a threat to both urban and rural environments. In this text, general characteristics of this river will be illustrated, as well as the historical natural hazards that have occurred in the part of Belgrade near Topčiderska River. Belgrade is the capital of Serbia, its political, administrative and financial center, which means that there are significant financial capacities and human resources for investments in all sectors, and specially in the water resources sector. Along the Topčiderska catchment there are many industrial, traffic and residential structures that are in danger of floods and flood protection is more difficult with rapid high flows. The goal is to use monitoring on the Topčiderska River basin to set up a modern system for monitoring in real time and forecast of torrential floods. This paper represents a system of remote detection and monitoring of torrential floods and rain measurements in real time on Topciderka river and ready for a quick response.

  7. A Real-Time Measurement System for Long-Life Flood Monitoring and Warning Applications

    PubMed Central

    Marin-Perez, Rafael; García-Pintado, Javier; Gómez, Antonio Skarmeta

    2012-01-01

    A flood warning system incorporates telemetered rainfall and flow/water level data measured at various locations in the catchment area. Real-time accurate data collection is required for this use, and sensor networks improve the system capabilities. However, existing sensor nodes struggle to satisfy the hydrological requirements in terms of autonomy, sensor hardware compatibility, reliability and long-range communication. We describe the design and development of a real-time measurement system for flood monitoring, and its deployment in a flash-flood prone 650 km2 semiarid watershed in Southern Spain. A developed low-power and long-range communication device, so-called DatalogV1, provides automatic data gathering and reliable transmission. DatalogV1 incorporates self-monitoring for adapting measurement schedules for consumption management and to capture events of interest. Two tests are used to assess the success of the development. The results show an autonomous and robust monitoring system for long-term collection of water level data in many sparse locations during flood events. PMID:22666028

  8. A Fully Automated Multi-Scale Flood Monitoring System Based On MODIS And TerraSAR-X Data

    NASA Astrophysics Data System (ADS)

    Martinis, Sandro; Kersten, Jens; Twele, Andre; Eberle, Jonas; Strobl, Christian; Stein, Enrico

    2013-12-01

    In this contribution, a fully automated multi-scale flood monitoring system is presented. The monitoring component of the system systematically detects the extent of inundations on a continental scale with medium spatial resolution using daily acquired data of the Moderate Resolution Imaging Spectroradiometer (MODIS). In case a user-defined threshold for flooded areas over an area of interest has been reached, the crisis component of the system is triggered to derive flood information at higher spatial detail using a Synthetic Aperture Radar (SAR) based satellite mission (TerraSAR-X). The automatic processing chains of both components include data pre-processing, computation and adaption of global auxiliary data, thematic classification and a subsequent dissemination of flood maps using an interactive web-client. The performance of the flood monitoring system is demonstrated for a flood event in Russia in May 2013.

  9. Visual Sensing for Urban Flood Monitoring.

    PubMed

    Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han

    2015-08-14

    With the increasing climatic extremes, the frequency and severity of urban flood events have intensified worldwide. In this study, image-based automated monitoring of flood formation and analyses of water level fluctuation were proposed as value-added intelligent sensing applications to turn a passive monitoring camera into a visual sensor. Combined with the proposed visual sensing method, traditional hydrological monitoring cameras have the ability to sense and analyze the local situation of flood events. This can solve the current problem that image-based flood monitoring heavily relies on continuous manned monitoring. Conventional sensing networks can only offer one-dimensional physical parameters measured by gauge sensors, whereas visual sensors can acquire dynamic image information of monitored sites and provide disaster prevention agencies with actual field information for decision-making to relieve flood hazards. The visual sensing method established in this study provides spatiotemporal information that can be used for automated remote analysis for monitoring urban floods. This paper focuses on the determination of flood formation based on image-processing techniques. The experimental results suggest that the visual sensing approach may be a reliable way for determining the water fluctuation and measuring its elevation and flood intrusion with respect to real-world coordinates. The performance of the proposed method has been confirmed; it has the capability to monitor and analyze the flood status, and therefore, it can serve as an active flood warning system.

  10. Visual Sensing for Urban Flood Monitoring.

    PubMed

    Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han

    2015-01-01

    With the increasing climatic extremes, the frequency and severity of urban flood events have intensified worldwide. In this study, image-based automated monitoring of flood formation and analyses of water level fluctuation were proposed as value-added intelligent sensing applications to turn a passive monitoring camera into a visual sensor. Combined with the proposed visual sensing method, traditional hydrological monitoring cameras have the ability to sense and analyze the local situation of flood events. This can solve the current problem that image-based flood monitoring heavily relies on continuous manned monitoring. Conventional sensing networks can only offer one-dimensional physical parameters measured by gauge sensors, whereas visual sensors can acquire dynamic image information of monitored sites and provide disaster prevention agencies with actual field information for decision-making to relieve flood hazards. The visual sensing method established in this study provides spatiotemporal information that can be used for automated remote analysis for monitoring urban floods. This paper focuses on the determination of flood formation based on image-processing techniques. The experimental results suggest that the visual sensing approach may be a reliable way for determining the water fluctuation and measuring its elevation and flood intrusion with respect to real-world coordinates. The performance of the proposed method has been confirmed; it has the capability to monitor and analyze the flood status, and therefore, it can serve as an active flood warning system. PMID:26287201

  11. Visual Sensing for Urban Flood Monitoring

    PubMed Central

    Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han

    2015-01-01

    With the increasing climatic extremes, the frequency and severity of urban flood events have intensified worldwide. In this study, image-based automated monitoring of flood formation and analyses of water level fluctuation were proposed as value-added intelligent sensing applications to turn a passive monitoring camera into a visual sensor. Combined with the proposed visual sensing method, traditional hydrological monitoring cameras have the ability to sense and analyze the local situation of flood events. This can solve the current problem that image-based flood monitoring heavily relies on continuous manned monitoring. Conventional sensing networks can only offer one-dimensional physical parameters measured by gauge sensors, whereas visual sensors can acquire dynamic image information of monitored sites and provide disaster prevention agencies with actual field information for decision-making to relieve flood hazards. The visual sensing method established in this study provides spatiotemporal information that can be used for automated remote analysis for monitoring urban floods. This paper focuses on the determination of flood formation based on image-processing techniques. The experimental results suggest that the visual sensing approach may be a reliable way for determining the water fluctuation and measuring its elevation and flood intrusion with respect to real-world coordinates. The performance of the proposed method has been confirmed; it has the capability to monitor and analyze the flood status, and therefore, it can serve as an active flood warning system. PMID:26287201

  12. Development of Hydrometeorological Monitoring and Forecasting as AN Essential Component of the Early Flood Warning System:

    NASA Astrophysics Data System (ADS)

    Manukalo, V.

    2012-12-01

    Defining issue The river inundations are the most common and destructive natural hazards in Ukraine. Among non-structural flood management and protection measures a creation of the Early Flood Warning System is extremely important to be able to timely recognize dangerous situations in the flood-prone areas. Hydrometeorological information and forecasts are a core importance in this system. The primary factors affecting reliability and a lead - time of forecasts include: accuracy, speed and reliability with which real - time data are collected. The existing individual conception of monitoring and forecasting resulted in a need in reconsideration of the concept of integrated monitoring and forecasting approach - from "sensors to database and forecasters". Result presentation The Project: "Development of Flood Monitoring and Forecasting in the Ukrainian part of the Dniester River Basin" is presented. The project is developed by the Ukrainian Hydrometeorological Service in a conjunction with the Water Management Agency and the Energy Company "Ukrhydroenergo". The implementation of the Project is funded by the Ukrainian Government and the World Bank. The author is nominated as the responsible person for coordination of activity of organizations involved in the Project. The term of the Project implementation: 2012 - 2014. The principal objectives of the Project are: a) designing integrated automatic hydrometeorological measurement network (including using remote sensing technologies); b) hydrometeorological GIS database construction and coupling with electronic maps for flood risk assessment; c) interface-construction classic numerical database -GIS and with satellite images, and radar data collection; d) providing the real-time data dissemination from observation points to forecasting centers; e) developing hydrometeoroogical forecasting methods; f) providing a flood hazards risk assessment for different temporal and spatial scales; g) providing a dissemination of

  13. Flood Monitoring and Early Warning System: The Integration of Inundated Areas Extraction Tool

    NASA Astrophysics Data System (ADS)

    Limlahapun, Ponthip; Fukui, Hiromichi

    This paper examines a satellite images processing system with a mechanism for detecting the inundated areas and supporting to flood monitoring and warning. The interoperable handling system is established in order to freely access the inundated areas with no defensive barrier by the software operability limitations. The ultimate goal of this effort is to bring awareness of the potentially catastrophic occurrence that can be pre-detected and prevented altogether. The development of the algorithm to extract the inundated areas and convey urgent messages during the time of crisis is performed on a user-friendly web based interface. A careful examination of various locations on LANDSAT images yields promising results. Although the size of images is limited by the available bandwidth of the web based application, processing at 4000*4000*3 bands per image takes approximately 3 minutes. This is a significant improvement over currently available methods for inundated detection systems. Additional benefits include software operation cost saving, and reduction of operational expenses and time. Furthermore, it does not require technical expertise to predict the rise of flood disasters.

  14. Global and Regional Real-time Systems for Flood and Drought Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Gourley, J. J.; Xue, X.; Flamig, Z.

    2015-12-01

    A Hydrometeorological Extreme Mapping and Prediction System (HyXtreme-MaP), initially built upon the Coupled Routing and Excess STorage (CREST) distributed hydrological model, is driven by real-time quasi-global TRMM/GPM satellites and by the US Multi-Radar Multi-Sensor (MRMS) radar network with dual-polarimetric upgrade to simulate streamflow, actual ET, soil moisture and other hydrologic variables at 1/8th degree resolution quasi-globally (http://eos.ou.edu) and at 250-meter 2.5-mintue resolution over the Continental United States (CONUS: http://flash.ou.edu).­ Multifaceted and collaborative by-design, this end-to-end research framework aims to not only integrate data, models, and applications but also brings people together (i.e., NOAA, NASA, University researchers, and end-users). This presentation will review the progresses, challenges and opportunities of such HyXTREME-MaP System used to monitor global floods and droughts, and also to predict flash floods over the CONUS.

  15. Towards an automated SAR-based flood monitoring system: Lessons learned from two case studies

    NASA Astrophysics Data System (ADS)

    Matgen, P.; Hostache, R.; Schumann, G.; Pfister, L.; Hoffmann, L.; Savenije, H. H. G.

    2011-01-01

    This paper aims at contributing to the elaboration of new concepts for an efficient and standardized Synthetic Aperture Radar (SAR) based monitoring of floods. Algorithms that enable an automatic delineation of flooded areas are an essential component of any SAR-based monitoring service but are to date quasi non-existent. Here we propose a hybrid methodology, which combines radiometric thresholding and region growing as an approach enabling the automatic, objective and reliable flood extent extraction from SAR images. The method relies on the calibration of a statistical distribution of ‘open water’ backscatter values inferred from SAR images of floods. A radiometric thresholding provides the seed region for a subsequent region growing process. Change detection is included as an additional step that limits over-detection of inundated areas. Two variants of the proposed flood extraction algorithm (with and without integration of reference images) are tested against four state-of-the-art benchmark methods. The methods are evaluated through two case studies: the July 2007 flood of the Severn river (UK) and the February 1997 flood of the Red river (US). Our trial cases show that considering a reference pre- or post-flood image gives the same performance as optimized manual approaches. This encouraging result indicates that the proposed method may indeed outperform all manual approaches if no training data are available and the parameters associated with these methods are determined in a non-optimal way. The results further demonstrate the algorithm’s potential for accurately processing data from different SAR sensors.

  16. Development of flood monitoring system using satellite data and geographic information system

    NASA Astrophysics Data System (ADS)

    Park, Kyungwon; Jang, Sangmin; Lee, Seongkyu; Yoon, Sunkwon; Shin, Yongchul

    2016-04-01

    The natural disaster of heavy rainfall and Typhoon are increased damage of property and human life in urban area with the impact of climate change. Therefore the accurate observation and short-term forecast of heavy rainfall by satellite is very important for reduce damage from severe storms and Typhoon. This study develops a method for precipitation retrieval algorithm and rain/no rain cloud classification system using Korea geostationary satellite images and GPM(Global Precipitation Mission) DPR(Dual Precipitation Radar) and GMI(GPM Microwave Imager) sensors. The new algorithm used to validation compared with ground station and radar data for Busan city flood case at August 25, 2014.

  17. Applications of TRMM-based Multi-Satellite Precipitation Estimation for Global Runoff Simulation: Prototyping a Global Flood Monitoring System

    NASA Technical Reports Server (NTRS)

    Hong, Yang; Adler, Robert F.; Huffman, George J.; Pierce, Harold

    2008-01-01

    Advances in flood monitoring/forecasting have been constrained by the difficulty in estimating rainfall continuously over space (catchment-, national-, continental-, or even global-scale areas) and flood-relevant time scale. With the recent availability of satellite rainfall estimates at fine time and space resolution, this paper describes a prototype research framework for global flood monitoring by combining real-time satellite observations with a database of global terrestrial characteristics through a hydrologically relevant modeling scheme. Four major components included in the framework are (1) real-time precipitation input from NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA); (2) a central geospatial database to preprocess the land surface characteristics: water divides, slopes, soils, land use, flow directions, flow accumulation, drainage network etc.; (3) a modified distributed hydrological model to convert rainfall to runoff and route the flow through the stream network in order to predict the timing and severity of the flood wave, and (4) an open-access web interface to quickly disseminate flood alerts for potential decision-making. Retrospective simulations for 1998-2006 demonstrate that the Global Flood Monitor (GFM) system performs consistently at both station and catchment levels. The GFM website (experimental version) has been running at near real-time in an effort to offer a cost-effective solution to the ultimate challenge of building natural disaster early warning systems for the data-sparse regions of the world. The interactive GFM website shows close-up maps of the flood risks overlaid on topography/population or integrated with the Google-Earth visualization tool. One additional capability, which extends forecast lead-time by assimilating QPF into the GFM, also will be implemented in the future.

  18. Flood monitoring network in southeastern Louisiana

    USGS Publications Warehouse

    McCallum, Brian E.

    1994-01-01

    A flood monitoring network has been established to alert emergency operations personnel and the public about hydrologic conditions in the Amite River Basin. The U.S. Geological Survey (USGS), in cooperation with the Louisiana Office of Emergency Preparedness (LOEP), has installed a real-time data acquisition system to monitor rainfall and river stages in the basin. These data will be transmitted for use by emergency operations personnel to develop flood control and evacuation strategies. The current river stages at selected gaging stations in the basin also will be broadcast by local television and radio stations during a flood. Residents can record the changing river stages on a basin monitoring map, similar to a hurricane tracking map.

  19. A global, real-time flood monitoring model

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2014-07-01

    Floods kill thousands of people and cause billions of dollars in damage each year, and many floods occur in areas of the world that lack resources for flood monitoring and forecasting systems. Wu et al. report on an experimental real-time global flood monitoring system that employs a widely used land surface model coupled with a hierarchical dominant river tracing-based runoff routing model and satellite-based precipitation data to provide streamflow and flood detection/estimation information over most of the globe every 3 hours.

  20. Fibre Bragg grating for flood embankment monitoring

    NASA Astrophysics Data System (ADS)

    Markowski, Konrad; Nevar, Stanislau; Dworzanski, Adam; Hackiewicz, Krzysztof; Jedrzejewski, Kazimierz

    2014-11-01

    In this article we present the preliminary studies for the flood embankment monitoring system based on the fibre Bragg gratings. The idea of the system is presented. The Bragg resonance shift is transformed to the change of the power detected by the standard InGaAs photodiode. The discrimination of the received power was executed by another fibre Bragg grating with different parameters. The project of the fully functional system is presented as well.

  1. Somerset County Flood Information System

    USGS Publications Warehouse

    Hoppe, Heidi L.

    2007-01-01

    The timely warning of a flood is crucial to the protection of lives and property. One has only to recall the floods of August 2, 1973, September 16 and 17, 1999, and April 16, 2007, in Somerset County, New Jersey, in which lives were lost and major property damage occurred, to realize how costly, especially in terms of human life, an unexpected flood can be. Accurate forecasts and warnings cannot be made, however, without detailed information about precipitation and streamflow in the drainage basin. Since the mid 1960's, the National Weather Service (NWS) has been able to forecast flooding on larger streams in Somerset County, such as the Raritan and Millstone Rivers. Flooding on smaller streams in urban areas was more difficult to predict. In response to this problem the NWS, in cooperation with the Green Brook Flood Control Commission, installed a precipitation gage in North Plainfield, and two flash-flood alarms, one on Green Brook at Seeley Mills and one on Stony Brook at Watchung, in the early 1970's. In 1978, New Jersey's first countywide flood-warning system was installed by the U.S. Geological Survey (USGS) in Somerset County. This system consisted of a network of eight stage and discharge gages equipped with precipitation gages linked by telephone telemetry and eight auxiliary precipitation gages. The gages were installed throughout the county to collect precipitation and runoff data that could be used to improve flood-monitoring capabilities and flood-frequency estimates. Recognizing the need for more detailed hydrologic information for Somerset County, the USGS, in cooperation with Somerset County, designed and installed the Somerset County Flood Information System (SCFIS) in 1990. This system is part of a statewide network of stream gages, precipitation gages, weather stations, and tide gages that collect data in real time. The data provided by the SCFIS improve the flood forecasting ability of the NWS and aid Somerset County and municipal agencies in

  2. Dynamic computing resource allocation in online flood monitoring and prediction

    NASA Astrophysics Data System (ADS)

    Kuchar, S.; Podhoranyi, M.; Vavrik, R.; Portero, A.

    2016-08-01

    This paper presents tools and methodologies for dynamic allocation of high performance computing resources during operation of the Floreon+ online flood monitoring and prediction system. The resource allocation is done throughout the execution of supported simulations to meet the required service quality levels for system operation. It also ensures flexible reactions to changing weather and flood situations, as it is not economically feasible to operate online flood monitoring systems in the full performance mode during non-flood seasons. Different service quality levels are therefore described for different flooding scenarios, and the runtime manager controls them by allocating only minimal resources currently expected to meet the deadlines. Finally, an experiment covering all presented aspects of computing resource allocation in rainfall-runoff and Monte Carlo uncertainty simulation is performed for the area of the Moravian-Silesian region in the Czech Republic.

  3. Hydrometeorological network for flood monitoring and modeling

    NASA Astrophysics Data System (ADS)

    Efstratiadis, Andreas; Koussis, Antonis D.; Lykoudis, Spyros; Koukouvinos, Antonis; Christofides, Antonis; Karavokiros, George; Kappos, Nikos; Mamassis, Nikos; Koutsoyiannis, Demetris

    2013-08-01

    Due to its highly fragmented geomorphology, Greece comprises hundreds of small- to medium-size hydrological basins, in which often the terrain is fairly steep and the streamflow regime ephemeral. These are typically affected by flash floods, occasionally causing severe damages. Yet, the vast majority of them lack flow-gauging infrastructure providing systematic hydrometric data at fine time scales. This has obvious impacts on the quality and reliability of flood studies, which typically use simplistic approaches for ungauged basins that do not consider local peculiarities in sufficient detail. In order to provide a consistent framework for flood design and to ensure realistic predictions of the flood risk -a key issue of the 2007/60/EC Directive- it is essential to improve the monitoring infrastructures by taking advantage of modern technologies for remote control and data management. In this context and in the research project DEUCALION, we have recently installed and are operating, in four pilot river basins, a telemetry-based hydro-meteorological network that comprises automatic stations and is linked to and supported by relevant software. The hydrometric stations measure stage, using 50-kHz ultrasonic pulses or piezometric sensors, or both stage (piezometric) and velocity via acoustic Doppler radar; all measurements are being temperature-corrected. The meteorological stations record air temperature, pressure, relative humidity, wind speed and direction, and precipitation. Data transfer is made via GPRS or mobile telephony modems. The monitoring network is supported by a web-based application for storage, visualization and management of geographical and hydro-meteorological data (ENHYDRIS), a software tool for data analysis and processing (HYDROGNOMON), as well as an advanced model for flood simulation (HYDROGEIOS). The recorded hydro-meteorological observations are accessible over the Internet through the www-application. The system is operational and its

  4. Urban Flood Warning Systems using Radar Technologies

    NASA Astrophysics Data System (ADS)

    Fang, N.; Bedient, P. B.

    2013-12-01

    There have been an increasing number of urban areas that rely on weather radars to provide accurate precipitation information for flood warning purposes. As non-structural tools, radar-based flood warning systems can provide accurate and timely warnings to the public and private entities in urban areas that are prone to flash floods. The wider spatial and temporal coverage from radar increases flood warning lead-time when compared to rain and stream gages alone. The Third Generation Rice and Texas Medical Center (TMC) Flood Alert System (FAS3) has been delivering warning information with 2 to 3 hours of lead time and a R2 value of 93% to facility personnel in a readily understood format for more than 50 events in the past 15 years. The current FAS utilizes NEXRAD Level II radar rainfall data coupled with a real-time hydrologic model (RTHEC-1) to deliver warning information. The system has a user-friendly dashboard to provide rainfall maps, Google Maps based inundation maps, hydrologic predictions, and real-time monitoring at the bayou. This paper will evaluate its reliable performance during the recent events occurring in 2012 and 2013 and the development of a similar radar-based flood warning system for the City of Sugar Land, Texas. Having a significant role in the communication of flood information, FAS marks an important step towards the establishment of an operational and reliable flood warning system for flood-prone urban areas.

  5. Unmanned aerial monitoring of fluvial changes in the vicinity of selected gauges of the Local System for Flood Monitoring in Klodzko County, SW Poland

    NASA Astrophysics Data System (ADS)

    Jeziorska, Justyna; Witek, Matylda; Niedzielski, Tomasz

    2013-04-01

    Only high resolution spatial data enable precise measurements of various morphometric characteristics of river channels and ensure meaningful effects of research into fluvial changes. Using ground-based measurement tools is time-consuming and expensive. Traditional photogrammetry often does not reach a desired resolution, and the technology is cost effective only for the large-area coverage. The present research introduces potentials of UAV (Unmanned Aerial Vehicle) for monitoring fluvial changes. Observations were carried out with the ultralight UAV swinglet CAM produced by senseFly. This lightweight (0,5 kg), small (wingspan: 80 cm) aircraft allowed frequent (with approximately monthly sampling resolution) and low-cost missions. Three hydrologic gauges, the surroundings of which were the target of series of photos taken by camera placed in airplane frame, belong to the Local System for Flood Monitoring in Kłodzko County (SW Poland). The only way of obtaining reliable results is an appropriate image rectification, in order to measure morphometric characteristics of terrain, free of geometrical deformations induced by the topographical relief, the tilt of the camera axis and the distortion of the optics. Commercially available software for the production of digital orthophotos and digital surface models (DSMs) from a range of uncalibrated oblique and vertical aerial images was successfully used to achieve this aim. As a result of completing the above procedure 9 orthophotos were generated (one for each of 3 study areas during 3 missions). For extraction of terrain parameters, a DSM was produced as a result of bundle block adjustment. Both products reached ultra-high resolution of 4cm/px. Various fluvial forms were classified and recognized, and a few time series of maps from each study area were compared in order to detect potential changes within the fluvial system. We inferred on the origins of the short-term responses of fluvial systems, and such an inference

  6. On the reliable use of satellite-derived surface water products for global flood monitoring

    NASA Astrophysics Data System (ADS)

    Hirpa, F. A.; Revilla-Romero, B.; Thielen, J.; Salamon, P.; Brakenridge, R.; Pappenberger, F.; de Groeve, T.

    2015-12-01

    Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response management. To this end, real-time flood forecasting and satellite-based detection systems have been developed at global scale. However, due to the limited availability of up-to-date ground observations, the reliability of these systems for real-time applications have not been assessed in large parts of the globe. In this study, we performed comparative evaluations of the commonly used satellite-based global flood detections and operational flood forecasting system using 10 major flood cases reported over three years (2012-2014). Specially, we assessed the flood detection capabilities of the near real-time global flood maps from the Global Flood Detection System (GFDS), and from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the operational forecasts from the Global Flood Awareness System (GloFAS) for the major flood events recorded in global flood databases. We present the evaluation results of the global flood detection and forecasting systems in terms of correctly indicating the reported flood events and highlight the exiting limitations of each system. Finally, we propose possible ways forward to improve the reliability of large scale flood monitoring tools.

  7. Development of Integrated Flood Analysis System for Improving Flood Mitigation Capabilities in Korea

    NASA Astrophysics Data System (ADS)

    Moon, Young-Il; Kim, Jong-suk

    2016-04-01

    Recently, the needs of people are growing for a more safety life and secure homeland from unexpected natural disasters. Flood damages have been recorded every year and those damages are greater than the annual average of 2 trillion won since 2000 in Korea. It has been increased in casualties and property damages due to flooding caused by hydrometeorlogical extremes according to climate change. Although the importance of flooding situation is emerging rapidly, studies related to development of integrated management system for reducing floods are insufficient in Korea. In addition, it is difficult to effectively reduce floods without developing integrated operation system taking into account of sewage pipe network configuration with the river level. Since the floods result in increasing damages to infrastructure, as well as life and property, structural and non-structural measures should be urgently established in order to effectively reduce the flood. Therefore, in this study, we developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting for supporting synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information in Korea. Keywords: Flooding, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011686022015)" Rural Development Administration, Republic of Korea

  8. Flood monitoring for ungauged rivers: the power of combining space-based monitoring and global forecasting models

    NASA Astrophysics Data System (ADS)

    Revilla-Romero, Beatriz; Netgeka, Victor; Raynaud, Damien; Thielen, Jutta

    2013-04-01

    Flood warning systems typically rely on forecasts from national meteorological services and in-situ observations from hydrological gauging stations. This capacity is not equally developed in flood-prone developing countries. Low-cost satellite monitoring systems and global flood forecasting systems can be an alternative source of information for national flood authorities. The Global Flood Awareness System (GloFAS) has been develop jointly with the European Centre for Medium-Range Weather Forecast (ECMWF) and the Joint Research Centre, and it is running quasi operational now since June 2011. The system couples state-of-the art weather forecasts with a hydrological model driven at a continental scale. The system provides downstream countries with information on upstream river conditions as well as continental and global overviews. In its test phase, this global forecast system provides probabilities for large transnational river flooding at the global scale up to 30 days in advance. It has shown its real-life potential for the first time during the flood in Southeast Asia in 2011, and more recently during the floods in Australia in March 2012, India (Assam, September-October 2012) and Chad Floods (August-October 2012).The Joint Research Centre is working on further research and development, rigorous testing and adaptations of the system to create an operational tool for decision makers, including national and regional water authorities, water resource managers, hydropower companies, civil protection and first line responders, and international humanitarian aid organizations. Currently efforts are being made to link GloFAS to the Global Flood Detection System (GFDS). GFDS is a Space-based river gauging and flood monitoring system using passive microwave remote sensing which was developed by a collaboration between the JRC and Dartmouth Flood Observatory. GFDS provides flood alerts based on daily water surface change measurements from space. Alerts are shown on a

  9. Initial Results in Global Flood Monitoring Using GPM Data

    NASA Astrophysics Data System (ADS)

    Wu, H.; Adler, R. F.

    2015-12-01

    The Global Flood Monitoring System (GFMS) (http://flood.umd.edu) has been developed and used to provide real-time flood detection and streamflow estimates over the last few years with significant success shown by validation against global flood event data sets and observed streamflow variations. It has become a tool for various national and international organizations to appraise flood conditions in various areas, including where rainfall and hydrology information is limited. The GFMS has been using the TRMM Multi-satellite Precipitation Analysis (TMPA) as its main rainfall input. Now, with the advent of NASA's Global Precipitation Measurement (GPM) mission there is an opportunity to significantly improve global flood monitoring and forecasting. GPM's Integrated Multi-satellitE Retrievals for GPM (IMERG) multi-satellite product is designed to take advantage of various technical advances in the field and combine that with an efficient processing system producing "early" (6 hrs) and "late" (16 hrs) products for operational use. The products are also more uniform in results than TMPA among the various satellites going into the analysis and available at finer time and space resolutions. On the road to replacing TMPA with the IMERG in the operational version of the GFMS parallel systems were run for periods to understand the impact of the new type of data on the streamflow and flood estimates. Results of this comparison are the basis for this presentation. It is expected that an improvement will be noted both in the accuracy of the precipitation estimates and a smoother transition in and out of heavy rain events, helping to reduce "shock" in the hydrology model. The finer spatial resolution should also help in this regard. The GFMS will be initially run at its primary resolution of 1/8th degree latitude/longitude with both data sets to isolate the impact of the rain information change. Other aspects will also be examined, including higher latitude events, where GPM

  10. European Flood Awareness System - now operational

    NASA Astrophysics Data System (ADS)

    Alionte Eklund, Cristina.; Hazlinger, Michal; Sprokkereef, Eric; Garcia Padilla, Mercedes; Garcia, Rafael J.; Thielen, Jutta; Salamon, Peter; Pappenberger, Florian

    2013-04-01

    The European Commission's Communication "Towards a Stronger European Union Disaster Response" adopted and endorsed by the Council in 2010, underpins the importance of strengthening concerted actions for natural disasters including floods, which are amongst the costliest natural disasters in the EU. The European Flood Awareness System (EFAS) contributes in the case of major flood events. to better protection of the European Citizen, the environment, property and cultural heritage. The disastrous floods in Elbe and Danube rivers in 2002 confronted the European Commission with non-coherent flood warning information from different sources and of variable quality, complicating planning and organisation of aid. Thus, the Commission initiated the development of a European Flood Awareness System (EFAS) which is now going operational. EFAS has been developed and tested at the Joint Research Centre, the Commission's in house science service, in close collaboration with the National hydrological and meteorological services, European Civil Protection through the Monitoring and Information Centre (MIC) and other research institutes. EFAS provides Pan-European overview maps of flood probabilities up to 10 days in advance as well as detailed forecasts at stations where the National services are providing real time data. More than 30 hydrological services and civil protection services in Europe are part of the EFAS network. Since 2011, EFAS is part of the COPERNICUS Emergency Management Service, (EMS) and is now an operational service since 2012. The Operational EFAS is being executed by several consortia dealing with different operational aspects: • EFAS Hydrological data collection centre —REDIAM and ELIMCO- will be collecting historic and realtime discharge and water levels data in support to EFAS • EFAS Meteorological data collection centre —outsourced but running onsite of JRC Ispra. Will be collecting historic and realtime meteorological data in support to EFAS

  11. A New Approach to Monitoring Coastal Marshes for Persistent Flooding

    NASA Astrophysics Data System (ADS)

    Kalcic, M. T.; Underwood, L. W.; Fletcher, R. M.

    2012-12-01

    Many areas in coastal Louisiana are below sea level and protected from flooding by a system of natural and man-made levees. Flooding is common when the levees are overtopped by storm surge or rising rivers. Many levees in this region are further stressed by erosion and subsidence. The floodwaters can become constricted by levees and trapped, causing prolonged inundation. Vegetative communities in coastal regions, from fresh swamp forest to saline marsh, can be negatively affected by inundation and changes in salinity. As saltwater persists, it can have a toxic effect upon marsh vegetation causing die off and conversion to open water types, destroying valuable species habitats. The length of time the water persists and the average annual salinity are important variables in modeling habitat switching (cover type change). Marsh type habitat switching affects fish, shellfish, and wildlife inhabitants, and can affect the regional ecosystem and economy. There are numerous restoration and revitalization projects underway in the coastal region, and their effects on the entire ecosystem need to be understood. For these reasons, monitoring persistent saltwater intrusion and inundation is important. For this study, persistent flooding in Louisiana coastal marshes was mapped using MODIS (Moderate Resolution Imaging Spectroradiometer) time series of a Normalized Difference Water Index (NDWI). The time series data were derived for 2000 through 2009, including flooding due to Hurricane Rita in 2005 and Hurricane Ike in 2008. Using the NDWI, duration and extent of flooding can be inferred. The Time Series Product Tool (TSPT), developed at NASA SSC, is a suite of software developed in MATLAB® that enables improved-quality time series images to be computed using advanced temporal processing techniques. This software has been used to compute time series for monitoring temporal changes in environmental phenomena, (e.g. NDVI times series from MODIS), and was modified and used to

  12. A New Approach to Monitoring Coastal Marshes for Persistent Flooding

    NASA Technical Reports Server (NTRS)

    Kalcic, M. T.; Undersood, Lauren W.; Fletcher, Rose

    2012-01-01

    Many areas in coastal Louisiana are below sea level and protected from flooding by a system of natural and man-made levees. Flooding is common when the levees are overtopped by storm surge or rising rivers. Many levees in this region are further stressed by erosion and subsidence. The floodwaters can become constricted by levees and trapped, causing prolonged inundation. Vegetative communities in coastal regions, from fresh swamp forest to saline marsh, can be negatively affected by inundation and changes in salinity. As saltwater persists, it can have a toxic effect upon marsh vegetation causing die off and conversion to open water types, destroying valuable species habitats. The length of time the water persists and the average annual salinity are important variables in modeling habitat switching (cover type change). Marsh type habitat switching affects fish, shellfish, and wildlife inhabitants, and can affect the regional ecosystem and economy. There are numerous restoration and revitalization projects underway in the coastal region, and their effects on the entire ecosystem need to be understood. For these reasons, monitoring persistent saltwater intrusion and inundation is important. For this study, persistent flooding in Louisiana coastal marshes was mapped using MODIS (Moderate Resolution Imaging Spectroradiometer) time series of a Normalized Difference Water Index (NDWI). The time series data were derived for 2000 through 2009, including flooding due to Hurricane Rita in 2005 and Hurricane Ike in 2008. Using the NDWI, duration and extent of flooding can be inferred. The Time Series Product Tool (TSPT), developed at NASA SSC, is a suite of software developed in MATLAB(R) that enables improved-quality time series images to be computed using advanced temporal processing techniques. This software has been used to compute time series for monitoring temporal changes in environmental phenomena, (e.g. NDVI times series from MODIS), and was modified and used to

  13. From flood management systems to flood resilient systems: integration of flood resilient technologies

    NASA Astrophysics Data System (ADS)

    Salagnac, J.-L.; Diez, J.; Tourbier, J.

    2012-04-01

    Flooding has always been a major risk world-wide. Humans chose to live and develop settlements close to water (rivers, seas) due to the resources water brings, i.e. food, energy, capacity to economically transport persons and goods, and recreation. However, the risk from flooding, including pluvial flooding, often offsets these huge advantages. Floods sometimes have terrible consequences from both a human and economic point of view. The permanence and growth of urban areas in flood-prone zones despite these risks is a clear indication of the choices of concerned human groups. The observed growing concentration of population along the sea shore, the increase of urban population worldwide, the exponential growth of the world population and possibly climate change are factors that confirm flood will remain a major issue for the next decades. Flood management systems are designed and implemented to cope with such situations. In spite of frequent events, lessons look to be difficult to draw out and progresses are rather slow. The list of potential triggers to improve flood management systems is nevertheless well established: information, education, awareness raising, alert, prevention, protection, feedback from events, ... Many disciplines are concerned which cover a wide range of soft and hard sciences. A huge amount of both printed and electronic literature is available. Regulations are abundant. In spite of all these potentially favourable elements, similar questions spring up after each new significant event: • Was the event forecast precise enough? • Was the alert system efficient? • Why were buildings built in identified flood prone areas? • Why did the concerned population not follow instructions? • Why did the dike break? • What should we do to avoid it happens again? • What about damages evaluation, wastes and debris evacuation, infrastructures and buildings repair, activity recovery, temporary relocation of inhabitants, health concerns, insurance

  14. Large-scale Flood Monitoring: Where is the most exposed to large flood in Asia?

    NASA Astrophysics Data System (ADS)

    Kwak, Y.; PARK, J.; Iwami, Y.

    2015-12-01

    Flood mapping and monitoring (particularly flood areas, locations, and durations) are an imperative process and are the fundamental part of risk management as well as emergency response. We have found that Bangladesh is the highest risk country among 14 Asian developing countries from flood risk assessment under climate change scenarios because of its largest vulnerable population to cyclic 50-year flood events. This study shows a methodological possibility to be used as a standard approach for continental-scale flood hazard and risk assessment with the use of multi-temporal Moderate Resolution Imaging Spectrometer (MODIS), a big contributor to progress in real-time hazard mapping. The purpose of this study is to detect flood inundation areas considering the flood propagation even with limitations of optical and multispectral images. We improved a water detection algorithm to achieve a better discrimination capacity to discern flood areas by using amodified land surface water index (MLSWI), and estimated flood extent areas, coupled with the water level and an optimal threshold ofMLSWI based on the spectral characteristics. In Bangladesh, the FFWC warns people that floods occur when the water level exceeds the danger level. We clearly confirmed that the flood propagation was in good agreement with the timing of the water level exceeding the water danger level in the case of the cyclic 10-year flood event. The flooding was also found to be proportional to theflood extent (areas) and duration. The results showed the novel approach's capability of providing instant,comprehensive nationwide flood mapping over the entire Bangladesh by using multi-temporal MODIS data. The ambiguities of rapid flood mapping from satellite-derived products were verified in the Brahmaputra River by using high-resolution images (ALOS AVNIR2, spatial resolution 10m), ground truth and field survey data.

  15. Necessity of Flood Early Warning Systems in India

    NASA Astrophysics Data System (ADS)

    Kurian, C.; Natesan, U.; Durga Rao, K. H. V.

    2014-12-01

    India is one of the highly flood prone countries in the world. National flood commission has reported that 400,000 km² of geographical area is prone to floods, constituting to twelve percent of the country's geographical area. Despite the reoccurrences of floods, India still does not have a proper flood warning system. Probably this can be attributed to the lack of trained personnel in using advanced techniques. Frequent flood hazards results in damage to livelihood, infrastructure and public utilities. India has a potential to develop an early warning system since it is one of the few countries where satellite based inputs are regularly used for monitoring and mitigating floods. However, modeling of flood extent is difficult due to the complexity of hydraulic and hydrologic processes during flood events. It has been reported that numerical methods of simulations can be effectively used to simulate the processes correctly. Progress in computational resources, data collection and development of several numerical codes has enhanced the use of hydrodynamic modeling approaches to simulate the flood extent in the floodplains. In this study an attempt is made to simulate the flood in one of the sub basins of Godavari River in India using hydrodynamic modeling techniques. The modeling environment includes MIKE software, which simulates the water depth at every grid cell of the study area. The runoff contribution from the catchment was calculated using Nebdor Afstromnings model. With the hydrodynamic modeling approach, accuracy in discharge and water level computations are improved compared to the conventional methods. The results of the study are proming to develop effective flood management plans in the basin. Similar studies could be taken up in other flood prone areas of the country for continuous modernisation of flood forecasting techniques, early warning systems and strengthening decision support systems, which will help the policy makers in developing management

  16. Using Passive Microwaves for Open Water Monitoring and Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Parinussa, R.; Johnson, F.; Sharma, A.; Lakshmi, V.

    2015-12-01

    One of the biggest and severest natural disasters that society faces is floods. An important component that can help in reducing the impact of floods is satellite remote sensing as it allows for consistent monitoring and obtaining catchment information in absence of physical contact. Nowadays, passive microwave remote sensing observations are available in near real time (NRT) with a couple of hours delay from the actual sensing. The Advanced Microwave Scanning Radiometer 2 (AMSR2) is a multi-frequency passive microwave sensor onboard the Global Change Observation Mission 1 - Water that was launched in May 2012. Several of these frequencies have a high sensitivity to the land surface and they also have the capacity to penetrate clouds. These advantages come at the cost of the relatively coarse spatial resolution (footprints range from ~5 to ~50 km) which in turn allows for global monitoring. A relatively simple methodology to monitor the fraction of open water from AMSR2 observations is presented here. Low frequency passive microwave observations have sensitivity to the land surface but are modulated by overlying signals from physical temperature and vegetation cover. We developed a completely microwave based artificial neural network supported by physically based components to monitor the fraction of open water. Three different areas, located in China, Southeast Asia and Australia, were selected for testing purposes and several different characteristics were examined. First, the overall performance of the methodology was evaluated against the NASA NRT Global Flood Mapping system. Second, the skills of the various different AMSR2 frequencies were tested and revealed that artificial contamination is a factor to consider. The different skills of the tested frequencies are of interest to apply the methodology to alternative passive microwave sensors. This will be of benefit in using the numerous multi-frequency passive microwaves sensors currently observing our Earth

  17. Flood Resilient Systems and their Application for Flood Resilient Planning

    NASA Astrophysics Data System (ADS)

    Manojlovic, N.; Gabalda, V.; Antanaskovic, D.; Gershovich, I.; Pasche, E.

    2012-04-01

    Following the paradigm shift in flood management from traditional to more integrated approaches, and considering the uncertainties of future development due to drivers such as climate change, one of the main emerging tasks of flood managers becomes the development of (flood) resilient cities. It can be achieved by application of non-structural - flood resilience measures, summarised in the 4As: assistance, alleviation, awareness and avoidance (FIAC, 2007). As a part of this strategy, the key aspect of development of resilient cities - resilient built environment can be reached by efficient application of Flood Resilience Technology (FReT) and its meaningful combination into flood resilient systems (FRS). FRS are given as [an interconnecting network of FReT which facilitates resilience (including both restorative and adaptive capacity) to flooding, addressing physical and social systems and considering different flood typologies] (SMARTeST, http://www.floodresilience.eu/). Applying the system approach (e.g. Zevenbergen, 2008), FRS can be developed at different scales from the building to the city level. Still, a matter of research is a method to define and systematise different FRS crossing those scales. Further, the decision on which resilient system is to be applied for the given conditions and given scale is a complex task, calling for utilisation of decision support tools. This process of decision-making should follow the steps of flood risk assessment (1) and development of a flood resilience plan (2) (Manojlovic et al, 2009). The key problem in (2) is how to match the input parameters that describe physical&social system and flood typology to the appropriate flood resilient system. Additionally, an open issue is how to integrate the advances in FReT and findings on its efficiency into decision support tools. This paper presents a way to define, systematise and make decisions on FRS at different scales of an urban system developed within the 7th FP Project

  18. Satellite remote sensing for land use and flooding duration monitoring

    NASA Astrophysics Data System (ADS)

    Sandoz, A.; Chauvelon, P.; Pichaud, M.

    2009-04-01

    We show limits and potential applications of satellite images linked with agricultural and natural habitats and flooded duration problematic. Satellite images could play a major role in the study and monitoring context. When we started our satellite images collection in 1975, it allowed us to map annual variations of habitats and flooded areas. Since the year 2004, we've acquired an important quantity of Spot 5 images through a special programming (ISIS program), which cover the area during all the hydrological year. Using them, the knowledge of spatiotemporal dynamics of habitats and flooded areas, could then, be formalised in a much better way. We present results of inventory and monitoring in the Rhone delta context, South of France, an area of high wetland biodiversity in a Mediterranean catchment area. Our objective is to propose an operational methodology for inventory and monitoring of wetland habitats and wetland flooded duration. The exceptional spatial and temporal resolution sharpness is demonstrated.

  19. The integrated local flood warning system: A look at the flood response system

    SciTech Connect

    Neal, D.M.; Lee, R.

    1988-01-01

    Local Flood Warning Systems are instituted and maintained at a local level. They consist of two parts: (1) the flood forecast system, and (2) the flood response system. The flood forecast system is primarily built around the technology used to predict flooding. In this paper, we stress two points about local flood warning systems. First, the system must be integrated. Specifically, collecting data, transmitting data, forecasting the flood, informing local officials, warning local residents, and taking protective action (including evacuation of residents) must all occur in an integrated fashion if the whole system is to succeed. Second, we outline some important organizational characteristics that should be improved when developing a local flood response system. Key organizational characteristics include experience, networks, communications, decision making, everyday disaster task overlap. By focusing upon experience (including learning from the past flood or disaster experience or participating in drills and exercises) and by improving preparedness can be inexpensively improved. 6 refs.,

  20. Real Time Monitoring of Flooding from Microwave Satellite Observations

    NASA Technical Reports Server (NTRS)

    Galantowicz, John F.; Frey, Herb (Technical Monitor)

    2002-01-01

    We have developed a new method for making high-resolution flood extent maps (e.g., at the 30-100 m scale of digital elevation models) in real-time from low-resolution (20-70 km) passive microwave observations. The method builds a "flood-potential" database from elevations and historic flood imagery and uses it to create a flood-extent map consistent with the observed open water fraction. Microwave radiometric measurements are useful for flood monitoring because they sense surface water in clear-or-cloudy conditions and can provide more timely data (e.g., compared to radars) from relatively wide swath widths and an increasing number of available platforms (DMSP, ADEOS-II, Terra, NPOESS, GPM). The chief disadvantages for flood mapping are the radiometers' low resolution and the need for local calibration of the relationship between radiances and open-water fraction. We present our method for transforming microwave sensor-scale open water fraction estimates into high-resolution flood extent maps and describe 30-day flood map sequences generated during a retrospective study of the 1993 Great Midwest Flood. We discuss the method's potential improvement through as yet unimplemented algorithm enhancements and expected advancements in microwave radiometry (e.g., improved resolution and atmospheric correction).

  1. A pan-African Flood Forecasting System

    NASA Astrophysics Data System (ADS)

    Thiemig, V.; Bisselink, B.; Pappenberger, F.; Thielen, J.

    2014-05-01

    The African Flood Forecasting System (AFFS) is a probabilistic flood forecast system for medium- to large-scale African river basins, with lead times of up to 15 days. The key components are the hydrological model LISFLOOD, the African GIS database, the meteorological ensemble predictions of the ECMWF and critical hydrological thresholds. In this paper the predictive capability is investigated in a hindcast mode, by reproducing hydrological predictions for the year 2003 where important floods were observed. Results were verified with ground measurements of 36 subcatchments as well as with reports of various flood archives. Results showed that AFFS detected around 70% of the reported flood events correctly. In particular, the system showed good performance in predicting riverine flood events of long duration (>1 week) and large affected areas (>10 000 km2) well in advance, whereas AFFS showed limitations for small-scale and short duration flood events. The case study for "Save flooding" illustrated the good performance of AFFS in forecasting timing and severity of the floods, gave an example of the clear and concise output products, and showed that the system is capable of producing flood warnings even in ungauged river basins. Hence, from a technical perspective, AFFS shows a large potential as an operational pan-African flood forecasting system, although issues related to the practical implication will still need to be investigated.

  2. Flood Risk, Flood Mitigation, and Location Choice: Evaluating the National Flood Insurance Program's Community Rating System.

    PubMed

    Fan, Qin; Davlasheridze, Meri

    2016-06-01

    Climate change is expected to worsen the negative effects of natural disasters like floods. The negative impacts, however, can be mitigated by individuals' adjustments through migration and relocation behaviors. Previous literature has identified flood risk as one significant driver in relocation decisions, but no prior study examines the effect of the National Flood Insurance Program's voluntary program-the Community Rating System (CRS)-on residential location choice. This article fills this gap and tests the hypothesis that flood risk and the CRS-creditable flood control activities affect residential location choices. We employ a two-stage sorting model to empirically estimate the effects. In the first stage, individuals' risk perception and preference heterogeneity for the CRS activities are considered, while mean effects of flood risk and the CRS activities are estimated in the second stage. We then estimate heterogeneous marginal willingness to pay (WTP) for the CRS activities by category. Results show that age, ethnicity and race, educational attainment, and prior exposure to risk explain risk perception. We find significant values for the CRS-creditable mitigation activities, which provides empirical evidence for the benefits associated with the program. The marginal WTP for an additional credit point earned for public information activities, including hazard disclosure, is found to be the highest. Results also suggest that water amenities dominate flood risk. Thus, high amenity values may increase exposure to flood risk, and flood mitigation projects should be strategized in coastal regions accordingly.

  3. Advances in flash flood monitoring using UAVs

    NASA Astrophysics Data System (ADS)

    Perks, Matthew; Russell, Andrew; Large, Andrew

    2016-04-01

    UAVs have the potential to capture information about the earth's surface in dangerous and previously inaccessible locations. Through image acquisition of flash flood events and subsequent object-based analysis, highly dynamic and oft-immeasurable hydraulic phenomenon may be quantified at previously unattainable spatial and temporal resolutions. The potential for this approach to provide valuable information about the hydraulic conditions present during dynamic, high-energy flash floods has until now not been explored. In this paper we adopt a novel approach, utilising the Kande-Lucas-Tomasi (KLT) algorithm to track features present on the water surface which are related to the free-surface velocity. Following the successful tracking of features, a method analogous to the vector correction method has enabled accurate geometric rectification of velocity vectors. Uncertainties associated with the rectification process induced by unsteady camera movements are subsequently explored. Geo-registration errors are relatively stable and occur as a result of persistent residual distortion effects following image correction. The apparent ground movement of immobile control points between measurement intervals ranges from 0.05 - 0.13m. The application of this approach to assess the hydraulic conditions present in Alyth Burn, Scotland during a 1:200 year flash flood resulted in the generation of an average 4.2 measurements/m2 at a rate of 508 measurements/s. Analysis of these vectors provide a rare insight into the complexity of channel-overbank interactions during flash floods. The uncertainty attached to the calculated velocities is relatively low with a spatial average across the area of ± 0.15m/s. Little difference is observed in the uncertainty attached to out-of-bank velocities (± 0.15m/s), and within-channel velocities (± 0.16m/s), illustrating the consistency of the approach.

  4. Real-time Monitoring and Simulating of Urban Flood, a Case Study in Guangzhou

    NASA Astrophysics Data System (ADS)

    Huang, H.; Wang, X.; Zhang, S.; Liu, Y.

    2014-12-01

    In recent years urban flood frequently occurred and seriously impacted city's normal operation, particular on transportation. The increase of urban flood could be attributed to many factors, such as the increase of impervious land surface and extreme precipitation, the decrease of surface storage capacity, poor maintenance of drainage utilities, and so on. In order to provide accurate and leading prediction on urban flooding, this study acquires precise urban topographic data via air-borne Lidar system, collects detailed underground drainage pipes, and installs in-situ monitoring networks on precipitation, water level, video record and traffic speed in the downtown area of Panyu District, Guangzhou, China. Based on the above data acquired, a urban flood model with EPA SWMM5 is established to simulate the flooding and inundation processes in the study area of 20 km2. The model is driven by the real-time precipitation data and calibrated by the water level data, which are converted to flooding volume with precise topographic data. After calibration, the model could be employed to conduct sensitivity analysis for investigating primary factors of urban flooding, and to simulate the flooding processes in different scenarios, which are beneficial to assessment of flooding risk and drainage capacity. This model is expected to provide real-time forecasting in emergency management.

  5. Global Near Real-Time Satellite-based Flood Monitoring and Product Dissemination

    NASA Astrophysics Data System (ADS)

    Smith, M.; Slayback, D. A.; Policelli, F.; Brakenridge, G. R.; Tokay, M.

    2012-12-01

    , and are working to develop higher resolution flood detection using alternate sensors, including Landsat and various radar sensors. Although these provide better spatial resolution, this comes at the cost of being less timely. As of late 2011, the system expanded to fully global daily flood monitoring, with free public access to the generated products. These include GIS-ready files of flood and normal water extent (KML, shapefile, raster), and small scale graphic maps (10 degrees square) showing regional flood extent. We are now expanding product distribution channels to include live web services (WMS, etc), allowing easier access via standalone apps. We are also working to bring our product into the Pacific Disaster Center's Disaster Alert system and mobile app for wider accessibility.

  6. Monitoring Coastal Marshes for Persistent Flooding and Salinity Stress

    NASA Technical Reports Server (NTRS)

    Kalcic, Maria

    2010-01-01

    Our objective is to provide NASA remote sensing products that provide inundation and salinity information on an ecosystem level to support habitat switching models. Project born out of need by the Coastal Restoration Monitoring System (CRMS), joint effort by Louisiana Department of Natural Resources and the U.S. Geological Survey, for information on persistence of flooding by storm surge and other flood waters. The results of the this work support the habitat-switching modules in the Coastal Louisiana Ecosystem Assessment and Restoration (CLEAR) model, which provides scientific evaluation for restoration management. CLEAR is a collaborative effort between the Louisiana Board of Regents, the Louisiana Department of Natural Resources (LDNR), the U.S. Geological Survey (USGS), and the U.S. Army Corps of Engineers (USACE). Anticipated results will use: a) Resolution enhanced time series data combining spatial resolution of Landsat with temporal resolution of MODIS for inundation estimates. b) Potential salinity products from radar and multispectral modeling. c) Combined inundation and salinity inputs to habitat switching module to produce habitat switching maps (shown at left)

  7. A Preliminary Feasibility Study On Seismic Monitoring Of Polymer Flooding

    NASA Astrophysics Data System (ADS)

    Nguyen, P. K.; Park, C.; Lim, B.; Nam, M.

    2012-12-01

    Polymer flooding using water with soluble polymers is an enhanced oil recovery technique, which intends to maximize oil-recovery sweep efficiency by minimizing fingering effects and as a result creating a smooth flood front; polymer flooding decreases the flow rates within high permeability zone while enhances those of lower permeabilities. Understanding of fluid fronts and saturations is critical to not only optimizing polymer flooding but also monitoring the efficiency. Polymer flooding monitoring can be made in single well scale with high-resolution wireline logging, in inter-well scale with tomography, and in reservoir scale with surface survey. For reservoir scale monitoring, this study makes a preliminary feasibility study based on constructing rock physics models (RPMs), which can bridge variations in reservoir parameters to the changes in seismic responses. For constructing RPMs, we change reservoir parameters with consideration of polymer flooding to a reservoir. Time-lapse seismic data for corresponding RPMs are simulated using a time-domain staggered-finite-difference modeling with implementation of a boundary condition of conventional perfect match layer. Analysis on time-lapse seismic data with respect to the changes in fluid front and saturation can give an insight on feasibility of surface seismic survey to polymer flooding. Acknowledgements: This work was supported by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2012T100201588). Myung Jin Nam was partially supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2011-0014684).

  8. A global flash flood forecasting system

    NASA Astrophysics Data System (ADS)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial

  9. Monitoring Floods with NASA's ST6 Autonomous Sciencecraft Experiment: Implications on Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Ip, Felipe; Dohm, J. M.; Baker, V. R.; Castano, B.; Chien, S.; Cichy, B.; Davies, A. G.; Doggett, T.; Greeley, R.; Sherwood, R.

    2005-01-01

    NASA's New Millennium Program (NMP) Autonomous Sciencecraft Experiment (ASE) [1-3] has been successfully demonstrated in Earth-orbit. NASA has identified the development of an autonomously operating spacecraft as a necessity for an expanded program of missions exploring the Solar System. The versatile ASE spacecraft command and control, image formation, and science processing software was uploaded to the Earth Observer 1 (EO-1) spacecraft in early 2004 and has been undergoing onboard testing since May 2004 for the near real-time detection of surface modification related to transient geological and hydrological processes such as volcanism [4], ice formation and retreat [5], and flooding [6]. Space autonomy technology developed as part of ASE creates the new capability to autonomously detect, assess, react to, and monitor dynamic events such as flooding. Part of the challenge has been the difficulty to observe flooding in real time at sufficient temporal resolutions; more importantly, it is the large spatial extent of most drainage networks coupled with the size of the data sets necessary to be downlinked from satellites that make it difficult to monitor flooding from space. Below is a description of the algorithms (referred to as ASE Flood water Classifiers) used in tandem with the Hyperion spectrometer instrument on EO-1 to identify flooding and some of the test results.

  10. Monitoring of riparian vegetation response to flood disturbances using terrestrial photography

    NASA Astrophysics Data System (ADS)

    Džubáková, K.; Molnar, P.; Schindler, K.; Trizna, M.

    2015-01-01

    Flood disturbance is one of the major factors impacting riparian vegetation on river floodplains. In this study we use a high-resolution ground-based camera system with near-infrared sensitivity to quantify the immediate response of riparian vegetation in an Alpine, gravel bed, braided river to flood disturbance with the use of vegetation indices. Five large floods with return periods between 1.4 and 20.1 years in the period 2008-2011 in the Maggia River were analysed to evaluate patterns of vegetation response in three distinct floodplain units (main bar, secondary bar, transitional zone) and to compare the sensitivity of seven broadband vegetation indices. The results show both a negative (damage) and positive (enhancement) response of vegetation within 1 week following the floods, with a selective impact determined by pre-flood vegetation vigour, geomorphological setting and intensity of the flood forcing. The spatial distribution of vegetation damage provides a coherent picture of floodplain response in the three floodplain units. The vegetation indices tested in a riverine environment with highly variable surface wetness, high gravel reflectance, and extensive water-soil-vegetation contact zones differ in the direction of predicted change and its spatial distribution in the range 0.7-35.8%. We conclude that vegetation response to flood disturbance may be effectively monitored by terrestrial photography with near-infrared sensitivity, with potential for long-term assessment in river management and restoration projects.

  11. Flood Warning and Forecasting System in Slovakia

    NASA Astrophysics Data System (ADS)

    Leskova, Danica

    2016-04-01

    In 2015, it finished project Flood Warning and Forecasting System (POVAPSYS) as part of the flood protection in Slovakia till 2010. The aim was to build POVAPSYS integrated computerized flood forecasting and warning system. It took a qualitatively higher level of output meteorological and hydrological services in case of floods affecting large territorial units, as well as local flood events. It is further unfolding demands on performance and coordination of meteorological and hydrological services, troubleshooting observation, evaluation of data, fast communication, modeling and forecasting of meteorological and hydrological processes. Integration of all information entering and exiting to and from the project POVAPSYS provides Hydrological Flood Forecasting System (HYPOS). The system provides information on the current hydrometeorological situation and its evolution with the generation of alerts and notifications in case of exceeding predefined thresholds. HYPOS's functioning of the system requires flawless operability in critical situations while minimizing the loss of its key parts. HYPOS is a core part of the project POVAPSYS, it is a comprehensive software solutions based on a modular principle, providing data and processed information including alarms, in real time. In order to achieve full functionality of the system, in proposal, we have put emphasis on reliability, robustness, availability and security.

  12. Environment Agency England flood warning systems

    NASA Astrophysics Data System (ADS)

    Strong, Chris; Walters, Mark; Haynes, Elizabeth; Dobson, Peter

    2015-04-01

    Context In England around 5 million homes are at risk of flooding. We invest significantly in flood prevention and management schemes but we can never prevent all flooding. Early alerting systems are fundamental to helping us reduce the impacts of flooding. The Environment Agency has had the responsibility for flood warning since 1996. In 2006 we invested in a new dissemination system that would send direct messages to pre-identified recipients via a range of channels. Since then we have continuously improved the system and service we offer. In 2010 we introduced an 'opt-out' service where we pre-registered landline numbers in flood risk areas, significantly increasing the customer base. The service has performed exceptionally well under intense flood conditions. Over a period of 3 days in December 2013, when England was experiencing an east coast storm surge, the system sent nearly 350,000 telephone messages, 85,000 emails and 70,000 text messages, with a peak call rate of around 37,000 per hour and 100% availability. The Floodline Warnings Direct (FWD) System FWD provides warnings in advance of flooding so that people at risk and responders can take action to minimise the impact of the flood. Warnings are sent via telephone, fax, text message, pager or e-mail to over 1.1 million properties located within flood risk areas in England. Triggers for issuing alerts and warnings include attained and forecast river levels and rainfall in some rapidly responding locations. There are three levels of warning: Flood Alert, Flood Warning and Severe Flood Warning, and a stand down message. The warnings can be updated to include relevant information to help inform those at risk. Working with our current provider Fujitsu, the system is under a programme of continuous improvement including expanding the 'opt-out' service to mobile phone numbers registered to at risk addresses, allowing mobile registration to the system for people 'on the move' and providing access to

  13. Monitoring Inland Storm Surge and Flooding from Hurricane Rita

    USGS Publications Warehouse

    McGee, Benton D.; Tollett, Roland W.; Mason, Jr., Robert R.

    2006-01-01

    Pressure transducers (sensors) and high-water marks were used to document the inland water levels related to storm surge generated by Hurricane Rita in southwestern Louisiana and southeastern Texas. On September 22-23, 2005, an experimental monitoring network of sensors was deployed at 33 sites over an area of about 4,000 square miles to record the timing, extent, and magnitude of inland hurricane storm surge and coastal flooding. Sensors were programmed to record date and time, temperature, and barometric or water pressure. Water pressure was corrected for changes in barometric pressure and salinity. Elevation surveys using global-positioning systems and differential levels were used to relate all storm-surge water-level data, reference marks, benchmarks, sensor measuring points, and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). The resulting data indicated that storm-surge water levels over 14 feet above NAVD 88 occurred at three locations, and rates of water-level rise greater than 5 feet per hour occurred at three locations near the Louisiana coast.

  14. Integration of Grid and Sensor Web for Flood Monitoring and Risk Assessment from Heterogeneous Data

    NASA Astrophysics Data System (ADS)

    Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii

    2013-04-01

    Over last decades we have witnessed the upward global trend in natural disaster occurrence. Hydrological and meteorological disasters such as floods are the main contributors to this pattern. In recent years flood management has shifted from protection against floods to managing the risks of floods (the European Flood risk directive). In order to enable operational flood monitoring and assessment of flood risk, it is required to provide an infrastructure with standardized interfaces and services. Grid and Sensor Web can meet these requirements. In this paper we present a general approach to flood monitoring and risk assessment based on heterogeneous geospatial data acquired from multiple sources. To enable operational flood risk assessment integration of Grid and Sensor Web approaches is proposed [1]. Grid represents a distributed environment that integrates heterogeneous computing and storage resources administrated by multiple organizations. SensorWeb is an emerging paradigm for integrating heterogeneous satellite and in situ sensors and data systems into a common informational infrastructure that produces products on demand. The basic Sensor Web functionality includes sensor discovery, triggering events by observed or predicted conditions, remote data access and processing capabilities to generate and deliver data products. Sensor Web is governed by the set of standards, called Sensor Web Enablement (SWE), developed by the Open Geospatial Consortium (OGC). Different practical issues regarding integration of Sensor Web with Grids are discussed in the study. We show how the Sensor Web can benefit from using Grids and vice versa. For example, Sensor Web services such as SOS, SPS and SAS can benefit from the integration with the Grid platform like Globus Toolkit. The proposed approach is implemented within the Sensor Web framework for flood monitoring and risk assessment, and a case-study of exploiting this framework, namely the Namibia SensorWeb Pilot Project, is

  15. Monitoring the effects of floods on submerged macrophytes in a large river.

    PubMed

    Ibáñez, Carles; Caiola, Nuno; Rovira, Albert; Real, Montserrat

    2012-12-01

    The lower Ebro River (Catalonia, Spain) has recently undergone a regime shift from a phytoplankton to a macrophyte-dominated system. Macrophytes started to spread at the end of the 1990s and since 2002 artificial floods (flushing flows) of short duration (1-2 days) are released from the Riba-roja dam once or twice a year in order to reduce macrophyte density. The aim of this study was to analyse the spatiotemporal trends of the submerged macrophytes in two stretches of the lower Ebro River using high-resolution hydroacoustic methods, in order to elucidate the effects of artificial floods and natural floods on its distribution and abundance. Results showed that the mean cover in the two studied stretches (Móra and Ginestar) was not reduced after a flushing flow (from 36.59% to 55.85% in Móra, and from 21.18% to 21.05% in Ginestar), but it was greatly reduced after the natural flood (down to 9.79% in Móra and 2.04% in Ginestar); surprisingly the cover increased in Móra after the artificial flood. In order to increase the efficiency of floods in controlling macrophyte spreading, the magnitude and frequency of them should largely increase, as well as the suspended sediment load, approaching as much as possible to the original flood pattern before dam construction. Hydroacoustic methods combined with geostatistics and interpolation in GIS can accurately monitor spatiotemporal trends of submerged macrophytes in large rivers. This is the first article to apply this monitoring system to submerged macrophytes in rivers.

  16. Flood Forecasting in River System Using ANFIS

    SciTech Connect

    Ullah, Nazrin; Choudhury, P.

    2010-10-26

    The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro-Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed, trained and tested to evaluate efficiency of the models. Statistical indices such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and Coefficient of Efficiency (CE) are used to evaluate performance of the ANFIS models in forecasting river flood. The values of the indices show that ANFIS model can accurately and reliably be used to forecast flood in a river system.

  17. Flood resilience technology, systems and toolls

    NASA Astrophysics Data System (ADS)

    Garvin, S.; Kelly, D.

    2012-04-01

    In recent years there has been a general acceptance that the risk from flooding is increasing, primarily due to increased urbanization and the impact of climate change (Zevenbergen et al, 2010). Flood resilience technology (FRe T) is a term used to describe a collection of technologies, materials and products that are used to protect and allow recovery of buildings, communities and infrastructure from flooding. River or coastal flooding is the focus of the legislation, regulation and guidance that is intended to control development and ensure the risk to new properties is low. However, the cost of building and maintaining primary flood defense systems for rivers and coasts is becoming prohibitive and as such future flood management needs to consider a range of measures to manage risk, in particular improving the resilience of buildings, infrastructure and communities. Surface water flooding is now known to cause as much damage as coastal and riverine flooding combined and is as likely to be experienced by both existing and new developments. Therefore FRe T solutions need to be adaptable and flexible. Previous research has shown that barriers exist to the acceptance and use of FRe T by a range of stakeholders. This includes the need to deploy household level items in time, the uncertainty over the performance of FRe T in actual flood situations or reluctance to adopt new or unknown solutions. Investment by public authorities in FRe Technology in recent years has typically increased in countries such as the UK. However, there has been to date little consideration of the system within which the technology has been employed and there is a lack of tools to assist decision makers. The SMARTeST project (an EU FP7 research project) is addressing the issues involved in FRe technology implementation. The findings of the research will be presented, including case studies where the integrated approaches of technology, systems and tools have been considered. SMARTeST seeks to

  18. Development of an operational coastal flooding early warning system

    NASA Astrophysics Data System (ADS)

    Doong, D.-J.; Chuang, L. Z.-H.; Wu, L.-C.; Fan, Y.-M.; Kao, C. C.; Wang, J.-H.

    2012-02-01

    Coastal floods are a consistent threat to oceanfront countries, causing major human suffering and substantial economic losses. Climate change is exacerbating the problem. An early warning system is essential to mitigate the loss of life and property from coastal flooding. The purpose of this study is to develop a coastal flooding early warning system (CoFEWs) by integrating existing sea-state monitoring technology, numerical ocean forecasting models, historical database and experiences, as well as computer science. The proposed system has capability of offering data for the past, information for the present and future. The system was developed for the Taiwanese coast due to its frequent threat by typhoons. An operational system without any manual work is the basic requirement of the system. Integration of various data sources is the system kernel. Numerical ocean models play an important role within the system because they provide data for assessment of possible flooding. The regional wave model (SWAN) that nested with the large domain wave model (NWW III) is operationally set up for coastal wave forecasting, in addition to the storm surge predicted by a POM model. Data assimilation technology is incorporated for enhanced accuracy. A warning signal is presented when the storm water level that accumulated from astronomical tide, storm surge, and wave-induced run-up exceeds the alarm sea level. This warning system has been in practical use for coastal flooding damage mitigation in Taiwan for years. An example of the system operation during the Typhoon Haitung which struck Taiwan in 2005 is illustrated in this study.

  19. Potential Application of Airborne Passive Microwave Observations for Monitoring Inland Flooding Caused by Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Hood, Robbie E.; Radley, C.D.; LaFontaine, F.J.

    2008-01-01

    Inland flooding from tropical cyclones can be a significant factor in storm-related deaths in the United States and other countries. Information collected during NASA tropical cyclone field studies suggest surface water and flooding induced by tropical cyclone precipitation can be detected and therefore monitored using passive microwave airborne radiometers. In particular, the 10.7 GHz frequency of the NASA Advanced Microwave Precipitation Radiometer (AMPR) flown on the NASA ER-2 has demonstrated high resolution detection of anomalous surface water and flooding in numerous situations. This presentation will highlight the analysis of three cases utilizing primarily satellite and airborne radiometer data. Radiometer data from the 1998 Third Convection and Moisture Experiment (CAMEX-3) are utilized to detect surface water during landfalling Hurricane Georges in both the Dominican Republic and Louisiana. A third case is landfalling Tropical Storm Gert in Eastern Mexico during the Tropical Cloud Systems and Processes (TCSP) experiment in 2005. AMPR data are compared to topographic data and vegetation indices to evaluate the significance of the surface water signature visible in the 10.7 GHz information. The results of this study suggest the benefit of an aircraft 10 GHz radiometer to provide real-time observations of surface water conditions as part of a multi-sensor flood monitoring network.

  20. Advances in Global Flood Forecasting Systems

    NASA Astrophysics Data System (ADS)

    Thielen-del Pozo, J.; Pappenberger, F.; Burek, P.; Alfieri, L.; Kreminski, B.; Muraro, D.

    2012-12-01

    A trend of increasing number of heavy precipitation events over many regions in the world during the past century has been observed (IPCC, 2007), but conclusive results on a changing frequency or intensity of floods have not yet been established. However, the socio-economic impact particularly of floods is increasing at an alarming trend. Thus anticipation of severe events is becoming a key element of society to react timely to effectively reduce socio-economic damage. Anticipation is essential on local as well as on national or trans-national level since management of response and aid for major disasters requires a substantial amount of planning and information on different levels. Continental and trans-national flood forecasting systems already exist. The European Flood Awareness System (EFAS) has been developed in close collaboration with the National services and is going operational in 2012, enhancing the national forecasting centres with medium-range probabilistic added value information while at the same time providing the European Civil Protection with harmonised information on ongoing and upcoming floods for improved aid management. Building on experiences and methodologies from EFAS, a Global Flood Awareness System (GloFAS) has now been developed jointly between researchers from the European Commission Joint Research Centre (JRC) and the European Centre for Medium-Range Weather Forecast (ECWMF). The prototype couples HTESSEL, the land-surface scheme of the ECMWF NWP model with the LISFLOOD hydrodynamic model for the flow routing in the river network. GloFAS is set-up on global scale with horizontal grid spacing of 0.1 degree. The system is driven with 51 ensemble members from VAREPS with a time horizon of 15 days. In order to allow for the routing in the large rivers, the coupled model is run for 45 days assuming zero rainfall after day 15. Comparison with observations have shown that in some rivers the system performs quite well while in others the hydro

  1. Monitoring the spatial and temporal dynamics of annual floods in the Niger Inner Delta using MODIS satellite imagery

    NASA Astrophysics Data System (ADS)

    Ogilvie, A.; Belaud, G.; Delenne, C.; Bader, J.-C.; Oleksiak, A.; Bailly, J.-S.

    2012-04-01

    The Niger Inner Delta is a vast three million hectare wetland in Mali, whose annual flood supports the livelihoods of over one million herders, fishermen and farmers. Large projects on the Niger River upstream may however alter the extent and dynamics of the flood in the future. Due to the scale (about 50 000 km2) and the very flat topography of this hydrological system, there is very scarce ground data to characterise the flood and its spatial and temporal dynamics remain poorly understood. Since the flood is mainly caused by precipitation in the upper catchment, the flood peak in the delta occurs a few weeks after the rainy season, when cloud cover does not limit the use of optical remote sensing data. An original automated method was developed to study the progress of the flooding using normalised band ratio indices on 8-day MODIS (Moderate Resolution Imaging Spectroradiometer) 500m-satellite images. The Modified Normalised Difference Water Index (MNDWI) was shown to be the most suitable for detecting flooded areas out of six commonly used band ratio indices. Its combination with the Normalised Difference Moisture Index (NDMI) aids the distinction between flooded and humid vegetation, especially in the drier months when the flood recedes. Three 30m Landsat images covering different phases of the flood, on which K-means clustering and analysis of spectral profiles enabled the identification of flooded pixels, were used to calibrate the threshold values of both indices. A programme using a specific composite MNDWI-NDMI index, with constant thresholds and a topographically relevant grid of the river and its floodplain was developed in ENVI IDL© to automatically provide the percentage of flooded pixels per grid cell for each image. The method was validated by computing correlations between water depth measurements from gauging stations in the delta and the flooded surface area for the corresponding grid cell calculated from the MODIS images. Estimates of the total

  2. Floods

    MedlinePlus

    Floods are common in the United States. Weather such as heavy rain, thunderstorms, hurricanes, or tsunamis can ... is breached, or when a dam breaks. Flash floods, which can develop quickly, often have a dangerous ...

  3. Development of a model-based flood emergency management system in Yujiang River Basin, South China

    NASA Astrophysics Data System (ADS)

    Zeng, Yong; Cai, Yanpeng; Jia, Peng; Mao, Jiansu

    2014-06-01

    Flooding is the most frequent disaster in China. It affects people's lives and properties, causing considerable economic loss. Flood forecast and operation of reservoirs are important in flood emergency management. Although great progress has been achieved in flood forecast and reservoir operation through using computer, network technology, and geographic information system technology in China, the prediction accuracy of models are not satisfactory due to the unavailability of real-time monitoring data. Also, real-time flood control scenario analysis is not effective in many regions and can seldom provide online decision support function. In this research, a decision support system for real-time flood forecasting in Yujiang River Basin, South China (DSS-YRB) is introduced in this paper. This system is based on hydrological and hydraulic mathematical models. The conceptual framework and detailed components of the proposed DSS-YRB is illustrated, which employs real-time rainfall data conversion, model-driven hydrologic forecasting, model calibration, data assimilation methods, and reservoir operational scenario analysis. Multi-tiered architecture offers great flexibility, portability, reusability, and reliability. The applied case study results show the development and application of a decision support system for real-time flood forecasting and operation is beneficial for flood control.

  4. Flood trends and river engineering on the Mississippi River system

    USGS Publications Warehouse

    Pinter, N.; Jemberie, A.A.; Remo, J.W.F.; Heine, R.A.; Ickes, B.S.

    2008-01-01

    Along >4000 km of the Mississippi River system, we document that climate, land-use change, and river engineering have contributed to statistically significant increases in flooding over the past 100-150 years. Trends were tested using a database of >8 million hydrological measurements. A geospatial database of historical engineering construction was used to quantify the response of flood levels to each unit of engineering infrastructure. Significant climate- and/or land use-driven increases in flow were detected, but the largest and most pervasive contributors to increased flooding on the Mississippi River system were wing dikes and related navigational structures, followed by progressive levee construction. In the area of the 2008 Upper Mississippi flood, for example, about 2 m of the flood crest is linked to navigational and flood-control engineering. Systemwide, large increases in flood levels were documented at locations and at times of wing-dike and levee construction. Copyright 2008 by the American Geophysical Union.

  5. The Namibia Early Flood Warning System, A CEOS Pilot Project

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Frye, Stuart; Cappelaere, Pat; Sohlberg, Robert; Handy, Matthew; Grossman, Robert

    2012-01-01

    Over the past year few years, an international collaboration has developed a pilot project under the auspices of Committee on Earth Observation Satellite (CEOS) Disasters team. The overall team consists of civilian satellite agencies. For this pilot effort, the development team consists of NASA, Canadian Space Agency, Univ. of Maryland, Univ. of Colorado, Univ. of Oklahoma, Ukraine Space Research Institute and Joint Research Center(JRC) for European Commission. This development team collaborates with regional , national and international agencies to deliver end-to-end disaster coverage. In particular, the team in collaborating on this effort with the Namibia Department of Hydrology to begin in Namibia . However, the ultimate goal is to expand the functionality to provide early warning over the South Africa region. The initial collaboration was initiated by United Nations Office of Outer Space Affairs and CEOS Working Group for Information Systems and Services (WGISS). The initial driver was to demonstrate international interoperability using various space agency sensors and models along with regional in-situ ground sensors. In 2010, the team created a preliminary semi-manual system to demonstrate moving and combining key data streams and delivering the data to the Namibia Department of Hydrology during their flood season which typically is January through April. In this pilot, a variety of moderate resolution and high resolution satellite flood imagery was rapidly delivered and used in conjunction with flood predictive models in Namibia. This was collected in conjunction with ground measurements and was used to examine how to create a customized flood early warning system. During the first year, the team made use of SensorWeb technology to gather various sensor data which was used to monitor flood waves traveling down basins originating in Angola, but eventually flooding villages in Namibia. The team made use of standardized interfaces such as those articulated

  6. Real Time Monitoring of Flooding from Microwave Satellite Observations

    NASA Technical Reports Server (NTRS)

    Galantowicz, John F.; Frey, H. (Technical Monitor)

    2001-01-01

    In this report, we review the progress to date including results from data analyses and present a schedule of milestones for the remainder of the project. We discuss the processing of flood extent data and SSM/I brightness temperature data for the 1993 Midwest Flood. We present preliminary results from the derivation of open water fraction from brightness temperatures.

  7. An Experimental System for a Global Flood Prediction: From Satellite Precipitation Data to a Flood Inundation Map

    NASA Technical Reports Server (NTRS)

    Adler, Robert

    2007-01-01

    Floods impact more people globally than any other type of natural disaster. It has been established by experience that the most effective means to reduce the property damage and life loss caused by floods is the development of flood early warning systems. However, advances for such a system have been constrained by the difficulty in estimating rainfall continuously over space (catchment-. national-, continental-. or even global-scale areas) and time (hourly to daily). Particularly, insufficient in situ data, long delay in data transmission and absence of real-time data sharing agreements in many trans-boundary basins hamper the development of a real-time system at the regional to global scale. In many countries around the world, particularly in the tropics where rainfall and flooding co-exist in abundance, satellite-based precipitation estimation may be the best source of rainfall data for those data scarce (ungauged) areas and trans-boundary basins. Satellite remote sensing data acquired and processed in real time can now provide the space-time information on rainfall fluxes needed to monitor severe flood events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models, which can be parameterized by a tailored geospatial database. An example that is a key to this progress is NASA's contribution to the Tropical Rainfall Measuring Mission (TRMM), launched in November 1997. Hence, in an effort to evolve toward a more hydrologically-relevant flood alert system, this talk articulates a module-structured framework for quasi-global flood potential naming, that is 'up to date' with the state of the art on satellite rainfall estimation and the improved geospatial datasets. The system is modular in design with the flexibility that permits changes in the model structure and in the choice of components. Four major components included in the system are: 1) multi-satellite precipitation estimation; 2) characterization of

  8. Monitoring Floods with NASA's ST6 Autonomous Sciencecraft Experiment: Implications on Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Ip, F.; Dohm, J. M.; Baker, V. R.; Castano, B.; Chien, S.; Cichy, B.; Davies, A. G.; Doggett, T.; Greeley, R.; Sherwood, R. L.

    2005-03-01

    Space autonomy technology together with floodwater classifiers developed as part of NASA's Autonomous Sciencecraft Experiment (ASE) creates the new capability to autonomously detect, assess, react to, and monitor dynamic events such as flooding.

  9. Innovative Remote Sensing: Flood Monitoring using GNSS Reflectometry

    NASA Astrophysics Data System (ADS)

    Beckheinrich, Jamila; Hirrle, Angelika; Schön, Steffen; Beyerle, Georg; Semmling, Maximillian; Apel, Heiko; Wickert, Jens

    2014-05-01

    An increase of the intensity and frequency of extreme precipitation events are observed in the last decade due to climate changing conditions. Resulting floods pose significant socio-economic problems in areas like on the banks of the Mekong Delta with dense population. To quantify and predict the impact of these flooding events to the local population it is important to measure and understand the related hydrological processes. Satellite based altimetry offers water level measurements with high accuracy for oceans and very large rivers but typically with insufficient spatio-temporal resolution. The accuracy decreases in coastal areas. Water level gauging instruments offer a high accuracy and temporal resolution but for a single location only. However, the number of water level gauging stations worldwide is decreasing. GNSS-Reflectometry (GNSS-R) can fill the gap between these two measurement methods. Earth reflected L-band signals from the Global Navigation Satellite Systems (GNSS) show a high reflectivity on water surfaces. This property is used to derive water level height changes. In principle two different GNSS-R altimetry methods exist: based on code or carrier phase observations. Our research activities focus on the phase-based altimetric application of GNSS-R. In March 2012, a two-week measurement campaign was conducted in Can Tho City, Vietnam within the WISDOM (Water related Information System for the sustainable Development Of the Mekong Delta) research project. Several reflection traces on the 150 m wide Can Tho River section are recorded with a dedicated GNSS-R receiver developed in cooperation between GFZ and JAVAD. To track the direct and the reflected signal separately, two antennas are used. The analysis of the recorded signals shows a superposition of the signal reflected by the water surface with other multipath signals. These occur due to the surrounding of the antennas (vegetation, buildings). To separate these different multipath signals and

  10. Timetable of an operational flood forecasting system

    NASA Astrophysics Data System (ADS)

    Liechti, Katharina; Jaun, Simon; Zappa, Massimiliano

    2010-05-01

    At present a new underground part of Zurich main station is under construction. For this purpose the runoff capacity of river Sihl, which is passing beneath the main station, is reduced by 40%. If a flood is to occur the construction site is evacuated and gates can be opened for full runoff capacity to prevent bigger damages. However, flooding the construction site, even if it is controlled, is coupled with costs and retardation. The evacuation of the construction site at Zurich main station takes about 2 to 4 hours and opening the gates takes another 1 to 2 hours each. In the upper part of the 336 km2 Sihl catchment the Sihl lake, a reservoir lake, is situated. It belongs and is used by the Swiss Railway Company for hydropower production. This lake can act as a retention basin for about 46% of the Sihl catchment. Lowering the lake level to gain retention capacity, and therewith safety, is coupled with direct loss for the Railway Company. To calculate the needed retention volume and the water to be released facing unfavourable weather conditions, forecasts with a minimum lead time of 2 to 3 days are needed. Since the catchment is rather small, this can only be realised by the use of meteorological forecast data. Thus the management of the construction site depends on accurate forecasts to base their decisions on. Therefore an operational hydrological ensemble prediction system (HEPS) was introduced in September 2008 by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL). It delivers daily discharge forecasts with a time horizon of 5 days. The meteorological forecasts are provided by MeteoSwiss and stem from the operational limited-area COSMO-LEPS which downscales the ECMWF ensemble prediction system to a spatial resolution of 7 km. Additional meteorological data for model calibration and initialisation (air temperature, precipitation, water vapour pressure, global radiation, wind speed and sunshine duration) and radar data are also provided by

  11. Decadal monitoring of the Niger Inner Delta flood dynamics using MODIS optical data

    NASA Astrophysics Data System (ADS)

    Ogilvie, Andrew; Belaud, Gilles; Delenne, Carole; Bailly, Jean-Stéphane; Bader, Jean-Claude; Oleksiak, Aurélie; Ferry, Luc; Martin, Didier

    2015-04-01

    Wetlands provide a vital resource to ecosystem services and associated rural livelihoods but their extent, geomorphological heterogeneity and flat topography make the representation of their hydrological functioning complex. A semi automated method exploiting 526 MODIS (Moderate Resolution Imaging Spectroradiometer) 8-day 500 m resolution images was developed to study the spatial and temporal dynamics of the annual flood across the Niger Inner Delta over the period 2000-2011. A composite band ratio index exploiting the Modified Normalised Difference Water Index (MNDWI) and Normalised Difference Moisture Index (NDMI) with fixed thresholds provided the most accurate detection of flooded areas out of six commonly used band ratio indices. K-means classified Landsat images were used to calibrate the thresholds. Estimated flooded surface areas were evaluated against additional classified Landsat images, previous studies and field stage data for a range of hydrological units: river stretches, lakes, floodplains and irrigated areas. This method illustrated how large amounts of MODIS images may be exploited to monitor flood dynamics with adequate spatial and temporal resolution and good accuracy, except during the flood rise due to cloud presence. Previous correlations between flow levels and flooded areas were refined to account for the hysteresis as the flood recedes and for the varying amplitude of the flood. Peak flooded areas varied between 10 300 km2 and 20 000 km2, resulting in evaporation losses ranging between 12 km3 and 21 km3. Direct precipitation assessed over flooded areas refined the wetland's water balance and infiltration estimates. The knowledge gained on the timing, duration and extent of the flood across the wetland and in lakes, floodplains and irrigated plots may assist farmers in agricultural water management. Furthermore insights provided on the wetland's flood dynamics may be used to develop and calibrate a hydraulic model of the flood in the Niger

  12. Flood Risk Management in Iowa through an Integrated Flood Information System

    NASA Astrophysics Data System (ADS)

    Demir, Ibrahim; Krajewski, Witold

    2013-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 1100 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert

  13. Advanced dive monitoring system.

    PubMed

    Sternberger, W I; Goemmer, S A

    1999-01-01

    The US Navy supports deep diving operations with a variety of mixed-gas life support systems. A systems engineering study was conducted for the Naval Experimental Dive Unit (Panama City, FL) to develop a concept design for an advanced dive monitoring system. The monitoring system is intended primarily to enhance diver safety and secondarily to support diving medicine research. Distinct monitoring categories of diver physiology, life support system, and environment are integrated in the monitoring system. A system concept is proposed that accommodates real-time and quantitative measurements, noninvasive physiological monitoring, and a flexible and expandable implementation architecture. Human factors and ergonomic design considerations have been emphasized to assure that there is no impact on the diver's primary mission. The Navy has accepted the resultant system requirements and the basic design concept. A number of monitoring components have been implemented and successfully support deep diving operations.

  14. Flood alert system based on bayesian techniques

    NASA Astrophysics Data System (ADS)

    Gulliver, Z.; Herrero, J.; Viesca, C.; Polo, M. J.

    2012-04-01

    analyzed, where the water level, with time lags of 12 hours related to the concentration time, was found to be most significant. In short, the fits to the different distribution functions of extremes were unsatisfactory, as the data were of poor quality and scant. This problem with data is not unusual in small and medium sized Mediterranean basins and becomes the real challenge to any prediction system based only on statistical methods. The aim of the resulting tool is to develop and maintain a numerical short-range weather forecasting system for operational use by the regional water management entities. The development of this tool is also corroborated by recent survey results, which identify the need to develop site specific models for water management in these Mediterranean regions, so prone to flash flood events (NOVIWAM, 2011 Novel Integrated Water Management systems for Southern European Regions, Seventh Framework Programme, EC, 2010-2013).

  15. Development of a flood-warning system and flood-inundation mapping in Licking County, Ohio

    USGS Publications Warehouse

    Ostheimer, Chad J.

    2012-01-01

    Digital flood-inundation maps for selected reaches of South Fork Licking River, Raccoon Creek, North Fork Licking River, and the Licking River in Licking County, Ohio, were created by the U.S. Geological Survey (USGS), in cooperation with the Ohio Department of Transportation; U.S. Department of Transportation, Federal Highway Administration; Muskingum Watershed Conservancy District; U.S. Department of Agriculture, Natural Resources Conservation Service; and the City of Newark and Village of Granville, Ohio. The inundation maps depict estimates of the areal extent of flooding corresponding to water levels (stages) at the following USGS streamgages: South Fork Licking River at Heath, Ohio (03145173); Raccoon Creek below Wilson Street at Newark, Ohio (03145534); North Fork Licking River at East Main Street at Newark, Ohio (03146402); and Licking River near Newark, Ohio (03146500). The maps were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning system that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. As part of the flood-warning streamflow network, the USGS re-installed one streamgage on North Fork Licking River, and added three new streamgages, one each on North Fork Licking River, South Fork Licking River, and Raccoon Creek. Additionally, the USGS upgraded a lake-level gage on Buckeye Lake. Data from the streamgages and lake-level gage can be used by emergency-management personnel, in conjunction with the flood-inundation maps, to help determine a course of action when flooding is imminent. Flood profiles for selected reaches were prepared by calibrating steady-state step-backwater models to selected, established streamgage rating curves. The step-backwater models then were used to determine water-surface-elevation profiles for up to 10 flood stages at a streamgage with corresponding streamflows ranging from approximately

  16. Urban Flood Management with Integrated Inland-River System in Seoul

    NASA Astrophysics Data System (ADS)

    Moon, Y. I.; Kim, J. S.; Yuk, J. M.

    2015-12-01

    Global warming and climate change have caused significant damage and loss of life worldwide. The pattern of natural disasters has gradually diversified and their frequency is increasing. The impact of climate change on flood risk in urban rivers is of particular interest because these areas are typically densely populated. The occurrence of urban river flooding due to climate change not only causes significant loss of life and property but also causes health and social problems. It is therefore necessary to develop a scientific urban flood management system to cope with and reduce the impacts of climate change, including flood damage. In this study, we are going to introduce Integrated Inland-River Flood Analysis System in Seoul to conduct predictions on flash rain or short-term rainfall by using radar and satellite information and perform prompt and accurate prediction on the inland flooded areas. In addition, this urban flood management system can be used as a tool for decision making of systematic disaster prevention through real-time monitoring.

  17. Mobile health monitoring systems.

    PubMed

    Walker, William; Aroul, A L Praveen; Bhatia, Dinesh

    2009-01-01

    Advancements are being made towards a cheap and effective means for health monitoring. A mobile monitoring system is proposed for monitoring a bicycle rider using light weight, low power wireless sensors. Biometric and environmental information pertaining to the bicycle rider is captured, transmitted to, and stored in a remote database with little user interaction required. Remote users have real time access to the captured information through a web application. Possible applications for this system include the monitoring of a soldier in the battlefield and the monitoring of a patient during an ambulance ride. PMID:19965041

  18. Inductive System Health Monitoring

    NASA Technical Reports Server (NTRS)

    Iverson, David L.

    2004-01-01

    The Inductive Monitoring System (IMS) software was developed to provide a technique to automatically produce health monitoring knowledge bases for systems that are either difficult to model (simulate) with a computer or which require computer models that are too complex to use for real time monitoring. IMS uses nominal data sets collected either directly from the system or from simulations to build a knowledge base that can be used to detect anomalous behavior in the system. Machine learning and data mining techniques are used to characterize typical system behavior by extracting general classes of nominal data from archived data sets. IMS is able to monitor the system by comparing real time operational data with these classes. We present a description of learning and monitoring method used by IMS and summarize some recent IMS results.

  19. Operational flood forecasting system of Umbria Region "Functional Centre

    NASA Astrophysics Data System (ADS)

    Berni, N.; Pandolfo, C.; Stelluti, M.; Ponziani, F.; Viterbo, A.

    2009-04-01

    The hydrometeorological alert office (called "Decentrate Functional Centre" - CFD) of Umbria Region, in central Italy, is the office that provides technical tools able to support decisions when significant flood/landslide events occur, furnishing 24h support for the whole duration of the emergency period, according to the national directive DPCM 27 February 2004 concerning the "Operating concepts for functional management of national and regional alert system during flooding and landslide events for civil protection activities purposes" that designs, within the Italian Civil Defence Emergency Management System, a network of 21 regional Functional Centres coordinated by a central office at the National Civil Protection Department in Rome. Due to its "linking" role between Civil Protection "real time" activities and environmental/planning "deferred time" ones, the Centre is in charge to acquire and collect both real time and quasi-static data: quantitative data from monitoring networks (hydrometeorological stations, meteo radar, ...), meteorological forecasting models output, Earth Observation data, hydraulic and hydrological simulation models, cartographic and thematic GIS data (vectorial and raster type), planning studies related to flooding areas mapping, dam managing plans during flood events, non instrumental information from direct control of "territorial presidium". A detailed procedure for the management of critical events was planned, also in order to define the different role of various authorities and institutions involved. Tiber River catchment, of which Umbria region represents the main upper-medium portion, includes also regional trans-boundary issues very important to cope with, especially for what concerns large dam behavior and management during heavy rainfall. The alert system is referred to 6 different warning areas in which the territory has been divided into and based on a threshold system of three different increasing critical levels according

  20. Monitoring Cray Cooling Systems

    SciTech Connect

    Maxwell, Don E; Ezell, Matthew A; Becklehimer, Jeff; Donovan, Matthew J; Layton, Christopher C

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  1. An online system for rapid and simultaneous flood mapping scenario simulations - the Zambezi FloodDSS

    NASA Astrophysics Data System (ADS)

    Schulz, Alexander; Kiesel, Jens; Kling, Harald; Preishuber, Martin; Petersen, Georg

    2015-04-01

    The Zambezi is the fourth largest river basin in Africa. Catchment hydrology is very complex due to significant spatio-temporal variations in precipitation and retention in surface water bodies including Lake Malawi, various large natural floodplains and swamps as well as the two large artificial reservoirs Lake Kariba and Lake Cahora Bassa. The Zambezi DSS, a free web-based system, can be used to simulate catchment hydrology under various climate scenarios and user defined reservoir operation rules. Since the Mozambican part of the river is prone to flooding, causing loss of life and considerable damages, the DSS can provide discharges along the river as an input to hydraulic scenario simulations and flood mapping. However, a dynamic link to a server-based hydraulic model would compromise the DSS as a fast and open online system: Using this coupled system, hydraulic simulations and flood mapping would have to be carried out for each simulated scenario, which is a time consuming, computationally intense process and difficult to implement in an online system which is used by multiple users, each creating multiple flood maps simultaneously. We thus developed a different approach to dynamically derive flood maps along the main channel of the Zambezi within Mozambique for any scenario produced by the Zambezi DSS: The HEC-RAS model has been used to simulate physically possible range of discharges for more than 200 flow events at more than 1900 cross sections. Each event is converted to an inundation map, which is cut into inundation polygons at every cross section and saved with the according discharge and water level value in a database. The database is extended by polygons showing reservoir surface area extents of existing and future dams depending on reservoir water level. This database is dynamically linked to the Zambezi DSS and flood inundation maps are produced for any possible DSS-scenario using hydraulic plausibility constraints. Internal flood map generation

  2. Safety system status monitoring

    SciTech Connect

    Lewis, J.R.; Morgenstern, M.H.; Rideout, T.H.; Cowley, P.J.

    1984-03-01

    The Pacific Northwest Laboratory has studied the safety aspects of monitoring the preoperational status of safety systems in nuclear power plants. The goals of the study were to assess for the NRC the effectiveness of current monitoring systems and procedures, to develop near-term guidelines for reducing human errors associated with monitoring safety system status, and to recommend a regulatory position on this issue. A review of safety system status monitoring practices indicated that current systems and procedures do not adequately aid control room operators in monitoring safety system status. This is true even of some systems and procedures installed to meet existing regulatory guidelines (Regulatory Guide 1.47). In consequence, this report suggests acceptance criteria for meeting the functional requirements of an adequate system for monitoring safety system status. Also suggested are near-term guidelines that could reduce the likelihood of human errors in specific, high-priority status monitoring tasks. It is recommended that (1) Regulatory Guide 1.47 be revised to address these acceptance criteria, and (2) the revised Regulatory Guide 1.47 be applied to all plants, including those built since the issuance of the original Regulatory Guide.

  3. Development of a Flood-Warning System and Flood-Inundation Mapping for the Blanchard River in Findlay, Ohio

    USGS Publications Warehouse

    Whitehead, Matthew T.; Ostheimer, Chad J.

    2009-01-01

    Digital flood-inundation maps of the Blanchard River in Findlay, Ohio, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Findlay, Ohio. The maps, which correspond to water levels at the USGS streamgage at Findlay (04189000), were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning system that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. The USGS reestablished one streamgage and added another on the Blanchard River upstream of Findlay. Additionally, the USGS established one streamgage each on Eagle and Lye Creeks, tributaries to the Blanchard River. The stream-gage sites were equipped with rain gages and multiple forms of telemetry. Data from these gages can be used by emergency management personnel to determine a course of action when flooding is imminent. Flood profiles computed by means of a step-backwater model were prepared and calibrated to a recent flood with a return period exceeding 100 years. The hydraulic model was then used to determine water-surface-elevation profiles for 11 flood stages with corresponding streamflows ranging from approximately 2 to 100 years in recurrence interval. The simulated flood profiles were used in combination with digital elevation data to delineate the flood-inundation areas. Maps of Findlay showing flood-inundation areas overlain on digital orthophotographs are presented for the selected floods.

  4. Monitoring and Management of Coastal Zones Which are Under Flooding Risk with Remote Sensing and GIS

    NASA Astrophysics Data System (ADS)

    Direk, S.; Seker, D. Z.; Musaoglu, N.; Gazioglu, C.

    2012-12-01

    Coastal zone areas play an important role in value to the welfare of nations and provides natural, social, cultural and economic benefits and increased quality of life. A great majority of the earth population live in coastal zone areas and they are under flooding risk due to tsunamies, storm surge, typhoon, sea level rise, precipitation and dam destruction. Global warming from the grenhouse effect raises sea level by expanding seawater, melting water and causing ice sheets to melt. Based on a selection of nine long, high quality tide gauge records, Holgate analyzed that the Mean Sea Level (MSL) rise over the period of 1904-2003 was found to be 1.74 ± 0.16 mm/year. Consider the whole century showed that the high decadal rates of change in global MSL was observed during the last 20 years of the records. Based on 4 tide gauge records in Marmara Sea, Aegean Sea and Eastern Mediterranean, Yildiz analyzed that MSL rise during 1984-2002 was found to be 9.6 ± 0.9 mm/year, 5.1 ± 1 mm/year and 8.7 ± 0.8 mm/year respectively. By analyzing the whole recorded data, it is found that the annual MSL rise in eastern mediterranean was 4-7 mm/year which was higher than the global prediction. A rise in sea level would accelerate coastal erosion, aggravate flooding, threaten coastal area structures and inundate wetlands. The salinity of rivers and bays would increase. A 1 meter in sea level rise would enable a 15-20 year storm to flood many areas. Higher water levels would reduce coastal drainage which would cause an increase flooding by rain storms. Finally, a rise in sea level would raise water tables and would flood basements. Geographic Information System (GIS) is a state of art technology and operationally being used more frequently by commercial and scientific society. GIS system provides a stable platform for the integration of data from different sources, allows a large quantity of data to be stored and processed, provides a seamless geographical database and provides a

  5. Designing Flood Management Systems for Joint Economic and Ecological Robustness

    NASA Astrophysics Data System (ADS)

    Spence, C. M.; Grantham, T.; Brown, C. M.; Poff, N. L.

    2015-12-01

    Freshwater ecosystems across the United States are threatened by hydrologic change caused by water management operations and non-stationary climate trends. Nonstationary hydrology also threatens flood management systems' performance. Ecosystem managers and flood risk managers need tools to design systems that achieve flood risk reduction objectives while sustaining ecosystem functions and services in an uncertain hydrologic future. Robust optimization is used in water resources engineering to guide system design under climate change uncertainty. Using principles introduced by Eco-Engineering Decision Scaling (EEDS), we extend robust optimization techniques to design flood management systems that meet both economic and ecological goals simultaneously across a broad range of future climate conditions. We use three alternative robustness indices to identify flood risk management solutions that preserve critical ecosystem functions in a case study from the Iowa River, where recent severe flooding has tested the limits of the existing flood management system. We seek design modifications to the system that both reduce expected cost of flood damage while increasing ecologically beneficial inundation of riparian floodplains across a wide range of plausible climate futures. The first robustness index measures robustness as the fraction of potential climate scenarios in which both engineering and ecological performance goals are met, implicitly weighting each climate scenario equally. The second index builds on the first by using climate projections to weight each climate scenario, prioritizing acceptable performance in climate scenarios most consistent with climate projections. The last index measures robustness as mean performance across all climate scenarios, but penalizes scenarios with worse performance than average, rewarding consistency. Results stemming from alternate robustness indices reflect implicit assumptions about attitudes toward risk and reveal the

  6. An Improved Global Flood Forecasting System Using Satellite Rainfall Information and a Hydrological Model (Invited)

    NASA Astrophysics Data System (ADS)

    Adler, R. F.; Wu, H.; Tian, Y.

    2013-12-01

    A real-time experimental system to estimate and forecast floods over the globe, the Global Flood Monitoring System (GFMS), has been significantly improved to provide flood detection, streamflow and inundation mapping information at higher resolution (as fine as 1 km) and nowcasts and forecasts (out to five days). Images and output data are available for use by the community with updates available every three hours (http://flood.umd.edu). The system uses satellite-based rainfall information, currently the TRMM Multi-satellite Precipitation Analysis [TMPA]), other satellite and conventional information and a newly-developed hydrological and routing combination model. The improved combined model, the Dominant river Routing Integrated with VIC Environment (DRIVE) system, is based on the VIC (Variable Infiltration Capacity) land surface model (U. of Washington) and the Dominant River Tracing Routing (DRTR) method. Within the DRIVE system the surface hydrological calculations are carried out at 0.125° latitude-longitude resolution with routing, streamflow and other calculations done at that resolution and at 1km resolution. Flood detection and intensity estimates are based on water depth and streamflow thresholds calculated from a 15-year retrospective run using the satellite rainfall and model. This period is also used for testing and evaluation with results indicating improved streamflow estimation and flood detection statistics. The satellite rainfall data are integrated with global model NASA GEOS-5 Numerical Weather Prediction (NWP) rainfall predictions (adjusted to the satellite data) to extend the flood calculations out to five days. Examples of results for recent flood events are presented along with validation statistics and comparison with other flood observations (e.g., inundation calculations vs. MODIS and/or SAR flood maps). The outlook for further development in this area in terms of increased utility for national and international disaster management

  7. Flood member detection for real-time structural health monitoring of sub-sea structures of offshore steel oilrigs

    NASA Astrophysics Data System (ADS)

    Mijarez, Rito; Gaydecki, Patrick; Burdekin, Michael

    2007-10-01

    A structural flood detection system for real-time health monitoring in the hollow sub-sea members of new offshore steel oilrigs is presented. Field-proven flood member detection techniques, integrated within the concept of health monitoring, offer an alternative to underwater nondestructive testing methods based on ultrasound and x-rays, which have been used to detect the presence of seawater in these applications, often with diverse or remote operating vehicles. The system employs a single piezoelectric transducer which can be permanently attached to the inner wall of every sub-sea structure and which is powered by a normally inert seawater battery. Upon activation, the sensor transmits ultrasonic chirp or tone encoded pulses, in the range of 21-42 kHz, to a monitoring receiver system at deck level for decoding and identifying flooded members. Experiments have been carried out using a jointed steel pipe structure, 7 m in length, 0.5 m in diameter and 16 mm in thickness. This structure was flooded and completely immersed in seawater. Two approaches to the system were considered during the investigation, depending on the communication channel exploited; the former utilized guided waves, on the basis of exploiting the steel structure as a wave-guide; the latter employed underwater ultrasound, based on using the seawater as a propagation medium. Although severe losses were encountered in both approaches, the system effectively identified the signals above the background noise. This work forms the foundation for the future development of a system that can be used with large, commercial offshore platforms.

  8. Utility of Satellite Data to monitor drought and floods in India

    NASA Astrophysics Data System (ADS)

    Mishra, V.

    2015-12-01

    Extreme hydrologic events such as droughts and floods pose tremendous pressure on society. The damage due to extreme events has increased during the recent decades and it may increase even further under the projected future climate. Real time monitoring of hydrologic extremes is essential to minimize losses to society and infrastructure. However, in many areas, where gauge based observations are not available in timely manner, real-time monitoring of droughts and floods has been challenging. In the absence of in-situ gauge based observations, satellite data from the various platform may provide an useful information for the real-time monitoring. Using the precipitation data from the Tropical Rainfall Measurement Mission (TRMM) a real-time monitor that updates on daily basis was developed for India. The hydrologic variables (soil moisture, runoff, and Evapotranspiration) were simulated using the Variable Infiltration Capacity (VIC) model. The real-time monitor was successfully evaluated for the drought and flood monitoring in India. The monitor provides soil moisture and total runoff conditions at a high resolution. Moreover, the monitor can provide a valuable information on daily streamflow monitoring at the selected gauge stations in India.

  9. Surface Water and Flood Extent Mapping, Monitoring, and Modeling Products and Services for the SERVIR Regions

    NASA Technical Reports Server (NTRS)

    Anderson, Eric

    2016-01-01

    SERVIR is a joint NASA - US Agency for International Development (USAID) project to improve environmental decision-making using Earth observations and geospatial technologies. A common need identified among SERVIR regions has been improved information for disaster risk reduction and in specific surface water and flood extent mapping, monitoring and forecasting. Of the 70 SERVIR products (active, complete, and in development), 4 are related to surface water and flood extent mapping, monitoring or forecasting. Visit http://www.servircatalog.net for more product details.

  10. Using satellite images to monitor glacial-lake outburst floods: Lago Cachet Dos drainage, Chile

    USGS Publications Warehouse

    Friesen, Beverly A.; Cole, Christopher J.; Nimick, David A.; Wilson, Earl M.; Fahey, Mark J.; McGrath, Daniel J.; Leidich, Jonathan

    2015-01-01

    During 2008–2013, 14 GLOFs were released from Lago Cachet Dos and created environmental and safety concerns for downstream residents and to infrastructure. If GLOFs and the consequent headward erosion continue, the moraine that creates Lago Cachet Uno could be destabilized and breached, and the two lakes could merge. If the two lakes become connected, the volume of future GLOFs likely would be greater and thus cause longer and (or) more extensive flooding downstream. Additional GLOFs from Lago Cachet Dos are expected in the future, and continued environmental monitoring could provide an early warning system as well as scientific information that could increase our understanding of GLOFs and their consequences. GLOFs occur in glaciated areas around the world and remote sensing technologies can allow researchers to better understand—and potentially predict—future GLOF events.

  11. Global precipitation measurement (GPM) mission and its application for flood monitoring

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Oki, Riko; Shimizu, Shuji; Kojima, Masahiro

    2006-12-01

    The Global Precipitation Measurement (GPM) mission is an expanded follow-on mission of the current Tropical Rainfall Measuring Mission (TRMM). The concept of GPM is, 1) TRMM-like, non-sun-synchronous core satellite carrying the Dual-frequency Precipitation Radar (DPR) to be developed by Japan and a microwave radiometer to be developed by United States, and 2) constellation of satellites in polar orbit, each carrying a microwave radiometer provided by international partner. The constellation system of GPM will make it possible every three-hour global precipitation measurement. Because of its concept on focusing high-accurate and high-frequent global precipitation observation, GPM has a unique position among future Earth observation missions. GPM international partnerships will embody concept of GEOSS. Observation data acquired by the GPM mission are expected to be used for both Earth environmental research and various societal benefit areas. One of most expected application fields is weather prediction. Use of high-frequent observation in numerical weather prediction models will improve weather forecasting especially for extreme events such as tropical cyclones and heavy rain. Another example is application to flood monitoring and forecasting. Recent increasing needs of real-time flood information required from many countries especially in Asia will strongly support operational application of GPM products in this field.

  12. Applications of the PUSH satellite precipitation error scheme for flood monitoring

    NASA Astrophysics Data System (ADS)

    Porcacchia, Leonardo; Maggioni, Viviana; Sapiano, Mathew; Adler, Robert

    2015-04-01

    The PUSH (Precipitation Uncertainties for Satellite Hydrology) error scheme, previously validated over Oklahoma, is now tested over a different study area at higher temporal resolution. A new product is being used for the reference precipitation: Stage IV Radar data available for the contiguous United States, at three hourly and 0.25° temporal/spatial resolution. We focus our study on Iowa during 2009-2013 and perform a comparison with the previous work over Oklahoma. This study is a first attempt to generalize the PUSH framework to other land regions of the world. This will be of particular use in regions of the world where gauges are sparse, and satellite retrievals represent the only available precipitation estimate on which hydrological applications (e.g., flood forecasting) and water resources management can rely. Results show the versatility of the PUSH code and its ability to reproduce the probability density function of the benchmark precipitation and its error spatial pattern. The precipitation product, corrected by using the estimated error, is given as input to the Global Flood Monitoring System (GFMS), developed by the University of Maryland, to produce streamflow and routed runoff estimations across the study area. The model results are thus compared with the data collected during the GPM field campaign IFloodS in the spring of 2013.

  13. Monitoring of riparian vegetation response to flood disturbances using terrestrial photography

    NASA Astrophysics Data System (ADS)

    Džubáková, K.; Molnar, P.; Schindler, K.; Trizna, M.

    2014-03-01

    The distribution of riparian vegetation on river floodplains is strongly impacted by floods. In this study we use a new setup with high resolution ground-based cameras in an Alpine gravel bed braided river to quantify the immediate response of riparian vegetation to flood disturbance with the use of vegetation indices. Five largest floods with return periods between 1.4 and 20.1 years in the period 2008-2011 in the Maggia River were used to evaluate patterns of vegetation response in three distinct floodplain units (main bar, secondary bar, transitional zone) and to compare seven vegetation indices. The results show both negative (damage) and positive (enhancement) response of vegetation in a short period following floods, with a selective impact based on the hydrogeomorphological setting and the intensity of the flood forcing. The spatial distribution of vegetation damage provides a coherent picture of floodplain response in the three floodplain units with different flood stress. We show that the tested vegetation indices generally agree on the direction of predicted change and its spatial distribution. The average disagreement between indices was in the range 14.4-24.9% despite the complex environment, i.e. highly variable surface wetness, high gravel reflectance, extensive water-soil-vegetation contact zones. We conclude that immediate vegetation response to flood disturbance may be effectively monitored by terrestrial photography with potential for long-term assessment in river management and restoration projects.

  14. Remote Monitor Alarm System

    NASA Technical Reports Server (NTRS)

    Stute, Robert A. (Inventor); Galloway, F. Houston (Inventor); Medelius, Pedro J. (Inventor); Swindle, Robert W. (Inventor); Bierman, Tracy A. (Inventor)

    1996-01-01

    A remote monitor alarm system monitors discrete alarm and analog power supply voltage conditions at remotely located communications terminal equipment. A central monitoring unit (CMU) is connected via serial data links to each of a plurality of remote terminal units (RTUS) that monitor the alarm and power supply conditions of the remote terminal equipment. Each RTU can monitor and store condition information of both discrete alarm points and analog power supply voltage points in its associated communications terminal equipment. The stored alarm information is periodically transmitted to the CMU in response to sequential polling of the RTUS. The number of monitored alarm inputs and permissible voltage ranges for the analog inputs can be remotely configured at the CMU and downloaded into programmable memory at each RTU. The CMU includes a video display, a hard disk memory, a line printer and an audio alarm for communicating and storing the alarm information received from each RTU.

  15. Remote maintenance monitoring system

    NASA Technical Reports Server (NTRS)

    Simpkins, Lorenz G. (Inventor); Owens, Richard C. (Inventor); Rochette, Donn A. (Inventor)

    1992-01-01

    A remote maintenance monitoring system retrofits to a given hardware device with a sensor implant which gathers and captures failure data from the hardware device, without interfering with its operation. Failure data is continuously obtained from predetermined critical points within the hardware device, and is analyzed with a diagnostic expert system, which isolates failure origin to a particular component within the hardware device. For example, monitoring of a computer-based device may include monitoring of parity error data therefrom, as well as monitoring power supply fluctuations therein, so that parity error and power supply anomaly data may be used to trace the failure origin to a particular plane or power supply within the computer-based device. A plurality of sensor implants may be rerofit to corresponding plural devices comprising a distributed large-scale system. Transparent interface of the sensors to the devices precludes operative interference with the distributed network. Retrofit capability of the sensors permits monitoring of even older devices having no built-in testing technology. Continuous real time monitoring of a distributed network of such devices, coupled with diagnostic expert system analysis thereof, permits capture and analysis of even intermittent failures, thereby facilitating maintenance of the monitored large-scale system.

  16. Use of Real-time Satellite Rainfall Information in a Global Flood Estimation System

    NASA Astrophysics Data System (ADS)

    Adler, R. F.; Wu, H.; Tian, Y.

    2012-12-01

    The TRMM Multi-satellite Precipitation Analysis (TMPA) is a merger of precipitation information from mainly passive microwave sensors on polar orbiting satellites. This information is cross-calibrated in terms of rainrate using data from the Tropical Rainfall Measuring Mission (TRMM) flying in an inclined orbit at 35°. A research quality analysis is produced a few months after observation time, but a real-time product is also generated within a few hours of observation. This real-time, or RT, product can be used to quickly diagnose heavy rain events over most of the globe. This rainfall information is also used as the key input into an experimental system, the Global Flood Monitoring System (GFMS), which produces real-time, quasi-global flood estimates. Images and output data are available for use by the community (http://oas.gsfc.nasa.gov/globalflood/). The method uses the 3-hr resolution composite rainfall analyses as input into a hydrological model that calculates water depth and streamflow at each grid (at 0.125 ° latitude-longitude) over the tropics and mid-latitudes. Flood detection and intensity estimates are based on water depth thresholds calculated from a 13-year retrospective run using the satellite rainfall and model. Examination of individual cases in real-time or retrospectively often indicates skill in detecting the occurrence of a flood event and a reasonable evolution of water depth (at the scale of the calculation) and downstream movement of high water levels. A recently published study evaluating calculated flood occurrence from the GFMS against a global flood event database is reviewed. The statistics indicate that flood detection results improve with longer duration (> 3 days) floods and that the statistics are impacted by the presence of large dams, which are not accounted for in the model calculations. Overall, for longer floods in basins without large dams, the Probability of Detection (POD) of floods is ~ 0.7, while the False Alarm Rate

  17. Developments of the European Flood Awareness System (EFAS)

    NASA Astrophysics Data System (ADS)

    Olav Skøien, Jon; Salamon, Peter; Pappenberger, Florian; Wetterhall, Fredrik; Holst, Bo; Asp, Sara-Sofia; Garcia Padilla, Mercedes; Garcia Sanchez, Rafael J.; Schweim, Christoph; Ziese, Markus

    2016-04-01

    EFAS (http://www.efas.eu) is an operational system for flood forecasting and flood warning for Europe which has become fully operational as part of the Copernicus Emergency Management Service in 2012. The aim of EFAS is to gain time for preparedness measures before major flood events strike particularly for trans-national river basins both at country as well as on European level. This is achieved by providing complementary, added value information to the national hydrological services. Using a coherent model for all of Europe forced with a range of deterministic and ensemble weather forecasts, the system can give a probabilistic flood forecast for a medium range lead time (up to 10 days) independent of country borders. The system is under continuous development, and we will present the basic set up, some prominent examples of recent and ongoing developments and the future challenges.

  18. Laser beam monitoring system

    DOEpatents

    Weil, Bradley S.; Wetherington, Jr., Grady R.

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  19. Remotely Sensed Images for Flood Monitoring: Lessons Learned from the 2011 Midwestern US Floods

    NASA Astrophysics Data System (ADS)

    Sivanpillai, R.

    2014-12-01

    Remotely sensed images acquired by the member agencies of the International Charter on Space and Major Disasters (Charter Call ID# 362) in response to the 2011 Midwestern US Floods provided valuable information to first responders in several states along the Mississippi River. Economic damages were estimated to exceed 2 billion USD. Images collected by optical and RADAR sensors on satellites operated by seven countries, along with archived satellite imagery were rapidly processed and provided to first-responders in these states for planning relief efforts. This operation required collaboration among numerous international, national and local agencies, and data vendors. This presentation will share the experiences gained as the project manager of this activation and will highlight the Charter's role in requesting satellite imagery for disasters, identifying experts to process these data, and getting the information to first responders in a timely manner. Lessons learned in terms of addressing the needs of first responders from multi-state agencies will also be highlighted.

  20. Vital signs monitoring system

    NASA Technical Reports Server (NTRS)

    Steffen, Dale A. (Inventor); Sturm, Ronald E. (Inventor); Rinard, George A. (Inventor)

    1981-01-01

    A system is disclosed for monitoring vital physiological signs. Each of the system components utilizes a single hybrid circuit with each component having high accuracy without the necessity of repeated calibration. The system also has low power requirements, provides a digital display, and is of sufficiently small size to be incorporated into a hand-carried case for portable use. Components of the system may also provide independent outputs making the component useful, of itself, for monitoring one or more vital signs. The overall system preferably includes an ECG amplifier and cardiotachometer signal conditioner unit, an impedance pneumograph and respiration rate signal conditioner unit, a heart/breath rate processor unit, a temperature monitoring unit, a selector switch, a clock unit, and an LCD driver unit and associated LCDs, with the system being capable of being expanded as needed or desired, such as, for example, by addition of a systolic/diastolic blood pressure unit.

  1. An application of a flood risk analysis system for impact analysis of a flood control plan in a river basin

    NASA Astrophysics Data System (ADS)

    Dutta, Dushmanta; Herath, Srikantha; Musiake, Katumi

    2006-04-01

    An application of a flood risk analysis system is presented for the analysis on the impact of a proposed flood control plan in the Ichinomiya river basin, Chiba Prefecture, Japan. The system consists of two main modules: a physically based distributed hydrological model for flood inundation and a geographical information system (GIS)-based raster model for flood loss estimation. In the system, the grid-based distributed hydrological model simulates surface flood inundation parameters for user-specified spatial and temporal resolutions. At the end of each time step the simulated flood parameters in each grid are transferred to the GIS-based model for economic loss estimation. The proposed flood control plan consisted of three structural measures. These measures were then incorporated into the system to analyze their impacts on the reduction of flood inundation and resulting economic impacts for 50-year and 100-year return-period rainfall scenarios in the basin. From the analyses, it was found that the proposed flood control plan can reduce flood inundation in the basin for 50-year and 100-year return-period rainfalls to a great extent, and the resulting urban and agriculture damage in the basin can be reduced by over 70%.

  2. Improving flood prediction by the assimilation of satellite soil moisture in poorly monitored catchments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flood prediction in poorly monitored catchments is among the greatest challenges faced by hydrologists. To address this challenge, an increasing number of studies in the last decade have explored methods to integrate various existing observations from ground and satellites. One approach in particula...

  3. Copilot: Monitoring Embedded Systems

    NASA Technical Reports Server (NTRS)

    Pike, Lee; Wegmann, Nis; Niller, Sebastian; Goodloe, Alwyn

    2012-01-01

    Runtime verification (RV) is a natural fit for ultra-critical systems, where correctness is imperative. In ultra-critical systems, even if the software is fault-free, because of the inherent unreliability of commodity hardware and the adversity of operational environments, processing units (and their hosted software) are replicated, and fault-tolerant algorithms are used to compare the outputs. We investigate both software monitoring in distributed fault-tolerant systems, as well as implementing fault-tolerance mechanisms using RV techniques. We describe the Copilot language and compiler, specifically designed for generating monitors for distributed, hard real-time systems. We also describe two case-studies in which we generated Copilot monitors in avionics systems.

  4. Monitoring Niger River Floods from satellite Rainfall Estimates : overall skill and rainfall uncertainty propagation.

    NASA Astrophysics Data System (ADS)

    Gosset, Marielle; Casse, Claire; Peugeot, christophe; boone, aaron; pedinotti, vanessa

    2015-04-01

    Global measurement of rainfall offers new opportunity for hydrological monitoring, especially for some of the largest Tropical river where the rain gauge network is sparse and radar is not available. Member of the GPM constellation, the new French-Indian satellite Mission Megha-Tropiques (MT) dedicated to the water and energy budget in the tropical atmosphere contributes to a better monitoring of rainfall in the inter-tropical zone. As part of this mission, research is developed on the use of satellite rainfall products for hydrological research or operational application such as flood monitoring. A key issue for such applications is how to account for rainfall products biases and uncertainties, and how to propagate them into the end user models ? Another important question is how to choose the best space-time resolution for the rainfall forcing, given that both model performances and rain-product uncertainties are resolution dependent. This paper analyses the potential of satellite rainfall products combined with hydrological modeling to monitor the Niger river floods in the city of Niamey, Niger. A dramatic increase of these floods has been observed in the last decades. The study focuses on the 125000 km2 area in the vicinity of Niamey, where local runoff is responsible for the most extreme floods recorded in recent years. Several rainfall products are tested as forcing to the SURFEX-TRIP hydrological simulations. Differences in terms of rainfall amount, number of rainy days, spatial extension of the rainfall events and frequency distribution of the rain rates are found among the products. Their impacts on the simulated outflow is analyzed. The simulations based on the Real time estimates produce an excess in the discharge. For flood prediction, the problem can be overcome by a prior adjustment of the products - as done here with probability matching - or by analysing the simulated discharge in terms of percentile or anomaly. All tested products exhibit some

  5. Insightful monitoring of natural flood risk management features using a low-cost and participatory approach

    NASA Astrophysics Data System (ADS)

    Starkey, Eleanor; Barnes, Mhari; Quinn, Paul; Large, Andy

    2016-04-01

    Pressures associated with flooding and climate change have significantly increased over recent years. Natural Flood Risk Management (NFRM) is now seen as being a more appropriate and favourable approach in some locations. At the same time, catchment managers are also encouraged to adopt a more integrated, evidence-based and bottom-up approach. This includes engaging with local communities. Although NFRM features are being more readily installed, there is still limited evidence associated with their ability to reduce flood risk and offer multiple benefits. In particular, local communities and land owners are still uncertain about what the features entail and how they will perform, which is a huge barrier affecting widespread uptake. Traditional hydrometric monitoring techniques are well established but they still struggle to successfully monitor and capture NFRM performance spatially and temporally in a visual and more meaningful way for those directly affected on the ground. Two UK-based case studies are presented here where unique NFRM features have been carefully designed and installed in rural headwater catchments. This includes a 1km2 sub-catchment of the Haltwhistle Burn (northern England) and a 2km2 sub-catchment of Eddleston Water (southern Scotland). Both of these pilot sites are subject to prolonged flooding in winter and flash flooding in summer. This exacerbates sediment, debris and water quality issues downstream. Examples of NFRM features include ponds, woody debris and a log feature inspired by the children's game 'Kerplunk'. They have been tested and monitored over the 2015-2016 winter storms using low-cost techniques by both researchers and members of the community ('citizen scientists'). Results show that monitoring techniques such as regular consumer specification time-lapse cameras, photographs, videos and 'kite-cams' are suitable for long-term and low-cost monitoring of a variety of NFRM features. These techniques have been compared against

  6. Urine Monitoring System

    NASA Technical Reports Server (NTRS)

    Feedback, Daniel L.; Cibuzar, Branelle R.

    2009-01-01

    The Urine Monitoring System (UMS) is a system designed to collect an individual crewmember's void, gently separate urine from air, accurately measure void volume, allow for void sample acquisition, and discharge remaining urine into the Waste Collector Subsystem (WCS) onboard the International Space Station. The Urine Monitoring System (UMS) is a successor design to the existing Space Shuttle system and will resolve anomalies such as: liquid carry-over, inaccurate void volume measurements, and cross contamination in void samples. The crew will perform an evaluation of airflow at the ISS UMS urinal hose interface, a calibration evaluation, and a full user interface evaluation. o The UMS can be used to facilitate non-invasive methods for monitoring crew health, evaluation of countermeasures, and implementation of a variety of biomedical research protocols on future exploration missions.

  7. Advanced Monitoring systems initiative

    SciTech Connect

    R.J. Venedam; E.O. Hohman; C.F. Lohrstorfer; S.J. Weeks; J.B. Jones; W.J. Haas

    2004-09-30

    The Advanced Monitoring Systems Initiative (AMSI) actively searches for promising technologies and aggressively moves them from the research bench into DOE/NNSA end-user applications. There is a large unfulfilled need for an active element that reaches out to identify and recruit emerging sensor technologies into the test and evaluation function. Sensor research is ubiquitous, with the seeds of many novel concepts originating in the university systems, but at present these novel concepts do not move quickly and efficiently into real test environments. AMSI is a widely recognized, self-sustaining ''business'' accelerating the selection, development, testing, evaluation, and deployment of advanced monitoring systems and components.

  8. Integrated Flood Forecast and Virtual Dam Operation System for Water Resources and Flood Risk Management

    NASA Astrophysics Data System (ADS)

    Shibuo, Yoshihiro; Ikoma, Eiji; Lawford, Peter; Oyanagi, Misa; Kanauchi, Shizu; Koudelova, Petra; Kitsuregawa, Masaru; Koike, Toshio

    2014-05-01

    While availability of hydrological- and hydrometeorological data shows growing tendency and advanced modeling techniques are emerging, such newly available data and advanced models may not always be applied in the field of decision-making. In this study we present an integrated system of ensemble streamflow forecast (ESP) and virtual dam simulator, which is designed to support river and dam manager's decision making. The system consists of three main functions: real time hydrological model, ESP model, and dam simulator model. In the real time model, the system simulates current condition of river basins, such as soil moisture and river discharges, using LSM coupled distributed hydrological model. The ESP model takes initial condition from the real time model's output and generates ESP, based on numerical weather prediction. The dam simulator model provides virtual dam operation and users can experience impact of dam control on remaining reservoir volume and downstream flood under the anticipated flood forecast. Thus the river and dam managers shall be able to evaluate benefit of priori dam release and flood risk reduction at the same time, on real time basis. Furthermore the system has been developed under the concept of data and models integration, and it is coupled with Data Integration and Analysis System (DIAS) - a Japanese national project for integrating and analyzing massive amount of observational and model data. Therefore it has advantage in direct use of miscellaneous data from point/radar-derived observation, numerical weather prediction output, to satellite imagery stored in data archive. Output of the system is accessible over the web interface, making information available with relative ease, e.g. from ordinary PC to mobile devices. We have been applying the system to the Upper Tone region, located northwest from Tokyo metropolitan area, and we show application example of the system in recent flood events caused by typhoons.

  9. An operational real-time flood forecasting system in Southern Italy

    NASA Astrophysics Data System (ADS)

    Ortiz, Enrique; Coccia, Gabriele; Todini, Ezio

    2015-04-01

    A real-time flood forecasting system has been operating since year 2012 as a non-structural measure for mitigating the flood risk in Campania Region (Southern Italy), within the Sele river basin (3.240 km2). The Sele Flood Forecasting System (SFFS) has been built within the FEWS (Flood Early Warning System) platform developed by Deltares and it assimilates the numerical weather predictions of the COSMO LAM family: the deterministic COSMO-LAMI I2, the deterministic COSMO-LAMI I7 and the ensemble numerical weather predictions COSMO-LEPS (16 members). Sele FFS is composed by a cascade of three main models. The first model is a fully continuous physically based distributed hydrological model, named TOPKAPI-eXtended (Idrologia&Ambiente s.r.l., Naples, Italy), simulating the dominant processes controlling the soil water dynamics, runoff generation and discharge with a spatial resolution of 250 m. The second module is a set of Neural-Networks (ANN) built for forecasting the river stages at a set of monitored cross-sections. The third component is a Model Conditional Processor (MCP), which provides the predictive uncertainty (i.e., the probability of occurrence of a future flood event) within the framework of a multi-temporal forecast, according to the most recent advancements on this topic (Coccia and Todini, HESS, 2011). The MCP provides information about the probability of exceedance of a maximum river stage within the forecast lead time, by means of a discrete time function representing the variation of cumulative probability of exceeding a river stage during the forecast lead time and the distribution of the time occurrence of the flood peak, starting from one or more model forecasts. This work shows the Sele FFS performance after two years of operation, evidencing the added-values that can provide to a flood early warning and emergency management system.

  10. VME system monitor board

    SciTech Connect

    1996-02-01

    Much of the machinery throughout the APS will be controlled by VME based computers. In order to increase the reliability of the system, it is necessary to be able to monitor the status of each VME crate. In order to do this, a VME System Monitor was created. In addition to being able to monitor and report the status (watchdog timer, temperature, CPU (Motorola MVME 167) state (status, run, fail), and the power supply), it includes provisions to remotely reset the CPU and VME crate, digital I/O, and parts of the transition module (serial port and ethernet connector) so that the Motorla MVME 712 is not needed. The standard VME interface was modified on the System Monitor so that in conjunction with the Motorola MVME 167 a message based VXI interrupt handler could is implemented. The System Monitor is a single VME card (6U). It utilizes both the front panel and the P2 connector for I/O. The front panel contains a temperature monitor, watchdog status LED, 4 general status LEDs, input for a TTL interrupt, 8 binary inputs (24 volt, 5 volt, and dry contact sense), 4 binary outputs (dry contact, TTL, and 100 mA), serial port (electrical RS-232 or fiber optic), ethernet transceiver (10 BASE-FO or AUI), and a status link to neighbor crates. The P2 connector is used to provide the serial port and ethernet to the processor. In order to abort and read the status of the CPU, a jumper cable must be connected between the CPU and the System Monitor.

  11. Use of NOAA-N satellites for land/water discrimination and flood monitoring

    NASA Technical Reports Server (NTRS)

    Tappan, G.; Horvath, N. C.; Doraiswamy, P. C.; Engman, T.; Goss, D. W. (Principal Investigator)

    1983-01-01

    A tool for monitoring the extent of major floods was developed using data collected by the NOAA-6 advanced very high resolution radiometer (AVHRR). A basic understanding of the spectral returns in AVHRR channels 1 and 2 for water, soil, and vegetation was reached using a large number of NOAA-6 scenes from different seasons and geographic locations. A look-up table classifier was developed based on analysis of the reflective channel relationships for each surface feature. The classifier automatically separated land from water and produced classification maps which were registered for a number of acquisitions, including coverage of a major flood on the Parana River of Argentina.

  12. A new framework for monitoring flood inundation using readily available satellite data

    NASA Astrophysics Data System (ADS)

    Parinussa, Robert M.; Lakshmi, Venkat; Johnson, Fiona M.; Sharma, Ashish

    2016-03-01

    Floods are deadly natural disasters that have large social and economic impact. Their impact can be reduced through near real-time warning systems utilizing information from satellite remote sensing for flood tracking and forecasting. In this study we formulate that differences in day and night land surface temperature (ΔLST) are a skillful predictor for inundation and can serve parallel to soil moisture in warning systems. Satellite measurements of ΔLST and soil moisture revealed distinct spatial patterns for the extreme hydrological conditions that Australia has encountered since 2002. A significant flood revealed large negative ΔLST anomalies whereas droughts corresponded to positive anomalies. ΔLST and soil moisture showed distinct behavior prior to flooding as anomalies displayed gradual build up, suggesting signals could be valuable in flood warning systems. Strong agreement was found between ΔLST, antecedent precipitation index, and soil moisture anomalies over Australia and the Murray Darling Basin. This indicates their skills to represent wetness state, an important input additional to precipitation in flood warning systems.

  13. Rainfall estimation for real time flood monitoring using geostationary meteorological satellite data

    NASA Astrophysics Data System (ADS)

    Veerakachen, Watcharee; Raksapatcharawong, Mongkol

    2015-09-01

    Rainfall estimation by geostationary meteorological satellite data provides good spatial and temporal resolutions. This is advantageous for real time flood monitoring and warning systems. However, a rainfall estimation algorithm developed in one region needs to be adjusted for another climatic region. This work proposes computationally-efficient rainfall estimation algorithms based on an Infrared Threshold Rainfall (ITR) method calibrated with regional ground truth. Hourly rain gauge data collected from 70 stations around the Chao-Phraya river basin were used for calibration and validation of the algorithms. The algorithm inputs were derived from FY-2E satellite observations consisting of infrared and water vapor imagery. The results were compared with the Global Satellite Mapping of Precipitation (GSMaP) near real time product (GSMaP_NRT) using the probability of detection (POD), root mean square error (RMSE) and linear correlation coefficient (CC) as performance indices. Comparison with the GSMaP_NRT product for real time monitoring purpose shows that hourly rain estimates from the proposed algorithm with the error adjustment technique (ITR_EA) offers higher POD and approximately the same RMSE and CC with less data latency.

  14. Automatic removal of outliers in hydrologic time series and quality control of rainfall data: processing a real-time database of the Local System for Flood Monitoring in Klodzko County, Poland

    NASA Astrophysics Data System (ADS)

    Mizinski, Bartlomiej; Niedzielski, Tomasz; Kryza, Maciej; Szymanowski, Mariusz

    2013-04-01

    Real-time hydrological forecasting requires the highest quality of both hydrologic and meteorological data collected in a given river basin. Large outliers may lead to inaccurate predictions, with substantial departures between observations and prognoses considered even in short term. Although we need the correctness of both riverflow and rainfall data, they cannot be processed in the same way to produce a filtered output. Indeed, hydrologic time series at a given gauge can be interpolated in time domain after having detected suspicious values, however if no outlier has been detected at the upstream sites. In the case of rainfall data, interpolation is not suitable as we cannot verify the potential outliers at a given site against data from other sites especially in the complex terrain. This is due to the fact that very local convective events may occur, leading to large rainfall peaks at a limited space. Hence, instead of interpolating data, we rather perform a flagging procedure that only ranks outliers according to the likelihood of occurrence. Following the aforementioned assumptions, we have developed a few modules that serve a purpose of a fully automated correction of a database that is updated in real-time every 15 minutes, and the main objective of the work was to produce a high-quality database for a purpose of hydrologic rainfall-runoff modeling and ensemble prediction. The database in question is available courtesy of the County Office in Kłodzko (SW Poland), the institution which owns and maintains the Local System for Flood Monitoring in Kłodzko County. The dedicated prediction system, known as HydroProg, is now being built at the University of Wrocław (Poland). As the entire prediction system, the correction modules work automatically in real time and are developed in R language. They are plugged in to a larger IT infrastructure. Hydrologic time series, which are water levels recorded every 15 minutes at 22 gauges located in Kłodzko County, are

  15. Multizone infiltration monitoring system

    SciTech Connect

    Wortman, D.N.; Burch, J.; Judkoff, R.

    1982-06-01

    A multizone infiltration monitoring system (MIMS) using a single tracer gas has been developed. MIMS measures zonal infiltration and exfiltration as well as interzonal air movement rates. The system has been used at the 4-zone test house at the SERI interim field site, and this paper presents preliminary results. The present system can determine zonal infiltration rates, and the results show significant differences in infiltration rates for the various zones.

  16. Environmental Monitoring Data System

    2004-04-21

    A set of database management tools, data processing tools, and auxiliary support functionality for processing and handling semi-structured environmental monitoring data. The system provides a flexible description language for describing the data, allowing the database to store disparate data from many different sources without changes to the configuration. The system employs XML to support unlimited named allribute/value pairs for each object defined in the system.

  17. A search for model parsimony in a real time flood forecasting system

    NASA Astrophysics Data System (ADS)

    Grossi, G.; Balistrocchi, M.

    2009-04-01

    As regards the hydrological simulation of flood events, a physically based distributed approach is the most appealing one, especially in those areas where the spatial variability of the soil hydraulic properties as well as of the meteorological forcing cannot be left apart, such as in mountainous regions. On the other hand, dealing with real time flood forecasting systems, less detailed models requiring a minor number of parameters may be more convenient, reducing both the computational costs and the calibration uncertainty. In fact in this case a precise quantification of the entire hydrograph pattern is not necessary, while the expected output of a real time flood forecasting system is just an estimate of the peak discharge, the time to peak and in some cases the flood volume. In this perspective a parsimonious model has to be found in order to increase the efficiency of the system. A suitable case study was identified in the northern Apennines: the Taro river is a right tributary to the Po river and drains about 2000 km2 of mountains, hills and floodplain, equally distributed . The hydrometeorological monitoring of this medium sized watershed is managed by ARPA Emilia Romagna through a dense network of uptodate gauges (about 30 rain gauges and 10 hydrometers). Detailed maps of the surface elevation, land use and soil texture characteristics are also available. Five flood events were recorded by the new monitoring network in the years 2003-2007: during these events the peak discharge was higher than 1000 m3/s, which is actually quite a high value when compared to the mean discharge rate of about 30 m3/s. The rainfall spatial patterns of such storms were analyzed in previous works by means of geostatistical tools and a typical semivariogram was defined, with the aim of establishing a typical storm structure leading to flood events in the Taro river. The available information was implemented into a distributed flood event model with a spatial resolution of 90m

  18. Information support systems for cultural heritage protection against flooding

    NASA Astrophysics Data System (ADS)

    Nedvedova, K.; Pergl, R.

    2015-08-01

    The goal of this paper is to present use of different kind of software applications to create complex support system for protection of cultural heritage against flooding. The project is very complex and it tries to cover the whole area of the problem from prevention to liquidation of aftermath effects. We used GIS for mapping the risk areas, ontology systems for vulnerability assessment application and the BORM method (Business Object Relation Modelling) for flood protection system planning guide. Those modern technologies helped us to gather a lot of information in one place and provide the knowledge to the broad audience.

  19. Wearable Health Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Bell, John

    2015-01-01

    The shrinking size and weight of electronic circuitry has given rise to a new generation of smart clothing that enables biological data to be measured and transmitted. As the variation in the number and type of deployable devices and sensors increases, technology must allow their seamless integration so they can be electrically powered, operated, and recharged over a digital pathway. Nyx Illuminated Clothing Company has developed a lightweight health monitoring system that integrates medical sensors, electrodes, electrical connections, circuits, and a power supply into a single wearable assembly. The system is comfortable, bendable in three dimensions, durable, waterproof, and washable. The innovation will allow astronaut health monitoring in a variety of real-time scenarios, with data stored in digital memory for later use in a medical database. Potential commercial uses are numerous, as the technology enables medical personnel to noninvasively monitor patient vital signs in a multitude of health care settings and applications.

  20. A Prototype Flood Early Warning SensorWeb System for Namibia

    NASA Astrophysics Data System (ADS)

    Sohlberg, R. A.; Mandl, D.; Frye, S. W.; Cappelaere, P. G.; Szarzynski, J.; Policelli, F.; van Langenhove, G.

    2010-12-01

    During the past two years, there have been extensive floods in the country of Namibia, Africa which have affected up to a quarter of the population. Via a collaboration between a group funded by the Earth Science Technology Office (ESTO) at NASA that has been performing various SensorWeb prototyping activities for disasters, the Department of Hydrology in Namibia and the United Nations Space-based Information for Disaster and Emergency Response (UN-SPIDER) , experiments were conducted on how to apply various satellite resources integrated into a SensorWeb architecture along with in-situ sensors such as river gauges and rain gauges into a flood early warning system. The SensorWeb includes a global flood model and a higher resolution basin specific flood model. Furthermore, flood extent and status is monitored by optical and radar types of satellites and integrated via some automation. We have taken a practical approach to find out how to create a working system by selectively using the components that provide good results. The vision for the future is to combine this with the country side dwelling unit data base to create risk maps that provide specific warnings to houses within high risk areas based on near term predictions. This presentation will show some of the highlights of the effort thus far plus our future plans.

  1. RF-CLASS: A Remote-sensing-based Interoperable Web service system for Flood Crop Loss Assessment

    NASA Astrophysics Data System (ADS)

    Di, L.; Yu, G.; Kang, L.

    2014-12-01

    Flood is one of the worst natural disasters in the world. Flooding often causes significant crop loss over large agricultural areas in the United States. Two USDA agencies, the National Agricultural Statistics Service (NASS) and Risk Management Agency (RMA), make decisions on flood statistics, crop insurance policy, and recovery management by collecting, analyzing, reporting, and utilizing flooded crop acreage and crop loss information. NASS has the mandate to report crop loss after all flood events. RMA manages crop insurance policy and uses crop loss information to guide the creation of the crop insurance policy and the aftermath compensation. Many studies have been conducted in the recent years on monitoring floods and assessing the crop loss due to floods with remote sensing and geographic information technologies. The Remote-sensing-based Flood Crop Loss Assessment Service System (RF-CLASS), being developed with NASA and USDA support, aims to significantly improve the post-flood agricultural decision-making supports in USDA by integrating and advancing the recently developed technologies. RF-CLASS will operationally provide information to support USDA decision making activities on collecting and archiving flood acreage and duration, recording annual crop loss due to flood, assessing the crop insurance rating areas, investigating crop policy compliance, and spot checking of crop loss claims. This presentation will discuss the remote sensing and GIS based methods for deriving the needed information to support the decision making, the RF-CLASS cybersystem architecture, the standards and interoperability arrangements in the system, and the current and planned capabilities of the system.

  2. Physiologic monitoring systems.

    PubMed

    2005-01-01

    Physiologic monitoring systems monitor vital physiologic parameters so that clinicians can be informed of changes in a patient's condition. For this study, we evaluated systems from six monitoring suppliers--Dräger Medical, GE Healthcare, Nihon Kohden, Philips Medical Systems, Spacelabs Medical, and Welch Allyn. The intent of this study is to help facilities choose not just the most appropriate system, but also the most appropriate version of that system--the combination of components that will best suit the facility's needs. Our testing focused primarily on adaptability, alarm implementation, and human factors design. We rated the systems based on their capabilities and performance for each of seven care settings: critical care unit, emergency department, intermediate care unit and general medical/surgical floor, operating room (with separate ratings for use during conscious sedation and general anesthesia), postanesthesia care unit, and transport. The systems performed well against the majority of our criteria. Nevertheless, we found notable differences in specific features and performance areas. These differences will have varying levels of significance for different hospitals. PMID:15794523

  3. Relay contact monitoring system

    SciTech Connect

    Mehta, V.

    1994-01-11

    A switching system for switching on and off heating and air conditioning units in an environmental control system. The switching system includes a thermostat and a relay conductively coupled to the thermostat. The relay has a contact, which is responsive to a change signal for changing its position. The system further includes a programmable monitor having predetermined positions stored in a memory. The monitor is conductively coupled to the contact and to the thermostat for continually determining the position of the contact, and for sending a change signal to the relay for switching the position of the contact, as needed, to be in conformance with a predetermined position stored in the memory. 3 figs.

  4. Global, Daily, Near Real-Time Satellite-based Flood Monitoring and Product Dissemination

    NASA Astrophysics Data System (ADS)

    Slayback, D. A.; Policelli, F. S.; Brakenridge, G. R.; Tokay, M. M.; Smith, M. M.; Kettner, A. J.

    2013-12-01

    Flooding is the most destructive, frequent, and costly natural disaster faced by modern society, and is expected to increase in frequency and damage with climate change and population growth. Some of 2013's major floods have impacted the New York City region, the Midwest, Alberta, Australia, various parts of China, Thailand, Pakistan, and central Europe. The toll of these events, in financial costs, displacement of individuals, and deaths, is substantial and continues to rise as climate change generates more extreme weather events. When these events do occur, the disaster management community requires frequently updated and easily accessible information to better understand the extent of flooding and better coordinate response efforts. With funding from NASA's Applied Sciences program, we developed and are now operating a near real-time global flood mapping system to help provide critical flood extent information within 24-48 hours of events. The system applies a water detection algorithm to MODIS imagery received from the LANCE (Land Atmosphere Near real-time Capability for EOS) system at NASA Goddard within a few hours of satellite overpass. Using imagery from both the Terra (10:30 AM local time overpass) and Aqua (1:30 PM) platforms allows an initial daily assessment of flooding extent by late afternoon, and more robust assessments after accumulating cloud-free imagery over several days. Cloud cover is the primary limitation in detecting surface water from MODIS imagery. Other issues include the relatively coarse scale of the MODIS imagery (250 meters), the difficulty of detecting flood waters in areas with continuous canopy cover, confusion of shadow (cloud or terrain) with water, and accurately identifying detected water as flood as opposed to normal water extents. We have made progress on many of these issues, and are working to develop higher resolution flood detection using alternate sensors, including Landsat and various radar sensors. Although these

  5. Benzene Monitor System report

    SciTech Connect

    Livingston, R.R.

    1992-10-12

    Two systems for monitoring benzene in aqueous streams have been designed and assembled by the Savannah River Technology Center, Analytical Development Section (ADS). These systems were used at TNX to support sampling studies of the full-scale {open_quotes}SRAT/SME/PR{close_quotes} and to provide real-time measurements of benzene in Precipitate Hydrolysis Aqueous (PHA) simulant. This report describes the two ADS Benzene Monitor System (BMS) configurations, provides data on system operation, and reviews the results of scoping tests conducted at TNX. These scoping tests will allow comparison with other benzene measurement options being considered for use in the Defense Waste Processing Facility (DWPF) laboratory. A report detailing the preferred BMS configuration statistical performance during recent tests has been issued under separate title: Statistical Analyses of the At-line Benzene Monitor Study, SCS-ASG-92-066. The current BMS design, called the At-line Benzene Monitor (ALBM), allows remote measurement of benzene in PHA solutions. The authors have demonstrated the ability to calibrate and operate this system using peanut vials from a standard Hydragard{trademark} sampler. The equipment and materials used to construct the ALBM are similar to those already used in other applications by the DWPF lab. The precision of this system ({+-}0.5% Relative Standard Deviation (RSD) at 1 sigma) is better than the purge & trap-gas chromatograpy reference method currently in use. Both BMSs provide a direct measurement of the benzene that can be purged from a solution with no sample pretreatment. Each analysis requires about five minutes per sample, and the system operation requires no special skills or training. The analyzer`s computer software can be tailored to provide desired outputs. Use of this system produces no waste stream other than the samples themselves (i.e. no organic extractants).

  6. Development of an Operational Typhoon Swell Forecasting and Coastal Flooding Early Warning System

    NASA Astrophysics Data System (ADS)

    Fan, Y. M.; Wu, L. C.; Doong, D. J.; Kao, C. C.; Wang, J. H.

    2012-04-01

    Coastal floods and typhoon swells are a consistent threat to oceanfront countries, causing major human suffering and substantial economic losses, such as wrecks, ship capsized, and marine construction failure, etc. Climate change is exacerbating the problem. An early warning system is essential to mitigate the loss of life and property from coastal flooding and typhoon swells. The purpose of this study is to develop a typhoon swell forecasting and coastal flooding early warning system by integrating existing sea-state monitoring technology, numerical ocean forecasting models, historical database and experiences, as well as computer science. The proposed system has capability offering data for the past, information for the present, and for the future. The system was developed for Taiwanese coast due to its frequent threat by typhoons. An operational system without any manual work is the basic requirement of the system. Integration of various data source is the system kernel. Numerical ocean models play the important role within the system because they provide data for assessment of possible typhoon swell and flooding. The system includes regional wave model (SWAN) which nested with the large domain wave model (NWW III), is operationally set up for coastal waves forecasting, especially typhoon swell forecasting before typhoon coming, and the storm surge predicted by a POM model. Data assimilation technology is incorporated for enhanced accuracy. A warning signal is presented when the storm water level that accumulated from astronomical tide, storm surge, and wave-induced run-up exceeds the alarm sea level. This warning system has been in practical use for coastal flooding damage mitigation in Taiwan for years. Example of the system operation during Typhoon Haitung struck Taiwan in 2005 is illustrated in this study.

  7. Real Time Flood Alert System (RTFAS) for Puerto Rico

    USGS Publications Warehouse

    Lopez-Trujillo, Dianne

    2010-01-01

    The Real Time Flood Alert System is a web-based computer program, developed as a data integration tool, and designed to increase the ability of emergency managers to rapidly and accurately predict flooding conditions of streams in Puerto Rico. The system includes software and a relational database to determine the spatial and temporal distribution of rainfall, water levels in streams and reservoirs, and associated storms to determine hazardous and potential flood conditions. The computer program was developed as part of a cooperative agreement between the U.S. Geological Survey Caribbean Water Science Center and the Puerto Rico Emergency Management Agency, and integrates information collected and processed by these two agencies and the National Weather Service.

  8. Corrosion Monitoring System

    SciTech Connect

    Dr. Russ Braunling

    2004-10-31

    The Corrosion Monitoring System (CMS) program developed and demonstrated a continuously on-line system that provides real-time corrosion information. The program focused on detecting pitting corrosion in its early stages. A new invention called the Intelligent Ultrasonic Probe (IUP) was patented on the program. The IUP uses ultrasonic guided waves to detect small defects and a Synthetic Aperture Focusing Technique (SAFT) algorithm to provide an image of the pits. Testing of the CMS demonstrated the capability to detect pits with dimensionality in the sub-millimeter range. The CMS was tested in both the laboratory and in a pulp and paper industrial plant. The system is capable of monitoring the plant from a remote location using the internet.

  9. Inductive System Monitors Tasks

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Inductive Monitoring System (IMS) software developed at Ames Research Center uses artificial intelligence and data mining techniques to build system-monitoring knowledge bases from archived or simulated sensor data. This information is then used to detect unusual or anomalous behavior that may indicate an impending system failure. Currently helping analyze data from systems that help fly and maintain the space shuttle and the International Space Station (ISS), the IMS has also been employed by data classes are then used to build a monitoring knowledge base. In real time, IMS performs monitoring functions: determining and displaying the degree of deviation from nominal performance. IMS trend analyses can detect conditions that may indicate a failure or required system maintenance. The development of IMS was motivated by the difficulty of producing detailed diagnostic models of some system components due to complexity or unavailability of design information. Successful applications have ranged from real-time monitoring of aircraft engine and control systems to anomaly detection in space shuttle and ISS data. IMS was used on shuttle missions STS-121, STS-115, and STS-116 to search the Wing Leading Edge Impact Detection System (WLEIDS) data for signs of possible damaging impacts during launch. It independently verified findings of the WLEIDS Mission Evaluation Room (MER) analysts and indicated additional points of interest that were subsequently investigated by the MER team. In support of the Exploration Systems Mission Directorate, IMS is being deployed as an anomaly detection tool on ISS mission control consoles in the Johnson Space Center Mission Operations Directorate. IMS has been trained to detect faults in the ISS Control Moment Gyroscope (CMG) systems. In laboratory tests, it has already detected several minor anomalies in real-time CMG data. When tested on archived data, IMS was able to detect precursors of the CMG1 failure nearly 15 hours in advance of

  10. General characteristics of causes of urban flood damage and flood forecasting/warning system in Seoul, Korea Young-Il Moon1, 2, Jong-Suk Kim1, 2 1 Department of Civil Engineering, University of Seoul, Seoul 130-743, South Korea 2 Urban Flood Research Inst

    NASA Astrophysics Data System (ADS)

    Moon, Young-Il; Kim, Jong-Suk

    2015-04-01

    Due to rapid urbanization and climate change, the frequency of concentrated heavy rainfall has increased, causing urban floods that result in casualties and property damage. As a consequence of natural disasters that occur annually, the cost of damage in Korea is estimated to be over two billion US dollars per year. As interest in natural disasters increase, demands for a safe national territory and efficient emergency plans are on the rise. In addition to this, as a part of the measures to cope with the increase of inland flood damage, it is necessary to build a systematic city flood prevention system that uses technology to quantify flood risk as well as flood forecast based on both rivers and inland water bodies. Despite the investment and efforts to prevent landside flood damage, research and studies of landside-river combined hydro-system is at its initial stage in Korea. Therefore, the purpose of this research introduces the causes of flood damage in Seoul and shows a flood forecasting and warning system in urban streams of Seoul. This urban flood forecasting and warning system conducts prediction on flash rain or short-term rainfall by using radar and satellite information and performs prompt and accurate prediction on the inland flooded area and also supports synthetic decision-making for prevention through real-time monitoring. Although we cannot prevent damage from typhoons or localized heavy rain, we can minimize that damage with accurate and timely forecast and a prevention system. To this end, we developed a flood forecasting and warning system, so in case of an emergency there is enough time for evacuation and disaster control. Keywords: urban flooding, flood risk, inland-river system, Korea Acknowledgments This research was supported by a grant (13AWMP-B066744-01) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  11. ECM Monitoring System

    NASA Astrophysics Data System (ADS)

    Imada, A. M.; Ottoboni, E. G.

    1984-11-01

    The ECM Monitoring System (EMS) was designed and developed to characterize continuous wave (CW) and pulsed-type RF signals in the 50 MHz to 18 GHz range. In particular, the system measures the signal parameters (spectral content, FM content, AM content, average power, and/or noise quality) of electronic countermeasure (ECM) signals. Radar signals associated with these ECM signals are also characterized. The system uses mostly commercially available instrumentation and some custom equipment to characterize the signal parameters automatically. The system can measure and quantify the parameters of operational and developmental jamming systems. It is a valuable test and evaluation tool for use during the entire life cycle of such systems, and aids in the development and deployment of effective jammers for use by operational military forces.

  12. Optimization of rainfall thresholds for a flood warning system to Taiwan urban areas during storm events

    NASA Astrophysics Data System (ADS)

    Liao, Hao-Yu; Pan, Tsung-Yi; Su, Ming-Daw; Hsieh, Ming-Chang; Tan, Yih-Chi

    2016-04-01

    Flood is one of the most damage disaster that always happen around the world. Because of the extreme weather change, the flood disaster damage becomes higher than before. In recent years, Taiwan suffered from flood damage frequently by excessive rainfall induced by extreme weather, like typhoons. Therefore, it is necessary to build an effective flood warning system to reduce the flood damage. The operational flood warning system in Taiwan is based on the rainfall thresholds. When cumulative rainfall over the rainfall thresholds, the flood warning system would alert the local government where region would happen flood disaster. According to the flood warning system alert, the governments have more time to prepare how to face the flood disaster before happens. Although Taiwanese government has a preliminary flood warning system, the system has still lack of theoretical background. For this reason, the alert accuracy of the system is limited. Thus it is important to develop the effective rainfall thresholds that could predict flood disaster successfully. The research aims to improve the accuracy of the system through statistical methods. When the accumulated rainfall reaches the alert value, the warning message would be announced early to government for dealing with flooding damage which would happen. According to extreme events, the data driven and statistical methods are adopted to calculate the optimum rainfall thresholds. The results of this study could be applied to enhance rainfall thresholds forecasting accuracy, and could reduce the risk of floods.

  13. Flood effects on an Alaskan stream restoration project: the value of long-term monitoring

    USGS Publications Warehouse

    Densmore, Roseann V.; Karle, Kenneth F.

    2009-01-01

    On a nationwide basis, few stream restoration projects have long-term programs in place to monitor the effects of floods on channel and floodplain configuration and floodplain vegetation, but long-term and event-based monitoring is required to measure the effects of these stochastic events and to use the knowledge for adaptive management and the design of future projects. This paper describes a long-term monitoring effort (15 years) on a stream restoration project in Glen Creek in Denali National Park and Preserve in Alaska. The stream channel and floodplain of Glen Creek had been severely degraded over a period of 80 years by placer mining for gold, which left many reaches with unstable and incised streambeds without functioning vegetated floodplains. The objectives of the original project, initiated in 1991, were to develop and test methods for the hydraulic design of channel and floodplain morphology and for floodplain stabilization and riparian habitat recovery, and to conduct research and monitoring to provide information for future projects in similar degraded watersheds. Monitoring methods included surveyed stream cross-sections, vegetation plots, and aerial, ground, and satellite photos. In this paper we address the immediate and outlying effects of a 25-year flood on the stream and floodplain geometry and riparian vegetation. The long-term monitoring revealed that significant channel widening occurred following the flood, likely caused by excessive upstream sediment loading and the fairly slow development of floodplain vegetation in this climate. Our results illustrated design flaws, particularly in regard to identification and analysis of sediment sources and the dominant processes of channel adjustment.

  14. Flood monitoring in a semi-arid environment using spatially high resolution radar and optical data.

    PubMed

    Seiler, Ralf; Schmidt, Jana; Diallo, Ousmane; Csaplovics, Elmar

    2009-05-01

    The geographic term "Niger Inland Delta" stands for a vast plain of approximately 40,000 km(2), which is situated in the western Sahel (Republic of Mali). The Inland Delta is affected by yearly inundation through the variable water levels of the Niger-Bani river system. Due to a good availability of (surface) water, the ecosystem at the Niger Inland Delta serves as resting place stop-over for many migrating birds and other wildlife species as well as economic base for farmers and pastoral people. To foster the sustainable usage of its natural resources and to protect this natural heritage, the entire Niger Inland Delta became RAMSAR site in 2004. This paper aims to test to which extent texture analysis can improve the quality of flood monitoring in a semi-arid environment using spatially high resolution ASAR imaging mode data. We found the Gray Level Dependence Method (GLDM) was most suitable proceeding for our data. Several statistical parameters were calculated via co-occurrence matrices and were used to classify the images in different gradation of soil moisture classes. In a second step we used additional information from spatially high resolution optical data (ASTER) to improve the separability of open water areas from moisture/vegetated areas.

  15. Modular biowaste monitoring system

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1975-01-01

    The objective of the Modular Biowaste Monitoring System Program was to generate and evaluate hardware for supporting shuttle life science experimental and diagnostic programs. An initial conceptual design effort established requirements and defined an overall modular system for the collection, measurement, sampling and storage of urine and feces biowastes. This conceptual design effort was followed by the design, fabrication and performance evaluation of a flight prototype model urine collection, volume measurement and sampling capability. No operational or performance deficiencies were uncovered as a result of the performance evaluation tests.

  16. Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flows

    NASA Astrophysics Data System (ADS)

    Borga, Marco; Stoffel, Markus; Marchi, Lorenzo; Marra, Francesco; Jakob, Matthias

    2014-10-01

    Flash floods and debris flows develop at space and time scales that conventional observation systems for rainfall, streamflow and sediment discharge are not able to monitor. Consequently, the atmospheric, hydrological and geomorphic controls on these hydrogeomorphic processes are poorly understood, leading to highly uncertain warning and risk management. On the other hand, remote sensing of precipitation and numerical weather predictions have become the basis of several flood forecasting systems, enabling increasingly accurate detection of hazardous events. The objective of this paper is to provide a review on current European and international research on early warning systems for flash floods and debris flows. We expand upon these themes by identifying: (a) the state of the art; (b) knowledge gaps; and (c) suggested research directions to advance warning capabilities for extreme hydrogeomorphic processes. We also suggest three areas in which advancements in science will have immediate and important practical consequence, namely development of rainfall estimation and nowcasting schemes suited to the specific space-time scales, consolidating physical, engineering and social datasets of flash floods and debris-flows, integration of methods for multiple hydrogeomorphic hazard warning.

  17. Forecast-based Integrated Flood Detection System for Emergency Response and Disaster Risk Reduction (Flood-FINDER)

    NASA Astrophysics Data System (ADS)

    Arcorace, Mauro; Silvestro, Francesco; Rudari, Roberto; Boni, Giorgio; Dell'Oro, Luca; Bjorgo, Einar

    2016-04-01

    Most flood prone areas in the globe are mainly located in developing countries where making communities more flood resilient is a priority. Despite different flood forecasting initiatives are now available from academia and research centers, what is often missing is the connection between the timely hazard detection and the community response to warnings. In order to bridge the gap between science and decision makers, UN agencies play a key role on the dissemination of information in the field and on capacity-building to local governments. In this context, having a reliable global early warning system in the UN would concretely improve existing in house capacities for Humanitarian Response and the Disaster Risk Reduction. For those reasons, UNITAR-UNOSAT has developed together with USGS and CIMA Foundation a Global Flood EWS called "Flood-FINDER". The Flood-FINDER system is a modelling chain which includes meteorological, hydrological and hydraulic models that are accurately linked to enable the production of warnings and forecast inundation scenarios up to three weeks in advance. The system is forced with global satellite derived precipitation products and Numerical Weather Prediction outputs. The modelling chain is based on the "Continuum" hydrological model and risk assessments produced for GAR2015. In combination with existing hydraulically reconditioned SRTM data and 1D hydraulic models, flood scenarios are derived at multiple scales and resolutions. Climate and flood data are shared through a Web GIS integrated platform. First validation of the modelling chain has been conducted through a flood hindcasting test case, over the Chao Phraya river basin in Thailand, using multi temporal satellite-based analysis derived for the exceptional flood event of 2011. In terms of humanitarian relief operations, the EO-based services of flood mapping in rush mode generally suffer from delays caused by the time required for their activation, programming, acquisitions and

  18. Earth System Monitoring, Introduction

    NASA Astrophysics Data System (ADS)

    Orcutt, John

    This section provides sensing and data collection methodologies, as well as an understanding of Earth's climate parameters and natural and man-made phenomena, to support a scientific assessment of the Earth system as a whole, and its response to natural and human-induced changes. The coverage ranges from climate change factors and extreme weather and fires to oil spill tracking and volcanic eruptions. This serves as a basis to enable improved prediction and response to climate change, weather, and natural hazards as well as dissemination of the data and conclusions. The data collection systems include satellite remote sensing, aerial surveys, and land- and ocean-based monitoring stations. Our objective in this treatise is to provide a significant portion of the scientific and engineering basis of Earth system monitoring and to provide this in 17 detailed articles or chapters written at a level for use by university students through practicing professionals. The reader is also directed to the closely related sections on Ecological Systems, Introduction and also Climate Change Modeling Methodology, Introduction as well as Climate Change Remediation, Introduction to. For ease of use by students, each article begins with a glossary of terms, while at an average length of 25 print pages each, sufficient detail is presented for use by professionals in government, universities, and industries. The chapters are individually summarized below.

  19. Induced Seismicity Monitoring System

    NASA Astrophysics Data System (ADS)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  20. Milliwave melter monitoring system

    DOEpatents

    Daniel, William E.; Woskov, Paul P.; Sundaram, Shanmugavelayutham K.

    2011-08-16

    A milliwave melter monitoring system is presented that has a waveguide with a portion capable of contacting a molten material in a melter for use in measuring one or more properties of the molten material in a furnace under extreme environments. A receiver is configured for use in obtaining signals from the melt/material transmitted to appropriate electronics through the waveguide. The receiver is configured for receiving signals from the waveguide when contacting the molten material for use in determining the viscosity of the molten material. Other embodiments exist in which the temperature, emissivity, viscosity and other properties of the molten material are measured.

  1. Monitoring Inland Storm Surge and Flooding From Hurricane Gustav in Louisiana, September 2008

    USGS Publications Warehouse

    McGee, Benton D.; Goree, Burl B.; Tollett, Roland W.; Mason, Jr., Robert R.

    2008-01-01

    On August 29-31, 2008, the U.S. Geological Survey (USGS) deployed a mobile monitoring network consisting of 124 pressure transducers (sensors) (figs. 1, 2) at 80 sites over an area of about 4,200 square miles to record the timing, extent, and magnitude of inland hurricane storm surge and coastal flooding generated by Hurricane Gustav, which made landfall in southeastern Louisiana on September 1. One-hundred twenty-one sensors from 61 sites (fig. 3) were recovered. Thirty-seven sites from which sensors were recovered were in the New Orleans area, and the remaining 24 sites were distributed throughout southeastern Louisiana. Sites were categorized as surge (21), riverine flooding (18), anthropogenic (affected by the operation of gates or pumps) (17), or mixed/uncertain on the basis of field observations and the appearance of the water-level data (5).

  2. Remote water monitoring system

    NASA Technical Reports Server (NTRS)

    Grana, D. C.; Haynes, D. P. (Inventor)

    1978-01-01

    A remote water monitoring system is described that integrates the functions of sampling, sample preservation, sample analysis, data transmission and remote operation. The system employs a floating buoy carrying an antenna connected by lines to one or more sampling units containing several sample chambers. Receipt of a command signal actuates a solenoid to open an intake valve outward from the sampling unit and communicates the water sample to an identifiable sample chamber. Such response to each signal receipt is repeated until all sample chambers are filled in a sample unit. Each sample taken is analyzed by an electrochemical sensor for a specific property and the data obtained is transmitted to a remote sending and receiving station. Thereafter, the samples remain isolated in the sample chambers until the sampling unit is recovered and the samples removed for further laboratory analysis.

  3. Groundwater monitoring system

    DOEpatents

    Ames, Kenneth R.; Doesburg, James M.; Eschbach, Eugene A.; Kelley, Roy C.; Myers, David A.

    1987-01-01

    A groundwater monitoring system includes a bore, a well casing within and spaced from the bore, and a pump within the casing. A water impermeable seal between the bore and the well casing prevents surface contamination from entering the pump. Above the ground surface is a removable operating means which is connected to the pump piston by a flexible cord. A protective casing extends above ground and has a removable cover. After a groundwater sample has been taken, the cord is disconnected from the operating means. The operating means is removed for taking away, the cord is placed within the protective casing, and the cover closed and locked. The system is thus protected from contamination, as well as from damage by accident or vandalism.

  4. Cosurfactant in preflush for surfactant flood system

    SciTech Connect

    Glinsmann, G.R.; Hedges, J.H.

    1981-06-23

    In a post-primary oil recovery process involving the sequential addition of a saline preflush, a surfactant system comprising of a surfactant, a cosurfactant and brine when added to the preflush improves recovery. If desired, cosurfactant can also be added to a subsequent injected mobility buffer. The resulting system gives extraordinarily high recovery of oil.

  5. Implementing the national AIGA flash flood warning system in France

    NASA Astrophysics Data System (ADS)

    Organde, Didier; Javelle, Pierre; Demargne, Julie; Arnaud, Patrick; Caseri, Angelica; Fine, Jean-Alain; de Saint Aubin, Céline

    2015-04-01

    The French national hydro-meteorological and flood forecasting centre (SCHAPI) aims to implement a national flash flood warning system to improve flood alerts for small-to-medium (up to 1000 km2) ungauged basins. This system is based on the AIGA method, co-developed by IRSTEA these last 10 years. The method, initially set up for the Mediterranean area, is based on a simple event-based hourly hydrologic distributed model run every 15 minutes (Javelle et al. 2014). The hydrologic model ingests operational radar-gauge rainfall grids from Météo-France at a 1-km² resolution to produce discharges for successive outlets along the river network. Discharges are then compared to regionalized flood quantiles of given return periods and warnings (expressed as the range of the return period estimated in real-time) are provided on a river network map. The main interest of the method is to provide forecasters and emergency services with a synthetic view in real time of the ongoing flood situation, information that is especially critical in ungauged flood prone areas. In its enhanced national version, the hourly event-based distributed model is coupled to a continuous daily rainfall-runoff model which provides baseflow and a soil moisture index (for each 1-km² pixel) at the beginning of the hourly simulation. The rainfall-runoff models were calibrated on a selection of 700 French hydrometric stations with Météo-France radar-gauge reanalysis dataset for the 2002-2006 period. To estimate model parameters for ungauged basins, the 2 hydrologic models were regionalised by testing both regressions (using different catchment attributes, such as catchment area, soil type, and climate characteristic) and spatial proximity techniques (transposing parameters from neighbouring donor catchments), as well as different homogeneous hydrological areas. The most valuable regionalisation method was determined for each model through jack-knife cross-validation. The system performance was then

  6. Waste monitoring system for effluents

    SciTech Connect

    Macdonald, J.M.; Gomez, B.; Trujillo, L.; Malcom, J.E.; Nekimken, H.; Pope, N.; Bibeau, R.

    1995-07-01

    The waste monitoring system in use at Los Alamos National Laboratory`s Plutonium Facility, TA-55, is a computer-based system that proves real-time information on industrial effluents. Remote computers monitor discharge events and data moves from one system to another via a local area network. This report describes the history, system design, summary, instrumentation list, displays, trending screens, and layout of the waste monitoring system.

  7. Ignition system monitoring assembly

    DOEpatents

    Brushwood, John Samuel

    2003-11-04

    An ignition system monitoring assembly for use in a combustion engine is disclosed. The assembly includes an igniter having at least one positioning guide with at least one transmittal member being maintained in a preferred orientation by one of the positioning guides. The transmittal member is in optical communication with a corresponding target region, and optical information about the target region is conveyed to the reception member via the transmittal member. The device allows real-time observation of optical characteristics of the target region. The target region may be the spark gap between the igniter electrodes, or other predetermined locations in optical communication with the transmittal member. The reception member may send an output signal to a processing member which, in turn, may produce a response to the output signal.

  8. Flow monitoring with a camera: a case study on a flood event in the Tiber River.

    PubMed

    Tauro, F; Olivieri, G; Petroselli, A; Porfiri, M; Grimaldi, S

    2016-02-01

    Monitoring surface water velocity during flood events is a challenging task. Techniques based on deploying instruments in the flow are often unfeasible due to high velocity and abundant sediment transport. A low-cost and versatile technology that provides continuous and automatic observations is still not available. Among remote methods, large-scale particle image velocimetry (LSPIV) is an optical method that computes surface water velocity maps from videos recorded with a camera. Here, we implement and critically analyze findings obtained from a recently introduced LSPIV experimental configuration during a flood event in the Tiber River at a cross section located in the center of Rome, Italy. We discuss the potential of LSPIV observations in challenging environmental conditions by presenting results from three tests performed during the hydrograph flood peak and recession limb of the event for different illumination and weather conditions. The obtained surface velocity maps are compared to the rating curve velocity and to benchmark velocity values. Experimental findings show that optical methods should be preferred in extreme conditions. However, their practical implementation may be associated with further hurdles and uncertainties.

  9. Volcanic water flows could have flooded Ganymede's planetary rift system

    SciTech Connect

    Allison, M.L.; Clifford, S.M.

    1985-01-01

    Global expansion on Ganymede of only 1 or 2% created a planetary rift system which was resurfaced over a significant period of the planet's history creating bright, grooved terrain. The most reasonable model entails flooding of grabens by water or slush magmas which rose to the surface along normal faults in the rift system. Various models exist for the origin of the water magmas including isostatic rise of freezing ice I or diapirs of unstable ice III. A model considering the heat balance at the surface of an ice-covered water flow is constructed with the simplifying assumption that both laminar flow and a solid ice cover are achieved relatively soon after eruption. The ice cover will thicken until the underlying flowing water is entirely frozen. Energy into the system comes from solar radiation and the latent heat of freezing. Energy lost will be by evaporative and radiative cooling at the ice surface and by conduction into the substratum. Solving the heat balance allows a prediction for the volume of magma that can flood the surface. For example a flow 5 m thick will take tens of days to freeze, so that discharge rates equal to that of average terrestrial basalt flows could flood relatively large areas of the surface before freezing. Volcanic flooding is therefore a physically viable mechanism for the origin of bright terrain. During freezing the water/ice volume increases, lifting and fracturing the ice cover. These fractures may localize continued tectonic forces producing large displacements and creating the present grooved terrain.

  10. Flood evolution assessment and monitoring using hydrological modelling techniques: analysis of the inundation areas at a regional scale

    NASA Astrophysics Data System (ADS)

    Podhoranyi, M.; Kuchar, S.; Portero, A.

    2016-08-01

    The primary objective of this study is to present techniques that cover usage of a hydrodynamic model as the main tool for monitoring and assessment of flood events while focusing on modelling of inundation areas. We analyzed the 2010 flood event (14th May - 20th May) that occurred in the Moravian-Silesian region (Czech Republic). Under investigation were four main catchments: Opava, Odra, Olše and Ostravice. Four hydrodynamic models were created and implemented into the Floreon+ platform in order to map inundation areas that arose during the flood event. In order to study the dynamics of the water, we applied an unsteady flow simulation for the entire area (HEC-RAS 4.1). The inundation areas were monitored, evaluated and recorded semi-automatically by means of the Floreon+ platform. We focused on information about the extent and presence of the flood areas. The modeled flooded areas were verified by comparing them with real data from different sources (official reports, aerial photos and hydrological networks). The study confirmed that hydrodynamic modeling is a very useful tool for mapping and monitoring of inundation areas. Overall, our models detected 48 inundation areas during the 2010 flood event.

  11. 44 CFR 61.12 - Rates based on a flood protection system involving Federal funds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Rates based on a flood... EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.12 Rates based on a flood protection system...

  12. 44 CFR 61.12 - Rates based on a flood protection system involving Federal funds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Rates based on a flood... EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.12 Rates based on a flood protection system...

  13. 44 CFR 61.12 - Rates based on a flood protection system involving Federal funds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Rates based on a flood... EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.12 Rates based on a flood protection system...

  14. 44 CFR 61.12 - Rates based on a flood protection system involving Federal funds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Rates based on a flood... EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.12 Rates based on a flood protection system...

  15. 44 CFR 61.12 - Rates based on a flood protection system involving Federal funds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Rates based on a flood... EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.12 Rates based on a flood protection system...

  16. Operational water management of Rijnland water system and pilot of ensemble forecasting system for flood control

    NASA Astrophysics Data System (ADS)

    van der Zwan, Rene

    2013-04-01

    The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water

  17. Owl: Next Generation System Monitoring

    SciTech Connect

    Schulz, M; White, B S; McKee, S A; Lee, H S; Jeitner, J

    2005-02-16

    As microarchitectural and system complexity grows, comprehending system behavior becomes increasingly difficult, and often requires obtaining and sifting through voluminous event traces or coordinating results from multiple, non-localized sources. Owl is a proposed framework that overcomes limitations faced by traditional performance counters and monitoring facilities in dealing with such complexity by pervasively deploying programmable monitoring elements throughout a system. The design exploits reconfigurable or programmable logic to realize hardware monitors located at event sources, such as memory buses. These monitors run and writeback results autonomously with respect to the CPU, mitigating the system impact of interrupt-driven monitoring or the need to communicate irrelevant events to higher levels of the system. The monitors are designed to snoop any kind of system transaction, e.g., within the core, on a bus, across the wire, or within I/O devices.

  18. Understanding the geomorphology of macrochannel systems for flood risk management in Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Thompson, Chris; Croke, Jacky

    2016-04-01

    The year 2010-2011 was the wettest on record for the state of Queensland, Australia producing catastrophic floods. A tropical low pressure system in 2013 delivered further extreme flood events across South East Queensland (SEQ) which prompted state and local governments to conduct studies into flood magnitude and frequency in the region and catchment factors contributing to flood hazards. The floods in the region are strongly influenced by El Nino-Southern Oscillation (ENSO) phenomenon, but also modulated by the Interdecadal Pacific Oscillation (IPO) which leads to flood and drought dominated regimes and high hydrological variability. One geomorphic feature in particular exerted a significant control on the transmission speed, the magnitude of flood inundation and resultant landscape resilience. This feature was referred to as a 'macrochannel', a term used to describe a 'large-channel' which has bankfull recurrence intervals generally greater than 10 years. The macrochannels display non-linear downstream hydraulic geometry which leads to zones of flood expansion (when hydraulic geometry decreases) and zones of flood contraction (when hydraulic geometry increases). The pattern of contraction and expansion zones determines flood hazard zones. The floods caused significant wet flow bank mass failures that mobilised over 1,000,000 m3 of sediment in one subcatchment. Results suggest that the wetflow bank mass failures are a stage in a cyclical evolution process which maintains the macrochannel morphology, hence channel resilience to floods. Chronological investigations further show the macrochannels are laterally stable and identify periods of heightened flood activity over the past millennium and upper limits on flood magnitude. This paper elaborates on the results of the geomorphic investigations on Lockyer Creek in SEQ and how the results have alerted managers and policy makers to the different flood responses of these systems and how flood risk management plans can

  19. Coproduction of flood hazard assessment with public participation geographic information system

    NASA Astrophysics Data System (ADS)

    Cheung, W. H.; Houston, D.; Schubert, J.; Basolo, V.; Feldman, D.; Matthew, R.; Sanders, B. F.; Karlin, B.; Goodrich, K.; Contreras, S.; Reyes, A.; Serrano, K.; Luke, A.

    2015-12-01

    While advances in computing have enabled the development of more precise and accurate flood models, there is growing interest in the role of crowdsourced local knowledge in flood modeling and flood hazard assessment. In an effort to incorporate the "wisdom of the crowd" in the identification and mitigation of flood hazard, this public participation geographic information system (PPGIS) study leveraged tablet computers and cloud computing to collect mental maps of flooding from 166 households in Newport Beach, California. The mental maps were analyzed using GIS techniques and compared with professional hydrodynamic model of coastal flooding. The results revealed varying levels of agreement between residents' mental maps and professional model of flood risk in regions with different personal and contextual characteristics. The quantification of agreement using composite indices can help validate professional models, and can also alert planners and decisionmakers of the need to increase flood awareness among specific populations.

  20. Quality monitored distributed voting system

    DOEpatents

    Skogmo, David

    1997-01-01

    A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system.

  1. Quality monitored distributed voting system

    DOEpatents

    Skogmo, D.

    1997-03-18

    A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system. 6 figs.

  2. A pan-African medium-range ensemble flood forecast system

    NASA Astrophysics Data System (ADS)

    Thiemig, V.; Bisselink, B.; Pappenberger, F.; Thielen, J.

    2015-08-01

    The African Flood Forecasting System (AFFS) is a probabilistic flood forecast system for medium- to large-scale African river basins, with lead times of up to 15 days. The key components are the hydrological model LISFLOOD, the African GIS database, the meteorological ensemble predictions by the ECMWF (European Centre for Medium-Ranged Weather Forecasts) and critical hydrological thresholds. In this paper, the predictive capability is investigated in a hindcast mode, by reproducing hydrological predictions for the year 2003 when important floods were observed. Results were verified by ground measurements of 36 sub-catchments as well as by reports of various flood archives. Results showed that AFFS detected around 70 % of the reported flood events correctly. In particular, the system showed good performance in predicting riverine flood events of long duration (> 1 week) and large affected areas (> 10 000 km2) well in advance, whereas AFFS showed limitations for small-scale and short duration flood events. The case study for the flood event in March 2003 in the Sabi Basin (Zimbabwe) illustrated the good performance of AFFS in forecasting timing and severity of the floods, gave an example of the clear and concise output products, and showed that the system is capable of producing flood warnings even in ungauged river basins. Hence, from a technical perspective, AFFS shows a large potential as an operational pan-African flood forecasting system, although issues related to the practical implication will still need to be investigated.

  3. Evaluation of implement monitoring systems.

    PubMed

    Rakhra, A K; Mann, D D

    2013-01-01

    During monitoring of rear-mounted equipment, frequent rearward turning of tractor drivers causes awkward postures that can cause musculoskeletal disorders related to the back, neck, and shoulders. The objective of this study was to compare three implement monitoring strategies (direct viewing via physical turning, indirect viewing via rear-view mirrors, and indirect viewing via a camera-monitor system) in a lab environment using a tractor and air seeder driving simulator Comparison was based on monitoring performance of the operator (i.e., response error), physical impact on the operator (i.e., head/neck acceleration and increase in neck muscle temperature), and operator preference. Indirect viewing via a camera-monitor system caused the least physical impact on subjects and was the preferred implement monitoring strategy. No significant differences (alpha = 0.05) in monitoring performance were observed. PMID:23600169

  4. An early warning system for flash floods in Egypt

    NASA Astrophysics Data System (ADS)

    Cools, J.; Abdelkhalek, A.; El Sammany, M.; Fahmi, A. H.; Bauwens, W.; Huygens, M.

    2009-09-01

    This paper describes the development of the Flash Flood Manager, abbreviated as FlaFloM. The Flash Flood Manager is an early warning system for flash floods which is developed under the EU LIFE project FlaFloM. It is applied to Wadi Watier located in the Sinai peninsula (Egypt) and discharges in the Red Sea at the local economic and tourist hub of Nuweiba city. FlaFloM consists of a chain of four modules: 1) Data gathering module, 2) Forecasting module, 3) Decision support module or DSS and 4) Warning module. Each module processes input data and consequently send the output to the following module. In case of a flash flood emergency, the final outcome of FlaFloM is a flood warning which is sent out to decision-makers. The ‘data gathering module’ collects input data from different sources, validates the input, visualise data and exports it to other modules. Input data is provided ideally as water stage (h), discharge (Q) and rainfall (R) through real-time field measurements and external forecasts. This project, however, as occurs in many arid flash flood prone areas, was confronted with a scarcity of data, and insufficient insight in the characteristics that release a flash flood. Hence, discharge and water stage data were not available. Although rainfall measurements are available through classical off line rain gauges, the sparse rain gauges network couldn’t catch the spatial and temporal characteristics of rainfall events. To overcome this bottleneck, we developed rainfall intensity raster maps (mm/hr) with an hourly time step and raster cell of 1*1km. These maps are derived through downscaling from two sources of global instruments: the weather research and forecasting model (WRF) and satellite estimates from the Tropical Rainfall Measuring Mission (TRMM). The ‘forecast module’ comprises three numerical models that, using data from the gathering module performs simulations on command: a rainfall-runoff model, a river flow model, and a flood model. A

  5. OpenSM Monitoring System

    SciTech Connect

    Meier, T. A.

    2015-04-17

    The OpenSM Monitoring System includes a collection of diagnostic and monitoring tools for use on Infiniband networks. The information this system gathers is obtained from a service, which in turn is obtained directly from the OpenSM subnet manager.

  6. Television Monitoring System for Welding

    NASA Technical Reports Server (NTRS)

    Vallow, K.; Gordon, S.

    1986-01-01

    Welding process in visually inaccessible spots viewed and recorded. Television system enables monitoring of welding in visually inaccessible locations. System assists welding operations and provide video record, used for weld analysis and welder training.

  7. Advanced border monitoring sensor system

    NASA Astrophysics Data System (ADS)

    Knobler, Ronald A.; Winston, Mark A.

    2008-04-01

    McQ has developed an advanced sensor system tailored for border monitoring that has been delivered as part of the SBInet program for the Department of Homeland Security (DHS). Technology developments that enhance a broad range of features are presented in this paper, which address the overall goal of the system to improving unattended ground sensor system capabilities for border monitoring applications. Specifically, this paper addresses a system definition, communications architecture, advanced signal processing to classify targets, and distributed sensor fusion processing.

  8. An early warning system for flash floods in Egypt

    NASA Astrophysics Data System (ADS)

    Cools, J.; Abdelkhalek, A.; El Sammany, M.; Fahmi, A. H.; Bauwens, W.; Huygens, M.

    2009-09-01

    This paper describes the development of the Flash Flood Manager, abbreviated as FlaFloM. The Flash Flood Manager is an early warning system for flash floods which is developed under the EU LIFE project FlaFloM. It is applied to Wadi Watier located in the Sinai peninsula (Egypt) and discharges in the Red Sea at the local economic and tourist hub of Nuweiba city. FlaFloM consists of a chain of four modules: 1) Data gathering module, 2) Forecasting module, 3) Decision support module or DSS and 4) Warning module. Each module processes input data and consequently send the output to the following module. In case of a flash flood emergency, the final outcome of FlaFloM is a flood warning which is sent out to decision-makers. The ‘data gathering module’ collects input data from different sources, validates the input, visualise data and exports it to other modules. Input data is provided ideally as water stage (h), discharge (Q) and rainfall (R) through real-time field measurements and external forecasts. This project, however, as occurs in many arid flash flood prone areas, was confronted with a scarcity of data, and insufficient insight in the characteristics that release a flash flood. Hence, discharge and water stage data were not available. Although rainfall measurements are available through classical off line rain gauges, the sparse rain gauges network couldn’t catch the spatial and temporal characteristics of rainfall events. To overcome this bottleneck, we developed rainfall intensity raster maps (mm/hr) with an hourly time step and raster cell of 1*1km. These maps are derived through downscaling from two sources of global instruments: the weather research and forecasting model (WRF) and satellite estimates from the Tropical Rainfall Measuring Mission (TRMM). The ‘forecast module’ comprises three numerical models that, using data from the gathering module performs simulations on command: a rainfall-runoff model, a river flow model, and a flood model. A

  9. Gas House Autonomous System Monitoring

    NASA Technical Reports Server (NTRS)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  10. Multiscale Monitoring and Analysis of the Impacts of Rural Land Use Changes on Downstream Flooding

    NASA Astrophysics Data System (ADS)

    Geris, J.; Ewen, J.; O'Donnell, G.; O'Connell, P. E.

    2010-12-01

    Recent dramatic flood events in several parts of the world have reignited the debate on the role played by rural land use/management changes (RLUMC). Whereas the effects of RLUMC on runoff generation and flood risk at small scales are often clear, it is difficult to determine how these effects travel through the river network to affect flooding at larger scales downstream. The headwaters of the River Hodder catchment (260 km2) in Northwest England, United Kingdom, have recently undergone widespread RLUMC, including changes in stocking density, blocking of moorland drainage ditches, and woodland planting. An unusually dense nested monitoring network has been set-up so that the effects of RLUMC can be studied at increasing scales, from the process scale (~1 ha) to the meso scale (~100 km2). The stream gauges are nested up to 5 deep. In total there are 27 stream gauges, 7 rain gauges, and 1 weather station. The main effort in analysis has focussed on detecting signals from stocking density changes, by studying pre-change and post-change runoff and river network flows at increasing scales. The field data set available for the analysis is comprehensive but is relatively short (approximately 1 year pre-change and 1 year post-change). Given the natural variability of rainfall and hydrological response, working with such short records is an important challenge, especially as there is an almost universal lack of comprehensive, nested, long-term historical data sets worldwide that could be used to investigate the effects of RLUMC on flooding. An analysis of a commonly used statistical data analysis method (based on data based mechanistic modelling) showed that, for such short records, any change effects from RLUMC are apparently masked by natural variability. In addition, the effects of some types of RLUMC, including changes in stocking density, need several years to be fully established. Analysis methods have therefore been sought that are sensitive to changes in the

  11. Flow cytometer jet monitor system

    DOEpatents

    Van den Engh, Ger

    1997-01-01

    A direct jet monitor illuminates the jet of a flow cytometer in a monitor wavelength band which is substantially separate from the substance wavelength band. When a laser is used to cause fluorescence of the substance, it may be appropriate to use an infrared source to illuminate the jet and thus optically monitor the conditions within the jet through a CCD camera or the like. This optical monitoring may be provided to some type of controller or feedback system which automatically changes either the horizontal location of the jet, the point at which droplet separation occurs, or some other condition within the jet in order to maintain optimum conditions. The direct jet monitor may be operated simultaneously with the substance property sensing and analysis system so that continuous monitoring may be achieved without interfering with the substance data gathering and may be configured so as to allow the front of the analysis or free fall area to be unobstructed during processing.

  12. Status and Future of a Real-time Global Flood Detection and Forecasting System Using Satellite Rainfall Information

    NASA Astrophysics Data System (ADS)

    Adler, R. F.; Wu, H.; Hong, Y.; Policelli, F.; Pierce, H.

    2011-12-01

    Over the last several years a Global Flood Monitoring System (GFMS) has been running in real-time to detect the occurrence of floods (see trmm.gsfc.nasa.gov and click on "Floods and Landslides"). The system uses 3-hr resolution composite rainfall analyses (TRMM Multi-satellite Precipitation Analysis [TMPA]) as input into a hydrological model that calculates water depth at each grid (at 0.25 degree latitude-longitude) over the tropics and mid-latitudes. These calculations can provide information useful to national and international agencies in understanding the location, intensity, timeline and impact on populations of these significant hazard events. The status of these flood calculations will be shown by case study examples and a statistical comparison against a global flood event database. The validation study indicates that results improve with longer duration (> 3 days) floods and that the statistics are impacted by the presence of dams, which are not accounted for in the model calculations. Limitations in the flood calculations that are related to the satellite rainfall estimates include space and time resolution limitations and underestimation of shallow orographic and monsoon system rainfall. The current quality of these flood estimations is at the level of being useful, but there is a potential for significant improvement, mainly through improved and more timely satellite precipitation information and improvement in the hydrological models being used. NASA's Global Precipitation Measurement (GPM) program should lead to better precipitation analyses utilizing space-time interpolations that maintain accurate intensity distributions along with methods to disaggregate the rain information research should lead to improved rain estimation for shallow, orographic rainfall systems and some types of monsoon rainfall, a current problem area for satellite rainfall. Higher resolution flood models with accurate routing and regional calibration, and the use of satellite

  13. SERVIR-Africa: Developing an Integrated Platform for Floods Disaster Management in Africa

    NASA Technical Reports Server (NTRS)

    Macharia, Daniel; Korme, Tesfaye; Policelli, Fritz; Irwin, Dan; Adler, Bob; Hong, Yang

    2010-01-01

    SERVIR-Africa is an ambitious regional visualization and monitoring system that integrates remotely sensed data with predictive models and field-based data to monitor ecological processes and respond to natural disasters. It aims addressing societal benefits including floods and turning data into actionable information for decision-makers. Floods are exogenous disasters that affect many parts of Africa, probably second only to drought in terms of social-economic losses. This paper looks at SERVIR-Africa's approach to floods disaster management through establishment of an integrated platform, floods prediction models, post-event flood mapping and monitoring as well as flood maps dissemination in support of flood disaster management.

  14. Open Source and Open Standard based decision support system: the example of lake Verbano floods management.

    NASA Astrophysics Data System (ADS)

    Cannata, Massimiliano; Antonovic, Milan; Pozzoni, Maurizio; Graf, Andrea

    2015-04-01

    The Locarno area (Switzerland, Canton Ticino) is exposed to lacual floods with a return period of about 7-8 years. The risk is of particular concern because the area is located in a floodplain that registered in the last decades a great increase in settlement and values of the real estates. Moreover small differences in lake altitude may produce a significant increase in flooded area due to the very low average slope of the terrain. While fatalities are not generally registered, several important economic costs are associated, e.g.: damages to real estates, interruption of activities, evacuation and relocation and environmental damages. While important events were registered in 1978, 1993, 2000, 2002 and 2014 the local stakeholder invested time and money in the set-up of an up-to-date decision support system that allows for the reduction of risks. Thanks to impressive technological advances the visionary concept of the Digital Earth (Gore 1992, 1998) is being realizing: geospatial coverages and monitoring systems data are increasingly available on the Web, and more importantly, in a standard format. As a result, today is possible to develop innovative decision support systems (Molinari et al. 2013) which mesh-up several information sources and offers special features for risk scenarios evaluation. In agreement with the exposed view, the authors have recently developed a new Web system whose design is based on the Service Oriented Architecture pattern. Open source software (e.g.: Geoserver, PostGIS, OpenLayers) has been used throughout the whole system and geospatial Open Standards (e.g.: SOS, WMS, WFS) are the pillars it rely on. SITGAP 2.0, implemented in collaboration with the Civil protection of Locarno e Vallemaggia, combines a number of data sources such as the Federal Register of Buildings and Dwellings, the Cantonal Register of residents, the Cadastral Surveying, the Cantonal Hydro-meteorological monitoring observations, the Meteoswiss weather forecasts, and

  15. Detection of lowland flooding using active microwave systems

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.; Blanchard, B.J.; Blanchard, A. J.

    1985-01-01

    The development of radar systems with longer wavelenths (greater than 3 cm) has provided new possibilities regarding the utilization of radar. Thus, it has been found that the interpretation of data from radar images can be a valuable classification aid for applications related to water resources. In the case of an interpreter accustomed to photographic or visible/infrared images, an evaluation of radar images presents some problems, because the radar is sensing a set of surface characteristics which have little influence on visible/infrared systems. Detectable features in radar images caused by differences in dielectric properties are usually associated with the water content of either soils or vegetation. The present paper is concerned with studies which were initiated in 1976. The studies had the objective to define the magnitude of the effects on radar data caused by flood waters under vegetation. The obtained results indicate the feasibility to detect flood conditions beneath a forest canopy, and to obtain an improved definition of the land-water boundary.

  16. Turbomachine monitoring system and method

    DOEpatents

    Delvaux, John McConnell

    2016-02-23

    In an embodiment, a system includes a turbomachine having a first turbomachine component including a first mechanoluminescent material. The first turbomachine component is configured to produce a first light emission upon exposure to a mechanical stimulus sufficient to cause mechanoluminescence by the first mechanoluminescent material. The system also includes a turbomachine monitoring system configured to monitor the structural health of the first component based on detection of the first light emission.

  17. Radar-based Flood Warning System for Houston, Texas and Its Performance Evaluation

    NASA Astrophysics Data System (ADS)

    Fang, N.; Bedient, P.

    2009-12-01

    Houston has a long history of flooding problems as a serious nature. For instance, Houstonians suffered from severe flood inundation during Tropical Storm Allison in 2001 and Hurricane Ike in 2008. Radar-based flood warning systems as non-structural tools to provide accurate and timely warnings to the public and private entities are greatly needed for urban areas prone to flash floods. Fortunately, the advent of GIS, radar-based rainfall estimation using NEXRAD, and real-time delivery systems on the internet have allowed flood alert systems to provide important advanced warning of impending flood conditions. Thus, emergency personnel can take proper steps to mitigate against catastrophic losses. The Rice and Texas Medical Center (TMC) Flood Alert System (FAS2) has been delivering warning information with 2 to 3 hours of lead time to facility personnel in a readily understood format for more than 40 events since 1997. The system performed well during these major rainfall events with R square value of 93%. The current system has been improved by incorporating a new hydraulic prediction tool - FloodPlain Map Library (FPML). The FPML module aims to provide visualized information such as floodplain maps and water surface elevations instead of just showing hydrographs in real time based on NEXRAD radar rainfall data. During Hurricane Ike (September, 2008), FAS2 successfully provided precise and timely flood warning information to TMC with the peak flow difference of 3.6% and the volume difference of 5.6%; timing was excellent for this double-peaked event. With the funding from the Texas Department of Transportation, a similar flood warning system has been developed at a critical transportation pass along Highway 288 in Houston, Texas. In order to enable emergency personnel to begin flood preparation with as much lead time as possible, FAS2 is being used as a prototype to develop warning system for other flood-prone areas such as City of Sugar Land.

  18. Acoustic emission monitoring system

    DOEpatents

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  19. An integrated system for hydrological analysis of flood events

    NASA Astrophysics Data System (ADS)

    Katsafados, Petros; Chalkias, Christos; Karymbalis, Efthymios; Gaki-Papanastassiou, Kalliopi; Mavromatidis, Elias; Papadopoulos, Anastasios

    2010-05-01

    The significant increase of extreme flood events during recent decades has led to an urgent social and economic demand for improve prediction and sustainable prevention. Remedial actions require accurate estimation of the spatiotemporal variability of runoff volume and local peaks, which can be analyzed through integrated simulation tools. Despite the fact that such advanced modeling systems allow the investigation of the dynamics controlling the behavior of those complex processes they can also be used as early warning systems. Moreover, simulation is assuming as the appropriate method to derive quantitative estimates of various atmospheric and hydrologic parameters especially in cases of absence reliable and accurate measurements of precipitation and flow rates. Such sophisticated techniques enable the flood risk assessment and improve the decision-making support on protection actions. This study presents an integrated system for the simulation of the essential atmospheric and soil parameters in the context of hydrological flood modeling. The system is consisted of two main cores: a numerical weather prediction model coupled with a geographical information system for the accurate simulation of groundwater advection and rainfall runoff estimation. Synoptic and mesoscale atmospheric motions are simulated with a non-hydrostatic limited area model on a very high resolution domain of integration. The model includes advanced schemes for the microphysics and the surface layer physics description as well as the longwave and sortwave radiation budget estimation. It is also fully coupled with a land-surface model in order to resolve the surface heat fluxes and the simulation of the air-land energy exchange processes. Detailed atmospheric and soil parameters derived from the atmospheric model are used as input data for the GIS-based runoff modeling. Geographical information system (GIS) technology is used for further hydrological analysis and estimation of direct

  20. Struggle in the flood: tree responses to flooding stress in four tropical floodplain systems

    PubMed Central

    Parolin, Pia; Wittmann, Florian

    2010-01-01

    Background and aims In the context of the 200th anniversary of Charles Darwin's birth in 1809, this study discusses the variation in structure and adaptation associated with survival and reproductive success in the face of environmental stresses in the trees of tropical floodplains. Scope We provide a comparative review on the responses to flooding stress in the trees of freshwater wetlands in tropical environments. The four large wetlands we evaluate are: (i) Central Amazonian floodplains in South America, (ii) the Okavango Delta in Africa, (iii) the Mekong floodplains of Asia and (iv) the floodplains of Northern Australia. They each have a predictable ‘flood pulse’. Although flooding height varies between the ecosystems, the annual pulse is a major driving force influencing all living organisms and a source of stress for which specialized adaptations for survival are required. Main points The need for trees to survive an annual flood pulse has given rise to a large variety of adaptations. However, phenological responses to the flood are similar in the four ecosystems. Deciduous and evergreen species respond with leaf shedding, although sap flow remains active for most of the year. Growth depends on adequate carbohydrate supply. Physiological adaptations (anaerobic metabolism, starch accumulation) are also required. Conclusions Data concerning the ecophysiology and adaptations of trees in floodplain forests worldwide are extremely scarce. For successful floodplain conservation, more information is needed, ideally through a globally co-ordinated study using reproducible comparative methods. In the light of climatic change, with increasing drought, decreased groundwater availability and flooding periodicities, this knowledge is needed ever more urgently to facilitate fast and appropriate management responses to large-scale environmental change. PMID:22476061

  1. The Monitoring of River Flows and the Management of Flood Hazards using UAVs

    NASA Astrophysics Data System (ADS)

    Verosub, K. L.

    2015-12-01

    The increasing occurrence of extreme precipitation events as well as severe droughts, coupled with greater and greater human occupation of flood plains, makes increased monitoring of flows in rivers an important component of assessing the potential for water-related natural disasters as well as responding to them when they do occur. Unfortunately, this increasing need comes at a time when funding for monitoring activities is generally decreasing. In the United States, for example, gauging stations with daily flow records going back several decades or even a hundred years have been abandoned, and new stations in critical areas have not even been established. A methodology based on periodic UAV-based imaging of an entire river offers the prospect of obtaining inexpensive, real-time, high-resolution data for the determination of the river flows. The method makes use of fact that as the flow in a river rises or falls, the areal extent covered by the river changes accordingly. Furthermore, barring anthropogenic changes, the area inundated by a flow of a particular magnitude is invariant in time. For a given stretch of a river, a sequence of images spanning the full range of flow conditions provides the basic template for determining river flows. The actual flow in the river can be calibrated using previously measured flow data corresponding the dates of old aerial or satellite imagery, or calculated from new imagery by using standard flow equations and the topography of the banks of the river, determined by field surveying or Lidar. Once the basic template has been established, determination of "the state-of-the-river" at any point in time can be obtained by comparing newly-acquired UAV images with those in the database. And because a given image encompasses many topographic features that are inundated to differing extents, the resolution of the flow determination is limited only by the completeness of the imagery in the basic template. Repeat flights at weekly

  2. Monitoring storm tide and flooding from Hurricane Sandy along the Atlantic coast of the United States, October 2012

    USGS Publications Warehouse

    McCallum, Brian E.; Wicklein, Shaun M.; Reiser, Robert G.; Busciolano, Ronald; Morrison, Jonathan; Verdi, Richard J.; Painter, Jaime A.; Frantz, Eric R.; Gotvald, Anthony J.

    2013-01-01

    The U.S. Geological Survey (USGS) deployed a temporary monitoring network of water-level and barometric pressure sensors at 224 locations along the Atlantic coast from Virginia to Maine to continuously record the timing, areal extent, and magnitude of hurricane storm tide and coastal flooding generated by Hurricane Sandy. These records were greatly supplemented by an extensive post-flood high-water mark (HWM) flagging and surveying campaign from November to December 2012 involving more than 950 HWMs. Both efforts were undertaken as part of a coordinated federal emergency response as outlined by the Stafford Act under a directed mission assignment by the Federal Emergency Management Agency (FEMA).

  3. An evaluation of the impact of recent flooding on the operation of a groundwater extraction and treatment system at a Superfund Site

    SciTech Connect

    Gavett, K.L.; Fiore, M.J.; Meyer, E.J.

    1994-12-31

    A groundwater extraction and treatment system was installed in 1987 at the Des Moines TCE Superfund Site. The purpose of the system is to prevent groundwater contaminated with chlorinated volatile organic compounds (VOCs) from migrating toward an infiltration gallery system which supplies drinking water to the City of Des Moines, Iowa. The extraction system was not operating for a three week period in July and August when the system was flooded by the nearby Raccoon collected as part of a monitoring program have been s the affect of flooding on the operation of the system. Records indicate that the flood did not have a long-term impact on the Performance of the system. An examination of groundwater levels show that groundwater elevations receded quickly after the flood, similar to patterns observed after other periods of heavy precipitation. In fact, data collected nine weeks after the extraction system was returned to service indicate that the system continues to meet its containment objective. Water quality records indicate that the affect of the 1993 flood was similar to trends Observed after earlier periods of heavy precipitation. Trichloroethene concentrations in the treatment system influent and in wells located in the vicinity of suspected source areas increased as a result of rising groundwater levels, and infiltration through residual contamination in the unsaturated zone. Groundwater quality in areas beyond suspected source areas does not appear to have been affected by the 1993 flood.

  4. Validation of the Global NASA Satellite-based Flood Detection System in Bangladesh

    NASA Astrophysics Data System (ADS)

    Moffitt, C. B.

    2009-12-01

    Floods are one of the most destructive natural forces on earth, affecting millions of people annually. Nations lying in the downstream end of an international river basin often suffer the most damage during flooding and could benefit from the real-time communication of rainfall and stream flow data from countries upstream. This is less likely to happen among developing nations due to a lack of freshwater treaties (Balthrop and Hossain, Water Policy, 2009). A more viable option is for flood-prone developing nations to utilize the global satellite rainfall and modeled runoff data that is independently and freely available from the NASA Satellite-based Global Flood Detection System. Although the NASA Global Flood Detection System has been in operation in real-time since 2006, the ‘detection’ capability of flooding has only been validated against qualitative reports in news papers and other types of media. In this study, a more quantitative validation against in-situ measurements of the flood detection system over Bangladesh is presented. Using ground-measured stream flow data as well as satellite-based flood potential and rainfall data, the study looks into the relationship between rainfall and flood potential, rainfall and stream flow, and stream flow and flood potential for three very distinct river systems in Bangladesh - 1) Ganges- a snow-fed river regulated by upstream India 2) Brahmaputra - a snow-fed river that is also braided 3) Meghna - a rain-fed river. The quantitative assessment will show the effectiveness of the NASA Global Flood Detection System for a very humid and flood prone region like Bangladesh that is also faced with tremendous transboundary hurdles that can only be resolved from the vantage of space.

  5. A systolic radiation monitoring system

    SciTech Connect

    Shpancer, I.; Kinsner, W.

    1982-12-01

    This paper describes a data acquisition system for radiation monitoring which significantly improves performance over conventional systems by providing higher throughput, elimination of data skew, easier and inexpensive isolation, improved system accuracy, and compact implementation. The novel systolic data acquisition system, including systolic converter, processor and networking was developed to alleviate drawbacks of various conventional data acquisition systems used in radiation monitoring. The system is based on a systolic conversion, processing and networking method amenable to highly integrated vector architecture. The method employs systolic rules which can be developed for a selected problem. The rules for the radiation monitoring problem have been developed so as to apply not only locally but also globally to the systolic network. A form of the network has been implemented and is operational in a nuclear reactor site. Other forms are being implemented and tested for other data skew sensitive problems.

  6. Scientific developments within the Global Flood Partnership

    NASA Astrophysics Data System (ADS)

    de Groeve, Tom; Alfieri, Lorenzo; Thielen, Jutta

    2015-04-01

    More than 90 scientists, end users, and decision makers in the field of flood forecasting, remote sensing, hazard and risk assessment and emergency management collaborate in the Global Flood Partnership (GFP). The Partnership, launched in 2014, aims at the development of flood observational and modelling infrastructure, leveraging on existing initiatives for better predicting and managing flood disaster impacts and flood risk globally. Scientists collaborate in the GFP in different pillars, respectively focused on (1) development of tools and systems for global flood monitoring (Flood Toolbox), (2) applying the tools for publishing near real-time impact-based flood awareness information (Flood Observatory), and (3) collecting flood maps and impact information in a distributed database (Flood Record). The talk will focus on concrete collaboration results in 2014 and 2015, showing the added value of collaborating under a partnership. These include an overview of 10 services, 5 tools (algorithms or software) and 4 datasets related to global flood forecasting and observation. Through the various results (on interoperability, standards, visualization, integration and system design of integrated systems), it will be shown that a user-centric approach can lead to effective uptake of research results, rapid prototype development and experimental services that fill a gap in global flood response.

  7. A Grid job monitoring system

    NASA Astrophysics Data System (ADS)

    Dumitrescu, Catalin; Nowack, Andreas; Padhi, Sanjay; Sarkar, Subir

    2010-04-01

    This paper presents a web-based Job Monitoring framework for individual Grid sites that allows users to follow in detail their jobs in quasi-real time. The framework consists of several independent components : (a) a set of sensors that run on the site CE and worker nodes and update a database, (b) a simple yet extensible web services framework and (c) an Ajax powered web interface having a look-and-feel and control similar to a desktop application. The monitoring framework supports LSF, Condor and PBS-like batch systems. This is one of the first monitoring systems where an X.509 authenticated web interface can be seamlessly accessed by both end-users and site administrators. While a site administrator has access to all the possible information, a user can only view the jobs for the Virtual Organizations (VO) he/she is a part of. The monitoring framework design supports several possible deployment scenarios. For a site running a supported batch system, the system may be deployed as a whole, or existing site sensors can be adapted and reused with the web services components. A site may even prefer to build the web server independently and choose to use only the Ajax powered web interface. Finally, the system is being used to monitor a glideinWMS instance. This broadens the scope significantly, allowing it to monitor jobs over multiple sites.

  8. A grid job monitoring system

    SciTech Connect

    Dumitrescu, Catalin; Nowack, Andreas; Padhi, Sanjay; Sarkar, Subir; /INFN, Pisa /Pisa, Scuola Normale Superiore

    2010-01-01

    This paper presents a web-based Job Monitoring framework for individual Grid sites that allows users to follow in detail their jobs in quasi-real time. The framework consists of several independent components: (a) a set of sensors that run on the site CE and worker nodes and update a database, (b) a simple yet extensible web services framework and (c) an Ajax powered web interface having a look-and-feel and control similar to a desktop application. The monitoring framework supports LSF, Condor and PBS-like batch systems. This is one of the first monitoring systems where an X.509 authenticated web interface can be seamlessly accessed by both end-users and site administrators. While a site administrator has access to all the possible information, a user can only view the jobs for the Virtual Organizations (VO) he/she is a part of. The monitoring framework design supports several possible deployment scenarios. For a site running a supported batch system, the system may be deployed as a whole, or existing site sensors can be adapted and reused with the web services components. A site may even prefer to build the web server independently and choose to use only the Ajax powered web interface. Finally, the system is being used to monitor a glideinWMS instance. This broadens the scope significantly, allowing it to monitor jobs over multiple sites.

  9. Developing an Intelligent Reservoir Flood Control Decision Support System through Integrating Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Chang, L. C.; Kao, I. F.; Tsai, F. H.; Hsu, H. C.; Yang, S. N.; Shen, H. Y.; Chang, F. J.

    2015-12-01

    Typhoons and storms hit Taiwan several times every year and cause serious flood disasters. Because the mountainous terrain and steep landform rapidly accelerate the speed of flood flow, rivers cannot be a stable source of water supply. Reservoirs become one of the most important and effective floodwater storage facilities. However, real-time operation for reservoir flood control is a continuous and instant decision-making process based on rules, laws, meteorological nowcast, in addition to the immediate rainfall and hydrological data. The achievement of reservoir flood control can effectively mitigate flood disasters and store floodwaters for future uses. In this study, we construct an intelligent decision support system for reservoir flood control through integrating different types of neural networks and the above information to solve this problem. This intelligent reservoir flood control decision support system includes three parts: typhoon track classification, flood forecast and adaptive water release models. This study used the self-organizing map (SOM) for typhoon track clustering, nonlinear autoregressive with exogenous inputs (NARX) for multi-step-ahead reservoir inflow prediction, and adaptive neuro-fuzzy inference system (ANFIS) for reservoir flood control. Before typhoons landfall, we can estimate the entire flood hydrogragh of reservoir inflow by using SOM and make a pre-release strategy and real-time reservoir flood operating by using ANFIS. In the meanwhile, NARX can be constantly used real-time five-hour-ahead inflow prediction for providing the newest flood information. The system has been successfully implemented Typhoons Trami (2013), Fitow (2013) and Matmo (2014) in Shihmen Reservoir.

  10. An automatic system for on-line flash flood forecasting

    NASA Astrophysics Data System (ADS)

    Makin, I.; Rumyantsev, D.; Shemanayev, K.; Shkarbanov, R.

    2012-04-01

    The research group at Russian State Hydrometeorological University continues developing hydrologic software, called SLS+, which might be useful for background flash flood forecasting in poorly gauged regions. Now the SLS+ software has a user-friendly web interface for on-line background flash flood forecasting in training and operational (real time or near real time) modes, and allows issuing stream flow forecasts based on precipitation and evaporation data obtained either from archives, or from field sensors, respectively. The system currently includes two hydrological models, the Sacramento Soil Moisture Accounting model (USA) and Multi-Layer Conceptual Model (Russia). These models can be calibrated either manually, or automatically based on four calibration algorithms: Shuffled Complex Evolution algorithm (SCE), which is quite useful if (1) a number of calibrated parameters does not exceed 6-7 and boundaries of the parameter space are well defined and (2) the parameter space is not too wide; Basic Stepwise Line Search (SLS) algorithm, which is efficient and computationally "inexpensive", if an initial point for pattern optimization is well defined; SLS-2L algorithm (where 2L is an abbreviation for "two loops" or "two cycles"), which is used in regions with scarce soil data and allows first to predetermine the soil hydraulic parameters, and then use these parameters for the refined model parameterization; SLS-E algorithm (where E stands for "Ensemble generation"), which implies the generation of ensembles of one or several forcing processes (for instance, effective precipitation and evaporation) and model calibration for each of those ensembles. This method is primarily designed for models with undistracted parameters at a relatively low density of ground-based meteorological observation network. Currently the trial version of the system is available for testing upon request.

  11. Space Station atmospheric monitoring systems

    NASA Technical Reports Server (NTRS)

    Buoni, C.; Coutant, R.; Barnes, R.; Slivon, L.

    1988-01-01

    A technology assessment study on atmospheric monitoring systems was performed by Battelle Columbus Division for the National Aeronautics and Space Administration's John F. Kennedy Space Center under Contract No. NAS 10-11033. In this assessment, the objective was to identify, analyze, and recommend systems to sample and measure Space Station atmospheric contaminants and identify where additional research and technology advancements were required. To achieve this objective, it was necessary to define atmospheric monitoring requirements and to assess the state of the art and advanced technology and systems for technical and operational compatibility with monitoring goals. Three technical tasks were defined to support these needs: Definition of Monitoring Requirements, Assessment of Sampling and Analytical Technology, and Technology Screening and Recommendations. Based on the analysis, the principal candidates recommended for development at the Space Station's initial operational capability were: (1) long-path Fourier transform infrared for rapid detection of high-risk contamination incidences, and (2) gas chromatography/mass spectrometry utilizing mass selective detection (or ion-trap) technologies for detailed monitoring of extended crew exposure to low level (ppbv) contamination. The development of a gas chromatography/mass spectrometry/matrix isolation-Fourier transform infrared system was recommended as part of the long range program of upgrading Space Station trace-contaminant monitoring needs.

  12. Space Station atmospheric monitoring systems.

    PubMed

    Buoni, C; Coutant, R; Barnes, R; Slivon, L

    1988-05-01

    A technology assessment study on atmospheric monitoring systems was performed by Battelle Columbus Division for the National Aeronautics and Space Administration's John F. Kennedy Space Center under Contract No. NAS 10-11033. In this assessment, the objective was to identify, analyze, and recommend systems to sample and measure Space Station atmospheric contaminants and identify where additional research and technology advancements were required. To achieve this objective, it was necessary to define atmospheric monitoring requirements and to assess the state of the art and advanced technology and systems for technical and operational compatibility with monitoring goals. Three technical tasks were defined to support these needs: Definition of Monitoring Requirements, Assessment of Sampling and Analytical Technology, and Technology Screening and Recommendations. Based on the analysis, the principal candidates recommended for development at the Space Station's initial operational capability were: (1) long-path Fourier transform infrared for rapid detection of high-risk contamination incidences, and (2) gas chromatography/mass spectrometry utilizing mass selective detection (or ion-trap) technologies for detailed monitoring of extended crew exposure to low level (ppbv) contamination. The development of a gas chromatography/mass spectrometry/matrix isolation-Fourier transform infrared system was recommended as part of the long range program of upgrading Space Station trace-contaminant monitoring needs.

  13. Space Station atmospheric monitoring systems.

    PubMed

    Buoni, C; Coutant, R; Barnes, R; Slivon, L

    1988-05-01

    A technology assessment study on atmospheric monitoring systems was performed by Battelle Columbus Division for the National Aeronautics and Space Administration's John F. Kennedy Space Center under Contract No. NAS 10-11033. In this assessment, the objective was to identify, analyze, and recommend systems to sample and measure Space Station atmospheric contaminants and identify where additional research and technology advancements were required. To achieve this objective, it was necessary to define atmospheric monitoring requirements and to assess the state of the art and advanced technology and systems for technical and operational compatibility with monitoring goals. Three technical tasks were defined to support these needs: Definition of Monitoring Requirements, Assessment of Sampling and Analytical Technology, and Technology Screening and Recommendations. Based on the analysis, the principal candidates recommended for development at the Space Station's initial operational capability were: (1) long-path Fourier transform infrared for rapid detection of high-risk contamination incidences, and (2) gas chromatography/mass spectrometry utilizing mass selective detection (or ion-trap) technologies for detailed monitoring of extended crew exposure to low level (ppbv) contamination. The development of a gas chromatography/mass spectrometry/matrix isolation-Fourier transform infrared system was recommended as part of the long range program of upgrading Space Station trace-contaminant monitoring needs. PMID:11542838

  14. Space station atmospheric monitoring systems

    NASA Astrophysics Data System (ADS)

    Buoni, C.; Coutant, R.; Barnes, R.; Slivon, L.

    A technology assessment study on atmospheric monitoring systems was performed by Battelle Columbus Division for the National Aeronautics and Space Administration's John F. Kennedy Space Center under Contract No. NAS10-11033. In this assessment, the objective was to identify, analyze, and recommend systems to sample and measure Space Station atmospheric contaminants and identify where additional research and technology advancements were required. To achieve this objective, it was necessary to define atmospheric monitoring requirements and to assess the state of the art and advanced technology and systems for technical and operational compatibility with monitoring goals. Three technical tasks were defined to support these needs: Definition of Monitoring Requirements, Assessment of Sampling and Analytical Technology, and Technology Screening and Recommendations. Based on the analysis, the principal candidates recommended for development at the Space Station's initial operational capability were: (1) long-path Fourier transform infrared for rapid detection of high-risk contamination incidences, and (2) gas chromatography/mass spectrometry utilizing mass selective detection (or ion-trap) technologies for detailed monitoring of extended crew exposure to low level (ppbv) contamination. The development of a gas chromatography/mass spectrometry/matrix isolation-Fourier transform infrared system was recommended as part of the long range program of upgrading Space Station trace-contaminant monitoring needs.

  15. Distributed System Intruder Tools, Trinoo and Tribe Flood Network

    SciTech Connect

    Criscuolo, P.J.; Rathbun, T

    1999-12-21

    Trinoo and Tribe Flood Network (TFN) are new forms of denial of Service (DOS) attacks. attacks are designed to bring down a computer or network by overloading it with a large amount of network traffic using TCP, UDP, or ICMP. In the past, these attacks came from a single location and were easy to detect. Trinoo and TFN are distributed system intruder tools. These tools launch DoS attacks from multiple computer systems at a target system simultaneously. This makes the assault hard to detect and almost impossible to track to the original attacker. Because these attacks can be launched from hundreds of computers under the command of a single attacker, they are far more dangerous than any DoS attack launched from a single location. These distributed tools have only been seen on Solaris and Linux machines, but there is no reason why they could not be modified for UNIX machines. The target system can also be of any type because the attack is based on the TCP/IP architecture, not a flaw in any particular operating system (OS). CIAC considers the risks presented by these DoS tools to be high.

  16. Development of a smart flood warning system in urban areas: A case study of Huwei area in Taiwan

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Chi; Hsu, Hao-Ming; Kao, Hong-Ming

    2016-04-01

    In this study, we developed a smart flood warning system to clearly understand flood propagations in urban areas. The science and technology park of Huwei, located in the southwest of Taiwan, was selected as a study area. It was designated to be an important urban area of optoelectronics and biotechnology. The region has an area about 1 km2 with approximately 1 km in both length and width. The discrepancy between the highest and lowest elevations is 6.3 m and its elevation decreases along the northeast to the southwest. It is an isolated urban drainage area due to its urban construction plan. The storm sewer system in this region includes three major networks that collect the runoff and drain to the detention pond where is located in the southwest corner of the region. The proposed smart flood warning system combines three important parts, i.e. the physical world, the cyber-physical interface, and the cyber space, to identify how the flood affects urban areas from now until the next three hours. In the physical world, when a rainfall event occurs, monitoring sensors (e.g. rainfall gauges and water level gauges built in the sewer system and ground surface), which are established in several essential locations of the study area, collect in situ hydrological data and then these data being transported to the cyber-physical interface. The cyber-physical interface is a data preprocess space that includes data analysis, quality control and assurance, and data integration and standardization to produce the validated data. In the cyber space, it has missions to receive the validated data from the cyber-physical interface and to run the time machine that has flood analyses of data mining, inundation scenarios simulation, risk and economic assessments, and so on, based on the validated data. After running the time machine, it offers the analyzed results related to flooding planning, mitigation, response, and recovery. According to the analyzed results, the decision supporting

  17. A New Holistic Security Approach for Government Critical Systems: Flooding Prevention

    NASA Astrophysics Data System (ADS)

    Alhabeeb, Mohammed; Almuhaideb, Abdullah; Le, Phu Dung; Srinivasan, Bala

    Flooding attack is a threat to services in the Internet. They can cause significant financial losses. This paper presents a new holistic security approach which prevents flooding in the government critical systems. A new corporation with local service providers has been suggested to finding the real source of the flooding attacks. In addition, a new concept of a dynamic-multi-communicationpoint is included to make the prevention of flooding attacks easier. Also the dynamic key encryption technique is adapted as a part of the proposed approach to enhance its functionality.

  18. The rapid implementation of a statewide emergency health information system during the 1993 Iowa flood.

    PubMed Central

    O'Carroll, P W; Friede, A; Noji, E K; Lillibridge, S R; Fries, D J; Atchison, C G

    1995-01-01

    In the face of disastrous flooding, the Iowa Department of Public Health established the statewide Emergency Computer Communications Network to establish rapid electronic reporting of disaster-related health data, provide e-mail communications among all county health departments, monitor the long-range public health effects of the disaster, and institute a general purpose public health information system in Iowa. Based on software (CDC WONDER/PC) provided by the Centers for Disease Control and Prevention and using standard personal computers and modems, this system has resulted in a 10- to 20-fold increase in surveillance efficiency at the health department, not including time saved by county network participants. It provides a critical disaster assessment capability to the health department but also facilitates the general practice of public health. PMID:7702125

  19. Monitoring of levees, bridges, pipelines, and other critical infrastructure during the 2011 flooding in the Mississippi River Basin: Chapter J in 2011 floods of the central United States

    USGS Publications Warehouse

    Densmore, Brenda K.; Burton, Bethany L.; Dietsch, Benjamin J.; Cannia, James C.; Huizinga, Richard J.

    2014-01-01

    During the 2011 Mississippi River Basin flood, the U.S. Geological Survey evaluated aspects of critical river infrastructure at the request of and in support of local, State, and Federal Agencies. Geotechnical and hydrographic data collected by the U.S. Geological Survey at numerous locations were able to provide needed information about 2011 flood effects to those managing the critical infrastructure. These data were collected and processed in a short time frame to provide managers the ability to make a timely evaluation of the safety of the infrastructure and, when needed, to take action to secure and protect critical infrastructure. Critical infrastructure surveyed by the U.S. Geological Survey included levees, bridges, pipeline crossings, power plant intakes and outlets, and an electrical transmission tower. Capacitively coupled resistivity data collected along the flood-protection levees surrounding the Omaha Public Power District Nebraska City power plant (Missouri River Levee Unit R573), mapped the near-subsurface electrical properties of the levee and the materials immediately below it. The near-subsurface maps provided a better understanding of the levee construction and the nature of the lithology beneath the levee. Comparison of the capacitively coupled resistivity surveys and soil borings indicated that low-resistivity value material composing the levee generally is associated with lean clay and silt to about 2 to 4 meters below the surface, overlying a more resistive layer associated with sand deposits. In general, the resistivity structure becomes more resistive to the south and the southern survey sections correlate well with the borehole data that indicate thinner clay and silt at the surface and thicker sand sequences at depth in these sections. With the resistivity data Omaha Public Power District could focus monitoring efforts on areas with higher resistivity values (coarser-grained deposits or more loosely compacted section), which typically are

  20. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique

    USGS Publications Warehouse

    Tote, Carolien; Patricio, Domingos; Boogaard, Hendrik; van der Wijngaart, Raymond; Tarnavsky, Elena; Funk, Christopher C.

    2015-01-01

    Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and floods and thus, an understanding of the strengths and weaknesses of different rainfall products is valuable. Three dekadal (10-day) gridded satellite rainfall products (TAMSAT African Rainfall Climatology And Time-series (TARCAT) v2.0, Famine Early Warning System NETwork (FEWS NET) Rainfall Estimate (RFE) v2.0, and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS)) are compared to independent gauge data (2001–2012). This is done using pairwise comparison statistics to evaluate the performance in estimating rainfall amounts and categorical statistics to assess rain-detection capabilities. The analysis was performed for different rainfall categories, over the seasonal cycle and for regions dominated by different weather systems. Overall, satellite products overestimate low and underestimate high dekadal rainfall values. The RFE and CHIRPS products perform as good, generally outperforming TARCAT on the majority of statistical measures of skill. TARCAT detects best the relative frequency of rainfall events, while RFE underestimates and CHIRPS overestimates the rainfall events frequency. Differences in products performance disappear with higher rainfall and all products achieve better results during the wet season. During the cyclone season, CHIRPS shows the best results, while RFE outperforms the other products for lower dekadal rainfall. Products blending thermal infrared and passive microwave imagery perform better than infrared only products and particularly when meteorological patterns are more complex, such as over the coastal, central and south regions of Mozambique, where precipitation is influenced by frontal systems.

  1. FEWS Vecht, a crossing boundaries flood forecasting system

    NASA Astrophysics Data System (ADS)

    van Heeringen, Klaas-Jan; Filius, Pieter; Tromp, Gerben; Renner, Tobias

    2013-04-01

    The river Vecht is a cross boundary river, starting in Germany and flowing to the Netherlands. The river is completely dependant on rainfall in the catchment. Being one of the smaller big rivers in the Netherlands, there was still no operational forecasting system avaible because of the hugh number of involved organisations (2 in Germany, 5 in the Netherlands) and many other stake holders. In 2011 a first operational forecasting system has been build by using the Delft-FEWS software. It collects the real time fluvial and meteorological observations from all the organisations, in that sense being a portal where all the collected information is available and can be consistantly interpreted as a whole. In 2012 an HBV rainfall runoff model and a Sobek 1D hydraulic model has been build. These models have been integrated into the FEWS system and are operationally running since the 2012 autumn. The system forecasts 5 days ahead using a 5 days ECMWF rainfall ensemble forecast. It enables making scenarios, especially useful for the operation of storage reservoirs. During the 2012 Christmas days a (relatively small) T=2 flood occurred (Q=175-200 m3/s) and proved the system to run succesfully. Dissemination of the forecasts is performed by using the FEWS system in all organisations, connected to the central system through internet. There is also a (password protected) website available that provides the current forecast to all stake holders in the catchment. The challenge of the project was not to make the models and to build the fews, but to connect all data and all operators together into one system, even cross boundary. Also in that sense the FEWS Vecht system has proved to be very succesful.

  2. Development of a national Flash flood warning system in France using the AIGA method: first results and main issues

    NASA Astrophysics Data System (ADS)

    Javelle, Pierre; Organde, Didier; Demargne, Julie; de Saint-Aubin, Céline; Garandeau, Léa; Janet, Bruno; Saint-Martin, Clotilde; Fouchier, Catherine

    2016-04-01

    Developing a national flash flood (FF) warning system is an ambitious and difficult task. On one hand it rises huge expectations from exposed populations and authorities since induced damages are considerable (ie 20 casualties in the recent October 2015 flood at the French Riviera). But on the other hand, many practical and scientific issues have to be addressed and limitations should be clearly stated. The FF warning system to be implemented by 2016 in France by the SCHAPI (French national service in charge of flood forecasting) will be based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014). The AIGA method has been experimented in real time in the south of France in the RHYTMME project (http://rhytmme.irstea.fr). It consists in comparing discharges generated by a simple conceptual hourly hydrologic model run at a 1-km² resolution to reference flood quantiles of different return periods, at any point along the river network. The hydrologic model ingests operational rainfall radar-gauge products from Météo-France. Model calibration was based on ~700 hydrometric stations over the 2002-2015 period and then hourly discharges were computed at ~76 000 catchment outlets, with areas ranging from 10 to 3 500 km², over the last 19 years. This product makes it possible to calculate reference flood quantiles at each outlet. The on-going evaluation of the FF warnings is currently made at two levels: in a 'classical' way, using discharges available at the hydrometric stations, but also in a more 'exploratory' way, by comparing past flood reports and warnings issued by the system over the 76 000 catchment outlets. The interest of the last method is that it better fit the system objectives since it is designed to monitor small ungauged catchments. Javelle, P., Demargne, J., Defrance, D, .Pansu, J, .Arnaud, P. (2014). Evaluating flash-flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system

  3. Landslide and Flood Warning System Prototypes based on Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Hloupis, George; Stavrakas, Ilias; Triantis, Dimos

    2010-05-01

    Wireless sensor networks (WSNs) are one of the emerging areas that received great attention during the last few years. This is mainly due to the fact that WSNs have provided scientists with the capability of developing real-time monitoring systems equipped with sensors based on Micro-Electro-Mechanical Systems (MEMS). WSNs have great potential for many applications in environmental monitoring since the sensor nodes that comprised from can host several MEMS sensors (such as temperature, humidity, inertial, pressure, strain-gauge) and transducers (such as position, velocity, acceleration, vibration). The resulting devices are small and inexpensive but with limited memory and computing resources. Each sensor node contains a sensing module which along with an RF transceiver. The communication is broadcast-based since the network topology can change rapidly due to node failures [1]. Sensor nodes can transmit their measurements to central servers through gateway nodes without any processing or they make preliminary calculations locally in order to produce results that will be sent to central servers [2]. Based on the above characteristics, two prototypes using WSNs are presented in this paper: A Landslide detection system and a Flood warning system. Both systems sent their data to central processing server where the core of processing routines exists. Transmission is made using Zigbee and IEEE 802.11b protocol but is capable to use VSAT communication also. Landslide detection system uses structured network topology. Each measuring node comprises of a columnar module that is half buried to the area under investigation. Each sensing module contains a geophone, an inclinometer and a set of strain gauges. Data transmitted to central processing server where possible landslide evolution is monitored. Flood detection system uses unstructured network topology since the failure rate of sensor nodes is expected higher. Each sensing module contains a custom water level sensor

  4. Wireless Temperature-Monitoring System

    NASA Technical Reports Server (NTRS)

    Solano, Wanda

    2003-01-01

    A relatively inexpensive instrumentation system that includes units that are connected to thermocouples and that are parts of a radio-communication network has been developed to enable monitoring of temperatures at multiple locations. Because there is no need to string wires or cables for communication, the system is well suited for monitoring temperatures at remote locations and for applications in which frequent changes of monitored or monitoring locations are needed. The system can also be adapted to monitoring of slowly varying physical quantities, other than temperature, that can be transduced by solid-state electronic sensors. The system comprises any number of transmitting units and a single receiving unit (see figure). Each transmitting unit includes connections for as many as four external thermocouples, a signal-conditioning module, a control module, and a radio-communication module. The signal- conditioning module acts as an interface between the thermocouples and the rest of the transmitting unit and includes a built-in solid ambient-temperature sensor that is in addition to the external thermocouples. The control module is a "system-on-chip" embedded processor that includes analog-to-digital converters, serial and parallel data ports, and an interface for local connection to an analog meter that is used during installation to verify correct operation. The radio-communication module contains a commercial spread-spectrum transceiver that operates in the 900-MHz industrial, scientific, and medical (ISM) frequency band. This transceiver transmits data to the receiving unit at a rate of 19,200 baud. The receiving unit includes a transceiver like that of a transmitting unit, plus a control module that contains a system-on-chip processor that includes serial data port for output to a computer that runs monitoring and/or control software, a parallel data port for output to a printer, and a seven-segment light-emitting-diode display.

  5. Monitoring Inland Storm Surge and Flooding from Hurricane Ike in Texas and Louisiana, September 2008

    USGS Publications Warehouse

    East, Jeffery W.; Turco, Michael J.; Mason, Jr., Robert R.

    2008-01-01

    The U.S. Geological Survey (USGS) deployed a temporary monitoring network of 117 pressure transducers (sensors) at 65 sites over an area of about 5,000 square miles to record the timing, areal extent, and magnitude of inland hurricane storm surge and coastal flooding generated by Hurricane Ike, which struck southeastern Texas and southwestern Louisiana September 12-13, 2008. Fifty-six sites were in Texas and nine were in Louisiana. Sites were categorized as surge, riverine, or beach/wave on the basis of proximity to the Gulf Coast. One-hundred five sensors from 59 sites (fig. 1) were recovered; 12 sensors from six sites either were lost during the storm or were not retrieved. All 59 sites (41 surge, 10 riverine, 8 beach/wave) had sensors to record water pressure (fig. 2), which is expressed as water level in feet above North American Vertical Datum of 1988 (NAVD88), and 46 sites had an additional sensor to record barometric pressure, expressed in pounds per square inch. Figure 3 shows an example of water level and barometric pressure over time recorded by sensors during the storm.

  6. Field Testing of Energy-Efficient Flood-Damage-Resistant Residential Envelope Systems Summary Report

    SciTech Connect

    Aglan, H.

    2005-08-04

    The primary purpose of the project was to identify materials and methods that will make the envelope of a house flood damage resistant. Flood damage resistant materials and systems are intended to be used to repair houses subsequent to flooding. This project was also intended to develop methods of restoring the envelopes of houses that have been flooded but are repairable and may be subject to future flooding. Then if the house floods again, damage will not be as extensive as in previous flood events and restoration costs and efforts will be minimized. The purpose of the first pair of field tests was to establish a baseline for typical current residential construction practice. The first test modules used materials and systems that were commonly found in residential envelopes throughout the U.S. The purpose of the second pair of field tests was to begin evaluating potential residential envelope materials and systems that were projected to be more flood-damage resistant and restorable than the conventional materials and systems tested in the first pair of tests. The purpose of testing the third slab-on-grade module was to attempt to dry flood proof the module (no floodwater within the structure). If the module could be sealed well enough to prevent water from entering, then this would be an effective method of making the interior materials and systems flood damage resistant. The third crawl space module was tested in the same manner as the previous modules and provided an opportunity to do flood tests of additional residential materials and systems. Another purpose of the project was to develop the methodology to collect representative, measured, reproducible (i.e. scientific) data on how various residential materials and systems respond to flooding conditions so that future recommendations for repairing flood damaged houses could be based on scientific data. An additional benefit of collecting this data is that it will be used in the development of a standard test

  7. Downhole frac monitoring system developed

    SciTech Connect

    Sarda, J.P.; Wittrisch, C.; Perreau, P.; Deflandre, J.P.

    1987-04-06

    A hydraulic fracture monitoring system makes it possible to determine the azimuth, length, and height of hydraulic fractures. Institut Francais du Petrole (IFP) has designed, patented, and field tested the system, which is designated Simfrac. It consists of a downhole monitoring tool with real-time surface readout and recording of microseismic events generated during the fracture opening or closing that occurs after the injection of fracture fluids. Combining Simfrac Interpretation with mathematical models can provide a better image of downhole stresses improved hydraulic fracture design, and can indicate optimum drill sites.

  8. Seismic dynamic monitoring in CO2 flooding based on characterization of frequency-dependent velocity factor

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-Hua; Li, Jun; Xiao, Wen; Tan, Ming-You; Zhang, Yun-Ying; Cui, Shi-Ling; Qu, Zhi-Peng

    2016-06-01

    The phase velocity of seismic waves varies with the propagation frequency, and thus frequency-dependent phenomena appear when CO2 gas is injected into a reservoir. By dynamically considering these phenomena with reservoir conditions it is thus feasible to extract the frequency-dependent velocity factor with the aim of monitoring changes in the reservoir both before and after CO2 injection. In the paper, we derive a quantitative expression for the frequency-dependent factor based on the Robinson seismic convolution model. In addition, an inversion equation with a frequency-dependent velocity factor is constructed, and a procedure is implemented using the following four processing steps: decomposition of the spectrum by generalized S transform, wavelet extraction of cross-well seismic traces, spectrum equalization processing, and an extraction method for frequency-dependent velocity factor based on the damped least-square algorithm. An attenuation layered model is then established based on changes in the Q value of the viscoelastic medium, and spectra of migration profiles from forward modeling are obtained and analyzed. Frequency-dependent factors are extracted and compared, and the effectiveness of the method is then verified using a synthetic data. The frequency-dependent velocity factor is finally applied to target processing and oil displacement monitoring based on real seismic data obtained before and after CO2 injection in the G89 well block within Shengli oilfield. Profiles and slices of the frequency-dependent factor determine its ability to indicate differences in CO2 flooding, and the predicting results are highly consistent with those of practical investigations within the well block.

  9. k-t Acceleration in pure phase encode MRI to monitor dynamic flooding processes in rock core plugs

    NASA Astrophysics Data System (ADS)

    Xiao, Dan; Balcom, Bruce J.

    2014-06-01

    Monitoring the pore system in sedimentary rocks with MRI when fluids are introduced is very important in the study of petroleum reservoirs and enhanced oil recovery. However, the lengthy acquisition time of each image, with pure phase encode MRI, limits the temporal resolution. Spatiotemporal correlations can be exploited to undersample the k-t space data. The stacked frames/profiles can be well approximated by an image matrix with rank deficiency, which can be recovered by nonlinear nuclear norm minimization. Sparsity of the x-t image can also be exploited for nonlinear reconstruction. In this work the results of a low rank matrix completion technique were compared with k-t sparse compressed sensing. These methods are demonstrated with one dimensional SPRITE imaging of a Bentheimer rock core plug and SESPI imaging of a Berea rock core plug, but can be easily extended to higher dimensionality and/or other pure phase encode measurements. These ideas will enable higher dimensionality pure phase encode MRI studies of dynamic flooding processes in low magnetic field systems.

  10. k-t acceleration in pure phase encode MRI to monitor dynamic flooding processes in rock core plugs.

    PubMed

    Xiao, Dan; Balcom, Bruce J

    2014-06-01

    Monitoring the pore system in sedimentary rocks with MRI when fluids are introduced is very important in the study of petroleum reservoirs and enhanced oil recovery. However, the lengthy acquisition time of each image, with pure phase encode MRI, limits the temporal resolution. Spatiotemporal correlations can be exploited to undersample the k-t space data. The stacked frames/profiles can be well approximated by an image matrix with rank deficiency, which can be recovered by nonlinear nuclear norm minimization. Sparsity of the x-t image can also be exploited for nonlinear reconstruction. In this work the results of a low rank matrix completion technique were compared with k-t sparse compressed sensing. These methods are demonstrated with one dimensional SPRITE imaging of a Bentheimer rock core plug and SESPI imaging of a Berea rock core plug, but can be easily extended to higher dimensionality and/or other pure phase encode measurements. These ideas will enable higher dimensionality pure phase encode MRI studies of dynamic flooding processes in low magnetic field systems.

  11. k-t acceleration in pure phase encode MRI to monitor dynamic flooding processes in rock core plugs.

    PubMed

    Xiao, Dan; Balcom, Bruce J

    2014-06-01

    Monitoring the pore system in sedimentary rocks with MRI when fluids are introduced is very important in the study of petroleum reservoirs and enhanced oil recovery. However, the lengthy acquisition time of each image, with pure phase encode MRI, limits the temporal resolution. Spatiotemporal correlations can be exploited to undersample the k-t space data. The stacked frames/profiles can be well approximated by an image matrix with rank deficiency, which can be recovered by nonlinear nuclear norm minimization. Sparsity of the x-t image can also be exploited for nonlinear reconstruction. In this work the results of a low rank matrix completion technique were compared with k-t sparse compressed sensing. These methods are demonstrated with one dimensional SPRITE imaging of a Bentheimer rock core plug and SESPI imaging of a Berea rock core plug, but can be easily extended to higher dimensionality and/or other pure phase encode measurements. These ideas will enable higher dimensionality pure phase encode MRI studies of dynamic flooding processes in low magnetic field systems. PMID:24809307

  12. Monitoring of levees, bridges, pipelines, and other critical infrastructure during the 2011 flooding in the Mississippi River Basin: Chapter J in 2011 floods of the central United States

    USGS Publications Warehouse

    Densmore, Brenda K.; Burton, Bethany L.; Dietsch, Benjamin J.; Cannia, James C.; Huizinga, Richard J.

    2014-01-01

    During the 2011 Mississippi River Basin flood, the U.S. Geological Survey evaluated aspects of critical river infrastructure at the request of and in support of local, State, and Federal Agencies. Geotechnical and hydrographic data collected by the U.S. Geological Survey at numerous locations were able to provide needed information about 2011 flood effects to those managing the critical infrastructure. These data were collected and processed in a short time frame to provide managers the ability to make a timely evaluation of the safety of the infrastructure and, when needed, to take action to secure and protect critical infrastructure. Critical infrastructure surveyed by the U.S. Geological Survey included levees, bridges, pipeline crossings, power plant intakes and outlets, and an electrical transmission tower. Capacitively coupled resistivity data collected along the flood-protection levees surrounding the Omaha Public Power District Nebraska City power plant (Missouri River Levee Unit R573), mapped the near-subsurface electrical properties of the levee and the materials immediately below it. The near-subsurface maps provided a better understanding of the levee construction and the nature of the lithology beneath the levee. Comparison of the capacitively coupled resistivity surveys and soil borings indicated that low-resistivity value material composing the levee generally is associated with lean clay and silt to about 2 to 4 meters below the surface, overlying a more resistive layer associated with sand deposits. In general, the resistivity structure becomes more resistive to the south and the southern survey sections correlate well with the borehole data that indicate thinner clay and silt at the surface and thicker sand sequences at depth in these sections. With the resistivity data Omaha Public Power District could focus monitoring efforts on areas with higher resistivity values (coarser-grained deposits or more loosely compacted section), which typically are

  13. Cooperative satellite-based flood detection, mapping, and river monitoring in near real time

    NASA Technical Reports Server (NTRS)

    Brakenridge, Robert G.; Nghiem, Son V.

    2004-01-01

    The North Atlantic Oscillation (NAO), the Pacific-North American (PNA) teleconnection pattern, and the El Nino-Southern Oscillation (ENSO) combine to influence the planetary wave structure over the northern hemisphere. Floods and droughts are associated around the world with ENSO through such teleconnections, and improved flood prediction relies on understanding them better. The scientific study of floods, and consistent measurements thereof, are needed in order to allow 'Greenhouse warming' predictions about flooding to be tested, and the hydrologic effects of other phenomena such as ENSO to be evaluated. The needed tasks are: 1) detection/warning of flooding, 2) flood magnitude assessment, 3) flood inundation mapping, and 4) preservation of the record of flooding. Accomplishing these same tasks provides direct local societal benefits as well: they can save lives and reduce economic loss. We emphasize that the basic science observations need not be divorced from the immediate practical applications: both can occur together, and just as is the case for meteorological remote sensing.

  14. Remote Arrhythmia Monitoring System Developed

    NASA Technical Reports Server (NTRS)

    York, David W.; Mackin, Michael A.; Liszka, Kathy J.; Lichter, Michael J.

    2004-01-01

    Telemedicine is taking a step forward with the efforts of team members from the NASA Glenn Research Center, the MetroHealth campus of Case Western University, and the University of Akron. The Arrhythmia Monitoring System is a completed, working test bed developed at Glenn that collects real-time electrocardiogram (ECG) signals from a mobile or homebound patient, combines these signals with global positioning system (GPS) location data, and transmits them to a remote station for display and monitoring. Approximately 300,000 Americans die every year from sudden heart attacks, which are arrhythmia cases. However, not all patients identified at risk for arrhythmias can be monitored continuously because of technological and economical limitations. Such patients, who are at moderate risk of arrhythmias, would benefit from technology that would permit long-term continuous monitoring of electrical cardiac rhythms outside the hospital environment. Embedded Web Technology developed at Glenn to remotely command and collect data from embedded systems using Web technology is the catalyst for this new telemetry system (ref. 1). In the end-to-end system architecture, ECG signals are collected from a patient using an event recorder and are transmitted to a handheld personal digital assistant (PDA) using Bluetooth, a short-range wireless technology. The PDA concurrently tracks the patient's location via a connection to a GPS receiver. A long distance link is established via a standard Internet connection over a 2.5-generation Global System for Mobile Communications/General Packet Radio Service (GSM/GPRS)1 cellular, wireless infrastructure. Then, the digital signal is transmitted to a call center for monitoring by medical professionals.

  15. Alarm- And Power-Monitoring System

    NASA Technical Reports Server (NTRS)

    Stute, Rob; Galloway, F. Houston; Swindle, Bob; Bierman, Tracy Alan; Medelius, Pedro

    1994-01-01

    Electronic central monitoring system, called Remote Monitor Alarm System, RMAS, used to monitor malfunction alarms and power supplies of remotely located equipment modules of transmitting and receiving equipment in fiber-optic communication network at Kennedy Space Center. Includes central monitoring unit at location convenient for technicians, plus remote terminal unit at each remote site containing equipment to be monitored.

  16. Monitoring Performance of Complex Systems

    NASA Technical Reports Server (NTRS)

    Thomas, W. F.

    1985-01-01

    33-page report describes use of computers in automatic on-line monitoring of Centaur rocket prior to launch. Computers analyze measurements and verify events and commands. System uses adaptive software so only real problems are detected and brought to attention of engineers. Software techniques transferable to such industrial uses as batch process control and production line automation.

  17. Combating Flood Crisis with Geographic Information System (GIS): An Example From Akure, Southwest Nigeria

    NASA Astrophysics Data System (ADS)

    Eludoyin, A. O.; Akinbode, O. M.; Archibong, Ediang Okuku

    2007-07-01

    Flood is a natural environmental disaster which could be aggravated by man's unguided development. It may subsequently cause destruction of properties and loss of life. Therefore it needs to be controlled and human influences controlled. This study attempts to describe an application of GIS as decision support to flooding problems in an urban area in Nigeria. The objective of the study is to describe the efficacy of GIS in monitoring of development on floodplains in an urban area in Nigeria. Topographic features were digitised from an existing 1:5,000 topographic map of Akure, with some position data collected and map updated using a handheld GPS. A database was created using both cartographic and attributes data collected from these and other sources. Spatial analyses were carried out using a PC based Integrated Land and Water Information System (ILWIS), version 3.2. The results obtained implicated dumpsites within the river channel as well as structural development within the River Ala floodplain as the major causes of inundation in this section of the city, especially, in the wet season. The study concluded that GIS could provide adequate decision support information to policy makers.

  18. Blood bag temperature monitoring system.

    PubMed

    Aalaei, Shokoufeh; Amini, Shahram; Keramati, Mohammad Reza; Shahraki, Hadi; Abu-Hanna, Ameen; Eslami, Saeed

    2014-01-01

    Storage and transportation of red blood cells (RBCs) outside the standard temperature range as defined by guidelines can lead to hemolysis. One of the main factors believed to cause hemolysis is temperature.Infusion of the corrupted RBCs leads to haemolytic reactions which are severe and life-threatening. We developed a temperature monitoring system to monitor temperature changes of each blood bag during storage and transportation. The main objective of the present study was evaluating the accuracy of the temperature monitoring system and studying its feasibility. Validating the system relied on accurate digital thermometers that latch on a blood bag. To evaluate the feasibility, a case study was performed on 20 RBC bags transported from hospital blood bank to the cardiac surgery intensive care unit and the heart operating room. The results indicated that 12% of 25605 recorded temperatures (per minute) were outside the standard range. Minimum and maximum temperatures were 0.5 °C and 16 °C that were below and above the standard, respectively. The system was shown to be easily handled by users. The system is capable to alarm when a blood bag's temperature is outside the standard temperature and prevents blood corruption. This system can be used as a decision support system in blood transfusion services to improve storage and transportation conditions of the blood bags.

  19. Glider monitoring of shelf suspended particle dynamics and transport during storm and flooding conditions

    NASA Astrophysics Data System (ADS)

    Bourrin, François; Many, Gaël; Durrieu de Madron, Xavier; Martín, Jacobo; Puig, Pere; Houpert, Loic; Testor, Pierre; Kunesch, Stéphane; Mahiouz, Karim; Béguery, Laurent

    2015-10-01

    Transfers of particulate matter on continental margins primarily occur during energetic events. As part of the CASCADE (CAscading, Storm, Convection, Advection and Downwelling Events) experiment, a glider equipped with optical sensors was deployed in the coastal area of the Gulf of Lions, NW Mediterranean in March 2011 to assess the spatio-temporal variability of hydrology, suspended particles properties and fluxes during energetic conditions. This deployment complemented a larger observational effort, a part of the MOOSE (Mediterranean Ocean Observing System of the Environment) network, composed of a coastal benthic station, a surface buoy and moorings on the continental slope. This set of observations permitted to measure the impact of three consecutive storms and a flood event across the entire continental shelf. Glider data showed that the sediment resuspension and transport observed at the coastal station during the largest storm (Hs>4 m) was effective down to a water depth of 80 m. The mid-shelf mud belt, located between 40 and 90 m depth, appears as the zone where the along-shelf flux of suspended sediment is maximum. Besides, the across-shelf flux of suspended sediment converges towards the outer limit of the mid-shelf mud belt, where deposition of suspended particles probably occurs and contributes to the nourishment of this area. Hydrological structures, suspended particles transport and properties changed drastically during stormy periods and the following flood event. Prior to the storms, the shelf waters were weakly stratified due in particular to the presence of cold dense water on the inner- and mid-shelf. The storms rapidly swept away this dense water, as well as the resuspended sediments, along the shelf and towards a downstream submarine canyon. The buoyant river plumes that spread along the shelf after the flooding period provoked a restratification of the water column on the inner- and mid-shelf. The analysis of glider's optical data at

  20. Wearable vital parameters monitoring system

    NASA Astrophysics Data System (ADS)

    Caramaliu, Radu Vadim; Vasile, Alexandru; Bacis, Irina

    2015-02-01

    The system we propose monitors body temperature, heart rate and beside this, it tracks if the person who wears it suffers a faint. It uses a digital temperature sensor, a pulse sensor and a gravitational acceleration sensor to monitor the eventual faint or small heights free falls. The system continuously tracks the GPS position when available and stores the last valid data. So, when measuring abnormal vital parameters the module will send an SMS, using the GSM cellular network , with the person's social security number, the last valid GPS position for that person, the heart rate, the body temperature and, where applicable, a valid fall alert or non-valid fall alert. Even though such systems exist, they contain only faint detection or heart rate detection. Usually there is a strong correlation between low/high heart rate and an eventual faint. Combining both features into one system results in a more reliable detection device.

  1. a Continuous Health Monitoring Guided Wave Fmd System for Retrofit to Existing Offshore Oilrigs

    NASA Astrophysics Data System (ADS)

    Mijarez, R.; Solis, L.; Martinez, F.

    2010-02-01

    An automatic health monitoring guided wave flood member detection (FMD) system, for retrofit to existing offshore oilrigs is presented. The system employs a microcontroller piezoelectric (PZT) based transmitter and a receiver instrumentation package composed of a PZT 40 kHz ultrasound transducer and a digital signal processor (DSP) module connected to a PC via USB for monitoring purposes. The transmitter and receiver were attached, non-intrusively, to the external wall of a steel tube; 1 m×27 cm×2 mm. Experiments performed in the laboratory have successfully identified automatically flooded tubes.

  2. Applications of ASFCM(Assessment System of Flood Control Measurement) in Typhoon Committee Members

    NASA Astrophysics Data System (ADS)

    Kim, C.

    2013-12-01

    Due to extreme weather environment such as global warming and greenhouse effect, the risks of having flood damage has been increased with larger scale of flood damages. Therefore, it became necessary to consider modifying climate change, flood damage and its scale to the previous dimension measurement evaluation system. In this regard, it is needed to establish a comprehensive and integrated system to evaluate the most optimized measures for flood control through eliminating uncertainties of socio-economic impacts. Assessment System of Structural Flood Control Measures (ASFCM) was developed for determining investment priorities of the flood control measures and establishing the social infrastructure projects. ASFCM consists of three modules: 1) the initial setup and inputs module, 2) the flood and damage estimation module, and 3) the socio-economic analysis module. First, we have to construct the D/B for flood damage estimation, which is the initial and input data about the estimation unit, property, historical flood damages, and applied area's topographic & hydrological data. After that, it is important to classify local characteristic for constructing flood damage data. Five local characteristics (big city, medium size city, small city, farming area, and mountain area) are classified by criterion of application (population density). Next step is the floodplain simulation with HEC-RAS which is selected to simulate inundation. Through inputting the D/B and damage estimation, it is able to estimate the total damage (only direct damage) that is the amount of cost to recover the socio-economic activities back to the safe level before flood did occur. The last module suggests the economic analysis index (B/C ratio) with Multidimensional Flood Damage Analysis. Consequently, ASFCM suggests the reference index in constructing flood control measures and planning non-structural systems to reduce water-related damage. It is possible to encourage flood control planners and

  3. Satellite based Global Flood Detection System - strengths and limitations

    NASA Astrophysics Data System (ADS)

    Revilla-Romero, Beatriz; Salamon, Peter; Thielen, Jutta; De Groeve, Tom; Zajac, Zuzanna

    2014-05-01

    One of the main problems for global hydrological models is that for many regions only very limited or no observational data for a model assessment is available. This problem could be overcome with filling the gaps using information derived from satellite observations. Thus, an evaluation of the remote sensing signal of the Global Flood Detection System (GFDS) against observed discharge data was performed in order to test the use of this data in sparsely gauged river basins. The study was carried out at 398 locations near the main rivers and in Africa, Asia, Europe, North America and South America. After evaluating different methodologies for extracting the satellite signal, a temporal (4 days) and spatial (4 GFDS pixels) average was chosen to proceed with the analysis. For the 340 stations with a concurrent time series longer than seven years for both, the signal and the in situ observed discharge (obtained mainly from the Global Runoff Data Centre), a calibration based on monthly linear models was carried out. The validation was executed and several skill scores were calculated such as the R2, Nash-Sutcliffe (NSE), and Root Mean Square Error (RMSE). It is important to highlight that, for this study, 230 stations globally had Nash-Sutcliffe efficient score higher than zero, indicating that for specific conditions the satellite signal as used in GFDS can fill the gaps where observations are not available. For example, several locations in African catchments have good performance as in the Niger, Volta and Zambezi for which Nash-Sutcliffe is greater than 0.75. It is known that a number of factors affect total upwelling microwave brightness from a mixed water and land surface measured by a single image pixel. Aiming to better understand how some features of the sites could affect the satellite signal and the correlation with in situ observations, apart from the dependency on the river geometry, a multivariate analysis was carried out between the skill scores (NSE and

  4. Double Chooz Slow Monitoring System

    NASA Astrophysics Data System (ADS)

    Chang, Pi-Jung; Horton-Smith, Glenn; McKee, David; Shrestha, Deepak; Winslow, Lindley; Conrad, Janet

    2010-02-01

    The Double Chooz experiment aims to measure neutrino flux from two nearly identical detectors with an uncertainty less than 0.6%. The Double Chooz slow monitoring system records conditions of the experiment's environment which can impact the experiment's goals. The slow monitoring system includes temperatures and voltages in electronics, experimental hall environmental conditions, line voltages, liquid temperatures, PMT's magnetic field, radon concentrations, and photo-tube high voltages. This system scans all channels automatically, stores data in a common database, and warns of changes in the two detectors' physical environments. Most functions in this system can be accomplished by 1-Wire products from Dallas Semiconductor. We can use a single master for several functions' controls and operations and the power is derived from a signal bus. Every device has a unique unalterable ID. The sensors monitoring the liquid system, such as liquid thermal meters, are covered by epoxy in order to isolate in the liquid. Their radioactivity can be ignored and will not affect the uncertainty in the system. )

  5. Physiologic monitoring. A guide to networking your monitoring systems.

    PubMed

    2011-10-01

    There are many factors to consider when choosing a physiologic monitoring system. not only should these systems perform well clinically, but they should also be able to exchange data with other information systems. We discuss some of the ins and outs of physiologic monitoring system networking and highlight eight product lines from seven suppliers.

  6. Assessment of flood-induced changes of phytoplankton along a river-floodplain system using the morpho-functional approach.

    PubMed

    Mihaljević, Melita; Spoljarić, Dubravka; Stević, Filip; Zuna Pfeiffer, Tanja

    2013-10-01

    In this research, we aimed to find out how the differences in hydrological connectivity between the main river channel and adjacent floodplain influence the changes in phytoplankton community structure along a river-floodplain system. The research was performed in the River Danube floodplain (Croatian river section) in the period 2008-2009 characterised by different flooding pattern on an annual time scale. By utilising the morpho-functional approach and multivariate analyses, the flood-derived structural changes of phytoplankton were analysed. The lake stability during the isolation phase triggered the specific pattern of morpho-functional groups (MFG) which were characterised by cyanobacterial species achieving very high biomass. Adversely, the high water turbulence in the lake during the frequent and extreme flooding led to evident similarity between lake and river assemblages. Besides different diatom species (groups of small and large centrics and pennates), which are the most abundant representatives in the river phytoplankton, many other groups such as cryptophytes and colonial phytomonads appeared to indicate altered conditions in the floodplain driven by flooding. Having different functional properties, small centric diatom taxa sorted to only one MFG cannot clearly reflect environmental changes that are shown by the species-level pattern. Disadvantages in using the MFG approach highlight that it is still necessary to combine it with taxonomical approach in monitoring of phytoplankton in the river-floodplain ecosystems.

  7. A Collaborative Approach to Flood Early Warning Systems In South East Westmoreland, Jamaica

    NASA Astrophysics Data System (ADS)

    Hyman, T. A.

    2015-12-01

    Jamaica is prone to climatic, tectonic and technological hazards, with climatic hazards being the most prevalent. Specifically, flood events from cyclonic activity are the most common and widespread. Jamaica also experiences frequent flash floods, usually with insufficient lead time to enact efficient and targeted responses. On average, there is at least one disastrous flood every four years in Jamaica, and from 1800 to 2003 fifty-four major floods took place, causing 273 fatalities and economic losses of over US2 billion. Notably, the 1979 flood event in Western Jamaica caused 41 deaths and economic losses of US 27 Million, and which also has a 50 year return period. To date, no Flood Warning System exists in Western Jamaica and there are limited rain and river gauges. Additionally, responses to climatic events within South-East Westmoreland communities are ad hoc, with little coordination. Many of the hazard responses have been reactive and some stakeholders have delayed to their detriment.[1] The use of Flood Early Warning Systems (FEWS) to address such challenges is thus an option being considered by the community associations. The Rio Cobre FEWS in the parish of St. Catherine serves as a best practice example of community driven flood warning systems in Jamaica. This is because of the collaborative approach to flood risk, strengthened by institutional arrangements between the Meteorological Service, Water Resources Authority, Office of Disaster Management, Scientists and residents of the surrounding communities. The Community Associations in South-East Westmoreland are thus desirous of implementing a FEWS similar to the Rio Cobre FEWS. This paper thus aims to analyse the implementation process in terms of key stakeholders involved, governance approach and the socio-economic impact of a collaborative approach on infrastructure and livelihoods, in the case of future flooding events. [1] (especially in the case of Hurricane Ivan 2004)

  8. Remote Environmental Monitoring System CRADA

    SciTech Connect

    Hensley, R.D.

    2000-03-30

    The goal of the project was to develop a wireless communications system, including communications, command, and control software, to remotely monitor the environmental state of a process or facility. Proof of performance would be tested and evaluated with a prototype demonstration in a functioning facility. AR Designs' participation provided access to software resources and products that enable network communications for real-time embedded systems to access remote workstation services such as Graphical User Interface (GUI), file I/O, Events, Video, Audio, etc. in a standardized manner. This industrial partner further provided knowledge and links with applications and current industry practices. FM and T's responsibility was primarily in hardware development in areas such as advanced sensors, wireless radios, communication interfaces, and monitoring and analysis of sensor data. This role included a capability to design, fabricate, and test prototypes and to provide a demonstration environment to test a proposed remote sensing system. A summary of technical accomplishments is given.

  9. Wireless Temperature-Monitoring System

    NASA Technical Reports Server (NTRS)

    Solano, Wanda; Thurman, Chuck

    2002-01-01

    A relatively inexpensive instrumentation system that includes units that are connected to thermocouples and that are parts of a radio-communication network has been developed to enable monitoring of temperatures at multiple locations. Because there is no need to string wires or cables for communication, the system is well suited for monitoring temperatures at remote locations and for applications in which frequent changes of monitored or monitoring locations are needed. The system can also be adapted to monitoring of slowly varying physical quantities, other than temperature, that can be transduced by solid-state electronic sensors. electronic sensors. The system comprises any number of transmitting units and a single receiving unit. Each transmitting unit includes connections for as many as four external thermocouples, a signal-conditioning module, a control module, and a radio-communication module. The signal-conditioning module acts as an interface between the thermocouples and the rest of the transmitting unit and includes a built-in solid ambient temperature sensor that is in addition to the external thermocouples. The control module is a system-on-chip embedded processor that includes analog-to-digital converters, serial and parallel data ports, and an interface for local connection to an analog meter that is used during installation to verify correct operation. The radio-communication module contains a commercial spread-spectrum transceiver that operates in the 900-MHz industrial, scientific, and medical (ISM) frequency band. This transceiver transmits data to the receiving unit at a rate of 19,200 baud. The receiving unit includes a transceiver like that of a transmitting unit, plus a control module that contains a system-on-chip processor that includes serial data port for output to a computer that runs monitoring and/or control software, a parallel data port for output to a printer, and a seven-segment light-emitting-diode display. Each transmitting unit

  10. Precision Environmental Radiation Monitoring System

    SciTech Connect

    Vladimir Popov, Pavel Degtiarenko

    2010-07-01

    A new precision low-level environmental radiation monitoring system has been developed and tested at Jefferson Lab. This system provides environmental radiation measurements with accuracy and stability of the order of 1 nGy/h in an hour, roughly corresponding to approximately 1% of the natural cosmic background at the sea level. Advanced electronic front-end has been designed and produced for use with the industry-standard High Pressure Ionization Chamber detector hardware. A new highly sensitive readout electronic circuit was designed to measure charge from the virtually suspended ionization chamber ion collecting electrode. New signal processing technique and dedicated data acquisition were tested together with the new readout. The designed system enabled data collection in a remote Linux-operated computer workstation, which was connected to the detectors using a standard telephone cable line. The data acquisition system algorithm is built around the continuously running 24-bit resolution 192 kHz data sampling analog to digital convertor. The major features of the design include: extremely low leakage current in the input circuit, true charge integrating mode operation, and relatively fast response to the intermediate radiation change. These features allow operating of the device as an environmental radiation monitor, at the perimeters of the radiation-generating installations in densely populated areas, like in other monitoring and security applications requiring high precision and long-term stability. Initial system evaluation results are presented.

  11. SERVIR: The Regional Visualization and Monitoring System

    NASA Technical Reports Server (NTRS)

    Irwin, Daniel E.

    2010-01-01

    This slide presentation reviews the SERVIR program. SERVIR is a partnership between NASA and USAID and three international nodes: Central America, Africa, and the Himalaya region. SERVIR,using satellite observations and ground based observations, is used by decision makers to allow for improved monitoring of air quality, extreme weather, biodiversity, and changes in land cove and has also been used to respond to environmental threats, such as wildfires, floods, landslides, harmful algal blooms, and earthquakes.

  12. The NASA Carbon Monitoring System

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.

    2015-12-01

    Greenhouse gas emission inventories, forest carbon sequestration programs (e.g., Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+), cap-and-trade systems, self-reporting programs, and their associated monitoring, reporting and verification (MRV) frameworks depend upon data that are accurate, systematic, practical, and transparent. A sustained, observationally-driven carbon monitoring system using remote sensing data has the potential to significantly improve the relevant carbon cycle information base for the U.S. and world. Initiated in 2010, NASA's Carbon Monitoring System (CMS) project is prototyping and conducting pilot studies to evaluate technological approaches and methodologies to meet carbon monitoring and reporting requirements for multiple users and over multiple scales of interest. NASA's approach emphasizes exploitation of the satellite remote sensing resources, computational capabilities, scientific knowledge, airborne science capabilities, and end-to-end system expertise that are major strengths of the NASA Earth Science program. Through user engagement activities, the NASA CMS project is taking specific actions to be responsive to the needs of stakeholders working to improve carbon MRV frameworks. The first phase of NASA CMS projects focused on developing products for U.S. biomass/carbon stocks and global carbon fluxes, and on scoping studies to identify stakeholders and explore other potential carbon products. The second phase built upon these initial efforts, with a large expansion in prototyping activities across a diversity of systems, scales, and regions, including research focused on prototype MRV systems and utilization of COTS technologies. Priorities for the future include: 1) utilizing future satellite sensors, 2) prototyping with commercial off-the-shelf technology, 3) expanding the range of prototyping activities, 4) rigorous evaluation, uncertainty quantification, and error characterization, 5) stakeholder

  13. Corral Monitoring System assessment results

    SciTech Connect

    Filby, E.E.; Haskel, K.J.

    1998-03-01

    This report describes the results of a functional and operational assessment of the Corral Monitoring Systems (CMS), which was designed to detect and document accountable items entering or leaving a monitored site. Its development was motivated by the possibility that multiple sites in the nuclear weapons states of the former Soviet Union might be opened to such monitoring under the provisions of the Strategic Arms Reduction Treaty. The assessment was performed at three levels. One level evaluated how well the planned approach addressed the target application, and which involved tracking sensitive items moving into and around a site being monitored as part of an international treaty or other agreement. The second level examined the overall design and development approach, while the third focused on individual subsystems within the total package. Unfortunately, the system was delivered as disassembled parts and pieces, with very poor documentation. Thus, the assessment was based on fragmentary operating data coupled with an analysis of what documents were provided with the system. The system design seemed to be a reasonable match to the requirements of the target application; however, important questions about site manning and top level administrative control were left unanswered. Four weaknesses in the overall design and development approach were detected: (1) poor configuration control and management, (2) inadequate adherence to a well defined architectural standard, (3) no apparent provision for improving top level error tolerance, and (4) weaknesses in the object oriented programming approach. The individual subsystems were found to offer few features or capabilities that were new or unique, even at the conceptual level. The CMS might possibly have offered a unique combination of features, but this level of integration was never realized, and it had no unique capabilities that could be readily extracted for use in another system.

  14. Evaluation of a Satellite-based Near Real-time Global Flood Prediction System

    NASA Astrophysics Data System (ADS)

    Yilmaz, K. K.; Adler, R. F.; Hong, Y.; Pierce, H. F.

    2008-12-01

    Satellite-based rainfall and geospatial datasets are potentially useful for cost effective detection and early warning of natural hazards, such as floods, specifically for regions of the world where local data are sparse or non-existent. An initial satellite-based near real-time global flood prediction system is operationally available on our website (http://trmm.gsfc.nasa.gov/publications_dir/potential_flood_hydro.html). The key input to the current system is the near real-time rainfall estimates from the NASA-based Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA; 3 hourly, 0.258 x 0.258 degree). A relatively simple hydrologic model, based on the runoff curve number (CN) and antecedent precipitation index (API) methods, transforms rainfall into runoff. In this study we will present an in-depth testing/evaluation of this current flood prediction system, discuss its strengths and limitations and point toward potential improvements necessary for increasing its near real-time global flood prediction reliability and accuracy. This evaluation study will focus on the severe flooding events and will include comparison of the current product with observed runoff/inundation data at global and watershed scale as well as with other available remotely sensed products (e.g., MODIS-based inundation maps from Dartmouth Flood Observatory).

  15. Passive Fetal Heart Monitoring System

    NASA Technical Reports Server (NTRS)

    Bryant, Timothy D. (Inventor); Wynkoop, Mark W. (Inventor); Holloway, Nancy M. H. (Inventor); Zuckerwar, Allan J. (Inventor)

    2004-01-01

    A fetal heart monitoring system preferably comprising a backing plate having a generally concave front surface and a generally convex back surface, and at least one sensor element attached to the concave front surface for acquiring acoustic fetal heart signals produced by a fetus within a body. The sensor element has a shape that conforms to the generally concave back surface of the backing plate. In one embodiment, the at least one sensor element comprises an inner sensor, and a plurality of outer sensors surrounding the inner sensor. The fetal heart monitoring system can further comprise a web belt, and a web belt guide movably attached to the web belt. The web belt guide being is to the convex back surface of the backing plate.

  16. Passive Fetal Heart Monitoring System

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Mowrey, Dennis L. (Inventor)

    2003-01-01

    A fetal heart monitoring system and method for detecting and processing acoustic fetal heart signals transmitted by different signal transmission modes. One signal transmission mode, the direct contact mode, occurs in a first frequency band when the fetus is in direct contact with the maternal abdominal wall. Another signal transmission mode, the fluid propagation mode, occurs in a second frequency band when the fetus is in a recessed position with no direct contact with the maternal abdominal wall. The second frequency band is relatively higher than the first frequency band. The fetal heart monitoring system and method detect and process acoustic fetal heart signals that are in the first frequency band and in the second frequency band.

  17. Monitoring of human enteric viruses and coliform bacteria in waters after urban flood in Jakarta, Indonesia.

    PubMed

    Phanuwan, C; Takizawa, S; Oguma, K; Katayama, H; Yunika, A; Ohgaki, S

    2006-01-01

    Floodwaters in Kampung Melayu village, Jakarta, Indonesia, as well as river water and consumable water (including groundwater and tap water) samples in flooded and non-flooded areas, were quantitatively analysed to assess occurrence of viruses and total coliforms and E. coli as bacterial indicators after flooding event. High numbers of enterovirus, hepatitis A virus, norovirus (G1, G2) and adenovirus were detected at high concentration in floodwaters and waters sampled from Ciliwung River which runs across metropolitan Jakarta and is used widely for agriculture and domestic purposes by poor residents. One out of three groundwater wells in the flooded area was contaminated with all viruses tested while no viruses were found in groundwater samples in non-flooded areas and tap water samples. The results revealed that human enteric viruses, especially hepatitis A virus and adenovirus, were prevalent in Jakarta, Indonesia. This study suggested that flooding posed a higher risk of viral infection to the people through contamination of drinking water sources or direct contact with floodwaters.

  18. Monitoring of a recurring glacial lake outburst flood in north-western Nepal

    NASA Astrophysics Data System (ADS)

    Neckel, Niklas; Kropacek, Jan; Schröter, Benjamin; Tyrna, Bernd; Buchroithner, Manfred

    2014-05-01

    Since 2004 an almost annual recurring glacial lake outburst flood threatens Halji Village, located in Limi valley in one of the most remote regions of north-western Nepal. So far a considerable extent of rare fields and several houses have been destroyed. A cultural heritage site, the Halji Monastery which is the oldest Buddhist monastery in western Nepal is located only 30 m from the flood path. A supra-glacial lake at an altitude of 5300 m a.s.l. located approximately 6 km away from the village was identified as the source of the flood from recent satellite imagery. In November/December 2013 we carried out a field survey in this region in order to understand the drainage paths of the lake, to measure the volume of the glacial lake and to set up an Automatic Weather Station (AWS). To assess both the filling and draining of the glacial lake a terrestrial time-lapse camera was installed taking six photographs every day. These show the glacial lake and parts of the feeding water channels. The images combined with the AWS data will help us to understand the dependency of magnitude and timing of the outburst event to the temperature, snow conditions and glacier movements. The collected data will also help us to learn more about the flooding event and serve as the input for a two dimensional hydrodynamic model which simulates the flood extent under different flooding scenarios.

  19. Wireless device monitoring systems and monitoring devices, and associated methods

    DOEpatents

    McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W

    2014-05-27

    Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.

  20. Coastwide Reference Monitoring System (CRMS)

    USGS Publications Warehouse

    2010-01-01

    In 1990, the U.S. Congress enacted the Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) in response to growing awareness of a land loss crisis in Louisiana. Projects funded by CWPPRA require monitoring and evaluation of project effectiveness, and there is also a need to assess the cumulative effects of all projects to achieve a sustainable coastal environment. In 2003, the Louisiana Office of Coastal Protection and Restoration (OCPR) and the U.S. Geological Survey (USGS) received approval from the CWPPRA Task Force to implement the Coastwide Reference Monitoring System (CRMS) as a mechanism to monitor and evaluate the effectiveness of CWPPRA projects at the project, region, and coastwide levels. The CRMS design implements a multiple reference approach by using aspects of hydrogeomorphic functional assessments and probabilistic sampling. The CRMS program is as dynamic as the coastal habitats it monitors. The program is currently funded through CWPPRA and provides data for a variety of user groups, including resource managers, academics, landowners, and researchers.

  1. Monitoring flooding and vegetation on seasonally inundated floodplains with multifrequency polarimetric synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Hess, Laura Lorraine

    The ability of synthetic aperture radar to detect flooding and vegetation structure was evaluated for three seasonally inundated floodplain sites supporting a broad variety of wetland and upland vegetation types: two reaches of the Solimoes floodplain in the central Amazon, and the Magela Creek floodplain in Northern Territory, Australia. For each site, C- and L-band polarimetric Shuttle Imaging Radar-C (SIR-C) data was obtained at both high- and low-water stages. Inundation status and vegetation structure were documented simultaneous with the SIR-C acquisitions using low-altitude videography and ground measurements. SIR-C images were classified into cover states defined by vegetation physiognomy and presence of standing water, using a decision-tree model with backscattering coefficients at HH, VV, and HV polarizations as input variables. Classification accuracy was assessed using user's accuracy, producer's accuracy, and kappa coefficient for a test population of pixels. At all sites, both C- and L-band were necessary to accurately classify cover types with two dates. HH polarization was most. useful for distinguishing flooded from non-flooded vegetation (C-HH for macrophyte versus pasture, L-HH for flooded versus non-flooded forest), and cross-polarized L-band data provided the best separation between woody and non-woody vegetation. Increases in L-HH backscattering due to flooding were on the order of 3--4 dB for closed-canopy varzea and igapo forest, and 4--7 dB, for open Melaleuca woodland. The broad range of physiognomies and stand structures found in both herbaceous and woody wetland communities, combined with the variation in the amount of emergent canopy caused by water level fluctuations and phenologic changes, resulted in a large range in backscattering characteristics of wetland communities both within and between sites. High accuracies cannot be achieved for these communities using single-date, single-band, single-polarization data, particularly in the

  2. Decision-relevant early-warning thresholds for ensemble flood forecasting systems

    NASA Astrophysics Data System (ADS)

    Stephens, Liz; Pappenberger, Florian; Cloke, Hannah; Alfieri, Lorenzo

    2014-05-01

    Over and under warning of potential future floods is problematic for decision-making, and could ultimately lead to trust being lost in the forecasts. The use of ensemble flood forecasting systems for early warning therefore requires a consideration of how to determine and implement decision-relevant thresholds for flood magnitude and probability. This study uses a year's worth of hindcasts from the Global Flood Awareness System (GloFAS) to explore the sensitivity of the warning system to the choice of threshold. We use a number of different methods for choosing these thresholds, building on current approaches that use model climatologies to determine the critical flow magnitudes, to those that can provide 'first guesses' of potential impacts (through integration with global-scale inundation mapping), as well as methods that could incorporate resource limitations.

  3. Iowa Flood Information System: Towards Integrated Data Management, Analysis and Visualization

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2012-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities

  4. Shared performance monitor in a multiprocessor system

    DOEpatents

    Chiu, George; Gara, Alan G; Salapura, Valentina

    2014-12-02

    A performance monitoring unit (PMU) and method for monitoring performance of events occurring in a multiprocessor system. The multiprocessor system comprises a plurality of processor devices units, each processor device for generating signals representing occurrences of events in the processor device, and, a single shared counter resource for performance monitoring. The performance monitor unit is shared by all processor cores in the multiprocessor system. The PMU is further programmed to monitor event signals issued from non-processor devices.

  5. Cyber surveillance for flood disasters.

    PubMed

    Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han

    2015-01-01

    Regional heavy rainfall is usually caused by the influence of extreme weather conditions. Instant heavy rainfall often results in the flooding of rivers and the neighboring low-lying areas, which is responsible for a large number of casualties and considerable property loss. The existing precipitation forecast systems mostly focus on the analysis and forecast of large-scale areas but do not provide precise instant automatic monitoring and alert feedback for individual river areas and sections. Therefore, in this paper, we propose an easy method to automatically monitor the flood object of a specific area, based on the currently widely used remote cyber surveillance systems and image processing methods, in order to obtain instant flooding and waterlogging event feedback. The intrusion detection mode of these surveillance systems is used in this study, wherein a flood is considered a possible invasion object. Through the detection and verification of flood objects, automatic flood risk-level monitoring of specific individual river segments, as well as the automatic urban inundation detection, has become possible. The proposed method can better meet the practical needs of disaster prevention than the method of large-area forecasting. It also has several other advantages, such as flexibility in location selection, no requirement of a standard water-level ruler, and a relatively large field of view, when compared with the traditional water-level measurements using video screens. The results can offer prompt reference for appropriate disaster warning actions in small areas, making them more accurate and effective. PMID:25621609

  6. Cyber Surveillance for Flood Disasters

    PubMed Central

    Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han

    2015-01-01

    Regional heavy rainfall is usually caused by the influence of extreme weather conditions. Instant heavy rainfall often results in the flooding of rivers and the neighboring low-lying areas, which is responsible for a large number of casualties and considerable property loss. The existing precipitation forecast systems mostly focus on the analysis and forecast of large-scale areas but do not provide precise instant automatic monitoring and alert feedback for individual river areas and sections. Therefore, in this paper, we propose an easy method to automatically monitor the flood object of a specific area, based on the currently widely used remote cyber surveillance systems and image processing methods, in order to obtain instant flooding and waterlogging event feedback. The intrusion detection mode of these surveillance systems is used in this study, wherein a flood is considered a possible invasion object. Through the detection and verification of flood objects, automatic flood risk-level monitoring of specific individual river segments, as well as the automatic urban inundation detection, has become possible. The proposed method can better meet the practical needs of disaster prevention than the method of large-area forecasting. It also has several other advantages, such as flexibility in location selection, no requirement of a standard water-level ruler, and a relatively large field of view, when compared with the traditional water-level measurements using video screens. The results can offer prompt reference for appropriate disaster warning actions in small areas, making them more accurate and effective. PMID:25621609

  7. A pan-African medium-range ensemble flood forecast system

    NASA Astrophysics Data System (ADS)

    Thiemig, Vera; Bisselink, Bernard; Pappenberger, Florian; Thielen, Jutta

    2015-04-01

    The African Flood Forecasting System (AFFS) is a probabilistic flood forecast system for medium- to large-scale African river basins, with lead times of up to 15 days. The key components are the hydrological model LISFLOOD, the African GIS database, the meteorological ensemble predictions of the ECMWF and critical hydrological thresholds. In this study the predictive capability is investigated, to estimate AFFS' potential as an operational flood forecasting system for the whole of Africa. This is done in a hindcast mode, by reproducing pan-African hydrological predictions for the whole year of 2003 where important flood events were observed. Results were analysed in two ways, each with its individual objective. The first part of the analysis is of paramount importance for the assessment of AFFS as a flood forecasting system, as it focuses on the detection and prediction of flood events. Here, results were verified with reports of various flood archives such as Dartmouth Flood Observatory, the Emergency Event Database, the NASA Earth Observatory and Reliefweb. The number of hits, false alerts and missed alerts as well as the Probability of Detection, False Alarm Rate and Critical Success Index were determined for various conditions (different regions, flood durations, average amount of annual precipitations, size of affected areas and mean annual discharge). The second part of the analysis complements the first by giving a basic insight into the prediction skill of the general streamflow. For this, hydrological predictions were compared against observations at 36 key locations across Africa and the Continuous Rank Probability Skill Score (CRPSS), the limit of predictability and reliability were calculated. Results showed that AFFS detected around 70 % of the reported flood events correctly. In particular, the system showed good performance in predicting riverine flood events of long duration (> 1 week) and large affected areas (> 10 000 km2) well in advance, whereas

  8. Flooding and Flood Management

    USGS Publications Warehouse

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim

    2011-01-01

    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  9. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect

    Martin E. Cobern

    2004-08-31

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

  10. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect

    Martin E. Cobern

    2004-10-13

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed. The month of June, 2004 was primarily occupied with the writing of the Phase I Final Report, the sole deliverable of Phase I, which will be submitted in the next quarter. Redesign of the laboratory prototype and design of the downhole (Phase II) prototype was begun.

  11. Evaluation of a Satellite-based Near Real-time Global Flood Prediction System

    NASA Astrophysics Data System (ADS)

    Yilmaz, K. K.; Adler, R.; Pierce, H.

    2009-04-01

    Satellite-based rainfall and geospatial datasets are potentially useful for cost effective detection and early warning of natural hazards, such as floods, specifically for regions of the world where local data are sparse or non-existent. Recently, our group has implemented an initial satellite-based near real-time global flood prediction system that is operationally available. In this system, a relatively simple hydrologic model, based on the runoff curve number (CN) and antecedent precipitation index (API) methods, transforms rainfall into runoff. Runoff is then routed grid-to-grid to estimate flow. The key input to the current system is the near real-time rainfall estimates from the NASA-based Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA; 3 hourly, 0.25x0.25 degree). In this study we will present an in-depth testing/evaluation of this current flood prediction system, discuss its strengths and limitations and point toward potential improvements necessary for increasing its near real-time global flood prediction reliability and accuracy. This evaluation study focuses on the severe flooding events and will include comparison of the current product with observed runoff and inundation data at global and watershed scale as well as with other available remotely sensed products, such as those from Dartmouth Flood Observatory. Initial evaluation suggests that current global near-real time flood predictions provide valuable information related to spatial extent and onset time of extreme flooding events. However the accuracy diminishes in tracking the later stages of the flood event. This behavior suggests that one way to improve the current system is a new (possibly finer scale) routing component. Of course, flood predictions are intimately tied to the accuracy of the satellite-based rainfall estimates. Our presentation will also compare the performance of the flood prediction system when the current version of the NASA TMPA real

  12. A pilot operational flood warning system in Andalusia (Spain): presentation and first results

    NASA Astrophysics Data System (ADS)

    Versini, P.-A.; Berenguer, M.; Corral, C.; Sempere-Torres, D.; Santiago-Gahete, A.

    2011-11-01

    The Guadalhorce Basin is located in Andalusia (South of Spain). Its floods have historically represented a major hazard for the city of Málaga. In 2008 it has been decided to implement a pilot operational flood warning system (GFWS) with the aim of analyzing the capability to minimize the risk to people, and economic activity, as well as for guiding water resources management. The system is oriented to provide distributed warnings based on rainfall accumulations and discharge forecasts. Rainfall accumulation maps are generated according to the interpolation of rain gauge measurements and weather radar rainfall maps whereas discharge forecasts are computed using a distributed rainfall-runoff model. Due to the lack of flow measurements, the model was calibrated a priori in most of the basin area. The performance of the system has been tested on two recent rainfall events which caused many inundations. First results show how the GFWS performed well and was able to forecast the location and timing of flooding. It demonstrates that a simple model and a rough calibration could be enough to issue valuable warnings. Moreover, the European Flood Alert System (EFAS) forecasts have been used to prevent from the flood several days in advance. With low resolution and long anticipation, EFAS appears as a good complement tool to improve flood forecasting and compensate for the short lead times of the GFWS.

  13. Evaluation of ensemble streamflow predictions of the European Flood Awareness System (EFAS)

    NASA Astrophysics Data System (ADS)

    Alfieri, Lorenzo; Pappenberger, Florian; Wetterhall, Fredrik; Haiden, Thomas; Richardson, David; Salamon, Peter; Thielen, Jutta

    2014-05-01

    In operational hydrological forecasting systems, improvements are directly related to the continuous monitoring of the forecast performance. An efficient evaluation framework must be able to spot issues and limitations and provide feedback to the system developers. In regional systems, the expertise of analysts on duty is a major component of the daily evaluation. On the other hand, large scale systems need to be complemented with semi-automated tools to evaluate the quality of forecasts equitably in every part of their domain. This work presents the current status of the monitoring and evaluation framework of the European Flood Awareness System (EFAS). Twice per day, EFAS performs hydrological simulation of ensemble weather predictions over Europe and detects river sections where forecast streamflow is likely to exceed flood warning thresholds in the coming days. In each 5x5 km2 grid point of the European river network, 10-day ensemble streamflow predictions driven by ECMWF weather forecasts are evaluated against a reference simulation which uses observed meteorological fields as input to a calibrated hydrological model. Performance scores are displayed spatially on maps and plotted against their forecast lead time, basin size, as well as in time, considering average scores for 12-month moving windows of forecasts. Results indicate skillful predictions in medium to large river basins over the 10-day range. An evaluation of 12-month average scores over the past 5 years suggests a moderate improvement for all 12-month forecasts ending from the beginning of 2013 onwards. Such improvement occurred notwithstanding an increasing negative forecast bias in mountain regions. On average, performance drops significantly in river basins with upstream area smaller than 300 km2, due to resolution issues and to the underestimation of the runoff in mountain areas. On the other hand, performance in rivers with large upstream area (i.e., 10,000 km2 and above) shows highly positive

  14. Validation of a TRMM-based global Flood Detection System in Bangladesh

    NASA Astrophysics Data System (ADS)

    Moffitt, Caitlin Balthrop; Hossain, Faisal; Adler, Robert F.; Yilmaz, Koray K.; Pierce, Harold F.

    2011-04-01

    Although the TRMM-based Flood Detection System (FDS) has been in operation in near real-time since 2006, the flood 'detection' capability has been validated mostly against qualitative reports in news papers and other types of media. In this study, a more quantitative validation of the FDS over Bangladesh against in situ measurements is presented. Using measured stream flow and rainfall data, the study analyzed the flood detection capability from space for three very distinct river systems in Bangladesh: (1) Ganges- a snowmelt-fed river regulated by upstream India, (2) Brahmaputra - a snow-fed river that is braided, and (3) Meghna - a rain-fed and relatively flashier river. The quantitative assessment showed that the effectiveness of the TRMM-based FDS can vary as a function of season and drainage basin characteristics. Overall, the study showed that the TRMM-based FDS has great potential for flood prone countries like Bangladesh that are faced with tremendous hurdles in transboundary flood management. The system had a high probability of detection overall, but produced increased false alarms during the monsoon period and in regulated basins (Ganges), undermining the credibility of the FDS flood warnings for these situations. For this reason, FDS users are cautioned to verify FDS estimates during the monsoon period and for regulated rivers before implementing flood management practices. Planned improvements by FDS developers involving physically-based hydrologic modeling should transform the system into a more accurate tool for near real-time decision making on flood management for ungauged river basins of the world.

  15. Monitoring floods and fires during the summer of 2011--The value of the Landsat satellite 40-year archives

    USGS Publications Warehouse

    Jonescheit, Linda

    2012-01-01

    The summer of 2011 proved to be a season of extreme events. Heavy snowfall in the western mountains and excessive spring rains caused flooding along the Missouri and Mississippi Rivers; whereas extended dry conditions enabled fires to rage out of control from Alaska and Canada, south to Texas, Arizona, New Mexico, Georgia, and Mexico. The Landsat archive holds nearly 40 years of continuous global earth observation data. Landsat data are used by emergency responders to monitor change and damage caused by natural and man-made disasters. Decision makers rely on Landsat as they create plans for future environmental concerns.

  16. Monitoring Flood Dynamic of the Yangtze Monsoon Lakes (PR China) Exploiting MR, HR and VHR CSK Data

    NASA Astrophysics Data System (ADS)

    Huber, C.; Uribe, C.; Li, J.; Lai, X.; Burnham, J.; Huang, S.; Yesou, H.

    2013-01-01

    Health of Yangtze is a major concern for 400 000 000 of inhabitants as a fresh water resource. The river basin concentrates 70% of Chinese rice production and 40% of Chinese industry with very important biodiversity stakes. Dongting and Poyang Lakes can be considered as key elements for flood natural control and reduction as well as major water resources within the Yangtze middle basin. EO MR and HR imagery, particularly SAR, are powerful tools to monitor and understand the mechanism of such complex key ecosystems.

  17. Joint operation and dynamic control of flood limiting water levels for mixed cascade reservoir systems

    NASA Astrophysics Data System (ADS)

    Zhou, Yanlai; Guo, Shenglian; Liu, Pan; Xu, Chongyu

    2014-11-01

    Reservoirs are one of the most efficient infrastructures for integrated water resources development and management; and play a more and more important role in flood control and conservation. Dynamic control of the reservoir flood limiting water level (FLWL) is a valuable and effective approach to compromise the flood control, hydropower generation and comprehensive utilization of water resources of river basins during the flood season. The dynamic control models of FLWL for a single reservoir and cascade reservoirs have been extended for a mixed reservoir system in this paper. The proposed model consists of a dynamic control operation module for a single reservoir, a dynamic control operation module for cascade reservoirs, and a joint operation module for mixed cascade reservoir systems. The Three Gorges and Qingjiang cascade reservoirs in the Yangtze River basin of China are selected for a case study. Three-hour inflow data series for representative hydrological years are used to test the model. The results indicate that the proposed model can make an effective tradeoff between flood control and hydropower generation. Joint operation and dynamic control of FLWL can generate 26.4 × 108 kW h (3.47%) more hydropower for the mixed cascade reservoir systems and increase the water resource utilization rate by 3.72% for the Three Gorges reservoir and 2.42% for the Qingjiang cascade reservoirs without reducing originally designed flood prevention standards.

  18. Development of web-based services for a novel ensemble flood forecasting and risk assessment system

    NASA Astrophysics Data System (ADS)

    He, Y.; Manful, D. Y.; Cloke, H. L.; Wetterhall, F.; Li, Z.; Bao, H.; Pappenberger, F.; Wesner, S.; Schubert, L.; Yang, L.; Hu, Y.

    2009-12-01

    Flooding is a wide spread and devastating natural disaster worldwide. Floods that took place in the last decade in China were ranked the worst amongst recorded floods worldwide in terms of the number of human fatalities and economic losses (Munich Re-Insurance). Rapid economic development and population expansion into low lying flood plains has worsened the situation. Current conventional flood prediction systems in China are neither suited to the perceptible climate variability nor the rapid pace of urbanization sweeping the country. Flood prediction, from short-term (a few hours) to medium-term (a few days), needs to be revisited and adapted to changing socio-economic and hydro-climatic realities. The latest technology requires implementation of multiple numerical weather prediction systems. The availability of twelve global ensemble weather prediction systems through the ‘THORPEX Interactive Grand Global Ensemble’ (TIGGE) offers a good opportunity for an effective state-of-the-art early forecasting system. A prototype of a Novel Flood Early Warning System (NEWS) using the TIGGE database is tested in the Huai River basin in east-central China. It is the first early flood warning system in China that uses the massive TIGGE database cascaded with river catchment models, the Xinanjiang hydrologic model and a 1-D hydraulic model, to predict river discharge and flood inundation. The NEWS algorithm is also designed to provide web-based services to a broad spectrum of end-users. The latter presents challenges as both databases and proprietary codes reside in different locations and converge at dissimilar times. NEWS will thus make use of a ready-to-run grid system that makes distributed computing and data resources available in a seamless and secure way. An ability to run or function on different operating systems and provide an interface or front that is accessible to broad spectrum of end-users is additional requirement. The aim is to achieve robust

  19. Development of web-based services for an ensemble flood forecasting and risk assessment system

    NASA Astrophysics Data System (ADS)

    Yaw Manful, Desmond; He, Yi; Cloke, Hannah; Pappenberger, Florian; Li, Zhijia; Wetterhall, Fredrik; Huang, Yingchun; Hu, Yuzhong

    2010-05-01

    Flooding is a wide spread and devastating natural disaster worldwide. Floods that took place in the last decade in China were ranked the worst amongst recorded floods worldwide in terms of the number of human fatalities and economic losses (Munich Re-Insurance). Rapid economic development and population expansion into low lying flood plains has worsened the situation. Current conventional flood prediction systems in China are neither suited to the perceptible climate variability nor the rapid pace of urbanization sweeping the country. Flood prediction, from short-term (a few hours) to medium-term (a few days), needs to be revisited and adapted to changing socio-economic and hydro-climatic realities. The latest technology requires implementation of multiple numerical weather prediction systems. The availability of twelve global ensemble weather prediction systems through the ‘THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a good opportunity for an effective state-of-the-art early forecasting system. A prototype of a Novel Flood Early Warning System (NEWS) using the TIGGE database is tested in the Huai River basin in east-central China. It is the first early flood warning system in China that uses the massive TIGGE database cascaded with river catchment models, the Xinanjiang hydrologic model and a 1-D hydraulic model, to predict river discharge and flood inundation. The NEWS algorithm is also designed to provide web-based services to a broad spectrum of end-users. The latter presents challenges as both databases and proprietary codes reside in different locations and converge at dissimilar times. NEWS will thus make use of a ready-to-run grid system that makes distributed computing and data resources available in a seamless and secure way. An ability to run or function on different operating systems and provide an interface or front that is accessible to broad spectrum of end-users is additional requirement. The aim is to achieve robust interoperability

  20. Towards modelling flood protection investment as a coupled human and natural system

    NASA Astrophysics Data System (ADS)

    O'Connell, P. E.; O'Donnell, G.

    2014-01-01

    Due to a number of recent high-profile flood events and the apparent threat from global warming, governments and their agencies are under pressure to make proactive investments to protect people living in floodplains. However, adopting a proactive approach as a universal strategy is not affordable. It has been argued that delaying expensive and essentially irreversible capital decisions could be a prudent strategy in situations with high future uncertainty. This paper firstly uses Monte Carlo simulation to explore the performance of proactive and reactive investment strategies using a rational cost-benefit approach in a natural system with varying levels of persistence/interannual variability in annual maximum floods. It is found that, as persistence increases, there is a change in investment strategy optimality from proactive to reactive. This could have implications for investment strategies under the increasingly variable climate that is expected with global warming. As part of the emerging holistic approaches to flood risk management, there is increasing emphasis on stakeholder participation in determining where and when flood protection investments are made, and so flood risk management is becoming more people-centred. As a consequence, multiple actors are involved in the decision-making process, and the social sciences are assuming an increasingly important role in flood risk management. There is a need for modelling approaches which can couple the natural and human system elements. It is proposed that coupled human and natural system (CHANS) modelling could play an important role in understanding the motivations, actions and influence of citizens and institutions and how these impact on the effective delivery of flood protection investment. A framework for using agent-based modelling of human activities leading to flood investments is outlined, and some of the challenges associated with implementation are discussed.

  1. Towards modelling flood protection investment as a coupled human and natural system

    NASA Astrophysics Data System (ADS)

    O'Connell, P. E.; O'Donnell, G.

    2013-06-01

    Due to a number of recent high profile flood events and the apparent threat from global warming, governments and their agencies are under pressure to make proactive investments to protect people living in floodplains. However, adopting a proactive approach as a universal strategy is not affordable. It has been argued that delaying expensive and essentially irreversible capital decisions could be a prudent strategy in situations with high future uncertainty. This paper firstly uses Monte Carlo simulation to explore the performance of proactive and reactive investment strategies using a rational cost-benefit approach in a natural system with varying levels of persistence/interannual variability in Annual Maximum Floods. It is found that, as persistence increases, there is a change in investment strategy optimality from proactive to reactive. This could have implications for investment strategies under the increasingly variable climate that is expected with global warming. As part of the emerging holistic approaches to flood risk management, there is increasing emphasis on stakeholder participation in determining where and when flood protection investments are made, and so flood risk management is becoming more people-centred. As a consequence, multiple actors are involved in the decision-making process, and the social sciences are assuming an increasingly important role in flood risk management. There is a need for modelling approaches which can couple the natural and human system elements. It is proposed that Coupled Human and Natural System (CHANS) modelling could play an important role in understanding the motivations, actions and influence of citizens and institutions and how these impact on the effective delivery of flood protection investment. A framework for using Agent Based Modelling of human activities leading to flood investments is outlined, and some of the challenges associated with implementation are discussed.

  2. An overview of crop growing condition monitoring in China agriculture remote sensing monitoring system

    NASA Astrophysics Data System (ADS)

    Huang, Qing; Zhou, Qing-bo; Zhang, Li

    2009-07-01

    China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.

  3. The Ames Power Monitoring System

    NASA Technical Reports Server (NTRS)

    Osetinsky, Leonid; Wang, David

    2003-01-01

    The Ames Power Monitoring System (APMS) is a centralized system of power meters, computer hardware, and specialpurpose software that collects and stores electrical power data by various facilities at Ames Research Center (ARC). This system is needed because of the large and varying nature of the overall ARC power demand, which has been observed to range from 20 to 200 MW. Large portions of peak demand can be attributed to only three wind tunnels (60, 180, and 100 MW, respectively). The APMS helps ARC avoid or minimize costly demand charges by enabling wind-tunnel operators, test engineers, and the power manager to monitor total demand for center in real time. These persons receive the information they need to manage and schedule energy-intensive research in advance and to adjust loads in real time to ensure that the overall maximum allowable demand is not exceeded. The APMS (see figure) includes a server computer running the Windows NT operating system and can, in principle, include an unlimited number of power meters and client computers. As configured at the time of reporting the information for this article, the APMS includes more than 40 power meters monitoring all the major research facilities, plus 15 Windows-based client personal computers that display real-time and historical data to users via graphical user interfaces (GUIs). The power meters and client computers communicate with the server using Transmission Control Protocol/Internet Protocol (TCP/IP) on Ethernet networks, variously, through dedicated fiber-optic cables or through the pre-existing ARC local-area network (ARCLAN). The APMS has enabled ARC to achieve significant savings ($1.2 million in 2001) in the cost of power and electric energy by helping personnel to maintain total demand below monthly allowable levels, to manage the overall power factor to avoid low power factor penalties, and to use historical system data to identify opportunities for additional energy savings. The APMS also

  4. The Chennai floods of 2015 and the health system response.

    PubMed

    Gaitonde, Rakhal; Gopichandran, Vijayaprasad

    2016-01-01

    The Chennai floods of 2015 were a calamity of unexpected proportions (1). The impact on the lives of the poor has been immense. Thousands needed to abandon their already precarious dwellings on the banks of the Adyar River, and other low-lying areas for temporary shelters. The differential experience and impact of disasters on different segments of the population helps understand the dynamics of sociopolitical structures and supports. PMID:27260817

  5. Decision making based on global flood forecasts and satellite-derived inundation maps in data-sparse regions

    NASA Astrophysics Data System (ADS)

    Revilla-Romero, Beatriz; Hirpa, Feyera A.; Thielen-del Pozo, Jutta; Salamon, Peter; Brakenridge, G. Robert; Pappenberger, Florian; De Groeve, Tom

    2016-04-01

    Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response decisions. Global-scale flood forecasting and satellite-based flood detection systems are currently operating, however their reliability for decision making applications needs to be assessed. In this study, we performed comparative evaluations of several operational global flood forecasting and flood detection systems, using major flood events recorded over 2012-2014. Specifically, we evaluated the spatial extent and temporal characteristics of flood detections from the Global Flood Detection System (GFDS) and the Global Flood Awareness System (GloFAS). Furthermore, we compared the GFDS flood maps with those from NASA's two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. Results reveal that: 1) general agreement was found between the GFDS and MODIS flood detection systems, 2) large differences exist in the spatio-temporal characteristics of the GFDS detections and GloFAS forecasts, and 3) the quantitative validation of global flood disasters in data-sparse regions is highly challenging. Overall, the satellite remote sensing provides useful near real-time flood information that can be useful for risk management. We highlight the known limitations of global flood detection and forecasting systems, and propose ways forward to improve the reliability of large scale flood monitoring tools.

  6. Rhizosphere dynamics of two riparian plant species from the water fluctuation zone of Three Gorges Reservoir, P.R. China - pH, oxygen and LMWOA monitoring during short flooding events

    NASA Astrophysics Data System (ADS)

    Schreiber, Christina M.; Schurr, Ulrich; Zeng, Bo; Höltkemeier, Agnes; Kuhn, Arnd J.

    2010-05-01

    Since the construction of the Three Gorges Dam at the Yangtze River in China, the reservoir management created a new 30m water fluctuation zone 45-75m above the original water level. Only species well adapted to long-time flooding (up to several months) will be able to vegetate the river banks and replace the original vegetation. To investigate how common species of the riverbanks cope with submergence, Alternanthera philoxeroides Mart. and Arundinella anomala Steud., two flooding resistant riparian species, have been examined in a rhizotron environment. Short-time (2 days waterlogging, 2 days flooding, 2 days recovery) flooding cycles in the original substrate and long time (14 days waterlogging, flooding, recovery) flooding cycles, in original substrate and sterile glass bead substrate, have been simulated in floodable two-way access rhizotrons. Oxygen- and pH-sensitive foils (planar optodes, PreSens) automatically monitored root reaction in a confined space (2cm2 each) on the backside of the rhizotron, while soil solution samples were taken 2 times a day from the other side of the rhizotron at the corresponding area through filter and steel capillaries. The samples were analyzed by capillary electrophoresis for low molecular weight organic acids (LMWOA, i.e. oxalic, formic, succinic, malic, acetic, glyoxylic, lactic and citric acid). Results show diurnal rhythms of rhizospheric acidification for both species in high resolution, combined with oxygen entry into the root surrounding during waterlogged state. Flooding caused stronger acidification in the rhizosphere, that were however not accompanied by increased occurrence of LMWOA except for acetic and glyoxylic acid. First results from longer flooding periods show stable diurnal rhythms during waterlogging, but no strongly increased activity during the flooding event. Performance of the two species is not hampered by being waterlogged, and they follow a silencing strategy during a longer phase of anoxia without

  7. Verification of a probabilistic flood forecasting system for an Alpine Region of northern Italy

    NASA Astrophysics Data System (ADS)

    Laiolo, P.; Gabellani, S.; Rebora, N.; Rudari, R.; Ferraris, L.; Ratto, S.; Stevenin, H.

    2012-04-01

    Probabilistic hydrometeorological forecasting chains are increasingly becoming an operational tool used by civil protection centres for issuing flood alerts. One of the most important requests of decision makers is to have reliable systems, for this reason an accurate verification of their predictive performances become essential. The aim of this work is to validate a probabilistic flood forecasting system: Flood-PROOFS. The system works in real time, since 2008, in an alpine Region of northern Italy, Valle d'Aosta. It is used by the Civil Protection regional service to issue warnings and by the local water company to protect its facilities. Flood-PROOFS uses as input Quantitative Precipitation Forecast (QPF) derived from the Italian limited area model meteorological forecast (COSMO-I7) and forecasts issued by regional expert meteorologists. Furthermore the system manages and uses both real time meteorological and satellite data and real time data on the maneuvers performed by the water company on dams and river devices. The main outputs produced by the computational chain are deterministic and probabilistic discharge forecasts in different cross sections of the considered river network. The validation of the flood prediction system has been conducted on a 25 months period considering different statistical methods such as Brier score, Rank histograms and verification scores. The results highlight good performances of the system as support system for emitting warnings but there is a lack of statistics especially for huge discharge events.

  8. Decision-Support System for Mitigating Long-Term Flood Risk

    NASA Astrophysics Data System (ADS)

    Maier, H. R.; van Delden, H.; Newman, J. P.; Riddell, G. A.; Zecchin, A. C.; Dandy, G. C.; Newland, C. P.

    2015-12-01

    Long-term flood risk in urban areas is expected to increase as a result of a number of factors, such as an increase in the severity of flood events due to the impact of climate change and the exposure of a larger number of people to flooding as a result of population growth. In order to facilitate the development of long-term flood mitigation plans, a framework for a decision-support system (DSS) is presented in this paper. The framework consists of an integrated model (see Figure) consisting of dynamic, spatially distributed land-use and flood inundation models. It also enables the impact of various flood mitigation strategies to be assessed, such as spatial planning, land management, structural measures (e.g. levees, changes in building codes), and community education. The framework considers a number of external drivers that are represented in the form of long-term planning scenarios. These include the impact of climate drivers on the extent of flooding via the flood inundation model and the impact of population and economic drivers on the size and distribution of the population via the land use allocation model. Using this framework, a DSS is being developed and applied to the Greater Adelaide region of South Australia. This DSS includes an intuitive, user-friendly interface for enabling different planning scenarios and mitigation portfolios to be selected, as well as temporal changes in flood risk maps under each of these scenarios to be observed. Changes in flood risk maps are investigated over a 30-year period with climate drivers represented by different representative concentration pathways, population drivers represented by different population projections and economic drivers represented by different employment rates. The impact of different combinations of mitigation measures is also investigated. The results indicate that climate, population and economic drivers have a significant impact on the temporal evolution of flood risk for the case study area

  9. Monitoring the Urban Growth of Dhaka (bangladesh) by Satellite Imagery in Flooding Risk Management Perspective

    NASA Astrophysics Data System (ADS)

    Bitelli, G.; Franci, F.; Mandanici, E.

    2013-01-01

    There is large consensus that demographic changes, the lack of appropriate environmental policies and sprawling urbanization result in high vulnerability and exposure to the natural disasters. This work reports some experiences of using multispectral satellite imagery to produce landuse/cover maps for the Dhaka city, the capital of Bangladesh, which is subject to frequent flooding events.The activity was conducted in collaboration with the non-profit organization ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The Landsat images acquired in 2000, 2002 and 2009 were used to evaluate the urban growth in order to support risk assessment studies; to identify areas routinely flooded during the monsoon season, the image of October 2009 (the most critical month for the effects of rain) was compared with two images acquired in January and February 2010. The analysis between 2000 and 2009 was able to quantify a very rapid growth of the metropolis, with an increase in built-up areas from 75 to 111 km2. The analysis highlights also a sharp rise of Bare soil class, likely related to the construction of embankments for the creation of new building space; consequently a decrease of cultivated land was observed. In particular, these artificial islands have been invading flooding areas. The change detection procedure also showed that the flooding in October 2009 affected about 20% (115 out of 591 km2) of the entire study area; furthermore these areas became wetlands and farmland over the next three/four months.

  10. Ethylene monitoring and control system

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Richard, II, Roy V. (Inventor); Kane, James A. (Inventor)

    2001-01-01

    A system that can accurately monitor and control low concentrations of ethylene gas includes a test chamber configured to receive sample gas potentially containing an ethylene concentration and ozone, a detector configured to receive light produced during a reaction between the ethylene and ozone and to produce signals related thereto, and a computer connected to the detector to process the signals to determine therefrom a value of the concentration of ethylene in the sample gas. The supply for the system can include a four way valve configured to receive pressurized gas at one input and a test chamber. A piston is journaled in the test chamber with a drive end disposed in a drive chamber and a reaction end defining with walls of the test chamber a variable volume reaction chamber. The drive end of the piston is pneumatically connected to two ports of the four way valve to provide motive force to the piston. A manifold is connected to the variable volume reaction chamber, and is configured to receive sample gasses from at least one of a plurality of ports connectable to degreening rooms and to supply the sample gas to the reactive chamber for reaction with ozone. The apparatus can be used to monitor and control the ethylene concentration in multiple degreening rooms.

  11. Ethylene monitoring and control system

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Richard, II, Roy V. (Inventor); Kanc, James A. (Inventor)

    2000-01-01

    A system that can accurately monitor and control low concentrations of ethylene gas includes a test chamber configured to receive sample gas potentially containing an ethylene concentration and ozone, a detector configured to receive light produced during a reaction between the ethylene and ozone and to produce signals related thereto, and a computer connected to the detector to process the signals to determine therefrom a value of the concentration of ethylene in the sample gas. The supply for the system can include a four way valve configured to receive pressurized gas at one input and a test chamber. A piston is journaled in the test chamber with a drive end disposed in a drive chamber and a reaction end defining with walls of the test chamber a variable volume reaction chamber. The drive end of the piston is pneumatically connected to two ports of the four way valve to provide motive force to the piston. A manifold is connected to the variable volume reaction chamber, and is configured to receive sample gasses from at least one of a plurality of ports connectable to degreening rooms and to supply the sample gas to the reactive chamber for reaction with ozone. The apparatus can be used to monitor and control the ethylene concentration in multiple degreening rooms.

  12. The future of remote ECG monitoring systems.

    PubMed

    Guo, Shu-Li; Han, Li-Na; Liu, Hong-Wei; Si, Quan-Jin; Kong, De-Feng; Guo, Fu-Su

    2016-09-01

    Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and reception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, patient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring. PMID:27582770

  13. The future of remote ECG monitoring systems

    PubMed Central

    Guo, Shu-Li; Han, Li-Na; Liu, Hong-Wei; Si, Quan-Jin; Kong, De-Feng; Guo, Fu-Su

    2016-01-01

    Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and reception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, patient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring. PMID:27582770

  14. Developing an Approach to Prioritize River Restoration using Data Extracted from Flood Risk Information System Databases.

    NASA Astrophysics Data System (ADS)

    Vimal, S.; Tarboton, D. G.; Band, L. E.; Duncan, J. M.; Lovette, J. P.; Corzo, G.; Miles, B.

    2015-12-01

    Prioritizing river restoration requires information on river geometry. In many states in the US detailed river geometry has been collected for floodplain mapping and is available in Flood Risk Information Systems (FRIS). In particular, North Carolina has, for its 100 Counties, developed a database of numerous HEC-RAS models which are available through its Flood Risk Information System (FRIS). These models that include over 260 variables were developed and updated by numerous contractors. They contain detailed surveyed or LiDAR derived cross-sections and modeled flood extents for different extreme event return periods. In this work, over 4700 HEC-RAS models' data was integrated and upscaled to utilize detailed cross-section information and 100-year modelled flood extent information to enable river restoration prioritization for the entire state of North Carolina. We developed procedures to extract geomorphic properties such as entrenchment ratio, incision ratio, etc. from these models. Entrenchment ratio quantifies the vertical containment of rivers and thereby their vulnerability to flooding and incision ratio quantifies the depth per unit width. A map of entrenchment ratio for the whole state was derived by linking these model results to a geodatabase. A ranking of highly entrenched counties enabling prioritization for flood allowance and mitigation was obtained. The results were shared through HydroShare and web maps developed for their visualization using Google Maps Engine API.

  15. Water monitor system: Phase 1 test report

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Jeffers, E. L.

    1976-01-01

    Automatic water monitor system was tested with the objectives of assuring high-quality effluent standards and accelerating the practice of reclamation and reuse of water. The NASA water monitor system is described. Various components of the system, including the necessary sensors, the sample collection system, and the data acquisition and display system, are discussed. The test facility and the analysis methods are described. Test results are reviewed, and recommendations for water monitor system design improvement are presented.

  16. The state of the art of flood forecasting - Hydrological Ensemble Prediction Systems

    NASA Astrophysics Data System (ADS)

    Thielen-Del Pozo, J.; Pappenberger, F.; Salamon, P.; Bogner, K.; Burek, P.; de Roo, A.

    2010-09-01

    Flood forecasting systems form a key part of ‘preparedness' strategies for disastrous floods and provide hydrological services, civil protection authorities and the public with information of upcoming events. Provided the warning leadtime is sufficiently long, adequate preparatory actions can be taken to efficiently reduce the impacts of the flooding. Because of the specific characteristics of each catchment, varying data availability and end-user demands, the design of the best flood forecasting system may differ from catchment to catchment. However, despite the differences in concept and data needs, there is one underlying issue that spans across all systems. There has been an growing awareness and acceptance that uncertainty is a fundamental issue of flood forecasting and needs to be dealt with at the different spatial and temporal scales as well as the different stages of the flood generating processes. Today, operational flood forecasting centres change increasingly from single deterministic forecasts to probabilistic forecasts with various representations of the different contributions of uncertainty. The move towards these so-called Hydrological Ensemble Prediction Systems (HEPS) in flood forecasting represents the state of the art in forecasting science, following on the success of the use of ensembles for weather forecasting (Buizza et al., 2005) and paralleling the move towards ensemble forecasting in other related disciplines such as climate change predictions. The use of HEPS has been internationally fostered by initiatives such as "The Hydrologic Ensemble Prediction Experiment" (HEPEX), created with the aim to investigate how best to produce, communicate and use hydrologic ensemble forecasts in hydrological short-, medium- und long term prediction of hydrological processes. The advantages of quantifying the different contributions of uncertainty as well as the overall uncertainty to obtain reliable and useful flood forecasts also for extreme events

  17. A Cascading Storm-Flood-Landslide Guidance System: Development and Application in China

    NASA Astrophysics Data System (ADS)

    Zeng, Ziyue; Tang, Guoqiang; Long, Di; Ma, Meihong; Hong, Yang

    2016-04-01

    Flash floods and landslides, triggered by storms, often interact and cause cascading effects on human lives and property. Satellite remote sensing data has significant potential use in analysis of these natural hazards. As one of the regions continuously affected by severe flash floods and landslides, Yunnan Province, located in Southwest China, has a complex mountainous hydrometeorology and suffers from frequent heavy rainfalls from May through to late September. Taking Yunnan as a test-bed, this study proposed a Cascading Storm-Flood-Landslide Guidance System to progressively analysis and evaluate the risk of the multi-hazards based on multisource satellite remote sensing data. First, three standardized rainfall amounts (average daily amount in flood seasons, maximum 1h and maximum 6h amount) from the products of Topical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) were used as rainfall indicators to derive the StorM Hazard Index (SMHI). In this process, an integrated approach of the Analytic Hierarchy Process (AHP) and the Information-Entropy theory was adopted to determine the weight of each indicator. Then, land cover and vegetation cover data from the Moderate Resolution Imaging Spectroradiometer (MODIS) products, soil type from the Harmonized World Soil Database (HWSD) soil map, and slope from the Shuttle Radar Topography Mission (SRTM) data were add as semi-static geo-topographical indicators to derive the Flash Flood Hazard Index (FFHI). Furthermore, three more relevant landslide-controlling indicators, including elevation, slope angle and soil text were involved to derive the LandSlide Hazard Index (LSHI). Further inclusion of GDP, population and prevention measures as vulnerability indicators enabled to consecutively predict the risk of storm to flash flood and landslide, respectively. Consequently, the spatial patterns of the hazard indices show that the southeast of Yunnan has more possibility to encounter with storms

  18. Automated biowaste sampling system feces monitoring system

    NASA Technical Reports Server (NTRS)

    Hunt, S. R.; Glanfield, E. J.

    1979-01-01

    The Feces Monitoring System (FMS) Program designed, fabricated, assembled and tested an engineering model waste collector system (WCS) to be used in support of life science and medical experiments related to Shuttle missions. The FMS design was patterned closely after the Shuttle WCS, including: interface provisions; mounting; configuration; and operating procedures. These similarities make it possible to eventually substitute an FMS for the Shuttle WCS of Orbiter. In addition, several advanced waste collection features, including the capability of real-time inertial fecal separation and fecal mass measurement and sampling were incorporated into the FMS design.

  19. Monitoring inland storm tide and flooding from Hurricane Irene along the Atlantic Coast of the United States, August 2011

    USGS Publications Warehouse

    McCallum, Brian E.; Painter, Jaime A.; Frantz, Eric R.

    2012-01-01

    The U.S. Geological Survey (USGS) deployed a temporary monitoring network of water-level sensors at 212 locations along the Atlantic coast from South Carolina to Maine during August 2011 to record the timing, areal extent, and magnitude of inland hurricane storm tide and coastal flooding generated by Hurricane Irene. Water-level sensor locations were selected to augment existing tide-gage networks to ensure adequate monitoring in areas forecasted to have substantial storm tide. As defined by the National Oceanic and Atmospheric Administration (NOAA; 2011a,b), storm tide is the water-level rise generated by a coastal storm as a result of the combination of storm surge and astronomical tide.

  20. Landslide monitoring using multi-antenna GPS deformation monitoring system

    NASA Astrophysics Data System (ADS)

    Yeh, T.; Hu, Y.; Ding, X.; Chen, C.

    2007-12-01

    GPS has already widely applied in civil engineering, fault detecting and landslide monitoring in the last decade, because of its convenience and high precision. However, GPS receiver is very expensive. If we want to monitor the landslide twenty-four hours a day, we need to buy a lot of GPS receivers. In order to spend less cost, multi- antenna GPS deformation monitoring system was employed to monitor the landslide of the freeway at Guansi section in Taiwan. Moreover, the data from 3D laser scanner, rain gauge, inclinometer and water table meter were utilized to analysis the movement of this landslide to make sure the safety of the drivers.

  1. Integrating High-Resolution Taskable Imagery into a Sensorweb for Automatic Space-Based Monitoring of Flooding in Thailand

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Mclaren, David; Doubleday, Joshua; Tran, Daniel; Tanpipat, Veerachai; Chitradon, Royol; Boonya-aroonnet, Surajate; Thanapakpawin, Porranee; Mandl, Daniel

    2012-01-01

    Several space-based assets (Terra, Aqua, Earth Observing One) have been integrated into a sensorweb to monitor flooding in Thailand. In this approach, the Moderate Imaging Spectrometer (MODIS) data from Terra and Aqua is used to perform broad-scale monitoring to track flooding at the regional level (250m/pixel) and EO-1 is autonomously tasked in response to alerts to acquire higher resolution (30m/pixel) Advanced Land Imager (ALI) data. This data is then automatically processed to derive products such as surface water extent and volumetric water estimates. These products are then automatically pushed to organizations in Thailand for use in damage estimation, relief efforts, and damage mitigation. More recently, this sensorweb structure has been used to request imagery, access imagery, and process high-resolution (several m to 30m), targetable asset imagery from commercial assets including Worldview-2, Ikonos, Radarsat-2, Landsat-7, and Geo-Eye-1. We describe the overall sensorweb framework as well as new workflows and products made possible via these extensions.

  2. Reliability of computerized mine-monitoring systems

    NASA Astrophysics Data System (ADS)

    Kacmar, R. M.

    1982-05-01

    This paper describes the Bureau of Mines research program on the reliability of computerized mine-monitoring systems. The basic concepts of computerized monitoring are introduced along with its advantages and limitations. Current Bureau projects covering mine-monitoring systems are described, and some of the major areas of concern that should be addressed by future projects are outlined.

  3. 29 CFR 1954.2 - Monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Monitoring system. 1954.2 Section 1954.2 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) PROCEDURES FOR THE EVALUATION AND MONITORING OF APPROVED STATE PLANS General § 1954.2 Monitoring system....

  4. Standard hydrogen monitoring system equipment installation instructions

    SciTech Connect

    Schneider, T.C.

    1996-09-27

    This document provides the technical specifications for the equipment fabrication, installation, and sitework construction for the Standard Hydrogen Monitoring System. The Standard Hydrogen Monitoring System is designed to remove gases from waste tank vapor space and exhaust headers for continual monitoring and remote sample analysis.

  5. 29 CFR 1954.2 - Monitoring system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 9 2012-07-01 2012-07-01 false Monitoring system. 1954.2 Section 1954.2 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) PROCEDURES FOR THE EVALUATION AND MONITORING OF APPROVED STATE PLANS General § 1954.2 Monitoring system. (a) To carry out...

  6. Assessment of flood hazard in a combined sewer system in Reykjavik city centre.

    PubMed

    Hlodversdottir, Asta Osk; Bjornsson, Brynjolfur; Andradottir, Hrund Olof; Eliasson, Jonas; Crochet, Philippe

    2015-01-01

    Short-duration precipitation bursts can cause substantial property damage and pose operational risks for wastewater managers. The objective of this study was to assess the present and possible future flood hazard in the combined sewer system in Reykjavik city centre. The catchment is characterised by two hills separated by a plain. A large portion of the pipes in the aging network are smaller than the current minimum diameter of 250 mm. Runoff and sewer flows were modelled using the MIKE URBAN software package incorporating both historical precipitation and synthetic storms derived from annual maximum rainfall data. Results suggest that 3% of public network manholes were vulnerable to flooding during an 11-year long rainfall sequence. A Chicago Design Storm (CDS) incorporating a 10-minute rainfall burst with a 5-year return period predicted twice as many flooded manholes at similar locations. A 20% increase in CDS intensity increased the number of flooded manholes and surface flood volume by 70% and 80%, respectively. The flood volume tripled if rainfall increase were combined with urban re-development, leading to a 20% increase in the runoff coefficient. Results highlight the need for reducing network vulnerabilities, which include decreased pipe diameters and low or drastically varying pipe grades.

  7. Assessment of flood hazard in a combined sewer system in Reykjavik city centre.

    PubMed

    Hlodversdottir, Asta Osk; Bjornsson, Brynjolfur; Andradottir, Hrund Olof; Eliasson, Jonas; Crochet, Philippe

    2015-01-01

    Short-duration precipitation bursts can cause substantial property damage and pose operational risks for wastewater managers. The objective of this study was to assess the present and possible future flood hazard in the combined sewer system in Reykjavik city centre. The catchment is characterised by two hills separated by a plain. A large portion of the pipes in the aging network are smaller than the current minimum diameter of 250 mm. Runoff and sewer flows were modelled using the MIKE URBAN software package incorporating both historical precipitation and synthetic storms derived from annual maximum rainfall data. Results suggest that 3% of public network manholes were vulnerable to flooding during an 11-year long rainfall sequence. A Chicago Design Storm (CDS) incorporating a 10-minute rainfall burst with a 5-year return period predicted twice as many flooded manholes at similar locations. A 20% increase in CDS intensity increased the number of flooded manholes and surface flood volume by 70% and 80%, respectively. The flood volume tripled if rainfall increase were combined with urban re-development, leading to a 20% increase in the runoff coefficient. Results highlight the need for reducing network vulnerabilities, which include decreased pipe diameters and low or drastically varying pipe grades. PMID:26442488

  8. Unravelling past flash flood activity in a forested mountain catchment of the Spanish Central System

    NASA Astrophysics Data System (ADS)

    Ballesteros-Cánovas, Juan A.; Rodríguez-Morata, Clara; Garófano-Gómez, Virginia; Rubiales, Juan M.; Sánchez-Salguero, Raúl; Stoffel, Markus

    2015-10-01

    Flash floods represent one of the most common natural hazards in mountain catchments, and are frequent in Mediterranean environments. As a result of the widespread lack of reliable data on past events, the understanding of their spatio-temporal occurrence and their climatic triggers remains rather limited. Here, we present a dendrogeomorphic reconstruction of past flash flood activity in the Arroyo de los Puentes stream (Sierra de Guadarrama, Spanish Central System). We analyze a total of 287 increment cores from 178 disturbed Scots pine trees (Pinus sylvestris L.) which yielded indications on 212 growth disturbances related to past flash flood impact. In combination with local archives, meteorological data, annual forest management records and highly-resolved terrestrial data (i.e., LiDAR data and aerial imagery), the dendrogeomorphic time series allowed dating 25 flash floods over the last three centuries, with a major event leaving an intense geomorphic footprint throughout the catchment in 1936. The analysis of meteorological records suggests that the rainfall thresholds of flash floods vary with the seasonality of events. Dated flash floods in the 20th century were primarily related with synoptic troughs owing to the arrival of air masses from north and west on the Iberian Peninsula during negative indices of the North Atlantic Oscillation. The results of this study contribute considerably to a better understanding of hazards related with hydrogeomorphic processes in central Spain in general and in the Sierra de Guadarrama National Park in particular.

  9. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect

    Martin E. Cobern

    2004-01-09

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program entails modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. The project continues to advance, but is behind the revised (14-month) schedule. Tasks 1-3 (Modeling, Specification and Design) are all essentially complete. The test bench for the Test and Evaluation (Tasks 4 & 5) has been designed and constructed. The design of the full-scale laboratory prototype and associated test equipment is complete and the components are out for manufacture. Barring any unforeseen difficulties, laboratory testing should be complete by the end of March, as currently scheduled. We anticipate the expenses through March to be approximately equal to those budgeted for Phase I.

  10. Development of living body information monitoring system

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hidetoshi; Ohbuchi, Yoshifumi; Torigoe, Ippei; Miyagawa, Hidekazu; Murayama, Nobuki; Hayashida, Yuki; Igasaki, Tomohiko

    2009-12-01

    The easy monitoring systems of contact and non-contact living body information for preventing the the Sudden Infant Death Syndrome (SIDS) were proposed as an alternative monitoring system of the infant's vital information. As for the contact monitoring system, respiration sensor, ECG electrodes, thermistor and IC signal processor were integrated into babies' nappy holder. This contact-monitoring unit has RF transmission function and the obtained data are analyzed in real time by PC. In non-contact mortaring system, the infrared thermo camera was used. The surrounding of the infant's mouth and nose is monitored and the respiration rate is obtained by thermal image processing of its temperature change image of expired air. This proposed system of in-sleep infant's vital information monitoring system and unit are very effective as not only infant's condition monitoring but also nursing person's one.

  11. Development of living body information monitoring system

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hidetoshi; Ohbuchi, Yoshifumi; Torigoe, Ippei; Miyagawa, Hidekazu; Murayama, Nobuki; Hayashida, Yuki; Igasaki, Tomohiko

    2010-03-01

    The easy monitoring systems of contact and non-contact living body information for preventing the the Sudden Infant Death Syndrome (SIDS) were proposed as an alternative monitoring system of the infant's vital information. As for the contact monitoring system, respiration sensor, ECG electrodes, thermistor and IC signal processor were integrated into babies' nappy holder. This contact-monitoring unit has RF transmission function and the obtained data are analyzed in real time by PC. In non-contact mortaring system, the infrared thermo camera was used. The surrounding of the infant's mouth and nose is monitored and the respiration rate is obtained by thermal image processing of its temperature change image of expired air. This proposed system of in-sleep infant's vital information monitoring system and unit are very effective as not only infant's condition monitoring but also nursing person's one.

  12. Technical Note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Perks, Matthew T.; Russell, Andrew J.; Large, Andrew R. G.

    2016-10-01

    Unmanned aerial vehicles (UAVs) have the potential to capture information about the earth's surface in dangerous and previously inaccessible locations. Through image acquisition of flash flood events and subsequent object-based analysis, highly dynamic and oft-immeasurable hydraulic phenomena may be quantified at previously unattainable spatial and temporal resolutions. The potential for this approach to provide valuable information about the hydraulic conditions present during dynamic, high-energy flash floods has until now not been explored. In this paper we adopt a novel approach, utilizing the Kande-Lucas-Tomasi (KLT) algorithm to track features present on the water surface which are related to the free-surface velocity. Following the successful tracking of features, a method analogous to the vector correction method has enabled accurate geometric rectification of velocity vectors. Uncertainties associated with the rectification process induced by unsteady camera movements are subsequently explored. Geo-registration errors are relatively stable and occur as a result of persistent residual distortion effects following image correction. The apparent ground movement of immobile control points between measurement intervals ranges from 0.05 to 0.13 m. The application of this approach to assess the hydraulic conditions present in the Alyth Burn, Scotland, during a 1 : 200 year flash flood resulted in the generation of an average 4.2 at a rate of 508 measurements s-1. Analysis of these vectors provides a rare insight into the complexity of channel-overbank interactions during flash floods. The uncertainty attached to the calculated velocities is relatively low, with a spatial average across the area of ±0.15 m s-1. Little difference is observed in the uncertainty attached to out-of-bank velocities (±0.15 m s-1), and within-channel velocities (±0.16 m s-1), illustrating the consistency of the approach.

  13. An extended real-time flood impact forecasting system for the Chapare watershed in Bolivia

    NASA Astrophysics Data System (ADS)

    Rossi, Lauro; Gabellani, Simone; Masoero, Alessandro; Dolia, Daniele; Rudari, Roberto

    2016-04-01

    All over the world a lot of cities are located in flood-prone areas and million of people are exposed to inundation risk. To cope with that the social safety demands efficient civil protection structures able to reduce flood risk by issuing warnings. This task requires civil protection organisms to adopt systems able to support their activities in predicting floods and rainfall impacts. For this reason flood early warning systems, based on rainfall observations and predictions, has become very useful because they are able to provide in advance a quantitative evaluation of possible effects in term of discharge and peak flow. Traditionally those forecasting systems use hydrologic models coupled with meteorological models to forecast discharge in relevant river sections and are called hydro-meteorological chains. In order to have a better representation of the flood dynamics, these hydro-meteorological chains can be expanded to include bi-dimensional hydraulic models where the level exposure is high or flow singularities (e.g. junctions, deltas, etc.) require more accurate investigation. That information allows the generation of real-time inundation scenarios that can be used by civil protection and authorities to estimate impact on population and take counter-measures. The new real-time flood impact forecasting chain consists of a suite of hydrometeorological tools that combines meteorological models, a disaggregation tool and a fully distributed hydrological model and a bidimensional hydraulic model that produces inundation scenarios in the most exposed river segments of the flood plain and a scenario tool that allows the assessment of assets involved. The complete modelling chain has been implemented in the Chapare watershed in Bolivia and it is managed by the Dewetra platform, which since 2013 is used by the Civil Defense and National Meteorological service as the main national Early Warning supporting tool.

  14. Forecasting skills of the ensemble hydro-meteorological system for the Po river floods

    NASA Astrophysics Data System (ADS)

    Ricciardi, Giuseppe; Montani, Andrea; Paccagnella, Tiziana; Pecora, Silvano; Tonelli, Fabrizio

    2013-04-01

    The Po basin is the largest and most economically important river-basin in Italy. Extreme hydrological events, including floods, flash floods and droughts, are expected to become more severe in the next future due to climate change, and related ground effects are linked both with environmental and social resilience. A Warning Operational Center (WOC) for hydrological event management was created in Emilia Romagna region. In the last years, the WOC faced challenges in legislation, organization, technology and economics, achieving improvements in forecasting skill and information dissemination. Since 2005, an operational forecasting and modelling system for flood modelling and forecasting has been implemented, aimed at supporting and coordinating flood control and emergency management on the whole Po basin. This system, referred to as FEWSPo, has also taken care of environmental aspects of flood forecast. The FEWSPo system has reached a very high level of complexity, due to the combination of three different hydrological-hydraulic chains (HEC-HMS/RAS - MIKE11 NAM/HD, Topkapi/Sobek), with several meteorological inputs (forecasted - COSMOI2, COSMOI7, COSMO-LEPS among others - and observed). In this hydrological and meteorological ensemble the management of the relative predictive uncertainties, which have to be established and communicated to decision makers, is a debated scientific and social challenge. Real time activities face professional, modelling and technological aspects but are also strongly interrelated with organization and human aspects. The authors will report a case study using the operational flood forecast hydro-meteorological ensemble, provided by the MIKE11 chain fed by COSMO_LEPS EQPF. The basic aim of the proposed approach is to analyse limits and opportunities of the long term forecast (with a lead time ranging from 3 to 5 days), for the implementation of low cost actions, also looking for a well informed decision making and the improvement of

  15. Development and Implementation of Flood Risk Mapping, Water Bodies Monitoring and Climate Information for Human Health

    NASA Astrophysics Data System (ADS)

    Ceccato, P.; McDonald, K. C.; Jensen, K.; Podest, E.; De La Torre Juarez, M.

    2013-12-01

    Public health professionals are increasingly concerned about the potential impact that climate variability and change can have on infectious disease. The International Research Institute for Climate and Society (IRI), City College of New York (CCNY) and NASA Jet Propulsion Laboratory (JPL) are developing new products to increase the public health community's capacity to understand, use, and demand the appropriate climate data and climate information to mitigate the public health impacts of climate on vector-borne diseases such as malaria, leishmaniasis, rift valley fever. In this poster we present the new and improved products that have been developed for monitoring water bodies for monitoring and forecasting risks of vector-borne disease epidemics. The products include seasonal inundation patterns in the East African region based on the global mappings of inundated water fraction derived at the 25-km scale from both active and passive microwave instruments QuikSCAT, AMSR-E, SSM/I, ERS, ASCAT, and MODIS and LANDSAT data. We also present how the products are integrated into a knowledge system (IRI Data Library Map room, SERVIR) to support the use of climate and environmental information in climate-sensitive health decision-making.

  16. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect

    Martin E. Cobern

    2005-07-27

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. Work during this quarter centered on the rebuilding of the prototype using the improved valve design described in the last report. Most of the components have been received and assembly has begun. Testing is expected to resume in August. In April, a paper was presented at the American Association of Drilling Engineers National Technical Conference in Houston. The paper was well received, and several oilfield service and supply companies sent inquiries regarding commercial distribution of the system. These are currently being pursued, but none have yet been finalized.

  17. Predicting flooding probability for beach/dune systems

    NASA Astrophysics Data System (ADS)

    Garès, Paul A.

    1990-01-01

    The determination of the risk from flooding that shorefront communities face is an important component of coastal management that has not been resolved successfully. Wave runup offers one way of quantifying the risk of coastal flooding that results from overtopping by storm waves. The calculation of runup probabilities uses wave frequency analysis and an average beach/dune profile for a given shoreline segment. The amount of risk is determined by using a runup probability curve for specific shoreline locations within the segment. The procedure is demonstrated using the New Jersey shoreline as an example, and results indicate a higher degree of risk in the southern part of the state. Although the procedure is attractive, there is a need for additional field research to test: (1) the accuracy of the calculation procedure; (2) the applicability of a design profile for a shoreline segment; and (3) whether a non-storm beach/dune profile may be used in the calculation. In terms of the broader subject of coastal hazards, these runup calculations need to be integrated with research on beach erosion to provide a comprehensive assessment of the risk at specific locations.

  18. Project W-420 stack monitoring system upgrades

    SciTech Connect

    CARPENTER, K.E.

    1999-02-25

    This project will execute the design, procurement, construction, startup, and turnover activities for upgrades to the stack monitoring system on selected Tank Waste Remediation System (TWRS) ventilation systems. In this plan, the technical, schedule, and cost baselines are identified, and the roles and responsibilities of project participants are defined for managing the Stack Monitoring System Upgrades, Project W-420.

  19. Utilization of Meteorological Satellite Imagery for World-Wide Environmental Monitoring the Lower Mississippi River Flood of 1979 - Case 1. [St. Louis, Missouri

    NASA Technical Reports Server (NTRS)

    Helfert, M. R.; Mccrary, D. G.; Gray, T. I. (Principal Investigator)

    1981-01-01

    The 1979 Lower Mississippi River flood was selected as a test case of environmental disaster monitoring utilizing NOAA-n imagery. A small scale study of the St. Louis Missouri area comparing ERTS-1 (LANDSAT) and NOAA-2 imagery and flood studies using only LANDSAT imagery for mapping the Rad River of the North, and Nimbus-5 imagery for East Australia show the nonmeteorological applications of NOAA satellites. While the level of NOAA-n imagery detail is not that of a LANDSAT image, for operational environmental monitoring users the NOAA-n imagery may provide acceptable linear resolution and spectral isolation.

  20. Assimilation of Satellite Based Soil Moisture Data in the National Weather Service's Flash Flood Guidance System

    NASA Astrophysics Data System (ADS)

    Seo, D.; Lakhankar, T.; Cosgrove, B.; Khanbilvardi, R.

    2012-12-01

    Climate change and variability increases the probability of frequency, timing, intensity, and duration of flood events. After rainfall, soil moisture is the most important factor dictating flash flooding, since rainfall infiltration and runoff are based on the saturation of the soil. It is difficult to conduct ground-based measurements of soil moisture consistently and regionally. As such, soil moisture is often derived from models and agencies such as the National Oceanic and Atmospheric Administration's National Weather Service (NOAA/NWS) use proxy estimates of soil moisture at the surface in order support operational flood forecasting. In particular, a daily national map of Flash Flood Guidance (FFG) is produced that is based on surface soil moisture deficit and threshold runoff estimates. Flash flood warnings are issued by Weather Forecast Offices (WFOs) and are underpinned by information from the Flash Flood Guidance (FFG) system operated by the River Forecast Centers (RFCs). This study analyzes the accuracy and limitations of the FFG system using reported flash flood cases in 2010 and 2011. The flash flood reports were obtained from the NWS Storm Event database for the Arkansas-Red Basin RFC (ABRFC). The current FFG system at the ABRFC provides gridded flash flood guidance (GFFG) System using the NWS Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) to translate the upper zone soil moisture to estimates of Soil Conservation Service Curve Numbers. Comparison of the GFFG and real-time Multi-sensor Precipitation Estimator derived Quantitative Precipitation Estimate (QPE) for the same duration and location were used to analyze the success of the system. Improved flash flood forecasting requires accurate and high resolution soil surface information. The remote sensing observations of soil moisture can improve the flood forecasting accuracy. The Soil Moisture Active and Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellites are two

  1. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect

    Martin E. Cobern

    2005-10-31

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. Work during this quarter centered on the rebuilding of the prototype using the improved valve design described in the Jan-March report1. Most of the components have been received and assembly was nearly complete at the end of the period. Testing started in October and results will be submitted in the next report. The field testing component of this Phase has been rethought. The current plan is to adapt the laboratory prototype for use in a drilling laboratory and run a series of controlled drilling tests with and without the DVMCS. This should give a more quantitative evaluation of its value, which will help us sign a commercialization partner. While this testing is underway, we will order and begin machining parts for full field prototypes to be use in Phase III. A modification application is being submitted in October to reflect these changes.

  2. Gaia basic angle monitoring system

    NASA Astrophysics Data System (ADS)

    Gielesen, W.; de Bruijn, D.; van den Dool, T.; Kamphues, F.; Mekking, J.; Calvel, B.; Laborie, A.; Coatantiec, C.; Touzeau, S.; Erdmann, M.; Gare, P.; Monteiro, D.

    2013-09-01

    The Gaia mission1 will create an extraordinarily precise three-dimensional map of more than one billion stars in our Galaxy. The Gaia spacecraft2, built by EADS Astrium, is part of ESA's Cosmic Vision programme and scheduled for launch in 2013. Gaia measures the position, distance and motion of stars with an accuracy of 24 micro-arcsec using two telescopes at a fixed mutual angle of 106.5°, named the `Basic Angle', at an operational temperature of 100 K. This accuracy requires ultra-high stability at cryogenic conditions, which can only be achieved by using Silicon Carbide for both the optical bench and the telescopes. TNO has developed, built and space qualified the Silicon carbide Basic Angle Monitoring (BAM) on-board metrology system3 for this mission, measuring the relative motion of Gaia's telescopes with accuracies in the range of 0.5 micro-arcsec. This is achieved by a system of two laser interferometers able to detect Optical Path Differences (OPD) as small as 1.5 picometer rms. Following a general introduction on Gaia and the use of Silicon Carbide as base material this paper addresses the specific challenges towards the cryogenic application of the Gaia BAM including design, integration and verification/qualification by testing.

  3. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect

    Martin E. Cobern

    2006-01-17

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. Work during this quarter centered on the testing of the rebuilt laboratory prototype and its conversion into a version that will be operable in the drilling tests at TerraTek Laboratories. In addition, formations for use in these tests were designed and constructed, and a test protocol was developed. The change in scope and no-cost extension of Phase II to January, 2006, described in our last report, were approved. The tests are scheduled to be run during the week of January 23, and should be completed before the end of the month.

  4. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect

    Martin E. Cobern

    2006-09-30

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. Phase II concluded on January 31, 2006, and the final report was issued. Work on Phase III of the project began during the previous quarter. Efforts this quarter have focused on the manufacture of the prototype and precommercial parts, field test planning and commercialization. The current extreme lead times quoted by oilfield machine shops for collar components, will delay the deployment of the field prototypes. The delivery date for five critical parts from one supplier has slipped to late November, which will preclude deployment for a field test before late December or early January. We are exploring whether we can take the partially made parts and complete them earlier in our own shop.

  5. Gaia basic angle monitoring system

    NASA Astrophysics Data System (ADS)

    Gielesen, W.; de Bruijn, D.; van den Dool, T.; Kamphues, F.; Meijer, E.; Calvel, B.; Laborie, A.; Monteiro, D.; Coatantiec, C.; Touzeau, S.; Erdmann, M.; Gare, P.

    2012-09-01

    The Gaia mission will create an extraordinarily precise three-dimensional map of more than one billion stars in our Galaxy. The Gaia spacecraft, built by EADS Astrium, is part of ESA's Cosmic Vision programme and scheduled for launch in 2013. Gaia measures the position, distance and motion of stars with an accuracy of 24 micro-arcsec using two telescopes at a fixed mutual angle of 106.5°, named the ‘Basic Angle’. This accuracy requires ultra-high stability, which can only be achieved by using Silicon Carbide for both the optical bench and the telescopes. TNO has developed, built and space qualified the Silicon carbide Basic Angle Monitoring (BAM) on-board metrology system for this mission. The BAM measures the relative motion of Gaia’s telescopes with accuracies in the range of 0.5 micro-arcsec. This is achieved by a system of two laser interferometers able to measure Optical Path Differences (OPD) as small as 1.5 picometer rms. Following a general introduction to the Gaia mission, the Payload Module (PLM) and the use of Silicon Carbide as base material, this presentation will address an overview of the challenges towards the key requirements, design, integration and testing (including space-level qualification) of the Gaia BAM.

  6. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect

    Martin E. Cobern

    2005-01-28

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. The redesign and upgrade of the laboratory prototype was completed on schedule and it was assembled during the last period. Testing was begin during the first week of October. Initial results indicated that the dynamic range of the damping was less than predicted and that the maximum damping was also less than required. A number of possible explanations for these results were posited, and test equipment was acquired to evaluate the various hypotheses. Testing was just underway at the end of this period.

  7. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect

    Martin E. Cobern

    2004-10-29

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. Phase II began on June 1, and the first month's effort were reported in the seventh quarterly report on the project.1 The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. The redesign and upgrade of the laboratory prototype was completed on schedule during this period, and assembly was complete at the end of this period. Testing will begin during the first week of October. This aspect of the project is thus approximately six weeks behind schedule. Design of the field prototype is progressing per schedule.

  8. Taming the Mighty Mississippi: Integrating paleo-flood data and modeling to understand the patterns and causes of extreme floods on a major river system

    NASA Astrophysics Data System (ADS)

    Munoz, Samuel; Giosan, Liviu; Jeffrey, Donnelly; Dee, Sylvia; Shen, Zhixiong

    2016-04-01

    The Mississippi River is an economic artery of the United States that is heavily managed to provide flood control and maintain a navigable shipping channel. The current system of levees and spillway structures was conceived in the early 20th century, but the ability of this system to withstand the altered hydroclimatic conditions projected for the next century is poorly understood. Here, we present initial results from a project that integrates new sedimentary records from floodplain lakes with analyses of sediment geochemistry and climate model simulations to better understand the causes of extreme floods on the lower Mississippi River. In our sedimentary paleoflood records, flood event beds are characterized by an upward fining sequence from deposition of the bedload and suspended load during overbank floods, identified here using high-resolution laser particle-size analysis and elemental composition (XRF), and dated using radioisotopes (137Cs, 210Pb, 14C) and optically-stimulated luminescence (OSL) on quartz. Grain-size descriptors and elemental ratios of Zr/Fe and Fe/Rb are highly correlated, and are used alongside historical discharge records to develop a statistical model for reconstructing flood magnitude in prehistoric contexts. Geochemical analyses of sediments from the floodplains of major tributaries of the Mississippi are used to assess the systematics of 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, and 208Pb/204Pb across the basin, enabling identification of the synoptic patterns of individual paleo-flood events. We investigate the dynamical drivers of past floods on the lower Mississippi using both reanalysis data and the last millennium simulation from NCAR model CESM1 to find that increased likelihoods of extreme floods on the lower Mississippi River are associated with enhanced moisture flux over midcontinental North America that is controlled by the interaction of seasonally variable soil moisture over major tributaries with inter-annual (e.g., ENSO) and

  9. Monitoring storm tide and flooding from Hurricane Isaac along the Gulf Coast of the United States, August 2012

    USGS Publications Warehouse

    McCallum, Brian E.; McGee, Benton D.; Kimbrow, Dustin R.; Runner, Michael S.; Painter, Jaime A.; Frantz, Eric R.; Gotvald, Anthony J.

    2012-01-01

    The U.S. Geological Survey (USGS) deployed a temporary monitoring network of water-level and barometric pressure sensors at 127 locations along the gulf coast from Alabama to Louisiana to record the timing, areal extent, and magnitude of hurricane storm tide and coastal flooding generated by Hurricane Isaac. This deployment was undertaken as part of a coordinated federal emergency response as outlined by the Stafford Act under a directed mission assignment by the Federal Emergency Management Agency. Storm tide, as defined by National Oceanic and Atmospheric Administration (NOAA; National Oceanic and Atmospheric Administration, 2008), is the water-level rise generated by a combination of storm surge and astronomical tide during a coastal storm. Hurricane Isaac initially made landfall on the coast of Louisiana in Plaquemines Parish on August 28, 2012, as a Category 1 hurricane on the Saffir–Simpson Hurricane Wind Scale (National Weather Service, 1974) and then stalled over southern Louisiana for several days, causing prolonged storm-tide impacts. A total of 188 water-level and wave-height sensors were deployed at 127 locations during August 27–28 prior to landfall. More than 90 percent of the sensors and all high-water marks (HWMs) were recovered and surveyed to North American Vertical Datum of 1988 (NAVD 88) within 7 days of the Isaac landfall. Only a handful of sensors in the Plaquemines Parish area of Louisiana could not be retrieved until weeks later due to prolonged flooding in the area. Data collected from this event can be used to evaluate the performance of storm-tide models for maximum and incremental water level and flood extent and the site-specific effects of storm tide on natural and anthropogenic features of the environment.

  10. Critical systems for public health management of floods, North Dakota.

    PubMed

    Wiedrich, Tim W; Sickler, Juli L; Vossler, Brenda L; Pickard, Stephen P

    2013-01-01

    Availability of emergency preparedness funding between 2002 and 2009 allowed the North Dakota Department of Health to build public health response capabilities. Five of the 15 public health preparedness capability areas identified by the Centers for Disease Control and Prevention in 2011 have been thoroughly tested by responses to flooding in North Dakota in 2009, 2010, and 2011; those capability areas are information sharing, emergency operations coordination, medical surge, material management and distribution, and volunteer management. Increasing response effectiveness has depended on planning, implementation of new information technology, changes to command and control procedures, containerized response materials, and rapid contract procedures. Continued improvement in response and maintenance of response capabilities is dependent on ongoing funding.

  11. Definition of Pluviometric Thresholds For A Real Time Flood Forecasting System In The Arno Watershed

    NASA Astrophysics Data System (ADS)

    Amadio, P.; Mancini, M.; Mazzetti, P.; Menduni, G.; Nativi, S.; Rabuffetti, D.; Ravazzani, G.; Rosso, R.

    The pluviometric flood forecasting thresholds are an easy method that helps river flood emergency management collecting data from limited area meteorologic model or telemetric raingauges. The thresholds represent the cumulated rainfall depth which generate critic discharge for a particular section. The thresholds were calculated for different sections of Arno river and for different antecedent moisture condition using the flood event distributed hydrologic model FEST. The model inputs were syntethic hietographs with different shape and duration. The system realibility has been verified by generating 500 year syntethic rainfall for 3 important subwatersheds of the studied area. A new technique to consider spatial variability of rainfall and soil properties effects on hydrograph has been investigated. The "Geomorphologic Weights" were so calculated. The alarm system has been implemented in a dedicated software (MIMI) that gets measured and forecast rainfall data from Autorità di Bacino and defines the state of the alert of the river sections.

  12. Monitored Geologic Repository Operations Monitoring and Control System Description Document

    SciTech Connect

    E.F. Loros

    2000-06-29

    The Monitored Geologic Repository Operations Monitoring and Control System provides supervisory control, monitoring, and selected remote control of primary and secondary repository operations. Primary repository operations consist of both surface and subsurface activities relating to high-level waste receipt, preparation, and emplacement. Secondary repository operations consist of support operations for waste handling and treatment, utilities, subsurface construction, and other selected ancillary activities. Remote control of the subsurface emplacement operations, as well as, repository performance confirmation operations are the direct responsibility of the system. In addition, the system monitors parameters such as radiological data, air quality data, fire detection status, meteorological conditions, unauthorized access, and abnormal operating conditions, to ensure a safe workplace for personnel. Parameters are displayed in a real-time manner to human operators regarding surface and subsurface conditions. The system performs supervisory monitoring and control for both important to safety and non-safety systems. The system provides repository operational information, alarm capability, and human operator response messages during emergency response situations. The system also includes logic control to place equipment, systems, and utilities in a safe operational mode or complete shutdown during emergency response situations. The system initiates alarms and provides operational data to enable appropriate actions at the local level in support of emergency response, radiological protection response, evacuation, and underground rescue. The system provides data communications, data processing, managerial reports, data storage, and data analysis. This system's primary surface and subsurface operator consoles, for both supervisory and remote control activities, will be located in a Central Control Center (CCC) inside one of the surface facility buildings. The system

  13. Downhole Vibration Monitoring & Control System

    SciTech Connect

    Martin E. Cobern

    2007-03-31

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in a drilling laboratory. Phase II concluded on January 31, 2006, and the Phase II final report was issued. Work on Phase III of the project began during the first quarter, 2006. Efforts the current quarter have continued to focus on the manufacture of the prototype and precommercial parts, field test planning and commercialization. The continued extreme lead times quoted by oilfield machine shops for collar components significantly delayed the deployment of the prototype and precommercial units. All parts have now been received for two units, and all but one for the third. Mechanical assembly of the first two systems is complete and the electronics installation and laboratory testing will be finished in April. We have entered into a Memorandum of Understanding with a major US oilfield equipment supplier, which calls for their assisting with our field tests, in cash and in kind. We are close to signing a definitive agreement which includes the purchase of the three precommercial units. We had also signed a CRADA with the Rocky Mountain Oilfield Test Center (RMOTC), and scheduled a test at their site, The RMOTC drilling schedule continues to slip, and the test cannot begin until the first week of May. Based on these factors, we have requested a no-cost extension to July 31, 2007.

  14. Computer Jet-Engine-Monitoring System

    NASA Technical Reports Server (NTRS)

    Disbrow, James D.; Duke, Eugene L.; Ray, Ronald J.

    1992-01-01

    "Intelligent Computer Assistant for Engine Monitoring" (ICAEM), computer-based monitoring system intended to distill and display data on conditions of operation of two turbofan engines of F-18, is in preliminary state of development. System reduces burden on propulsion engineer by providing single display of summary information on statuses of engines and alerting engineer to anomalous conditions. Effective use of prior engine-monitoring system requires continuous attention to multiple displays.

  15. Coastal flood inundation monitoring with Satellite C-band and L-band Synthetic Aperture Radar data

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Bannister, Terri

    2013-01-01

    Satellite Synthetic Aperture Radar (SAR) was evaluated as a method to operationally monitor the occurrence and distribution of storm- and tidal-related flooding of spatially extensive coastal marshes within the north-central Gulf of Mexico. Maps representing the occurrence of marsh surface inundation were created from available Advanced Land Observation Satellite (ALOS) Phased Array type L-Band SAR (PALSAR) (L-band) (21 scenes with HH polarizations in Wide Beam [100 m]) data and Environmental Satellite (ENVISAT) Advanced SAR (ASAR) (C-band) data (24 scenes with VV and HH polarizations in Wide Swath [150 m]) during 2006-2009 covering 500 km of the Louisiana coastal zone. Mapping was primarily based on a decrease in backscatter between reference and target scenes, and as an extension of previous studies, the flood inundation mapping performance was assessed by the degree of correspondence between inundation mapping and inland water levels. Both PALSAR- and ASAR-based mapping at times were based on suboptimal reference scenes; however, ASAR performance seemed more sensitive to reference-scene quality and other types of scene variability. Related to water depth, PALSAR and ASAR mapping accuracies tended to be lower when water depths were shallow and increased as water levels decreased below or increased above the ground surface, but this pattern was more pronounced with ASAR. Overall, PALSAR-based inundation accuracies averaged 84% (n = 160), while ASAR-based mapping accuracies averaged 62% (n = 245).

  16. Coma Patient Monitoring System Using Image Processing

    NASA Astrophysics Data System (ADS)

    Sankalp, Meenu

    2011-12-01

    COMA PATIENT MONITORING SYSTEM provides high quality healthcare services in the near future. To provide more convenient and comprehensive medical monitoring in big hospitals since it is tough job for medical personnel to monitor each patient for 24 hours.. The latest development in patient monitoring system can be used in Intensive Care Unit (ICU), Critical Care Unit (CCU), and Emergency Rooms of hospital. During treatment, the patient monitor is continuously monitoring the coma patient to transmit the important information. Also in the emergency cases, doctor are able to monitor patient condition efficiently to reduce time consumption, thus it provides more effective healthcare system. So due to importance of patient monitoring system, the continuous monitoring of the coma patient can be simplified. This paper investigates about the effects seen in the patient using "Coma Patient Monitoring System" which is a very advanced product related to physical changes in body movement of the patient and gives Warning in form of alarm and display on the LCD in less than one second time. It also passes a sms to a person sitting at the distant place if there exists any movement in any body part of the patient. The model for the system uses Keil software for the software implementation of the developed system.

  17. Software For Monitoring VAX Computer Systems

    NASA Technical Reports Server (NTRS)

    Farkas, Les; Don, Ken; Lavery, David; Baron, Amy

    1994-01-01

    VAX Continuous Monitoring System (VAXCMS) computer program developed at NASA Headquarters to aid system managers in monitoring performances of VAX computer systems through generation of graphic images summarizing trends in performance metrics over time. VAXCMS written in DCL and VAX FORTRAN for use with DEC VAX-series computers running VMS 5.1 or later.

  18. Development of Flood GIS Database of River Indus using RS and GIS Techniques

    NASA Astrophysics Data System (ADS)

    Siddiqui, Z.; Farooq, M.; Shah, S.

    Remote sensing and Geographic Information System (GIS) are information technologies that furnish a broad range of tools to assist in preparing for the next flood and for obtaining vital information about the flood plain. This type of information is used to improve flood forecasting and preparedness, monitoring flood conditions, assess flood damage, relief efforts, flood control etc. Severe floods of varied magnitudes have occurred in the river Indus and its tributaries viz; Jhelum, Chenab, Ravi and Sutlej during the past three decades covering the Indus flood plain from Cheshma Barrage in the province of Punjab to downstream of Kotri Barrage in the souh of Sindh province of Pakistan. Digital mapping of different floods in the Indus Basin was carried out using both MSS and TM data of Landsat yielding flood maps. These maps depict flood extent and other relevant information in the flood plain. In order to create comprehensive GIS database, various hydrologic information such as rainfall, river discharge, canal withdrawal, embankment, breach etc. were incorporated. Flood database provide comprehensive information both in separate layer and combination of multiple layers pertaining to floods that occurred in the past three decades . GIS database on flood provides easy access to updated in-situ geographic information to planners and irrigation engineers concerned with overall river Indus operation and management system. GIS database of Indus floods can als o be used to improve the efficiency of decision making and management by collecting, organizing and integrating geographic, environmental and socio-economic spatial data and information.

  19. Health Monitoring System for Car Seat

    NASA Technical Reports Server (NTRS)

    Elrod, Susan Vinz (Inventor); Dabney, Richard W. (Inventor)

    2004-01-01

    A health monitoring system for use with a child car seat has sensors mounted in the seat to monitor one or more health conditions of the seat's occupant. A processor monitors the sensor's signals and generates status signals related to the monitored conditions. A transmitter wireless transmits the status signals to a remotely located receiver. A signaling device coupled to the receiver produces at least one sensory (e.g., visual, audible, tactile) output based on the status signals.

  20. Traffic monitoring and reporting system

    SciTech Connect

    Madnick, P.A.; Sherwood, R.W.

    1988-12-20

    This patent describes a traffic monitoring and reporting system comprising: sensors, each sensor located at a designated location and designed to produce an output based upon traffic conditions at its designated location; an information receiving and analyzing computer. The output of each sensor to be transmitted to and received by the information receiving and analyzing computer, the information receiving and analyzing computer to generate results based on the output of each sensor, the results being organized into a plurality of different zones within an overall geographical area; a message synthesis computer to receive the results of the information receiving and analyzing computer, the message synthesis computer to produce different messages, each message to be specially oriented to one of the zones; transmitting of the output of the message synthesis computer to a broadcasting means, the broadcasting means for transmitting of the different messages by radio waves; and receivers, each receiver to be adapted to be located within a vehicle with therebeing a plurality of vehicles, each receiver having means to individually select and announce any one of the messages.

  1. Calibrating the FloodMap model based on geomorphological fieldwork and terrain analysis to improve the integrated HydroProg-FloodMap system for forecasting inundation

    NASA Astrophysics Data System (ADS)

    Witek, Matylda; Remisz, Joanna; Swierczynska, Malgorzata; Borowicz, Dorota; Parzoch, Krzysztof; Yu, Dapeng

    2016-04-01

    HydroProg is a novel system (research project no. 2011/01/D/ST10/04171 of the National Science Centre of Poland) which produces early warnings against high flows. The system has been experimentally implemented for the upper Nysa Klodzka river basin (SW Poland). HydroProg is also integrated with the well-established hydrodynamic model known as FloodMap. The aim of this integration is to forecast flood inundation (HydroProg is used for computing hydrograph prediction, while FloodMap is utilized for mapping the hydrograph prognosis into spatial domain). The HydroProg-FloodMap solution currently works at four sites (Szalejow Dolny, Zelazno, Gorzuchow and Krosnowice) situated within the Nysa Klodzka river basin in the Southwestern Poland. The FloodMap model has been already calibrated for Zelazno (the Biala Ladecka river), and now we want to obtain model parameters for Gorzuchow (the Scinawka river). We carry out several simulations from the FloodMap model at this site, based on historical and recent flow records, to check where potential inundation may take place. Using the 1-metre LIDAR (Light Detection and Ranging) data we identify old channels of the Scinawka river in this area. In addition, we carried out several field campaigns with the unmanned aerial vehicle (UAV) to produce digital surface model (DSM) which can show morphological changes within an alluvial river valley. This can be perceived as an evidence of past inundations. Both the LIDAR mode and DSM obtained using UAV appeared to be not accurate enough to fully reconstruct the pattern of paleo-fluvial relief. Hence, we additionally performed geodetic survey using a self-reducting theodolite Dhalta 010A. Moreover, to confirm the pattern of the paleochannel of the Scinawka river, paleohydraulic analysis is performed. Finally, calibration of the FloodMap model for the Gorzuchow site becomes possible due to access to newly-acquired data on past inundation episodes.

  2. Capacity Building for Disaster Management in Vulnerable Regions of Africa: Implementing an Operational Flood Warming System in Lake Victoria

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Li, L.; Adler, R.; Policelli, F.

    2008-12-01

    NASA Applied Science program has partnered with USAID and The Regional Centre for Mapping of Resources for Development (RCMRD) in Africa to implement an operational flood warning system for East Africa, SERVIR-Africa project. The project seeks to take advantage of remote sensing information as an alternative and supplemental to ground-based observation in order to preserve the spatial extent of flood hazards. The recently available and virtually uninterrupted supply of satellite-based rainfall estimates is increasingly becoming a cost-effective data source for flood prediction in many under-gauged regions around the world. Our initial focus aims to provide an operational flood warning system for Lake Victoria, a flood-prone region home to 30 million people. The key datasets enabling the development of a distributed hydrological model in Africa include TRMM-based Multi-satellite Precipitation Analysis (TMPA), digital elevation data from the Shuttle Radar Topography Mission (SRTM) mission, HydroSHEDS hydrological products, MODIS Land cover, and soil parameters provided by FAO. This research focuses on evaluation and integration the TMPA Real- Time product into an online operational flood prediction system. We will also identify the optimal calibration strategy for satellite rainfall data into real-time hydrological modeling, one current knowledge gap that has remained relatively unexplored. Early results demonstrate this flood modeling system is useful decision- support tool for governmental officials and international aid organizations to better quantify flood impacts and extent of hazard risk, as well as more expediently respond to flood emergencies.

  3. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect

    Martin E. Cobern

    2006-05-01

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. Phase II concluded on January 31, 2006. The month of January was devoted to the final preparations for, and conducting of testing of the DVMCS at TerraTek laboratories in Salt Lake City. This testing was concluded on January 27, 2006. Much of the effort in this period was then devoted to the analysis of the data and the preparation of the Phase II final report. The report was issued after the close of the period. Work on Phase III of the project began during this quarter. It has consisted of making some modifications in the prototype design to make it more suitable for field testing an more practical for commercial use. This work is continuing. The redesign effort, coupled with the current extreme lead times quoted by oilfield machine shops for collar components, will delay the deployment of the field prototypes. The precommercial prototypes are being developed in parallel, so the project should be completed per the current schedule.

  4. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect

    Martin E. Cobern

    2005-04-27

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. As a result of the lower than expected performance of the MR damper noted last quarter, several additional tests were conducted. These dealt with possible causes of the lack of dynamic range observed in the testing: additional damping from the oil in the Belleville springs; changes in properties of the MR fluid; and, residual magnetization of the valve components. Of these, only the last was found to be significant. By using a laboratory demagnetization apparatus between runs, a dynamic range of 10:1 was achieved for the damper, more than adequate to produce the needed improvements in drilling. Additional modeling was also performed to identify a method of increasing the magnetic field in the damper. As a result of the above, several changes were made in the design. Additional circuitry was added to demagnetize the valve as the field is lowered. The valve was located to above the Belleville springs to reduce the load placed upon it and offer a greater range of materials for its construction. In addition, to further increase the field strength, the coils were relocated from the mandrel to the outer housing. At the end of the quarter, the redesign was complete and new parts were on order. The project is approximately three months behind schedule at this time.

  5. Monitoring by holographic radar systems

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Crocco, Lorenzo; Affinito, Antonio; Gennarelli, Gianluca; Soldovieri, Francesco

    2013-04-01

    Nowadays, radar technology represents a significant opportunity to collect useful information for the monitoring and conservation of critical infrastructures. Radar systems exploit the non-invasive interaction between the matter and the electromagnetic waves at microwave frequencies. Such an interaction allows obtaining images of the region under test from which one can infer the presence of potential anomalies such as deformations, cracks, water infiltrations, etc. This information turns out to be of primary importance in practical scenarios where the probed structure is in a poor state of preservation and renovation works must be planned. In this framework, the aim of this contribution is to describe the potentialities of the holographic radar Rascan 4/4000, a holographic radar developed by Remote Sensing Laboratory of Bauman Moscow State Technical University, as a non-destructive diagnostic tool capable to provide, in real-time, high resolution subsurface images of the sounded structure [1]. This radar provides holograms of hidden anomalies from the amplitude of the interference signal arising between the backscattered signal and a reference signal. The performance of the holographic radar is appraised by means of several experiments. Preliminary tests concerning the imaging below the floor and inside wood structures are carried out in controlled conditions at the Electromagnetic Diagnostic Laboratory of IREA-CNR. After, with reference to bridge monitoring for security aim, the results of a measurement campaign performed on the Musmeci bridge are presented [2]. Acknowledgments This research has been performed in the framework of the "Active and Passive Microwaves for Security and Subsurface imaging (AMISS)" EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157). REFERENCES [1] S. Ivashov, V. Razevig, I. Vasilyev, A. Zhuravlev, T. Bechtel, L. Capineri, The holographic principle in subsurface radar technology, International Symposium to

  6. Towards a generalized catchment flood processes simulation system with distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2015-12-01

    High resolution distributed hydrological model is regarded as to have the potential to finely simulate the catchment hydrological processes, but challenges still exist. This paper, presented a generalized catchment flood processes simulation system with Liuxihe Model, a physically-based distributed hydrological model proposed mainly for catchment flood forecasting, which is a process-based hydrological model. In this system, several cutting edge technologies have been employed, such as the supercomputing technology, PSO algorithm for parameter optimization, cloud computation, GIS and software engineering, and it is deployed on a high performance computer with free public accesses. The model structure setting up data used in this system is the open access database, so it could be used for catchments world widely. With the application of parallel computation algorithm, the model spatial resolution could be as fine as up to 100 m grid, while maintaining high computation efficiency, and could be used in large scale catchments. With the utilization of parameter optimization method, the model performance cold be improved largely. The flood events of several catchments in southern China with different drainage sizes have been simulated by this system, and the results show that this system has strong capability in simulating catchment flood events even in large river basins.

  7. Modeling the Colorado Front Range Flood of 2013 with Coupled WRF and WRF-Hydro System

    NASA Astrophysics Data System (ADS)

    Unal, E.; Ramirez, J. A.

    2015-12-01

    Abstract. Flash floods are one of the most damaging natural disasters producing large socio-economic losses. Projected impacts of climate change include increases in the magnitude and the frequency of flash floods all around the world. Therefore, it is important to understand the physical processes of flash flooding to enhance our capacity for prediction, prevention, risk management, and recovery. However, understanding these processes is ambitious because of small spatial scale and sudden nature of flash floods, interactions with complex topography and land use, difficulty in defining initial soil moisture conditions, non-linearity of catchment response, and high space-time variability of storm characteristics. Thus, detailed regional case studies are needed, especially with respect to the interactions between the land surface and the atmosphere. One such flash flood event occurred recently in the Front Range of the Rocky Mountains of Colorado during September 9-15, 2013 causing 10 fatalities and $3B cost in damages. An unexpected persistent and moist weather pattern located over the mountains and produced seven-day extreme rainfall fed by moisture input from the Gulf of Mexico. We used a coupled WRF-WRF-Hydro modeling system to simulate this event for better understanding of the physical process and of the sensitivity of the hydrologic response to storm characteristics, initial soil moisture conditions, and watershed characteristics.

  8. Using Risk-Based Analysis and Geographic Information Systems to Assess Flooding Problems in an Urban Watershed in Rhode Island

    NASA Astrophysics Data System (ADS)

    Hardmeyer, Kent; Spencer, Michael A.

    2007-04-01

    This article provides an overview of the use of risk-based analysis (RBA) in flood damage assessment, and it illustrates the use of Geographic Information Systems (GIS) in identifying flood-prone areas, which can aid in flood-mitigation planning assistance. We use RBA to calculate expected annual flood damages in an urban watershed in the state of Rhode Island, USA. The method accounts for the uncertainty in the three primary relationships used in computing flood damage: (1) the probability that a given flood will produce a given amount of floodwater, (2) the probability that a given amount of floodwater will reach a certain stage or height, and (3) the probability that a certain stage of floodwater will produce a given amount of damage. A greater than 50% increase in expected annual flood damage is estimated for the future if previous development patterns continue and flood-mitigation measures are not taken. GIS is then used to create a map that shows where and how often floods might occur in the future, which can help (1) identify priority areas for flood-mitigation planning assistance and (2) disseminate information to public officials and other decision-makers.

  9. Assessment of the Relationship Between Flexibility and Adaptive Capacity in Flood Management Systems

    NASA Astrophysics Data System (ADS)

    DiFrancesco, K.; Tullos, D. D.

    2013-12-01

    Discussions around adapting water management systems to future changes often state the need to increase system flexibility. Intuitively, a flexible, easily modifiable system seems desirable when faced with a wide range of uncertain, but plausible future conditions. Yet, despite the frequent use of the terms flexibility, very little work has examined what exactly it means to have a flexible water management system, what makes one system more flexible than another, or the extent to which flexibility increases adaptive capacity. This study applies a methodology for assessing the inherent flexibility of the structural and non-structural components of flood management systems using original flexibility metrics in the categories of: slack, intensity, connectivity, adjustability, and coordination. We use these metrics to assess the flexibility of three sub-systems within the Sacramento Valley flood management system in California, USA under current system conditions as well as with proposed management actions in place. We then assess the range of hydrologic conditions under which each sub-system can meet flood risk targets in order to determine whether more flexible systems are also more robust and able to perform over a wider range of hydrologic conditions. In doing so, we identify flexible characteristics of flood management systems that enhance the ability of the system to preform over a wide range of conditions making them better suited to adapt to an uncertain hydrologic future. We find that the flexibility characteristics that increase the range of conditions under which the system can meet performance goals varies depending on whether the region is considered urban, rural, or a small community. In some cases, a decrease in certain flexibility characteristics is associated with an increase in robustness, indicating that more flexibility is not always desirable. Future work will assess the transferability of these results to other regions and systems.

  10. Automatic guided wave PPM communication system for potential SHM of flooding members in sub-sea oilrigs

    NASA Astrophysics Data System (ADS)

    Mijarez, Rito; Gaydecki, Patrick

    2013-05-01

    An automatic guided wave pulse position modulation system, using steel tubes as the communication channel, for detecting flooding in the hollow sub-sea structures of newly built offshore oilrigs is presented. Underwater close visual inspections (CVI) are normally conducted during swim-round surveys in pre-selected areas or areas suspected of damage. An acceptable alternative to CVI is a non-destructive testing (NDT) technique called flood member detection (FMD). Usually, this NDT technique employs ultrasound or x-rays to detect the presence of seawater in the tubular structures, requiring divers or remote operating vehicles (ROVs). The field-proven FMD technique, integrated within the concept of structural health monitoring, offers an alternative to these traditional inspection methods. The system employs two smart sensors and modulators, which transmit 40 kHz guided wave pulses, and a digital signal processing demodulator, which performs automatic detection of guided wave energy packets. Experiments were performed in dry conditions, inside and outside the laboratory; in the former using a steel tube 1.5 m×0.27 m×2 mm, and in the latter using a tubular steel heliport structure approximately 15 m×15 m in area and the base deck of an oilrig under construction. Results confirm that, although there was significant dispersion of the transmitted pulses, the system successfully distinguished automatically guided wave encoded information that could potentially be used in sub-sea oilrigs.

  11. The Global Flood Awareness System (GloFAS) - Overview of Recent Developments

    NASA Astrophysics Data System (ADS)

    Hirpa, F. A.; Zajac, Z.; Revilla-Romero, B.; Ntegeka, V.; Salamon, P.; Thielen, J.; Burek, P.; Kalas, M.; Alfieri, L.; Beck, H.

    2014-12-01

    The Global Flood Awareness System (GloFAS) is an ensemble river discharge forecasting system developed and maintained jointly between the European Commission - Joint Research Centre (JRC) and the European Centre for Medium-range Weather Forecasts (ECMWF). The system consists of a cascade of two models, where the surface and sub-surface runoffs are computed by the Hydrology revised Tiled ECMWF Scheme for Surface Exchange over Land (HTESSEL) while the runoff routing and other hydrodynamic components are modeled by the LISFLOOD model. Since its set up in July 2011, GloFAS has been producing probabilistic discharge forecasts on daily basis at 0.1o spatial resolution with global coverage. The system is undergoing some updates that focus on the improvement of the hydrodynamic model, which include incorporation of an updated river network and river width maps, inclusion of lake and reservoir modules and a better representation of transmission losses. Additionally, a new web interface and web service for communication and visualization of the discharge forecast has been developed. Finally, the use of ECMWF re-forecasts as reference climatology to derive flood warning thresholds in comparison to those of ERA-Interim has also been assessed. In this work we present: 1) an overview of recent advances of GloFAS, 2) the results of an evaluation study which used ECMWF re-forecasts to derive global flood warning thresholds and 3) the role of the GloFAS in the recently launched Global Flood Partnership (GFP).

  12. PEM fuel cell monitoring system

    DOEpatents

    Meltser, Mark Alexander; Grot, Stephen Andreas

    1998-01-01

    Method and apparatus for monitoring the performance of H.sub.2 --O.sub.2 PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H.sub.2 sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken.

  13. PEM fuel cell monitoring system

    DOEpatents

    Meltser, M.A.; Grot, S.A.

    1998-06-09

    Method and apparatus are disclosed for monitoring the performance of H{sub 2}--O{sub 2} PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H{sub 2} sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken. 2 figs.

  14. CB-EMIS MAINTENANCE MONITORING SYSTEM

    SciTech Connect

    Tatar, John

    2006-10-01

    This system continuously monitors all components of a CB-EMIS (ANL-02-078)installation such as signals for video cameras, detector, train data, meteorological data, computer and network equipment and reports exceptions to maintenance staff so that corrections can be made as soon as possible. This monitoring system is built within Nagios (www.nagios.org), a free open source host service and network monitoring program.

  15. Aircraft Engine-Monitoring System And Display

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Person, Lee H., Jr.

    1992-01-01

    Proposed Engine Health Monitoring System and Display (EHMSD) provides enhanced means for pilot to control and monitor performances of engines. Processes raw sensor data into information meaningful to pilot. Provides graphical information about performance capabilities, current performance, and operational conditions in components or subsystems of engines. Provides means to control engine thrust directly and innovative means to monitor performance of engine system rapidly and reliably. Features reduce pilot workload and increase operational safety.

  16. Limitations and potential of satellite imagery to monitor environmental response to coastal flooding

    USGS Publications Warehouse

    Ramsey, Elijah W.; Werle, Dirk; Suzuoki, Yukihiro; Rangoonwala, Amina; Lu, Zhong

    2012-01-01

    Storm-surge flooding and marsh response throughout the coastal wetlands of Louisiana were mapped using several types of remote sensing data collected before and after Hurricanes Gustav and Ike in 2008. These included synthetic aperture radar (SAR) data obtained from the (1) C-band advance SAR (ASAR) aboard the Environmental Satellite, (2) phased-array type L-band SAR (PALSAR) aboard the Advanced Land Observing Satellite, and (3) optical data obtained from Thematic Mapper (TM) sensor aboard the Land Satellite (Landsat). In estuarine marshes, L-band SAR and C-band ASAR provided accurate flood extent information when depths averaged at least 80 cm, but only L-band SAR provided consistent subcanopy detection when depths averaged 50 cm or less. Low performance of inundation mapping based on C-band ASAR was attributed to an apparent inundation detection limit (>30 cm deep) in tall Spartina alterniflora marshes, a possible canopy collapse of shoreline fresh marsh exposed to repeated storm-surge inundations, wind-roughened water surfaces where water levels reached marsh canopy heights, and relatively high backscatter in the near-range portion of the SAR imagery. A TM-based vegetation index of live biomass indicated that the severity of marsh dieback was linked to differences in dominant species. The severest impacts were not necessarily caused by longer inundation but rather could be caused by repeated exposure of the palustrine marsh to elevated salinity floodwaters. Differential impacts occurred in estuarine marshes. The more brackish marshes on average suffered higher impacts than the more saline marshes, particularly the nearshore coastal marshes occupied by S. alterniflora.

  17. Drought and flood effects on macrobenthic communities in the estuary of Australia's largest river system

    NASA Astrophysics Data System (ADS)

    Dittmann, Sabine; Baring, Ryan; Baggalley, Stephanie; Cantin, Agnes; Earl, Jason; Gannon, Ruan; Keuning, Justine; Mayo, Angela; Navong, Nathavong; Nelson, Matt; Noble, Warwick; Ramsdale, Tanith

    2015-11-01

    Estuaries are prone to drought and flood events, which can vary in frequency and intensity depending on water management and climate change. We investigated effects of two different drought and flow situations, including a four year long drought (referred to as Millennium drought) and a major flood event, on the macrobenthic community in the estuary and coastal lagoon of the Murray Mouth and Coorong, where freshwater inflows are strictly regulated. The analysis is based on ten years of annual monitoring of benthic communities and environmental conditions in sediment and water. The objectives were to identify changes in diversity, abundance, biomass and distribution, as well as community shifts and environmental drivers for the respective responses. The Millennium drought led to decreased taxonomic richness, abundance and biomass of macrobenthos as hypersaline conditions developed and water levels dropped. More taxa were found under very high salinities than predicted from the Remane diagram. When a flood event broke the Millennium drought, recovery took longer than from a shorter drought followed by small flows. A flow index was developed to assess the biological response subject to the duration of the preceding drought and flow volumes. The index showed higher taxonomic richness, abundance and biomass at intermediate and more continuous flow conditions. Abundance increased quickly after flows were restored, but the benthic community was initially composed of small bodied organisms and biomass increased only after several years once larger organisms became more abundant. Individual densities and constancy of distribution dropped during the drought for almost all macrobenthic taxa, but recoveries after the flood were taxon specific. Distinct benthic communities were detected over time before and after the drought and flood events, and spatially, as the benthic community in the hypersaline Coorong was split off with a salinity threshold of 64 identified by LINKTREE

  18. Engine health monitoring: An advanced system

    NASA Technical Reports Server (NTRS)

    Dyson, R. J. E.

    1981-01-01

    The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.

  19. Systems and Sensors for Debris-flow Monitoring and Warning

    PubMed Central

    Arattano, Massimo; Marchi, Lorenzo

    2008-01-01

    Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows), their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and non-structural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall) and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche pendulums

  20. Storage monitoring systems for the year 2000

    SciTech Connect

    Nilsen, C.; Pollock, R.

    1997-12-31

    In September 1993, President Clinton stated the US would ensure that its fissile material meet the highest standards of safety, security, and international accountability. Frequent human inspection of the material could be used to ensure these standards. However, it may be more effective and less expensive to replace these manual inspections with virtual inspections via remote monitoring technologies. To prepare for this future, Sandia National Laboratories has developed several monitoring systems, including the Modular Integrated Monitoring System (MIMS) and Project Straight-Line. The purpose of this paper is to describe a Sandia effort that merges remote monitoring technologies into a comprehensive storage monitoring system that will meet the near-term as well as the long-term requirements for these types of systems. Topics discussed include: motivations for storage monitoring systems to include remote monitoring; an overview of the needs and challenges of providing a storage monitoring system for the year 2000; an overview of how the MIMS and Straight-Line can be enhanced so that together they create an integrated and synergistic information system by the end of 1997; and suggested milestones for 1998 and 1999 to assure steady progress in preparing for the needs of 2000.

  1. Calibrating the FloodMap Model to Improve the Integrated HydroProg-FloodMap Real-Time Multimodel Ensemble System for Forecasting Inundation

    NASA Astrophysics Data System (ADS)

    Świerczyńska, M. G.; Yu, D.; Miziński, B.; Niedzielski, T.; Latocha, A.; Parzóch, K.

    2015-12-01

    HydroProg is a novel system (research project no. 2011/01/D/ST10/04171 of the National Science Centre of Poland) which produces early warnings against peak flows. It works in real time and uses outputs from multiple hydrologic models to compute the multimodel ensemble prediction of riverflow, i.e. the hydrograph. The system has been experimentally implemented for the upper Nysa Kłodzka river basin (SW Poland). We also integrated the system with the well-established hydrodynamic model, known as FloodMap, to forecast flood inundation (HydroProg computes hydrograph prediction and FloodMap maps the hydrograph prognosis into terrain). The HydroProg-FloodMap solution works at five sites. The real-time experimental forecasts are available at http://www.klodzko.hydroprog.uni.wroc.pl/. The FloodMap model is calibrated at each site on a basis of the available Digital Elevation Model (DEM) or Digital Surface Model (DSM) and hydrograph data. However, since the launch of the HydroProg-FloodMap solution no true data on inundation has been available to check the model outputs against observation, and hence to redo the calibration if necessary. If we consider past events, which occurred before the launch of the system, there exists the observed inundation map for the Żelazno site. It was produced by geomorphological mapping of consequences of the flood in June 2009. The aim of the study is therefore to use this specific data set for a single site, calibrate the FloodMap model using inundation data, and identify the physical-geographical characteristics of terrain under which we are allowed to extrapolate the parameters to the other four sites. We conducted a spatial analysis of land use (based on Polish national database of topographical objects) and topography (based on DEM/DSM from the Light Detection and Ranging (LiDAR)) in order to identify similarities of the studied areas and hence to improve the estimates of the Manning's roughness coefficient.

  2. Online Toxicity Monitors (OTM) for Distribution System Water Quality Monitoring

    EPA Science Inventory

    Drinking water distribution systems in the U.S. are vulnerable to episodic contamination events (both unintentional and intentional). The U.S. Environmental Protection Agency (EPA) is conducting research to investigate the use of broad-spectrum online toxicity monitors (OTMs) in ...

  3. Dynamics of flood water infiltration and ground water recharge in hyperarid desert.

    PubMed

    Dahan, Ofer; Tatarsky, Boaz; Enzel, Yehouda; Kulls, Christoph; Seely, Mary; Benito, Gererdo

    2008-01-01

    A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.

  4. Flood Protection Decision Making Within a Coupled Human and Natural System

    NASA Astrophysics Data System (ADS)

    O'Donnell, Greg; O'Connell, Enda

    2013-04-01

    Due to the perceived threat from climate change, prediction under changing climatic and hydrological conditions has become a dominant theme of hydrological research. Much of this research has been climate model-centric, in which GCM/RCM climate projections have been used to drive hydrological system models to explore potential impacts that should inform adaptation decision-making. However, adaptation fundamentally involves how humans may respond to increasing flood and drought hazards by changing their strategies, activities and behaviours which are coupled in complex ways to the natural systems within which they live and work. Humans are major agents of change in hydrological systems, and representing human activities and behaviours in coupled human and natural hydrological system models is needed to gain insight into the complex interactions that take place, and to inform adaptation decision-making. Governments and their agencies are under pressure to make proactive investments to protect people living in floodplains from the perceived increasing flood hazard. However, adopting this as a universal strategy everywhere is not affordable, particularly in times of economic stringency and given uncertainty about future climatic conditions. It has been suggested that the assumption of stationarity, which has traditionally been invoked in making hydrological risk assessments, is no longer tenable. However, before the assumption of hydrologic nonstationarity is accepted, the ability to cope with the uncertain impacts of global warming on water management via the operational assumption of hydrologic stationarity should be carefully examined. Much can be learned by focussing on natural climate variability and its inherent changes in assessing alternative adaptation strategies. A stationary stochastic multisite flood hazard model has been developed that can exhibit increasing variability/persistence in annual maximum floods, starting with the traditional assumption of

  5. Modern state of the soils of flood irrigation systems in the semidesert zone

    NASA Astrophysics Data System (ADS)

    Nasiev, B. N.; Eleshev, R.

    2014-06-01

    The data of two soil and vegetation surveys of flood basins of the Mamai irrigation system performed in 1987 and 2012 are compared. This irrigation system is found within the Caspian Lowland in Western Kazakhstan oblast of Kazakhstan. The thickness of the humus horizon decreased by 4 cm on the average attesting to the first-second stages of soil degradation. The humus content in the A + B1 horizons decreased by 0.3% on the average with variations corresponding to the first-third degradation stages. From 1987 to 2012, the area of saline soils and the content of exchangeable sodium in them also increased attesting to the development of desertification in the studied zone. The flooded portion of flood basins decreased from 84% in 1987 to 69% in 2012, and the groundwater level rose from 3.6-4.0 to 1.8-3.1 m. Soil degradation processes, together with adverse anthropogenic impacts, resulted in a decrease in the projective cover of valuable plant species and the productivity of herbs grown in flood basins.

  6. TV fatigue crack monitoring system

    NASA Technical Reports Server (NTRS)

    Exton, R. J. (Inventor)

    1977-01-01

    An apparatus is disclosed for monitoring the development and growth of fatigue cracks in a test specimen subjected to a pulsating tensile load. A plurality of television cameras photograph a test specimen which is illuminated at the point of maximum tensile stress. The television cameras have a modified vidicon tube which has an increased persistence time thereby eliminating flicker in the displayed images.

  7. Performance Monitoring of Distributed Data Processing Systems

    NASA Technical Reports Server (NTRS)

    Ojha, Anand K.

    2000-01-01

    Test and checkout systems are essential components in ensuring safety and reliability of aircraft and related systems for space missions. A variety of systems, developed over several years, are in use at the NASA/KSC. Many of these systems are configured as distributed data processing systems with the functionality spread over several multiprocessor nodes interconnected through networks. To be cost-effective, a system should take the least amount of resource and perform a given testing task in the least amount of time. There are two aspects of performance evaluation: monitoring and benchmarking. While monitoring is valuable to system administrators in operating and maintaining, benchmarking is important in designing and upgrading computer-based systems. These two aspects of performance evaluation are the foci of this project. This paper first discusses various issues related to software, hardware, and hybrid performance monitoring as applicable to distributed systems, and specifically to the TCMS (Test Control and Monitoring System). Next, a comparison of several probing instructions are made to show that the hybrid monitoring technique developed by the NIST (National Institutes for Standards and Technology) is the least intrusive and takes only one-fourth of the time taken by software monitoring probes. In the rest of the paper, issues related to benchmarking a distributed system have been discussed and finally a prescription for developing a micro-benchmark for the TCMS has been provided.

  8. System for autonomous monitoring of bioagents

    SciTech Connect

    Langlois, Richard G.; Milanovich, Fred P.; Colston, Jr, Billy W.; Brown, Steve B.; Masquelier, Don A.; Mariella, Jr., Raymond P.; Venkateswaran, Kodomudi

    2015-06-09

    An autonomous monitoring system for monitoring for bioagents. A collector gathers the air, water, soil, or substance being monitored. A sample preparation means for preparing a sample is operatively connected to the collector. A detector for detecting the bioagents in the sample is operatively connected to the sample preparation means. One embodiment of the present invention includes confirmation means for confirming the bioagents in the sample.

  9. A hydro-sedimentary modeling system for flash flood propagation and hazard estimation under different agricultural practices

    NASA Astrophysics Data System (ADS)

    Kourgialas, N. N.; Karatzas, G. P.

    2014-03-01

    A modeling system for the estimation of flash flood flow velocity and sediment transport is developed in this study. The system comprises three components: (a) a modeling framework based on the hydrological model HSPF, (b) the hydrodynamic module of the hydraulic model MIKE 11 (quasi-2-D), and (c) the advection-dispersion module of MIKE 11 as a sediment transport model. An important parameter in hydraulic modeling is the Manning's coefficient, an indicator of the channel resistance which is directly dependent on riparian vegetation changes. Riparian vegetation's effect on flood propagation parameters such as water depth (inundation), discharge, flow velocity, and sediment transport load is investigated in this study. Based on the obtained results, when the weed-cutting percentage is increased, the flood wave depth decreases while flow discharge, velocity and sediment transport load increase. The proposed modeling system is used to evaluate and illustrate the flood hazard for different riparian vegetation cutting scenarios. For the estimation of flood hazard, a combination of the flood propagation characteristics of water depth, flow velocity and sediment load was used. Next, a well-balanced selection of the most appropriate agricultural cutting practices of riparian vegetation was performed. Ultimately, the model results obtained for different agricultural cutting practice scenarios can be employed to create flood protection measures for flood-prone areas. The proposed methodology was applied to the downstream part of a small Mediterranean river basin in Crete, Greece.

  10. Spectral monitoring of power system dynamic performances

    SciTech Connect

    Ostojic, D.R. . School of Electrical Engineering)

    1993-05-01

    This paper presents a nonparametric method for the direct spectral analysis of power system dynamic performances after a disturbance. The developed monitoring technique uses a signal processing procedure for determining the time-frequency distribution of energy of electromechanical oscillations. The quantities obtained from this distribution enable a robust monitoring of frequency, damping, energy content and interaction mechanisms of system oscillatory modes. The performances of the proposed method are studied on the example of 10-machine, 39-bus test system.

  11. READY: a web-based geographical information system for enhanced flood resilience through raising awareness in citizens

    NASA Astrophysics Data System (ADS)

    Albano, R.; Sole, A.; Adamowski, J.

    2015-02-01

    As evidenced by the EU Floods Directive (2007/60/EC), flood management strategies in Europe have undergone a shift in focus in recent years. The goal of flood prevention using structural measures has been replaced by an emphasis on the management of flood risks using non-structural measures. One implication of this is that it is no longer public authorities alone who take responsibility for flood management. A broader range of stakeholders, who may experience the negative effects of flooding, also take on responsibility to protect themselves. Therefore, it is vital that information concerning flood risks are conveyed to those who may be affected in order to facilitate the self-protection of citizens. Experience shows that even where efforts have been made to communicate flood risks, problems persist. There is a need for the development of new tools, which are able to rapidly disseminate flood risk information to the general public. To be useful, these tools must be able to present information relevant to the location of the user. Moreover, the content and design of the tool need to be adjusted to laypeople's needs. Dissemination and communication influences both people's access to and understanding of natural risk information. Such a tool could be a useful aid to effective management of flood risks. To address this gap, a Web-based Geographical Information System, (WebGIS), has been developed through the collaborative efforts of a group of scientists, hazard and risk analysts and managers, GIS analysts, system developers and communication designers. This tool, called "READY: Risk, Extreme Events, Adaptation, Defend Yourself", aims to enhance the general public knowledge of flood risk, making them more capable of responding appropriately during a flood event. The READY WebGIS has allowed for the visualization and easy querying of a complex hazard and risk database thanks to a high degree of interactivity and its easily readable maps. In this way, READY has enabled

  12. READY: a web-based geographical information system for enhanced flood resilience through raising awareness in citizens

    NASA Astrophysics Data System (ADS)

    Albano, R.; Sole, A.; Adamowski, J.

    2015-07-01

    As evidenced by the EU Floods Directive (2007/60/EC), flood management strategies in Europe have undergone a shift in focus in recent years. The goal of flood prevention using structural measures has been replaced by an emphasis on the management of flood risks using non-structural measures. One implication of this is that public authorities alone not only take responsibility for flood management. A broader range of stakeholders, who may personally experience the negative effects of flooding, also take on responsibility for protecting themselves. Therefore, it is vital that information concerning flood risks is conveyed to those who may be affected in order to facilitate the self-protection of citizens. Experience shows that problems persist even where efforts have been made to communicate flood risks. There is a need for the development of new tools that are able to rapidly disseminate flood-risk information to the general public. To be useful these tools must be able to present information relevant to the location of the user. Moreover, the content and design of the tool need to be adjusted to laypeople's needs. Dissemination and communication influence both people's access to and understanding of natural risk information. Such a tool could be a useful aid to effective management of flood risks. To address this gap, a web-based geographical information system (WebGIS) has been developed through the collaborative efforts of a group of scientists, hazard and risk analysts and managers, GIS analysts, system developers and communication designers. This tool, called "READY: Risk, Extreme Events, Adaptation, Defend Yourself", aims to enhance the general public knowledge of flood risk, making citizens more capable of responding appropriately during a flood event. The READY WebGIS has allowed for the visualization and easy querying of a complex hazard and risk database thanks to a high degree of interactivity and easily read maps. In this way, READY has enabled fast

  13. Biowaste monitoring system for shuttle

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.; Sauer, R. L.

    1975-01-01

    The acquisition of crew biomedical data has been an important task on all manned space missions from Project Mercury through the recently completed Skylab Missions. The monitoring of metabolic wastes from the crew is an important aspect of this activity. On early missions emphasis was placed on the collection and return of biowaste samples for post-mission analysis. On later missions such as Skylab, equipment for inflight measurement was also added. Life Science experiments are being proposed for Shuttle missions which will require the inflight measurement and sampling of metabolic wastes. In order to minimize the crew impact associated with these requirements, a high degree of automation of these processes will be required. This paper reviews the design and capabilities of urine biowaste monitoring equipment provided on past-manned space programs and defines and describes the urine volume measurement and sampling equipment planned for the Shuttle Orbiter program.

  14. Flood-inundation maps and updated components for a flood-warning system or the City of Marietta, Ohio and selected communities along the Lower Muskingum River and Ohio River

    USGS Publications Warehouse

    Whitehead, Matthew T.; Ostheimer, Chad J.

    2014-01-01

    Flood profiles for selected reaches were prepared by calibrating steady-state step-backwater models to selected streamgage rating curves. The step-backwater models were used to determine water-surface-elevation profiles for up to 12 flood stages at a streamgage with corresponding stream-flows ranging from approximately the 10- to 0.2-percent chance annual-exceedance probabilities for each of the 3 streamgages that correspond to the flood-inundation maps. Additional hydraulic modeling was used to account for the effects of backwater from the Ohio River on water levels in the Muskingum River. The computed longitudinal profiles of flood levels were used with a Geographic Information System digital elevation model (derived from light detection and ranging) to delineate flood-inundation areas. Digital maps showing flood-inundation areas overlain on digital orthophotographs were prepared for the selected floods.

  15. Considerations for integration of a physiological radar monitoring system with gold standard clinical sleep monitoring systems.

    PubMed

    Singh, Aditya; Baboli, Mehran; Gao, Xiaomeng; Yavari, Ehsan; Padasdao, Bryson; Soll, Bruce; Boric-Lubecke, Olga; Lubecke, Victor

    2013-01-01

    A design for a physiological radar monitoring system (PRMS) that can be integrated with clinical sleep monitoring systems is presented. The PRMS uses two radar systems at 2.45 GHz and 24 GHz to achieve both high sensitivity and high resolution. The system can acquire data, perform digital processing and output appropriate conventional analog outputs with a latency of 130 ms, which can be recorded and displayed by a gold standard sleep monitoring system, along with other standard sensor measurements.

  16. Considerations for integration of a physiological radar monitoring system with gold standard clinical sleep monitoring systems.

    PubMed

    Singh, Aditya; Baboli, Mehran; Gao, Xiaomeng; Yavari, Ehsan; Padasdao, Bryson; Soll, Bruce; Boric-Lubecke, Olga; Lubecke, Victor

    2013-01-01

    A design for a physiological radar monitoring system (PRMS) that can be integrated with clinical sleep monitoring systems is presented. The PRMS uses two radar systems at 2.45 GHz and 24 GHz to achieve both high sensitivity and high resolution. The system can acquire data, perform digital processing and output appropriate conventional analog outputs with a latency of 130 ms, which can be recorded and displayed by a gold standard sleep monitoring system, along with other standard sensor measurements. PMID:24110139

  17. Rates of floodplain accretion in a tropical island river system impacted by cyclones and large floods

    NASA Astrophysics Data System (ADS)

    Terry, James P.; Garimella, Sitaram; Kostaschuk, Ray A.

    2002-01-01

    Fluvial processes, especially rates of floodplain accretion, are less well understood in the wet tropics than in other environments. In this study, the caesium-137 ( 137Cs) method was used to examine the recent historical sedimentation rate on the floodplain of the Wainimala River, in the basin of the Rewa River, the largest fluvial system in Fiji and the tropical South Pacific Islands. 137Cs activity in the floodplain stratigraphy showed a well-defined profile, with a clear peak at 115 cm depth. Our measured accretion rate of 3.2 cm year -1 over the last ca. 45 years exceeds rates recorded in humid regions elsewhere. This is explained by the high frequency of tropical cyclones near Fiji (40 since 1970) which can produce extreme rainfalls and large magnitude floods. Since the beginning of hydrological records, large overbank floods have occurred every 2 years on average at the study site. The biggest floods attained peak flows over 7000 m 3 s -1, or six times the bankfull discharge. Concentrations of suspended sediments are very high (max. 200-500 g l -1), delivered mainly by channel bank erosion. In the future, climatic change in the tropical South Pacific region may be associated with greater tropical cyclone intensities, which will probably increase the size of floods in the Rewa Basin and rates of floodplain sedimentation.

  18. Application of Integrated Flood Analysis System (IFAS) for Dungun River Basin

    NASA Astrophysics Data System (ADS)

    Hafiz, I.; Nor, N. D. M.; Sidek, L. M.; Basri, H.; K, F.; Hanapi, M. N.; L, Livia

    2013-06-01

    The Northeast monsoon happening during the months of October until January is the major rainy season found in the eastern part of Peninsular Malaysia. The Dungun river basin (1,858 km2) is exposed to this season thus experiencing characteristically regular flooding due to the prolong rainfall events. The annual rainfall over the river basins are 2,880 mm with great proportion falling in the months of December (19.4%). This study is to apply the Integrated Flood Analysis System (IFAS) model which Dungun river basin has been chosen for this study as the catchments have range of flood and relevant data that can be used to develop the model. The satellite data used in this study is provided by JAXA Global Rainfall Watch. The main feature of this real-time flood analysis model is the satellite-based rainfall data input employed during the model creation phase. The performance of the model for the river basins from satellite and ground-based rainfall data are compared using three error analysis methods.

  19. Computer-controlled radiation monitoring system

    SciTech Connect

    Homann, S.G.

    1994-09-27

    A computer-controlled radiation monitoring system was designed and installed at the Lawrence Livermore National Laboratory`s Multiuser Tandem Laboratory (10 MV tandem accelerator from High Voltage Engineering Corporation). The system continuously monitors the photon and neutron radiation environment associated with the facility and automatically suspends accelerator operation if preset radiation levels are exceeded. The system has proved reliable real-time radiation monitoring over the past five years, and has been a valuable tool for maintaining personnel exposure as low as reasonably achievable.

  20. Mobility Monitoring System For Ecological Studies

    NASA Technical Reports Server (NTRS)

    Eisler, W. J., Jr.; Frigerio, N. A.

    1969-01-01

    Radioactive-nuclide system automatically monitors animals in the field, using radioactive tracers affixed to the animals, Geiger-Muller tube radiation detectors, and event-recorders. Four animals can be monitored simultaneously within a 32-m circle, with each animal as far as 1 m from its associated detector.

  1. 29 CFR 1954.2 - Monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... annual reports of State program activity; (2) Visits to State agencies; (3) On-the-job evaluation of...) PROCEDURES FOR THE EVALUATION AND MONITORING OF APPROVED STATE PLANS General § 1954.2 Monitoring system. (a) To carry out the responsibilities for continuing evaluation of State plans under section 18(f) of...

  2. 29 CFR 1954.2 - Monitoring system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... annual reports of State program activity; (2) Visits to State agencies; (3) On-the-job evaluation of...) PROCEDURES FOR THE EVALUATION AND MONITORING OF APPROVED STATE PLANS General § 1954.2 Monitoring system. (a) To carry out the responsibilities for continuing evaluation of State plans under section 18(f) of...

  3. 29 CFR 1954.2 - Monitoring system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... annual reports of State program activity; (2) Visits to State agencies; (3) On-the-job evaluation of...) PROCEDURES FOR THE EVALUATION AND MONITORING OF APPROVED STATE PLANS General § 1954.2 Monitoring system. (a) To carry out the responsibilities for continuing evaluation of State plans under section 18(f) of...

  4. Monitoring and research to describe geomorphic effects of the 2011 controlled flood on the Green River in the Canyon of Lodore, Dinosaur National Monument, Colorado and Utah

    USGS Publications Warehouse

    Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E.; Kaplinski, Matt; Alexander, Jason A.; Kohl, Keith

    2014-01-01

    In 2011, a large magnitude flow release from Flaming Gorge Reservoir, Wyoming and Utah, occurred in response to high snowpack in the middle Rocky Mountains. This was the third highest recorded discharge along the Green River downstream of Flaming Gorge Dam, Utah, since its initial closure in November 1962 and motivated a research effort to document effects of these flows on channel morphology and sedimentology at four long-term monitoring sites within the Canyon of Lodore in Dinosaur National Monument, Colorado and Utah. Data collected in September 2011 included raft-based bathymetric surveys, ground-based surveys of banks, channel cross sections and vegetation-plot locations, sand-bar stratigraphy, and painted rock recovery on gravel bars. As part of this surveying effort, Global Navigation Satellite System (GNSS) data were collected at benchmarks on the canyon rim and along the river corridor to establish a high-resolution survey control network. This survey control network allows for the collection of repeatable spatial and elevation data necessary for high accuracy geomorphic change detection. Nearly 10,000 ground survey points and more than 20,000 bathymetric points (at 1-meter resolution) were collected over a 5-day field campaign, allowing for the construction of reach-scale digital elevation models (DEMs). Additionally, we evaluated long-term geomorphic change at these sites using repeat topographic surveys of eight monumented cross sections at each of the four sites. Analysis of DEMs and channel cross sections show a spatially variable pattern of erosion and deposition, both within and between reaches. As much as 5 meters of scour occurred in pools downstream from flow constrictions, especially in channel segments where gravel bars were absent. By contrast, some channel cross sections were stable during the 2011 floods, and have shown almost no change in over a decade of monitoring. Partial mobility of gravel bars occurred, and although in some locations

  5. Blood monitoring systems and methods thereof

    NASA Technical Reports Server (NTRS)

    Mir, Jose (Inventor); Zander, Dennis (Inventor)

    2012-01-01

    A blood monitoring system is capable of monitoring the blood of a subject in vivo. The blood monitoring system comprises: 1) an array of movable microneedle micromachined within associated wells; 2) array of motion actuators able to move each needle in and out of their associated wells; 3) array of microvalves associated with each microneedle able to control the flow of air around the microneedle; 4) an array of chemical sensors inserted into patient by movable microneedles; 5) an array of inductors able to measure chemical concentration in the vicinity of inserted chemical sensors; 6) conducting vias that provide timed actuating signal signals from a control system to each motion actuator; 7) conducting vias that transmit signal produced by array of chemical sensors to the control system for processing, although the blood monitoring system can comprise other numbers and types of elements in other configurations.

  6. Automated Cryocooler Monitor and Control System Software

    NASA Technical Reports Server (NTRS)

    Britchcliffe, Michael J.; Conroy, Bruce L.; Anderson, Paul E.; Wilson, Ahmad

    2011-01-01

    This software is used in an automated cryogenic control system developed to monitor and control the operation of small-scale cryocoolers. The system was designed to automate the cryogenically cooled low-noise amplifier system described in "Automated Cryocooler Monitor and Control System" (NPO-47246), NASA Tech Briefs, Vol. 35, No. 5 (May 2011), page 7a. The software contains algorithms necessary to convert non-linear output voltages from the cryogenic diode-type thermometers and vacuum pressure and helium pressure sensors, to temperature and pressure units. The control function algorithms use the monitor data to control the cooler power, vacuum solenoid, vacuum pump, and electrical warm-up heaters. The control algorithms are based on a rule-based system that activates the required device based on the operating mode. The external interface is Web-based. It acts as a Web server, providing pages for monitor, control, and configuration. No client software from the external user is required.

  7. Spatial Analysis in Determination Of Flood Prone Areas Using Geographic Information System and Analytical Hierarchy Process at Sungai Sembrong's Catchment

    NASA Astrophysics Data System (ADS)

    Bukari, S. M.; Ahmad, M. A.; Wai, T. L.; Kaamin, M.; Alimin, N.

    2016-07-01

    Floods that struck Johor state in 2006 and 2007 and the East Coastal in 2014 have triggered a greatly impact to the flood management here in Malaysia. Accordingly, this study conducted to determine potential areas of flooding, especially in Batu Pahat district since it faces terrifying experienced with heavy flood. This objective is archived by using the application of Geographic Information Systems (GIS) on study area of flood risk location at the watershed area of Sungai Sembrong. GIS functions as spatial analysis is capable to produce new information based on analysis of data stored in the system. Meanwhile the Analytical Hierarchy Process (AHP) was used as a method for setting up in decision making concerning the existing data. By using AHP method, preparation and position of the criteria and parameters required in GIS are neater and easier to analyze. Through this study, a flood prone area in the watershed of Sungai Sembrong was identified with the help of GIS and AHP. Analysis was conducted to test two different cell sizes, which are 30 and 5. The analysis of flood prone areas were tested on both cell sizes with two different water levels and the results of the analysis were displayed by GIS. Therefore, the use of AHP and GIS are effective and able to determine the potential flood plain areas in the watershed area of Sungai Sembrong.

  8. A plasma process monitor/control system

    SciTech Connect

    Stevenson, J.O.; Ward, P.P.; Smith, M.L.; Markle, R.J.

    1997-08-01

    Sandia National Laboratories has developed a system to monitor plasma processes for control of industrial applications. The system is designed to act as a fully automated, sand-alone process monitor during printed wiring board and semiconductor production runs. The monitor routinely performs data collection, analysis, process identification, and error detection/correction without the need for human intervention. The monitor can also be used in research mode to allow process engineers to gather additional information about plasma processes. The plasma monitor can perform real-time control of support systems known to influence plasma behavior. The monitor can also signal personnel to modify plasma parameters when the system is operating outside of desired specifications and requires human assistance. A notification protocol can be selected for conditions detected in the plasma process. The Plasma Process Monitor/Control System consists of a computer running software developed by Sandia National Laboratories, a commercially available spectrophotometer equipped with a charge-coupled device camera, an input/output device, and a fiber optic cable.

  9. 44 CFR 65.14 - Remapping of areas for which local flood protection systems no longer provide base flood protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... shall revise the FIRM, in accordance with 44 CFR Part 67, and shall remove the flood control restoration... restoration project must complete restoration or meet the requirements of 44 CFR 61.12 within a specified... defined in 44 CFR 59.1, including areas that would be subject to coastal high hazards as a result of...

  10. 44 CFR 65.14 - Remapping of areas for which local flood protection systems no longer provide base flood protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... shall revise the FIRM, in accordance with 44 CFR Part 67, and shall remove the flood control restoration... restoration project must complete restoration or meet the requirements of 44 CFR 61.12 within a specified... defined in 44 CFR 59.1, including areas that would be subject to coastal high hazards as a result of...

  11. 44 CFR 65.14 - Remapping of areas for which local flood protection systems no longer provide base flood protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... shall revise the FIRM, in accordance with 44 CFR Part 67, and shall remove the flood control restoration... restoration project must complete restoration or meet the requirements of 44 CFR 61.12 within a specified... defined in 44 CFR 59.1, including areas that would be subject to coastal high hazards as a result of...

  12. 44 CFR 65.14 - Remapping of areas for which local flood protection systems no longer provide base flood protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... shall revise the FIRM, in accordance with 44 CFR Part 67, and shall remove the flood control restoration... restoration project must complete restoration or meet the requirements of 44 CFR 61.12 within a specified... defined in 44 CFR 59.1, including areas that would be subject to coastal high hazards as a result of...

  13. 44 CFR 65.14 - Remapping of areas for which local flood protection systems no longer provide base flood protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... shall revise the FIRM, in accordance with 44 CFR Part 67, and shall remove the flood control restoration... restoration project must complete restoration or meet the requirements of 44 CFR 61.12 within a specified... defined in 44 CFR 59.1, including areas that would be subject to coastal high hazards as a result of...

  14. The NOvA DAQ Monitor System

    NASA Astrophysics Data System (ADS)

    Baird, Michael; Grover, Deepika; Kasahara, Susan; Messier, Mark

    2015-12-01

    The NOvA (NuMI Off-Axis ve Appearance) experiment is a long-baseline neutrino experiment designed to search for vµ (v̅µ) to ve (v̅e) oscillations using Fermilab's NuMI main injector neutrino beam. The experiment consists of two detectors; both positioned 14 mrad off the beam axis: a 220 ton Near Detector constructed in an underground cavern at Fermilab and a 14 kton Far Detector constructed in Ash River, MN, 810 km from the beam source. The health and performance of the NOvA Data Acquisition (DAQ) system is monitored with a DAQ Monitor system based on the Ganglia distributed monitoring system, an open source third-party product which provides much of the NOvA DAQ monitoring needs “out-of-the-box”. This paper will discuss the use of the Ganglia system for this purpose, including augmentations we have made to the Ganglia base for the specific needs of our system. This paper will also discuss two other systems used to monitor the quality of the data collected by the NOvA detectors: an Online Monitoring system and Event Display, both of which leverage tools from the offline framework to provide close to real time diagnostic tools of detector performance.

  15. Optimized Temporal Monitors for SystemC

    NASA Technical Reports Server (NTRS)

    Tabakov, Deian; Rozier, Kristin Y.; Vardi, Moshe Y.

    2012-01-01

    SystemC is a modeling language built as an extension of C++. Its growing popularity and the increasing complexity of designs have motivated research efforts aimed at the verification of SystemC models using assertion-based verification (ABV), where the designer asserts properties that capture the design intent in a formal language such as PSL or SVA. The model then can be verified against the properties using runtime or formal verification techniques. In this paper we focus on automated generation of runtime monitors from temporal properties. Our focus is on minimizing runtime overhead, rather than monitor size or monitor-generation time. We identify four issues in monitor generation: state minimization, alphabet representation, alphabet minimization, and monitor encoding. We conduct extensive experimentation and identify a combination of settings that offers the best performance in terms of runtime overhead.

  16. Automatic calorimetry system monitors RF power

    NASA Technical Reports Server (NTRS)

    Harness, B. W.; Heiberger, E. C.

    1969-01-01

    Calorimetry system monitors the average power dissipated in a high power RF transmitter. Sensors measure the change in temperature and the flow rate of the coolant, while a multiplier computes the power dissipated in the RF load.

  17. Health Monitoring System for Composite Structures

    NASA Technical Reports Server (NTRS)

    Tang, S. S.; Riccardella, P. C.; Andrews, R. J.; Grady, J. E.; Mucciaradi, A. N.

    1996-01-01

    An automated system was developed to monitor the health status of composites. It uses the vibration characteristics of composites to identify a component's damage condition. The vibration responses are characterized by a set of signal features defined in the time, frequency and spatial domains. The identification of these changes in the vibration characteristics corresponding to different health conditions was performed using pattern recognition principles. This allows efficient data reduction and interpretation of vast amounts of information. Test components were manufactured from isogrid panels to evaluate performance of the monitoring system. The components were damaged by impact to simulate different health conditions. Free vibration response was induced by a tap test on the test components. The monitoring system was trained using these free vibration responses to identify three different health conditions. They are undamaged vs. damaged, damage location and damage zone size. High reliability in identifying the correct component health condition was achieved by the monitoring system.

  18. INDUCTIVE SYSTEM HEALTH MONITORING WITH STATISTICAL METRICS

    NASA Technical Reports Server (NTRS)

    Iverson, David L.

    2005-01-01

    Model-based reasoning is a powerful method for performing system monitoring and diagnosis. Building models for model-based reasoning is often a difficult and time consuming process. The Inductive Monitoring System (IMS) software was developed to provide a technique to automatically produce health monitoring knowledge bases for systems that are either difficult to model (simulate) with a computer or which require computer models that are too complex to use for real time monitoring. IMS processes nominal data sets collected either directly from the system or from simulations to build a knowledge base that can be used to detect anomalous behavior in the system. Machine learning and data mining techniques are used to characterize typical system behavior by extracting general classes of nominal data from archived data sets. In particular, a clustering algorithm forms groups of nominal values for sets of related parameters. This establishes constraints on those parameter values that should hold during nominal operation. During monitoring, IMS provides a statistically weighted measure of the deviation of current system behavior from the established normal baseline. If the deviation increases beyond the expected level, an anomaly is suspected, prompting further investigation by an operator or automated system. IMS has shown potential to be an effective, low cost technique to produce system monitoring capability for a variety of applications. We describe the training and system health monitoring techniques of IMS. We also present the application of IMS to a data set from the Space Shuttle Columbia STS-107 flight. IMS was able to detect an anomaly in the launch telemetry shortly after a foam impact damaged Columbia's thermal protection system.

  19. Class 3 Tracking and Monitoring System Report

    SciTech Connect

    Safely, Eugene; Salamy, S. Phillip

    1999-11-29

    The objective of Class 3 tracking system are to assist DOE in tracking and performance and progress of these projects and to capture the technical and financial information collected during the projects' monitoring phase. The captured information was used by DOE project managers and BDM-Oklahoma staff for project monitoring and evaluation, and technology transfer activities. The proposed tracking system used the Class Evaluation Executive Report (CLEVER), a relation database for storing and disseminating class project data; GeoGraphix, a geological and technical analysis and mapping software system; the Tertiary Oil Recovery Information System (TORIS) database; and MS-Project, a project management software system.

  20. Remote Energy Monitoring System via Cellular Network

    NASA Astrophysics Data System (ADS)

    Yunoki, Shoji; Tamaki, Satoshi; Takada, May; Iwaki, Takashi

    Recently, improvement on power saving and cost efficiency by monitoring the operation status of various facilities over the network has gained attention. Wireless network, especially cellular network, has advantage in mobility, coverage, and scalability. On the other hand, it has disadvantage of low reliability, due to rapid changes in the available bandwidth. We propose a transmission control scheme based on data priority and instantaneous available bandwidth to realize a highly reliable remote monitoring system via cellular network. We have developed our proposed monitoring system and evaluated the effectiveness of our scheme, and proved it reduces the maximum transmission delay of sensor status to 1/10 compared to best effort transmission.

  1. Monitoring the CMS data acquisition system

    NASA Astrophysics Data System (ADS)

    Bauer, G.; Behrens, U.; Biery, K.; Branson, J.; Cano, E.; Cheung, H.; Ciganek, M.; Cittolin, S.; Coarasa, J. A.; Deldicque, C.; Dusinberre, E.; Erhan, S.; Fortes Rodrigues, F.; Gigi, D.; Glege, F.; Gomez-Reino, R.; Gutleber, J.; Hatton, D.; Laurens, J. F.; Lopez Perez, J. A.; Meijers, F.; Meschi, E.; Meyer, A.; Mommsen, R.; Moser, R.; O'Dell, V.; Oh, A.; Orsini, L. B.; Patras, V.; Paus, C.; Petrucci, A.; Pieri, M.; Racz, A.; Sakulin, H.; Sani, M.; Schieferdecker, P.; Schwick, C.; Shpakov, D.; Simon, S.; Sumorok, K.; Zanetti, M.

    2010-04-01

    The CMS data acquisition system comprises O(20000) interdependent services that need to be monitored in near real-time. The ability to monitor a large number of distributed applications accurately and effectively is of paramount importance for robust operations. Application monitoring entails the collection of a large number of simple and composed values made available by the software components and hardware devices. A key aspect is that detection of deviations from a specified behaviour is supported in a timely manner, which is a prerequisite in order to take corrective actions efficiently. Given the size and time constraints of the CMS data acquisition system, efficient application monitoring is an interesting research problem. We propose an approach that uses the emerging paradigm of Web-service based eventing systems in combination with hierarchical data collection and load balancing. Scalability and efficiency are achieved by a decentralized architecture, splitting up data collections into regions of collections. An implementation following this scheme is deployed as the monitoring infrastructure of the CMS experiment at the Large Hadron Collider. All services in this distributed data acquisition system are providing standard web service interfaces via XML, SOAP and HTTP [15,22]. Continuing on this path we adopted WS-* standards implementing a monitoring system layered on top of the W3C standards stack. We designed a load-balanced publisher/subscriber system with the ability to include high-speed protocols [10,12] for efficient data transmission [11,13,14] and serving data in multiple data formats.

  2. Moisture monitoring and control system engineering study

    SciTech Connect

    Carpenter, K.E.; Fadeff, J.G.

    1995-05-16

    During the past 50 years, a wide variety of chemical compounds have been placed in the 149 single-shell tanks (SSTS) on the Hanford Site. A concern relating to chemical stability, chemical control, and safe storage of the waste is the potential for propagating reactions as a result of ferrocyanide-oxidizer and organic-oxidizer concentrations in the SSTS. Propagating reactions in fuel-nitrate mixtures are precluded if the amounts of fuel and moisture present in the waste are within specified limits. Because most credible ignition sources occur near the waste surface, the main emphasis of this study is toward monitoring and controlling moisture in the top 14 cm (5.5 in.) of waste. The purpose of this engineering study is to recommend a moisture monitoring and control system for use in SSTs containing sludge and saltcake. This study includes recommendations for: (1) monitoring and controlling moisture in SSTs; (2) the fundamental design criteria for a moisture monitoring and control system; and (3) criteria for the deployment of a moisture monitoring and control system in hanford Site SSTs. To support system recommendations, technical bases for selecting and using a moisture monitoring and control system are presented. Key functional requirements and a conceptual design are included to enhance system development and establish design criteria.

  3. A system for generating long streamflow records for study of floods of long return period: Phase 2

    SciTech Connect

    Franz, D.D.; Kraeger, B.A.; Linsley, R.K.

    1989-02-01

    Knowledge of the return periods of large floods is required to make risk analyses for nuclear power plants subject to flooding from rivers. The system reported here combined the stochastic simulation of hourly rainfall data and daily pan evaporation data with the deterministic simulation of streamflow by using the synthetic rainfall and evaporation data as input to a calibrated rainfall runoff model. The sequence of annual maximum flood peaks from a synthetic record of 10,000 years or more was then analyzed to obtain estimates of flood frequency. The reasonableness of the flood frequency results must be evaluated on the degree of mimicry of the key characteristics of the observed rainfall data and the ability of the rainfall-runoff model to mimic the observed flood frequency during the calibration period. On this basis, the flood frequency results appeared to be a reasonable extrapolation of the data used in defining the model parameters. There is a need to develop regional parameters for the stochastic models and to conduct research on the relationship between the stochastic structure of rainfall and stochastic structure of flood frequency. The methodology is applicable, assuming a highly skilled analyst, to watersheds similar to those already tested.

  4. Seismic monitoring system replacement at Temelin plant

    SciTech Connect

    Baltus, R.; Palusamy, S.S.

    1996-12-01

    The VVER-1000 plants under construction at Temelin (Czech Republic) were designed with an automatic reactor trip system triggered on seismic peak accelerations. Within the plant I and C upgrade, Westinghouse designed a digital Seismic Monitoring System to be integrated in an Artificial Intelligence based Diagnostic and Monitoring System. The system meets the requirements of the emerging standards prepared by the US NRC on the basis of EPRI studies, which recommend a detailed data evaluation and a pre-shutdown plant inspection before orderly shutdown, if required, rather than immediate emergency shutdown. The paper presents the arguments about automatic trip, as discussed in an IAEA meeting attended by expert consultants from Japan, Russia, US and Eastern and Western Europe. It describes the system installed at Temelin, including the plant specific criteria for OBE exceedance. Finally it presents the capabilities and limitations of the integration into an overall Diagnostic and Monitoring System.

  5. Monitoring systems for community water supplies

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Brooks, R. R.; Jeffers, E. L.; Linton, A. T.; Poel, G. D.

    1978-01-01

    Water monitoring system includes equipment and techniques for waste water sampling sensors for determining levels of microorganisms, oxygen, chlorine, and many other important parameters. System includes data acquisition and display system that allows computation of water quality information for real time display.

  6. A water quality monitoring system for HAWC

    NASA Astrophysics Data System (ADS)

    Garfias, F.; Bernal, A.; Tinoco, S.; Iriarte, A.

    2012-09-01

    HAWC (High Altitude Water Cherenkov), is a gamma ray (γ) large aperture observatory with high sensitivity that will be able to continuously monitor the sky for transient sources of photons with energies between 100 GeV and 100 TeV. HAWC is under construction in Sierra Negra, Puebla, Mexico, which is located at a high altitude of 4100m. HAWC will be an array of 300 Cherenkov detectors each one with 200,000 liters of highly pure water. The sensitivity of the instrument depends strongly on the water quality. We present the design and construction of the HAWC water quality monitoring system. We seek monitor the transparency in violet-blue range to achieve and maintain the required water transparency quality in each detector. The system is robust and user friendly. The measurements are reproducible. Also we present some results from the monitoring the water from the VAMOS detector tanks and of the filtering system.

  7. Fabrication of neurophysiological monitoring systems

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.

    1974-01-01

    A system designed to collect electroencephalographic, electro-oculographic, electromyographic, and head motion data is described. The portable instrumentation provides a rapid and simple means by which neurophysiological data can be obtained by the patient in his home and the taped data returned to the laboratory for analysis. The system was designed primarily for the study of sleep.

  8. Development Of An Open System For Integration Of Heterogeneous Models For Flood Forecasting And Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Chang, W.; Tsai, W.; Lin, F.; Lin, S.; Lien, H.; Chung, T.; Huang, L.; Lee, K.; Chang, C.

    2008-12-01

    During a typhoon or a heavy storm event, using various forecasting models to predict rainfall intensity, and water level variation in rivers and flood situation in the urban area is able to reveal its capability technically. However, in practice, the following two causes tend to restrain the further application of these models as a decision support system (DSS) for the hazard mitigation. The first one is due to the difficulty of integration of heterogeneous models. One has to take into consideration the different using format of models, such as input files, output files, computational requirements, and so on. The second one is that the development of DSS requires, due to the heterogeneity of models and systems, a friendly user interface or platform to hide the complexity of various tools from users. It is expected that users can be governmental officials rather than professional experts, therefore the complicated interface of DSS is not acceptable. Based on the above considerations, in the present study, we develop an open system for integration of several simulation models for flood forecasting by adopting the FEWS (Flood Early Warning System) platform developed by WL | Delft Hydraulics. It allows us to link heterogeneous models effectively and provides suitable display modules. In addition, FEWS also has been adopted by Water Resource Agency (WRA), Taiwan as the standard operational system for river flooding management. That means this work can be much easily integrated with the use of practical cases. In the present study, based on FEWS platform, the basin rainfall-runoff model, SOBEK channel-routing model, and estuary tide forecasting model are linked and integrated through the physical connection of model initial and boundary definitions. The work flow of the integrated processes of models is shown in Fig. 1. This differs from the typical single model linking used in FEWS, which only aims at data exchange but without much physical consideration. So it really

  9. Heart monitoring systems--a review.

    PubMed

    Jain, Puneet Kumar; Tiwari, Anil Kumar

    2014-11-01

    To diagnose health status of the heart, heart monitoring systems use heart signals produced during each cardiac cycle. Many types of signals are acquired to analyze heart functionality and hence several heart monitoring systems such as phonocardiography, electrocardiography, photoplethysmography and seismocardiography are used in practice. Recently, focus on the at-home monitoring of the heart is increasing for long term monitoring, which minimizes risks associated with the patients diagnosed with cardiovascular diseases. It leads to increasing research interest in portable systems having features such as signal transmission capability, unobtrusiveness, and low power consumption. In this paper we intend to provide a detailed review of recent advancements of such heart monitoring systems. We introduce the heart monitoring system in five modules: (1) body sensors, (2) signal conditioning, (3) analog to digital converter (ADC) and compression, (4) wireless transmission, and (5) analysis and classification. In each module, we provide a brief introduction about the function of the module, recent developments, and their limitation and challenges. PMID:25194717

  10. Heart monitoring systems--a review.

    PubMed

    Jain, Puneet Kumar; Tiwari, Anil Kumar

    2014-11-01

    To diagnose health status of the heart, heart monitoring systems use heart signals produced during each cardiac cycle. Many types of signals are acquired to analyze heart functionality and hence several heart monitoring systems such as phonocardiography, electrocardiography, photoplethysmography and seismocardiography are used in practice. Recently, focus on the at-home monitoring of the heart is increasing for long term monitoring, which minimizes risks associated with the patients diagnosed with cardiovascular diseases. It leads to increasing research interest in portable systems having features such as signal transmission capability, unobtrusiveness, and low power consumption. In this paper we intend to provide a detailed review of recent advancements of such heart monitoring systems. We introduce the heart monitoring system in five modules: (1) body sensors, (2) signal conditioning, (3) analog to digital converter (ADC) and compression, (4) wireless transmission, and (5) analysis and classification. In each module, we provide a brief introduction about the function of the module, recent developments, and their limitation and challenges.

  11. Autonomous Performance Monitoring System: Monitoring and Self-Tuning (MAST)

    NASA Technical Reports Server (NTRS)

    Peterson, Chariya; Ziyad, Nigel A.

    2000-01-01

    Maintaining the long-term performance of software onboard a spacecraft can be a major factor in the cost of operations. In particular, the task of controlling and maintaining a future mission of distributed spacecraft will undoubtedly pose a great challenge, since the complexity of multiple spacecraft flying in formation grows rapidly as the number of spacecraft in the formation increases. Eventually, new approaches will be required in developing viable control systems that can handle the complexity of the data and that are flexible, reliable and efficient. In this paper we propose a methodology that aims to maintain the accuracy of flight software, while reducing the computational complexity of software tuning tasks. The proposed Monitoring and Self-Tuning (MAST) method consists of two parts: a flight software monitoring algorithm and a tuning algorithm. The dependency on the software being monitored is mostly contained in the monitoring process, while the tuning process is a generic algorithm independent of the detailed knowledge on the software. This architecture will enable MAST to be applicable to different onboard software controlling various dynamics of the spacecraft, such as attitude self-calibration, and formation control. An advantage of MAST over conventional techniques such as filter or batch least square is that the tuning algorithm uses machine learning approach to handle uncertainty in the problem domain, resulting in reducing over all computational complexity. The underlying concept of this technique is a reinforcement learning scheme based on cumulative probability generated by the historical performance of the system. The success of MAST will depend heavily on the reinforcement scheme used in the tuning algorithm, which guarantees the tuning solutions exist.

  12. Acoustic Flow Monitor System - User Manual

    USGS Publications Warehouse

    LaHusen, Richard

    2005-01-01

    INTRODUCTION The Acoustic Flow Monitor (AFM) is a portable system that was designed by the U.S. Geological Survey Cascades Volcano Observatory to detect and monitor debris flows associated with volcanoes. It has been successfully used internationally as part of real-time warning systems in valleys threatened by such flows (Brantley, 1990; Marcial and others, 1996; Lavigne and others, 2000). The AFM system has also been proven to be an effective tool for monitoring some non-volcanic debris flows. This manual is intended to serve as a basic guide for the installation, testing, and maintenance of AFM systems. An overview of how the system works, as well as instructions for installation and guidelines for testing, is included. Interpretation of data is not covered in this manual; rather, the user should refer to the references provided for published examples of AFM data.

  13. Tritium monitor and collection system

    DOEpatents

    Bourne, G.L.; Meikrantz, D.H.; Ely, W.E.; Tuggle, D.G.; Grafwallner, E.G.; Wickham, K.L.; Maltrud, H.R.; Baker, J.D.

    1992-01-14

    This system measures tritium on-line and collects tritium from a flowing inert gas stream. It separates the tritium from other non-hydrogen isotope contaminating gases, whether radioactive or not. The collecting portion of the system is constructed of various zirconium alloys called getters. These alloys adsorb tritium in any of its forms at one temperature and at a higher temperature release it as a gas. The system consists of four on-line getters and heaters, two ion chamber detectors, two collection getters, and two guard getters. When the incoming gas stream is valved through the on-line getters, 99.9% of it is adsorbed and the remainder continues to the guard getter where traces of tritium not collected earlier are adsorbed. The inert gas stream then exits the system to the decay chamber. Once the on-line getter has collected tritium for a predetermined time, it is valved off and the next on-line getter is valved on. Simultaneously, the first getter is heated and a pure helium purge is employed to carry the tritium from the getter. The tritium loaded gas stream is then routed through an ion chamber which measures the tritium activity. The ion chamber effluent passes through a collection getter that readsorbs the tritium and is removable from the system once it is loaded and is then replaced with a clean getter. Prior to removal of the collection getter, the system switches to a parallel collection getter. The effluent from the collection getter passes through a guard getter to remove traces of tritium prior to exiting the system. The tritium loaded collection getter, once removed, is analyzed by liquid scintillation techniques. The entire sequence is under computer control except for the removal and analysis of the collection getter. 7 figs.

  14. Tritium monitor and collection system

    DOEpatents

    Bourne, Gary L.; Meikrantz, David H.; Ely, Walter E.; Tuggle, Dale G.; Grafwallner, Ervin G.; Wickham, Keith L.; Maltrud, Herman R.; Baker, John D.

    1992-01-01

    This system measures tritium on-line and collects tritium from a flowing inert gas stream. It separates the tritium from other non-hydrogen isotope contaminating gases, whether radioactive or not. The collecting portion of the system is constructed of various zirconium alloys called getters. These alloys adsorb tritium in any of its forms at one temperature and at a higher temperature release it as a gas. The system consists of four on-line getters and heaters, two ion chamber detectors, two collection getters, and two guard getters. When the incoming gas stream is valved through the on-line getters, 99.9% of it is adsorbed and the remainder continues to the guard getter where traces of tritium not collected earlier are adsorbed. The inert gas stream then exits the system to the decay chamber. Once the on-line getter has collected tritium for a predetermined time, it is valved off and the next on-line getter is valved on. Simultaneously, the first getter is heated and a pure helium purge is employed to carry the tritium from the getter. The tritium loaded gas stream is then routed through an ion chamber which measures the tritium activity. The ion chamber effluent passes through a collection getter that readsorbs the tritium and is removable from the system once it is loaded and is then replaced with a clean getter. Prior to removal of the collection getter, the system switches to a parallel collection getter. The effluent from the collection getter passes through a guard getter to remove traces of tritium prior to exiting the system. The tritium loaded collection getter, once removed, is analyzed by liquid scintillation techniques. The entire sequence is under computer control except for the removal and analysis of the collection getter.

  15. Social media for disaster response during floods

    NASA Astrophysics Data System (ADS)

    Eilander, D.; van de Vries, C.; Baart, F.; van Swol, R.; Wagemaker, J.; van Loenen, A.

    2015-12-01

    During floods it is difficult to obtain real-time accurate information about the extent and severity of the hazard. This information is very important for disaster risk reduction management and crisis relief organizations. Currently, real-time information is derived from few sources such as field reports, traffic camera's, satellite images and areal images. However, getting a real-time and accurate picture of the situation on the ground remains difficult. At the same time, people affected by natural hazards increasingly share their observations and their needs through digital media. Unlike conventional monitoring systems, Twitter data contains a relatively large number of real-time ground truth observations representing both physical hazard characteristics and hazard impacts. In the city of Jakarta, Indonesia, the intensity of unique flood related tweets during a flood event, peaked at almost 900 tweets per minute during floods in early 2015. Flood events around the world in 2014/2015 yielded large numbers of flood related tweets: from Philippines (85.000) to Pakistan (82.000) to South-Korea (50.000) to Detroit (20.000). The challenge here is to filter out useful content from this cloud of data, validate these observations and convert them to readily usable information. In Jakarta, flood related tweets often contain information about the flood depth. In a pilot we showed that this type of information can be used for real-time mapping of the flood extent by plotting these observations on a Digital Elevation Model. Uncertainties in the observations were taken into account by assigning a probability to each observation indicating its likelihood to be correct based on statistical analysis of the total population of tweets. The resulting flood maps proved to be correct for about 75% of the neighborhoods in Jakarta. Further cross-validation of flood related tweets against (hydro-) meteorological data is to likely improve the skill of the method.

  16. Flash flood causing mechanisms of the North American Monsoon System in the Sonoran Desert

    NASA Astrophysics Data System (ADS)

    Bieda, Stephen Walter, III

    The North American Monsoon System (NAMS) is a significant weather and climate phenomenon that brings critical rainfall to the southwestern United States and northwestern Mexico. As a result of the North American Monsoon Experiment, and research efforts surrounding the field campaign, the understanding of the NAMS has increased considerably over the last 15 years. In addition questions concerning potential flash flood causing mechanisms of the NAMS have not been thoroughly investigated. This dissertation is comprised of two papers that collectively address the aspects of the literary understanding of the NAMS as we know it today and conduct an investigation into the complex interactions between various weather systems that may influence the NAMS. In the first paper, a review of the major research of the NAMS literature since the last comprehensive review 15 years ago is conducted. The results of his review are assessed for where our understanding has been improved and where future research needs to be guided for purposes of the second paper. Based upon the results from the literature review, the second paper focuses on identification of inverted troughs and gulf surges based upon lower- and mid-level atmospheric parameters for purposes of assessing the impacts on National Weather Service Storm Report flash flood dates. This research contributes to the synthesis of the current knowledge of the NAMS in general and to the specific regional impacts that do occur during periods of heavy precipitation over the NAMS region for purposes of improving meteorological predictability of flash flooding. The results can (1) gauge our understanding of the NAMS literature to date and (2) improve meteorological forecasts through the recognition of synoptic and sub-synoptic patterns related to the NAMS that are most likely to cause flash floods.

  17. New analytical equation for dispersion in estuaries with a distinct ebb-flood channel system

    NASA Astrophysics Data System (ADS)

    Nguyen, Anh Duc; Savenije, Hubert H. G.; van der Wegen, Mick; Roelvink, Dano

    2008-08-01

    Tidal pumping caused by residual horizontal circulation is an important but ill-understood mechanism producing longitudinal salt dispersion in well-mixed estuaries. There are two types of residual circulation that cause tidal pumping: (1) interaction of the tidal flow with a pronounced flood-ebb channel system; and (2) interaction of the tidal flow with an irregular bathymetry. Residual ebb-flood channel circulation is an important large-scale mixing mechanism for salinity intrusion, as shown in the Western Scheldt in the Netherlands, which is a well-mixed estuary with a distinct ebb-flood channel system. This paper provides a new simplified conceptual model and a new analytical equation for this type of mixing. Firstly, using a fully three-dimensional hydrodynamic model as a "virtual laboratory" and employing a decomposition method, the characteristics of the residual ebb-flood channel circulation in the Western Scheldt are analysed. Secondly, a conceptual model and an analytical equation determining the dispersion coefficient are developed, which take into account relevant parameters for tidal pumping, such as the tidal pumping efficiency, the tidal excursion and the length of the branches. Subsequently, the newly developed equation is compared to the results of the "virtual laboratory". The comparison confirms an agreement between the newly developed equation and the "virtual laboratory" in determining the residual transport and the tidal pumping dispersion coefficient. Finally, the equation is applied to observations in the Western Scheldt. The application yields good results in determining the longitudinal dispersion compared to dispersion values obtained from the salt budget.

  18. User-Driven Workflow for Modeling, Monitoring, Product Development, and Flood Map Delivery Using Satellites for Daily Coverage Over Texas May-June 2015

    NASA Astrophysics Data System (ADS)

    Green, D. S.; Frye, S. W.; Wells, G. L.; Adler, R. F.; Brakenridge, R.; Bolten, J. D.; Murray, J. J.; Slayback, D. A.; Kirschbaum, D.; Wu, H.; Cappelaere, P. G.; Schumann, G.; Howard, T.; Flamig, Z.; Clark, R. A.; Stough, T.; Chini, M.; Matgen, P.

    2015-12-01

    Intense rainfall during late April and early May 2015 in Texas and Oklahoma led to widespread flooding in several river basins in that region. Texas state agencies were activated for the May-June floods and severe weather event that ensued for six weeks from May 8 until June 19 following Tropical Storm Bill. This poster depicts a case study where modeling flood potential informed decision making authorities for user-driven high resolution satellite acquisitions over the most critical areas and how experimental flood mapping techniques provided the capability for daily on-going monitoring of these events through the use of increased automation. Recent improvements in flood models resulting from higher frequency updates, better spatial resolution, and increased accuracy of now cast and forecast precipitation products coupled with advanced technology to improve situational awareness for decision makers. These advances enabled satellites to be tasked, data products to be developed and distributed, and feedback loops between the emergency authorities, satellite operators, and mapping researchers to deliver a daily stream of relevant products that informed deployment of emergency resources and improved management of the large-scale event across the local, state, and national levels. This collaboration was made possible through inter-agency cooperation on an international scale through the Committee on Earth Observation Satellites Flood Pilot activity that is supported in the USA by NASA, NOAA, and USGS and includes numerous civilian space agency assets from the European Space Agency along with national agencies from Italy, France, Germany, Japan, and others. The poster describes the inter-linking technology infrastructure, the development and delivery of mapping products, and the lessons learned for product improvement in the future.

  19. Medusa Sea Floor Monitoring System

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2005-01-01

    This paper presents viewgraphs on the development of an instrument to enable fundamental research into understanding the potential for and limits to chemolithoautrophic life. The topics include: 1) Background; 2) Relevance to NASA Missions; 3) Technology Requirements; 4) Medusa System Description; 5) Medusa Components; 6) Medusa Science Capabilities; 7) Medusa Capabilities; and 8) Schedule

  20. Valve-"Health"-Monitoring System

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L.; Drouant, George J.

    2009-01-01

    A system that includes sensors and data acquisition, wireless data-communication, and data-processing subsystems has been developed as a means of both real-time and historical tracking of information indicative of deterioration in the mechanical integrity and performance of a highgeared ball valve or a linearly actuated valve that operates at a temperature between cryogenic and ambient.

  1. Gauging Systems Monitor Cryogenic Liquids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Rocket fuel needs to stay cool - super cool, in fact. The ability to store gas propellants like liquid hydrogen and oxygen at cryogenic temperatures (below -243 F) is crucial for space missions in order to reduce their volumes and allow their storage in smaller (and therefore, less costly) tanks. The Agency has used these cryogenic fluids for vehicle propellants, reactants, and life support systems since 1962 with the Centaur upper stage rocket, which was powered with liquid oxygen and liquid hydrogen. During proposed long-duration missions, super-cooled fluids will also be used in space power systems, spaceports, and lunar habitation systems. In the next generation of launch vehicles, gaseous propellants will be cooled to and stored for extended periods at even colder temperatures than currently employed via a process called densification. Densification sub-cools liquids to temperatures even closer to absolute zero (-459 F), increasing the fluid s density and shrinking its volume beyond common cryogenics. Sub-cooling cryogenic liquid hydrogen, for instance, from 20 K (-423 F) to 15 K (-432.4 F) reduces its mass by 10 percent. These densified liquid gases can provide more cost savings from reduced payload volume. In order to benefit from this cost savings, the Agency is working with private industry to prevent evaporation, leakage, and other inadvertent loss of liquids and gases in payloads - requiring new cryogenic systems to prevent 98 percent (or more) of boil-off loss. Boil-off occurs when cryogenic or densified liquids evaporate, and is a concern during launch pad holds. Accurate sensing of propellants aboard space vehicles is also critical for proper engine shutdown and re-ignition after launch, and zero boil-off fuel systems are also in development for the Altair lunar lander.

  2. Amplified OTDR Systems for Multipoint Corrosion Monitoring

    PubMed Central

    Nascimento, Jehan F.; Silva, Marcionilo J.; Coêlho, Isnaldo J. S.; Cipriano, Eliel; Martins-Filho, Joaquim F.

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations. PMID:22737017

  3. Airplane-Runway-Performance Monitoring System

    NASA Technical Reports Server (NTRS)

    Middleton, David B.; Person, Lee H., Jr.; Srivatsan, Raghavachari

    1992-01-01

    Airplane-Runway-Performance Monitoring System (ARPMS) increases safety during takeoffs and landings by providing pilots with symbolic "head-up" and "head-down" information pertinent to decisions to continue or abort takeoffs or landings. Provides graphic information concerning where airplane could be stopped. Pilot monitors ground speed and predicted stopping point while looking at actual runway. High potential for incorporation into cockpit environment for entire aerospace community.

  4. Beach and dunal system monitoring at Su Giudeu beach, Sardinia (Italy)

    NASA Astrophysics Data System (ADS)

    Balzano, Andrea; Sulis, Andrea

    2014-05-01

    Even if coastal floods are quite rare events in Sardinia (Italy) at present, they have had dramatic consequences for coastal communities, particularly in conjunction with river flooding. However, flood risk (defined as the product of event probability, vulnerability and value of assets) is expected to increase significantly in the future, due to climate change, defence degradation and sea level rise. Sardinia island has a costal length of approximately 1.900 km including minor neighbouring islands (25% of the entire Italian coasts) and the estimation of the potential exposure of coastal communities to flooding is therefore a critical task. To date methods for achieving this have been based on modelling of coastal inundation using hydrodynamic or GIS-based models of varying complexity. The Dept of Civil and Environmental Engineering and Architecture at the University of Cagliari is carrying out a comprehensive activity of coastal flooding risk mapping at the regional scale within the framework of a scientific collaboration with the Sardinian Regional Authority for the Hydrographic District, that includes monitoring and scientific activities along the entire Sardinian coast. Bathymetry and topographical surveys, sediment characterization, waves and currents measurements, hydrodynamic and morphodynamic modelling are planned, focusing on critical extended areas. In this paper we present an overview of the entire activity programme and give an in-depth account of the ongoing monitoring survey of the dunal system of the Su Giudeu beach (Southern Sardinia, 50 km far from the city of Cagliari). Su Giudeu is a sandy, bay-shaped beach, extending for about 1200 m between two headlands, evolving under waves with a predominant direction of 220-240°N (Scirocco wind). The survey is expected to provide evidence of the response of the remarkable dunal system to wave runup occurring during storm events, to be used in the verification of existing numerical models of dune erosion.

  5. Embedded data acquisition system for neutron monitors

    NASA Astrophysics Data System (ADS)

    Población, Ó. G.; Blanco, J. J.; Gómez-Herrero, R.; Steigies, C. T.; Medina, J.; Tejedor, I. G.; Sánchez, S.

    2014-08-01

    This article presents the design and implementation of a new data acquisition system to be used as replacement for the old ones that have been in use with neutron monitors for the last decades and, which are eventually becoming obsolete. This new system is also intended to be used in new installations, enabling these scientific instruments to use today's communication networks to send data and receive commands from the operators. This system is currently running in two stations: KIEL2, in the Christian-Albrechts-Universität zu Kiel, Kiel, Germany, and CALMA, in the Castilla-La Mancha Neutron Monitor, Guadalajara, Spain.

  6. Experience with the BEACON core monitoring system

    SciTech Connect

    Beard, C.L. ); Icide, C.A. )

    1992-01-01

    The BEACON operational core support system was developed for use in pressurized water reactors to provide an integrated system to perform reactor core monitoring, core measurement reduction, core analysis and follow, and core predictions. It is based on the very fast and accurate three-dimensional SPNOVA nodal program. The experience to date has shown the importance of an accurate integrated system. The benefits accrued are greater for the total system than the benefits that are possible separately.

  7. Condition monitoring in hydraulic systems

    SciTech Connect

    Dyer, C.

    1986-01-01

    The ''run it until it breaks'' approach to maintenance is becoming increasingly unacceptable. Implementation of just-in-time and the economic requirements for more efficient use of labor and machinery are some of the factors encouraging management to give more than lip-service to preventive maintenance. A test unit developed to speed diagnosis of problems in hydraulic systems has proved to be a useful tool for predicting many failures, enabling repairs to be scheduled.

  8. Monitoring and Technical Assistance Review System Notebook

    ERIC Educational Resources Information Center

    Administration for Children & Families, 2008

    2008-01-01

    This notebook provides guidance on the Monitoring and Technical Assistance Review System (MTARS). The manual is intended for use by Administration on Developmental Disabilities (ADD) staff who manage MTARS and by MTARS reviewers who conduct site visit activities. The notebook is also designed to help Councils, Protection and Advocacy Systems, and…

  9. Psychometric Aspects of Pupil Monitoring Systems

    ERIC Educational Resources Information Center

    Glas, Cees A. W.; Geerlings, Hanneke

    2009-01-01

    Pupil monitoring systems support the teacher in tailoring teaching to the individual level of a student and in comparing the progress and results of teaching with national standards. The systems are based on the availability of an item bank calibrated using item response theory. The assessment of the students' progress and results can be further…

  10. Shared performance monitor in a multiprocessor system

    DOEpatents

    Chiu, George; Gara, Alan G.; Salapura, Valentina

    2012-07-24

    A performance monitoring unit (PMU) and method for monitoring performance of events occurring in a multiprocessor system. The multiprocessor system comprises a plurality of processor devices units, each processor device for generating signals representing occurrences of events in the processor device, and, a single shared counter resource for performance monitoring. The performance monitor unit is shared by all processor cores in the multiprocessor system. The PMU comprises: a plurality of performance counters each for counting signals representing occurrences of events from one or more the plurality of processor units in the multiprocessor system; and, a plurality of input devices for receiving the event signals from one or more processor devices of the plurality of processor units, the plurality of input devices programmable to select event signals for receipt by one or more of the plurality of performance counters for counting, wherein the PMU is shared between multiple processing units, or within a group of processors in the multiprocessing system. The PMU is further programmed to monitor event signals issued from non-processor devices.

  11. Distributed precipitation corrections in Alpine areas for a real-time flood forecasting system

    NASA Astrophysics Data System (ADS)

    Herrnegger, Mathew; Senoner, Tobias; Nachtnebel, Hans-Peter

    2014-05-01

    This contribution presents a method for estimating spatial and temporal distributed precipitation correction factors. The approach is applied for a flood forecasting model in the Upper Enns and Upper Mur catchments in the Central Austrian Alps. Precipitation exhibits a large spatio-temporal variability in Alpine areas. Additionally the density of the monitoring network is low and measurements are subjected to major errors. This can lead to significant deficits in stream flow simulations, e.g. for flood forecasting models. Therefore precipitation correction factors are frequently applied. These correction factors are however mostly applied for whole catchments in a lumped manor, neglecting, that the magnitude of precipitation errors are spatially distributed. For the presented study a multiplicative linear correction model is therefore implemented, which enables a distribution of the correction factors as a function of elevation. The applied rainfall-runoff model COSERO is set up with a spatial resolution of 1x1km2. The correction of the rainfall pattern is thereby applied for every grid cell. To account for the local meteorological conditions, the correction model is derived for two elevation zones: (1) Valley floors to 2000 m a.s.l. and (2) above 2000 m a.s.l. to mountain peaks. Measurement errors also depend on the precipitation type, with higher magnitudes in winter months during snow fall. Therefore additionally separate correction factors for winter and summer months are estimated. The parameters for the correction model are estimated for every catchment based on independent station observations and observed and simulated runoff of the conceptual rainfall-runoff model. As driving input the INCA-precipitation fields of the Austrian Central Institute for Meteorology and Geodynamics (ZAMG) are used. Due to the mentioned errors, these precipitation fields are corrected according to the described method. The results show a significant improvement of the simulated

  12. Development of a spatial decision support system for flood risk management in Brazil that combines volunteered geographic information with wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Horita, Flávio E. A.; Albuquerque, João Porto de; Degrossi, Lívia C.; Mendiondo, Eduardo M.; Ueyama, Jó

    2015-07-01

    Effective flood risk management requires updated information to ensure that the correct decisions can be made. This can be provided by Wireless Sensor Networks (WSN) which are a low-cost means of collecting updated information about rivers. Another valuable resource is Volunteered Geographic Information (VGI) which is a comparatively new means of improving the coverage of monitored areas because it is able to supply supplementary information to the WSN and thus support decision-making in flood risk management. However, there still remains the problem of how to combine WSN data with VGI. In this paper, an attempt is made to investigate AGORA-DS, which is a Spatial Decision Support System (SDSS) that is able to make flood risk management more effective by combining these data sources, i.e. WSN with VGI. This approach is built over a conceptual model that complies with the interoperable standards laid down by the Open Geospatial Consortium (OGC) - e.g. Sensor Observation Service (SOS) and Web Feature Service (WFS) - and seeks to combine and present unified information in a web-based decision support tool. This work was deployed in a real scenario of flood risk management in the town of São Carlos in Brazil. The evidence obtained from this deployment confirmed that interoperable standards can support the integration of data from distinct data sources. In addition, they also show that VGI is able to provide information about areas of the river basin which lack data since there is no appropriate station in the area. Hence it provides a valuable support for the WSN data. It can thus be concluded that AGORA-DS is able to combine information provided by WSN and VGI, and provide useful information for supporting flood risk management.

  13. Flood hazards analysis based on changes of hydrodynamic processes in fluvial systems of Sao Paulo, Brazil.

    NASA Astrophysics Data System (ADS)

    Simas, Iury; Rodrigues, Cleide

    2016-04-01

    The metropolis of Sao Paulo, with its 7940 Km² and over 20 million inhabitants, is increasingly being consolidated with disregard for the dynamics of its fluvial systems and natural limitations imposed by fluvial terraces, floodplains and slopes. Events such as floods and flash floods became particularly persistent mainly in socially and environmentally vulnerable areas. The Aricanduva River basin was selected as the ideal area for the development of the flood hazard analysis since it presents the main geological and geomorphological features found in the urban site. According to studies carried out by Anthropic Geomorphology approach in São Paulo, to study this phenomenon is necessary to take into account the original hydromorphological systems and its functional conditions, as well as in which dimensions the Anthropic factor changes the balance between the main variables of surface processes. Considering those principles, an alternative model of geographical data was proposed and enabled to identify the role of different driving forces in terms of spatial conditioning of certain flood events. Spatial relationships between different variables, such as anthropogenic and original morphology, were analyzed for that purpose in addition to climate data. The surface hydrodynamic tendency spatial model conceived for this study takes as key variables: 1- The land use present at the observed date combined with the predominant lithological group, represented by a value ranging 0-100, based on indexes of the National Soil Conservation Service (NSCS-USA) and the Hydraulic Technology Center Foundation (FCTH-Brazil) to determine the resulting balance of runoff/infiltration. 2- The original slope, applying thresholds from which it's possible to determine greater tendency for runoff (in percents). 3- The minimal features of relief, combining the curvature of surface in plant and profile. Those three key variables were combined in a Geographic Information System in a series of

  14. Distribution of gamma exposure rates in a reactor effluent stream flood plain system.

    PubMed

    Gladden, J B; Brown, K L; Smith, M H; Towns, A

    1985-01-01

    Ground-level gamma dosimetry surveys were conducted along the length of a radiocesium-contaminated reactor effluent stream flood plain system to determine the extent and patterns of isotope distribution over a decade after reactor releases were stopped. The maximum mean exposure rates were found at upstream locations near the source of the contamination and in a downstream sedimentary delta. Gamma exposure rates were not uniformly distributed and high exposure rates were generally restricted to small areas of the flood plain. There was little similarity in either the spatial distribution or magnitudes of maximum gamma exposure rates across flood plains along the stream. Frequency the measured exposure rates tended to be highly skewed and most closely approximated the log-normal distribution in most areas along the stream. However, the complex and changing patterns of dose distributions strongly affected the ability to predict the probability of encountering unusually high exposure rates. Complex statistical and distributional models are required to provide precise descriptions of the dosimetry environment in such complex ecosystems and different models could be required on a site-by-site basis.

  15. Wireless boundary monitor system and method

    DOEpatents

    Haynes, H.D.; Ayers, C.W.

    1997-12-09

    A wireless boundary monitor system used to monitor the integrity of a boundary surrounding an area uses at least two housings having at least one transmitting means for emitting ultrasonic pressure waves to a medium. Each of the housings has a plurality of receiving means for sensing the pressure waves in the medium. The transmitting means and the receiving means of each housing are aimable and communicably linked. At least one of the housings is equipped with a local alarm means for emitting a first alarm indication whereby, when the pressure waves propagating from a transmitting means to a receiving means are sufficiently blocked by an object a local alarm means or a remote alarm means or a combination thereof emit respective alarm indications. The system may be reset either manually or automatically. This wireless boundary monitor system has useful applications in both indoor and outdoor environments. 4 figs.

  16. Wireless boundary monitor system and method

    DOEpatents

    Haynes, Howard D.; Ayers, Curtis W.

    1997-01-01

    A wireless boundary monitor system used to monitor the integrity of a boundary surrounding an area uses at least two housings having at least one transmitting means for emitting ultrasonic pressure waves to a medium. Each of the housings has a plurality of receiving means for sensing the pressure waves in the medium. The transmitting means and the receiving means of each housing are aimable and communicably linked. At least one of the housings is equipped with a local alarm means for emitting a first alarm indication whereby, when the pressure waves propagating from a transmitting means to a receiving means are sufficiently blocked by an object a local alarm means or a remote alarm means or a combination thereof emit respective alarm indications. The system may be reset either manually or automatically. This wireless boundary monitor system has useful applications in both indoor and outdoor environments.

  17. Continuous Glucose Monitoring Systems: A Review

    PubMed Central

    Vashist, Sandeep Kumar

    2013-01-01

    There have been continuous advances in the field of glucose monitoring during the last four decades, which have led to the development of highly evolved blood glucose meters, non-invasive glucose monitoring (NGM) devices and continuous glucose monitoring systems (CGMS). Glucose monitoring is an integral part of diabetes management, and the maintenance of physiological blood glucose concentration is the only way for a diabetic to avoid life-threatening diabetic complications. CGMS have led to tremendous improvements in diabetic management, as shown by the significant lowering of glycated hemoglobin (HbA1c) in adults with type I diabetes. Most of the CGMS have been minimally-invasive, although the more recent ones are based on NGM techniques. This manuscript reviews the advances in CGMS for diabetes management along with the future prospects and the challenges involved. PMID:26824930

  18. Monitoring SLAC High Performance UNIX Computing Systems

    SciTech Connect

    Lettsome, Annette K.; /Bethune-Cookman Coll. /SLAC

    2005-12-15

    Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia. Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface.

  19. Degradation Modelling for Health Monitoring Systems

    NASA Astrophysics Data System (ADS)

    Stetter, R.; Witczak, M.

    2014-12-01

    Condition-monitoring plays an increasingly important role for technical processes in order to improve reliability, availability, maintenance and lifetime of equipment. With increasing demands for efficiency and product quality, plus progress in the integration of automatic control systems in high-cost mechatronic and critical safety processes, the field of health monitoring is gaining interest. A similar research field is concerned with an estimation of the remaining useful life. A central question in these fields is the modelling of degradation; degradation is a process of a gradual and irreversible accumulation of damage which will finally result in a failure of the system. This paper is based on a current research project and explores various degradation modelling techniques. These results are explained on the basis of an industrial product - a system for the generation of health status information for pump systems. The result of this fuzzy-logic based system is a single number indicating the current health of a pump system.

  20. A dose monitoring system for dental radiography

    PubMed Central

    Lee, Chena; Kim, Jo-Eun; Symkhampha, Khanthaly; Lee, Woo-Jin; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Choi, Soon-Chul; Yeom, Heon-Young

    2016-01-01

    Purpose The current study investigates the feasibility of a platform for a nationwide dose monitoring system for dental radiography. The essential elements for an unerring system are also assessed. Materials and Methods An intraoral radiographic machine with 14 X-ray generators and five sensors, 45 panoramic radiographic machines, and 23 cone-beam computed tomography (CBCT) models used in Korean dental clinics were surveyed to investigate the type of dose report. A main server for storing the dose data from each radiographic machine was prepared. The dose report transfer pathways from the radiographic machine to the main sever were constructed. An effective dose calculation method was created based on the machine specifications and the exposure parameters of three intraoral radiographic machines, five panoramic radiographic machines, and four CBCTs. A viewing system was developed for both dentists and patients to view the calculated effective dose. Each procedure and the main server were integrated into one system. Results The dose data from each type of radiographic machine was successfully transferred to the main server and converted into an effective dose. The effective dose stored in the main server is automatically connected to a viewing program for dentist and patient access. Conclusion A patient radiation dose monitoring system is feasible for dental clinics. Future research in cooperation with clinicians, industry, and radiologists is needed to ensure format convertibility for an efficient dose monitoring system to monitor unexpected radiation dose. PMID:27358817

  1. CMS data quality monitoring: Systems and experiences

    NASA Astrophysics Data System (ADS)

    Tuura, L.; Meyer, A.; Segoni, I.; Della Ricca, G.

    2010-04-01

    In the last two years the CMS experiment has commissioned a full end to end data quality monitoring system in tandem with progress in the detector commissioning. We present the data quality monitoring and certification systems in place, from online data taking to delivering certified data sets for physics analyses, release validation and offline re-reconstruction activities at Tier-1s. We discuss the main results and lessons learnt so far in the commissioning and early detector operation. We outline our practical operations arrangements and the key technical implementation aspects.

  2. GOPEX laser transmission and monitoring systems

    NASA Technical Reports Server (NTRS)

    Okamoto, G.; Masters, K.

    1993-01-01

    The laser transmission and monitoring system for the Galileo Optical Experiment (GOPEX) at the Table Mountain Facility (TMF) in Wrightwood, California is described. The transmission system configuration and the data measurement techniques are described. The calibration procedure and the data analysis algorithm are also discussed. The mean and standard deviation of the laser energy transmitted each day of GOPEX show that the laser transmission system performed well and within the limit established in conjunction with the Galileo Project for experiment concurrence.

  3. Trend Monitoring System (TMS) graphics software

    NASA Technical Reports Server (NTRS)

    Brown, J. S.

    1979-01-01

    A prototype bus communications systems, which is being used to support the Trend Monitoring System (TMS) and to evaluate the bus concept is considered. A set of FORTRAN-callable graphics subroutines for the host MODCOMP comuter, and an approach to splitting graphics work between the host and the system's intelligent graphics terminals are described. The graphics software in the MODCOMP and the operating software package written for the graphics terminals are included.

  4. Execution monitoring for a mobile robot system

    NASA Technical Reports Server (NTRS)

    Miller, David P.

    1990-01-01

    Due to sensor errors, uncertainty, incomplete knowledge, and a dynamic world, robot plans will not always be executed exactly as planned. This paper describes an implemented robot planning system that enhances the traditional sense-think-act cycle in ways that allow the robot system monitor its behavior and react in emergencies in real-time. A proposal on how robot systems can completely break away from the traditional three-step cycle is also made.

  5. The Straightness Monitor System at ATF2

    SciTech Connect

    Hildreth, Michael; Aryshev, Alexander; Boogert, Stewart; Honda, Yosuke; Tauchi, Toshiaki; Terunuma, Nobuhiro; White, Glen; /SLAC

    2012-07-06

    The demonstration of absolute stability of the position of the focused beam is the primary goal of the ATF2 commissioning effort. We have installed a laser interferometer system that will eventually correct the measurement of high-precision Beam Position Monitors used in the ATF2Final Focus Steering Feedback for mechanical motion or vibrations. Here, we describe the installed system and present preliminary data on the short- and long-term mechanical stability of the BPM system.

  6. National Satellite Forest Monitoring systems for REDD+

    NASA Astrophysics Data System (ADS)

    Jonckheere, I. G.

    2012-12-01

    Reducing Emissions from Deforestation and Forest Degradation (REDD) is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. "REDD+" goes beyond deforestation and forest degradation, and includes the role of conservation, sustainable management of forests and enhancement of forest carbon stocks. In the framework of getting countries ready for REDD+, the UN-REDD Programme assists developing countries to prepare and implement national REDD+ strategies. For the monitoring, reporting and verification, FAO supports the countries to develop national satellite forest monitoring systems that allow for credible measurement, reporting and verification (MRV) of REDD+ activities. These are among the most critical elements for the successful implementation of any REDD+ mechanism. The UN-REDD Programme through a joint effort of FAO and Brazil's National Space Agency, INPE, is supporting countries to develop cost- effective, robust and compatible national monitoring and MRV systems, providing tools, methodologies, training and knowledge sharing that help countries to strengthen their technical and institutional capacity for effective MRV systems. To develop strong nationally-owned forest monitoring systems, technical and institutional capacity building is key. The UN-REDD Programme, through FAO, has taken on intensive training together with INPE, and has provided technical help and assistance for in-country training and implementation for national satellite forest monitoring. The goal of the support to UN-REDD pilot countries in this capacity building effort is the training of technical forest people and IT persons from interested REDD+ countries, and to set- up the national satellite forest monitoring systems. The Brazilian forest monitoring system, TerraAmazon, which is used as a basis for this initiative, allows

  7. Methane Exchange in a Coastal Fen in the First Year after Flooding - A Systems Shift

    PubMed Central

    Hahn, Juliane; Köhler, Stefan; Glatzel, Stephan; Jurasinski, Gerald

    2015-01-01

    Background Peatland restoration can have several objectives, for example re-establishing the natural habitat, supporting unique biodiversity attributes or re-initiating key biogeochemical processes, which can ultimately lead to a reduction in greenhouse gas (GHG) emissions. Every restoration measure, however, is itself a disturbance to the ecosystem. Methods Here, we examine an ecosystem shift in a coastal fen at the southern Baltic Sea which was rewetted by flooding. The analyses are based on one year of bi-weekly closed chamber measurements of methane fluxes gathered at spots located in different vegetation stands. During measurement campaigns, we recorded data on water levels, peat temperatures, and chemical properties of peat water. In addition we analyzed the first 20 cm of peat before and after flooding for dry bulk density (DBD), content of organic matter and total amounts of carbon (C), nitrogen (N), sulfur (S), and other nutrients. Results Rewetting turned the site from a summer dry fen into a shallow lake with water levels up to 0.60 m. We observed a substantial die-back of vegetation, especially in stands of sedges (Carex acutiformis Ehrh). Concentrations of total organic carbon and nitrogen in the peat water, as well as dry bulk density and concentrations of C, N and S in the peat increased. In the first year after rewetting, the average annual exchange of methane amounted to 0.26 ± 0.06 kg m-2. This is equivalent to a 190-times increase in methane compared to pre-flooding conditions. Highest methane fluxes occurred in sedge stands which suffered from the heaviest die-back. None of the recorded environmental variables showed consistent relationships with the amounts of methane exchanged. Conclusions Our results suggest that rewetting projects should be monitored not only with regard to vegetation development but also with respect to biogeochemical conditions. Further, high methane emissions that likely occur directly after rewetting by flooding should

  8. Developing a Decision Support System for Flood Response: NIMS/ICS Fundamentals

    NASA Astrophysics Data System (ADS)

    Gutenson, J. L.; Zhang, X.; Ernest, A. N. S.; Oubeidillah, A.; Zhu, L.

    2015-12-01

    Effective response to regional disasters such as floods requires a multipronged, non-linear approach to reduce loss of life, property and harm to the environment. These coordinated response actions are typically undertaken by multiple jurisdictions, levels of government, functional agencies and other responsible entities. A successful response is highly dependent on the effectiveness and efficiency of each coordinated response action undertaken across a broad spectrum of organizations and activities. In order to provide a unified framework for those responding to incidents or planned events, FEMA provides a common and flexible approach for managing incidents, regardless of cause, size, location or complexity, referred to as the National Incident Management System (NIMS). Integral to NIMS is the Incident Command System (ICS), which establishes a common, pre-defined organizational structure to ensure coordination and management of procedures, resources and communications, for efficient incident management. While being both efficient and rigorous, NIMS, and ICS to a lesser extent, is an inherently complex framework that requires significant amount of training for planners, responders and managers to master, especially considering the wide array of incident types that Local Emergency Planning Committees (LEPCs) must be prepared to respond to. The existing Water-Wizard Decision Support System (DSS), developed to support water distribution system recovery operations for Decontamination (Decon), Operational Optimization (WDS), and Economic Consequence Assessment (Econ), is being evolved to integrate incident response functions. Water-Wizard runs on both mobile and desktop devices, and is being extended to utilize smartphone and mobile device specific data streams (e.g GPS location) to augment its fact-base in real-time for situational-aware DSS recommendations. In addition, the structured NIMS and ICS frameworks for incident management and response are being incorporated

  9. A probabilistic approach of the Flash Flood Early Warning System (FF-EWS) in Catalonia based on radar ensemble generation

    NASA Astrophysics Data System (ADS)

    Velasco, David; Sempere-Torres, Daniel; Corral, Carles; Llort, Xavier; Velasco, Enrique

    2010-05-01

    Early Warning Systems (EWS) are commonly identified as the most efficient tools in order to improve the preparedness and risk management against heavy rains and Flash Floods (FF) with the objective of reducing economical losses and human casualties. In particular, flash floods affecting torrential Mediterranean catchments are a key element to be incorporated within operational EWSs. The characteristic high spatial and temporal variability of the storms requires high-resolution data and methods to monitor/forecast the evolution of rainfall and its hydrological impact in small and medium torrential basins. A first version of an operational FF-EWS has been implemented in Catalonia (NE Spain) under the name of EHIMI system (Integrated Tool for Hydrometeorological Forecasting) with the support of the Catalan Water Agency (ACA) and the Meteorological Service of Catalonia (SMC). Flash flood warnings are issued based on radar-rainfall estimates. Rainfall estimation is performed on radar observations with high spatial and temporal resolution (1km2 and 10 minutes) in order to adapt the warning scale to the 1-km grid of the EWS. The method is based on comparing observed accumulated rainfall against rainfall thresholds provided by the regional Intensity-Duration-Frequency (IDF) curves. The so-called "aggregated rainfall warning" at every river cell is obtained as the spatially averaged rainfall over its associated upstream draining area. Regarding the time aggregation of rainfall, the critical duration is thought to be an accumulation period similar to the concentration time of each cachtment. The warning is issued once the forecasted rainfall accumulation exceeds the rainfall thresholds mentioned above, which are associated to certain probability of occurrence. Finally, the hazard warning is provided and shown to the decision-maker in terms of exceeded return periods at every river cell covering the whole area of Catalonia. The objective of the present work includes the

  10. Ohio River main stem study - The role of geographic information systems and remote sensing in flood damage assessments

    NASA Technical Reports Server (NTRS)

    Edwardo, H. A.; Moulis, F. R.; Merry, C. J.; Mckim, H. L.; Kerber, A. G.; Miller, M. A.

    1985-01-01

    The Pittsburgh District, Corps of Engineers, has conducted feasibility analyses of various procedures for performing flood damage assessments along the main stem of the Ohio River. Procedures using traditional, although highly automated, techniques and those based on geographic information systems have been evaluated at a test site, the City of New Martinsville, Wetzel County, WV. The flood damage assessments of the test site developed from an automated, conventional structure-by-structure appraisal served as the ground truth data set. A geographic information system was developed for the test site which includes data on hydraulic reach, ground and reference flood elevations, and land use/cover. Damage assessments were made using land use mapping developed from an exhaustive field inspection of each tax parcel. This ground truth condition was considered to provide the best comparison of flood damages to the conventional approach. Also, four land use/cover data sets were developed from Thematic Mapper Simulator (TMS) and Landsat-4 Thematic Mapper (TM) data. One of these was also used to develop a damage assessment of the test site. This paper presents the comparative absolute and relative accuracies of land use/cover mapping and flood damage assessments, and the recommended role of geographic information systems aided by remote sensing for conducting flood damage assessments and updates along the main stem of the Ohio River.

  11. Real-time sewer effluent monitoring system

    SciTech Connect

    Koopman, S.; Yamauchi, R.K.

    1990-12-01

    Lawrence Livermore National Laboratory has upgraded its early sewer monitoring system from the 1970's. LLNL must insure that its waste water is of a consistent and acceptable nature for the City of Livermore's community sewer system. The Sewer Monitor UpGrade system (SMUG) is now monitoring the Lab's sewer effluent. SMUG monitors the effluent for pH, flow rate, metals, and alpha, beta and gamma emitting isotopes. It turns on the appropriate alarms if present alarm levels are exceeded. The hardware consists of DEC Micro VAX II/GPX that has been repackaged by Nuclear Data Company as the Genie 9900 Data Acquisition and Display System. The gamma detector, three XRFAs, pH meter, and flow rate meter are commercially available. The metals sample cells are custom built at the Lab. The operating system is the VMS version 5.4. The application software is written in DEC's Fortran-77 and MACRO, and Nuclear Data software library. 3 refs., 3 figs.

  12. Uranium concentration monitor manual: 2300 system

    SciTech Connect

    Russo, P.A.; Sprinkle, J.K. Jr.; Stephens, M.M.

    1985-04-01

    This manual describes the design, operation, and procedures for measurement control for the automated uranium concentration monitor on the 2300 solvent extraction system at the Oak Ridge Y-12 Plant. The nonintrusive monitor provides a near-real time readout of uranium concentration at two locations simultaneously in the solvent extraction system for process monitoring and control. Detectors installed at the top of the extraction column and at the bottom of the backwash column acquire spectra of gamma rays from the solvent extraction solutions in the columns. Pulse-height analysis of these spectra gives the concentration of uranium in the organic product of the extraction column and in the aqueous product of the solvent extraction system. The visual readouts of concentrations for process monitoring are updated every 2 min for both detection systems. Simultaneously, the concentration results are shipped to a remote computer that has been installed by Y-12 to demonstrate automatic control of the solvent extraction system based on input of near-real time process operation information. 8 refs., 13 figs., 4 tabs.

  13. Can riverside seismic monitoring constrain temporal and spatial variations in bedload transport during a controlled flood of the Trinity River?

    NASA Astrophysics Data System (ADS)

    Glasgow, M. E.; Schmandt, B.; Gaeuman, D.

    2015-12-01

    To evaluate the utility of riverside seismic monitoring for constraining temporal and spatial variations in coarse bedload transport in gravel-bed rivers we collected seismic data during a dam-controlled flood of the Trinity River in northern California in May 2015. This field area was chosen because the Trinity River Restoration Project conducts extensive monitoring of water and sediment transport, and riverbed morphology to guide management of the river with the goal of improving salmon habitat. Four three component broadband seismometers were collocated with water discharge and bedload physical sampling sites along a ~30 km reach of the Trinity River downstream of the Lewiston Dam. Arrays with 10-80 cable-free vertical component geophones were also deployed at each of the four sites in order to constrain spatial variability and amplitude decay of seismic signals emanating from the river. Nominal inter-station spacing within the geophone arrays was ~30 m. The largest geophone array consisted of 83 nodes along a 700 m reach of the Trinity River with a gravel augmentation site at its upstream end. Initial analyses of the seismic data show that ground velocity power from averaged from ~7 - 90 Hz is correlated with discharge at all sites. The array at the gravel injection site shows greater high frequency (>30 Hz) power at the upstream end where gravel was injected during the release compared to ~300 m downstream, consistent with bedload transport providing a significant source of seismic energy in addition to water discharge. Declining seismic power during a ~3 day plateau at peak discharge when physical sampler data shows decreasing bedload flux provides a further indication that the seismic data are sensitive to bedload transport. We will use the array data to back-project the seismic signals in multiple frequency bands into the channel to create maps of the time-varying spatial intensity of seismic energy production. We hypothesize that the greatest seismic

  14. Wireless remote monitoring system for sleep apnea

    NASA Astrophysics Data System (ADS)

    Oh, Sechang; Kwon, Hyeokjun; Varadan, Vijay K.

    2011-04-01

    Sleep plays the important role of rejuvenating the body, especially the central nervous system. However, more than thirty million people suffer from sleep disorders and sleep deprivation. That can cause serious health consequences by increasing the risk of hypertension, diabetes, heart attack and so on. Apart from the physical health risk, sleep disorders can lead to social problems when sleep disorders are not diagnosed and treated. Currently, sleep disorders are diagnosed through sleep study in a sleep laboratory overnight. This involves large expenses in addition to the inconvenience of overnight hospitalization and disruption of daily life activities. Although some systems provide home based diagnosis, most of systems record the sleep data in a memory card, the patient has to face the inconvenience of sending the memory card to a doctor for diagnosis. To solve the problem, we propose a wireless sensor system for sleep apnea, which enables remote monitoring while the patient is at home. The system has 5 channels to measure ECG, Nasal airflow, body position, abdominal/chest efforts and oxygen saturation. A wireless transmitter unit transmits signals with Zigbee and a receiver unit which has two RF modules, Zigbee and Wi-Fi, receives signals from the transmitter unit and retransmits signals to the remote monitoring system with Zigbee and Wi-Fi, respectively. By using both Zigbee and Wi-Fi, the wireless sensor system can achieve a low power consumption and wide range coverage. The system's features are presented, as well as continuous monitoring results of vital signals.

  15. Treatment of swine wastewater using a saturated-soil-culture soybean and flooded rice system

    SciTech Connect

    Szoegi, A.A.; Hunt, P.G.; Humenik, F.J.

    2000-04-01

    Constructed wetlands have potential for treatment of livestock wastewater, but they generally contain wetland plants rather than agronomic crops. The authors evaluated two agronomic crops, saturated-soil-culture (SSC) soybean and flooded rice, in a constructed wetland system used for swine wastewater treatment. Both crop production and treatment efficiency were evaluated from 1993 to 1996 in two 4-m x 33.5-m constructed wetland cells that were connected in series. The first cell contained SSC soybean--four cultivars planted in a randomized complete block design with four replications. Flooded rice Maybelle was planted in the second cell. From the first to fourth year, wastewater application rates were gradually increased to obtain rates of 2.0 to 8.8 and 0.5 to 2.2 kg/ha d for total N and P, respectively. The best soybean grain and dry matter yields were 4.0 and 9.1 Mg/ha, respectively. These were obtained with soybean Young at the lowest wastewater application rate. Increasing total N loading rates and the associated higher NH{sub 4}-N concentrations depressed soybean seed yield and dry matter production. On the other hand, both rice grain and dry matter production were stable over the application range; mean values were 4.0 and 10.9 Mg ha{sup {minus}1}, respectively. Nutrient mass reductions were good; removal values increased linearly with loading rates (y = 0.69N load + 0.45, R{sup 2} = 0.99 and y = 0.45P load + 0.20, R{sup 2} = 0.95). At the highest loading rate, the system removed 751 and 156 kg/ha yr N and P, respectively. It appears that the SSC soybean and flooded rice system could be useful for liquid manure management in confined livestock production. The system produced comparable treatment to systems with natural wetland plants; moreover, the soybean and rice are marketable crops. However, the flooded rice seems to be the more robust component for high wastewater application rates.

  16. An Intelligent Monitor System for Gearbox Test

    NASA Astrophysics Data System (ADS)

    Zhang, Guangbin; Ge, Yunjian; Fang, Kai; Liang, Qiaokang

    We have developed an intelligent monitor system for gearbox test for a known automobile enterprise, aiming at gearbox test-online had been an important part of auto industry production pipeline. A test of automobile gearbox based on expert system, neural network and an alternating current motor was established. The design of the system could effectively improve the precision of control and information integrity. While it could reduce the energy economization compared to the regular one at the same time. Firstly, the architecture of the test system and the user interface are presented in this paper. Then the work principles of the system is described, at last the software structure is elaborated.

  17. 30 CFR 27.21 - Methane-monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane-monitoring system. 27.21 Section 27.21... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.21 Methane-monitoring system. (a) A methane-monitoring system shall be so designed that any machine or equipment,...

  18. 30 CFR 27.21 - Methane-monitoring system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Methane-monitoring system. 27.21 Section 27.21... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.21 Methane-monitoring system. (a) A methane-monitoring system shall be so designed that any machine or equipment,...

  19. 30 CFR 27.21 - Methane-monitoring system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Methane-monitoring system. 27.21 Section 27.21... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.21 Methane-monitoring system. (a) A methane-monitoring system shall be so designed that any machine or equipment,...

  20. Photoelectric system continuously monitors liquid level

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Immersion probe presents a depth-sensitive optical transmission path between a light source and a photoelectric cell to continuously monitor the level of a transparent liquid in a tank. This system operates automatically, without moving parts, and provides output signals to a remote recorder.

  1. Post-operative cranial pressure monitoring system

    NASA Technical Reports Server (NTRS)

    Fager, C. A., Jr.; Long, L. E.; Trent, R. L.

    1970-01-01

    System for monitoring of fluidic pressures in cranial cavity uses a miniaturized pressure sensing transducer, combined with suitable amplification means, a meter with scale calibrated in terms of pressures between minus 100 and plus 900 millimeters of water, and a miniaturized chart recorder covering similar range of pressures.

  2. Multipurpose ROV system for underwater monitoring

    SciTech Connect

    Graczyk, T.

    1995-12-31

    The paper presents achievements of the Underwater Team at the Faculty of Maritime Technology of the Szczecin Technical University in the field of designing the equipment destined for the underwater monitoring. The multipurpose remotely operated vehicle system is described. Technical specification, some laboratory tank test results, research techniques, operational range, experience and development trends have been discussed.

  3. A Prototype Wire Position Monitoring System

    SciTech Connect

    Wang, Wei

    2010-12-07

    The Wire Position Monitoring System (WPM) will track changes in the transverse position of LCLS Beam Position Monitors (BPMs) to 1{micro}m over several weeks. This position information will be used between applications of beam based alignment to correct for changes in component alignment. The WPM system has several requirements. The sensor range must be large enough so that precision sensor positioning is not required. The resolution needs to be small enough so that the signal can be used to monitor motion to 1{micro}m. The system must be stable enough so that system drift does not mimic motion of the component being monitored. The WPM sensor assembly consists of two parts, the magnetic sensor and an integrated lock-in amplifier. The magnetic sensor picks up a signal from the alternating current in a stretched wire. The voltage v induced in the sensor is proportional to the wire displacement from the center of the sensor. The integrated lock-in amplifier provides a DC output whose magnitude is proportional to the AC signal from the magnetic sensor. The DC output is either read on a digital voltmeter or digitized locally and communicated over a computer interface.

  4. Microsensor Technologies for Plant Growth System Monitoring

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo

    2004-01-01

    This document covered the following: a) demonstration of feasibility of microsensor for tube and particulate growth systems; b) Dissolved oxygen; c)Wetness; d) Flexible microfluidic substrate with microfluidic channels and microsensor arrays; e)Dynamic root zone control/monitoring in microgravity; f)Rapid prototyping of phytoremediation; and g) A new tool for root physiology and pathology.

  5. Video monitoring system for car seat

    NASA Technical Reports Server (NTRS)

    Elrod, Susan Vinz (Inventor); Dabney, Richard W. (Inventor)

    2004-01-01

    A video monitoring system for use with a child car seat has video camera(s) mounted in the car seat. The video images are wirelessly transmitted to a remote receiver/display encased in a portable housing that can be removably mounted in the vehicle in which the car seat is installed.

  6. Energy Consumption Monitoring System for Large Complexes

    NASA Astrophysics Data System (ADS)

    Jorge, André; Guerreiro, João; Pereira, Pedro; Martins, João; Gomes, Luís

    This paper describes the development of an open source system for monitoring and data acquisition of several energy analyzers. The developed system is based on a computer with Internet/Intranet connection by means of RS485 using Modbus RTU as communication protocol. The monitoring/metering system was developed for large building complexes and was validated in the Faculdade de Ciências e Tecnologia University campus. The system considers two distinct applications. The first one allows the user to verify, in real time, the energy consumption of any department in the complex, produce load diagrams, tables and print, email or save all available data. The second application keeps records of active/reactive energy consumption in order to verify the existence of some anomalous situation, and also monthly charge energy consumption to each corresponding department.

  7. Master Console System Monitoring and Control Development

    NASA Technical Reports Server (NTRS)

    Brooks, Russell A.

    2013-01-01

    The Master Console internship during the spring of 2013 involved the development of firing room displays at the John F. Kennedy Space Center (KSC). This position was with the Master Console Product Group (MCPG) on the Launch Control System (LCS) project. This project is responsible for the System Monitoring and Control (SMC) and Record and Retrieval (R&R) of launch operations data. The Master Console is responsible for: loading the correct software into each of the remaining consoles in the firing room, connecting the proper data paths to and from the launch vehicle and all ground support equipment, and initializing the entire firing room system to begin processing. During my internship, I developed a system health and status display for use by Master Console Operators (MCO) to monitor and verify the integrity of the servers, gateways, network switches, and firewalls used in the firing room.

  8. Preparing for floods: flood forecasting and early warning

    NASA Astrophysics Data System (ADS)

    Cloke, Hannah

    2016-04-01

    Flood forecasting and early warning has continued to stride ahead in strengthening the preparedness phases of disaster risk management, saving lives and property and reducing the overall impact of severe flood events. For example, continental and global scale flood forecasting systems such as the European Flood Awareness System and the Global Flood Awareness System provide early information about upcoming floods in real time to various decisionmakers. Studies have found that there are monetary benefits to implementing these early flood warning systems, and with the science also in place to provide evidence of benefit and hydrometeorological institutional outlooks warming to the use of probabilistic forecasts, the uptake over the last decade has been rapid and sustained. However, there are many further challenges that lie ahead to improve the science supporting flood early warning and to ensure that appropriate decisions are made to maximise flood preparedness.

  9. System specification for the integrated monitoring and surveillance system

    SciTech Connect

    1997-09-01

    This System Specification establishes the requirements for the Plutonium Focus Area (PFA) Integrated Monitoring and Surveillance System (IMSS). In this document, ``Integrated Monitoring and Surveillance System`` is used to describe the concept of integrated sensors, computers, personnel, and systems that perform the functions of sensing conditions, acquiring data, monitoring environmental safety and health, controlling and accounting for materials, monitoring material stability, monitoring container integrity, transferring data, and analyzing, reporting, and storing data. This concept encompasses systems (e.g. sensors, personnel, databases, etc.) that are already in place at the sites but may require modifications or additions to meet all identified surveillance requirements. The purpose of this System Specification is to provide Department of Energy (DOE) sites that store plutonium materials with a consolidation of all known requirements for the storage and surveillance of 3013 packages of stabilized plutonium metals and oxides. This compilation may be used (1) as a baseline for surveillance system design specifications where 3013 packages of stabilized plutonium metals and oxides will be stored and monitored; (2) as a checklist for evaluating existing surveillance systems to ensure that all requirements are met for the storage and surveillance of 3013 packages of stabilized plutonium metals and oxides; and (3) as a baseline for preparing procurement specifications tailored for site specific storage and surveillance of 3013 packages of stabilized plutonium metals and oxides.

  10. Fuel cell stack monitoring and system control

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2004-02-17

    A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell.

  11. A systematic review of sensitivities in the Swedish flood-forecasting system

    NASA Astrophysics Data System (ADS)

    Arheimer, Berit; Lindström, Göran; Olsson, Jonas

    2011-05-01

    Since the early 1970s operational flood forecasts in Sweden have been based on the hydrological HBV model. However, the model is only one component in a chain of processes for production of hydrological forecasts. During the last 35 years there has been considerable work on improving different parts of the forecast procedure and results from specific studies have been reported frequently. Yet, the results have not been compared in any overall assessment of potential for improvements. Therefore we formulated and applied a method for translating results from different studies to a common criterion of error reduction. The aim was to quantify potential improvements in a systems perspective and to identify in which part of the production chain efforts would result in significantly better forecasts. The most sensitive (> 20% error reduction) components were identified for three different operational-forecast types. From the analyses of historical efforts to minimise the errors in the Swedish flood-forecasting system, it was concluded that 1) general runoff simulations and predictions could be significantly improved by model structure and calibration, model equations (e.g. evapotranspiration expression), and new precipitation input using radar data as a complement to station gauges; 2) annual spring-flood forecasts could be significantly improved by better seasonal meteorological forecast, fresh re-calibration of the hydrological model based on long time-series, and data assimilation of snow-pack measurements using georadar or gamma-ray technique; 3) short-term (2 days) forecasts could be significantly improved by up-dating using an auto-regressive method for discharge, and by ensembles of meteorological forecasts using the median at occasions when the deterministic forecast is out of the ensemble range. The study emphasises the importance of continuously evaluating the entire production chain to search for potential improvements of hydrological forecasts in the

  12. Infrared system for monitoring movement of objects

    DOEpatents

    Valentine, K.H.; Falter, D.D.; Falter, K.G.

    1991-04-30

    A system is described for monitoring moving objects, such as the flight of honeybees and other insects, using a pulsed laser light source. This system has a self-powered micro-miniaturized transmitting unit powered, in the preferred embodiment, with an array of solar cells. This transmitting unit is attached to the object to be monitored. These solar cells provide current to a storage energy capacitor to produce, for example, five volts for the operation of the transmitter. In the simplest embodiment, the voltage on the capacitor operates a pulse generator to provide a pulsed energizing signal to one or more very small laser diodes. The pulsed light is then received at a receiving base station using substantially standard means which converts the light to an electrical signal for processing in a microprocessor to create the information as to the movement of the object. In the case of a unit for monitoring honeybees and other insects, the transmitting unit weighs less than 50 mg, and has a size no larger than 1[times]3[times]5 millimeters. Also, the preferred embodiment provides for the coding of the light to uniquely identify the particular transmitting unit that is being monitored. A wake-up' circuit is provided in the preferred embodiment whereby there is no transmission until the voltage on the capacitor has exceeded a pre-set threshold. Various other uses of the motion-detection system are described. 4 figures.

  13. Replaceable Sensor System for Bioreactor Monitoring

    NASA Technical Reports Server (NTRS)

    Mayo, Mike; Savoy, Steve; Bruno, John

    2006-01-01

    A sensor system was proposed that would monitor spaceflight bioreactor parameters. Not only will this technology be invaluable in the space program for which it was developed, it will find applications in medical science and industrial laboratories as well. Using frequency-domain-based fluorescence lifetime technology, the sensor system will be able to detect changes in fluorescence lifetime quenching that results from displacement of fluorophorelabeled receptors bound to target ligands. This device will be used to monitor and regulate bioreactor parameters including glucose, pH, oxygen pressure (pO2), and carbon dioxide pressure (pCO2). Moreover, these biosensor fluorophore receptor-quenching complexes can be designed to further detect and monitor for potential biohazards, bioproducts, or bioimpurities. Biosensors used to detect biological fluid constituents have already been developed that employ a number of strategies, including invasive microelectrodes (e.g., dark electrodes), optical techniques including fluorescence, and membrane permeable systems based on osmotic pressure. Yet the longevity of any of these sensors does not meet the demands of extended use in spacecraft habitat or bioreactor monitoring. It was therefore necessary to develop a sensor platform that could determine not only fluid variables such as glucose concentration, pO2, pCO2, and pH but can also regulate these fluid variables with controlled feedback loop.

  14. Infrared system for monitoring movement of objects

    DOEpatents

    Valentine, Kenneth H.; Falter, Diedre D.; Falter, Kelly G.

    1991-01-01

    A system for monitoring moving objects, such as the flight of honeybees and other insects, using a pulsed laser light source. This system has a self-powered micro-miniaturized transmitting unit powered, in the preferred embodiment, with an array solar cells. This transmitting unit is attached to the object to be monitored. These solar cells provide current to a storage energy capacitor to produce, for example, five volts for the operation of the transmitter. In the simplest embodiment, the voltage on the capacitor operates a pulse generator to provide a pulsed energizing signal to one or more very small laser diodes. The pulsed light is then received at a receiving base station using substantially standard means which converts the light to an electrical signal for processing in a microprocessor to create the information as to the movement of the object. In the case of a unit for monitoring honeybees and other insects, the transmitting unit weighs less than 50 mg, and has a size no larger than 1.times.3.times.5 millimeters. Also, the preferred embodiment provides for the coding of the light to uniquely identify the particular transmitting unit that is being monitored. A "wake-up" circuit is provided in the preferred embodiment whereby there is no transmission until the voltage on the capacitor has exceeded a pre-set threshold. Various other uses of the motion-detection system are described.

  15. Embedded programmable blood pressure monitoring system

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Mahmud-Ul; Islam, Md. Kafiul; Shawon, Mehedi Azad; Nowrin, Tasnuva Faruk

    2010-02-01

    A more efficient newer algorithm of detecting systolic and diastolic pressure of human body along with a complete package of an effective user-friendly embedded programmable blood pressure monitoring system has been proposed in this paper to reduce the overall workload of medical personals as well as to monitor patient's condition more conveniently and accurately. Available devices for measuring blood pressure have some problems and limitations in case of both analog and digital devices. The sphygmomanometer, being analog device, is still being used widely because of its reliability and accuracy over digital ones. But it requires a skilled person to measure the blood pressure and obviously not being automated as well as time consuming. Our proposed system being a microcontroller based embedded system has the advantages of the available digital blood pressure machines along with a much improved form and has higher accuracy at the same time. This system can also be interfaced with computer through serial port/USB to publish the measured blood pressure data on the LAN or internet. The device can be programmed to determine the patient's blood pressure after each certain interval of time in a graphical form. To sense the pressure of human body, a pressure to voltage transducer is used along with a cuff in our system. During the blood pressure measurement cycle, the output voltage of the transducer is taken by the built-in ADC of microcontroller after an amplifier stage. The recorded data are then processed and analyzed using the effective software routine to determine the blood pressure of the person under test. Our proposed system is thus expected to certainly enhance the existing blood pressure monitoring system by providing accuracy, time efficiency, user-friendliness and at last but not the least the 'better way of monitoring patient's blood pressure under critical care' all together at the same time.

  16. Intelligent monitoring system of bedridden elderly

    NASA Astrophysics Data System (ADS)

    Dong, Rue Shao; Tanaka, Motohiro; Ushijima, Miki; Ishimatsu, Takakazu

    2005-12-01

    In this paper we propose a system to detect physical behavior of the elderly under bedridden status. This system is used to prevent those elderly from falling down and being wounded. Basic idea of our approach is to measure the body movements of the elderly using the acceleration sensor. Based on the data measured, dangerous actions of the elderly are extracted and warning signals to the caseworkers are generated via wireless signals. A feature of the system is that the senor part is compactly assembled as a wearable unit. Another feature of the system is that the system adopts a simplified wireless network system. Due to the network capability the system can monitor physical movements of multi-patients. Applicability of the system is now being examined at hospitals.

  17. Fuel cell stack monitoring and system control

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2005-01-25

    A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell. Other polarization curves may be generated and used for fuel cell stack monitoring based on different operating pressures, temperatures, hydrogen quantities.

  18. A Resilient Condition Assessment Monitoring System

    SciTech Connect

    Humberto Garcia; Wen-Chiao Lin; Semyon M. Meerkov

    2012-08-01

    An architecture and supporting methods are presented for the implementation of a resilient condition assessment monitoring system that can adaptively accommodate both cyber and physical anomalies to a monitored system under observation. In particular, the architecture includes three layers: information, assessment, and sensor selection. The information layer estimates probability distributions of process variables based on sensor measurements and assessments of the quality of sensor data. Based on these estimates, the assessment layer then employs probabilistic reasoning methods to assess the plant health. The sensor selection layer selects sensors so that assessments of the plant condition can be made within desired time periods. Resilient features of the developed system are then illustrated by simulations of a simplified power plant model, where a large portion of the sensors are under attack.

  19. Health Monitoring of a Satellite System

    NASA Technical Reports Server (NTRS)

    Chen, Robert H.; Ng, Hok K.; Speyer, Jason L.; Guntur, Lokeshkumar S.; Carpenter, Russell

    2004-01-01

    A health monitoring system based on analytical redundancy is developed for satellites on elliptical orbits. First, the dynamics of the satellite including orbital mechanics and attitude dynamics is modelled as a periodic system. Then, periodic fault detection filters are designed to detect and identify the satellite's actuator and sensor faults. In addition, parity equations are constructed using the algebraic redundant relationship among the actuators and sensors. Furthermore, a residual processor is designed to generate the probability of each of the actuator and sensor faults by using a sequential probability test. Finally, the health monitoring system, consisting of periodic fault detection lters, parity equations and residual processor, is evaluated in the simulation in the presence of disturbances and uncertainty.

  20. Diagnostic system monitors gearboxes at hydro plant

    SciTech Connect

    1995-06-01

    This article describes how, by applying real-time, tooth-by-tooth vibration ``imaging,`` this system detects gear-tooth defects -- such as pitting and cracking. To keep Swan Falls hydroelectric generating station in service, Idaho Power Co constructed a new two-unit, open-pit-turbine powerhouse. Swan Falls, Kuna, Idaho, the oldest on the Snake River, services southern Idaho and parts of Oregon -- one of 17 hydroelectric plants maintained by the utility. The hydro units use speed increasers (gearboxes) so higher-speed generators are possible. To monitor these gearboxes, engineers at Swan Falls required a continuous on-line predictive maintenance system. The system monitors the planetary step-up gearboxes in the two main 12.5-MW pit turbine/generators. In some Idaho Power plants with a similar hydro turbine/generator design, the gearboxes have experienced major failures, leading to hundreds of thousands of dollars in collateral damage.

  1. Monitoring the battery status for photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Kim, Myungsoo; Hwang, Euijin

    Photovoltaic power systems in Korea have been installed in remote islands where it is difficult to connect the utilities. Lead/acid batteries are used as an energy storage device for the stand-alone photovoltaic system. Hence, monitoring the battery status of photovoltaic systems is quite important to extend the total system service life. To monitor the state-of-charge of batteries, we adopted a current interrupt technique to measure the internal resistance of the battery. The internal resistance increases at the end of charge/discharge steps and also with cycles. The specific gravity of the electrolyte was measured in relation to the state-of-charge. A home-made optical hydrometer was utilized for automatic monitoring of the specific gravity. It is shown that the specific gravity and stratification increase with cycle number. One of the photovoltaic systems in a remote island, Ho-do, which has 90 kW peak power was checked for actual operational conditions such as solar generation, load, and battery status.

  2. A design methodology for unattended monitoring systems

    SciTech Connect

    SMITH,JAMES D.; DELAND,SHARON M.

    2000-03-01

    The authors presented a high-level methodology for the design of unattended monitoring systems, focusing on a system to detect diversion of nuclear materials from a storage facility. The methodology is composed of seven, interrelated analyses: Facility Analysis, Vulnerability Analysis, Threat Assessment, Scenario Assessment, Design Analysis, Conceptual Design, and Performance Assessment. The design of the monitoring system is iteratively improved until it meets a set of pre-established performance criteria. The methodology presented here is based on other, well-established system analysis methodologies and hence they believe it can be adapted to other verification or compliance applications. In order to make this approach more generic, however, there needs to be more work on techniques for establishing evaluation criteria and associated performance metrics. They found that defining general-purpose evaluation criteria for verifying compliance with international agreements was a significant undertaking in itself. They finally focused on diversion of nuclear material in order to simplify the problem so that they could work out an overall approach for the design methodology. However, general guidelines for the development of evaluation criteria are critical for a general-purpose methodology. A poor choice in evaluation criteria could result in a monitoring system design that solves the wrong problem.

  3. Remote monitoring of a Fire Protection System

    NASA Astrophysics Data System (ADS)

    Bauman, Steven; Vermeulen, Tom; Roberts, Larry; Matsushige, Grant; Gajadhar, Sarah; Taroma, Ralph; Elizares, Casey; Arruda, Tyson; Potter, Sharon; Hoffman, James

    2011-03-01

    Some years ago CFHT proposed developing a Remote Observing Environment aimed at producing Science Observations at their Observatory Facility on Mauna Kea from their Headquarters facility in Waimea, HI. This Remote Observing Project commonly referred to as OAP (Observatory Automation Project) was completed at the end of January 2011 and has been providing the majority of Science Data since. My poster will discuss the upgrades to the existing fire alarm protection system. With no one at the summit during nightly operations, the observatory facility required automated monitoring of the facility for safety to personnel and equipment in the case of a fire. An addressable analog fire panel was installed which utilizes digital communication protocol (DCP), intelligent communication with other devices, and an RS-232 interface which provides feedback and real-time monitoring of the system. Using the interface capabilities of the panel, it provides notifications when heat detectors, smoke sensors, manual pull stations, or the main observatory computer room fire suppression system has been activated. The notifications are sent out as alerts to staff in the form of test massages and emails and the observing control GUI interface alerts the remote telescope operator with a map showing the location of the fire occurrence and type of device that has been triggered. And all of this was accomplished without the need for an outside vendor to monitor the system and facilitate warnings or notifications regarding the system.

  4. Methods, apparatus, and systems for monitoring transmission systems

    SciTech Connect

    Polk, Robert E; Svoboda, John M; West, Phillip B; Heath, Gail L; Scott, Clark L

    2015-01-27

    A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.

  5. Methods, apparatus, and systems for monitoring transmission systems

    DOEpatents

    Polk, Robert E; Svoboda, John M.; West, Phillip B.; Heath, Gail L.; Scott, Clark L.

    2016-07-19

    A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.

  6. Methods, apparatus, and systems for monitoring transmission systems

    DOEpatents

    Polk, Robert E [Idaho Falls, ID; Svoboda, John M [Idaho Falls, ID; West, Phillip B [Idaho Falls, ID; Heath, Gail L [Iona, ID; Scott, Clark L [Idaho Falls, ID

    2010-08-31

    A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.

  7. Monitoring duration and extent of storm-surge and flooding in Western Coastal Louisiana marshes with Envisat ASAR data

    USGS Publications Warehouse

    Ramsey, E.; Lu, Zhiming; Suzuoki, Y.; Rangoonwala, A.; Werle, D.

    2011-01-01

    Inundation maps of coastal marshes in western Louisiana were created with multitemporal Envisat Advanced Synthetic Aperture (ASAR) scenes collected before and during the three months after Hurricane Rita landfall in September 2005. Corroborated by inland water-levels, 7 days after landfall, 48% of coastal estuarine and palustrine marshes remained inundated by storm-surge waters. Forty-five days after landfall, storm-surge inundated 20% of those marshes. The end of the storm-surge flooding was marked by an abrupt decrease in water levels following the passage of a storm front and persistent offshore winds. A complementary dramatic decrease in flood extent was confirmed by an ASAR-derived inundation map. In nonimpounded marshes at elevations 80cm during the first month after Rita landfall. After this initial period, drainage from marshes-especially impounded marshes-was hastened by the onset of offshore winds. Following the abrupt drops in inland water levels and flood extent, rainfall events coinciding with increased water levels were recorded as inundation re-expansion. This postsurge flooding decreased until only isolated impounded and palustrine marshes remained inundated. Changing flood extents were correlated to inland water levels and largely occurred within the same marsh regions. Trends related to incremental threshold increases used in the ASAR change-detection analyses seemed related to the preceding hydraulic and hydrologic events, and VV and HH threshold differences supported their relationship to the overall wetland hydraulic condition. ?? 2010 IEEE.

  8. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of...

  9. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  10. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of...

  11. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number...

  12. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  13. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  14. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  15. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number...

  16. 14 CFR 171.319 - Approach elevation monitor system requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Approach elevation monitor system... (MLS) § 171.319 Approach elevation monitor system requirements. (a) The monitor system must act to... mean error to ±0.067 degree can be satisfied by the following procedure. The integral monitor...

  17. Monitoring well systems in geothermal areas

    SciTech Connect

    Lofgren, B.E.; O'Rourke, J.; Sterrett, R.; Thackston, J.; Fain, D.

    1982-03-01

    The ability to monitor the injection of spent geothermal fluids at reasonable cost might be greatly improved by use of multiple-completion techniques. Several such techniques, identified through contact with a broad range of experts from the groundwater and petroleum industries, are evaluated relative to application in the typical geologic and hydrologic conditions of the Basin and Range Province of the Western United States. Three basic monitor well designs are suggested for collection of pressure and temperature data: Single standpipe, multiple standpipe, and closed-system piezometers. A fourth design, monitor well/injection well dual completions, is determined to be inadvisable. Also, while it is recognized that water quality data is equally important, designs to allow water sampling greatly increase costs of construction, and so such designs are not included in this review. The single standpipe piezometer is recommended for use at depths less than 152 m (500 ft); several can be clustered in one area to provide information on vertical flow conditions. At depths greater than 152 m (500 ft), the multiple-completion standpipe and closed-system piezometers are likely to be more cost effective. Unique conditions at each monitor well site may necessitate consideration of the single standpipe piezometer even for deeper completions.

  18. A Study on Active Disaster Management System for Standardized Emergency Action Plan using BIM and Flood Damage Estimation Techniques

    NASA Astrophysics Data System (ADS)

    Jeong, C.; Om, J.; Hwang, J.; Joo, K.; Heo, J.

    2013-12-01

    In recent, the frequency of extreme flood has been increasing due to climate change and global warming. Highly flood damages are mainly caused by the collapse of flood control structures such as dam and dike. In order to reduce these disasters, the disaster management system (DMS) through flood forecasting, inundation mapping, EAP (Emergency Action Plan) has been studied. The estimation of inundation damage and practical EAP are especially crucial to the DMS. However, it is difficult to predict inundation and take a proper action through DMS in real emergency situation because several techniques for inundation damage estimation are not integrated and EAP is supplied in the form of a document in Korea. In this study, the integrated simulation system including rainfall frequency analysis, rainfall-runoff modeling, inundation prediction, surface runoff analysis, and inland flood analysis was developed. Using this system coupled with standard GIS data, inundation damage can be estimated comprehensively and automatically. The standard EAP based on BIM (Building Information Modeling) was also established in this system. It is, therefore, expected that the inundation damages through this study over the entire area including buildings can be predicted and managed.

  19. Tether deployment monitoring system, phase 2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An operational Tether Deployment Monitoring System (TEDEMS) was constructed that would show system functionality in a terrestrial environment. The principle function of the TEDEMS system is the launching and attachment of reflective targets onto the tether during its deployment. These targets would be tracked with a radar antenna that was pointed towards the targets by a positioning system. A spring powered launcher for the targets was designed and fabricated. An instrumentation platform and launcher were also developed. These modules are relatively heavy and will influence tether deployment scenarios, unless they are released with a velocity and trajectory closely matching that of the tether. Owing to the tracking range limitations encountered during field trails of the Radar system, final TEDEMS system integration was not completed. The major module not finished was the system control computer. The lack of this device prevented any subsystem testing or field trials to be conducted. Other items only partially complete were the instrumentation platform launcher and modules and the radar target launcher. The work completed and the tests performed suggest that the proposed system continues to be a feasible approach to tether monitoring, although additional effort is still necessary to increase the range at which modules can be detected. The equipment completed and tested, to the extent stated, is available to NASA for use on any future program that requires tether tracking capability.

  20. Bypass and monitoring circuit for refrigeration system

    SciTech Connect

    Kyzer, G.; Smollon, J.

    1987-05-19

    A bypass and monitoring circuit is described for use with a refrigeration system having means to sense a need to initiate a defrost cycle and means to reset the defrost cycle upon sensing the defrosting of the refrigeration system. The circuit comprises: first means to sense whether the duration of each defrost cycle exceeds a certain period; and second means, responsive to the first means sensing that the duration of a given cycle exceeded the certain period, for electrically decoupling the reset means from the refrigeration system, for resetting the given defrost cycle and for enabling the occurrence of and controlling the duration of subsequent defrost cycle.

  1. Automated iodine monitor system. [for aqueous solutions

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The feasibility of a direct spectrophotometric measurement of iodine in water was established. An iodine colorimeter, was built to demonstrate the practicality of this technique. The specificity of this method was verified when applied to an on-line system where a reference solution cannot be used, and a preliminary design is presented for an automated iodine measuring and controlling system meeting the desired specifications. An Automated iodine monitor/controller system based on this preliminary design was built, tested, and delivered to the Johnson Space Center.

  2. Valve Health Monitoring System Utilizing Smart Instrumentation

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L.; Drouant, George J.

    2006-01-01

    The valve monitoring system is a stand alone unit with network capabilities for integration into a higher level health management system. The system is designed for aiding in failure predictions of high-geared ball valves and linearly actuated valves. It performs data tracking and archiving for identifying degraded performance. The data collection types are cryogenic cycles, total cycles, inlet temperature, body temperature torsional strain, linear bonnet strain, preload position, total travel and total directional changes. Events are recorded and time stamped in accordance with the IRIG B True Time. The monitoring system is designed for use in a Class 1 Division II explosive environment. The basic configuration consists of several instrumentation sensor units and a base station. The sensor units are self contained microprocessor controlled and remotely mountable in three by three by two inches. Each unit is potted in a fire retardant substance without any cavities and limited to low operating power for maintaining safe operation in a hydrogen environment. The units are temperature monitored to safeguard against operation outside temperature limitations. Each contains 902-928 MHz band digital transmitters which meet Federal Communication Commission's requirements and are limited to a 35 foot transmission radius for preserving data security. The base-station controller correlates data from the sensor units and generates data event logs on a compact flash memory module for database uploading. The entries are also broadcast over an Ethernet network. Nitrogen purged National Electrical Manufactures Association (NEMA) Class 4 enclosures are used to house the base-station

  3. A remote drip infusion monitoring system employing Bluetooth.

    PubMed

    Amano, Hikaru; Ogawa, Hidekuni; Maki, Hiromichi; Tsukamoto, Sosuke; Yonezawa, Yoshiharu; Caldwell, W Morton

    2012-01-01

    We have developed a remote drip infusion monitoring system for use in hospitals. The system consists of several infusion monitoring devices and a central monitor. The infusion monitoring device employing a Bluetooth module can detect the drip infusion rate and an empty infusion solution bag, and then these data are sent to the central monitor placed at the nurses' station via the Bluetooth. The central monitor receives the data from several infusion monitoring devices and then displays graphically them. Therefore, the developed system can monitor intensively the drip infusion situation of the several patients at the nurses' station.

  4. Monitoring of heavy flooding by orbital remote sensing: The example of the Doce river valley. [Doce River Valley, Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Novo, E. M. L. D.; Dossantos, A. P.

    1981-01-01