Forest resources of the south Arkansas delta
R.K. Winters
1939-01-01
The portion of Arkansas treated in this report is a former flood plain of Mississippi River, through which the Arkansas, the White, the Mississippi, and other rivers have cut new channels and developed a later flood plain at a lower level. The soils and topography differ accordingly on the two sites. The present flood plains, or bottoms, are generally flat; wheareas...
Wetland hydrology and tree distribution of the Apalachicola River flood plain, Florida
Leitman, Helen M.; Sohm, James E.; Franklin, Marvin A.
1984-01-01
The Apalachicola River in northwest Florida is part of a three-State drainage basin encompassing 50,800 km 2 in Alabama, Georgia, and Florida. The river is formed by the confluence of the Chattahoochee and Flint Rivers at Jim Woodruff Dam from which it flows 171 km to Apalachicola Bay in the Gulf of Mexico. Its average annual discharge at Chattahoochee, Fla., is 690 m3/s (1958-80) with annual high flows averaging nearly 3,000 m3/s. Its flood plain supports 450 km 2 of bottom-land hardwood and tupelo-cypress forests. The Apalachicola River Quality Assessment focuses on the hydrology and productivity of the flood-plain forest. The purpose of this part of the assessment is to address river and flood-plain hydrology, flood-plain tree species and forest types, and water and tree relations. Seasonal stage fluctuations in the upper river are three times greater than in the lower river. Analysis of long-term streamflow record revealed that 1958-79 average annual and monthly flows and flow durations were significantly greater than those of 1929-57, probably because of climatic changes. However, stage durations for the later period were equal to or less than those of the earlier period. Height of natural riverbank levees and the size and distribution of breaks in the levees have a major controlling effect on flood-plain hydrology. Thirty-two kilometers upstream of the bay, a flood-plain stream called the Brothers River was commonly under tidal influence during times of low flow in the 1980 water year. At the same distance upstream of the bay, the Apalachicola River was not under tidal influence during the 1980 water year. Of the 47 species of trees sampled, the five most common were wet-site species constituting 62 percent of the total basal area. In order of abundance, they were water tupelo, Ogeechee tupelo, baldcypress, Carolina ash, and swamp tupelo. Other common species were sweetgum, overcup oak, planertree, green ash, water hickory, sugarberry, and diamond-leaf oak. Five forest types were defined on the basis of species predominance by basal area. Biomass increased downstream and was greatest in forests growing on permanently saturated soils. Depth of water, duration of inundation and saturation, and water-level fluctuation, but not water velocity, were highly correlated with forest types. Most forest types dominated by tupelo and bald-cypress grew on permanently saturated soils that were inundated by flood waters 50 to 90 percent of the time, or an average of 75 to 225 consecutive days during the growing season from 1958 to 1980. Most forest types dominated by other species grew in areas that were saturated or inundated 5 to 25 percent of the time, or an average of 5 to 40 consecutive days during the growing season from 1958 to 1980. Water and tree relations varied with river location because range in water-level fluctuation and topographic relief in the flood plain diminished downstream.
Timber resources of the Kuskokwim flood plain and adjacent upland.
Karl M. Hegg; Harold. Sieverding
1979-01-01
The first intensive forest inventory of the Kuskokwim River flood plains and adjacent uplands was conducted in 1967. A commercial forest area of 252.5 thousand acres (102.2 thousand hectares) was identified with a growing-stock volume of 343.0 million cubic feet (9.7 million cubic meters). A noncommercial stratum was also examined that had substantial standing volume...
Wetland hydrology and tree distribution of the Apalachicola River flood plain, Florida
Leitman, H.M.; Sohm, J.E.; Franklin, M.A.
1982-01-01
The Apalachicola River is part of a 50,800-square-kilometer drainage basin in northwest Florida, Alabama, and Georgia. The river is formed by the confluence of the Chattahoochee and Flint Rivers at Jim Woodruff Dam and flows 171 kilometers to Apalachicola Bay in the Gulf of Mexico. Its flood plain supports 450 square kilometers of bottom-land hardwood and tupelco-cypress forests. The most common trees, constituting 62 percent of the total basal area, were five wet-site species; water tupelo, Ogeeche tupelo, baldcypress, Carolina ash, and swamp tupelo. Other common species were sweetgum, overcup oak, planertree, green ash, water hickory, sugarberry, and diamond-leaf oak. Five forest types were defined based on species predominance by basal area. Biomass increased downstream and was greatest in forests growing on permanently saturated soils. Water and tree relations varied with river location because range in water-level fluctuation and topographic relief in the flood plain diminished downstream. Heights of natural riverbank levees and size and distribution of breaks in levees had a major controlling effect on flood-plain hydrology. Depth of water, duration of inundation and saturation, and river location, but not water velocity, were very highly correlated with forest types. (USGS)
Stephen W. Golladay; Juliann M. Battle; Brian J. Palik
2007-01-01
In southeastern Coastal Plain streams, wood debris can be very abundant and is recruited from extensive forested floodplains. Despite importance of wood debris, there have been few opportunities to examine recruitment and redistribution of wood in an undisturbed setting, particularly in the southeastern Coastal Plain. Following extensive flooding in 1994, measurements...
B. Graeme Lockaby; William H. Conner
1999-01-01
Relative to effects of flooding, little is known about the influence of hydrology-nutrient interactions on aboveground net primary production (NPP) in forested wetlands. The authors found that nutrient circulation and NPP were closely related along a complex physical, chemical, and hydrologic gradient in a bottomland hardwood forest with four distinct communities....
Flood plain and channel dynamics of the Quinault and Queets Rivers, Washington, USA
O'Connor, J. E.; Jones, M.A.; Haluska, T.L.
2003-01-01
Observations from this study and previous studies on the Queets River show that channel and flood-plain dynamics and morphology are affected by interactions between flow, sediment, and standing and entrained wood, some of which likely involve time frames similar to 200–500-year flood-plain half-lives. On the upper Quinault River and Queets River, log jams promote bar growth and consequent channel shifting, short-distance avulsions, and meander cutoffs, resulting in mobile and wide active channels. On the lower Quinault River, large portions of the channel are stable and flow within vegetated flood plains. However, locally, channel-spanning log jams have caused channel avulsions within reaches that have been subsequently mobile for several decades. In all three reaches, log jams appear to be areas of conifer germination and growth that may later further influence channel and flood-plain conditions on long time scales by forming flood-plain areas resistant to channel migration and by providing key members of future log jams. Appreciation of these processes and dynamics and associated temporal and spatial scales is necessary to formulate effective long-term approaches to managing fluvial ecosystems in forested environments.
Root dynamics in bottomland hardwood forests of the Southeastern United States Coastal Plain
Jim L. Chambers
2003-01-01
Effects of flooding on root dynamics appear nonlinear and therefore difficult to predict, leading to disparate and often contradictory reports of flooding impacts on production in bottomland hardwood forests. We explored root dynamics in two adjacent wetland habitats by comparing results obtained from several methods of estimating root processes. Also, we tested the...
Elder, John F.; Cairns, Duncan J.
1982-01-01
Measurements of litter fall (leaves and other particulate organic material) and leaf decomposition were made on the bottom-land hardwood swamp of the Apalachicola River flood plain in 1979-80. Litter fall was collected monthly from nets located in 16 study plots. The plots represented five forest types in the swamp and levee areas of the Apalachicola River flood plain. Forty-three species of trees, vines, and other plants contributed to the total litter fall, but more than 90 percent of the leaf material originated from 12 species. Nonleaf material made up 42 percent of the total litter fall. Average litter fall was determined to be 800 grams per square meter per year, resulting in an annual deposition of 3.6 ? 105 metric tons of organic material in the 454-square-kilometer flood plain. The levee communities have less tree biomass but greater tree diversity than do swamp communities. The levee vegetation, containing less tree biomass, produces slightly more litter fall per unit of ground surface area than does the swamp vegetation. The swamps are dominated by three genera: tupelo (Nyssa), cypress (Taxodium) and ash (Fraxinus). These genera account for more than 50 percent of the total leaf fall in the flood plain, but they are the least productive, on a weight-perbiomass basis, of any of the 12 major leaf producers. Decomposition rates of leaves from five common floodplain tree species were measured using a standard leaf-bag technique. Leaf decomposition was highly species dependent. Tupelo (Nyssa spp.) and sweetgum (Liquidambar styraciflua) leaves decomposed completely in 6 months when flooded by river water. Leaves of baldcypress (Taxodium distichum) and diamond-leaf oak (Quercus laurifolia) were much more resistant. Water hickory (Carya aquatica) leaves showed intermediate decomposition rates. Decomposition of all species was greatly reduced in dry environments. Carbon and biomass loss rates from the leaves were nearly linear over a 6-month period, but nitrogen and phosphorus leaching was nearly complete within 1 month. Much of the organic substance may be recycled in the forest ecosystem, but annual flooding of the river provides an important mechanism for mobilization of the litter-fall products.
Brian J. Palik; Stephen W. Golladay; P. Charles Goebel; Brad W. Taylor
1998-01-01
Large floods are an important process controlling the structure and function of stream ecosystems. One of the ways floods affect streams is through the recruitment of coarse woody debris from stream-side forests. Stream valley geomorphology may mediate this interaction by altering flood velocity, depth, and duration. Little research has examined how floods and...
Light, H.M.; Darst, M.R.; MacLaughlin, M.T.; Sprecher, S.W.
1993-01-01
A study of hydrologic conditions, vegetation, and soils was made in wetland forests of four north Florida streams from 1987 to 1990. The study was conducted by the U.S. Geological Survey in cooperation with the Florida Department of Environmental Regulation to support State and Federal efforts to improve wetland delineation methodology in flood plains. Plant communities and soils were described and related to topographic position and long-term hydrologic conditions at 10 study plots located on 4 streams. Detailed appendixes give average duration, frequency, and depth of flooding; canopy, subcanopy, and ground-cover vegetation; and taxonomic classification, series, and profile descriptions of soils for each plot. Topographic relief, range in stage, and depth of flooding were greatest on the alluvial flood plain of the Ochlockonee River, the largest of the four streams. Soils were silty in the lower elevations of the flood plain, and tree communities were distinctly different in each topographic zone. The Aucilla River flood plain was dominated by levees and terraces with very few depressions or low backwater areas. Oaks dominated the canopy of both lower and upper terraces of the Aucilla flood plain. Telogia Creek is a blackwater stream that is a major tributary of the Ochlockonee River. Its low, wet flood plain was dominated by Wyssa ogeche (Ogeechee tupelo) trees, had soils with mucky horizons, and was inundated by frequent floods of very short duration. The St. Marks River, a spring-fed stream with high base flow, had the least topographic relief and lowest range in stage of the four streams. St. Marks soils had a higher clay content than the other streams, and limestone bedrock was relatively close to the surface. Wetland determinations of the study plots based on State and Federal regulatory criteria were evaluated. Most State and Federal wetland determinations are based primarily on vegetation and soil characteristics because hydrologic records are usually not available. In this study, plots were located near long-term gaging stations, thus wetland determinations based on plant and soil characteristics could be evaluated at sites where long-term hydrologic conditions were known. Inconsistencies among hydrology, vegetation, and soil determinations were greatest on levee communities of the Ochlockonee and Aucilla River flood plains. Duration of average annual longest flood was almost 2 weeks for both plots. The wetland species list currently used (1991) by the State lacks many ground-cover species common to forested flood plains of north Florida rivers. There were 102 ground-cover species considered upland plants by the State that were present on the nine annually flooded plots of this study. Among them were 34 species that grew in areas continuously flooded for an average of 5 weeks or more each year. Common flood-plain species considered upland plants by the State were: Hypoxis leptocarpa (yellow star-grass), and two woody vines, Brunnichia ovata (ladies' eardrops) and Campsis radicans (trumpet-creeper), which were common in areas flooded continuously for 6 to 9 weeks a year; Sebastiania fruticosa (Sebastian-bush), Chasmanthium laxum (spikegrass), and Panicum dichotomum (panic grass), which typically grew in areas flooded an average of 2 to 3 weeks or more per year; Vitis rotundifolia (muscadine) and Toxicodendron radicans (poison-ivy), usually occurring in areas flooded an average of 1 to 2 weeks a year; and Quercus virginiana (live oak) present most often in areas flooded approximately 1 week a year. Federal wetland regulations (1989) limited wetland jurisdiction to only those areas that are inundated or saturated during the growing season. However, year-round hydrologic records were chosen in this report to describe the influence of hydrology on vegetation, because saturation, inundation, or flowing water can have a variety of both beneficial and adverse effects on flood-plain vegetation at any time of the
Hydrology, geomorphology, and vegetation of Coastal Plain rivers in the southeastern United States
Cliff R. Hupp
2000-01-01
Rivers of the Coastal Plain of the southeastern United States are characteristically low-gradient meandering systems that develop broad floodplains subjected to frequent and prolonged flooding. These floodplains support a relatively unique forested wetland (Bottomland Hardwoods), which have received considerable ecological study, but distinctly less hydrogeomorphic...
The Upper Mississippi River System—Topobathy
Stone, Jayme M.; Hanson, Jenny L.; Sattler, Stephanie R.
2017-03-23
The Upper Mississippi River System (UMRS), the navigable part of the Upper Mississippi and Illinois Rivers, is a diverse ecosystem that contains river channels, tributaries, shallow-water wetlands, backwater lakes, and flood-plain forests. Approximately 10,000 years of geologic and hydrographic history exist within the UMRS. Because it maintains crucial wildlife and fish habitats, the dynamic ecosystems of the Upper Mississippi River Basin and its tributaries are contingent on the adjacent flood plains and water-level fluctuations of the Mississippi River. Separate data for flood-plain elevation (lidar) and riverbed elevation (bathymetry) were collected on the UMRS by the U.S. Army Corps of Engineers’ (USACE) Upper Mississippi River Restoration (UMRR) Program. Using the two elevation datasets, the U.S. Geological Survey (USGS) Upper Midwest Environmental Sciences Center (UMESC) developed a systemic topobathy dataset.
Ecology of a nesting red-shouldered hawk population
Stewart, R.E.
1949-01-01
An ecological study of a nesting Red-shouldered Hawk population was made over a 185 square mile area on the Coastal Plain of Maryland in 1947. The courting and nesting season extended from late February until late June.....During the nesting season a combination of fairly extensive flood-plain forest with adjacent clearings appears to meet the major ecological requirements of the Red-shouldered Hawk in this region. A total of 51 pairs was found in the study area, occupying about 42 square miles or 23% of the total area studied. The population density on the land that was suitable for this species was about 1 pair per .8 of a square mile, while the density for the entire study area would be only about 1 pair per 3.6 square miles.....Nests were spaced fairly evenly over most of the flood-plain forests, especially in areas where the width.of the flood plain was relatively constant. There was an inverse correlation between the width of the flood plain and the distances between nests in adjacent territories. The nests were all situated in fairly large trees and were from 28 feet to 77 feet above the ground, averaging 50. They were found in 14 different species of trees, all deciduous.....The Barred Owl and Red-shouldered Hawk were commonly associated together in the same lowland habitats. Other raptores were all largely restricted to upland habitats....The average number of young in 47 occupied nests following the hatching period was 2.7 with extremes of 1 and 4. Only 3 out of 52 nests (6%) were found deserted at this time....The food habits of nestling Red-shouldered Hawks are very diversified. They feed on many types of warm-blooded and cold-blooded vertebrates as well as invertebrates.
Modeling Flood Plain Hydrology and Forest Productivity of Congaree Swamp, South Carolina
Doyle, Thomas W.
2009-01-01
An ecological field and modeling study was conducted to examine the flood relations of backswamp forests and park trails of the flood plain portion of Congaree National Park, S.C. Continuous water level gages were distributed across the length and width of the flood plain portion - referred to as 'Congaree Swamp' - to facilitate understanding of the lag and peak flood coupling with stage of the Congaree River. A severe and prolonged drought at study start in 2001 extended into late 2002 before backswamp zones circulated floodwaters. Water levels were monitored at 10 gaging stations over a 4-year period from 2002 to 2006. Historical water level stage and discharge data from the Congaree River were digitized from published sources and U.S. Geological Survey (USGS) archives to obtain long-term daily averages for an upstream gage at Columbia, S.C., dating back to 1892. Elevation of ground surface was surveyed for all park trails, water level gages, and additional circuits of roads and boundaries. Rectified elevation data were interpolated into a digital elevation model of the park trail system. Regression models were applied to establish time lags and stage relations between gages at Columbia, S.C., and gages in the upper, middle, and lower reaches of the river and backswamp within the park. Flood relations among backswamp gages exhibited different retention and recession behavior between flood plain reaches with greater hydroperiod in the lower reach than those in the upper and middle reaches of the Congaree Swamp. A flood plain inundation model was developed from gage relations to predict critical river stages and potential inundation of hiking trails on a real-time basis and to forecast the 24-hour flood In addition, tree-ring analysis was used to evaluate the effects of flood events and flooding history on forest resources at Congaree National Park. Tree cores were collected from populations of loblolly pine (Pinus taeda), baldcypress (Taxodium distichum), water tupelo (Nyssa aquatica), green ash (Fraxinus pennslyvanica), laurel oak (Quercus laurifolia), swamp chestnut oak (Quercus michauxii), and sycamore (Plantanus occidentalis) within Congaree Swamp in highand low-elevation sites characteristic of shorter and longer flood duration and related to upriver flood controls and dam operation. Ring counts and dating indicated that all loblolly pine trees and nearly all baldcypress collections in this study are postsettlement recruits and old-growth cohorts, dating from 100 to 300 years in age. Most hardwood species and trees cored for age analysis were less than 100 years old, demonstrating robust growth and high site quality. Growth chronologies of loblolly pine and baldcypress exhibited positive and negative inflections over the last century that corresponded with climate history and residual effects of Hurricane Hugo in 1989. Stemwood production on average was less for trees and species on sites with longer flood retention and hydroperiod affected more by groundwater seepage and site elevation than river floods. Water level data provided evidence that stream regulation and operations of the Saluda Dam (post-1934) have actually increased the average daily water stage in the Congaree River. There was no difference in tree growth response by species or hydrogeomorphic setting to predam and postdam flood conditions and river stage. Climate-growth analysis showed that long-term growth variation is controlled more by spring/ summer temperatures in loblolly pine and by spring/summer precipitation in baldcypress than flooding history.
Vegetation, Soil, and Flooding Relationships in a Blackwater Floodplain Forest
Sammy L. King; David Gartner; Mark H. Eisenbies
2003-01-01
Hydroperiod is considered the primary determinant of plant species distribution in temperate floodplain forests, but most studies have focused on alluvial (sediment-laden) river systems. Few studies have evaluated plant community relationships in blackwater river systems of the South Atlantic Coastal Plain of North America. In this study. we characterized the soils....
Evaluating the SWAT model for a low-gradient forested watershed in coastal South Carolina
D.M. Amatya; M.K. Jha.
2011-01-01
Modeling the hydrology of low�]gradient forested watersheds on shallow, poorly drained soils of the coastal plain is a challenging task due to complexities in watershed delineation, microtopography, evapotranspiration, runoff generation processes and pathways including flooding and submergence caused by tropical storms, and complexity of vegetation species....
Probable peak discharges and erosion rates from southern California watersheds as influenced by fire
P.B. Rowe; C.M. Countryman; H.C. Storey
1949-01-01
Damages from floods and erosion have been a serious problem in southern California since early pioneer days. The problem is becoming even more serious as the rapidly increasing population and expanding industrial and agricultural development encroach upon the flood plains and extend up the steep slopes and into canyons of the nearby mountains. Protection of forest...
Lambs, L.; Loubiat, M.; Richardson, W.
2003-01-01
Before the confluence of the Tarn, the Garonne valley was the driest area in the entire south-west of France, due to the relatively low rainfall and low summer discharge of the Garonne River and its tributaries. The natural abundance of the stable isotope of oxygen (18O) and ionic charge of surface and ground water were used to estimate the water source for the Garonne River and phreatic subsurface water. We also measured these constituents in the sap of trees at several flood plain sites to better understand the source of water used by these trees. 18O signatures and conductivity in the Garonne River indicated that the predominance of water was from high altitude surface runoff from the Pyrenees Mountains. Tributary inputs had little effect on isotopic identity, but had a small effect on the conductivity. The isotopic signature and ionic conductivity of river water (??18O: -9.1??? to -9.0???, conductivity: 217-410??S/cm) was distinctly different from groundwater (??18O: -7.1??? to -6.6???, conductivity: 600-900??S/cm). Isotopic signatures from the sap of trees on the flood plain showed that the water source was shallow subsurface water (1m). Trees at both locations maintained sap with ionic charges much greater (2.3-3.7x) than that of source water. The combined use of 18O signatures and ionic conductivity appears to be a potent tool to determine water sources on geographic scales, and source and use patterns by trees at the local forest scale. These analyses also show promise for better understanding of the effects of anthropogenic land-use and water-use changes on flood plain forest dynamics.
Faulkner, Stephen; Barrow, Wylie; Couvillion, Brady R.; Conner, William; Randall, Lori; Baldwin, Michael
2007-01-01
Floodplain forests are an important habitat for Neotropical migratory birds. Hurricane Katrina passed through the Pearl River flood plain shortly after making landfall. Field measurements on historical plots and remotely sensed data were used to assess the impact of Hurricane Katrina on the structure of floodplain forests of the Pearl River.
Conrads, Paul; Feaster, Toby D.; Harrelson, Larry G.
2008-01-01
The Congaree National Park was established '... to preserve and protect for the education, inspiration, and enjoyment of present and future generations an outstanding example of a near-virgin, southern hardwood forest situated in the Congaree River flood plain in Richland County, South Carolina' (Public Law 94-545). The resource managers at Congaree National Park are concerned about the timing, frequency, magnitude, and duration of flood-plain inundation of the Congaree River. The dynamics of the Congaree River directly affect ground-water levels in the flood plain, and the delivery of sediments and nutrients is constrained by the duration, extent, and frequency of flooding from the Congaree River. The Congaree River is the southern boundary of the Congaree National Park and is formed by the convergence of the Saluda and Broad Rivers 24 river miles upstream from the park. The streamflow of the Saluda River has been regulated since 1929 by the operation of the Saluda Dam at Lake Murray. The U.S. Geological Survey, in cooperation with the National Park Service, Congaree National Park, studied the interaction between surface water in the Congaree River and ground water in the flood plain to determine the effect Saluda Dam operations have on water levels in the Congaree National Park flood plain. Analysis of peak flows showed the reduction in peak flows after the construction of Lake Murray was more a result of climate variability and the absence of large floods after 1930 than the operation of the Lake Murray dam. Dam operations reduced the recurrence interval of the 2-year to 100-year peak flows by 6.1 to 17.6 percent, respectively. Analysis of the daily gage height of the Congaree River showed that the dam has had the effect of lowering high gage heights (95th percentile) in the first half of the year (December to May) and raising low gage heights (5th percentile) in the second half of the year (June to November). The dam has also had the effect of increasing the 1-, 3-, 7-, 30-, and 90-day minimum gage heights by as much as 23.9 percent and decreasing the 1-, 3-, 7-, 30-, and 90-day maximum gage heights by as much as 7.2 percent. Analysis of the ground-water elevations in the Congaree National Park flood plain shows similar results as the gage-height analysis--the dam has had the effect of lowering high ground-water elevations and increasing low ground-water elevations. Overall, the operation of the dam has had a greater effect on the gage heights within the river banks than gage heights in the flood plain. This result may have a greater effect on the subsurface water levels of the surficial flood-plain aquifer than the frequency and magnitude of inundation of the flood plain.
Soong, David T.; Straub, Timothy D.; Murphy, Elizabeth A.
2006-01-01
Results of hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kane County, Illinois, indicate that the 100-year and 500-year flood plains range from approximately 25 acres in the tributary F watershed (a headwater subbasin at the northeastern corner of the watershed) to almost 1,800 acres in Blackberry Creek main stem. Based on 1996 land-cover data, most of the land in the 100-year and 500-year flood plains was cropland, forested and wooded land, and grassland. A relatively small percentage of urban land was in the flood plains. The Blackberry Creek watershed has undergone rapid urbanization in recent decades. The population and urbanized lands in the watershed are projected to double from the 1990 condition by 2020. Recently, flood-induced damage has occurred more frequently in urbanized areas of the watershed. There are concerns about the effect of urbanization on flood peaks and volumes, future flood-mitigation plans, and potential effects on the water quality and stream habitats. This report describes the procedures used in developing the hydrologic models, estimating the flood-peak discharge magnitudes and recurrence intervals for flood-hazard analysis, developing the hydraulic model, and the results of the analysis in graphical and tabular form. The hydrologic model, Hydrological Simulation Program-FORTRAN (HSPF), was used to perform the simulation of continuous water movements through various patterns of land uses in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and to determine the 100-year floodway. The hydraulic model was calibrated and verified using high water marks and observed inundation maps for the July 17-18, 1996, flood event. Digital maps of the 100-year and 500-year flood plains and the 100-year floodway for each tributary and the main stem of Blackberry Creek were compiled.
Overlaps among phenological phases in flood plain forest ecosystem
NASA Astrophysics Data System (ADS)
Bartošová, Lenka; Bauer, Zdeněk; Trnka, Miroslav; Možný, Martin; Štěpánek, Petr; Žalud, Zdeněk
2015-04-01
There is a growing concern that climate change has significant impacts on species phenology, seasonal population dynamics, and thus interaction (a)synchrony between species. Species that have historically undergone life history events on the same seasonal calendar may lose synchrony and therefore lose the ability to interact as they have in the past. In view of the match/mismatch hypothesis, the different extents or directions of the phenological shifts among interacting species may have significant implications for community structure and dynamics. That's why our principal goal of the study is to determine the phenological responses within the ecosystem of flood plain forest and analyzed the phenological overlapping among each phenological periods of given species. The phenological observations were done at flood-plain forest experimental site during the period 1961-2012. The whole ecosystem in this study create 17 species (15 plants and 2 bird species) and each species is composed of 2 phenological phases. Phenological periods of all species of ecosystem overlap each other and 43 of these overlapping were chosen and the length, trend and correlation with temperature were elaborated. The analysis of phenophases overlapping of chosen species showed that the length of overlay is getting significantly shorter in 1 case. On the other hand the situation when the length of overlaps is getting significantly longer arose in 4 cases. Remaining overlaps (38) of all phenological periods among various species is getting shorter or longer but with no significance or have not changed anyhow. This study was funded by project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248. and of projects no. LD13030 supporting participation of the Czech Republic in the COST action ES1106.
Forest and flooding with special reference to the White River and Ouachita River basins, Arkansas
Bedinger, M.S.
1979-01-01
The observed response of trees to hydrologic stress and distribution of trees in relation to habitat indicate that flooding, ground-water level, soil moisture, soil factors, and drainage characteristics exert a strong influence on bottomland forest species distribution. The dominant hydrologic factor influencing the distribution of bottomland tree species is flooding. Individual tree species are distributed as a function of frequency and duration of flooding. In the lower White and Ouachita River basins, the flood plains consist of a series of terraces, progressively higher terraces having less frequent flooding and less duration of flooding, and a significantly different composition of forest tree species. The sites studied can be divided into four basic groups and several subgroups on the basis of flood characteristics. On Group I (water hickory-overcup oak) sites, flooded near annually 32 to 40 percent of the time, the dominant species are water hickory and overcup oak. On Group II (nuttall oak) sites, flooded near annually 10 to 21 percent of the time, a more varied flora exists including nuttall oak, willow oak, sweetgum, southern hackberry, and American elm. The third group (Group III or shagbark hickory-southern red oak) of sites is flooded at intervals from 2 to 12 years. This group includes southern red oak, shagbark hickory, and black gum. The presence of blackjack oak in addition to Group III species marks Group IV (not flooded in historic time). (Kosco-USGS)
Economic characteristics of the peat deposits of Costa Rica: preliminary study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, A.D. Malavassi, L.; Raymond, R. Jr.; Mora, S.
1985-01-01
Recent field and laboratory studies have established the presence of numerous extensive peat deposits in Costa Rica. Three of these were selected for initial investigation: (1) the cloud-forest histosols of the Talamanca Mountain Range; (2) the Rio Medio Queso flood plain deposits near the northern Costa Rican border; and (3) a tropical jungle swamp deposit on the northeastern coastal plain. In the Talamanca area, 29 samples were collected from eight sites. Due to the high moisture and cool temperatures of the cloud forest, the peats in this area form blanket-like deposits (generally <1 meter thick) over a wide area (>150more » km/sup 2/). These peats are all highly decomposed (avg. 28% fiber), high in ash (avg. 21%), and extensively bioturbated. Relative to all other sites visited, these peats are lowest in moisture (avg. 84%), pH (avg. 4.4), fixed carbon (avg. 23%), and sulfur (avg. 0.2%). However, they have the highest bulk densities (avg. 0.22 g/cc), volatile matter contents (avg. 55%), and nitrogen. Their heating value averaged 7700 BTUs/lb., dry. In the Rio Medio Queso area, 28 samples were collected, representing one transect of the 70 km/sup 2/ flood plain. The peats here occurred in several layers (each <1-1/2 meters thick), interfingering with river flood plain sediments. These peats have the highest calorific values (avg. 8000 BTUs/lb., dry), fixed carbon (avg. 30%), and ash (avg. 22%) and have an average pH of 5.4 and a bulk density of 0.20 g/cc. These results represent only the first part of a long-term, extensive survey of Costa Rica's peat resources. However, they suggest that large, economically-significant peat deposits may be present in this country. 5 refs., 8 figs., 4 tabs.« less
Short term impacts provide a management window for minimizing invasions from bioenergy crops
USDA-ARS?s Scientific Manuscript database
In anticipation of the expansion of perennial bioenergy cultivation, we experimentally introduced Miscanthus sinensis and Miscanthus × giganteus (two non-native candidate bioenergy species) into two different non-crop habitats (old field and flood-plain forest) to evaluate their establishment succes...
Conner, William H.; Krauss, Ken W.; Doyle, Thomas W.
2007-01-01
Tidal freshwater swamps in the southeastern United States are subjected to tidal hydroperiods ranging in amplitude from microtidal (<0.1 m) to mesotidal (2-4 m), both having different susceptibilities to anthropogenic change. Small alterations in flood patterns, for example, can switch historically microtidal swamps to permanently flooded forests, scrub-shrub stands, marsh, or open water but are less likely to convert mesotidal swamps. Changes to hydrological patterns tend to be more noticeable in Louisiana than do those in South Carolina.The majority of Louisiana’s coastal wetland forests are found in the Mississippi River deltaic plain region. Coastal wetland forests in the deltaic plain have been shaped by the sediments, water, and energy of the Mississippi River and its major distributaries. Baldcypress (Taxodium distichum [L.] L.C. Rich.) and water tupelo (Nyssa aquatica L.) are the primary tree species in the coastal swamp forests of Louisiana. Sites where these species grow usually hold water for most of the year; however, some of the more seaward sites were historically microtidal, especially where baldcypress currently dominates. In many other locations, baldcypress and water tupelo typically grow in more or less pure stands or as mixtures of the two with common associates such as black willow (Salix nigra Marsh.), red maple (Acer rubrum L.), water locust (Gleditsia aquatic Marsh.), overcup oak (Quercus lyrata Walt.), water hickory (Carya aquatica [Michx. f.] Nutt.), green ash (Fraxinus pennsylvanica Marsh.), pumpkin ash (F. profunda Bush.), and redbay (Persea borbonia [L.] Sprengel) (Brown and Montz 1986).The South Carolina coastal plain occupies about two-thirds of the state and rises gently to 150 m from the Atlantic Ocean up to the Piedmont plateau. Many rivers can be found in the Coastal Plain with swamps near the coast that extend inland along the rivers. Strongly tidal freshwater forests occur along the lower reaches of redwater rivers (Santee, Great Pee Dee, and Savannah) that arise in the mountains and along the numerous blackwater rivers (Ashepoo, Combahee, Cooper, and Waccamaw) that arise in the coastal regions. Most of the tidal freshwater forests were converted to tidal rice fields in the 1700s (Porcher 1995). Canopy members of the present day forests include baldcypress, water tupelo, swamp tupelo (N. biflora Walt.), red maple, and Carolina ash (Fraxinus caroliniana Miller). Subcanopy and shrub species include Virginia sweetspire (Itea virginica L.), dwarf palmetto (Sabal minor (Jacquin) Pers.), coastal plain willow (Salix caroliniana Michx.), redbay, and water-elm (Planera aquatica Gmel.).
7 CFR 650.25 - Flood-plain management.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 6 2010-01-01 2010-01-01 false Flood-plain management. 650.25 Section 650.25... Flood-plain management. Through proper planning, flood plains can be managed to reduce the threat to... encourages sound flood-plain management decisions by land users. (a) Policy—(1) General. NRCS provides...
7 CFR 650.25 - Flood-plain management.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 6 2011-01-01 2011-01-01 false Flood-plain management. 650.25 Section 650.25... Flood-plain management. Through proper planning, flood plains can be managed to reduce the threat to... encourages sound flood-plain management decisions by land users. (a) Policy—(1) General. NRCS provides...
River flood plains: Some observations on their formation
Wolman, M. Gordon; Leopold, Luna Bergere
1957-01-01
On many small rivers and most great rivers, the flood plain consists of channel and overbank deposits. The proportion of the latter is generally very small.Frequency studies indicate that the flood plains of many streams of different sizes flowing in diverse physiographic and climatic regions are subject to flooding about once a year.The uniform frequency of flooding of the flood-plain surface and the small amount of deposition observed in great floods (average 0.07 foot) support the conclusion that overbank deposition contributes only a minor part of the material constituting the flood plain. The relatively high velocities (1 to 4 fps) which can occur in overbank flows and the reduction in sediment concentration which often accompanies large floods may also help account for this. Although lateral migration of channels is important in controlling the elevation of the flood plain, rates of migration are extremely variable and alone cannot account for the uniform relation the flood-plain surface bears to the channel.Detailed studies of flood plains in Maryland and in North Carolina indicate that it is difficult to differentiate between channel and overbank deposits in a stratigraphic section alone.Because deposition on the flood plain does not continue indefinitely, the flood-plain surface can only be transformed into a terrace surface by some tectonic or climatic change which alters the regimen of the river and causes it to entrench itself below its established bed and associated flood plain. A terrace, then, is distinguished from a flood plain by the frequency with which each is overflowed.
44 CFR 10.14 - Flood plains and wetlands.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions of... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR...
Forest resources of north Arkansas delta
I.F. Eldredge
1938-01-01
The North Arkansas Delta survey unit includes the flood plains of the Mississippi River and its principal tributaries between Helena, Arkansas, and Cape Girardeau, Missouri, with boundaries as shown in figure 1. Although chiefly in Arkansas, it includes portions of Missouri, Tennessee, and Kentucky. A conspicuous topographic feature is Crowley's Ridge, a narrow...
Vegetation survey in Amazonia using LANDSAT data. [Brazil
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Shimabukuro, Y. E.; Dossantos, J. R.; Deaquino, L. C. S.
1982-01-01
Automatic Image-100 analysis of LANDSAT data was performed using the MAXVER classification algorithm. In the pilot area, four vegetation units were mapped automatically in addition to the areas occupied for agricultural activities. The Image-100 classified results together with a soil map and information from RADAR images, permitted the establishment of the final legend with six classes: semi-deciduous tropical forest; low land evergreen tropical forest; secondary vegetation; tropical forest of humid areas, predominant pastureland and flood plains. Two water types were identified based on their sediments indicating different geological and geomorphological aspects.
44 CFR 60.12 - Flood plain management criteria for State-owned properties in special hazard areas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.12 Flood plain management criteria for State-owned properties in... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood plain management...
44 CFR 60.12 - Flood plain management criteria for State-owned properties in special hazard areas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.12 Flood plain management criteria for State-owned properties in... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood plain management...
44 CFR 60.12 - Flood plain management criteria for State-owned properties in special hazard areas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.12 Flood plain management criteria for State-owned properties in... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood plain management...
44 CFR 60.12 - Flood plain management criteria for State-owned properties in special hazard areas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.12 Flood plain management criteria for State-owned properties in... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plain management...
44 CFR 60.12 - Flood plain management criteria for State-owned properties in special hazard areas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.12 Flood plain management criteria for State-owned properties in... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood plain management...
Late Pleistocene environments of the western Noatak basin, northwestern Alaska
Elias, S.A.; Hamilton, T.D.; Edwards, M.E.; Beget, J.E.; Krumhardt, A.P.; Lavoie, C.
1999-01-01
Glacial Lake Noatak formed repeatedly during middle and late Pleistocene time as expanding glaciers from the DeLong Mountains blocked the Noatak River valley. Downcutting by the Noatak River has exposed thick sediment successions in bluffs up to 86 m high. Two river bluffs, Nk-26 and Nk-29A, contain correlative organic-rich flood-plain deposits that were formed during and after deposition of the Old Crow tephra at about the transition between oxygen isotope stage 6 and oxygen isotope stage 5, at the beginning of the last interglaciation. Both bluffs also contain older interglacial or interstadial flood-plain deposits of uncertain age. Pollen and beetle remains were recovered from the older and younger flood-plain deposits at each bluff. Pollen from the younger flood-plain deposits suggests tundra vegetation with local dominance of sedge. Juniperus abundances were locally high, especially around the time of Old Crow tephra deposition. Mutual climatic range (MCR) estimates from the insect fossil assemblages suggest that mean summer temperatures (Tmax) near the time of Old Crow tephra deposition were about 2 ??C colder than modern; mean winter temperatures were very similar to those of today. A younger sample from the same interglacial deposit yielded a Tmax estimate of 2 ??C warmer than modern, signaling interglacial warming. Pollen from the older interglacial deposit at Nk-29A suggests mesic tundra, with boreal forest more distant than it is today. MCR analysis of a possibly correlative older interglacial deposit at Nk-26 suggests a Tmax about 2 ??C below present.
Heimann, David C.; Mettler-Cherry, Paige A.
2004-01-01
A study was conducted by the U.S. Geological Survey in cooperation with the Missouri Department of Conservation at the Four Rivers Conservation Area (west-central Missouri), between January 2001 and March 2004, to examine the relations between environmental factors (hydrology, soils, elevation, and landform type) and the spatial distribution of vegetation in remnant and constructed riparian wetlands. Vegetation characterization included species composition of ground, understory, and overstory layers in selected landforms of a remnant bottomland hardwood ecosystem, monitoring survival and growth of reforestation plots in leveed and partially leveed constructed wetlands, and determining gradients in colonization of herbaceous vegetation in a constructed wetland. Similar environmental factors accounted for variation in the distribution of ground, understory, and overstory vegetation in the remnant bottomland forest plots. The primary measured determining factors in the distribution of vegetation in the ground layer were elevation, soil texture (clay and silt content), flooding inundation duration, and ponding duration, while the distribution of vegetation in the understory layer was described by elevation, soil texture (clay, silt, and sand content), total flooding and ponding inundation duration, and distance from the Marmaton or Little Osage River. The primary measured determining factors in the distribution of overstory vegetation in Unit 1 were elevation, soil texture (clay, silt, and sand content), total flooding and ponding inundation duration, ponding duration, and to some extent, flooding inundation duration. Overall, the composition and structure of the remnant bottomland forest is indicative of a healthy, relatively undisturbed flood plain forest. Dominant species have a distribution of individuals that shows regeneration of these species with significant recruitment in the smaller size classes. The bottomland forest is an area whose overall hydrology has not been significantly altered; however, portions of the area have suffered from hydrologic alteration by a drainage ditch that is resulting in the displacement of swamp and marsh species by colonizing shrub and tree species. This area likely will continue to develop into an immature flood plain forest under the current (2004) hydrologic regime. Reforestation plots in constructed wetlands consisted of sampling survival and growth of multiple tree species (Quercus palustris, pin oak; Carya illinoiensis, pecan) established under several production methods and planted at multiple elevations. Comparison of survival between tree species and production types showed no significant differences for all comparisons. Survival was high for both species and all production types, with the highest mortality seen in the mounded root production method (RPM?) Quercus palustris (pin oak, 6.9 percent), while direct seeded Quercus palustris at middle elevation and bare root Quercus palustris seedlings at the low elevation plots had 100 percent survival. Measures of growth (diameter and height) were assessed among species, production types, and elevation by analyzing relative growth. The greatest rate of tree diameter (72.3 percent) and height (65.3 percent) growth was observed for direct seeded Quercus palustris trees planted at a middle elevation site. Natural colonized vegetation data were collected at multiple elevations within an abandoned cropland area of a constructed wetland. The primary measured determining factors in the distribution of herbaceous vegetation in this area were elevation, ponding duration, and soil texture. Richness, evenness, and diversity were all significantly greater in the highest elevation plots as a result of more recent disturbance in this area. While flood frequency and duration define the delivery mechanism for inundation on the flood plain, it is the duration of ponding and amount of 'topographic capture' of these floodwaters in fluvial lan
Flood information for flood-plain planning
Bue, Conrad D.
1967-01-01
Floods are natural and normal phenomena. They are catastrophic simply because man occupies the flood plain, the highwater channel of a river. Man occupies flood plains because it is convenient and profitable to do so, but he must purchase his occupancy at a price-either sustain flood damage, or provide flood-control facilities. Although large sums of money have been, and are being, spent for flood control, flood damage continues to mount. However, neither complete flood control nor abandonment of the flood plain is practicable. Flood plains are a valuable resource and will continue to be occupied, but the nature and degree of occupancy should be compatible with the risk involved and with the degree of protection that is practicable to provide. It is primarily to meet the needs for defining the risk that the flood-inundation maps of the U.S. Geological Survey are prepared.
Extent and frequency of floods on the Schuylkill River near Phoenixville and Pottstown, Pennsylvania
Busch, William F.; Shaw, Lewis C.
1973-01-01
Knowledge of the frequency and extent of flooding is an important requirement for the design of all works of man bordering or encroaching on flood plains. The proper design of bridges, culverts, dams, highways, levees, reservoirs, sewage-disposal systems, waterworks and all structures on the flood plains of streams requires careful consideration of flood hazards. -1- By use of relations presented in this report, the extent, depth, and frequency of flooding can be estimated for any site along the reach of the Schuylkill River from Oaks to Pottstown. These flood data are presented so that regulatory agencies, organizations, and individuals may have a technical basis for making decisions on the use of flood-prone areas. The Delaware River Basin Commission and the U. S. Geological Survey regard this program of flood-plain-inundation studies as a positive step toward flood-damage prevention. Flood-plaininundation studies are a prerequisite to flood-plain management which may include a mixture of flood-control structures and/or land-use regulations. Both physical works and flood-plain regulations are included in the Comprehensive Plan for development of the Delaware River basin, of which the Schuylkill River is a part. Recommendations for land use, or suggestions for limitations of land use, are not made herein. Other reports on use and regulation of land in flood-prone areas are available (Dola, 1961; White, 1961; American Society of Civil Engineers Task Force on Flood Plain Regulations, 1962; and Goddard, 1963). The primary responsibility for planning for optimum land use in the flood plain and the implementation of flood-plain zoning or other regulations to achieve such optimum use rests with State, and local interests.
Monitoring forests at the speed of light.
Valerie Rapp
2005-01-01
Airborne laser scanning is a technology developed in the last 15 years. Commonly referred to as light detection and ranging, or LIDAR, these systems can map ground with up to a 6-inch elevation accuracy in open, flat terrain. LIDAR is being rapidly adopted for topographical and flood-plain mapping and the detection of earthquake faults hidden by vegetation, among other...
Joshua W. Lobe; Mac A. Callaham Jr.; Paul F. Hendrix; James L Hanula
2014-01-01
This study investigated the possibility of a facilitative relationship between Chinese privet (Ligustrum sinense) and exotic earthworms, in the southeastern region of the USA. Earthworms and selected soil properties were sampled five years after experimental removal of privet from flood plain forests of the Georgia Piedmont region. The earthworm...
Direct Seeding of Southern Oaks - A Progress Report
Robert L. Johnson; Roger M. Krinard
1987-01-01
Since 1981 over 4,000 acres of publicly and privately owned land, mostly in flood plains, have been direct seeded with acorns. Most seedings have been in abandoned farm land, the rest in forest openings created by commercial tree harvest. Cost data associated with a few of the production trials are presented in this paper. Also included are discussions of production...
44 CFR 60.7 - Revisions of criteria for flood plain management regulations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations...
44 CFR 60.7 - Revisions of criteria for flood plain management regulations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations...
44 CFR 60.7 - Revisions of criteria for flood plain management regulations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations...
44 CFR 60.7 - Revisions of criteria for flood plain management regulations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations...
Myers, Ronald L
2013-09-01
In the marshes dominated by palms, seeds face anaerobic substrates and long flooding periods. Some tree species are capable of growing both in flooded swamps and in areas with lower influence of the flood. I studied the potential settlement of various tree species in different macrohabitats in the Tortuguero floodplain using three experiments: (1) Manicaria saccifera and Raphia taedigera seed germination in palm-swamps and forests of slopes; (2) germination of R. taedigera seeds along a microtopographic gradient; and (3) seed germination and seedling height growth of six woody species (Dipteryx oleifera, Pterocarpus officinalis, Prioria copaifera, Pentaclethra macroloba, Carapa guianensis and Crudia acuminata) and two palms (R. taedigera and Manicaria saccifera) under different forest and swamp habitats. In the first experiment, I found that the palms germinated much earlier in the slope forest than in the palm-swamp. In the second experiment, in drier plots (less effect of flooding) germination began earlier than in the more humid plots. In the third experiment, woody species germinated faster than the studied palms, and some species do not tolerate flooded areas (marshes and swamps), so they cannot germinate or survive in them. Other woody species were removed from the slope forest, probably due to seed predators. Based on the presence or absence of these species in the environment of study were divided into: (1) obliged swamp species (R. taedigera and M saccifera), (2) swamp intolerant (D. oleifera), and (3) facultative wetland species (P officinalis, P copaifera, P macroloba, C. guianensis). Crudia acuminata does not seem to follow any of these categories.
Chemical weathering outputs from the flood plain of the Ganga
NASA Astrophysics Data System (ADS)
Bickle, Michael J.; Chapman, Hazel J.; Tipper, Edward; Galy, Albert; De La Rocha, Christina L.; Ahmad, Talat
2018-03-01
Transport of sediment across riverine flood plains contributes a significant but poorly constrained fraction of the total chemical weathering fluxes from rapidly eroding mountain belts which has important implications for chemical fluxes to the oceans and the impact of orogens on long term climate. We report water and bedload chemical analyses from the Ganges flood-plain, a major transit reservoir of sediment from the Himalayan orogen. Our data comprise six major southern tributaries to the Ganga, 31 additional analyses of major rivers from the Himalayan front in Nepal, 79 samples of the Ganga collected close to the mouth below the Farakka barrage every two weeks over three years and 67 water and 8 bedload samples from tributaries confined to the Ganga flood plain. The flood plain tributaries are characterised by a shallow δ18O - δD array, compared to the meteoric water line, with a low δDexcess from evaporative loss from the flood plain which is mirrored in the higher δDexcess of the mountain rivers in Nepal. The stable-isotope data confirms that the waters in the flood plain tributaries are dominantly derived from flood plain rainfall and not by redistribution of waters from the mountains. The flood plain tributaries are chemically distinct from the major Himalayan rivers. They can be divided into two groups. Tributaries from a small area around the Kosi river have 87Sr/86Sr ratios >0.75 and molar Na/Ca ratios as high as 6. Tributaries from the rest of the flood plain have 87Sr/86Sr ratios ≤0.74 and most have Na/Ca ratios <1. One sample of the Gomti river and seven small adjacent tributaries have elevated Na concentrations likely caused by dissolution of Na carbonate salts. The compositions of the carbonate and silicate components of the sediments were determined from sequential leaches of floodplain bedloads and these were used to partition the dissolved cation load between silicate and carbonate sources. The 87Sr/86Sr and Sr/Ca ratios of the carbonate inputs were derived from the acetic-acid leach compositions and silicate Na/Ca and 87Sr/86Sr ratios derived from silicate residues from leaching. Modelling based on the 87Sr/86Sr and Sr/Ca ratios of the carbonate inputs and 87Sr/86Sr ratios of the silicates indicates that the flood plain waters have lost up to 70% of their Ca (average ∼ 50%) to precipitation of secondary calcite which is abundant as a diagenetic cement in the flood plain sediments. 31% of the Sr, 8% of the Ca and 45% of the Mg are calculated to be derived from silicate minerals. Because of significant evaporative loss of water across the flood plain, and in the absence of hydrological data for flood plain tributaries, chemical weathering fluxes from the flood plain are best calculated by mass balance of the Na, K, Ca, Mg, Sr, SO4 and 87Sr/86Sr compositions of the inputs, comprising the flood plain tributaries, Himalayan rivers and southern rivers, with the chemical discharge in the Ganga at Farakka. The calculated fluxes from the flood plain for Na, K, Ca and Mg are within error of those estimated from changes in sediment chemistry across the flood plain (Lupker et al., 2012, Geochemica Cosmochimica Acta). Flood plain weathering supplies between 41 and 63% of the major cation and Sr fluxes and 58% of the alkalinity flux carried by the Ganga at Farakka which compares with 24% supplied by Himalayan rivers and 18% by the southern tributaries.
Young flood lavas in the Elysium Region, Mars
NASA Technical Reports Server (NTRS)
Plescia, J. B.
1990-01-01
The nature and origin of a smooth plains unit (the Cerberus Plains) in southeastern Elysium and western Amazonis are reported. The interpretation that the Cerberus Plains resulted from flood plains style volcanism late in martian history is presented which carries implications for martian thermal history and volcanic evolution of a global scale. Although central construct volcanism (e.g., Olympus Mons) has long been recognized as occurring late in time, flood volcanism has not. Flood volcanism has been suggested as the origin of the ridged plains units (e.g., Lunae Planum, Solis, and Sinai Planum). This type of volcanic activity generally occurred early, and in Tharsis, the style of volcanism evolved from flood eruptions into centralized eruptions which built the large Tharsis Montes and Olympus Mons shields. Volcanism in the Elysium region seems to have followed a similar trend from flood eruptions to central construct building. But, the Cerberus Plains indicate that the volcanic style returned to flood eruption again after central constructional volcanism had ended.
18 CFR 801.8 - Flood plain management and protection.
Code of Federal Regulations, 2014 CFR
2014-04-01
... nonstructural nature for the protection of flood plains subject to frequent flooding. (3) Assist in the study and classification of flood prone lands to ascertain the relative risk of flooding, and establish...
18 CFR 801.8 - Flood plain management and protection.
Code of Federal Regulations, 2012 CFR
2012-04-01
... nonstructural nature for the protection of flood plains subject to frequent flooding. (3) Assist in the study and classification of flood prone lands to ascertain the relative risk of flooding, and establish...
18 CFR 801.8 - Flood plain management and protection.
Code of Federal Regulations, 2013 CFR
2013-04-01
... nonstructural nature for the protection of flood plains subject to frequent flooding. (3) Assist in the study and classification of flood prone lands to ascertain the relative risk of flooding, and establish...
Hydrology and ecology of the Apalachicola River, Florida : a summary of the river quality assessment
Elder, John F.; Flagg, Sherron D.; Mattraw, Harold C.
1988-01-01
During 1979-81, the U.S. Geological Survey conducted a large-scale study of the Apalachicola River in northwest Florida, the largest and one of the most economically important rivers in the State. Termed the Apalachicola River Quality Assessment, the study emphasized interrelations among hydrodynamics, the flood-plain forest, and the nutrient-detritus flow through the river system to the estuary. This report summarizes major findings of the study. Data on accumulation of toxic substances in sediments and benthic organisms in the river were also collected. Because of the multiple uses of the Apalachicola River system, there are many difficult management decisions. The river is a waterway for shipping; hence there is an economic incentive for modification to facilitate movement of barge traffic. Such modifications include the proposed construction of dams, levees, bend easings, and training dikes; ditching and draining in the flood plain; and dredging and snagging in the river channel. The river is also recognized as an important supplier of detritus, nutrients, and freshwater to the Apalachicola Bay, which maintains an economically important shellfish industry. The importance of this input to the bay creates an incentive to keep the river basin in a natural state. Other values, such as timber harvesting, recreation, sport hunting, nature appreciation, and wildlife habitat, add even more to the difficulty of selecting management strategies. Water and nutrient budgets based on data collected during the river assessment study indicate the relative importance of various inputs and outflows in the system. Waterflow is controlled primarily by rainfall in upstream watersheds and is not greatly affected by local precipitation, ground-water exchanges, or evapotranspiration in the basin. On an annual basis, the total nutrient inflow to the system is nearly equal in quantity to total outflow, but there is a difference between inflow and outflow in the chemical and physical forms in which the nutrients are carried. The flood plain tends to be a net importer of soluble inorganic nutrients and a net exporter of particulate organic material. Analysis of long-term records shows that dam construction in the upstream watersheds and at the Apalachicola headwaters has had little effect on the total annual waterflow but has probably suppressed low-flow extremes. Other effects include riverbed degradation and channelization which have to do with alteration of the habitat for aquatic biota and changes in flood-plain vegetation. Whatever management decisions are made should take into account the impact on the natural flooding cycle. Flooding is crucial to the present flood-plain plant community and to the production, decomposition, and transport of organic material from that community. Permanent, substantial changes in the natural flooding cycle would be likely to induce concomitant changes in the flood-plain environment and in the nutrient and detritus yield to the estuary.
NASA Astrophysics Data System (ADS)
Couto, E. G.; Dalmagro, H. J.; Lathuilliere, M. J.; Pinto Junior, O. B.; Johnson, M. S.
2013-12-01
The Pantanal is one of the largest flood plains in the world, and is characterized by large variability in vegetative communities and flooding dynamics. Some woody plant species have been observed to colonize large areas forming monospecific stands. We measured chemical parameters of flood waters including dissolved organic carbon (DOC), nitrate (NO3), dissolved oxygen (DO), and carbon dioxide (CO2) as well as physical parameters such as photosynthetically active radiation (PAR), temperature (Tw), turbidity (Turb) and water levels (WL). These chemical and physical measurements were conducted with the intent to characterize spatial and temporal differences of monospecific stands in order to understand if these different formations alter the biogeochemistry of the Pantanal waters. Water sample campaigns were conducted during the inundation period of January to May 2013 in two areas located in the Private Reserve of the Brazilian Social Service of Commerce (RPPN-SESC) near Poconé, Mato Grosso. Research sites included: (1) a flooded tall-stature forest (known as Cambarazal) dominated by the Vochysia divergens species; and (2) in a flooded scrub forest (known as Baia das Pedras) dominated by the Combretum lanceolatum species. Results showed three principal factors which explained 80% of variance in aquatic physical and chemical parameters. The first factor (PCA-1) explained 38% of variance (DO, PAR and WL), PCA-2 explained 23% (NO3, Tw, DOC), while PCA-3 explained only 19% of variance (CO2 and Turb). During the entire study period, the major concentration of variables were observed in the flooded forest. Physical variables presented small alterations, with the exception of water levels, that were greater in the flooded forest. With respect to temporal variables, all chemical parameters were greater at the beginning of the inundation and gradually dropped with the water level. With this work, we observed that the different monospecific formations influenced water quality which could further explain the functioning of this complex hydrochemical environment as well as the carbon balance in tropical Brazilian floodplains.
Silva, A C; Higuchi, P; van den Berg, E
2010-08-01
In order to determine the influence of soil water table fluctuation on tree species richness and structure of alluvial forest fragments, 24 plots were allocated in a point bar forest and 30 plots in five forest fragments located in a floodplain, in the municipality of São Sebastião da Bela Vista, Southeast Brazil, totalizing 54, 10 X 20 m, plots. The information recorded in each plot were the soil water table level, diameter at breast height (dbh), total height and botanical identity off all trees with dbh > 5 cm. The water table fluctuation was assessed through 1 m deep observation wells in each plot. Correlations analysis indicated that sites with shallower water table in the flooding plains had a low number of tree species and high tree density. Although the water table in the point bar remained below the wells during the study period, low tree species richness was observed. There are other events taking place within the point bar forest that assume a high ecological importance, such as the intensive water velocity during flooding and sedimentation processes.
NASA Astrophysics Data System (ADS)
Mondal, M. E. A.; Wani, H.; Mondal, Bulbul
2012-09-01
The Ganga basin in the Himalayan foreland is a part of the world's largest area of modern alluvial sedimentation. Flood plain sediments of the Hindon River of the Gangetic plain have been analyzed for sediment texture, major and trace elements including rare earth elements (REEs). The results have been used to characterize the source rock composition and to understand the intensity of chemical weathering, tectonics and their interplay in the Hindon flood plain. The sediments of the Hindon flood plain dominantly consist of sand sized particles with little silt and clay. The geochemistry of the Hindon sediments has been compared to the Siwalik mudstone of the Siwalik Group (Siwaliks). The Siwalik sedimentary rocks like sandstones, mudstones and conglomerates are the known source rocks for the Hindon flood plain sediments. Mudstone geochemistry has been considered best to represent the source rock characteristics. The UCC (Upper Continental Crust) normalized major and trace elements of the Hindon flood plain sediments are very similar to the Siwalik mudstone except for Th and Cr. Furthermore, the average chondrite normalized REE pattern of the Hindon flood plain sediments is similar to the Siwalik mudstone. Textural immaturity, K/Rb ratios and the average CIA (Chemical Index of Alteration) and PIA (Plagioclase Index of Alteration) values of the Hindon flood plain sediments indicate that the sediments have not been affected by chemical weathering. Our study suggests that the active tectonics of the Himalayas and monsoon climate enhances only physical erosion of the source rocks (Siwaliks) rather than the chemical alteration. These factors help the Hindon sediments to retain their parental and tectonic signature even after recycling.
Greenhouse gas fluxes in southeastern U.S. coastal plain wetlands under contrasting land uses.
Morse, Jennifer L; Ardón, Marcelo; Bernhardt, Emily S
2012-01-01
Whether through sea level rise or wetland restoration, agricultural soils in coastal areas will be inundated at increasing rates, renewing connections to sensitive surface waters and raising critical questions about environmental trade-offs. Wetland restoration is often implemented in agricultural catchments to improve water quality through nutrient removal. Yet flooding of soils can also increase production of the greenhouse gases nitrous oxide and methane, representing a potential environmental trade-off. Our study aimed to quantify and compare greenhouse gas emissions from unmanaged and restored forested wetlands, as well as actively managed agricultural fields within the North Carolina coastal plain, USA. In sampling conducted once every two months over a two-year comparative study, we found that soil carbon dioxide flux (range: 8000-64 800 kg CO2 x ha(-1) x yr(-1)) comprised 66-100% of total greenhouse gas emissions from all sites and that methane emissions (range: -6.87 to 197 kg CH4 x ha(-1) x yr(-1)) were highest from permanently inundated sites, while nitrous oxide fluxes (range: -1.07 to 139 kg N2O x ha(-1) x yr(-1)) were highest in sites with lower water tables. Contrary to predictions, greenhouse gas fluxes (as CO2 equivalents) from the restored wetland were lower than from either agricultural fields or unmanaged forested wetlands. In these acidic coastal freshwater ecosystems, the conversion of agricultural fields to flooded young forested wetlands did not result in increases in greenhouse gas emissions.
NASA Astrophysics Data System (ADS)
Miao, Guofang; Noormets, Asko; Domec, Jean-Christophe; Trettin, Carl C.; McNulty, Steve G.; Sun, Ge; King, John S.
2013-12-01
and environmental pressures on wetland hydrology may trigger changes in carbon (C) cycling, potentially exposing vast amounts of soil C to rapid decomposition. We measured soil CO2 efflux (Rs) continuously from 2009 to 2010 in a lower coastal plain forested wetland in North Carolina, U.S., to characterize its main environmental drivers. To understand and quantify the spatial variation due to microtopography and associated differences in hydrology, measurements were conducted at three microsites along a microtopographic gradient. The seasonal hysteresis in Rs differed by microtopographic location and was caused by the transitions between flooded and nonflooded conditions. Because flooded Rs was small, we reported Rs dynamics mainly during nonflooded periods. A nested model, modified from conventional Q10 (temperature sensitivity) model with dynamic parameters, provided a significantly better simulation on the observed variation of Rs. The model performed better with daily data, indicating that soil temperature (Ts) and water table depth (WTD) were the primary drivers for seasonal variation. The diel variation of Rs was high and independent of Ts and WTD, which both had small diel variations, suggesting the likely association with plant activity. Overall, the site-average soil CO2 efflux was approximately 960-1103 g C m-2 yr-1 in 2010, of which 93% was released during nonflooded periods. Our study indicates that Rs is highly linked to hydroperiod and microtopography in forested wetlands and droughts in wetlands will accelerate soil C loss.
Murphy, Elizabeth A.; Straub, Timothy D.; Soong, David T.; Hamblen, Christopher S.
2007-01-01
Results of the hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kendall County, Illinois, indicate that the 100-year and 500-year flood plains cover approximately 3,699 and 3,762 acres of land, respectively. On the basis of land-cover data for 2003, most of the land in the flood plains was cropland and residential land. Although many acres of residential land were included in the flood plain, this land was mostly lawns, with 25 homes within the 100-year flood plain, and 41 homes within the 500-year flood plain in the 2003 aerial photograph. This report describes the data collection activities to refine the hydrologic and hydraulic models used in an earlier study of the Kane County part of the Blackberry Creek watershed and to extend the flood-frequency analysis through water year 2003. The results of the flood-hazard analysis are presented in graphical and tabular form. The hydrologic model, Hydrological Simulation Program - FORTRAN (HSPF), was used to simulate continuous water movement through various land-use patterns in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center- River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and the 100-year floodway. The hydraulic model was calibrated and verified using observations during three storms at two crest-stage gages and the U.S. Geological Survey streamflowgaging station near Yorkville. Digital maps of the 100-year and 500-year flood plains and the 100-year floodway for each tributary and the main stem of Blackberry Creek were compiled.
Hydraulic and hydrologic aspects of flood-plain planning
Wiitala, S.W.; Jetter, K.R.; Sommerville, Alan J.
1961-01-01
The valid incentives compelling occupation of the flood plain, up to and eve n into the stream channel, undoubtedly have contributed greatly to the development of the country. But the result has been a heritage of flood disaster, suffering, and enormous costs. Flood destruction awakened a consciousness toward reduction and elimination of flood hazards, originally manifested in the protection of existing developments. More recently, increased knowledge of the problem has shown the impracticability of permitting development that requires costly flood protect/on. The idea of flood zoning, or flood-plain planning, has received greater impetus as a result of this realization. This study shows how hydraulic and hydrologic data concerning the flood regimen of a stream can be used in appraising its flood potential and the risk inherent in occupation of its flood plain. The approach involves the study of flood magnitudes as recorded or computed; flood frequencies based1 on experience shown by many years of gaging-station record; use of existing or computed stagedischarge relations and flood profiles; and, where required, the preparation of flood-zone maps to show the areas inundated by floods of several magnitudes and frequencies. The planner can delineate areas subject to inundation by floods o* specific recurrence intervals for three conditions: (a) for the immediate vicinity of a gaging station; (b) for a gaged stream at a considerable distance from a gaging station; and (c) for an ungaged stream. The average depth for a flood of specific frequency can be estimated on the basis of simple measurements of area of drainage basin, width of channel, and slope of streambed. This simplified approach should be useful in the initial stages of flood-plain planning. Brief discussions are included on various types of flood hazards, the effects of urbanization on flood runoff, and zoning considerations.
44 CFR 60.7 - Revisions of criteria for flood plain management regulations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... § 60.7 Revisions of criteria for flood plain management regulations. From time to time part 60 may be... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Revisions of criteria for flood plain management regulations. 60.7 Section 60.7 Emergency Management and Assistance FEDERAL...
NASA Astrophysics Data System (ADS)
Curran, Janet H.; Loso, Michael G.; Williams, Haley B.
2017-09-01
Flow spilling out of an active braid plain often signals the onset of channel migration or avulsion to previously occupied areas. In a recently deglaciated environment, distinguishing between shifts in active braid plain location, considered reversible by fluvial processes at short timescales, and more permanent glacier-conditioned changes in stream position can be critical to understanding flood hazards. Between 2009 and 2014, increased spilling from the Exit Creek braid plain in Kenai Fjords National Park, Alaska, repeatedly overtopped the only access road to the popular Exit Glacier visitor facilities and trails. To understand the likely cause of road flooding, we consider recent processes and the interplay between glacier and fluvial system dynamics since the maximum advance of the Little Ice Age, around 1815. Patterns of temperature and precipitation, the variables that drive high streamflow via snowmelt, glacier meltwater runoff, and rainfall, could not fully explain the timing of road floods. Comparison of high-resolution topographic data between 2008 and 2012 showed a strong pattern of braid plain aggradation along 3 km of glacier foreland, not unexpected at the base of mountainous glaciers and likely an impetus for channel migration. Historically, a dynamic zone follows the retreating glacier in which channel positions shift rapidly in response to changes in the glacier margin and fresh morainal deposits. This period of paraglacial adjustment lasts one to several decades at Exit Glacier. Subsequently, as moraine breaches consolidate and lock the channel into position, and as the stream regains the lower-elevation valley center, upper-elevation surfaces are abandoned as terraces inaccessible by fluvial processes for timescales of decades to centuries. Where not constrained by these terraces and moraines, the channel is free to migrate, which in this aggradational setting generates an alluvial fan at the breach of the final prominent moraine. The position of this fan is glacially conditioned but the process of migration of the braided channels across it is not. This broad perspective on channel controls identifies incipient avulsion into the roadside forest as part of a long-term fan-building process independent from changes in streamflow or sediment load.
Vegetation, soil, and flooding relationships in a blackwater floodplain forest
Burke, M.K.; King, S.L.; Gartner, D.; Eisenbies, M.H.
2003-01-01
Hydroperiod is considered the primary determinant of plant species distribution in temperate floodplain forests, but most studies have focused on alluvial (sediment-laden) river systems. Few studies have evaluated plant community relationships in blackwater river systems of the South Atlantic Coastal Plain of North America. In this study, we characterized the soils, hydroperiod, and vegetation communities and evaluated relationships between the physical and chemical environment and plant community structure on the floodplain of the Coosawhatchie River, a blackwater river in South Carolina, USA. The soils were similar to previous descriptions of blackwater floodplain soils but had greater soil N and P availability, substantially greater clay content, and lower soil silt content than was previously reported for other blackwater river floodplains. Results of a cluster analysis showed there were five forest communities on the site, and both short-term (4 years) and long-term (50 years) flooding records documented a flooding gradient: water tupelo community > swamp tupelo > laurel oak = overcup oak > mixed oak. The long-term hydrologic record showed that the floodplain has flooded less frequently from 1994 to present than in previous decades. Detrended correspondence analysis of environmental and relative basal area values showed that 27% of the variation in overstory community structure could be explained by the first two axes; however, fitting the species distributions to the DCA axes using Gaussian regression explained 67% of the variation. Axes were correlated with elevation (flooding intensity) and soil characteristics related to rooting volume and cation nutrient availability. Our study suggests that flooding is the major factor affecting community structure, but soil characteristics also may be factors in community structure in blackwater systems. ?? 2003, The Society of Wetland Scientists.
Wiche, Gregg J.; Gilbert, J.J.; Froehlich, David C.; Lee, Jonathan K.
1988-01-01
In April 1979 and April 1980, major flooding along the lower Pearl River caused extensive damage to homes located on the flood plain in the Slidell, Louisiana, area. In response to questions about causes of these floods and means of mitigating future floods, the U.S. Geological Survey, in cooperation with the Louisiana Department of Transportation and Development, Office of Highways, and the U.S. Department of Transportation, Federal Highway Administration, used a two-dimensional finite-element surface-water flow-modeling system to study the effect of four alternative modifications for improving the hydraulic characteristics of the Interstate Highway 10 crossing of the flood plain near Slidell. The analysis used the model's capability to simulate changes in flood-plain topography, flood-plain vegetative cover, and highway-embankment geometry. Compared with the existing highway crossing, the four alternative modifications reduce backwater and average velocities through bridge openings for a flood of the magnitude of the 1980 flood. The four alternatives also eliminate roadway overtopping during such a flood. For the four modifications, maximum backwater on the west side of the flood plain ranges from 0.3 to 1.1 feet and on the east side from 0.3 to 0.7 foot. Results of the alternative-model simulations show that backwater is greater on the west side of the flood plain than on the east side, but upstream from Interstate Highway 10 backwater decreases more rapidly in the upstream direction on the west side of the flood plain than on the east side. Downstream from Interstate Highway 10, modeling of the four alternatives indicates that backwater and drawdown still occur on the east and west sides of the flood plain, respectively, but are less than the values computed for the April 1980 flood with Interstate Highway 10 in place. In addition to other highway-crossing modifications, alternatives 2 and 3 include simulation of a new 2,000-foot bridge opening, and ,alternative 4 includes simulation of a 1,000-foot bridge opening. The new bridge conveys 25, 23, and 21 percent of the total computed discharge in alternatives 2, 3, and 4, respectively. The average velocity through the new bridge is 2.0, 1.9, and 3.4 feet per second for alternatives 2, 3, and 4, respectively.
NASA Technical Reports Server (NTRS)
1991-01-01
Albuquerque, NM (35.0N, 106.5W) is situated on the edge of the Rio Grande River and flood plain which cuts across the image. The reddish brown surface of the Albuquerque Basin is a fault depression filled with ancient alluvial fan and lake bed sediments. On the slopes of the Manzano Mountains to the east of Albuquerque, juniper and other timber of the Cibola National Forest can be seen as contrasting dark tones of vegetation.
Extent and frequency of floods on Delaware River in vicinity of Belvidere, New Jersey
Farlekas, George M.
1966-01-01
A stream overflowing its banks is a natural phenomenon. This natural phenomenon of flooding has occurred on the Delaware River in the past and will occur in the future. T' o resulting inundation of large areas can cause property damage, business losses and possible loss of life, and may result in emergency costs for protection, rescue, and salvage work. For optimum development of the river valley consistent with the flood risk, an evaluation of flood conditions is necessary. Basic data and the interpretation of the data on the regimen of the streams, particularly the magnitude of floods to be expected, the frequency of their occurrence, and the areas inundated, are essential for planning and development of flood-prone areas.This report presents information relative to the extent, depth, and frequency of floods on the Delaware River and its tributaries in the vicinity of Belvidere, N.J. Flooding on the tributaries detailed in the report pertains only to the effect of backwater from the Delaware River. Data are presented for several past floods with emphasis given to the floods of August 19, 1955 and May 24, 1942. In addition, information is given for a hypothetical flood based on the flood of August 19, 1955 modified by completed (since 1955) and planned flood-control works.By use of relations presented in this report the extent, depth, and frequency of flooding can be estimated for any site along the reach of the Delaware River under study. Flood data and the evaluation of the data are presented so that local and regional agencies, organizations, and individuals may have a technical basis for making decisions on the use of flood-prone areas. The Delaware River Basin Commission and the U.S. Geological Survey regard this program of flood-plain inundation studies as a positive step toward flood-damage prevention. Flood-plain inundation studies, when followed by appropriate land-use regulations, are a valuable and economical supplement to physical works for flood control, such as dams and levees. Both physical works and flood-plain regulations are included in the comprehensive plans for development of the Delaware River basin.Recommendations for land use, or suggestions for limitations of land use, are not made herein. Other reports on recommended general use and regulation of land in flood-prone areas are available (Dola, 1961; White, 1961; American Society of Civil Engineers Task Force on Flood Plain Regulations, 1962; and Goddard, 1963). The primary responsibility for planning for the optimum land use in the flood plain and the implementation of flood-plain zoning or other regulations to achieve such optimum use rest with the state and local interests. The preparation of this report was undertaken after consultation with representatives of the Lehigh-Northampton Counties, Pennsylvania, Joint Planning Commission and the Warren County, New Jersey, Regional Planning Board and after both had demonstrated their need for flood-plain information and their willingness to consider flood-plain regulations.
Luz, Cynthia F P da; Barth, Ortrud M; Martin, Louis; Silva, Cleverson G; Turcq, Bruno J
2011-09-01
Historians claim that European colonizers of the northern coast of Rio de Janeiro State found vast herbaceous fields when arrived in this region. Hypotheses about the origin of these fields include forest burning by the Goitacás indians and periodical floods by the Paraíba do Sul River and the lagoon system. The palynologycal analysis of two lake cores obtained in the municipality of Campos dos Goytacazes revealed opening episodes of hygrophilous forest and the establishment of field vegetation, recorded at ca. 6,500 and ca. 4,000 (14)C yr BP. The partial replacement of forest by field vegetation in the first episode was probably caused by floods of the lower areas during the development of the Holocene lagoon phase. During the second episode, successions of vegetational patterns occurred due to lowering of the sea level. Drying and enlarging of the coastal plain have allowed its colonization by herbs and heliophyte plants. The palynological analysis does not provide any evidence that sustains the theories of use of fire and agricultural activities by indigenous groups during these periods.
1975-08-01
tPVRTTW’VRroD-cVER ED Flood Plain Information Little Black Creek " T Final Townof Gates, Chili ano Ogden) /_ __...._’ Monroe County, New r7k d. 6. PERFORMING...mad Identify by block number) ) /This report on the Little Black Creek Flood Plain within the Town of Chili , Gates, and Ogden in Monroe County has...16 Future flood heights at Gates, Chili , Ogden Sewage Treatment Plant
Wolfe, W.J.; Diehl, T.H.
1993-01-01
Sedimentation in the 19th and 20th centuries has had a major effect on surface-water drainage conditions along a 7-mile section of the North, Fork Forked Deer River flood plain, Dyer County, Tenn. During the century prior to 1930, 5 to 12 feet of sediment were deposited over much of the flood plain, resulting in channel obstruction and widespread flooding. The estimated bankfull capacity of the natural channel before it was channelized in 19 16 was comparable to the base flow of the river during the 1980's. Ditching of the river between 191i6 and 1;9,21 was followed by reductions in sedimentation rates over parts of the flood plain. However, the effects of sedimentation have persisted. Occlusions along the natural channel of the river have divided this stream reach into a series of sloughs. These sloughs continue to fill with sediment and are surrounded by ponds that have expanded since 1941. Degradation of the North Fork Forked Deer ditch may eventually reduce ponding over much of the flood plain. Active incision of headcuts in both banks of the ditch is enhancing the drainage of widespread ponded areas. These headcuts likely will have limited effect on drainage of most tributaries. The highest recent sedimentation rates, in places more than 0.2 foot per year, are concentrated near the flood-plain margin along tributary streams. In conjunction with beaver dams and debris, ongoing sedimentation has blocked flow in several tributaries, posing a flood hazard to agricultural land near the flood-plain margin. The occluded tributaries likely will continue to overflow unless they are periodically dredged or their sediment loads are reduced.
Hedgecock, T. Scott
2003-01-01
A two-dimensional finite-element surface-water model was used to study the effects of proposed modifications to the State Highway 203 corridor (proposed Elba Bypass/relocated U.S. Highway 84) on water-surface elevations and flow distributions during flooding in the Pea River and Whitewater Creek Basins at Elba, Coffee County, Alabama. Flooding was first simulated for the March 17, 1990, flood, using the 1990 flood-plain conditions to calibrate the model to match measured data collected by the U.S. Geological Survey and the U.S. Army Corps of Engineers after the flood. After model calibration, the effects of flooding were simulated for four scenarios: (1) floods having the 50- and 100-year recurrence intervals for the existing flood-plain, bridge, highway, and levee conditions; (2) floods having the 50- and 100-year recurrence intervals for the existing flood-plain and levee conditions with the State Highway 203 embankment and bridge removed; (3) floods having the 50- and 100-year recurrence intervals for the existing flood-plain, bridge, and highway conditions with proposed modifications (elevating) to the levee; and (4) floods having the 50- and 100-year recurrence intervals for the proposed conditions reflecting the Elba Bypass and modified levee. The simulation of floodflow for the Pea River and Whitewater Creek flood of March 17, 1990, in the study reach compared closely to flood profile data obtained after the flood. The flood of March 17, 1990, had an estimated peak discharge of 58,000 cubic feet per second at the gage (just below the confluence) and was estimated to be between a 50-year and 100-year flood event. The estimated peak discharge for Pea River and Whitewater Creek was 40,000 and 42,000 cubic feet per second, respectively. Simulation of floodflows for the 50-year flood (51,400 cubic feet per second) at the gage for existing flood-plain, bridge, highway, and levee conditions indicated that about 31 percent of the peak flow was conveyed by the State Highway 203 bridge over Whitewater Creek, approximately 12 percent overtopped the State Highway 203 embankment, and about 57 percent was conveyed by the Pea River flood plain east of State Highway 125. For this simulation, flow from Pea River (2,380 cubic feet per second) overtopped State Highway 125 and crossed over into the Whitewater Creek flood plain north of State Highway 203, creating one common flood plain. The water-surface elevation estimated at the downstream side of the State Highway 203 bridge crossing Whitewater Creek was 202.82 feet. The girders for both the State Highway 203 and U.S. Highway 84 bridges were partially submerged, but U.S. Highway 84 was not overtopped. For the 100-year flood (63,500 cubic feet per second) at the gage, the simulation indicated that about 25 percent of the peak flow was conveyed by the State Highway 203 bridge over Whitewater Creek, approximately 24 percent overtopped the State Highway 203 embankment, and about 51 percent was conveyed by the Pea River flood plain east of State Highway 125. The existing levee adjacent to Whitewater Creek was overtopped by a flow of 3,200 cubic feet per second during the 100-year flood. For this simulation, flow from Pea River (6,710 cubic feet per second) overtopped State Highway 125 and crossed over into the Whitewater Creek flood plain north of State Highway 203. The water-surface elevation estimated at the downstream side of the State Highway 203 bridge crossing Whitewater Creek was 205.60 feet. The girders for both the State Highway 203 and U.S. Highway 84 bridges were partially submerged, and the west end of the U.S. Highway 84 bridge was overtopped. Simulation of floodflows for the 50-year flood at the gage for existing flood-plain and levee conditions, but with the State Highway 203 embankment and bridge removed, yielded a lower water-surface elevation (202.90 feet) upstream of this bridge than that computed for the existing conditions. For the 100-year flood, the simulation indi
Flood Plain Topography Affects Establishment Success of Direct-Seeded Bottomland Oaks
Emile S. Gardiner; John D. Hodges; T. Conner Fristoe
2004-01-01
Five bottomland oak species were direct seeded along a topographical gradient in a flood plain to determine if environmental factors related to relative position in the flood plain influenced seedling establishment and survival. Two years after installation of the plantation, seedling establishment rates ranged from 12±1.6 (mean ± standard error) percent for overcup...
44 CFR 60.5 - Flood plain management criteria for flood-related erosion-prone areas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood plain management criteria for flood-related erosion-prone areas. 60.5 Section 60.5 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION...
44 CFR 60.5 - Flood plain management criteria for flood-related erosion-prone areas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood plain management criteria for flood-related erosion-prone areas. 60.5 Section 60.5 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION...
2005-08-01
shrub species in reference standard sites, but may dominate in degraded systems Carya illinoensis Carya cordiformis Carpinus caroliniana Carya ovata...americana sedges Carex spp. ironwood Carpinus caroliniana water hickory Carya aquatica bitternut hickory Carya cordiformis pecan Carya illinoensis ...and water hickory ( Carya aquatica). Less flooded sites are often dominated by green ash, Nuttall oak (Q. nuttallii), or willow oak, and the driest
Juracek, Kyle E.
2013-01-01
Historical mining activity in the Tri-State Mining District (TSMD), located in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma, has resulted in a substantial ongoing input of cadmium, lead, and zinc to the environment. To provide some of the information needed to support remediation efforts in the Cherokee County, Kansas, superfund site, a 4-year study was begun in 2009 by the U.S. Geological Survey that was requested and funded by the U.S. Environmental Protection Agency. A combination of surficial-soil sampling and coring was used to investigate the occurrence and variability of mining-related lead and zinc in the flood plains of the Spring River and several tributaries within the superfund site. Lead- and zinc-contaminated flood plains are a concern, in part, because they represent a long-term source of contamination to the fluvial environment. Lead and zinc contamination was assessed with reference to probable-effect concentrations (PECs), which represent the concentrations above which adverse aquatic biological effects are likely to occur. The general PECs for lead and zinc were 128 and 459 milligrams per kilogram, respectively. The TSMD-specific PECs for lead and zinc were 150 and 2,083 milligrams per kilogram, respectively. Typically, surficial soils in the Spring River flood plain had lead and zinc concentrations that were less than the general PECs. Lead and zinc concentrations in the surficial-soil samples were variable with distance downstream and with distance from the Spring River channel, and the largest lead and zinc concentrations usually were located near the channel. Lead and zinc concentrations larger than the general or TSMD-specific PECs, or both, were infrequent at depth in the Spring River flood plain. When present, such contamination typically was confined to the upper 2 feet of the core and frequently was confined to the upper 6 inches. Tributaries with few or no lead- and zinc-mined areas in the basin—Brush Creek, Cow Creek, and Shawnee Creek—generally had flood-plain lead and zinc concentrations (surficial soil, 6- and 12-inch depth) that were substantially less than the general PECs. Tributaries with extensive lead- and zinc-mined areas in the basin—Shoal Creek, Short Creek, Spring Branch, Tar Creek, Turkey Creek, and Willow Creek—had flood-plain lead concentrations (surficial soil, 6- and 12-inch depth) that frequently or typically exceeded the general and TSMD-specific PECs. Likewise, the tributaries with extensive lead- and zinc-mined areas in the basin had flood-plain zinc concentrations (surficial soil, 6- and 12-inch depth) that frequently or typically exceeded the general PEC. With the exception of Shoal and Willow Creeks, zinc concentrations typically exceeded the TSMD-specific PEC. The largest flood-plain lead and zinc concentrations (surficial soil, 6- and 12-inch depth) were measured for Short and Tar Creeks. Lead and zinc concentrations in the surficial-soil samples collected from the tributary flood plains varied longitudinally in relation to sources of mining-contaminated sediment in the basins. Lead and zinc concentrations also varied with distance from the channel; however, no consistent spatial trend was evident. For the surficial-soil samples collected from the Spring River flood plain and tributary flood plains, both the coarse (larger than 63 micrometers) and fine particles (less than 63 micrometers) contained substantial lead and zinc concentrations.
Map showing flood-prone areas, greater Denver area, Front Range Urban Corridor, Colorado
McCain, J.F.; Hotchkiss, W.R.
1975-01-01
The rapid growth of population in the Front Range Urban Corridor of Colorado is causing intense competition for available land resources. One form of competition posing serious problems in indiscriminate development on flood plains along creeks and rivers. Flood plains are natural features of the landscape developed by streams in carry water in excess of channel capacity. Although not used as often by the stream, flood plains are as much a part of the stream system as is the channel. Whenever man competes with this natural function of the flood plain he must inevitably pay the price through property damage and varying degrees of human suffering Flood damages in the United States have been estimated to average about \\$1 billion annually (American Public Works Association, 1966.) This tremendous waste of national resources is borne not only by those citizens in direct contact with floods but also to a lesser degree by all citizens through increased cost of public services. Thus, floods are of concern to the entire community, and solutions to existing or potential problems should be a community effort.
Study on ecological regulation of coastal plain sluice
NASA Astrophysics Data System (ADS)
Yu, Wengong; Geng, Bing; Yu, Huanfei; Yu, Hongbo
2018-02-01
Coastal plains are densely populated and economically developed, therefore their importance is self-evident. However, there are some problems related with water in coastal plains, such as low flood control capacity and severe water pollution. Due to complicated river network hydrodynamic force, changeable flow direction and uncertain flood concentration and propagation mechanism, it is rather difficult to use sluice scheduling to realize flood control and tackle water pollution. On the base of the measured hydrological data during once-in-a-century Fitow typhoon in 2013 in Yuyao city, by typical analysis, theoretical analysis and process simulation, some key technologies were researched systematically including plain river network sluice ecological scheduling, “one tide” flood control and drainage scheduling and ecological running water scheduling. In the end, single factor health diagnostic evaluation, unit hydrograph of plain water level and evening tide scheduling were put forward.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.13 Noncompliance. If a State fails to submit adequate flood plain management regulations applicable to State-owned properties pursuant...
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.13 Noncompliance. If a State fails to submit adequate flood plain management regulations applicable to State-owned properties pursuant...
Code of Federal Regulations, 2014 CFR
2014-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.13 Noncompliance. If a State fails to submit adequate flood plain management regulations applicable to State-owned properties pursuant...
Code of Federal Regulations, 2010 CFR
2010-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.13 Noncompliance. If a State fails to submit adequate flood plain management regulations applicable to State-owned properties pursuant...
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.13 Noncompliance. If a State fails to submit adequate flood plain management regulations applicable to State-owned properties pursuant...
Flood-plain areas of the Mississippi River, mile 866.8 to mile 888.0, Minnesota
Carlson, George H.; Gue, Lowell C.
1980-01-01
Profiles of the regional flood, 500-year flood, and flood-protection elevation have been developed for a 21-mile reach of the Mississippi River. Areas flooded by the regional flood and by the 500-year flood were delineated by photogrammetric mapping techniques and are shown on seven large-scale map sheets. Over 1,300 acres of flood plain are included in the cities of Anoka, Champlin, Coon Rapids, Dayton, Ramsey and Elk River, and in unincorporated areas of Wright County. The flood-outline maps and flood profiles comprise data needed by local units of government to adopt, enforce, and administer flood-plain management regulations along the Mississippi River throughout the study reach. Streamflow data from two gaging stations provided the basis for definition of the regional and 500-year floods. Cross-section data obtained at 83 locations were used to develop a digital computer model of the river. Flood elevation and discharge data from the 1965 flood provided a basis for adjusting the computer model. Information relating the history of floods, formation of ice jams, and duration of flood elevations at Anoka and at Elk River are included.
Lanier, T.H.
1996-01-01
The 100-year flood plain was determined for Upper Three Runs, its tributaries, and the part of the Savannah River that borders the Savannah River Site. The results are provided in tabular and graphical formats. The 100-year flood-plain maps and flood profiles provide water-resource managers of the Savannah River Site with a technical basis for making flood-plain management decisions that could minimize future flood problems and provide a basis for designing and constructing drainage structures along roadways. A hydrologic analysis was made to estimate the 100-year recurrence- interval flow for Upper Three Runs and its tributaries. The analysis showed that the well-drained, sandy soils in the head waters of Upper Three Runs reduce the high flows in the stream; therefore, the South Carolina upper Coastal Plain regional-rural-regression equation does not apply for Upper Three Runs. Conse- quently, a relation was established for 100-year recurrence-interval flow and drainage area using streamflow data from U.S. Geological Survey gaging stations on Upper Three Runs. This relation was used to compute 100-year recurrence-interval flows at selected points along the stream. The regional regression equations were applicable for the tributaries to Upper Three Runs, because the soil types in the drainage basins of the tributaries resemble those normally occurring in upper Coastal Plain basins. This was verified by analysis of the flood-frequency data collected from U.S. Geological Survey gaging station 02197342 on Fourmile Branch. Cross sections were surveyed throughout each reach, and other pertinent data such as flow resistance and land-use were col- lected. The surveyed cross sections and computed 100-year recurrence-interval flows were used in a step-backwater model to compute the 100-year flood profile for Upper Three Runs and its tributaries. The profiles were used to delineate the 100-year flood plain on topographic maps. The Savannah River forms the southwestern border of the Savannah River Site. Data from previously published reports were used to delineate the 100-year flood plain for the Savannah River from the downstream site boundary at the mouth of Lower Three Runs at river mile 125 to the upstream site boundary at river mile 163.
44 CFR 60.5 - Flood plain management criteria for flood-related erosion-prone areas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Federal Insurance Administrator will provide the data upon which flood plain management regulations for... provided sufficient data to furnish a basis for these regulations in a particular community, the community shall obtain, review, and reasonably utilize data available from other Federal, State or other sources...
44 CFR 60.5 - Flood plain management criteria for flood-related erosion-prone areas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Federal Insurance Administrator will provide the data upon which flood plain management regulations for... provided sufficient data to furnish a basis for these regulations in a particular community, the community shall obtain, review, and reasonably utilize data available from other Federal, State or other sources...
44 CFR 60.5 - Flood plain management criteria for flood-related erosion-prone areas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Federal Insurance Administrator will provide the data upon which flood plain management regulations for... provided sufficient data to furnish a basis for these regulations in a particular community, the community shall obtain, review, and reasonably utilize data available from other Federal, State or other sources...
44 CFR 60.6 - Variances and exceptions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations § 60.6 Variances and exceptions. (a... the criteria set forth in §§ 60.3, 60.4, and 60.5. The issuance of a variance is for flood plain...
18 CFR 801.8 - Flood plain management and protection.
Code of Federal Regulations, 2011 CFR
2011-04-01
... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands... of flood prone lands with approval of the appropriate signatory party, to safeguard public health... tributaries by encroachment. (2) Plan and promote implementation of projects and programs of a structural and...
Colson, B.E.; Ming, C.O.; Arcement, George J.
1979-01-01
Floodflow data that will provide a base for evaluating digital models relating to open-channel flow were obtained at 22 sites on streams in Alabama, Louisiana, and Mississippi. Thirty-five floods were measured. Analysis of the data indicated methods currently in use would be inaccurate where densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This atlas presents flood information at the site on West Fork Amite River near Liberty, MS. Water depths , velocities, and discharges through bridge openings on West Fork Amite River near Liberty, MS for floods of December 6, 1971 , and March 25, 1973, are shown, together with peak water-surface elevations along embankments and along cross sections. Manning 's roughness coefficient values in different parts of the flood plain are shown on maps, and flood-frequency relations are shown on a graph. (USGS).
23 CFR 650.111 - Location hydraulic studies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... part 771. (f) Local, State, and Federal water resources and flood-plain management agencies should be...
23 CFR 650.111 - Location hydraulic studies.
Code of Federal Regulations, 2014 CFR
2014-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... part 771. (f) Local, State, and Federal water resources and flood-plain management agencies should be...
23 CFR 650.111 - Location hydraulic studies.
Code of Federal Regulations, 2012 CFR
2012-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... part 771. (f) Local, State, and Federal water resources and flood-plain management agencies should be...
23 CFR 650.111 - Location hydraulic studies.
Code of Federal Regulations, 2013 CFR
2013-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... part 771. (f) Local, State, and Federal water resources and flood-plain management agencies should be...
23 CFR 650.111 - Location hydraulic studies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... part 771. (f) Local, State, and Federal water resources and flood-plain management agencies should be...
18 CFR 801.8 - Flood plain management and protection.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., welfare, safety and property, and to sustain economic development. (c) To foster sound flood plain controls, as an essential part of water resources management, the Commission shall: (1) Encourage and...
Floods on White Rock Creek above White Rock Lake at Dallas, Texas
Gilbert, Clarence R.
1963-01-01
The White Rock Creek watershed within the city limits of Dallas , Texas, presents problems not unique in the rapid residential and industrial development encountered by many cities throughout the United States. The advantages of full development of the existing area within a city before expanding city boundaries, are related to both economics and civic pride. The expansion of city boundaries usually results in higher per capital costs for the operation of city governments. Certainly no responsible city official would oppose reasonable development of watersheds and flood plains and thus sacrifice an increase in tax revenue. Within the words "reasonable development" lies the problem faced by these officials. They are aware that the natural function of a stream channel, and its associated flood plain is to carry away excess water in time of flood. They are also aware that failure to recognize this has often led to haphazard development on flood plains with a consequent increase in flood damages. In the absence of factual data defining the risk involved in occupying flood plains, stringent corrective and preventative measures must be taken to regulate man's activities on flood plains to a point beyond normal precaution. Flood-flow characteristics in the reach of White Rock Creek that lies between the northern city boundary of Dallas and Northwest Highway (Loop 12) at the upper end of White Rock Lake, are presented in this report. Hydrologic data shown include history and magnitude of floods, flood profiles, outlines of areas inundated by three floods, and estimates of mean velocities of flow at selected points. Approximate areas inundated by floods of April 1942 and July 1962 along White Rock Creek and by the flood of October 1962 along Cottonwood Creek, Floyd Branch, and Jackson Branch, are delineated on maps. Greater floods have undoubtedly occurred in the past but no attempt is made to show their probable overflow limits because basic data on such floods could not be obtained. Depths of inundation can be estimated from the information shown. Elevations shown are in feet above mean sea level, datum of 1929. The data and computations supporting the results given herein are in the files of the Geological Survey in Austin, Texas.
Nutrient and detritus transport in the Apalachicola River, Florida
Mattraw, Harold C.; Elder, John F.
1984-01-01
The Apalachicola River in northwest Florida flows 172 kilometers southward from Jim Woodruff Dam near the Florida-Georgia border to Apalachicola Bay on the Gulf of Mexico. The basin is composed of two 3,100-squarekilometer subbasins, the Chipola and the Apalachicola. The Apalachicola subbasin includes a 454-square-kilometer bottom-land hardwood flood plain that is relatively undeveloped. The flood plain contains more than 1,500 trees per hectare that annually produce approximately 800 metric tons of litter fall per square kilometer. Spring floods of March and April 1980 carried 35,000 metric tons of particulate organic carbon derived from litter fall into Apalachicola Bay. The estuarine food web is predominantly detrital based and represents an important commercial source of oyster, shrimp, blue crab, and various species of fish. The water budget of the Apalachicola basin is heavily dominated by streamflow. For a 1-year period in 1979-80, 28.6 cubic kilometers of water flowed past the Sumatra gage on the lower river. Eighty percent of this volume flowed into the upper river near Chattahoochee, Fla., and 11 percent was contributed by its major tributary, the Chipola River. Contributions from ground water and overland runoff were less than 10 percent. Streamflow increases downstream were accompanied by equivalent increases in nitrogen and phosphorus transport. The nutrients were released to the river by the flood-plain vegetation, but also were subject to recycling. The increase in the amount of organic carbon transport downstream was greater than streamflow increases. The flood plain is an important source of organic carbon, especially in detrital form. Several methods for measurement of detritus in the river and flood plain were developed and tested. The detritus data from the flood plain added semiquantitative evidence for transport of detritus from the flood plain to the river flow, probably accounting for most of the coarse particulate organic material carried by the river. During the 1-year period of investigation, June 3, 1979, through June 2, 1980, 2.1 ? 10 5 metric tons of organic carbon were transported from the river basin to the bay. Nitrogen and phosphorus transport during the same period amounted to 2.2 ? 10 4 and 1.7 ? 10 3 metric tons, respectively. On an areal basis, it was calculated that the flood plain contributed 70 grams of organic carbon per square meter per year, 0.4 gram of nitrogen per square meter per year, and 0.5 gram of phosphorus per square meter per year. The flood plain acts as a source of detrital carbon, but for the solutes, nutrient release is approximately balanced by nutrient retention.
Jarrett, R.D.; Costa, J.E.
1988-01-01
A multidisciplinary study of precipitation and streamflow data and paleohydrologic studies of channel features was made to analyze the flood hydrology of foothill and mountain streams in the Front Range of Colorado, with emphasis on the Big Thompson River basin, because conventional hydrologic analyses do not adequately characterize the flood hydrology. In the foothills of Colorado, annual floodflows are derived from snowmelt at high elevations in the mountain regions, from rainfall at low elevation in the plains or plateau regions, or from a combination of rain falling on snow or mixed population hydrology. Above approximately 7,500 ft, snowmelt dominates; rain does not contribute to the flood potential. Regional flood-frequency relations were developed and compared with conventional flood-estimating technique results, including an evaluation of the magnitude and frequency of the probable maximum flood. Evaluation of streamflow data and paleoflood investigations provide an alternative for evaluating flood hydrology and the safety of dams. The study indicates the need for additional data collection and research to understand the complexities of the flood hydrology in mountainous regions, especially its effects on flood-plain management and the design of structures in the flood plain. (USGS)
Influence of climate and land use changes on recent trend of soil erosion within the Russian Plain
NASA Astrophysics Data System (ADS)
Golosov, Valentin; Yermolaev, Oleg; Rysin, Ivan; Litvin, Leonid; Kiryukhina, Zoya; Safina, Guzel
2016-04-01
The Russian Plain is one of the largest plains with an area of 460 × 106 ha. Soil erosion during snow-melting and rainstorms occurs mostly on arable lands at the Russian Plain. The relative contribution of different types of soil erosion changes from the central part of the Russian Plain to the south. Sheet and rill soil erosion during snow-melting and rainfall are practically equal in the forest zone, while rainfall erosion prevails in the forest-steppe zone and the northern part of the steppe zone. Mostly rainfall erosion is observed in the southern part of the steppe zone. Mean annual soil losses from cultivated lands change in the range from 1 to 3 t ha-1 within lowlands to 6 to 8 t ha-1 at uplands with the maximum (10 t ha-1) observed near the Caucasus Mountains in the Stavropolskiy Krai. The intensity of gully erosion is relatively low during the last two decades. The collapse of the Soviet Union in 1991 caused a serious crisis in the agriculture because of financial problems and structural reorganization. As a result, the area of arable lands decreased in the southern half of the Russian Plain in 1991 - 2003. To a greater extent it was observed in the south of the forest zone because of the low productivity of its soils compared with chernozem. More than one third of the arable lands were abandoned in the dry steppe - semi-desert zones because these lands were irrigated during the Soviet period. The reduction of the arable land occurred in the forest-steppe and steppe zones mostly because of funding limitations during the 1990s. Recently the area of arable lands in the steppe zone was practically restored to its pre-1991 size. Simultaneously the last 25 years are characterized by unusual warm winters - in particular, in the southern half of the Russian Plain because of the global warming. As a result, the coefficient of surface snow-melting runoff considerably decreased for both cultivated fields and compacted fields after harvesting. Accordingly, spring flood levels decreased considerably - in particular, in small rivers. This is confirmed by a serious decrease of floodplain sedimentation rates since 1986 compared with the period from 1964 to 1986. As a result of both positive trend of extreme rainfall and negative trend of surface snow melting runoff, the proportion of sediments eroded from cultivated slopes and delivered by surface runoff to river channels decreased considerably during the last few decades in the southern part of the Russian Plain. Complex assessment of different erosion factors changes is undertaken for the different landscape zones of the Russian Plain. Given analysis allows evaluating of recent trend in erosion rates from cultivated lands. The other indicators of sediment redistribution dynamic (gully head retreat rate, floodplain sedimentation) are also used for assessment of soil erosion rate dynamic under land use and climate changes during last 25-30 years.
Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil
Dunne, T.; Mertes, L.A.K.; Meade, R.H.; Richey, J.E.; Forsberg, B.R.
1998-01-01
Sediment transport through the Brazilian sector of the Amazon River valley, a distance of 2010 km, involves exchanges between the channel and the flood plain that in each direction exceed the annual flux of sediment out of the river at O??bidos (???1200 Mt yr-1). The exchanges occur through bank erosion, bar deposition, settling from diffuse overbank flow, and sedimentation in flood-plain channels. We estimated the magnitude of these exchanges for each of 10 reaches of the valley, and combined them with calculations of sediment transport into and out of the reaches based on sediment sampling and flow records to define a sediment budget for each reach. Residuals in the sediment budget of a reach include errors of estimation and erosion or deposition within the channel. The annual supply of sediment entering the channel from bank erosion was estimated to average 1570 Mt yr-1 (1.3 ?? the O??bidos flux) and the amount transferred from channel transport to the bars (380 Mt yr-1) and the flood plain (460 Mt yr-1 in channelized flow; 1230 Mt yr-1 in diffuse overbank flow) totaled 2070 Mt yr-1 (1.7 ?? the O??bidos flux). Thus, deposition on the bars and flood plain exceeded bank erosion by 500 Mt yr-1 over a 10-16 yr period. Sampling and calculation of sediment loads in the channel indicate a net accumulation in the valley floor of approximately 200 Mt yr-1 over 16 yr, crudely validating the process-based calculations of the sediment budget, which in turn illuminate the physical controls on each exchange process. Another 300-400 Mt yr-1 are deposited in a delta plain downstream of O??bidos. The components of the sediment budget reflect hydrologie characteristics of the valley floor and geomorphic characteristics of the channel and flood plain, which in turn are influenced by tectonic features of the Amazon structural trough.
7 CFR 650.25 - Flood-plain management.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE... human life, health, and property in ways that are environmentally sensitive. Most flood plains are... management will be provided by the NRCS technical service centers (§ 600.3 of this part). (2) NRCS state...
Bennett, C.S.
1984-01-01
A two-dimensional finite-element surface water flow modeling system based on the shallow water equations was used to study the hydraulic impact of the proposed Interstate crossing on the 500-year flood. Infrared aerial photography was used to define regions of homogeneous roughness in the flood plain. Finite-element networks approximating flood plain topography were designed using elements of three roughness types. High water marks established during an 8-year flood that occurred in October 1976 were used to calibrate the model. The 500-year flood (630,000 cu ft/sec) was simulated using the dike on the left bank as the left boundary and the right edge of the flood plain as the right boundary. Simulations were performed without and with the proposed highway embankments in place. Detailed information was obtained about backwater effects upstream from the proposed highway embankments, changes in flow distribution resulting from embankments, and velocities in the vicinity of the bridge openings. The results of the study indicate that the four bridge openings in the right flood plain should be adequate to handle the 500-yr flood flow. Forty percent of the flow passes through the main channel bridge, while the remaining 60% of the flow passes through the three overflow bridges. Average velocities in the bridge openings ranged from 3.4 ft/sec to 6.9 ft/sec with a maximum vertically averaged velocity of 9.3 ft/sec occurring at the right edge of one of the overflow bridges. (Author 's abstract)
44 CFR 60.3 - Flood plain management criteria for flood-prone areas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... minimize or eliminate infiltration of flood waters into the systems; and (6) Require within flood-prone... infiltration of flood waters into the systems and discharges from the systems into flood waters and (ii) onsite...
44 CFR 60.3 - Flood plain management criteria for flood-prone areas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... minimize or eliminate infiltration of flood waters into the systems; and (6) Require within flood-prone... infiltration of flood waters into the systems and discharges from the systems into flood waters and (ii) onsite...
44 CFR 60.3 - Flood plain management criteria for flood-prone areas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... minimize or eliminate infiltration of flood waters into the systems; and (6) Require within flood-prone... infiltration of flood waters into the systems and discharges from the systems into flood waters and (ii) onsite...
44 CFR 65.3 - Requirement to submit new technical data.
Code of Federal Regulations, 2012 CFR
2012-10-01
... base flood elevations may increase or decrease resulting from physical changes affecting flooding... physical changes affecting flooding conditions, risk premium rates and flood plain management requirements...
44 CFR 65.3 - Requirement to submit new technical data.
Code of Federal Regulations, 2013 CFR
2013-10-01
... base flood elevations may increase or decrease resulting from physical changes affecting flooding... physical changes affecting flooding conditions, risk premium rates and flood plain management requirements...
44 CFR 65.3 - Requirement to submit new technical data.
Code of Federal Regulations, 2014 CFR
2014-10-01
... base flood elevations may increase or decrease resulting from physical changes affecting flooding... physical changes affecting flooding conditions, risk premium rates and flood plain management requirements...
Decadal changes in channel morphology of a freely meandering river—Powder River, Montana, 1975–2016
Moody, John A.; Meade, Robert H.
2018-03-19
Few studies exist on the long-term geomorphic effects of floods. However, the U.S. Geological Survey (USGS) was able to begin such a study after a 50-year recurrence interval flood in 1978 because 20 channel cross sections along a 100-kilometer reach of river were established in 1975 and 1977 as part of a study for a proposed dam on Powder River in southeastern Montana. These cross-section measurements (data for each channel cross section are available at the USGS ScienceBase website) have been repeated about 30 times during four decades (1975–2016) and provide a unique dataset for understanding long-term changes in channel morphology caused by an extreme flood and a spectrum of annual floods.Changes in channel morphology of a 100-kilometer reach of Powder River are documented in a series of narratives for each channel cross section that include a time series of photographs as a record of these changes. The primary change during the first decade (1975–85) was the rapid vertical growth of a new inset flood plain within the flood-widened channel. Changes during the second decade (1985–95) were characterized by slower growth of the flood plain, and the effects of ice-jam floods typical of a northward-flowing river. Changes during the third decade (1995–2005) showed little vertical growth of the inset flood plain, which had reached a height that limited overbank deposition. And changes during the final decade (2005–16) covered in this report showed that, because the new inset flood plain had reached a limiting height, the effects of the large annual flood of 2008 (largest flood since 1978) were relatively small compared to smaller floods in previous decades. Throughout these four decades, the riparian vegetation, which interacts with the river, has undergone a gradual but substantial change that may have lasting effects on the channel morphology.
7 CFR 650.25 - Flood-plain management.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 6 2013-01-01 2013-01-01 false Flood-plain management. 650.25 Section 650.25 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE... management will be provided by the NRCS technical service centers (§ 600.3 of this part). (2) NRCS state...
NASA Astrophysics Data System (ADS)
Chuang, H.-K.; Lin, M.-L.; Huang, W.-C.
2012-04-01
The Typhoon Morakot on August 2009 brought more than 2,000 mm of cumulative rainfall in southern Taiwan, the extreme rainfall event caused serious damage to the Kaoping River basin. The losses were mostly blamed on the landslides along sides of the river, and shifting of the watercourse even led to the failure of roads and bridges, as well as flooding and levees damage happened around the villages on flood bank and terraces. Alluvial fans resulted from debris flow of stream feeders blocked the main watercourse and debris dam was even formed and collapsed. These disasters have highlighted the importance of identification and map the watercourse alteration, surface features of flood plain area and artificial structures soon after the catastrophic typhoon event for natural hazard mitigation. Interpretation of remote sensing images is an efficient approach to acquire spatial information for vast areas, therefore making it suitable for the differentiation of terrain and objects near the vast flood plain areas in a short term. The object-oriented image analysis program (Definiens Developer 7.0) and multi-band high resolution satellite images (QuickBird, DigitalGlobe) was utilized to interpret the flood plain features from Liouguei to Baolai of the the Kaoping River basin after Typhoon Morakot. Object-oriented image interpretation is the process of using homogenized image blocks as elements instead of pixels for different shapes, textures and the mutual relationships of adjacent elements, as well as categorized conditions and rules for semi-artificial interpretation of surface features. Digital terrain models (DTM) are also employed along with the above process to produce layers with specific "landform thematic layers". These layers are especially helpful in differentiating some confusing categories in the spectrum analysis with improved accuracy, such as landslides and riverbeds, as well as terraces, riverbanks, which are of significant engineering importance in disaster mitigation. In this study, an automatic and fast image interpretation process for eight surface features including main channel, secondary channel, sandbar, flood plain, river terrace, alluvial fan, landslide, and the nearby artificial structures in the mountainous flood plain is proposed. Images along timelines can even be compared in order to differentiate historical events such as village inundations, failure of roads, bridges and levees, as well as alternation of watercourse, and therefore can be used as references for safety evaluation of engineering structures near rivers, disaster prevention and mitigation, and even future land-use planning. Keywords: Flood plain area, Remote sensing, Object-oriented, Surface feature interpretation, Terrain analysis, Thematic layer, Typhoon Morakot
Flood of April 1975 at Williamston, Michigan
Knutilla, R.L.; Swallow, L.A.
1975-01-01
On April 18 between 5 p.m. and 12 p.m. the city of Williamston experienced an intense rain storm that caused the Red Cedar River and the many small streams in the area to overflow their banks and resulted in the most devastating flood since at least 1904. Local officials estimated a loss of \\$775,000 in property damage. Damage from flooding by the Red Cedar River was caused primarily by inundation, rather than by water moving at high velocity, as is common when many streams are flooded. During the flood of April 1975 many basements were flooded as well as the lower floors of some homes in the flood plain. Additional damage occurred in places when sewers backed up and flooded basements, and when ground water seeped through basement walls and floors—situations that affected many homes including those that were well outside of the flood plain.During the time of flooding the U.S. Geological Survey obtained aerial photography and data on a streamflow to document the disaster. This report shows on a photomosaic base map the extent of flooding along the Red Cedar River at Williamston, during the flood. It also presents data obtained at stream-gaging stations near Williamston, as well as the results of peak-flow discharge measurements made on the Red Cedar River at Michigan State Highway M-52 east of the city. Information on the magnitude of the flood can guide in making decisions pertaining to the use of flood-plains in the area. It is one of a series of reports on the April 1975 flood in the Lansing metropolitan area.
Kumaran, Navnith K. P.; Padmalal, Damodaran; Nair, Madhavan K.; Limaye, Ruta B.; Guleria, Jaswant S.; Srivastava, Rashmi; Shukla, Anumeha
2014-01-01
The high rainfall and low sea level during Early Holocene had a significant impact on the development and sustenance of dense forest and swamp-marsh cover along the southwest coast of India. This heavy rainfall flooded the coastal plains, forest flourishing in the abandoned river channels and other low-lying areas in midland.The coastline and other areas in lowland of southwestern India supply sufficient evidence of tree trunks of wet evergreen forests getting buried during the Holocene period under varying thickness of clay, silty-clay and even in sand sequences. This preserved subfossil log assemblage forms an excellent proxy for eco-geomorphological and palaeoclimate appraisal reported hitherto from Indian subcontinent, and complements the available palynological data. The bulk of the subfossil logs and partially carbonized wood remains have yielded age prior to the Holocene transgression of 6.5 k yrs BP, suggesting therein that flooding due to heavy rainfall drowned the forest cover, even extending to parts of the present shelf. These preserved logs represent a unique palaeoenvironmental database as they contain observable cellular structure. Some of them can even be compared to modern analogues. As these woods belong to the Late Pleistocene and Holocene, they form a valuable source of climate data that alleviates the lack of contemporaneous meteorological records. These palaeoforests along with pollen proxies depict the warmer environment in this region, which is consistent with a Mid Holocene Thermal Maximum often referred to as Holocene Climate Optimum. Thus, the subfossil logs of tropical evergreen forests constitute new indices of Asian palaeomonsoon, while their occurrence and preservation are attributed to eco-geomorphology and hydrological regimes associated with the intensified Asian Summer Monsoon, as recorded elsewhere. PMID:24727672
Gilbert, J.J.; Schuck-Kolben, R. E.
1987-01-01
Major flooding in the lower Pearl River basin in recent years has caused extensive damage to homes and highways in the area. In 1980 and 1983, Interstate Highway 10 and U.S. Highway 190 were overtopped. In 1983, the Interstate Highway 10 crossing was seriously damaged by the flood. The U.S. Geological Survey, in cooperation with the Louisiana Department of Transportation and Development, Office of Highways, used a two-dimensional finite-element surface-water flow model to evaluate the effects the proposed embankment modifications at Interstate Highway 10 and U.S. Highway 90 on the water-surface elevations in the lower Pearl River flood plain near Slidell, Louisiana. The proposed modifications that were considered for the 1983 flood are: (1) Removal of all highway embankments, the natural condition, (2) extension of the West Pearl River bridge by 1,000 feet at U.S. Highway 90, (3) construction of a new 250-foot bridge opening in the U.S. Highways 190 and 90, west of the intersection of the highways. The proposed highway bridge modifications also incorporated lowering of ground-surface elevations under the new bridges to sea level. The modification that provided the largest reduction in backwater, about 35 percent, was a new bridge in Interstate Highway 10. The modification of the West Pearl River bridge at U.S. Highway 90 and replacement of the bridge in U.S. Highway 190 provide about a 25% reduction in backwater each. For the other modification conditions that required structural modifications, maximum backwater computed on the west side of the flood plain ranges from 0.0 to 0.8 foot and on the east side from 0.0 to 0.6 foot. Results show that although backwater is greater on the west side of the flood plain than on the east side, upstream of highway embankments, backwater decreases more rapidly in the upstream direction on the west side of the flood plain than on the east side. Analysis of the proposed modifications indicates that backwater would still occur on the east and west sides of the flood plain, but values would be less than those computed with highway embankments in place. (Author 's abstract)
Selecting reconnaissance strategies for floodplain surveys
NASA Technical Reports Server (NTRS)
Sollers, S. C.; Rango, A.; Henninger, D. L.
1977-01-01
Multispectral aircraft and satellite data over the West Branch of the Susquehanna River were analyzed to evaluate potential contributions of remote sensing to flood-plain surveys. Multispectral digital classifications of land cover features indicative of floodplain areas were used by interpreters to locate various floodprone area boundaries. The digital approach permitted LANDSAT results to be displayed at 1:24,000 scale and aircraft results at even larger scales. Results indicate that remote sensing techniques can delineate floodprone areas more easily in agricultural and limited development areas as opposed to areas covered by a heavy forest canopy. At this time it appears that the remote sensing data would be best used as a form of preliminary planning information or as an internal check on previous or ongoing floodplain studies. In addition, the remote sensing techniques can assist in effectively monitoring floodplain activities after a community enters into the National Flood Insurance Program.
Catastrophe loss modelling of storm-surge flood risk in eastern England.
Muir Wood, Robert; Drayton, Michael; Berger, Agnete; Burgess, Paul; Wright, Tom
2005-06-15
Probabilistic catastrophe loss modelling techniques, comprising a large stochastic set of potential storm-surge flood events, each assigned an annual rate of occurrence, have been employed for quantifying risk in the coastal flood plain of eastern England. Based on the tracks of the causative extratropical cyclones, historical storm-surge events are categorized into three classes, with distinct windfields and surge geographies. Extreme combinations of "tide with surge" are then generated for an extreme value distribution developed for each class. Fragility curves are used to determine the probability and magnitude of breaching relative to water levels and wave action for each section of sea defence. Based on the time-history of water levels in the surge, and the simulated configuration of breaching, flow is time-stepped through the defences and propagated into the flood plain using a 50 m horizontal-resolution digital elevation model. Based on the values and locations of the building stock in the flood plain, losses are calculated using vulnerability functions linking flood depth and flood velocity to measures of property loss. The outputs from this model for a UK insurance industry portfolio include "loss exceedence probabilities" as well as "average annualized losses", which can be employed for calculating coastal flood risk premiums in each postcode.
Flood resilience and uncertainty in flood risk assessment
NASA Astrophysics Data System (ADS)
Beven, K.; Leedal, D.; Neal, J.; Bates, P.; Hunter, N.; Lamb, R.; Keef, C.
2012-04-01
Flood risk assessments do not normally take account of the uncertainty in assessing flood risk. There is no requirement in the EU Floods Directive to do so. But given the generally short series (and potential non-stationarity) of flood discharges, the extrapolation to smaller exceedance potentials may be highly uncertain. This means that flood risk mapping may also be highly uncertainty, with additional uncertainties introduced by the representation of flood plain and channel geometry, conveyance and infrastructure. This suggests that decisions about flood plain management should be based on exceedance probability of risk rather than the deterministic hazard maps that are common in most EU countries. Some examples are given from 2 case studies in the UK where a framework for good practice in assessing uncertainty in flood risk mapping has been produced as part of the Flood Risk Management Research Consortium and Catchment Change Network Projects. This framework provides a structure for the communication and audit of assumptions about uncertainties.
Vink, J P M; Meeussen, J C L
2007-08-01
The chemical speciation model BIOCHEM was extended with ecotoxicological transfer functions for uptake of metals (As, Cd, Cu, Ni, Pb, and Zn) by plants and soil invertebrates. It was coupled to the object-oriented framework ORCHESTRA to achieve a flexible and dynamic decision support system (DSS) to analyse natural or anthropogenic changes that occur in river systems. The DSS uses the chemical characteristics of soils and sediments as input, and calculates speciation and subsequent uptake by biota at various scenarios. Biotic transfer functions were field-validated, and actual hydrological conditions were derived from long-term monitoring data. The DSS was tested for several scenarios that occur in the Meuse catchment areas, such as flooding and sedimentation of riverine sediments on flood plains. Risks are expressed in terms of changes in chemical mobility, and uptake by flood plain key species (flora and fauna).
A Pliocene flora and insect fauna from the Bering Strait region
Hopkins, D.M.; Matthews, J.V.; Wolfe, J.A.; Silberman, M.L.
1971-01-01
A flood-plain forest has been preserved beneath a lava flow that invaded the Inmachuk River Valley in the northern part of the Seward Peninsula, Alaska, during the Pliocene Epoch. The fossil flora is of great biogeographic interest because of its position (Fig. 1) in a tundra region about 250 km east of Bering Strait, 75 km south of the Arctic Circle, and 65 km west of the northwestern limit of spruce-birch forest. It provides insight into the history of the development of the circumpolar boreal forest (taiga). A rich arthropod fauna casts light on the phylogeny of several modern insect genera and on the origin of modern tundra faunas. A potassium-argon analysis of the overlying basaltic lava provides our first radiometric age estimate (5.7??0.2 million years) for the Clamgulchian Stage, a Late Tertiary time-stratigraphic unit based on fossil plants and widely recognized in Alaska (Wolfe and Hopkins 1967) and northeastern Siberia. ?? 1971.
Harris, D.D.
1970-01-01
The central Rogue River valley, because of its mild climate, fertile soil, scenic attractions, and sport-fishery resource, has great potential for future population growth and industrial development. As the population grows and the area develops, zoning becomes necessary to assure the most beneficial use of the land, especially of the flood plains. To establish land-use zones on the flood plains, the area subject to inundation and elevation of floods must be considered. Areas flooded during the December 1964 flood and the approximate limits of the 1861 flood in Jackson and Josephine Counties are shown in two interim reports (Corps of Engineers, 1965); however, there are no published flood-elevation profiles to use as a basis for establishing meaningful land-use-zone boundaries or for delineating inundated areas of other floods.
The pattern of spatial flood disaster region in DKI Jakarta
NASA Astrophysics Data System (ADS)
Tambunan, M. P.
2017-02-01
The study of disaster flood area was conducted in DKI Jakarta Province, Indonesia. The aim of this research is: to study the spatial distribution of potential and actual of flood area The flood was studied from the geographic point of view using spatial approach, while the study of the location, the distribution, the depth and the duration of flooding was conducted using geomorphologic approach and emphasize on the detailed landform unit as analysis unit. In this study the landforms in DKI Jakarta have been a diversity, as well as spatial and temporal pattern of the actual and potential flood area. Landform at DKI Jakarta has been largely used as built up area for settlement and it facilities, thus affecting the distribution pattern of flooding area. The collection of the physical condition of landform in DKI Jakarta data prone were conducted through interpretation of the topographic map / RBI map and geological map. The flood data were obtained by survey and secondary data from Kimpraswil (Public Work) of DKI Jakarta Province for 3 years (1996, 2002, and 2007). Data of rainfall were obtained from BMKG and land use data were obtained from BPN DKI Jakarta. The analysis of the causal factors and distribution of flooding was made spatially and temporally using geographic information system. This study used survey method with a pragmatic approach. In this study landform as result from the analytical survey was settlement land use as result the synthetic survey. The primary data consist of landform, and the flood characteristic obtained by survey. The samples were using purposive sampling. Landform map was composed by relief, structure and material stone, and process data Landform map was overlay with flood map the flood prone area in DKI Jakarta Province in scale 1:50,000 to show. Descriptive analysis was used the spatial distribute of the flood prone area. The result of the study show that actual of flood prone area in the north, west and east of Jakarta lowland both in beach ridge, coastal alluvial plain, and alluvial plain; while the flood potential area on the slope is found flat and steep at alluvial fan, alluvial plain, beach ridge, and coastal alluvial plain in DKI Jakarta. Based on the result can be concluded that actual flood prone is not distributed on potential flood prone
Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.
2012-01-01
Digital flood-inundation maps for a 9-mile reach of the Des Plaines River from Riverwoods to Mettawa, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the Lake County Stormwater Management Commission and the Villages of Lincolnshire and Riverwoods. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Des Plaines River at Lincolnshire, Illinois (station no. 05528100). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05528100. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. The NWS forecasted peak-stage information, also shown on the Des Plaines River at Lincolnshire inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was then used to determine seven water-surface profiles for flood stages at roughly 1-ft intervals referenced to the streamgage datum and ranging from the 50- to 0.2-percent annual exceedance probability flows. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) Digital Elevation Model (DEM) (derived from Light Detection And Ranging (LiDAR) data) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage height from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
NASA Technical Reports Server (NTRS)
1982-01-01
By means of aerial photography and MSS-LANDSAT data a land use/land cover classification was applied to the Tubarao River coastal plain. The following classes were identified: coal related areas, permanently flooded wetlands, periodically flooded wetlands, agricultural lands, bare soils, water bodies, urban areas, forestlands.
Computation of backwater and discharge at width constrictions of heavily vegetated flood plains
Schneider, V.R.; Board, J.W.; Colson, B.E.; Lee, F.N.; Druffel, Leroy
1977-01-01
The U.S. Geological Survey, cooperated with the Federal Highway Administration and the State Highway Departments of Mississippi, Alabama, and Louisiana, to develop a proposed method for computing backwater and discharge at width constrictions of heavily vegetated flood plains. Data were collected at 20 single opening sites for 31 floods. Flood-plain width varied from 4 to 14 times the bridge opening width. The recurrence intervals of peak discharge ranged from a 2-year flood to greater than a 100-year flood, with a median interval of 6 years. Measured backwater ranged from 0.39 to 3.16 feet. Backwater computed by the present standard Geological Survey method averaged 29 percent less than the measured, and that computed by the currently used Federal Highway Administration method averaged 47 percent less than the measured. Discharge computed by the Survey method averaged 21 percent more then the measured. Analysis of data showed that the flood-plain widths and the Manning 's roughness coefficient are larger than those used to develop the standard methods. A method to more accurately compute backwater and discharge was developed. The difference between the contracted and natural water-surface profiles computed using standard step-backwater procedures is defined as backwater. The energy loss terms in the step-backwater procedure are computed as the product of the geometric mean of the energy slopes and the flow distance in the reach was derived from potential flow theory. The mean error was 1 percent when using the proposed method for computing backwater and 3 percent for computing discharge. (Woodard-USGS)
An assessment of flood mitigation measures - "room for the river
NASA Astrophysics Data System (ADS)
Komma, J.; Blöschl, G.; Habereder, C.
2009-04-01
In this paper we analyse the relative effect of different flood mitigation measures for the example of the Kamp catchment in Austria. The main idea is to decrease flood peaks through (a) retaining water in the landscape and (b) providing additional inundation areas along the main stream (room for the river). To increase the retention of excess rainfall in the landscape we introduced two different measures. One measure is the increase of water storage capacity in the study catchment through the change of land use from agriculture to forest. The second measure is the installation of many small sized retention basins without an outlet (micro ponds). The micro ponds are situated at the hill slopes to intercept surface runoff. In case of the room for the river scenario the additional retention volume is gained due to the installation of retention basins along the Kamp river and its tributary Zwettl. Three flood retention basins with culverts at each river are envisaged. The geometry of the bottom outlets is defined for design discharges in a way to gain the greatest flood peak reduction for large flood events (above a 100 yr flood). The study catchment at the Kamp river with a size of 622 km² is located in north-eastern Austria. For the simulation of the different scenarios (retaining water in the landscape) a well calibrated continuous hydrologic model is available. The hydrological model consists of a spatially distributed soil moisture accounting scheme and a flood routing component. To analyse the effect of the room for the river scenario with retention basins along the river reaches a linked 1D/2D hydrodynamic model (TUFLOW) is used. In the river channels a one dimensional simulation is carried out. The flow conditions in the flood plains are represented by two dimensional model elements. The model domain incorporates 18 km of the Kamp and 12 km of the Zwettl river valley. For the assessment of the land use change scenario the hydrologic model parameters for wooded areas are transferred to areas that are currently not forested. Through higher storage capacities in the wooded areas the scenario of afforestation helps to reduce flood peaks. The micro ponds are represented in the hydrological model by a bucket storage component. It is filled by a fraction of the simulated direct runoff and drains into the groundwater with a constant percolation rate. For the scenarios of flood mitigation with retention basins along the river reaches three locations at the Kamp and three locations at the Zwettl river have been chosen for hypothetical retention basins or polders with bottom outlets. The main difference between the "room for the river" method and the "retaining water in the landscape" methods is the magnitude of the flood event for which the retention is maximised. For the case of retaining water in the landscape (either by land use change or microponds) the storage capacity obtained by these measures is filled at the beginning of the event. For small event magnitudes, the flood peak reduction is hence maximised. In the Kamp catchment, significant reductions in the flood peaks can be obtained when retention basins along the main stream are constructed and the flood plains are inundated. The main advantage of the room for the river methodology is that the polders/retention basins can be designed in a way that there is no retention for small flood discharges which leaves the full storage capacity for larger floods at the time of peak. In contrast, for the retaining water in the landscape measures, the storage is exhausted at an early stage of medium and large events, resulting in very small flood peak reductions.
Hoogestraat, Galen K.
2011-01-01
Extensive information about the construction of dams or potential downstream hazards in the event of a dam breach is not available for many small reservoirs within the Black Hills National Forest. In 2009, the U.S. Forest Service identified the need for reconnaissance-level dam-breach assessments for four of these reservoirs within the Black Hills National Forest (Iron Creek, Horsethief, Lakota, and Mitchell Lakes) with the potential to flood downstream structures. Flood hydrology and dam-breach hydraulic analyses for the four selected reservoirs were conducted by the U.S. Geological Survey in cooperation with the U.S. Forest service to estimate the areal extent of downstream inundation. Three high-flow breach scenarios were considered for cases when the dam is in place (overtopped) and when a dam break (failure) occurs: the 100-year recurrence 24-hour precipitation, 500-year recurrence peak flow, and the probable maximum precipitation. Inundation maps were developed that show the estimated extent of downstream floodwaters from simulated scenarios. Simulation results were used to determine the hazard classification of a dam break (high, significant, or low), based primarily on the potential for loss of life or property damage resulting from downstream inundation because of the flood surge.The inflow design floods resulting from the two simulated storm events (100-year 24-hour and probable maximum precipitation) were determined using the U.S. Army Corps of Engineers Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS). The inflow design flood for the 500-year recurrence peak flow was determined by using regional regression equations developed for streamflow-gaging stations with similar watershed characteristics. The step-backwater hydraulic analysis model, Hydrologic Engineering Center's River Analysis System (HEC-RAS), was used to determine water-surface profiles of in-place and dam-break scenarios for the three inflow design floods that were simulated. Inundation maps for in-place and dam-break scenarios were developed for the area downstream from the dam to the mouth of each stream.Dam-break scenarios for three of the four reservoirs assessed in this study were rated as low hazards owing to absence of permanent structures downstream from the dams. Iron Creek Lake's downstream channel to its mouth does not include any permanent structures within the inundation flood plains. For the two reservoirs with the largest watershed areas, Lakota and Mitchell Lake, the additional floodwater surge resulting from a dam break would be minor relative to the magnitude of the large flood streamflow into the reservoirs, based on the similar areal extent of inundation for the in-place and dam-break scenarios as indicated by the developed maps. A dam-break scenario at Horsethief Lake is rated as a significant hazard because of potential lives-in-jeopardy in downstream dwellings and appreciable economic loss.
Luo, Xiaofeng; Lone, Todd; Jiang, Songying; Li, Rongrong; Berends, Patrick
2016-07-01
Using survey data from 280 farmers in Jianghan Plain, China, this paper establishes an evaluation index system for three dimensions of farmers' flood perceptions and then uses the entropy method to estimate their overall flood perception. Farmers' flood perceptions exhibit the following characteristics: (i) their flood-occurrence, flood-prevention, and overall flood perceptions gradually increase with age, whereas their flood-effects perception gradually decreases; (ii) their flood-occurrence and flood-effects perceptions gradually increase with a higher level of education, whereas their flood-prevention perception gradually decreases and their overall flood perception shows nonlinear change; (iii) flood-occurrence, flood-effects, and overall flood perceptions are higher among farmers who serve in public offices than among those who do not do so; (iv) the flood-occurrence, flood-effects, and overall flood perceptions of farmers who work off-farm are higher than those of farmers who work solely on-farm, contrary to the flood-prevention perception; and (v) the flood-effects and flood-prevention perceptions of male farmers are lower than those of female farmers, but the flood-occurrence and overall flood perceptions of male farmers are higher than those of female farmers. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.
Garcia, Ana Maria
2012-01-01
The Roanoke River is an important natural resource for North Carolina, Virginia, and the Nation. Flood plains of the lower Roanoke River, which extend from Roanoke Rapids Dam to Batchelor Bay near Albemarle Sound, support a large and diverse population of nesting birds, waterfowl, freshwater and anadromous fish, and other wildlife, including threatened and endangered species. The flow regime of the lower Roanoke River is affected by a number of factors, including flood-management operations at the upstream John H. Kerr Dam and Reservoir. A three-dimensional, numerical water-quality model was developed to explore links between upstream flows and downstream water quality, specifically in-stream dissolved-oxygen dynamics. Calibration of the hydrodynamics and dissolved-oxygen concentrations emphasized the effect that flood-plain drainage has on water and oxygen levels, especially at locations more than 40 kilometers away from the Roanoke Rapids Dam. Model hydrodynamics were calibrated at three locations on the lower Roanoke River, yielding coefficients of determination between 0.5 and 0.9. Dissolved-oxygen concentrations were calibrated at the same sites, and coefficients of determination ranged between 0.6 and 0.8. The model has been used to quantify relations among river flow, flood-plain water level, and in-stream dissolved-oxygen concentrations in support of management of operations of the John H. Kerr Dam, which affects overall flows in the lower Roanoke River. Scenarios have been developed to mitigate the negative effects that timing, duration, and extent of flood-plain inundation may have on vegetation, wildlife, and fisheries in the lower Roanoke River corridor. Under specific scenarios, the model predicted that mean dissolved-oxygen concentrations could be increased by 15 percent by flow-release schedules that minimize the drainage of anoxic flood-plain waters. The model provides a tool for water-quality managers that can help identify options that improve water quality and protect the aquatic habitat of the Roanoke River.
A participatory approach of flood vulnerability assessment in the Banat Plain, Romania
NASA Astrophysics Data System (ADS)
Balteanu, Dan; Costache, Andra; Sima, Mihaela; Dumitrascu, Monica; Dragota, Carmen; Grigorescu, Ines
2014-05-01
The Banat Plain (western Romania) is a low, alluvial plain affected by neotectonic subsidence movements, being a critical region in terms of exposure to floods. The latest extreme event was the historic floods occcured in the spring of 2005, which caused significant economic damage in several rural communities. The response to 2005 floods has highlighted a number of weaknesses in the management of hazards, such as the deficiencies of the early warning system, people awareness or the inefficiency of some mitigation measures, besides the past structural measures which are obsolete. For a better understanding of the local context of vulnerability and communities resilience to floods, the quantitative assessment of human vulnerability to floods was supplemented with a participatory research, in which there were involved five rural settlements from the Banat Plain (comprising 15 villages and a population of over 12,000 inhabitants). Thus, in the spring of 2013, a questionnaire-based survey was conducted in approx. 100 households of the affected communities and structured interviews were held with local authorities, in the framework of VULMIN project, funded by the Ministry of National Education. The questionnaire was designed based on a pilot survey conducted in 2005, several months after the flood, and was focused on two major issues: a) perception of the local context of vulnerability to environmental change and extreme events; b) perception of human vulnerability to floods (personal experience, post-disaster rehabilitation, awareness, worrying and opinion on the measures aimed to prevent and mitigate the effects of flooding). The results were correlated with a number of specific variables of the households included in the sample, such as: household structure; income source; income level; location of the dwelling in relation to floodplains. In this way, we were able to draw general conclusions about the way in which local people perceive the extreme events, such as floods, on the one hand. On the other hand, there were highlighted differences in perception between the respondents, caused by their different degree of socio-economic vulnerability. Although exposure to floods remains a significant problem in the Banat Plain, statistical analysis of the results revealed that respondents tended to relate mainly to newly produced extreme climatic events (droughts, heat waves, storms), when being asked to mention natural hazards threatening the studied region. Moreover, the comparison of the results of the two surveys conducted in the region (in 2005 and 2013) indicated that the relationship between the components of risk perception has changed over time. Thus, the directly proportional relationship between awareness, worry and preparedness, emphasized in 2005, is currently absent. The implementation of flood mitigation measures appears to be only the result of mechanisms put into service at the institutional level, after the events of 2005. Although currently there may be an improvement in flood response and mitigation in the region, compared to 2005, the low level of awareness and the fact that exposure to floods is not yet perceived as a threat can jeopardize the resilience and adaptation of rural communities to floods in the Banat Plain.
NASA Technical Reports Server (NTRS)
Parks, W. L.; Sewell, J. I.; Hilty, J. W.; Rennie, J. C. (Principal Investigator)
1974-01-01
The author has identified the following significant results. ERTS-1 imagery may be used to delineate soil associations. It does have the capacity to divide soils into groups such that their land use and management would be similar. It offers definite potential for making grass flood-plain, wetland, river shoreline, and land use change surveys. Production of volume strata and forest type from the two usable bands of ERTS-1 imagery were of questionable value. No imagery was received for evaluation during the time of year when maine dwarf mosaic virus and southern corn leaf blight were active.
Alter, A.T.
1966-01-01
Information on flood conditions plays an important part in the development and use of river valleys. This report presents maps, profiles, and flood-frequency relations developed from past flood experience on the Schuylkill River from Conshohocken to Philadelphia, Pa. The maps and profiles are used to define the areal extent and depth of flooding of the August 24, 1933, and August 19, 1955, floods. The flood of October 4, 1869, which is the greatest flood known on the lower Schuylkill River, is presented on the flood profile and on the ten cross sections. The area inundated by the 1869 flood is not defined because insufficient data are available and because hydrologic and hydraulic conditions have undoubtedly changed to such an extent that such a definition would have little present significance. The basic flood data were prepared to aid individuals, organizations, and governmental agencies in making sound decisions for the safe and economical development of the lower Schuylkill River valley. Recommendations for land use, or suggestions for limitations of land use, are not made in this report.The responsibility for planning for the optimum land use in the flood plain and the implementation of flood-plain regulations to achieve such optimum use rests with the State and local interests. The preparation of this report was undertaken after consultation with representatives of the Philadelphia City Planning Commission and the Montgomery County Planning Commission who expressed the need for flood-plain information and their willingness to consider floodplain regulations.The area covered by this report extends downstream along the Schuylkill River from Plymouth Dam in Conshohocken to the mouth of Wissahickon Creek in Philadelphia. Flooding along Wissahickon Creek is not included in the report. The reach studied extends from 13.0 miles to 21.0 miles upstream from the river mouth. All river distances used in the report are river miles upstream from the mouth of the Schuylkill River as used by the Corps of Engineer, U.S. Army and by the U.S. Geological Survey (Bogart, 1960, p. 194). For the convenience of users a tabulation of river miles of selected points upstream from the mouth of the Schuylkill River is included at the end of this report (table 1).
44 CFR 61.5 - Special terms and conditions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.5 Special terms and conditions. (a) No new flood insurance or renewal of flood... other authority to be in violation of any flood plain, mudslide (i.e., mudflow) or flood-related erosion...
44 CFR 61.5 - Special terms and conditions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.5 Special terms and conditions. (a) No new flood insurance or renewal of flood... other authority to be in violation of any flood plain, mudslide (i.e., mudflow) or flood-related erosion...
44 CFR 61.5 - Special terms and conditions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES § 61.5 Special terms and conditions. (a) No new flood insurance or renewal of flood... other authority to be in violation of any flood plain, mudslide (i.e., mudflow) or flood-related erosion...
Marron, D.C.
1988-01-01
Samples from metal-contaminated flood-plain sediments at 9 sites downstream from Lead, in west-central South Dakota, were collected during the summers of 1985-87 to characterize aspects of the sedimentology, chemistry, and geometry of a deposit that resulted from the discharge of a large volume of mining wastes into a river system. Field and laboratory data include stratigraphic descriptions, chemical contents and grain-size distributions of samples, and surveyed flood-plain positions of samples. This report describes sampling-site locations, and methods of sample collection and preservation, and subsequent laboratory analysis. Field and laboratory data are presented in 4 figures and 11 tables in the ' Supplemental Data ' section at the back of the report. (USGS)
Busch, William F.
1969-01-01
This is the fourth report on the extent and frequency of inundation prepared for the Delaware River Basin Commission. The first of these reports covered floods on the Delaware River in the vicinity of Easton, Pennsylvania and Phillipsburg, New Jersey. The second covered a reach of the Schuylkill River from Conshohocken to Philadelphia. The third was for the Delaware River in the vicinity of Belvidere, New Jersey. The first and third reports were written by George M. Farlekas of the Trenton district, and the second was written by Arthur T. Alter of the Harrisburg district. Specific information as to the areal extent and contents of these studies can be obtained from the Delaware River Basin Commission, P.O. Box 360, Trenton, New Jersey. This flood inundation study is part of an investigative program financed through a cooperative agreement between the U.S. Geological Survey and the Delaware River Basin Commission. The report was prepared under the direction of Norman H. Beamer, District, Chief, U.S. Geological Survey, Harrisburg, Pennsylvania.The streamflow data for Perkiomen Creek at Graterford were collected by the Pennsylvania Department of Forests and Waters from 1914 to 1931. Since 1931 the data have been collected under a cooperative agreement between the U.S. Geological Survey and the Department of Forests and Waters. Data on high-water marks and areas inundated in past periods of flooding have been obtained from many local residents of Montgomery County. The Reading Company cooperated by allowing survey crews to work on their right-of-way. The author is grateful to Mr. John W. Buchanan for surveys, Mr. Lewis C. Shaw for illustrations and to Mrs. Joan C. King for typing.
NASA Astrophysics Data System (ADS)
Barabanov, A. T.; Dolgov, S. V.; Koronkevich, N. I.; Panov, V. I.; Petel'ko, A. I.
2018-01-01
Long-term series of observations over the spring water balance elements on fields with hydrologically contrasting agricultural backgrounds―a loose soil after fall moldboard plowing and a plowland compacted by 12-16% compared to the former soil (perennial grasses, winter crops, stubble)―have been analyzed. The values of surface runoff and water infiltration into the soil in the steppe and forest-steppe zones of European Russia have been calculated for the spring (flooding) period and the entire cold season. The hydrological role of fall plowing has been shown, and water balance elements for the current (1981-2016) and preceding (1957-1980) periods have been compared. A significant decrease in runoff and an increase of water reserve in the soil have been revealed on all plowland types. Consequences of changes in the spring water balance on plowland have been analyzed.
Aldana, Ana M; Carlucci, Marcos B; Fine, Paul V A; Stevenson, Pablo R
2017-02-01
The phylogenetic community assembly approach has been used to elucidate the role of ecological and historical processes in shaping tropical tree communities. Recent studies have shown that stressful environments, such as seasonally dry, white-sand and flooded forests tend to be phylogenetically clustered, arguing for niche conservatism as the main driver for this pattern. Very few studies have attempted to identify the lineages that contribute to such assembly patterns. We aimed to improve our understanding of the assembly of flooded forest tree communities in Northern South America by asking the following questions: are seasonally flooded forests phylogenetically clustered? If so, which angiosperm lineages are over-represented in seasonally flooded forests? To assess our hypotheses, we investigated seasonally flooded and terra firme forests from the Magdalena, Orinoco and Amazon Basins, in Colombia. Our results show that, regardless of the river basin in which they are located, seasonally flooded forests of Northern South America tend to be phylogenetically clustered, which means that the more abundant taxa in these forests are more closely related to each other than expected by chance. Based on our alpha and beta phylodiversity analyses we interpret that eudicots are more likely to adapt to extreme environments such as seasonally flooded forests, which indicates the importance of environmental filtering in the assembly of the Neotropical flora.
Physiographic position, disturbance and species composition in North Carolina coastal plain forests
James G. Wyant; Ralph J. Alig; William A. Bechtold
1991-01-01
Relations among physiographic heterogeneity, disturbance and temporal change in forest composition were analyzed on 765 forest stands in the southern coastal plain of North Carolina. Physiographic position strongly restricted the species composition of forest stands, though broad overlap of some physiographic classes was noted. Forest stands in different physiographic...
Odor, L.; Wanty, R.B.; Horvath, I.; Fugedi, U.; ,
1999-01-01
Regional geochemical baseline values have been established for Hungary by the use of low-density stream-sediment surveys of flood-plain deposits of large drainage basins and of the fine fraction of stream sediments. The baseline values and anomaly thresholds thus produced helped to evaluate the importance of high toxic element concentrations found in soils in a valley downstream of a polymetallic vein-type base-metal mine. Erosion of the mine dumps and flotation dump, losses of metals during filtering, storage and transportation, human neglects, and operational breakdowns, have all contributed to the contamination of a small catchment basin in a procession of releases of solid waste. The sulfide-rich waste material weathers to a yellow color; this layer of 'yellow sand' blankets a narrow strip of the floodplain of Toka Creek in the valley near the town of Gyongyosoroszi. Contamination was spread out in the valley by floods. Metals present in the yellow sand include Pb, As, Cd, Cu, Zn, and Sb. Exposure of the local population to these metals may occur through inhalation of airborne particulates or by ingestion of these metals that are taken up by crops grown in the valley. To evaluate the areal extent and depth of the contamination, active stream sediment, flood-plain deposits, lake or reservoir sediments, soils, and surface water were sampled along the erosion pathways downstream of the mine and dumps. The flood-plain profile was sampled in detail to see the vertical distribution of elements and to relate the metal concentrations to the sedimentation and contamination histories of the flood plain. Downward migration of mobile Zn and Cd from the contaminated upper layers under supergene conditions is observed, while vertical migration of Pb, As, Hg and Sb appears to be insignificant. Soil profiles of 137Cs which originated from above-ground atomic bomb tests and the Chernobyl accident, provide good evidence that the upper 30-40 cm of the flood-plain sections, which includes the yellow sand contamination, were deposited in the last 30-40 years.The regional geochemical baseline values are established for Hungary using low-density stream-sediment surveys of flood-plain deposits of large drainage basins and of the fine fraction of stream sediments. The baseline values and anomaly thresholds allowed the evaluation of the importance of high toxic element concentrations in soils in a valley, downstream of a polymetallic vein-type base-metal mine. The metals present in the yellow sand include Pb, As, Cd, Cu, Zn and Sb. To evaluate the areal extent and depth of the contamination, active stream sediment, flood-plain deposits, lake or reservoir sediments, the soils and surface water were sampled along the erosion pathways downstream of the mine and dumps.
Fluvial process and the establishment of bottomland trees
Scott, Michael L.; Friedman, Jonathan M.; Auble, Gregor T.
1996-01-01
The relation between streamflow and establishment of bottomland trees is conditioned by the dominant fluvial process or processes acting along a stream. For successful establishment, cottonwoods, poplars, and willows require bare, moist surfaces protected from disturbance. Channel narrowing, channel meandering, and flood deposition promote different spatial and temporal patterns of establishment. During channel narrowing, the site requirements are met on portions of the bed abandoned by the stream, and establishment is associated with a period of low flow lasting one to several years. During channel meandering, the requirements are met on point bars following moderate or higher peak flows. Following flood deposition, the requirements are met on flood deposits ;high above the channel bed. Flood deposition can occur along most streams, but where a channel is constrained by a narrow valley, this process may be the only mechanism that can produce a bare, moist surface high enough to be safe from future disturbance. Because of differences in local bedrock, tributary influence, or geologic history, two nearby reaches of the same stream may be dominated by different fluvial processes and have different spatial and temporal patterns of trees. We illustrate this phenomenon with examples from forests of plains cottonwood (Populus deltoides ssp. monilifera) along meandering and constrained reaches of the Missouri River in Montana.
Owen-Joyce, Sandra J.; Wilson, Richard P.
1994-01-01
In the Colorado River valley between the east end of Lake Mead and the international boundary with Mexico (see figure), the river is the principal source of water for agricultural, domestic, municipal, industrial, hydroelectric-power generation, and recreational purposes. Water is stored in surface reservoirs and in the river aquifer---permeable sediments and sedimentary rocks that fill the lower Colorado River valley and adjacent tributary valleys. The hydraulic connection between the river and the river aquifer, overbank flow prior to building of the dams, and infiltration as the reservoirs filled allowed the sediments and sedimentary rocks to become saturated with water from the river. Ratios of isotopes of hydrogen and oxygen in water from wells indicate that most of the water in the river aquifer beneath the flood plain and in many places beneath the adjacent alluvial slopes originated from the river. The water table in the river aquifer extends from the river, beneath the flood plain, and under the alluvial slopes until it intersects bedrock. Precipitation in the surrounding mountains and inflow from tributary valleys also contribute small quantities of water to the river aquifer. Consumptive use of river water in the valley results from evapotranspiration by vegetation (crops and phreatophytes) on the flood plain, pumpage from wells to meet domestic and municipal needs, and pumpage from the river for export to areas in California, Arizona, and Nevada outside of the river valley. Most crops are grown on the flood plain; in a few areas, land on the adjacent terraces has been cultivated. Crops were grown on about 70 percent of the total vegetated area in 1984. Phreatophytes---natural vegetation that obtains water from the river aquifer---covered the remaining vegetated areas on the uncultivated flood plain. Most of the water used for irrigation is diverted or pumped directly from the river and reservoirs. Most of the water used for domestic and municipal purposes is pumped from wells on the flood plain, on adjacent alluvial slopes, and in tributary valleys. River water also is delivered to Mexico in accordance with an international treaty.
Land changes and their driving forces in the Southeastern United States
Napton, Darrell E.; Auch, Roger F.; Headley, Rachel; Taylor, Janis
2010-01-01
The ecoregions of the Middle Atlantic Coastal Plain, Southeastern Plains, Piedmont, and Blue Ridge provide a continuum of land cover from the Atlantic Ocean to the highest mountains in the East. From 1973 to 2000, each ecoregion had a unique mosaic of land covers and land cover changes. The forests of the Blue Ridge Mountains provided amenity lands. The Piedmont forested area declined, while the developed area increased. The Southeastern Plains became a commercial forest region, and most agricultural lands that changed became forested. Forests in the Middle Atlantic Coastal Plain declined, and development related to recreation and retirement increased. The most important drivers of land conversion were associated with commercial forestry, competition between forest and agriculture, and economic and population growth. These and other drivers were modified by each ecoregion’s unique suitability and land use legacies with the result that the same drivers often produced different land changes in different ecoregions.
Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.; ...
2016-02-12
Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Modelmore » simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO 2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe +2 and S -2 oxidation) to match locally-observed high CO 2 concentrations above reduced zones. Observed seasonal variations in CO 2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m -2 d -1, while including water table variations resulted in an overall decrease in the simulated fluxes. We thus conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.
2016-02-01
Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Modelmore » simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe?2 and S-2 oxidation) to match locally-observed high CO2 concentrations above reduced zones. Observed seasonal variations in CO2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m-2 d-1, while including water table variations resulted in an overall decrease in the simulated fluxes. We conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.« less
Hydrology and water budget for a forested atlantic coastal plain watershed, South Carolina
Scott V. Harder; Devendra M Amatya; Callahan Timothy J.; Carl C. Trettin; Hakkila Jon
2007-01-01
Increases in timber demand and urban development in the Atlantic Coastal Plain over the past decade have motivated studies on the hydrology, water quality, and sustainable management of coastal plain watersheds. However, studies on baseline water budgets are limited for the low-lying, forested watersheds of the Atlantic Coastal Plain. The purpose of this study was to...
Hyrdology and water budget for a forested atlantic coastal plain watershed, South Carolina
Scott V. Harder; Devendra M. Amatya; Timothy J. Callahan; Carl C. Trettin; Jon Hakkila
2007-01-01
Increases in timber demand and urban development in the Atlantic Coastal Plain over the past decade have motivated studies on the hydrology, water quality, and sustainable management of coastal plain watersheds. However, studies on baseline water budgets are limited for the low-lying, forested watersheds of the Atlantic Coastal Plain. The purpose of this study was to...
Remote sensing of drivers of spring snowmelt flooding in the North Central US
USDA-ARS?s Scientific Manuscript database
Spring snowmelt poses an annual flood risk in non-mountainous regions, such as the northern Great Plains of North America. However, ground observations are often not sufficient to characterize the spatiotemporal variation of drivers of snowmelt floods for operational flood forecasting purposes. Re...
44 CFR 63.12 - Setback and community flood plain management requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.12... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Setback and community flood...
44 CFR 63.12 - Setback and community flood plain management requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.12... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Setback and community flood...
44 CFR 63.12 - Setback and community flood plain management requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.12... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Setback and community flood...
44 CFR 63.12 - Setback and community flood plain management requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.12... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Setback and community flood...
44 CFR 63.12 - Setback and community flood plain management requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.12... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Setback and community flood...
Use of map analysis to elucidate flooding in an Australian Riparian River Red Gum Forest
NASA Astrophysics Data System (ADS)
Bren, L. J.; O'Neill, I. C.; Gibbs, N. L.
1988-07-01
Red gum (Eucalyptus camaldulensis) forests occur on extensive floodplains along the river Murray in Australia. This type of forest is unusual because of its high quality in a semiarid area, the absence of woody species other than red gum, and its survival on a deep, intractable, swelling clay soil of depths exceeding 20 m. This soil probably acts as an aquiclude. The forests require flooding to thrive and regenerate. For many years there has been speculation that irrigation regulation of the river was reducing forest flooding. A grid cell analysis of flood maps of areas flooded over a period of 22 years showed that vegetation communities and forest site quality were statistically related to the flood frequencies of sites. The percentage of forest inundated was dependent on the peak daily flow during the period of inundation. A historical analysis of the estimated percentage of forest inundated showed a substantial influence of river regulation on both timing and extent of inundation. Estimates of historical floodings showed that the environment is one that changes rapidly from wetland to dry land. Although not without limitations, the analysis produced information not available from other sources.
Cooley, M.E.; Head, William J.
1979-01-01
In the Nowood River drainage area, Wyoming, the principal deposits comprising the alluvial aquifer include the flood-plain and younger (generally undissected) alluvial-fan deposits and a unique boulder-fan gravel. Other deposits mapped, but virtually nonwater yielding, are the older (dissected) alluvial-fan, pediment, and terrace deposits. Terraces are capped by gravel and form levels at 30-40, 45-100, 120-150, 200-260, and 280-330 feet above the Nowood River. The thickness of the alluvial aquifer indicated from the sparse well-log data and 42 surface resistivity measurements is between 25 and 50 feet along the Nowood River and more than 60 feet along Tensleep and Paint Rock Creeks. The resistivity measurements indicate a buried bedrock ridge below the boulder-fan gravel between Paint Rock and Medicine Lodge Creeks and a buried channel filled by alluvium along Tensleep Creek. Well yields from the alluvial aquifer are estimated to be low. The most favorable areas for ground-water development are from the flood-plain alluvium along Tensleep Creek and from the boulder-fan gravel and adjoining flood-plain alluvium along Paint Rock and Medicine Creeks. Along the Nowood River the flood-plain alluvium, although its yields are small, has the best potential for ground-water development. (Kosco-USGS)
Probable flood predictions in ungauged coastal basins of El Salvador
Friedel, M.J.; Smith, M.E.; Chica, A.M.E.; Litke, D.
2008-01-01
A regionalization procedure is presented and used to predict probable flooding in four ungauged coastal river basins of El Salvador: Paz, Jiboa, Grande de San Miguel, and Goascoran. The flood-prediction problem is sequentially solved for two regions: upstream mountains and downstream alluvial plains. In the upstream mountains, a set of rainfall-runoff parameter values and recurrent peak-flow discharge hydrographs are simultaneously estimated for 20 tributary-basin models. Application of dissimilarity equations among tributary basins (soft prior information) permitted development of a parsimonious parameter structure subject to information content in the recurrent peak-flow discharge values derived using regression equations based on measurements recorded outside the ungauged study basins. The estimated joint set of parameter values formed the basis from which probable minimum and maximum peak-flow discharge limits were then estimated revealing that prediction uncertainty increases with basin size. In the downstream alluvial plain, model application of the estimated minimum and maximum peak-flow hydrographs facilitated simulation of probable 100-year flood-flow depths in confined canyons and across unconfined coastal alluvial plains. The regionalization procedure provides a tool for hydrologic risk assessment and flood protection planning that is not restricted to the case presented herein. ?? 2008 ASCE.
Flow recommendations for maintaining riparian vegetation along the Upper Missouri River, Montana
Scott, Michael L.; Auble, Gregor T.; Friedman, Jonathan M.; Ischinger, Lee S.; Eggleston, Erik D.; Wondzell, Mark A.; Shafroth, Patrick B.; Back, Jennifer T.; Jordan, Mette S.
1993-01-01
Montana Power Company, Inc. (MPC) submitted a final license application to the Federal Energy Regulatory Commission (FERC) on November 30, 1992. In this application, MPC proposed a plan for the protection of fish, wildlife, habitat, and water-quality resources. One concern was maintenance of woody riparian vegetation along the Missouri River, especially along the Wild and Scenic reach of the river, where the riparian forest occurs in relatively small discontinuous stands. The objectives of this project were 1) to recommend flows that would protect and enhance riparian forests along the Missouri River, and 2) to develop elements of an environmental monitoring program that could be used to assess the effectiveness of the recommended flows. Plains cottonwood (Populus deltoides subsp. monilifera) is the key structural component of riparian forests along the Missouri River. Therefore, we focused our analysis on factors affecting populations of this species. Previous work had demonstrated that the age structure of cottonwood populations is strongly influenced by aspects of flow that promote successfully establishment. In this study our approach was to determine the precise age of plains cottonwood trees growing along the Upper Missouri River and to relate years of establishment to the flow record. Our work was carried out between Coal Banks Landing and the Fred G. Robinson Bridge within the Wild and Scenic portion of the Missouri River. This segment of the river occupies a narrow valley and exhibits little channel migration. Maps and notes from the journals of Lewis and Clark (1804-1806) suggest that the present distribution and abundance of cottonwoods within the study reach is generally similar to presettlement conditions. Flows in the study reach are influenced by a number of dams and diversions, most importantly, Canyon Ferry and Tiber Dams. Although flow regulation has decreased peak flows and increased low flows, the gross seasonal pattern of flow has not been greatly altered. Most cottonwood establishment in our study reach occurred in years with a peak mean daily flow greater than 1,400 m3/s (49,434 cfs), or in the two years following such a flow. These years include 35 out of the 111 years of record, and account for establishment of 47 of 60 trees examined, a highly significant relationship. Infrequent establishment of cottonwood trees is not the result of scarcity of seed or seedlings. In the study reach seedlings become established most years on bare, relatively low surfaces deposited by the river. However, the high elevation of establishment of all trees dating to before 1978 indicates that only individuals established on high flood deposits are able to survive subsequent floods and ice jams. In order to maintain the present abundance of plains cottonwood in the study area we recommend flood flows in excess of 1,400 m3/s (49,434 cfs) measures as mean daily discharge at Fort Benton (U.S. Geological Survey gage 06090800) with a recurrence interval of approximately 9 years. Because cottonwood seeds remain viable for only a few weeks, and because seedling require a moist, bare surface, we further recommend maintenance of the historic timing of flooding with peak flood flows occurring between mid-May and late-June. Flow is not the only factor influencing cottonwood regeneration along this reach of the Missouri River. Land management, especially cattle grazing, is clearly having an impact, and changes in cottonwood populations could be expected if these practices were altered. However, the dependence of cottonwood establishment on high flow is clear in this reach in spite of the effects of other factors. Given the value of the resource, we strongly suggest establishment of a monitoring program to determine the effectiveness of the recommended flows and to provide the data necessary for refining them. We recommend a monitoring program that would include: 1) ten permanent, widely space channel cross sections for annual measurement of channel geometry and cottonwood establishment, growth, and survival; 2) five livestock enclosures to monitor the influence of grazing in the study area; and 3) low-elevation aerial photography of the reach every five years and after every flood to detect changes in channel geometry and forested area. Because cottonwood establishment is episodic, a long-term commitment to the monitoring effort is essential. In addition, cross sections and exclosures should be easy enough to access that measurements during flood years are possible.
Shoals and valley plugs in the Hatchie River watershed
Diehl, Timothy H.
2000-01-01
Agricultural land use and gully erosion have historically contributed more sediment to the streams of the Hatchie River watershed than those streams can carry. In 1970, the main sedimentation problem in the watershed occurred in the tributary flood plains. This problem motivated channelization projects (U.S. Department of Agriculture, 1970). By the mid-1980's, concern had shifted to sedimentation in the Hatchie River itself where channelized tributaries were understood to contribute much of the sediment. The Soil Conservation Service [Natural Resources Conservation Service (NRCS) since 1996] estimated that 640,000 tons of bedload (sand) accumulates in the Hatchie River each year and identified roughly the eastern two-thirds of the watershed, where loess is thin or absent, as the main source of sand (U.S. Department of Agriculture, 1986a). The U.S. Geological Survey (USGS), in cooperation with the West Tennessee River Basin Authority (WTRBA), conducted a study of sediment accumulation in the Hatchie River and its tributaries. This report identifies the types of tributaries and evaluates sediment, shoal formation, and valley-plug problems. The results presented here may contribute to a better understanding of similar problems in West Tennessee and the rest of the southeastern coastal plain. This information also will help the WTRBA manage sedimentation and erosion problems in the Hatchie River watershed.The source of the Mississippi section of the Hatchie River is in the sand hills southwest of Corinth, Mississippi (fig. 1). This section of the Hatchie River flows northward in an artificial drainage canal, gathering water from tributary streams that also are channelized. The drainage canal ends 2 miles south of the Tennessee State line. The Tennessee section of the Hatchie River winds north and west in a meandering natural channel to the Mississippi River. Although most of the Hatchie River tributaries are also drainage canals, the river's main stem has kept most of its natural character. The Hatchie River flows through a wide valley bottom occupied mostly by riverine wetland. Historically, the valley bottom has supported hardwood forests. Since publication of the first Hatchie River report (U.S. Department of Agriculture, 1970), the channel of the river has become shallower, and flooding has increased (U.S. Department of Agriculture 1986b). These wetter conditions inhibit growth of hardwoods and lead to premature hardwood mortality. The NRCS has predicted that despite efforts to control erosion in the uplands, most of the valley-bottom forest will die. '...swamping may be so prevalent as to change most of the Hatchie River Basin flood plain into a marsh condition, with the only remnants of the present bottomland hardwood timber remaining. (U.S. Department of Agriculture, 1986b) Loss of channel depth has been concentrated in short reaches near tributary mouths. At the mouths of Richland, Porters, Clover, and Muddy Creeks, navigation has become difficult for recreational users (Johnny Carlin, West Tennessee River Basin Authority, oral commun., 1998).As the low-gradient alluvial system of the Hatchie River accumulates sediment, another common outcome has been the formation of valley plugs, areas where 'channels are filled with sediment, and all the additional bedload brought downstream is then spread out over the flood plain until a new channel has been formed' (Happ, 1975). Valley plugs typically form where the slope of a sand-laden tributary decreases downstream, or where the tributary joins its parent stream (Happ and others, 1940; Diehl, 1994, 1997; Smith and Diehl, 2000).
Spatial Scaling of Floods in Atlantic Coastal Watersheds
NASA Astrophysics Data System (ADS)
Plank, C.
2013-12-01
Climate and land use changes are altering global, regional and local hydrologic cycles. As a result, past events may not accurately represent the events that will occur in the future. Methods for hydrologic prediction, both statistical and deterministic, require adequate data for calibration. Streamflow gauges tend to be located on large rivers. As a result, statistical flood frequency analysis, which relies on gauge data, is biased towards large watersheds. Conversely, the complexity of parameterizing watershed processes in deterministic hydrological models limits these to small watersheds. Spatial scaling relationships between drainage basin area and discharge can be used to bridge these two methodologies and provide new approaches to hydrologic prediction. The relationship of discharge (Q) to drainage basin area (A) can be expressed as a power function: Q = αAθ. This study compares scaling exponents (θ) and coefficients (α) for floods of varying magnitude across a selection of major Atlantic Coast watersheds. Comparisons are made by normalizing flood discharges to a reference area bankfull discharge for each watershed. These watersheds capture the geologic and geomorphic transitions along the Atlantic Coast from narrow bedrock-dominated river valleys to wide coastal plain watersheds. Additionally, there is a range of hydrometeorological events that cause major floods in these basins including tropical storms, thunderstorm systems and winter-spring storms. The mix of flood-producing events changes along a gradient as well, with tropical storms and hurricanes increasing in dominance from north to south as a significant cause of major floods. Scaling exponents and coefficients were determined for both flood quantile estimates (e.g. 1.5-, 10-, 100-year floods) and selected hydrometeorological events (e.g. hurricanes, summer thunderstorms, winter-spring storms). Initial results indicate that southern coastal plain watersheds have lower scaling exponents (θ) than northern watersheds. However, the relative magnitudes of 100-year and other large floods are higher in the coastal plain rivers. In the transition zone between northern and southern watersheds, basins like the Potomac in the Mid-Atlantic region have similar scaling exponents as northern river basins, but relative flood magnitudes comparable to the southern coastal plain watersheds. These differences reflect variations in both geologic/geomorphic and climatic settings. Understanding these variations are important to appropriately using these relationships to improve flood risk models and analyses.
Simulating the dynamics of linear forests in great plains agroecosystems under changing climates
Qinfeng Guo; J. Brandle; Michele Schoeneberger; D. Buettner
2004-01-01
Most forest growth models are not suitable for the highly fragmented, linear (or linearly shaped) forests in the Great Plains agroecosystems (e.g., windbreaks, riparian forest buffers), where such forests are a minor but ecologically important component of the land mosaics. This study used SEEI)SCAPE, a recently modified gap model designed for cultivated land mosaics...
Biogeochemical and metabolic responses to the flood pulse in a semiarid floodplain
Valett, H.M.; Baker, M.A.; Morrice, J.A.; Crawford, C.S.; Molles, M.C.; Dahm, Clifford N.; Moyer, D.L.; Thibault, J.R.; Ellis, L.M.
2005-01-01
Flood pulse inundation of riparian forests alters rates of nutrient retention and organic matter processing in the aquatic ecosystems formed in the forest interior. Along the Middle Rio Grande (New Mexico, USA), impoundment and levee construction have created riparian forests that differ in their inter-flood intervals (IFIs) because some floodplains are still regularly inundated by the flood pulse (i.e., connected), while other floodplains remain isolated from flooding (i.e., disconnected). This research investigates how ecosystem responses to the flood pulse relate to forest IFI by quantifying nutrient and organic matter dynamics in the Rio Grande floodplain during three years of experimental flooding of the disconnected floodplain and during a single year of natural flooding of the connected floodplain. Surface and subsurface conditions in paired sites (control, flood) established in the two floodplain types were monitored to address metabolic and biogeochemical responses. Compared to dry controls, rates of respiration in the flooded sites increased by up to three orders of magnitude during the flood pulse. In the disconnected forest, month-long experimental floods produced widespread anoxia of four-week duration during each of the three years of flooding. In contrast, water in the connected floodplain remained well oxygenated (3-8 ppm). Material budgets for experimental floods showed the disconnected floodplain to be a sink for inorganic nitrogen and suspended solids, but a potential source of dissolved organic carbon (DOC). Compared to the main stem of the Rio Grande, flood-water on the connected floodplain contained less nitrate, but comparable concentrations of DOC, phosphate-phosphorus, and ammonium-nitrogen. Results suggest that floodplain IFI drives metabolic and biogeochemical responses during the flood pulse. Impoundment and fragmentation have altered floodplains from a mosaic of patches with variable IFI to a bimodal distribution. Relatively predictable flooding occurs in the connected forest, while inundation of the disconnected forest occurs only as the result of managed application of water. In semiarid floodplains, water is scarce except during the flood pulse. Ecosystem responses to the flood pulse are related to the IFI and other measures of flooding history that help describe spatial variation in ecosystem function.
Varying effects of geomorphic change on floodplain inundation and forest communities
NASA Astrophysics Data System (ADS)
Keim, R.; Johnson, E. L.; Edwards, B. L.; King, S. L.; Hupp, C. R.
2015-12-01
Overbank flooding in floodplains is an important control on vegetation, but effects of changing flooding are difficult to predict because sensitivities of plant communities to multidimensional flooding (frequency, depth, duration, and timing) are not well understood. We used HEC-RAS to model the changing flooding regime in the lower White River floodplain, Arkansas, in response to rapid incision of the Mississippi River in the 1930s, and quantified flood frequency, depth, and duration by forest community type. Incision has decreased flooding especially in terms of frequency, which is one of the most important variables for ecological processes. Modeled depth-duration curves varied more among floodplain reaches than among forest communities within the same reach, but forest communities are now arranged in accordance with new flood regimes in place after river incision. Forest responses to subtle geomorphic change are slower than other vegetation communities, so detection of the full ramifications of ecohydrologic change may require decades.
Soong, David T.; Murphy, Elizabeth A.; Straub, Timothy D.; Zeeb, Hannah L.
2016-11-22
Results of a flood-hazard analysis conducted by the U.S. Geological Survey, in cooperation with the Argonne National Laboratory, for four headwater streams within the Argonne National Laboratory property indicate that the 1-percent and 0.2-percent annual exceedance probability floods would cause multiple roads to be overtopped. Results indicate that most of the effects on the infrastructure would be from flooding of Freund Brook. Flooding on the Northeast and Southeast Drainage Ways would be limited to overtopping of one road crossing for each of those streams. The Northwest Drainage Way would be the least affected with flooding expected to occur in open grass or forested areas.The Argonne Site Sustainability Plan outlined the development of hydrologic and hydraulic models and the creation of flood-plain maps of the existing site conditions as a first step in addressing resiliency to possible climate change impacts as required by Executive Order 13653 “Preparing the United States for the Impacts of Climate Change.” The Hydrological Simulation Program-FORTRAN is the hydrologic model used in the study, and the Hydrologic Engineering Center‒River Analysis System (HEC–RAS) is the hydraulic model. The model results were verified by comparing simulated water-surface elevations to observed water-surface elevations measured at a network of five crest-stage gages on the four study streams. The comparison between crest-stage gage and simulated elevations resulted in an average absolute difference of 0.06 feet and a maximum difference of 0.19 feet.In addition to the flood-hazard model development and mapping, a qualitative stream assessment was conducted to evaluate stream channel and substrate conditions in the study reaches. This information can be used to evaluate erosion potential.
Vulnerability of inter-tropical littoral areas. Preface
NASA Astrophysics Data System (ADS)
Charvis, Philippe; Gubert, Flore; Ménard, Frédéric
2017-10-01
The coastal area is defined as the interface between land and sea. It is a transition zone where land is affected by its proximity to the sea, and the coastal sea is affected by its proximity to the land. Its components are diverse and include river deltas, coastal plains, wetlands, beaches and dunes, reefs, mangrove forests, lagoons, and other coastal features. Coastal areas contribute to a small proportion of the total land area in the Earth system, but they provide a wide variety of ecosystem services (e.g., food through fish production, sand mining, flooding and erosion protection, recreational benefits, etc.) and are home to a large and growing proportion of the world's population.
Duberstein, Jamie A.; Krauss, Ken W.; Kennish, Michael J.
2015-01-01
A forested wetland (swamp) is a forest where soils are saturated or flooded for at least a portion of the growing season, and vegetation, dominated by trees, is adapted to tolerate flooded conditions. A tidal freshwater forested wetland is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity of soil porewater less than 0.5 g/l. It is known locally as tidal várzea in the Amazon delta, Brazil. A tidal saltwater forested wetland (mangrove forest) is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity often exceeding 3 g/l and reaching levels that can exceed seawater. Mangrove ecosystems are composed of facultative halophytes that generally experience better growth at moderate salinity concentrations.
Pereira, Guilherme Henrique A; Jordão, Henos Carlos K; Silva, Vanessa Francieli V; Pereira, Marcos Gervasio
2016-12-01
Extensive areas in the Brazilian Amazon have been flooded for the construction of hydroelectric dams. However, the water regime of these areas affects the dynamics of igarapés (streams) in adjacent terra firme (upland forests). When the reservoirs are filled, the water levels of streams rise above the normal levels and upland bank forests are flooded. We investigated how this flooding affects the litterfall and nutrient input in the upland forests upstream of a hydroelectric dam reservoir in the Central Amazonia. When the reservoir was filled, the forests were flooded and produced more than twice the litter (8.80Mg·ha -1 yr -1 ), with three times more leaves (6.36Mg·ha -1 yr -1 ) than when they were not flooded (4.20 and 1.92Mg·ha -1 yr -1 , respectively). During flooding, the decomposition rate was four times lower in flooded forests (0.328g·g -1 yr -1 ) than in control forests (1.460g·g -1 yr -1 ). Despite this, the flooding did not favor litter or nutrient accumulation. Therefore, dam construction changes the organic matter and nutrient cycling in upland Amazon rainforests. This may influence the important role that they play in organic matter dynamics and could have consequences for the regional carbon balance and, ultimately, global climate. Copyright © 2016 Elsevier B.V. All rights reserved.
Pennsylvanian tropical rain forests responded to glacial-interglacial rhythms
NASA Astrophysics Data System (ADS)
Falcon-Lang, Howard J.
2004-08-01
Pennsylvanian tropical rain forests flourished during an icehouse climate mode. Although it is well established that Milankovitch-band glacial-interglacial rhythms caused marked synchronous changes in Pennsylvanian tropical climate and sea level, little is known of vegetation response to orbital forcing. This knowledge gap has now been addressed through sequence- stratigraphic analysis of megafloral and palynofloral assemblages within the Westphalian D Cantabrian Sydney Mines Formation of eastern Canada. This succession was deposited in a low- accommodation setting where sequences can be attributed confidently to glacio-eustasy. Results show that long-lived, low-diversity peat mires dominated by lycopsids were initiated during deglaciation events, but were mostly drowned by rising sea level at maximum interglacial conditions. Only upland coniferopsid forests survived flooding without significant disturbance. Mid- to late interglacial phases witnessed delta-plain progradation and establishment of high-diversity, mineral-substrate rain forests containing lycopsids, sphenopsids, pteridosperms, cordaites, and tree ferns. Renewed glaciation resulted in sea-level fall, paleovalley incision, and the onset of climatic aridity. Glacial vegetation was dominated by cordaites, pteridosperms, and tree ferns; hydrophilic lycopsids and sphenopsids survived in paleovalley refugia. Findings clearly demonstrate the dynamic nature of Pennsylvanian tropical ecosystems and are timely given current debates about the impact of Quaternary glacial-interglacial rhythms on the biogeography of tropical rain forest.
Floods in the Raccoon River basin, Iowa
Heinitz, Albert J.
1980-01-01
Evaluation of flood hazards, and the planning, design, and operation of various facilities on flood plains requires information on floods. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the Raccoon River and some of its tributaries. Ir covers the Raccoon River, the North Raccoon River to the northern boundary of Sac County and the lower reaches of the Middle and South Raccoon Rivers.
Floods n' Dams: A Watershed Model.
ERIC Educational Resources Information Center
Milne, Andrew; Etches, John
1996-01-01
Describes an activity meant to illustrate flooding in a watershed as it impinges on human activities. Shows how flood protection can be provided using the natural holding capacity of basins elsewhere in the water system to reduce the impact on the settled flood plain. The activity works well with intermediate and senior level students but can be…
Holocene evolution of the western Orinoco Delta, Venezuela
Aslan, A.; White, W.A.; Warne, A.G.; Guevara, E.H.
2003-01-01
The pristine nature of the Orinoco Delta of eastern Venezuela provides unique opportunities to study the geologic processes and environments of a major tropical delta. Remote-sensing images, shallow cores, and radiocarbon-dating of organic remains form the basis for describing deltaic environments and interpreting the Holocene history of the delta. The Orinoco Delta can be subdivided into two major sectors. The southeast sector is dominated by the Rio Grande-the principal distributary-and complex networks of anastomosing fluvial and tidal channels. The abundance of siliciclastic deposits suggests that fluvial processes such as over-bank flooding strongly influence this part of the delta. In contrast, the northwest sector is represented by few major distributaries, and overbank sedimentation is less widespread relative to the southeast sector. Peat is abundant and occurs in herbaceous and forested swamps that are individually up to 200 km2 in area. Northwest-directed littoral currents transport large volumes of suspended sediment and produce prominent mudcapes along the northwest coast. Mapping of surface sediments, vegetation, and major landforms identified four principal geomorphic systems within the western delta plain: (1) distributary channels, (2) interdistributary flood basins, (3) fluvial-marine transitional environments, and (4) marine-influenced coastal environments. Coring and radiocarbon dating of deltaic deposits show that the northern delta shoreline has prograded 20-30 km during the late Holocene sea-level highstand. Progradation has been accomplished by a combination of distributary avulsion and mudcape progradation. This style of deltaic progradation differs markedly from other deltas such as the Mississippi where distributary avulsion leads to coastal land loss, rather than shoreline progradation. The key difference is that the Orinoco Delta coastal zone receives prodigious amounts of sediment from northwest-moving littoral currents that transport sediment from as far away as the Amazon system (???1600 km). Late Holocene progradation of the delta has decreased delta-plain gradients, increased water levels, and minimized over-bank flooding and siliciclastic sedimentation in the northwest sector. These conditions, coupled with large amounts of direct precipitation, have led to widespread peat accumulation in interdistributary basins. Because peat-forming environments cover up to 5000 km2 of the delta plain, the Orinoco may be an excellent analogue for interpreting ancient deltaic peat deposits.
Forests and floods in the eastern United States
Howard W. Lull; Kenneth G. Reinhart; Kenneth G. Reinhart
1972-01-01
Our purpose is to examine in detail the influence of the present-day forest on flood runoff and sedimentation. Forests and flood discharge wiI1 be our dominant concern; sedimentation by and large is a byproduct of their interaction. This paper was prepared for foresters, conservationists, and others acquainted with the processes and terminology of the hydrologic cycle...
Reference conditions for old-growth pine forests in the Upper West Gulf Coastal Plain
Don C. Bragg
2002-01-01
Ecosystem restoration has become an important component of forest management. especially on public lands. However, determination of manageable reference conditions has lagged behind the interest. This paper presents a case study from pine-dominated forests in the Upper West Gulf Coastal Plain (UWGCP), with special emphasis on southern Arkansas. Decades of forest...
Code of Federal Regulations, 2014 CFR
2014-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations § 60.8 Definitions. The definitions set forth...
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations § 60.8 Definitions. The definitions set forth...
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations § 60.8 Definitions. The definitions set forth...
Code of Federal Regulations, 2010 CFR
2010-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations § 60.8 Definitions. The definitions set forth...
Dynamic model of forest area on flood zone of Padang City, West Sumatra Province-Indonesia
NASA Astrophysics Data System (ADS)
Dewata, Indang; Iswandi, U.
2018-05-01
The flood disaster has caused many harm to human life, and the change of watershed characteristic is one of the factors causing the flood disaster. The increase of deforestation due to the increase of water causes the occurrence of flood disaster in the rainy season. The research objective was to develop a dynamic model of forest on flood hazard zone using powersim 10.1. In model development, there are three scenarios: optimistic, moderate, and pessimistic. The study shows that in Padang there are about 13 percent of high flood hazard zones. Deforestation of 4.5 percent/year is one cause that may increased the flooding intensity in Padang. There will be 14 percent of total forest area when management policy of forest absence in 2050.
44 CFR 63.6 - Reimbursable relocation costs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.6 Reimbursable relocation... flood plain management ordinances, and sewer, septic, electric, gas, telephone, and water connections at...
44 CFR 63.6 - Reimbursable relocation costs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.6 Reimbursable relocation... flood plain management ordinances, and sewer, septic, electric, gas, telephone, and water connections at...
44 CFR 63.6 - Reimbursable relocation costs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.6 Reimbursable relocation... flood plain management ordinances, and sewer, septic, electric, gas, telephone, and water connections at...
44 CFR 63.6 - Reimbursable relocation costs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IMPLEMENTATION OF SECTION 1306(c) OF THE NATIONAL FLOOD INSURANCE ACT OF 1968 General § 63.6 Reimbursable relocation... flood plain management ordinances, and sewer, septic, electric, gas, telephone, and water connections at...
NASA Astrophysics Data System (ADS)
Chen, Y. W.; Chang, L. C.
2012-04-01
Typhoons which normally bring a great amount of precipitation are the primary natural hazard in Taiwan during flooding season. Because the plentiful rainfall quantities brought by typhoons are normally stored for the usage of the next draught period, the determination of release strategies for flood operation of reservoirs which is required to simultaneously consider not only the impact of reservoir safety and the flooding damage in plain area but also for the water resource stored in the reservoir after typhoon becomes important. This study proposes a two-steps study process. First, this study develop an optimal flood operation model (OFOM) for the planning of flood control and also applies the OFOM on Tseng-wun reservoir and the downstream plain related to the reservoir. Second, integrating a typhoon event database with the OFOM mentioned above makes the proposed planning model have ability to deal with a real-time flood control problem and names as real-time flood operation model (RTFOM). Three conditions are considered in the proposed models, OFOM and RTFOM, include the safety of the reservoir itself, the reservoir storage after typhoons and the impact of flooding in the plain area. Besides, the flood operation guideline announced by government is also considered in the proposed models. The these conditions and the guideline can be formed as an optimization problem which is solved by the genetic algorithm (GA) in this study. Furthermore, a distributed runoff model, kinematic-wave geomorphic instantaneous unit hydrograph (KW-GIUH), and a river flow simulation model, HEC-RAS, are used to simulate the river water level of Tseng-wun basin in the plain area and the simulated level is shown as an index of the impact of flooding. Because the simulated levels are required to re-calculate iteratively in the optimization model, applying a recursive artificial neural network (recursive ANN) instead of the HEC-RAS model can significantly reduce the computational burden of the entire optimization problem. This study applies the developed methodology to Tseng-wun Reservoir. Forty typhoon events are collected as the historical database and six typhoon events are used to verify the proposed model. These typhoons include Typhoon Sepat and Typhoon Korsa in 2007 and Typhoon Kalmaegi, Typhoon Fung-Wong, Typhoon Sinlaku and Typhoon Jangmi in 2008. The results show that the proposed model can reduce the flood duration at the downstream area. For example, the real-time flood control model can reduce the flood duration by four and three hours for Typhoon Korsa and Typhoon Sinlaku respectively. This results indicate that the developed model can be a very useful tool for real-time flood control operation of reservoirs.
Native and agricultural forests at risk to a changing climate in the Northern Plains
USDA-ARS?s Scientific Manuscript database
Native and agricultural forests in the Northern Plains provide ecosystem services that benefit human society—diversified agricultural systems, forest-based products, and rural vitality. The impacts of recent trends in temperature and disturbances are impairing the delivery of these services. Climate...
Simulation of Flood Profiles for Fivemile Creek at Tarrant, Alabama, 2006
Lee, K.G.; Hedgecock, T.S.
2007-01-01
A one-dimensional step-backwater model was used to simulate flooding conditions for Fivemile Creek at Tarrant, Alabama. The 100-year flood stage published in the current flood insurance study for Tarrant by the Federal Emergency Management Agency was significantly exceeded by the March 2000 and May 2003 floods in this area. A peak flow of 14,100 cubic feet per second was computed by the U.S. Geological Survey for the May 2003 flood in the vicinity of Lawson Road. Using this estimated peak flow, flood-plain surveys with associated roughness coefficients, and the surveyed high-water profile for the May 2003 flood, a flow model was calibrated to closely match this known event. The calibrated model was then used to simulate flooding for the 10-, 50-, 100-, and 500-year recurrence interval floods. The results indicate that for the 100-year recurrence interval, the flood profile is about 2.5 feet higher, on average, than the profile published by the Federal Emergency Management Agency. The absolute maximum and minimum difference is 6.80 feet and 0.67 foot, respectively. All water-surface elevations computed for the 100-year flood are higher than those published by the Federal Emergency Management Agency, except for cross section H. The results of this study provide the community with flood-profile information that can be used for existing flood-plain mitigation, future development, and safety plans for the city.
44 CFR 59.24 - Suspension of community eligibility.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program GENERAL... the sale of flood insurance shall be subject to suspension from the Program for failing to submit copies of adequate flood plain management regulations meeting the minimum requirements of paragraphs (b...
44 CFR 59.24 - Suspension of community eligibility.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program GENERAL... the sale of flood insurance shall be subject to suspension from the Program for failing to submit copies of adequate flood plain management regulations meeting the minimum requirements of paragraphs (b...
44 CFR 59.24 - Suspension of community eligibility.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program GENERAL... the sale of flood insurance shall be subject to suspension from the Program for failing to submit copies of adequate flood plain management regulations meeting the minimum requirements of paragraphs (b...
44 CFR 59.24 - Suspension of community eligibility.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program GENERAL... the sale of flood insurance shall be subject to suspension from the Program for failing to submit copies of adequate flood plain management regulations meeting the minimum requirements of paragraphs (b...
44 CFR 59.24 - Suspension of community eligibility.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program GENERAL... the sale of flood insurance shall be subject to suspension from the Program for failing to submit copies of adequate flood plain management regulations meeting the minimum requirements of paragraphs (b...
Harris, David Dell; Alexander, Clyde W.
1970-01-01
In land-use planning for the Applegate River and its flood plain, consideration should be given to (1) preservation of the recreational attributes of the area, (2) allowance for optimum development of the flood plain's natural resources, and (3) protection of the rights of private landowners. Major factors that influence evaluation of the above considerations are the elevations and characteristics of floods. Heretofore, such flood data for the Applegate River have been inadequate to evaluate the flood potential or to use as a basis for delineating reasonable land-use zones. Therefore, at the request of Jackson County, this study was made to provide flood elevations, water-surface profiles, and channel characteristics (geometry and slope) for a reach of the Applegate River from the Jackson-Josephine County line upstream to the Applegate damsite (fig. 1). A similar study was previously made for reaches of adjacent Rogue River and Elk Creek (Harris, 1970).
Ten Years of Timber Management in the Middle Coastal Plain of Georgia
E.P. Jones; F.A. Bennett
1965-01-01
The pilot forest on the George Walton Experimental Forest represents the medium-size forest ownership in the middle coastal plain of Georgia. Tbis 2,200-acre forest of slash and longleaf pine has been under planned management for 10 years. Gross earnings have been $7.03 per acre per year, with an annual cost of $1.15 per acre.
Cairo, Egypt/Nile River viewed from STS-66 Atlantis
1994-11-14
This close-up view of the intensively cultivated Nile River flood plain near Cairo presents a sharp color contrast to the virtually non-vegetated, sandy desert, located to the west of the vegetated area. Some rectangular cultivated field patterns, as well as circular center pivot irrigation patterns, can be observed northwest of the Nile River flood plain. The world famous Giza Pyramids are located near the center of this photography (see highly reflective sand surfaces).
DOT National Transportation Integrated Search
1996-09-06
In mid-October 1994, major flooding occurred in the San Jacinto River flood plain near Houston, Texas. Due to the flooding, 8 pipelines ruptured and many others were undermined. Ignition of petroleum and petroleum products released into the river res...
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations § 60.8 Definitions. The definitions set forth in part 59 of...
44 CFR 65.6 - Revision of base flood elevation determinations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program... new discharge estimates. (6) Any computer program used to perform hydrologic or hydraulic analyses in... control and/or the regulation of flood plain lands. For computer programs adopted by non-Federal agencies...
44 CFR 65.6 - Revision of base flood elevation determinations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program... new discharge estimates. (6) Any computer program used to perform hydrologic or hydraulic analyses in... control and/or the regulation of flood plain lands. For computer programs adopted by non-Federal agencies...
44 CFR 65.6 - Revision of base flood elevation determinations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program... new discharge estimates. (6) Any computer program used to perform hydrologic or hydraulic analyses in... control and/or the regulation of flood plain lands. For computer programs adopted by non-Federal agencies...
44 CFR 65.6 - Revision of base flood elevation determinations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program... new discharge estimates. (6) Any computer program used to perform hydrologic or hydraulic analyses in... control and/or the regulation of flood plain lands. For computer programs adopted by non-Federal agencies...
44 CFR 60.11 - Purpose of this subpart.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.11 Purpose of..., accordingly, the Act provides that flood insurance shall not be sold or renewed under the Program unless a...
44 CFR 60.11 - Purpose of this subpart.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.11 Purpose of this subpart... Act provides that flood insurance shall not be sold or renewed under the Program unless a community...
44 CFR 60.11 - Purpose of this subpart.
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.11 Purpose of..., accordingly, the Act provides that flood insurance shall not be sold or renewed under the Program unless a...
44 CFR 60.11 - Purpose of this subpart.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.11 Purpose of..., accordingly, the Act provides that flood insurance shall not be sold or renewed under the Program unless a...
44 CFR 60.11 - Purpose of this subpart.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.11 Purpose of..., accordingly, the Act provides that flood insurance shall not be sold or renewed under the Program unless a...
Flood disturbance in a forested mountain landscape: interactions of land use and floods.
F.J. Swanson; S.L. Johnson; S.V. Gregory; S.A. Acker
1998-01-01
Recent flooding in the Pacific Northwest vividly illustrates the complexity of watershed and ecosystem responses to floods, especially in steep forest landscapes. Flooding involves a sequence of interactions that begins with climatic drivers. These drivers, generally rain and snowmelt, interact with landscape conditions, such as vegetation pattern and topography, to...
Richard N. Conner; James G. Dickson
1997-01-01
Bird communities of the West Gulf Coastal Plain are strongly influenced by the stage of forest succession, species composition of understory and overstory vegetation, and forest structure. Alteration of plant communities through forest management and natural disturbances typically does not eliminate birds as a fauna1 group from the area affected, but will replace some...
Yanosky, Thomas M.
1983-01-01
Ash trees along the Potomac River flood plain near Washington, D.C., were studied to determine changes in wood anatomy related to flood damage, and anomalous growth was compared to flood records for April 15 to August 31, 1930-79. Collectively, anatomical evidence was detected for 33 of the 34 growing-season floods during the study period. Evidence of 12 floods prior to 1930 was also noted, including catastrophic ones in 1889 and 1924. Trees damaged after the transition from earlywood to latewood growth typically formed ' flood rings ' of enlarged vessels within the latewood zone. Trees damaged near the beginning of the growth year developed flood rings within, or contiguous with, the earlywood. Both patterns are assumed to have developed when flood-damaged trees produced a second crop of leaves. Trees damaged by high-magnitude floods developed well formed flood rings along the entire height and around the entire circumference of the stem. Small floods were generally associated wtih diffuse or discontinuous anomalies restricted to stem apices. Frequency of flood rings was positively related to flood magnitude, and time of flood generation during the tree-growth season was estimated from the radial position of anomalous growth relative to annual ring width. Reconstructing tree heights in a year of flood-ring formation gives a minimum stage estimate along local stream reaches. Some trees provided evidence of numerous floods. Those with the greatest number of flood rings grew on frequently flooded surfaces subject to flood-flow velocities of at least 1 m/s, and more typically greater than 2 m/s. Tree size, more than age, was related to flood-ring formation. Trees kept small by frequent flood damage had more flood rings than taller trees of comparable age. (USGS)
Occurrence of floods and the role of climate during the twentieth century (Calabria, Southern Italy)
NASA Astrophysics Data System (ADS)
Petrucci, Olga; Polemio, Maurizio
2010-05-01
In region as Calabria (Southern Italy), characterized by mountainous morphology, the areas suitable for agriculture and urban development are represented by narrow river and coastal plains. The human utilization of these areas is often hard fought with rivers and flowing waters; floods cause periodically damage to agricultural activities, roads, rural settlements and, sometimes, to people. The morphological setting of the region is dominated by the presence of a main river network made up of ephemeral streams widely observed in southern Italy, are locally called fiumara. They show river beds that in plain sector are often larger than one kilometer, completely dry for almost the entire summer season and affected, during the winter, by severe flash floods characterized by huge sediment load. Because the migration of river channel through the wide river bed, discharge data are unavailable. A wide archive containing data on historical floods occurred through the past two centuries and the defensive works carried out to cope with flood damage in Calabria has been recently upgraded by using data coming from the Ministry of Public Works. In the present work, for a study area located in the northernmost province of Calabria, the historical series of floods which have occurred since 1800 has been collected. Damage caused by the different flood events have been compared to both rainfall data (if available) and data concerning defensive work construction. The aim is to assess if and (for what fiumara of the study area) works carried out in the past obtained the effect of reducing damage caused by flash floods. Results of the analysis can represent a useful tool to correctly drive the future development of the main plain of the study area.
NASA Astrophysics Data System (ADS)
Siddiqui, M.; Ali, Z.
Deforestation / depletion in forest area threaten the sustainability of agricultural production systems and en-danger the economy of the country. Every year extensive areas of arable agricultural and forestlands are degraded and turned into wastelands, due to natural causes or human interventions. There are several causes of deforestation, such as expansion in agricultural area, urban development, forest fires, commercial logging, illicit cutting, grazing, constructions of dams / reservoirs and barrages, com munication links, etc. Depletion in forest cover, therefore, has an important impact on socio - economic development and ecological balance. High population growth rate in Pakistan is one of the main causes for the rapid deterioration of physical environment and natural resource base. In view of this, it is felt necessary to carryout land -u s e studies focusing on strategies for mapping the past and present conditions and extent of forests and rangelands using Satellite Remote Sensing (SRS) data and GIS t echnology. The SRS and GIS technology provides a possible means of monitoring and mapping changes occurring in natural resources and the environment on a continuing basis. The riverine forests of Sindh mostly grow along the River Indus in the flood plains, spread over an area of 241,000 ha are disappearing very rapidly. Construction of dams / barrages on the upper reaches of the River Indus for hydroelectric power and irrigation works have significantly reduced the discharge of fresh water into the lower Indus basin and as a result, 100,000 acres of forests have disappeared. Furthermore, the heavy floods that occurred in 1978, 1988, 1992 and 1997, altered the course of the River Indus in many places, especially in the lower reaches, this has also damaged the riverine forests of Sindh. An integrated approach involving analysis of SRS data from 1977 to 1998 and GIS technique have been used to evaluate the geographic ex-tent and distribution of the riverine forests of Sindh and to monitor temporal changes in the forest cover between 1977 &1990 and 1990 &1998. The integrated landuse forest cover maps of riverine forest, shows temporal changes in the forest cover between 1977 &1990 and 1990 &1998, as well as in the River Indus course. The digital thematic maps based on SRS data and GIS technology can supplement existing conventional ground based sources of information for monitoring changes in forest cover on a regular basis, which can be helpful for forest resource management and planning and monitoring environmental changes.
2012-08-09
identified as wetlands or 50- or 100-year flood plains, neither wetlands nor flood plains will be adversely impacted by either the proposed action or the...In addition, the proposed action and no action alternative are not located within or would impact wetland areas. Therefore, a Finding ofNo...Practicable Alternative (FONPA) to avoid wetland impacts is not required for the proposed action. C C. PETERS, Col, USAFR DATE Commander, 911 1h Airlift
Flood Plain Information, Mill, Watson, and Lahaska Creeks, Bucks County, Pennsylvania.
1975-05-01
AD-AIOI 592 ARENGINEER DISTRICT PHI LADELPHIA P A F/6 8/8 T7LOOD PLAIN INFORMATION, MIL , WATSON, AND LAI4ASKA CREEKS, SUCK-’ETCIU) UNCLASSIFIED...will be iu LblckW V’ A PREPARED FOR THE BUCKS COUNTY PLANNING COMMISSION p BY CORPS OF ENGINEERS, U.S. ARMY PHILADELPHIA DISTRICT MAY 975 8 1 7 20 055...No. 4655 at Langhorne , Pennsylvania) ..... ................. 8 3 Peak Flows for the Intermediate Regional and Standard Project Floods
The 1965 Mississippi River flood in Iowa
Schwob, Harlan H.; Myers, Richard E.
1965-01-01
Flood data compiled for the part of the River along the eastern border include flood discharges, flood elevations, and the frequency of floods of varying magnitudes. They also include the daily or more frequent stage and discharge data for both the Mississippi River and the downstream gaging stations on Iowa tributaries for the period March-May 1965. Sufficient data are presented to permit studied for preparation of plans for protective works and plans for zoning or for flood plain regulation.
44 CFR 60.1 - Purpose of subpart.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations § 60.1 Purpose of subpart. (a) The Act provides that flood insurance shall not be sold or renewed under the program within a community, unless the...
44 CFR 60.1 - Purpose of subpart.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations § 60.1 Purpose of subpart. (a) The Act provides that flood insurance shall not be sold or renewed under the program within a community, unless the...
44 CFR 60.6 - Variances and exceptions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations § 60.6 Variances and... variances from the criteria set forth in §§ 60.3, 60.4, and 60.5. The issuance of a variance is for flood...
44 CFR 60.6 - Variances and exceptions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations § 60.6 Variances and... variances from the criteria set forth in §§ 60.3, 60.4, and 60.5. The issuance of a variance is for flood...
44 CFR 60.1 - Purpose of subpart.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations § 60.1 Purpose of subpart. (a) The Act provides that flood insurance shall not be sold or renewed under the program within a community, unless the...
44 CFR 60.1 - Purpose of subpart.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for Flood Plain Management Regulations § 60.1 Purpose of subpart. (a) The Act provides that flood insurance shall not be sold or renewed under the program within a community, unless the...
23 CFR 650.117 - Content of design studies.
Code of Federal Regulations, 2013 CFR
2013-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of § 650.115(a)(1)(ii), and (2) The magnitude and water surface elevation of...
23 CFR 650.117 - Content of design studies.
Code of Federal Regulations, 2014 CFR
2014-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of § 650.115(a)(1)(ii), and (2) The magnitude and water surface elevation of...
23 CFR 650.117 - Content of design studies.
Code of Federal Regulations, 2012 CFR
2012-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of § 650.115(a)(1)(ii), and (2) The magnitude and water surface elevation of...
23 CFR 650.117 - Content of design studies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of § 650.115(a)(1)(ii), and (2) The magnitude and water surface elevation of...
23 CFR 650.117 - Content of design studies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of § 650.115(a)(1)(ii), and (2) The magnitude and water surface elevation of...
DOT National Transportation Integrated Search
2014-03-01
Reliable estimates of the magnitude and frequency : of floods are essential for the design of transportation and : water-conveyance structures, flood-insurance studies, and : flood-plain management. Such estimates are particularly : important in dens...
Two dimensional modelling of flood flows and suspended sediment transport: the case of Brenta River
NASA Astrophysics Data System (ADS)
D'Alpaos, L.; Martini, P.; Carniello, L.
2003-04-01
The paper deals with numerical modelling of flood waves and suspended sediment in plain river basins. The two dimensional depth integrated momentum and continuity equations, modified to take into account of the bottom irregularities that strongly affect the hydrodynamic and the continuity in partially dry areas (for example, during the first stages of a plain flooding and in tidal flows), are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme and considering the role both of the small channel network and the regulation dispositive on the flooding wave propagation. Transport of suspended sediment and bed evolution are coupled with the flood propagation through the convection-dispersion equation and the Exner's equation. Results of a real case study are presented in which the effects of extreme flood of Brenta River (Italy) are examinated. The flooded areas (urban and rural areas) are identified and a mitigation solution based on a diversion channel flowing into Venice Lagoon is proposed. We show that this solution strongly reduces the flood risk in the downstream areas and can provide an important sediment source to the Venice Lagoon. Finally, preliminary results of the sediment dispersion in the Venice Lagoon are presented.
O'Connor, James E.; McDowell, Patricia F.; Lind, Pollyanna; Rasmussen, Christine G.; Keith, Mackenzie K.
2015-01-01
Despite these effects of human disturbances, many of the fundamental physical processes forming the Sprague River fluvial systems over the last several thousand years still function. In particular, flows are unregulated, sediment transport processes are active, and overbank flooding allows for floodplain deposition and erosion. Therefore, restoration of many of the native physical conditions and processes is possible without substantial physical manipulation of current conditions for much of the Sprague River study area. An exception is the South Fork Sprague River, where historical trends are not likely to reverse until it attains a more natural channel and flood-plain geometry and the channel aggrades to the extent that overbank flow becomes common.
Brad D. Lee; John M. Kabrick
2017-01-01
The central, unglaciated US east of the Great Plains to the Atlantic coast corresponds to the area covered by LRR N (East and Central Farming and Forest Region) and S (Atlantic Basin Diversified Farming Region). These regions roughly correspond to the Interior Highlands, Interior Plains, Appalachian Highlands, and the Northern Coastal Plains.
Middle Holocene marine flooding and human response in the south Yangtze coastal plain, East China
NASA Astrophysics Data System (ADS)
Wang, Zhanghua; Ryves, David B.; Lei, Shao; Nian, Xiaomei; Lv, Ye; Tang, Liang; Wang, Long; Wang, Jiehua; Chen, Jie
2018-05-01
Coastal flooding catastrophes have affected human societies on coastal plains around the world on several occasions in the past, and are threatening 21st century societies under global warming and sea-level rise. However, the role of coastal flooding in the interruption of the Neolithic Liangzhu culture in the lower Yangtze valley, East China coast has been long contested. In this study, we used a well-dated Neolithic site (the Yushan site) close to the present coastline to demonstrate a marine drowning event at the terminal stage of the Liangzhu culture and discuss its linkage to relative sea-level rise. We analysed sedimentology, chronology, organic elemental composition, diatoms and dinoflagellate cysts for several typical profiles at the Yushan site. The field and sedimentary data provided clear evidence of a palaeo-typhoon event that overwhelmed the Yushan site at ∼2560 BCE, which heralded a period of marine inundation and ecological deterioration at the site. We also infer an acceleration in sea-level rise at 2560-2440 BCE from the sedimentary records at Yushan, which explains the widespread signatures of coastal flooding across the south Yangtze coastal plain at that time. The timing of this mid-Holocene coastal flooding coincided with the sudden disappearance of the advanced and widespread Liangzhu culture along the lower Yangtze valley. We infer that extreme events and flooding accompanying accelerated sea-level rise were major causes of vulnerability for prehistoric coastal societies.
Jeffery B. Cannon; J. Stephen Brewer
2013-01-01
Due in large part to fire exclusion, many oak-dominated (Quercus spp.) forests, woodlands, and savannas throughout eastern North America are being replaced by less diverse forest ecosystems. In the interior coastal plain of the southern United States, these forests are dominated in the mid- and understory by mesophytic species such as Acer...
NASA Astrophysics Data System (ADS)
CHEN, Huali; Tokunaga, Tomochika; Ito, Yuka; Sawamukai, Marie
2014-05-01
Floods, the most common natural disaster in the world, cause serious loss of life and economic damage. Flood is one of the disasters in the coastal lowland along the Kujukuri Plain, Chiba Prefecture, Japan. Many natural and human activities have changed the surface environment of the Plain. These include agricultural development, urban and industrial development, change of the drainage patterns of the land surface, deposition and/or erosion of the river valleys, and so on. In addition, wide spread occurrence of land subsidence has been caused by the abstraction of natural gas dissolved in groundwater. The locations of the groundwater extraction include nearby the coast, and it may increase the flood risk. Hence, it is very important to evaluate flood hazard by taking into account the temporal change of land elevation caused by land subsidence, and to develop hazard maps for protecting surface environment and land-use planning. Multicriteria decision analysis (MCDA) provides methodology and techniques for analyzing complex decision problems, which often involve incommensurable data or criteria. Also, Geographical Information System (GIS) is the powerful tool since it manages large amount of spatial data involved in MCDA. The purpose of this study is to present a flood hazard model using MCDA techniques with GIS support in a region where primary data are scare. The model incorporates six parameters: river system, topography, land-use, flood control project, passing flood from coast, and precipitation. Main data sources used are 10 meter resolution topography data, airborne laser scanning data, leveling data, Landsat-TM data, two 1:30,000 scale river watershed map, and precipitation data from precipitation observation stations around the study area. River system map was created by merging the river order, the line density, and the river sink point density layers. Land-use data were derived from Landsat-TM images. A final hazard map for 2004, as an example, was obtained using an algorithm that combines factors in weighted linear combinations. The assignment of the weight/rank values and their analysis were realized by the application of the Analytic Hierarchy Process (AHP) method. This study is the preliminary work to investigate the flood hazard at the Kujukuri Plain. Flood hazard map of the other years will be analyzed to investigate the temporal change of the flood hazard area, and more data will be collected and added to improve the assessment.
NASA Technical Reports Server (NTRS)
Clifford, S. M.
1993-01-01
The identification of possible shorelines in the Martian northern plains suggests that the water discharged by the circum-Chryse outflow channels may have led to the formation of transient seas, or possibly even an ocean, covering as much as one-third of the planet. Speculations regarding the possible fate of this water have included local ponding and reinfiltration into the crust; freezing, sublimation, and eventual cold-trapping at higher latitudes; or the in situ survival of this now frozen water to the present day -- perhaps aided by burial beneath a protective cover of eolian sediment or lavas. Although neither cold-trapping at higher latitudes nor the subsequent freezing and burial of flood waters can be ruled out, thermal and hydraulic considerations effectively eliminate the possibility that any significant reassimilation of this water by local infiltration has occurred given climatic conditions resembling those of today. The arguments against the local infiltration of flood water into the northern plains are two-fold. First, given the climatic and geothermal conditions that are thought to have prevailed on Mars during the Late Hesperian (the period of peak outflow channel activity in the northern plains), the thickness of the cryosphere in Chryse Planitia is likely to have exceeded 1 km. A necessary precondition for the widespread occurrence of groundwater is that the thermodynamic sink represented by the cryosphere must already be saturated with ice. For this reason, the ice-saturated cryosphere acts as an impermeable barrier that effectively precludes the local resupply of subpermafrost groundwater by the infiltration of water discharged to the surface by catastraphic floods. Note that the problem of local infiltration is not significantly improved even if the cryosphere were initially dry, for as water attempts to infiltrate the cold, dry crust, it will quickly freeze, creating a seal that prevents any further infiltration from the ponded water above. The second argument against the local infiltration of flood water in the northern plains is based on hydraulic considerations. Repeated impacts have likely brecciated the Martian crust down to a depth of roughly 10 km. Given a value of permeability no greater than that inferred for the top 10 km of the Earth's crust (approximately 10(exp -2) darcies), a timescale as much as a billion years or more for the Martian groundwater system to achieve hydrostatic equilibrium, and the approximately 2-4 km elevation difference between the outflow channel source regions and the northern plains, the water confined beneath the frozen crust of the northern plains should have been under a significant hydraulic head. Thus, the existence of a hydraulic pathway between the ponded flood waters above the northern plains and the confined aquifer lying beneath it would not have led to the infiltration of flood water back into the crust, but rather the additional expulsion of groundwater onto the surface.
NASA Astrophysics Data System (ADS)
Monnier, J.; Couderc, F.; Dartus, D.; Larnier, K.; Madec, R.; Vila, J.-P.
2016-11-01
The 2D shallow water equations adequately model some geophysical flows with wet-dry fronts (e.g. flood plain or tidal flows); nevertheless deriving accurate, robust and conservative numerical schemes for dynamic wet-dry fronts over complex topographies remains a challenge. Furthermore for these flows, data are generally complex, multi-scale and uncertain. Robust variational inverse algorithms, providing sensitivity maps and data assimilation processes may contribute to breakthrough shallow wet-dry front dynamics modelling. The present study aims at deriving an accurate, positive and stable finite volume scheme in presence of dynamic wet-dry fronts, and some corresponding inverse computational algorithms (variational approach). The schemes and algorithms are assessed on classical and original benchmarks plus a real flood plain test case (Lèze river, France). Original sensitivity maps with respect to the (friction, topography) pair are performed and discussed. The identification of inflow discharges (time series) or friction coefficients (spatially distributed parameters) demonstrate the algorithms efficiency.
Gellis, Allen C.; Noe, Gregory B.; Clune, John W.; Myers, Michael K.; Hupp, Cliff R.; Schenk, Edward R.; Schwarz, Gregory E.
2015-01-01
Management implications of this study indicate that both agriculture and streambanks are important sources of sediment in Linganore Creek where the delivery of agriculture sediment was 4 percent and the delivery of streambank sediment was 44 percent. Fourth order streambanks, on average, had the highest rates of bank erosion. Combining the sediment fingerprinting and sediment budget results indicates that 96 percent of the eroded fine-grained sediment from agriculture went into storage. Flood plains and ponds are effective storage sites of sediment in the Linganore Creek watershed. Flood plains stored 8 percent of all eroded sediment with 4th and 5th order flood plains, on average, storing the most sediment. Small ponds in the Linganore Creek watershed, which drained 16 percent of the total watershed area, stored 15 percent of all eroded sediment. Channel beds were relatively stable with the greatest erosion generally occurring in 4th and 5th order streams.
Rate estimates for lateral bedrock erosion based on radiocarbon ages, Duck River, Tennessee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brakenridge, G.R.
Rates of bedrock erosion in ingrown meandering rivers can be inferred from the location of buried relict flood-plain and river-bank surfaces, associated paleosols, and radiocarbon dates. Two independent methods are used to evaluate the long-term rates of limestone bedrock erosion by the Duck River. Radiocarbon dates on samples retrieved from buried Holocene flood-plain and bank surfaces indicate lateral migration of the river bank at average rates of 0.6-1.9 m/100 yr. Such rates agree with lateral bedrock cliff erosion rates of 0.5-1.4 m/100 yr, as determined from a comparison of late Pleistocene and modern bedrock cliff and terrace scarp positions. Thesemore » results show that lateral bedrock erosion by this river could have occurred coevally with flood-plain and terrace formation and that the resulting evolution of valley meander bends carved into bedrock is similar in many respects to that of channel meanders cut into alluvium. 11 references, 5 figures.« less
NASA Astrophysics Data System (ADS)
Xue, Y.; Diallo, I.; Li, W.; Neelin, J. D.; Chu, P. C.; Vasic, R.; Zhu, Y.; LI, Q.; Robinson, D. A.
2017-12-01
Recurrent droughts/floods are high-impact meteorological events. Many studies have attributed these episodes to variability and anomaly of global sea surface temperatures (SST). However, studies have consistently shown that SST along is unable to fully explain the extreme climate events. Remote effects of large-scale spring land surface temperature (LST) and subsurface temperature (SUBT) variability in Northwest U.S. over the Rocky Mountain area on later spring-summer droughts/floods over the Southern Plains and adjacent areas, however, have been largely ignored. In this study, evidence from climate observations and model simulations addresses these effects. The Maximum Covariance Analysis of observational data identifies that a pronounce spring LST anomaly pattern over Northwest U.S. is closely associated with summer precipitation anomalies in Southern Plains: negative/positive spring LST anomaly is associated with the summer drought/flood over the Southern Plains. The global and regional weather forecast models were used to demonstrate a causal relationship. The modeling study suggests that the observed LST and SUBT anomalies produced about 29% and 31% of observed May 2015 heavy precipitation and June 2011 precipitation deficit, respectively. The analyses discovered that the LST/SUBT's downstream effects are associated with a large-scale atmospheric stationary wave extending eastward from the LST/SUBT anomaly region. For comparison, the SST effect was also tested and produced about 31% and 45% of the May 2015 heavy precipitation and June 2011 drought conditions, respectively. This study suggests that consideration of both SST and LST/SUBT anomalies are able to explain a substantial amount of variance in precipitation at sub-seasonal scale and inclusion of the LST/SUBT effect is essential to make reliable sub-seasonal and seasonal North American drought/flood predictions.
American River Watershed Investigation, California. Reconnaisance Report
1988-01-01
studies, and (4) identification of a non-federal sponsor for the feasibility study. The primary study area included the lower American River between Nimbus...FEMA), is r’esponsible for administering the National Flood Insurance Program (NFIP).. A basic goal of the NFIP is the identification of flood plain...RESERVO]R - RE:QUIRED FLOOD COVfIROL SPACI (1,000 ac--ft) Level of Protection Total Flood Folsom Flood New Upstream (Return Period - Storage Storage 2
Floods of September 16, 1975 in the Tallaboa Valley, Puerto Rico
Johnson, Karl G.
1981-01-01
The most severe flood since 1928 inundated the Rio Tallaboa Valley on the south coast of Puerto Rico on September 16, 1975. Peak discharge was about 666 cubic meters per second. The flood has an estimated recurrence interval of 20 years. The data provided in the report can be used in making rational decisions in formulating effective flood-plain regulations that would minimize flood problems in the Tallaboa Valley. (USGS)
Flood plain analysis for Petris, , Troas, and Monoros, tia watersheds, the Arad department, Romania
NASA Astrophysics Data System (ADS)
Győri, M.-M.; Haidu, I.
2012-04-01
The present study sets out to determine the flood plains corresponding to flood discharges having 10, 50 and 100 year recurrence intervals on the Monoroštia, Petriš and Troaš Rivers, located in Western Romania, the Arad department. The data of the study area is first collected and pre-processed in ArcGIS. It consists of land use data, soil data, the DEM, stream gauges' and meteorological stations' locations, on the basis of which the watersheds' hydrologic parameters' are computed using the Geospatial Hydrologic Modelling Extension (HEC Geo-HMS). HEC Geo-HMS functions as an interface between ArcGIS and HEC-HMS (Hydrologic Engineering Centre- Hydrologic Modelling System) and converts the data collected and generated in ArcGIS to data useable by HEC-HMS. The basin model component in HEC-HMS represents the physical watershed. It facilitates the effective rainfall computation on the basis of the input hyetograph, passing the results to a transform function that converts the excess precipitation into runoff at the subwatersheds' outlet. This enables the estimation and creation of hydrographs for the ungauged watersheds. In the present study, the results are achieved through the SCS CN loss method and the SCS Unit hydrograph transform method. The simulations use rainfall data that is registered at the stations situated in the catchments' vicinity, data that spans over two decades (1989-2009) and which allows the rainfall hyetographs to be determined for the above mentioned return periods. The model will be calibrated against measured streamflow data from the gauging stations on the main rivers, leading to the adjustment of watershed parameters, such as the CN parameter. As the flood discharges for 10, 50 and 100 year return periods have been determined, the profile of the water surface elevation along the channel will be computed through a steady flow analysis, with HEC-RAS (Hydrologic Engineering Centre- River Analysis System). For each of the flood frequencies, a water surface TIN is generated and intersected with the DEM in order to create the flood plain polygons. The final result consists of the flood plain delineation and the water inundation depths for the 10, 50 and 100 year return period flood events. These could be further employed in a risk assessment. Key words : flood plain analysis, frequency analysis, HEC-HMS, HEC-RAS. Aknowledgements This work was possible with the financial support of the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU/107/1.5/S/76841 with the title "Modern Doctoral Studies: Internationalization and Interdisciplinarity".
Floods in the English River basin, Iowa
Heinitz, A.J.; Riddle, D.E.
1981-01-01
Information describing floods is essential for proper planning, design, and operation of bridges and other structures on or over streams and their flood plains. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the English River and some of its tributaries. It covers the English River, the North English River to near Guernsey, the south Eaglish River to Barnes City and the lower reaches of the Biddle English and Deep Rivers
An investigation of shallow ground-water quality near East Fork Poplar Creek, Oak Ridge, Tennessee
Carmichael, J.K.
1989-01-01
Alluvial soils of the flood plain of East Fork Poplar Creek in Oak Ridge, Tennessee, are contaminated with mercury and other metals, organic compounds, and radio-nuclides originating from the Y-12 Plant, a nuclear-processing facility located within the U.S. Department of Energy 's Oak Ridge Reservation. Observation wells were installed in the shallow aquifer of the flood plain, and water quality samples were collected to determine if contaminants are present in the shallow groundwater. Groundwater in the shallow aquifer occurs under water-table conditions. Recharge is primarily from precipitation and discharge is to East Fork Poplar Creek. Groundwater levels fluctuate seasonally in response to variations in recharge and evapotranspiration. During extremely dry periods, the water table drops below the base of the shallow aquifer in some flood-plain areas. Contaminants found in water samples from several of the wells in concentrations which equaled or exceeded drinking-water standards established by the U.S. Environmental Protection Agency are antimony, chromium, lead, mercury, selenium, phenols, and strontium-90. Total and dissolved uranium concentrations exceeded the analytical detection limit in nearly 70% of the wells in the flood plain. The results of water quality determinations demonstrate that elevated concentrations of most trace metals (and possibly organic compounds and radionuclides) were caused by contaminated sediments in the samples. The presence of contaminated sediment in samples is suspected to be the result of borehole contamination during well installation. (USGS)
Mark H. Eisenbies; M.B. Adams; W. Michael Aust; James A. Burger
2007-01-01
Floods continue to cause significant damage in the United States and elsewhere, and questions about the causes of flooding continue to be debated. A significant amount of research has been conducted on the relationship between forest management activities and water yield, peak flows, and flooding; somewhat less research has been conducted on the modeling of these...
Lucas, Christine M; Sheikh, Pervaze; Gagnon, Paul R; Mcgrath, David G
2016-01-01
The contribution of working forests to tropical conservation and development depends upon the maintenance of ecological integrity under ongoing land use. Assessment of ecological integrity requires an understanding of the structure, composition, and function and major drivers that govern their variability. Working forests in tropical river floodplains provide many goods and services, yet the data on the ecological processes that sustain these services is scant. In flooded forests of riverside Amazonian communities, we established 46 0.1-ha plots varying in flood duration, use by cattle and water buffalo, and time since agricultural abandonment (30-90 yr). We monitored three aspects of ecological integrity (stand structure, species composition, and dynamics of trees and seedlings) to evaluate the impacts of different trajectories of livestock activity (alleviation, stasis, and intensification) over nine years. Negative effects of livestock intensification were solely evident in the forest understory, and plots alleviated from past heavy disturbance increased in seedling density but had higher abundance of thorny species than plots maintaining low activity. Stand structure, dynamics, and tree species composition were strongly influenced by the natural pulse of seasonal floods, such that the defining characteristics of integrity were dependent upon flood duration (3-200 d). Forests with prolonged floods ≥ 140 d had not only lower species richness but also lower rates of recruitment and species turnover relative to forests with short floods <70 d. Overall, the combined effects of livestock intensification and prolonged flooding hindered forest regeneration, but overall forest integrity was largely related to the hydrological regime and age. Given this disjunction between factors mediating canopy and understory integrity, we present a subset of metrics for regeneration and recruitment to distinguish forest condition by livestock trajectory. Although our study design includes confounded factors that preclude a definitive assessment of the major drivers of ecological change, we provide much-needed data on the regrowth of a critical but poorly studied ecosystem. In addition to its emphasis on the dynamics of tropical wetland forests undergoing anthropogenic and environmental change, our case study is an important example for how to assess of ecological integrity in working forests of tropical ecosystems.
New Jersey StreamStats: A web application for streamflow statistics and basin characteristics
Watson, Kara M.; Janowicz, Jon A.
2017-08-02
StreamStats is an interactive, map-based web application from the U.S. Geological Survey (USGS) that allows users to easily obtain streamflow statistics and watershed characteristics for both gaged and ungaged sites on streams throughout New Jersey. Users can determine flood magnitude and frequency, monthly flow-duration, monthly low-flow frequency statistics, and watershed characteristics for ungaged sites by selecting a point along a stream, or they can obtain this information for streamgages by selecting a streamgage location on the map. StreamStats provides several additional tools useful for water-resources planning and management, as well as for engineering purposes. StreamStats is available for most states and some river basins through a single web portal.Streamflow statistics for water resources professionals include the 1-percent annual chance flood flow (100-year peak flow) used to define flood plain areas and the monthly 7-day, 10-year low flow (M7D10Y) used in water supply management and studies of recreation, wildlife conservation, and wastewater dilution. Additionally, watershed or basin characteristics, including drainage area, percent area forested, and average percent of impervious areas, are commonly used in land-use planning and environmental assessments. These characteristics are easily derived through StreamStats.
ERIC Educational Resources Information Center
Nunnally, Nelson R.; And Others
1974-01-01
This activity is designed to introduce college students to the concept of floods as natural hazards, to flood frequency analysis, to hazard adjustment, and to the mechanics of public policy formulation through a six hour laboratory exercise, culminating in a simulation game. (JH)
Ratter, J A; Askew, G P; Montgomery, R F; Gifford, D R
1978-12-04
The vegetation of the well drained soils along the Suiá--Missu road in the Serra do Roncador region of NE Mato Grosso is Evergreen Seasonal forest of Amazonian type. The area lies close to the meeting place of the Amazonian forest (the hylaea) and the cerrado (savanna) formation of Central Brazil. The structure of the forest is simple: the canopy is at about 18--23 m, and is exceeded by a few scattered emergents; no recognizable strata can be distinguished among the understorey trees and the shrub and herb layers are sparse. Table 1 lists the most important species and gives information on stratification and general distribution. Most of the species appear to have a hylaean centre of distribution but extend into other vegetation types. The forest differs from related communities which lie closer to the cerrado/forest boundary in its greater height and luxuriance, the presence of additional tall tree species, and the great reduction in abundance of a cerrado floristic element. A survey on the Xavantina--São Felix road allowed us to extend previous observations on the distance to which the cerrado tree Pterodon pubescens extends into the forest. The results obtained indicate a considerable extension of forest into cerrado during the life of an individual tree. A characteristic low forest occurs in the flood plain of the Rio Suiá--Missu while Swampy Gallery forests occur on permanently waterlogged soils around the headwaters of streams. The well drained soils of the Suiá--Missu forest are very uniform, deep latosols (oxisols) of very dystrophic nature with pH (in water) between 4.0 and 5.0 (see table 2, p. 203).
Peruvian Red Uakaris (Cacajao calvus ucayalii) Are Not Flooded-Forest Specialists
Aquino, Rolando
2010-01-01
In the literature, particularly in primatological books, the Peruvian red uakari (Cacajao calvus ucayalii) is generally considered as a species that is specialized on living in flooded forest, despite existing evidence to the contrary. Here we review all available information on habitats where Cacajao calvus ucayalii have been observed. Most sightings are from terra firme, including palm swamps, or from mixed habitats, including terra firme and flooded forest. Therefore, we conclude that the species is not a flooded-forest specialist, but is flexible in its habitat requirements and generally uses terra firme forests or a mixture of habitats. Proper recognition of habitat requirements is important for understanding the ecoethological adaptations of a species and for appropriate conservation measures. PMID:20949117
The role of forests in reducing hydrogeomorphic hazards.
Matt E. Sakals; John L. Innes; David J. Wilford; Roy C. Sidle; Gordon E. Grant
2006-01-01
Increasingly, forests are being valued for goods and services beyond wood fibre; one of these is protection forests. Functions provided by natural and managed forests have been associated with reduced hazards from floods, debris floods, debris flows, snow avalanches and rockfalls. Maintaining a high level of protection may require active management, as forests are...
NASA Astrophysics Data System (ADS)
Akay, A. E.; Gencal, B.; Taş, İ.
2017-11-01
This short paper aims to detect spatiotemporal detection of land use/land cover change within Karacabey Flooded Forest region. Change detection analysis applied to Landsat 5 TM images representing July 2000 and a Landsat 8 OLI representing June 2017. Various image processing tools were implemented using ERDAS 9.2, ArcGIS 10.4.1, and ENVI programs to conduct spatiotemporal change detection over these two images such as band selection, corrections, subset, classification, recoding, accuracy assessment, and change detection analysis. Image classification revealed that there are five significant land use/land cover types, including forest, flooded forest, swamp, water, and other lands (i.e. agriculture, sand, roads, settlement, and open areas). The results indicated that there was increase in flooded forest, water, and other lands, while the cover of forest and swamp decreased.
Soil-water relations of shallow forested soils during flash floods in West Virginia
James H. Patric
1981-01-01
On May 24, 1978, heavy rain caused flash flooding on densely forested land near Parsons, in Tucker County, West Virginia. Poststorm evidences of soil and water behavior were examined in detail on soils related to the Dekalb and Leetonia series. Other flash floods struck seven forested sections of the state in August. Less detailed observation after these storms...
Flood-plain delineation for Accotink Creek Basin, Fairfax County, Virginia
Soule, Pat L.
1977-01-01
Water-surface profiles of the 25-year and 100-year floods maps on which the 25-, 50-, and 100-year flood limits are delineated for streams in the Accotink Creek basin are presented in this report. Excluded are segments of Accotink Creek within the Fort Belvoir Military Reservation. The techniques used in the computation of the flood profiles and delineation of flood limits are presented, and specific hydraulic problems encountered within the study area are also included.
Catchment scale afforestation for mitigating flooding
NASA Astrophysics Data System (ADS)
Barnes, Mhari; Quinn, Paul; Bathurst, James; Birkinshaw, Stephen
2016-04-01
After the 2013-14 floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. At present, 1 in 6 homes in Britain are at risk of flooding and current EU legislation demands a sustainable, 'nature-based solution'. However, the role of forests as a natural flood management technique remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. SHETRAN, physically-based spatially-distributed hydrological models of the Irthing catchment and Wark forest sub-catchments (northern England) have been developed in order to test the hypothesis of the effect trees have on flood magnitude. The advanced physically-based models have been designed to model scale-related responses from 1, through 10, to 100km2, a first study of the extent to which afforestation and woody debris runoff attenuation features (RAFs) may help to mitigate floods at the full catchment scale (100-1000 km2) and on a national basis. Furthermore, there is a need to analyse the extent to which land management practices, and the installation of nature-based RAFs, such as woody debris dams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. The impacts of riparian planting and the benefits of adding large woody debris of several designs and on differing sizes of channels has also been simulated using advanced hydrodynamic (HiPIMS) and hydrological modelling (SHETRAN). With the aim of determining the effect forestry may have on flood frequency, 1000 years of generated rainfall data representative of current conditions has been used to determine the difference between current land-cover, different distributions of forest cover and the defining scenarios - complete forest removal and complete afforestation of the catchment. The simulations show the percentage of forestry required to have a significant impact on mitigating downstream flood risk at sub-catchment and catchment scale. Key words: Flood peak, nature-based solutions, forest hydrology, hydrological modelling, SHETRAN, flood frequency, flood magnitude, land-cover change, upland afforestation.
NASA Astrophysics Data System (ADS)
Munji, Cecilia A.; Bele, Mekou Y.; Idinoba, Monica E.; Sonwa, Denis J.
2014-03-01
Faced with the growing influence of climate change on climate driven perturbations such as flooding and biodiversity loss, managing the relationship between mangroves and their environment has become imperative for their protection. Hampering this is the fact that the full scope of the threats faced by specific mangrove forests is not yet well documented. Amongst some uncertainties is the nature of the relationship/interaction of mangroves with climate driven perturbations prevalent in their habitat such as coastal floods. We investigated the relationship between coastal flooding and mangrove forest stabilization, identify perceptions of flood risk and responses to offset identified effects. Random household surveys were carried out within four communities purposively sampled within the Cap Cameroon. Coastal changes were investigated over a period of 43 years (1965-2008). Seasonal flooding improved access to mangrove forests and hence promoted their exploitation for non-timber forest products (NTFPs) such as fuel wood and mangrove poles. 989 ha of mangrove forests were estimated to be lost over a period of 43 years in Cap Cameroon with implications on forest resources base, ecosystem stability, and livelihoods. Alternative livelihood activities were found to be carried out to moderate interruptions in fishing, with associated implications for mangrove forest dynamics. Respondents were of the opinion that risks associated with floods and mangrove deforestation will pose a major challenge for sustainable management of mangroves. These locally relevant perceptions and responses should however enable the identification of pertinent needs, challenges and opportunities to inform and orient effective decision-making, and to facilitate the development and participation in adaptive management strategies.
Lee, J.K.; Bennett, C. S.
1981-01-01
A two-dimensional finite element surface water model was used to study the hydraulic impact of the proposed Interstate Route 326 crossing of the Congaree River near Columbia, SC. The finite element model was assessed as a potential operational tool for analyzing complex highway crossings and other modifications of river flood plains. Infrared aerial photography was used to define regions of homogeneous roughness in the flood plain. Finite element networks approximating flood plain topography were designed using elements of three roughness types. High water marks established during an 8-yr flood that occurred in October 1976 were used to calibrate the model. The maximum flood of record, an approximately 100-yr flood that occurred in August 1908, was modeled in three cases: dikes on the right bank, dikes on the left bank, and dikes on both banks. In each of the three cases, simulations were performed both without and with the proposed highway embankments in place. Detailed information was obtained about backwater effects upstream from the proposed highway embankments, changes in flow distribution resulting from the embankments, and local velocities in the bridge openings. On the basis of results from the model study, the South Carolina Department of Highways and Public Transportation changed the design of several bridge openings. A simulation incorporating the new design for the case with dikes on the left bank indicated that both velocities in the bridge openings and backwater were reduced. A major problem in applying the model was the difficulty in predicting the network detail necessary to avoid local errors caused by roughness discontinuities and large depth gradients. (Lantz-PTT)
NASA Astrophysics Data System (ADS)
Soegiyanto; Rindawati
2018-01-01
This research was conducted in the flood plain Bonorowo in Lamongan East Java Province. The area was inundated almost every year, but people still survive and remain settled at the sites. This research is to identify and analyze the social vulnerability in the flood plains on the characteristics puddle Bonorowo This research method is the study of the characteristics and livelihood strategies of the communities living on marginal lands (floodplains Bonorowo) are regions prone to flooding / inundation. Based on the object of this study is a survey research method mix / mix method, which merge or combination of methods of quantitative and qualitative methods, so it will be obtained a description of a more comprehensive and holistic. The results obtained in this study are; Social vulnerability is not affected by the heightened puddles. Social capital is abundant making society safer and more comfortable to keep their activities and settle in the region
Sediment Production From Small Undisturbed Forested Basins In The Upper Coastal Plain
Daniel A. Marion; Greg Malstaff; Howard G. Halverson
1996-01-01
Forest lands in the Upper Coastal Plain (UCP) of the American South are widely recognized as producing water with relatrvely low amounts of sediment. Previous research has established that sediment concentrations from forest basins lacking well-defined channel networks averages 5.3 to 6.2 kg of sediment per hectare per centimeter of runoff (kg/ha-cm) in this...
Yin, Y.; Wu, Y.; Bartell, S.M.; Cosgriff, R.
2009-01-01
The widespread loss of oak-hickory forests and the impacts of flood have been major issues of ecological interest concerning forest succession in the Upper Mississippi River (UMR) floodplain. The data analysis from two comprehensive field surveys indicated that Quercus was one of the dominant genera in the UMR floodplain ecosystem prior to the 1993 flood and constituted 14% of the total number of trees and 28% of the total basal area. During the post-flood recovery period through 2006, Quercus demonstrated slower recovery rates in both the number of trees (4%) and basal area (17%). In the same period, Carya recovered greatly from the 1993 flood in terms of the number of trees (11%) and basal area (2%), compared to its minor status before the flood. Further analyses suggested that different species responded to the 1993 flood with varying tolerance and different succession strategies. In this study, the relation of flood-caused mortality rates and DBH, fm(d), can be expressed in negative exponential functions for each species. The results of this research also indicate that the growth functions are different for each species and might also be different between pre- and post-flood time periods. These functions indicate different survival strategies and emergent properties in responding to flood impacts. This research enhances our understanding of forest succession patterns in space and time in the UPR floodplain. And such understanding might be used to predict long-term impacts of floods on UMR floodplain forest dynamics in support of management and restoration. ?? 2009 Elsevier B.V.
Scoping of flood hazard mapping needs for Carroll County, New Hampshire
Flynn, Robert H.
2006-01-01
This report was prepared by the U.S. Geological Survey (USGS) New Hampshire/Vermont Water Science Center for scoping of flood-hazard mapping needs for Carroll County, New Hampshire, under Federal Emergency Management Agency (FEMA) Inter-Agency agreement Number HSFE01-05X-0018. FEMA is embarking on a map modernization program nationwide to: 1. Gather and develop updated data for all flood prone areas in support of flood plain management. 2. Provide maps and data in a digital format for the improvement in the efficiency and precision of the mapping program. 3. Integrate FEMA's community and state partners into the mapping process One of the priorities for FEMA, Region 1, is to develop updated Digital Flood Insurance Rate Maps (DFIRMs) and Flood Insurance Studies (FIS) for Carroll County, New Hampshire. The information provided in this report will be used to develop the scope for the first phase of a multiyear project that will ultimately result in the production of new DFIRMs and FIS for the communities and flooding sources in Carroll County. The average age of the FEMA flood plain maps in Carroll County, New Hampshire is 18 years. Most of these studies were computed in the late 1970s to the mid 1980s. However, in the ensuing 20-30 years, development has occurred in many of the watersheds, and the rivers and streams and their flood plains have changed as a result. In addition, as development has occurred, peak flooding has increased downstream of the development from increased flows across impervious surfaces. Therefore, many of the older studies may not depict current conditions nor accurately estimate risk in terms of flood heights. Carroll County gained 3,773 residents between 2000 and 2005. This represents a growth of 8.6 percent compared to 6.0 percent for the state as a whole. Carroll County ranks second (from highest to lowest) out of New Hampshire's 10 counties in terms of rate of population increase. Since 1990, Carroll County has gained 12,029 residents (University of New Hampshire, 2006).
NASA Astrophysics Data System (ADS)
Koarai, M.; Okatani, T.; Nakano, T.; Nakamura, T.; Hasegawa, M.
2012-07-01
The great earthquake occurred in Tohoku District, Japan on 11th March, 2011. This earthquake is named "the 2011 off the Pacific coast of Tohoku Earthquake", and the damage by this earthquake is named "the Great East Japan Earthquake". About twenty thousand people were killed or lost by the tsunami of this earthquake, and large area was flooded and a large number of buildings were destroyed by the tsunami. The Geospatial Information Authority of Japan (GSI) has provided the data of tsunami flooded area interpreted from aerial photos taken just after the great earthquake. This is fundamental data of tsunami damage and very useful for consideration of reconstruction planning of tsunami damaged area. The authors analyzed the relationship among land use, landform classification, DEMs data flooded depth of the tsunami flooded area by the Great East Japan Earthquake in the Sendai Plain using GIS. Land use data is 100 meter grid data of National Land Information Data by the Ministry of Land, Infrastructure, Transportation and Tourism (MLIT). Landform classification data is vector data of Land Condition Map produced by GSI. DEMs data are 5 meters grid data measured with LiDAR by GSI after earthquake. Especially, the authors noticed the relationship between tsunami hazard damage and flooded depth. The authors divided tsunami damage into three categories by interpreting aerial photos; first is the completely destroyed area where almost wooden buildings were lost, second is the heavily damaged area where a large number of houses were destroyed by the tsunami, and third is the flooded only area where houses were less destroyed. The flooded depth was measured by photogrammetric method using digital image taken by Mobile Mapping System (MMS). The result of these geographic analyses show the distribution of tsunami damage level is as follows: 1) The completely destroyed area was located within 1km area from the coastline, flooded depth of this area is over 4m, and no relationship between damaged area and landform classification. 2) The heavily damaged area was observed up to 3 or 4km from the coastline. Flooded depth of this area is over 1.5m, and there is a good relationship between damaged area and height of DEMs. 3) The flood only area was observed up to 4 or 5km from the coastline. Flooded depth of this area was less than 1.5m, and there is a good relationship between damaged area and landform. For instance, a certain area in valley plain or flooded plain was not affected by the tsunami, even though an area with almost the same height in coastal plain or delta was flooded. These results mean that it is important for tsunami disaster management to consider not only DEMs but also landform classification.
Floods, floodplains, delta plains — A satellite imaging approach
NASA Astrophysics Data System (ADS)
Syvitski, James P. M.; Overeem, Irina; Brakenridge, G. Robert; Hannon, Mark
2012-08-01
Thirty-three lowland floodplains and their associated delta plains are characterized with data from three remote sensing systems (AMSR-E, SRTM and MODIS). These data provide new quantitative information to characterize Late Quaternary floodplain landscapes and their penchant for flooding over the last decade. Daily proxy records for discharge since 2002 and for each of the 33 river systems can be derived with novel Advanced Microwave Scanning Radiometer (AMSR-E) methods. A descriptive framework based on analysis of Shuttle Radar Topography Mission (SRTM) data is used to capture the major landscape-scale floodplain elements or zones: 1) container valleys with their long and narrow pathways of largely sediment transit and bypass, 2) floodplain depressions that act as loci for frequent flooding and sediment storage, 3) zones of nodal avulsions common to many continental scale rivers, and often located seaward of container valleys, and 4) coastal floodplains and delta plains that offer both sediment bypass and storage but under the influence of marine processes. The SRTM data allow mapping of smaller-scale architectural elements in unprecedented systematic manner. Floodplain depressions were found to play a major role, which may largely be overlooked in conceptual floodplain models. Lastly, MODIS data (independently and combined with AMSR-E) allows the tracking of flood hydrographs and pathways and sedimentation patterns on a near-daily timescale worldwide. These remote-sensing data show that 85% of the studied major river systems experienced extensive flooding in the last decade. A new quantitative paradigm of floodplain processes, honoring the frequency and extent of floods, can be develop by careful analysis of these new remotely sensed data.
Eash, D.A.
1996-01-01
Flood-plain and channel-aggradation rates were estimated at 10 bridge sites on the Iowa River upstream of Coralville Lake and at two bridge sites in the central part of the Skunk River Basin. Four measurement methods were used to quantify aggradation rates: (1) a dendrogeomorphic method that used tree-age data and sediment-deposition depths, (2) a bridge-opening cross-section method that compared historic and recent cross sections of bridge openings, (3) a stage-discharge rating-curve method that compared historic and recent stages for the 5-year flood discharge and the average discharge, and (4) nine sediment pads that were installed on the Iowa River flood plain at three bridge sites in the vicinity of Marshalltown. The sediment pads were installed prior to overbank flooding in 1993. Sediments deposited on the pads as a result of the 1993 flood ranged in depth from 0.004 to 2.95 feet. Measurement periods used to estimate average aggradation rates ranged from 1 to 98 years and varied among methods and sites. The highest aggradation rates calculated for the Iowa River Basin using the dendrogeomorphic and rating- curve measurement methods were for the State Highway 14 crossing at Marshalltown, where these highest rates were 0.045 and 0.124 feet per year, respectively. The highest aggradation rates calculated for the Skunk River Basin were for the U.S. Highway 63 crossing of the South Skunk River near Oskaloosa, where these highest rates were 0.051 and 0.298 feet per year, respectively.
NASA Astrophysics Data System (ADS)
Huang, Jyh-Jaan; Wei, Kuo-Yen; Löwemark, Ludvig; Song, Sheng-Rong; Huh, Chih-An; Chuang, Chih-Kai; Yang, Tien-Nan; Lee, Meng-Yang; Chen, Yu-Be; Lee, Teh-Quei
2015-04-01
Active tectonic activities and frequent typhoon landfalls make Taiwan unique in having very high rates of uplift, precipitation, denudation and sedimentation. Particularly, intense rainfall associated with typhoons often causes flooding, large-scale landslides, and debris flows in river systems. Such natural disasters have affected human societies both at present and in the past; the Typhoon Morakot in 2009 may serve as a modern example of such events. Kiwulan is a newly discovered archaeological site from the Iron Age situated on the Lanyang Plain in NE Taiwan. In the deposits from this society, a cultural hiatus centered around 1200-1500 cal. yr AD is found, suggesting that the settlement was abandoned for a period of a few hundred years before being recolonized. Until now it has remained a mystery what caused this cultural hiatus. This study assembles radiocarbon dates of upland river terraces, organic proxies in flood plain lake sediments, and content of wood shreds in nearby marine sediments from the continental slope off NE Taiwan. These records are synthesized to infer the frequency and magnitude of ancient flood events over the past 1250 years in the Lanyang Drainage System in northeastern Taiwan. Alluvial fan terraces distributed along the banks of the upper Lanyang River are considered to be the results of ancient debris flow events, and their radiocarbon dates fall in two time ranges: 850-1100 and 1400-1600 cal. yr AD. Organic proxies which representing terrestrial organic input were measured from bulk sediments of Lake Dahu and Lake Meihua in the Lanyang Plain. Peak values of TOC, C/N ratio and organic indicator (inc/coh) from Itrax-XRF core scanner measurements are conspicuous during 900-950, and 1400-1500 cal. yr AD, implying frequent flood events. Moreover, abundance peaks of wood shreds and peaks in the C/N ratio in marine box core ORI-801-7A from the continental slope SE of the Lanyang Plain are dated to about 950-1050 and 1450-1550 cal. yr AD, thus generally coinciding with the input events recorded in lake sediments. In summary, different lines of evidence collected from the Lanyang Drainage System suggest that flood events were more frequent during two particular periods: 900-950 cal. yr AD and 1400-1500 cal. yr AD. The later period corresponds to the cultural hiatus at Site Kiwulan, suggesting that the lost civilization may be related to severe and frequent flooding of the Lanyang Plain during that period.
Salli F. Dymond; W. Michael Aust; Stephen P. Prisley; Mark H. Eisenbies; James M. Vose
2014-01-01
Managed forests have historically been linked to watershed protection and flood mitigation. Research indicates that forests can potentially minimize peak flows during storm events, yet the relationship between forests and flooding is complex. Forest roads, usually found in managed systems, can potentially magnify the effects of forest harvesting on water yields. The...
Floods of May 2006 and April 2007 in Southern Maine
Lombard, Pamela J.
2009-01-01
The U.S. Geological Survey Maine Water Science Center has worked with the Federal Emergency Management Agency for decades to document the magnitude and extent of major floods in Maine. Reports describing the May 2006 and April 2007 floods in southern Maine are examples of this cooperative relationship. The documentation of peak stream elevations and peak streamflow magnitudes and recurrence intervals provides essential information for the delineation of flood plains and for flood-mitigation decisions by local, State, and Federal emergency management officials.
Outlook for coastal plain forests: a subregional report from the Southern Forest Futures Project
Kier Klepzig; Richard Shelfer; Zanethia Choice
2014-01-01
The U.S. Coastal Plain consists of seven sections: the Northern Atlantic, Eastern Atlantic, Peninsular Florida, Southern Gulf, Middle Gulf-East, Middle Gulf-West, and Western Gulf. It covers a large area, consists of a diverse array of habitats, and supports a diverse array of uses. This report presents forecasts from the Southern Forest Futures Project that are...
Alexander Clark; James W. McMinn
1999-01-01
National Forests in the United States are under sustainable ecosystem management to conserve biodiversity, achieve sustainable conditions and improve the balance among forest values. This paper reports on a study established to identify the implications of ecosystem management strategies on natural stands in the Piedmont and Coastal Plain. The impact of partial...
Summary of findings from the Great Plains Tree and Forest Invasives Initiative
Dacia M. Meneguzzo; Andrew J. Lister; Cody Sullivan
2018-01-01
The Great Plains Tree and Forest Invasives Initiative (GPI) was a cooperative effort of the U.S. Forest Service and state forestry agencies in Kansas, Nebraska, North Dakota, and South Dakota, with a primary goal of evaluating the tree resources throughout the four-state region as a preparedness measure for the arrival of invasive pests, such as the emerald ash borer...
Taenia spp. infections in wildlife in the Bangweulu and Kafue flood plains ecosystems of Zambia.
Muma, J B; Gabriël, S; Munyeme, M; Munang'andu, H M; Victor, B; Dorny, P; Nalubamba, K S; Siamudaala, V; Mwape, K E
2014-09-15
Taenia spp. have an indirect life cycle, cycling between a definitive and an intermediate host with zoonotic species causing public health problems in many developing countries. During the course of 2 separate surveys in Zambia (2004 and 2009), the presence of Taenia larval stages (cysticerci) was examined in Kafue lechwe (Kobus leche kafuensis), Black lechwe (Kobus leche smithermani) and other wildlife species from the Kafue and Bangweulu flood plains. Examinations involved post-mortem inspection and serum specific antigen detection. The recovered cysts from seven carcasses were characterised using PCR and DNA sequence analysis. The overall proportion of infection in wildlife on post-mortem examination was 19.0% (95% CI: 9.1-29.0%). The proportion of infected wildlife based on post-mortem examinations in the Kafue flood plains was estimated at 28.6% (95% CI: 13.3-43.9%), while the seroprevalence was estimated at 25.0% (95% CI: 2.9-47.1%). The seroprevalence for cattle in the Kafue flood plains was estimated at 61.5% (95% CI: 42.0-81.0%) while that of Kafue lechwe in the same ecosystem was estimated at 66.6% (95% CI: 45.6-85.7%). Infection rates were higher in Kafue lechwe than in Black lechwe suggesting differences in the exposure patterns. The sequencing results indicated that none of the recovered cysts were either Taenia solium or Taenia saginata. We therefore conclude they most likely belong to a less studied (wildlife) Taenia species that requires further characterisation. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Dickson, James L.; Head, James W.; Whitten, Jennifer L.; Fassett, Caleb I.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Phillips, Roger J.
2012-01-01
MESSENGER observations from orbit around Mercury have revealed that a large contiguous area of smooth plains occupies much of the high northern latitudes and covers an area in excess of approx.6% of the surface of the planet [1] (Fig. 1). Smooth surface morphology, embayment relationships, color data, candidate flow fronts, and a population of partly to wholly buried craters provide evidence for the volcanic origin of these plains and their emplacement in a flood lava mode to depths at least locally in excess of 1 km. The age of these plains is similar to that of plains associated with and postdating the Caloris impact basin, confirming that volcanism was a globally extensive process in the post-heavy bombardment history of Mercury [1]. No specific effusive vent structures, constructional volcanic edifices, or lava distributary features (leveed flow fronts or sinuous rilles) have been identified in the contiguous plains, although vent structures and evidence of high-effusion-rate flood eruptions are seen in adjacent areas [1]. Subsequent to the identification and mapping of the extensive north polar smooth plains, data from the Mercury Laser Altimeter (MLA) on MESSENGER revealed the presence of a broad topographic rise in the northern smooth plains that is 1,000 km across and rises more than 1.5 km above the surrounding smooth plains [2] (Fig. 2). The purpose of this contribution is to characterize the northern plains rise and to outline a range of hypotheses for its origin.
NASA Astrophysics Data System (ADS)
Blum, M.
2001-12-01
Mixed bedrock-alluvial valleys are the conveyor belts for sediment delivery to passive continental margins. Mapping, stratigraphic and sedimentologic investigations, and development of geochronological frameworks for large midlatitude rivers of this type, in Western Europe and the Texas Coastal Plain, provide for evaluation of fluvial responses to climate change over the last glacial-interglacial period, and the foundations for future quantitative evaluation of long profile evolution, changes through time in flood magnitude, and changes in storage and flux of sediments. This paper focuses on two issues. First, glacial vs. interglacial period fluvial systems are fundamentally different in terms of channel geometry, depositional style, and patterns of sediment storage. Glacial-period systems were dominated by coarse-grained channel belts (braided channels in Europe, large-wavelength meandering in Texas), and lacked fine-grained flood-plain deposits, whereas Holocene units, especially those of late Holocene age, contain appreciable thicknesses of flood-plain facies. Hence, extreme overbank flooding was not significant during the long glacial period, most flood events were contained within bankfull channel perimeters, and fine sediments were bypassed through the system to marine basins. By contrast, extreme overbank floods have been increasingly important during the relatively short Holocene, and a significant volume of fine sediment is sequestered in flood-plain settings. Second, glacial vs. interglacial systems exhibit different amplitudes and frequencies of fluvial adjustment to climate change. High-amplitude but low-frequency adjustments characterized the long glacial period, with 2-3 extended periods of lateral migration and sediment storage puncuated by episodes of valley incision. Low-amplitude but high-frequency adjustments have been more typical of the short Holocene, when there has been little net valley incision or net changes in sediment storage, but frequent changes in the magnitude and frequency of floods and periods of overbank flooding. This high-frequency signal is absent in landforms and deposits from the glacial period. Glacial vs. interglacial contrasts in process and stratigraphic results are the rule in most large unglaciated fluvial systems. 70-80 percent or more of any 100 kyr glacial-interglacial cycle is characterized by significant ice volume, cooler temperatures, mid-shelf or lower sea-level positions, and cooler-smaller ocean basins. A glacial-period process regime is therefore the norm, and an interglacial regime like that of the late Holocene is relatively unique and non-representative. Large unglaciated midlatitude fluvial systems may be in long-term equilibrium with a glacial-period environment, with long profiles graded to glacial-period sea-level positions, so fluvial systems respond to major changes in climate, discharge regimes, and sediment loads, but they appear to have been relatively insensitive to higher-frequency changes. Short interglacials like the Holocene are, by comparison, periods of abnormally high sea levels and relatively low-amplitude climate changes, but fluvial systems appear to exhibit a greatly increased sensitivity to subtle changes in discharge regimes that produce frequent periods of disequilibrium.
Conner, William H.; Krauss, Ken W.; Shaffer, Gary P.; Stanturf, John A.; Madsen, Palle; Lamb, David
2012-01-01
Freshwater forested wetlands commonly occur in the lower Coastal Plain of the southeastern US with baldcypress (Taxodium distichum [L.] L.C. Rich.) and water tupelo (Nyssa aquatica L.) often being the dominant trees. Extensive anthropogenic activities combined with eustatic sea-level rise and land subsidence have caused widespread hydrological changes in many of these forests. In addition, hurricanes (a common, although aperiodic occurrence) cause wide-spread damage from wind and storm surge events, with impacts exacerbated by human-mediated coastal modifications (e.g., dredging, navigation channels, etc.). Restoration of forested wetlands in coastal areas is important because emergent canopies can greatly diminish wind penetration, thereby reducing the wind stress available to generate surface waves and storm surge that are the major cause of damage to coastal ecosystems and their surrounding communities. While there is an overall paucity of large-scale restoration efforts within coastal forested wetlands of the southeastern US, we have determined important characteristics that should drive future efforts. Restoration efforts may be enhanced considerably if coupled with hydrological enhancement, such as freshwater, sediment, or sewage wastewater diversions. Large-scale restoration of coastal forests should be attempted to create a landscape capable of minimizing storm impacts and maximizing wetland sustainability in the face of climate change. Planting is the preferred regeneration method in many forested wetland sites because hydrological alterations have increased flooding, and planted seedlings must be protected from herbivory to enhance establishment. Programs identifying salt tolerance in coastal forest tree species need to be continued to help increase resilience to repetitive storm surge events.
Salt intrusion in tidal wetlands: European willow species tolerate oligohaline conditions
NASA Astrophysics Data System (ADS)
Markus-Michalczyk, Heike; Hanelt, Dieter; Ludewig, Kristin; Müller, David; Schröter, Brigitte; Jensen, Kai
2014-01-01
Tidal wetlands experience salt intrusion due to the effects of climate change. This study clarifies that the European flood plain willows species Salix alba and Salix viminalis tolerate oligohaline conditions. Salix alba L. and Salix viminalis L. are distributed on flood plains up to transitional waters of the oligohaline to the mesohaline estuarine stretch in temperate climates. They experience spatial and temporal variations in flooding and salinity. In the past, willows dominated the vegetation above the mean high water line, attenuated waves and contributed to sedimentation. In recent centuries, human utilization reduced willow stands. Today, the Elbe estuary - a model system for an estuary in temperate zones - exhibits increasing flooding and salinity due to man-induced effects and climatic changes. Willows were described as having no salinity tolerance. In contrast, our soil water salinity measurements at willows in tidal wetlands prove that mature Salix individuals tolerate oligohaline conditions. To assess immature plant salinity tolerance, we conducted a hydroponic greenhouse experiment. Vegetative propagules originating from a freshwater and an oligohaline site were treated in four salinities. Related to growth rates and biomass production, we found interspecific similarities and a salinity tolerance up to salinity 2. Vitality and chlorophyll fluorescence indicated an acclimation of Salix viminalis to oligohaline conditions. We conclude, that the survival of S. alba and S. viminalis and the restoration of willow stands in estuarine flood plains - with regard to wave attenuation and sedimentation - might be possible, despite increasing salinity in times of climate change.
Tharsis-triggered Flood Inundations of the Lowlands of Mars
NASA Technical Reports Server (NTRS)
Fairen, Alberto G.; Dohm, James M.; Baker, Victor R.; dePablo, Miguel A.
2003-01-01
Throughout the recorded history of Mars, liquid water has distinctly shaped its landscape, including the prominent circum-Chryse and the northwestern slope valleys outflow channel systems [1], and the extremely flat northern plains topography at the distal reaches of these outflow channel systems.Basing on the ideas of episodic greenhouse atmosphere and water stability on the lowlands of Mars [3], a conceptual scheme for water evolution and associated geomorphologic features on the northern plains can be proposed. This model highlights Tharsis-triggered flood inundations and their direct impact on shaping the northern plains, as well as making possible the existence of fossil and/or extant life.Possible biologic evolution throughout the resulting different climatic and hydrologic conditions would account for very distinct metabolic pathways for hypothesized organisms capable of surviving and perhaps evolving in each aqueous environment, those that existed in the dry and cold periods between the flood inundations, and those organisms that could survive both extremes. Terrestrial microbiota, chemolithotrophic and heterotrophic bacteria, provide exciting analogues for such potential extremophile existence in Mars, especially where long-lived, magmatic-driven hydrothermal activity is indicated [14].
1973 Mississippi River Flood's Impact on Natural Hardwood Forests and Plantations
H. E. Kennedy; R. M. Krinard
1974-01-01
Through October, the 1979 Mississippi River flood had not caused extensive damage to natural hardwood forests or plantations that were 1 year or older and had been flooded only during the first 2 months of the growing season. New plantings of cottonwood were virtually destroyed, however, and 1-year-old sweetgum, flooded about 9 months, was killed. All yellow-poplar...
Predicting Coastal Flood Severity using Random Forest Algorithm
NASA Astrophysics Data System (ADS)
Sadler, J. M.; Goodall, J. L.; Morsy, M. M.; Spencer, K.
2017-12-01
Coastal floods have become more common recently and are predicted to further increase in frequency and severity due to sea level rise. Predicting floods in coastal cities can be difficult due to the number of environmental and geographic factors which can influence flooding events. Built stormwater infrastructure and irregular urban landscapes add further complexity. This paper demonstrates the use of machine learning algorithms in predicting street flood occurrence in an urban coastal setting. The model is trained and evaluated using data from Norfolk, Virginia USA from September 2010 - October 2016. Rainfall, tide levels, water table levels, and wind conditions are used as input variables. Street flooding reports made by city workers after named and unnamed storm events, ranging from 1-159 reports per event, are the model output. Results show that Random Forest provides predictive power in estimating the number of flood occurrences given a set of environmental conditions with an out-of-bag root mean squared error of 4.3 flood reports and a mean absolute error of 0.82 flood reports. The Random Forest algorithm performed much better than Poisson regression. From the Random Forest model, total daily rainfall was by far the most important factor in flood occurrence prediction, followed by daily low tide and daily higher high tide. The model demonstrated here could be used to predict flood severity based on forecast rainfall and tide conditions and could be further enhanced using more complete street flooding data for model training.
Establishment of Rio Grande cottonwood seedlings using micro-irrigation of xeric flood plain sites
David R. Dreesen; Gregory A. Fenchel; Joseph G. Fraser
1999-01-01
Flood control, irrigation structures, and flow control practices on the Middle Rio Grande have prevented the deposition of sediments and hydrologic conditions conducive to the germination and establishment of Rio Grande cottonwood (Populus fremontii S. Wats.). The Los Lunas Plant Materials Center has been investigating the use of micro-irrigation systems on xeric flood...
T.J. Callahan; J.D. Cook; Mark D. Coleman; Devendra M. Amatya; Carl C. Trettin
2004-01-01
The Forest Service-Savannah River is conducting a hectare-scale monitoring and modeling study on forest productivity in a Short Rotation Woody Crop plantation at the Savannah River Site, which is on Upper Coastal Plain of South Carolina. Detailed surveys, i.e., topography, soils, vegetation, and dainage network, of small (2-5 ha) plots have been completed in a 2 square...
Swiss Re Global Flood Hazard Zones: Know your flood risk
NASA Astrophysics Data System (ADS)
Vinukollu, R. K.; Castaldi, A.; Mehlhorn, J.
2012-12-01
Floods, among all natural disasters, have a great damage potential. On a global basis, there is strong evidence of increase in the number of people affected and economic losses due to floods. For example, global insured flood losses have increased by 12% every year since 1970 and this is expected to further increase with growing exposure in the high risk areas close to rivers and coastlines. Recently, the insurance industry has been surprised by the large extent of losses, because most countries lack reliable hazard information. One example has been the 2011 Thailand floods where millions of people were affected and the total economic losses were 30 billion USD. In order to assess the flood risk across different regions and countries, the flood team at Swiss Re based on a Geomorphologic Regression approach, developed in house and patented, produced global maps of flood zones. Input data for the study was obtained from NASA's Shuttle Radar Topographic Mission (SRTM) elevation data, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) and HydroSHEDS. The underlying assumptions of the approach are that naturally flowing rivers shape their channel and flood plain according to basin inherent forces and characteristics and that the flood water extent strongly depends on the shape of the flood plain. On the basis of the catchment characteristics, the model finally calculates the probability of a location to be flooded or not for a defined return period, which in the current study was set to 100 years. The data is produced at a 90-m resolution for latitudes 60S to 60N. This global product is now used in the insurance industry to inspect, inform and/or insure the flood risk across the world.
Simulation of Flood Profiles for Catoma Creek near Montgomery, Alabama, 2008
Lee, K.G.; Hedgecock, T.S.
2008-01-01
A one-dimensional step-backwater model was used to simulate flooding conditions for Catoma Creek near Montgomery, Alabama. A peak flow of 50,000 cubic feet per second was computed by the U.S. Geological Survey for the March 1990 flood at the Norman Bridge Road gaging station. Using this estimated peak flow, flood-plain surveys with associated roughness coefficients, and surveyed high-water marks for the March 1990 flood, a flow model was calibrated to closely match the known event. The calibrated model then was used to simulate flooding for the 10-, 50-, 100-, and 500-year recurrence-interval floods. The 100-year flood stage for the Alabama River also was computed in the vicinity of the Catoma Creek confluence using observed high-water profiles from the 1979 and 1990 floods and gaging-station data. The results indicate that the 100-year flood profile for Catoma Creek within the 15-mile study reach is about 2.5 feet higher, on average, than the profile published by the Federal Emergency Management Agency. The maximum and minimum differences are 6.0 feet and 0.8 foot, respectively. All water-surface elevations computed for the 100-year flood are higher than those published by the Federal Emergency Management Agency. The 100-year flood stage computed for the Alabama River in the vicinity of the Catoma Creek confluence was about 4.5 feet lower than the elevation published by the Federal Emergency Management Agency. The results of this study provide the community with flood-profile information that can be used for flood-plain mitigation, future development, and safety plans for the city.
Adhikari, B; Verhoeven, R; Troch, P
2009-01-01
This paper studies primary canals of three traditional irrigation systems in the southern plains of Nepal. It offers a scientific interpretation of the indigenous technology applied to the systems, which facilitates to use the same channel network for irrigation, drainage and flood management. The flood management technology of the farmers by diverting as much discharge as possible to the field channels results in the reduction of discharge towards the downstream part of the main channel. It is depicted in the simulation study that uses the river analysis program HEC-RAS 4.0. A cascade of weirs is found to be the most cost effective and user-friendly option to upgrade these systems preserving the existing irrigation, drainage as well as flood management functions. This study suggests that the conventional irrigation design principles should be applied very cautiously with full knowledge of the existing socio-institutional setting, hydro-ecological regime and indigenous technology for upgrading any traditional irrigation system successfully. The indigenous flood management technology strengthens the emerging concept that the floods in the Ganges plain are to be managed, not controlled.
Flood-plain study of the Upper Iowa River in the vicinity of Decorah, Iowa
Christiansen, Daniel E.; Eash, David A.
2008-01-01
The city of Decorah, Iowa, has experienced severe flooding from the Upper Iowa River resulting in property damage to homes and businesses. Streamflow data from two U.S. Geological Survey (USGS) streamflow-gaging stations, the Upper Iowa River at Decorah, Iowa (station number 05387500), located upstream from the College Drive bridge; and the Upper Iowa River near Decorah, Iowa (station number 05388000), at the Clay Hill Road bridge (locally known as the Freeport bridge) were used in the study. The three largest floods on the Upper Iowa River at Decorah occurred in 1941, 1961, and 1993, for which the estimated peak discharges were 27,200 cubic feet per second (ft3/s), 20,200 ft3/s, and 20,500 ft3/s, respectively. Flood-discharge information can be obtained from the World Wide Web at URL (uniform resource locator) http://waterdata.usgs.gov/nwis/. In response to the need to provide the City of Decorah and other flood-plain managers with an assessment of the risks of flooding to properties and facilities along an 8.5-mile (mi) reach of the Upper Iowa River, the USGS, in cooperation with the City of Decorah, initiated a study to map 100- and 500-year flood-prone areas.
Ashley, Roger P.; Rytuba, James J.; Rogers, Ronald; Kotlyar, Boris B.; Lawler, David
2002-01-01
Clear Creek, one of the major tributaries of the upper Sacramento River, drains the eastern Trinity Mountains. Alluvial plain and terrace gravels of lower Clear Creek, at the northwest edge of the Sacramento Valley, contain placer gold that has been mined since the Gold Rush by various methods including dredging. In addition, from the 1950s to the 1980s aggregate-mining operations removed gravel from the lower Clear Creek flood plain. Since Clear Creek is an important stream for salmon production, a habitat restoration program is underway to repair damage from mining and improve conditions for spawning. This program includes using dredge tailings to fill in gravel pits in the flood plain, raising the concern that mercury lost to these tailings in the gold recovery process may be released and become available to biota. The purposes of our study are to determine concentrations and speciation of mercury in sediments, tailings, and water in the lower Clear Creek area, and to determine its mobility. Mercury concentrations in bedrock and unmined gravels both within and above the mined area are low, and are taken to represent background concentrations. Bulk mercury values in flood-plain sediments and dry tailings are elevated to several times these background concentrations. Mercury in sediments and tailings is associated with fine size fractions. Although methylmercury levels are generally low in sediments, shallow ponds in the flood plain may have above-normal methylation potential. Stream waters in the area show low mercury and methylmercury levels. Ponds with elevated methylmercury in sediments have more methylmercury in their waters as well. One seep in the area is highly saline, and enriched in mercury, lithium, and boron, similar to connate waters that are expelled along thrust faults to the south on the west side of the Sacramento Valley. This occurrence suggests that mercury in waters may at least in part be from sources other than placer mining.
A casualty of climate change? Loss of freshwater forest islands on Florida's Gulf Coast.
Langston, Amy K; Kaplan, David A; Putz, Francis E
2017-12-01
Sea level rise elicits short- and long-term changes in coastal plant communities by altering the physical conditions that affect ecosystem processes and species distributions. While the effects of sea level rise on salt marshes and mangroves are well studied, we focus on its effects on coastal islands of freshwater forest in Florida's Big Bend region, extending a dataset initiated in 1992. In 2014-2015, we evaluated tree survival, regeneration, and understory composition in 13 previously established plots located along a tidal creek; 10 plots are on forest islands surrounded by salt marsh, and three are in continuous forest. Earlier studies found that salt stress from increased tidal flooding prevented tree regeneration in frequently flooded forest islands. Between 1992 and 2014, tidal flooding of forest islands increased by 22%-117%, corresponding with declines in tree species richness, regeneration, and survival of the dominant tree species, Sabal palmetto (cabbage palm) and Juniperus virginiana (southern red cedar). Rates of S. palmetto and J. virginiana mortality increased nonlinearly over time on the six most frequently flooded islands, while salt marsh herbs and shrubs replaced forest understory vegetation along a tidal flooding gradient. Frequencies of tidal flooding, rates of tree mortality, and understory composition in continuous forest stands remained relatively stable, but tree regeneration substantially declined. Long-term trends identified in this study demonstrate the effect of sea level rise on spatial and temporal community reassembly trajectories that are dynamically re-shaping the unique coastal landscape of the Big Bend. © 2017 John Wiley & Sons Ltd.
The effects of floodplain forest restoration and logjams on flood risk and flood hydrology
NASA Astrophysics Data System (ADS)
Dixon, Simon; Sear, David A.; Sykes, Tim; Odoni, Nicholas
2015-04-01
Flooding is the most common natural catastrophe, accounting for around half of all natural disaster related deaths and causing economic losses in Europe estimated at over € 2bn per year. In addition flooding is expected to increase in magnitude and frequency with climate change, effectively shortening the return period for a given magnitude flood. Increasing the height and extent of hard engineered defences in response to increased risk is both unsustainable and undesirable. Thus alternative approaches to flood mitigation are needed such as harnessing vegetation processes to slow the passage of flood waves and increase local flood storage. However, our understanding of these effects at the catchment scale is limited. In this presentation we demonstrate the effects of two river restoration approaches upon catchment scale flood hydrology. The addition of large wood to river channels during river restoration projects is a popular method of attempting to improve physical and biological conditions in degraded river systems. Projects utilising large wood can involve the installation of engineered logjams (ELJs), the planting and enhancement of riparian forests, or a combination of both. Altering the wood loading of a channel through installation of ELJs and increasing floodplain surface complexity through encouraging mature woodland could be expected to increase the local hydraulic resistance, increasing the timing and duration of overbank events locally and therefore increasing the travel time of a flood wave through a reach. This reach-scale effect has been documented in models and the field; however the impacts of these local changes at a catchment scale remains to be illustrated. Furthermore there is limited knowledge of how changing successional stages of a restored riparian forest through time may affect its influence on hydromorphic processes. We present results of a novel paired numerical modelling study. We model changes in flood hydrology based on a 98km² catchment using OVERFLOW; a simplified hydrological model using a spatially distributed unit hydrograph approach. Restoration scenarios for the hydrological modelling are informed by the development of a new conceptual model of riparian forest succession, including quantitative estimates of deadwood inputs to the system, using a numerical forest growth model. We explore scenarios using ELJs alone as well as managed and unmanaged riparian forest restoration at scales from reach to sub-catchment. We demonstrate that changes to catchment flood hydrology with restoration are highly location dependant and downstream flood peaks can in some cases increase through synchronisation of sub-catchment flood waves. We constrain magnitude estimates for increases and decreases in flood peaks for modelled restoration scenarios and scales. Finally we analyse the potential for using riparian forest restoration as part of an integrated flood risk management strategy, including specific examples of type and extent of restoration which may prove most beneficial.
Water, energy and CO2 exchange over a seasonally flooded forest in the Sahel.
NASA Astrophysics Data System (ADS)
Kergoat, L.; Le Dantec, V.; Timouk, F.; Hiernaux, P.; Mougin, E.; Manuela, G.; Diawara, M.
2014-12-01
In semi-arid areas like the Sahel, perennial water bodies and temporary-flooded lowlands are critical for a number of activities. In some cases, their existence is simply a necessary condition for human societies to establish. They also play an important role in the water and carbon cycle and have strong ecological values. As a result of the strong multi-decadal drought that impacted the Sahel in the 70' to 90', a paradoxical increase of ponds and surface runoff has been observed ("Less rain, more water in the ponds", Gardelle 2010). In spite of this, there are excessively few data documenting the consequence of such a paradox on the water and carbon cycle. Here we present 2 years of eddy covariance data collected over the Kelma flooded Acacia forest in the Sahel (15.50 °N), in the frame of the AMMA project. The flooded forest is compared to the other major component of this Sahelian landscape: a grassland and a rocky outcrop sites. All sites are involved in the ALMIP2 data/LSM model comparison. The seasonal cycle of the flooded forest strongly departs from the surroundings grassland and bare soil sites. Before the rain season, the forest displays the strongest net radiation and sensible heat flux. Air temperature within the canopy reaches extremely high values. During the flood, it turns to the lowest sensible heat flux. In fact, due to an oasis effect, this flux is negative during the late flood. Water fluxes turn from almost zero in the dry season to strong evaporation during the flood, since it uses additional energy provided by negative sensible heat flux. The eddy covariance fluxes are consistent with sap flow data, showing that the flood greatly increases the length of the growing season. CO2 fluxes over the forest were twice as large as over the grassland, and the growing season was also longer, giving a much larger annual photosynthesis. In view of these data and data over surroundings grasslands and bare soil, as well as data from a long-term ecological survey, we discuss the importance of the flooded forest in terms of fluxes and productivity.
NASA Astrophysics Data System (ADS)
Everitt, B. L.
2006-12-01
In 1915 closure of Elephant Butte Dam in central New Mexico profoundly altered the hydrologic regime of the Rio Grande for 560 km downstream, and set in motion a cascade of interwoven geomorphic, biological, and cultural responses. Geomorphic response included shrinking of the width and depth of the channel, and an increase in sinuosity. Cultural responses included artificial channel modification on 320 km of the river within the boundaries of the original irrigation project, beginning in 1933. The pre-dam river and its flood plain consisted of a mosaic of geomorphic elements that formed a functional riverine landscape, and founded a diverse habitat for the plants, animals, and people that lived there. A preliminary comparison of the modern river with pre-dam topographic mapping permits identification of individual landscape elements, including overflow land (flood plain) both cultivated and uncultivated, with oxbows and back-swamps. The pre-dam channel included a low water thread and un-vegetated flood bars. From pre-dam description and photographs we can assume the usual complement of pools and riffles, point bars and undercut banks. Until dredged in the 1970s, the unmodified reach retained the entire suite of landscape elements, although in somewhat different proportions from the pre-dam river, and remained a functional riparian system. Channel sinuosity increased from 1.45 in 1910 to 1.7 in 1970, thus riverbank habitat increased by 1.17%. In 1970 undercut banks still provided protection for fish, and point bars generated by lateral migration still provided seed beds for pioneer species. The smaller shallower channel raised groundwater beneath the flood plain and retarded flood waves, creating a generally more mesic environment, although the river occasionally dries up, as it did prior to 1915. In contrast, an impoverished suite of landscape elements characterizes the channelized reach. Lateral stability precludes point bars and undercut banks. Bounding levees separate the channel from its former flood plain. All areas are impacted by heavy machinery during periodic channel maintenance. I conclude that the environmental degradation caused by artificial channel modification has far outweighed any generated by upstream hydrologic control.
Study of the malaria situation in forested foothill and nearby plain areas of Myanmar.
Myint, L; Ye, H
1991-12-01
A longitudinal demographic-parasitological survey on malaria was conducted at 10 weekly intervals starting from September in one foothill village with the population of 1,095 and one epidemiologically comparable plain village with the population of 962 in Kyauktaga township, Bago division, 120 miles north of Yangon. The objective was to describe and analyse the current malaria situation in a forested foothill area and an adjacent plain area. Ten weekly blood film collections for malaria parasite examination, six monthly sera collections on filter paper for serological examination from the whole study population and ten weekly splenic measurements from 2-9 year children were done. The malaria parasite rate in the foothill area was invariably higher than that in the plain area in all age groups throughout the study period. Moreover, the parasite rate decreased with the increase in distance from the forested foothill area indicating that the deep forest malaria may have some influence on the foothill villages. The total age specific parasite rate in foothill villages was found to be highest in the 5-8 year age group and decreased as the age advanced which may be due to the increasing immunity. The study revealed the presence of local transmission in the foothill village. From these data it is evident that new village sites should be chosen at least 5 miles away from the forest fringe and the malaria control measures in the plain area should utilize chemoprophylaxis and effective chemotherapy focusing on the people who travel into the forest.
Tran, Phong; Marincioni, Fausto; Shaw, Rajib
2010-11-01
Recent catastrophic floods in Viet Nam have been increasingly linked to land use and forest cover change in the uplands. Despite the doubts that many scientists have expressed on such nexus, this common view prompted both positive forest protection/reforestation programs and often-unwarranted blame on upland communities for their forest management practices. This study discusses the disparity between public perceptions and scientific evidences relating the causes of catastrophic floods. The former was drawn on the results of a questionnaire and focus groups discussions with key informants of different mountainous communities, whereas the latter was based on GIS and remote sensing analysis of land cover change, including a statistical analysis of hydro-meteorological data of the Huong river basin in Viet Nam. Results indicate that there is a gap between the common beliefs and the actual relationship between the forest cover change and catastrophic floods. Undeniably, the studied areas showed significant changes in land cover over the period 1989-2008, yet, 71% of the variance of catastrophic flood level in the downstream areas appeared related to variance in rainfall. Evidences from this study showed that the overall increasing trends of catastrophic flooding in the Huong river basin was mainly due to climate variability and to the development of main roads and dyke infrastructures in the lowlands. Forest management policies and programs, shaped on the common assumption that forest degradation in the upland is the main cause of catastrophic flood in the downstream areas, should be reassessed to avoid unnecessary strain on upland people. Copyright 2010 Elsevier Ltd. All rights reserved.
44 CFR 60.26 - Local coordination.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Local coordination. 60.26 Section 60.26 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF... Flood-Related Erosion-Prone Areas § 60.26 Local coordination. (a) Local flood plain, mudslide (i.e...
NASA Astrophysics Data System (ADS)
Sadler, J. M.; Goodall, J. L.; Morsy, M. M.; Spencer, K.
2018-04-01
Sea level rise has already caused more frequent and severe coastal flooding and this trend will likely continue. Flood prediction is an essential part of a coastal city's capacity to adapt to and mitigate this growing problem. Complex coastal urban hydrological systems however, do not always lend themselves easily to physically-based flood prediction approaches. This paper presents a method for using a data-driven approach to estimate flood severity in an urban coastal setting using crowd-sourced data, a non-traditional but growing data source, along with environmental observation data. Two data-driven models, Poisson regression and Random Forest regression, are trained to predict the number of flood reports per storm event as a proxy for flood severity, given extensive environmental data (i.e., rainfall, tide, groundwater table level, and wind conditions) as input. The method is demonstrated using data from Norfolk, Virginia USA from September 2010 to October 2016. Quality-controlled, crowd-sourced street flooding reports ranging from 1 to 159 per storm event for 45 storm events are used to train and evaluate the models. Random Forest performed better than Poisson regression at predicting the number of flood reports and had a lower false negative rate. From the Random Forest model, total cumulative rainfall was by far the most dominant input variable in predicting flood severity, followed by low tide and lower low tide. These methods serve as a first step toward using data-driven methods for spatially and temporally detailed coastal urban flood prediction.
Restinga forests of the Brazilian coast: richness and abundance of tree species on different soils.
Magnago, Luiz F S; Martins, Sebastião V; Schaefer, Carlos E G R; Neri, Andreza V
2012-09-01
The aim of this study was to determine changes in composition, abundance and richness of species along a forest gradient with varying soils and flood regimes. The forests are located on the left bank of the lower Jucu River, in Jacarenema Natural Municipal Park, Espírito Santo. A survey of shrub/tree species was done in 80 plots, 5x25 m, equally distributed among the forests studied. We included in the sampling all individuals with >3.2 cm diameter at breast height (1.30 m). Soil samples were collected from the surface layer (0-10 cm) in each plot for chemical and physical analysis. The results indicate that a significant pedological gradient occurs, which is influenced by varying seasonal groundwater levels. Restinga forest formations showed significant differences in species richness, except for Non-flooded Forest and Non-flooded Forest Transition. The Canonical Correlation Analysis (CCA) showed that some species are distributed along the gradient under the combined influence of drainage, nutrient concentration and physical characteristics of the soil. Regarding the variables tested, flooding seems to be a more limiting factor for the establishment of plant species in Restinga forests than basic soil fertility attributes.
Forest cover, socioeconomics, and reported flood frequency in developing countries
NASA Astrophysics Data System (ADS)
Ferreira, Susana; Ghimire, Ramesh
2012-08-01
In this paper, we analyze the determinants of the number of large floods reported since 1990. Using the same sample of countries as Bradshaw et al. (2007), and, like them, omitting socioeconomic characteristics from the analysis, we found that a reduction in natural forest cover is associated with an increase in the reported count of large floods. This result does not hold in any of three new analyses we perform. First, we expand the sample to include all the developing countries and all countries for which data were available but were omitted in their study. Second, and more importantly, since forest management is just one possible channel through which humans can influence reported flood frequency, we account for other important human-flood interactions. People are typically responsible for deforestation, but they are also responsible for other land use changes (e.g., urbanization), for floodplain and flood emergency management, and for reporting the floods. Thus, in our analysis we account for population, urban population growth, income, and corruption. Third, we exploit the panel nature of the data to control for unobserved country and time heterogeneity. We conclude that not only is the link between forest cover and reported flood frequency at the country level not robust, it also seems to be driven by sample selection and omitted variable bias. The human impact on the reported frequency of large floods at the country level is not through deforestation.
Comprehensive planning and the dragon to slay
Leopold, Luna Bergere
1965-01-01
Several years ago I was in India as consultant to that government concerning a flood-control project on the Kosi River in the State of Bihar. The Kosi originates near Mount Everest and emerges from the Himalayas to flow southward for nearly a hundred miles across the Ganges plain. It is a braided river with an ill-defined channel consisting of many distributaries wandering around myriad islands in an unsystematic way. Owing to the fact that the Kosi has moved laterally across its low-angle fan about 75 miles in a hundred years it has progressively devastated by flooding large areas of agricultural land.The Indian government has chosen as the most practical way to alleviate the flood damage, the construction of levees separated by a distance of about nine miles and confining the river through most of the course of its plain.
Flooding and its Effect on Trees
Stephen Bratkovich; Lisa Burban; Steven Katovich; Craig Locey; Jill Pokorny; Richard Wiest
1993-01-01
The 1993 floods along the Missouri and Mississippi Rivers and their tributaries have caused tremendous losses in terms of human life, homes, businesses and crop production. Bottomland areas have been under water for many weeks. Landowners, homeowners, foresters, park managers, and others are concerned about the long-term effect of the flooding on the forests of the...
Hydrological states and the resilience of deltaic forested wetlands
NASA Astrophysics Data System (ADS)
Keim, R.; Allen, S. T.
2017-12-01
The flooding regime constitutes a set of chronic disturbances that are largely responsible for ecosystem structure. However, disturbances do not always constitute stresses to plants that survive because of adaptations to flooded conditions. We examine baldcypress-water tupelo forested wetlands in the delta of the Mississippi River as a case study in mechanisms by which hydrologic change shapes wetland ecosystem change, supported by experimental evidence from remote sensing, tree-ring and other field studies, and meta-analysis across the literature. Decreased hydrologic variability caused by water control structures has reduced the frequency of flood events that increase growth of baldcypress and favor its establishment by reducing competition from other species. Hydrologic modifications that lead to semi-permanent, stagnant flooding constitute semi-permanent disturbance that prevents regeneration of any trees, reduces growth of established trees, and reduces stand density by causing mortality of some trees. However, baldcypress trees in low-density stands appear to be generally adapted for long-term survival in stagnant conditions. Thus, initial decreases in stand density after impoundment do not necessarily portend continued conversion away from forest because reduced inter-tree competition is a negative feedback on mortality. Overall, a natural hydrologic regime with high variability in riverine flooding favors denser stands with greater diversity of tree species, and the present, controlled hydrologic regime that has largely eliminated riverine flooding favors open stands. Sea-level rise will increase salinity that quickly leads to forest conversion to marsh, but will also increase stagnant, freshwater flooding further inland. These drivers of hydrologic change reduce carbon assimilation by forests, both by reduced stand-level productivity and decreased forested area.
1980-10-01
a bakery , a gas station, and the Linden Street bridge were flooded during the March 1977 storm. Flooding also occurred on the Southwest Branch...and service station, one bakery , and five other commercial establishments. Most of these structures are not suited to being elevated above the design...of a shopping plaza and a fast-food franchise in the flood plain on West Housatonic Street (Route 20). The following three alternate plans of
Water resources of the Yellow Medicine River Watershed, Southwestern Minnesota
Novitzki, R.P.; Van Voast, Wayne A.; Jerabek, L.A.
1969-01-01
The Yellow Medicine and Minnesota Rivers are the major sources of surface water. For physiographic regions – Upland Plain, Slope, Lowland Plain, and Minnesota River Flood Plain – influence surface drainage, and the flow of ground water through the aquifers. The watershed comprises 1070 square miles, including the drainage basin of the Yellow Medicine River (665 square miles) and 405 square miles drained by small streams tributary to the Minnesota River.
Marx, Michael Thomas; Guhmann, Patrick; Decker, Peter
2012-01-01
Simple Summary This review summarizes adaptations and predispositions of different arthropod taxa (springtails, web spiders, millipedes and centipedes) to flood and drought conditions. The main focus sis directed to arthropod species, which are living in Middle European floodplain forests and wetlands, because of the fast change of flood and drought conditions in these habitats. Furthermore the effects of the predicted regional climate change like increasing aperiodic summer flooding and decreasing winter and spring floods are also discussed. Abstract Floodplain forests and wetlands are amongst the most diverse and species rich habitats on earth. Arthropods are a key group for the high diversity pattern of these landscapes, due to the fact that the change between flooding and drought causes in different life cycles and in a variety of adaptations in the different taxa. The floodplain forests and wetlands of Central Amazonia are well investigated and over the last 50 years many adaptations of several hexapod, myriapod and arachnid orders were described. In contrast to Amazonia the Middle European floodplains were less investigated concerning the adaptations of arthropods to flood and drought conditions. This review summarizes the adaptations and predispositions of springtails, web spiders, millipedes and centipedes to the changeable flood and drought conditions of Middle European floodplain forests and wetlands. Furthermore the impact of regional climate change predictions like increasing aperiodic summer floods and the decrease of typical winter and spring floods are discussed in this article. PMID:26487164
18 CFR 415.43 - Mapped and unmapped delineations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... data submitted, soil surveys, historic flood maps, high water marks and other empirical data, the... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Mapped and unmapped... ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Administration § 415.43 Mapped and unmapped...
18 CFR 415.43 - Mapped and unmapped delineations.
Code of Federal Regulations, 2012 CFR
2012-04-01
... data submitted, soil surveys, historic flood maps, high water marks and other empirical data, the... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Mapped and unmapped... ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Administration § 415.43 Mapped and unmapped...
18 CFR 415.43 - Mapped and unmapped delineations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... data submitted, soil surveys, historic flood maps, high water marks and other empirical data, the... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Mapped and unmapped... ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Administration § 415.43 Mapped and unmapped...
18 CFR 415.30 - Regulations generally.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Regulations generally... ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Standards § 415.30 Regulations generally. The uses of land within a flood hazard area shall be subject to regulation within one of the following...
Responses of Isolated Wetland Herpetofauna to Upland Forest Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, K.R.; Hanlin, H.G.; Wigley, T.B.
2002-01-02
Measurement of responses of herpetofauna at isolated wetlands in the Coastal Plain of South Carolina to disturbance of adjacent loblolly pine forest. Many species of isolated wetland herpetofauna in the Southeastern Coastal Plain may tolerate some disturbance in adjacent upland stands. Responses of isolated wetland herpetofauna to upland silviculture and the need for adjacent forested buffers likely depend on the specific landscape context in which the wetlands occur and composition of the resident herpetofaunal community.
Use of Space Technology in Flood Mitigation (Western Province, Zambia)
NASA Astrophysics Data System (ADS)
Mulando, A.
2001-05-01
Disasters, by definition are events that appear suddenly and with little warning. They are usually short lived, with extreme events bringing death, injury and destruction of buildings and communications. Their aftermath can be as damaging as their physical effects through destruction of sanitation and water supplies, destruction of housing and breakdown of transport for food, temporary shelter and emergency services. Since floods are one of the natural disasters which endanger both life and property, it becomes vital to know its extents and where the hazards exists. Flood disasters manifest natural processes on a larger scale and information provided by Remote Sensing is a most appropriate input to analysis of actual events and investigations of potential risks. An analytical and qualitative image processing and interpretation of Remotely Sensed data as well as other data such as rainfall, population, settlements not to mention but a few should be used to derive good mitigation strategies. Since mitigation is the cornerstone of emergency management, it therefore becomes a sustained action that will reduce or eliminate long term risks to people and property from natural hazards such as floods and their effects. This will definitely involve keeping of homes and other sensitive structures away from flood plains. Promotion of sound land use planning based on this known hazard, "FLOODS" is one such form of mitigation that can be applied in flood affected areas within flood plain. Therefore future mitigation technologies and procedures should increasingly be based on the use of flood extent information provided by Remote Sensing Satellites like the NOAA AVHRR as well as information on the designated flood hazard and risk areas.
Assessment of the Flood Problems of the Taunton River Basin Massachusetts.
1978-12-01
essential for fish and provides a habitat for numerous varieties of aquatic oriented wildlife species. Of the com- bined forested wetland and open forest...Detailed flood elevation data essential for operation of regula- tions. Flood velocities, flood duration, wave action, erosion pr,,- blems and other...along with the preservation of as much trees and shrubs are essential . Where possible fast growing annual grass seed should be used, intermixed with
PHYSICAL MODELING OF CONTRACTED FLOW.
Lee, Jonathan K.
1987-01-01
Experiments on steady flow over uniform grass roughness through centered single-opening contractions were conducted in the Flood Plain Simulation Facility at the U. S. Geological Survey's Gulf Coast Hydroscience Center near Bay St. Louis, Miss. The experimental series was designed to provide data for calibrating and verifying two-dimensional, vertically averaged surface-water flow models used to simulate flow through openings in highway embankments across inundated flood plains. Water-surface elevations, point velocities, and vertical velocity profiles were obtained at selected locations for design discharges ranging from 50 to 210 cfs. Examples of observed water-surface elevations and velocity magnitudes at basin cross-sections are presented.
1975-01-20
americana), green ash (Fraxinus lanceolata), pecan (Carya illinoensis), sugarberry (Celtis laevigata), and red mulberry (Morus rubra). Also...cottonwood (Populus deltoides), silver maple (Acer saccharinum), box elder (Acer negundo), and green ash (Frax- inus lanceolata). There is a rather sparse...Amer- ican elm (Ulmus americana), slippery elm (U. rubra), box elder (Acer negundo), sycamore (Platanus occidentalis) green ash (Fraxinus lanceo- lata
Accounting System for Water Use by Vegetation in the Lower Colorado River Valley
Owen-Joyce, Sandra J.
1992-01-01
The Colorado River is the principal source of water in the valley of the Colorado River between Hoover Dam and the international boundary with Mexico (fig. 1). Agricultural, domestic, municipal, industrial, hydroelectric-power genera-tion, and recreation are the primary uses of river water in the valley. Most of the consumptive use of water from the river occurs downstream from Davis Dam, where water is diverted to irrigate crops along the river or is exported to interior regions of California and Arizona. Most of the agricultural areas are on the alluvium of the flood plain; in a few areas, land on the alluvial terraces has been cultivated. River water is consumed mainly by vegetation (crops and phreatophytes) on the flood plain. Crops were grown on 70.3 percent of the vegetated area classified by using 1984 digital image satellite data. Phreatophytes, natural vege-tation that obtain water from the alluvial aquifer, covered the remaining vegetated areas on the uncultivated flood plain. Most of the water used for irrigation is diverted or pumped from the river. In some areas, water is pumped from wells completed in the alluvial aquifer, which is hydraulically connected to the river.
Landscape influences on breeding bird communities in hardwood fragments in South Carolina
John C. Kilgo; Robert A. Sargent; Karl V. Miller; Brian R. Chapman
1997-01-01
Results from studies on the effects of forest fragmentation on bird communities in urban-agricultural landscapes may not be applicable to forested landscapes such as the Southeastern Coastal Plain. During 1993-1994, we measured parameters of avian communities in the Coastal Plain of South Carolina in hardwood stands surrounded by agricultural habitat (field-enclosed...
Chapter 16 - conservation and use of coastal wetland forests in Louisiana
Stephen P. Faulkner; Jim L. Chambers; William H. Conner; Richard F. Keim; John W. Day; Emile S. Gardiner; Melinda S. Hughes; Sammy L. King; Kenneth W. McLeod; Craig A. Miller; J. Andrew Nyman; Gary P. Shaffer
2007-01-01
The natural ecosystems of coastal Louisiana reflect the underlying geomorphic processes responsible for their formation. The majority of Louisiana's wetland forests are found in the lower reaches of the Mississipp Alluvial Valley and the Deltaic Plain. The sediments, water, and energy of the Mississippi River have shaped the Deltaic Plain as natural deltas have...
Coastal Virginia's timber resource - trends, present conditions, and opportunities for improvement
Raymond M. Sheffield
1978-01-01
The present condition and future of the timber resource in the Coastal Plain of Virginia have caused increasing concern among resource planners, land managers, and citizens. Problems identified in past forest surveys contributed to this concern. This report focuses on some of the timber resource problems of the Coastal Plain by presenting forest resource trends,...
Technique for estimating depth of floods in Tennessee
Gamble, C.R.
1983-01-01
Estimates of flood depths are needed for design of roadways across flood plains and for other types of construction along streams. Equations for estimating flood depths in Tennessee were derived using data for 150 gaging stations. The equations are based on drainage basin size and can be used to estimate depths of the 10-year and 100-year floods for four hydrologic areas. A method also was developed for estimating depth of floods having recurrence intervals between 10 and 100 years. Standard errors range from 22 to 30 percent for the 10-year depth equations and from 23 to 30 percent for the 100-year depth equations. (USGS)
River logjams cause frequent large-scale forest die-off events in southwestern Amazonia
NASA Astrophysics Data System (ADS)
Lombardo, Umberto
2017-07-01
This paper investigates the dynamics of logjam-induced floods and alluvial deposition in the Bolivian Amazon and the effects these have on forest disturbance and recovery cycles. It expands on previous work by Gullison et al. (1996) who reported a case of catastrophic floods triggered by logjams in the Chimane Forest in the Bolivian Amazon. No further studies have followed up on this observation and no research has been published on the effects of large wood in tropical lowland rivers. The study is based on the analysis of a time series of Landsat imagery (1984-2016) and field evidence. Results show that logjam-induced floods are a major driver of forest disturbance along the Andean piedmont in the Bolivian Amazon. New logjams form on an almost yearly basis, always further upriver, until an avulsion takes place. Logjam-induced floods are characterized here by the sudden deposition of a thick sand layer and the death of forest in a V-shaped area. The Bolivian Amazon offers a unique opportunity for further research on how large wood affects river behavior in lowland tropical settings and how large and frequent forest disturbance events resulting from river logjams affect forest biodiversity and community successions.
1971-06-01
addition to Elma Methodist Church showing comparative flood lev-ls. 14 27. Home on Winspear Road near mile 7.4, 36 raised 5 feet in 1963. 28. Supermarket ...and other local governrient ?gencies. "hr flooded outlines, profiles -nd -stimntrd flood fr-quenciee can b- uFsd to deter- mine the relative risk of...7rovisions hich re.rlite the us- of land with resect to flood risk . The General Provis ons of the 2onin- Ordinance of W4st "eneca do indicate that te
Flood of October 8, 1962, on Bachman Branch and Joes Creek at Dallas, Texas
Ruggles, Frederick H.
1966-01-01
This report presents hydrologic data that enable the user to define areas susceptible to flooding and to evaluate the flood hazard along Bachman Branch and Joes Creek. The data provide a technical basis for making sound decisions concerning the use of flood-plain lands. The report will be useful for preparing building and zoning regulations, locating waste disposal facilities, purchasing unoccupied land, developing recreational areas, and managing surface water in relation to ground-water resources. This is one of the series of reports delineating the flood hazard on streams in the Dallas area.
Water-surface profiles of Raccoon River at Des Moines, Iowa
Carpenter, Philip J.; Appel, David H.
1966-01-01
The Raccoon River., having a drainage area of 3,630 square miles, borders the south edge of the Des Moines downtown business district before flowing into the Des Moines River at mile 201.6. A large residential area and the city airport are separated from downtown Des Moines by the Raccoon River (fig. 1). Five highway bridges and one railroad bridge span the river between the mouth and mile 205.75, the limits of this report (fig. 1). The river is confined to a narrow channel from the mouth to the Chicago, Burlington, and Quincy Railroad bridge (mile 202.6); upstream of this bridge the river is not confined and during high water spreads over a wide flood plain. Fleur Drive, a principal traffic artery to the downtown area, is the only roadway of the five that crosses this wide flood plain. It has been flooded 15 times during the period 1903, 1918-1965.
Climatic-eustatic control of Holocene nearshore parasequence development, southeastern Texas coast
Morton, Robert A.; Kindinger, Jack G.; Flocks, James G.; Stewart, Laura B.
1999-01-01
Sediment cores, seismic profiles, radiocarbon dates, and faunal assemblages were used to interpret the depositional setting and geological evolution of the southeastern Texas coast during the last glacio-eustatic cycle. Discrete lithofacies and biofacies zones in the ebb-dominated Sabine Lake estuary and adjacent chenier plain record alternating periods of rapid marine flooding and gradual shoaling related to linked climatic/eustatic fluctuations. Monospecific zones of the mollusks Rangia cuneata and Crassostrea virginica, respectively, indicate high fresh water outflow followed by invasion of marine water, whereas intervening organic-rich zones record bayhead delta deposition. High-frequency parasequence stacking patterns within the valley fill and across the adjacent interfluve reflect an initial rapid rise in sea level about 9 ka that flooded abandoned alluvial terraces and caused onlap of Holocene marsh in the incised valley. The rapid rise was followed by slowly rising and oscillating sea level that filled the deepest portions of the incised valleys with fluvially dominated estuarine deposits, and then a maximum highstand (+1 m msl) about 5 ka that flooded the former subaerial coastal plain between the incised valleys and constructed the highest beach ridges. Between 3.5 and 1.5 ka, sea level oscillated and gradually fell, causing a forced regression and rapid progradation of both the chenier plain and accretionary barrier islands. The only significant sands in the valley fill are (1) falling-stage and lowstand-fluvial sediments between the basal sequence boundary and transgressive surface unconformity, and (2) highstand beach-ridge sediments of the chenier plain.
Flood of May 26-27, 1984 in Tulsa, Oklahoma
Bergman, DeRoy L.; Tortorelli, Robert L.
1988-01-01
The greatest flood disaster in the history of Tulsa, Oklahoma occurred during 8 hours from 2030 hours May 26 to 0430 hours May 27, 1984, as a result of intense rainfall centered over the metropolitan area. Storms of the magnitude that caused this flood are not uncommon to the southern great plains. Such storms are seldom documented in large urban areas. Total rainfall depth and rainfall distribution in the Tulsa metropolitan area during the May 26-27 storm were recorded by 16 recording rain gages. This report presents location of recording rain gages with corresponding rainfall histograms and mass curves, lines of equal rainfall depth (map A), and flood magnitudes and inundated areas of selected streams within the city (map B). The limits of the study areas (fig. 1) are the corporate boundaries of Tulsa, an area of about 185 square miles. Streams draining the city are: Dirty Butter, Coal, and Mingo Creeks which drain northward into Bird Creek along the northern boundary of the city; and Cherry, Crow, Harlow, Joe Haikey, Fry, Vensel, Fred, and Mooser Creeks which flow into the Arkansas River along the southern part of the city. Flooding along Haikey, Fry, Fred, Vensel, and Mooser Creeks was not documented for this report. The Arkansas River is regulated by Keystone Dam upstream from Tulsa (fig. 1). The Arkansas River remained below flood stage during the storm. Flooded areas in Tulsa (map B) were delineated on the topographic maps using flood profiles based on surveys of high-water marks identified immediately after the flood. The flood boundaries show the limits of stream flooding. Additional areas flooded because of overfilled storm drains or by sheet runoff are not shown in this report. Data presented in this report, including rainfall duration and frequency, and flood discharges and elevations, provide city officials and consultants a technical basis for making flood-plain management decisions.
Time and tide: examining the potential for sediment delivery to a heavily modified tidal delta plain
NASA Astrophysics Data System (ADS)
Hale, R. P.; Goodbred, S. L., Jr.; Bain, R. L.; Wilson, C.
2016-02-01
In SW Bangladesh, man-made barriers ("polders") built since the 1960s to protect agricultural resources from seasonal flooding have drastically altered delta-plain dynamics. With the link between tidal channels and the delta plain destroyed and no pathway for the delivery of new sediment, compaction, tectonic subsidence, and global sea-level rise have resulted in a scenario where much of the land surface behind the barriers sits 1.5 m below mean sea level. In the adjacent the Sundarbans National Forest (SNF), the lack of polders has allowed for sediment deposition during spring high tides, and sedimentation rates on the delta plain have kept pace with local sea level rise. Recent research has demonstrated the potential for rapid sedimentation in the inhabited areas following polder damage or destruction (Auerbach et al., 2015). These authors observed 40 cm/yr accumulation rates inside the poldered area following bank failures associated with a typhoon, and no obvious seasonality associated with the deposits. Preliminary research from within SNF, however, suggests that the accumulation rates are slightly faster during then monsoon (1.0-2.0 cm/yr) than the dry season (0.2-1.4 cm/yr). In this study, we address seasonal differences through a comparison of tidal elevations and suspended sediment concentrations (SSC) across tidal ranges and seasons, in both the SNF, and the tidal channels adjacent to the poldered region (PR). Water velocity appears to be the primary control on SSC, and there is no obvious seasonal variability in maximum observed SSC (PR: 0.1-0.8 g/l; SNF: 0.01-0.35 g/l). Peak tidal elevations remain unchanged across seasons, however the time of delta plain inundation time increases during the monsoon, which might control seasonal accumulation rates. Understanding more about this seasonal variability will be critical for future engineering and policy decisions surrounding how to best mitigate and manage land loss in the PR going forward.
Yang, Fan; Wang, Yong; Chan, Zhulong
2014-01-01
The establishment of riparian protection forests in the Three Gorges Reservoir (TGR) is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ). Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides) and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora) might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress and recover well, and be used as candidate for the construction of riparian protection forests in the TGR WLFZ. PMID:25265326
Yang, Fan; Wang, Yong; Chan, Zhulong
2014-01-01
The establishment of riparian protection forests in the Three Gorges Reservoir (TGR) is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ). Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides) and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora) might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress and recover well, and be used as candidate for the construction of riparian protection forests in the TGR WLFZ.
Physical and Economic Feasibility of Nonstructural Flood Plain Management Measures,
1978-03-01
5. U.S. Army Engineers, "Flood Proofing: Example of Raising a Private Residence", South Atlantic Division, Technical Services Report, March 1977. 6...Army Engineers, "Flood Proofing: Example of Raising a Private Residence", South Atlantic Division, Technical Services Report, March 1977. 25 . .. .. .i 0...10,000 (except below) Alaska, Hawaii, Guam, and 50,000 10,000 Virgin Islands Other Residential (except single-family) All states and jurisdictions
Kreiling, Rebecca; DeJager, Nathan R.; Whitney Swanson,; Eric A. Strauss,; Meredith Thomsen,
2015-01-01
We examined effects of flooding on supply rates of 14 nutrients in floodplain areas invaded by Phalaris arundinacea (reed canarygrass), areas restored to young successional forests (browsed by white-tailed deer and unbrowsed), and remnant mature forests in the Upper Mississippi River floodplain. Plant Root Simulator ion-exchange probes were deployed for four separate 28-day periods. The first deployment occurred during flooded conditions, while the three subsequent deployments were conducted during progressively drier periods. Time after flooding corresponded with increases in NO3 −-N, K+ and Zn+2, decreases in H2PO4 −-P, Fe+3, Mn+2, and B(OH)4-B, a decrease followed by an increase in NH4 +-N, Ca+2, Mg+2 and Al+3, and an increase followed by a decrease for SO4 −2-S. Plant community type had weak to no effects on nutrient supply rates compared to the stronger effects of flooding duration. Our results suggest that seasonal dynamics in floodplain nutrient availability are similarly driven by flood pulses in different community types. However, reed canarygrass invasion has potential to increase availability of some nutrients, while restoration of forest cover may promote recovery of nutrient availability to that observed in reference mature forests.
Arthur M. Phillips; Debra J. Kennedy; Barbara G. Phillips; Diedre Weage
2001-01-01
Surveys for Paradine plains cactus (Pediocactus paradinei B. W. Benson) conducted for the Kaibab National Forest, North Kaibab Ranger District in 1992-94 qualitatively showed a fairly substantial population of scattered individuals in the pinyon-juniper woodland, and indicated that there might be a correlation between plant distribution and dripline of trees. This...
Forest statistics for the Northern coastal plain of South Carolina, 1992
Michael T. Thompson; Raymond M. Sheffield
1993-01-01
Since 1988, area of timberland in the Northern Coastal Plain of South Carolina increased by 3 percent to 4.7 million acres. Nonindustrial private forest landowners control 67 percent of the region's timberland. Area classified as a pine type remained stable at 1.9 million acres. More than 116,000 acres were harvested annually, while 177,000 acres were regenerated...
Forest statistics for the Southern Coastal Plain of North Carolina, 1990
Tony G. Johnson
1990-01-01
This report highlights the principal findings of the sixth forest survey of the Southern Coastal Plain of North Carolina. Field work began in April 1989 and was completed in September 1989. Five previous surveys, completed in 1937, 1952, 1962, 1973, and 1983, provide statistics for measuring changes and trends over the past 53 years. The primary emphasis in this report...
Forest statistics for the Northern Coastal Plain of North Carolina, 1984
Edgar L. Davenport
1984-01-01
This report highlights the principal findings of the fifth forest inventory in the Northern Coastal Plain of North Carolina. Fieldwork began in June 1983 and was completed in December 1983. Four previous surveys, completed in 1937, 1955, 1963, and 1974, provide statistics for measuring changes and trends over the past 46 years. The primary emphasis in this report is on...
Forest statistics for the Southern Coastal Plain of North Carolina, 1983
John B. Tansey
1984-01-01
This report highlights the principal findings of the fifth forest survey in the southern Coastal Plain of North Carolina. Fieldwork began in November 1982 and was completed in June 1983. Four previous surveys, completed in 1938, 1952, 1962, and 1973, provide statistics for measuring changes and trends over the past 46 years. The primary emphasis in this report is on...
Forest statistics for the Southern Coastal Plain of South Carolina 1978
Raymond M. Sheffield; Joanne Hutchison
1978-01-01
This report highlights the principal findings of the fifth forest inventory of the Southern Coastal Plain of South Carolina. Fieldwork began in April 1978 and was completed in August 1978. Four previous inventories, completed in 1934, 1947, 1958, and 1968, provide statistics for measuring changes and trends over the past 44 years. The primary emphasis in this report is...
Presettlement fire regime and vegetation mapping in Southeastern Coastal Plain forest ecosystems
Andrew D. Bailey; Robert Mickler; Cecil Frost
2007-01-01
Fire-adapted forest ecosystems make up 95 percent of the historic Coastal Plain vegetation types in the Southeastern United States. Fire suppression over the last century has altered the species composition of these ecosystems, increased fuel loads, and increased wildfire risk. Prescribed fire is one management tool used to reduce fuel loading and restore fire-adapted...
Forest statistics for the Southern Coastal Plain of South Carolina
Benjamin L. Koontz; Raymond M. Sheffield
1993-01-01
Since 1987, area of timberland in the Southern Coastal Plain of South Carolina increased by 3 percent to 3.3 million acres. Nonindustrial private forest landowners control nearly three-fourths of the region's timberland. The area classified as pine increased by 14 percent, while hardwood acreage dropped by 12 percent. The area harvested annually fell to 87.000...
Forest statistics for the Southern Coastal Plain of South Carolina, 1987
John B. Tansey
1987-01-01
This report highlights the principal findings of the sixth forest survey in the Southern Coastal plain of South Carolina. Fieldwork began in June 1986 and was completed in September 1986. Five previous surveys, completed in 1934, 1947, 1958, 1968, and 1978, provide statistics for measuring changes and trends over the past 53 years. The primary emphasis in this report...
Forest statistics for the Coastal Plain of Virginia, 1991
Michael T. Thompson
1991-01-01
This report highlights the principal findings of the sixth forest survey of the Coastal Plain of Virginia. Field work began in October 1990 and was completed in March 1991. Five previous surveys, completed in 1940, 1956, 1966, 1976, and 1985, provide statistics for measuring changes and trends over the past 51 years. The primary emphasis in this report is on the...
Forest statistics for the Coastal Plain of Virginia, 1985
Mark J. Brown; Gerald C. Craver
1985-01-01
This report highlights the principal findings of the fifth forest survey in the Coastal Plain of Virginia. Fieldwork began in September 1984 and was completed in February 1985. Four previous surveys, completed in 1940, 1956, 1966, and 1976, provide statistics for measuring changes and trends over the past 45 years. The primary emphasis in this report is on the changes...
Avian nest box selection and nest success in burned and unburned southwestern riparian forests
D. Max Smith; Jeffrey F. Kelly; Deborah M. Finch
2007-01-01
Riparian forest communities in the southwestern United States were historically structured by a disturbance regime of annual flooding. In recent decades, however, frequency of flooding has decreased and frequency of wildfires has increased. Riparian forests provide important breeding habitat for a large variety of bird species, and the effects of this altered...
Improvement and extension of a radar forest backscattering model
NASA Technical Reports Server (NTRS)
Simonett, David S.; Wang, Yong
1989-01-01
Radar modeling of mangal forest stands, in the Sundarbans area of Southern Bangladesh, was developed. The modeling employs radar system parameters such as wavelength, polarization, and incidence angle, with forest data on tree height, spacing, biomass, species combinations, and water content (including slightly conductive water) both in leaves and trunks of the mangal. For Sundri and Gewa tropical mangal forests, five model components are proposed, which are required to explain the contributions of various forest species combinations in the attenuation and scattering of mangal vegetated nonflooded or flooded surfaces. Statistical data of simulated images (HH components only) were compared with those of SIR-B images both to refine the modeling procedures and to appropriately characterize the model output. The possibility of delineation of flooded or non-flooded boundaries is discussed.
Soils in seasonally flooded forests as methane sources: A case study of West Siberian South taiga
NASA Astrophysics Data System (ADS)
Mochenov, S. Yu; Churkina, A. I.; Sabrekov, S. F.; Glagolev, M. V.; Il’yasov, D. V.; Terentieva, I. E.; Maksyutov, S. S.
2018-03-01
In this study, we measured the methane and carbon dioxide fluxes by static chamber method from the soil of periodically flooded forests under different water table levels (WTL) in West Siberian south taiga (Tomsk oblast, Russia) in summer seasons of 2016 and 2017 years. The study shows that seasonally flooded forests may become a methane source when the WTL increases up to 15-45 cm below the surface. The fluxes of methane from soil were from -0.08±0.07 to 9.3±0.8 mg·m-2·h-1, from 0.05±0. 04 to 0.14±0.13 mg·m-2·h-1, from - 0.03±0.02 to 5.4±0.2 mg·m-2·h-1 depending on variou s WTL in different seasonally flooded forests in 2017.
Flooding and forest succession in a modified stretch along the Upper Mississippi River
Yin, Yao
1998-01-01
This research examines the effect of a rare flood on floodplain forest regeneration in a 102-km stretch of the Mississippi River beginning 21 km above the mouth of the Ohio River. The river has been restricted by levees and navigation structures and subjected to sediment dredging to maintain a stable navigation channel. Because the bank erosion–accretion process has been slowed or eliminated, cottonwood (Populus spp.) and willow (Salix spp.) communities regenerate poorly in the modified river environment. An unusually large flood in 1993 destroyed the entire ground vegetation layer, killing 77.2% of the saplings and 32.2% of the trees. The flood created an alternative mechanism for cottonwood and willow to regenerate under canopy openings, enabling the community type composition of the present-day forest to be sustained for the next 50 years. Over time, however, the forest will likely exhibit considerable compositional fluctuation.
NASA Astrophysics Data System (ADS)
Curran, J. H.; McTeague, M. L.
2010-12-01
Braided rivers are inherently dynamic but quantifying the nature and implications of this dynamism can contribute to more comprehensive understanding of these systems and management of the river corridor. Bank erosion along the glacial, braided Matanuska River in southcentral Alaska has challenged generations of officials and generated a host of proposed solutions such as riprapped banks, dikes, gravel mining, and trenching. Increasingly, assessment of the technical feasibility of these methods has been accompanied by consideration of ecological factors and nonstructural solutions. The Matanuska River is braided over 85 percent of its course and clearwater side channels in abandoned braid plain areas provide as much as 90 percent of the spawning habitat in the basin for chum and sockeye salmon (Oncorhynchus keta and O. nerka). An assessment of braid plain vegetation, bank erosion rates, effects of a large flood, and distribution of clearwater side channels establishes a scientific basis for ecological and geomorphological considerations and recently helped guide development of a management plan for the river corridor. A historical analysis of braid plain features, marginal positions, and vegetation patterns from 1949, 1962, and 2006 orthophotographs showed that the 2006 braid plain was 43 percent vegetated and had an average age of 16 years. Only about 4 percent of the braid plain contained vegetated islands and over 60 percent of these were young and sparsely vegetated, implying that a suite of active channels migrated frequently across the braid plain and that vegetation did not appreciably limit channel movement. Rates of erosion to the braid plain margins averaged 0.3 m/yr from 1949 to 2006 but erosion was localized, with 64 percent of the erosion at only 8 percent of the banks. Cumulative bank change was twice as great along banks consisting of Holocene fluvial deposits (fans and terraces) identified during Geographic Information System (GIS) mapping than on other features. River-long erosion rates were twice as great for 1949-62 than for 1962-2006, despite a flood with a less than 0.002 percent exceedance probability in 1971 and slightly higher average peak flood magnitudes in the latter period. Of the 20 areas with erosion greater than 70 m from 1949-2006, only 9 were eroded in both periods and only one had detectable erosion in the sub-period from 2004 to 2006. This disconnect of erosion with flooding and the variable timing of historical erosion suggests that erosion was sporadic and more related to the presence of the river against the bank and bank erodibility than to more readily monitored variables. Clearwater side channels were frequently reworked in the braid plain but the cumulative length of channels appeared to be stable within the historical time period. This dynamic nature implies that the aquatic ecosystems have evolved within a high disturbance regime.
Estimation of flood-frequency characteristics of small urban streams in North Carolina
Robbins, J.C.; Pope, B.F.
1996-01-01
A statewide study was conducted to develop methods for estimating the magnitude and frequency of floods of small urban streams in North Carolina. This type of information is critical in the design of bridges, culverts and water-control structures, establishment of flood-insurance rates and flood-plain regulation, and for other uses by urban planners and engineers. Concurrent records of rainfall and runoff data collected in small urban basins were used to calibrate rainfall-runoff models. Historic rain- fall records were used with the calibrated models to synthesize a long- term record of annual peak discharges. The synthesized record of annual peak discharges were used in a statistical analysis to determine flood- frequency distributions. These frequency distributions were used with distributions from previous investigations to develop a database for 32 small urban basins in the Blue Ridge-Piedmont, Sand Hills, and Coastal Plain hydrologic areas. The study basins ranged in size from 0.04 to 41.0 square miles. Data describing the size and shape of the basin, level of urban development, and climate and rural flood charac- teristics also were included in the database. Estimation equations were developed by relating flood-frequency char- acteristics to basin characteristics in a generalized least-squares regression analysis. The most significant basin characteristics are drainage area, impervious area, and rural flood discharge. The model error and prediction errors for the estimating equations were less than those for the national flood-frequency equations previously reported. Resulting equations, which have prediction errors generally less than 40 percent, can be used to estimate flood-peak discharges for 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals for small urban basins across the State assuming negligible, sustainable, in- channel detention or basin storage.
24 CFR 886.313 - Other Federal requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) The Flood Disaster Protection Act of 1973; (9) Executive Order 11988, Flood Plains Management; (10) Executive Order 11990, Protection of Wetlands. [44 FR 70365, Dec. 6, 1979, as amended at 57 FR 14760, Apr.... Participation in this program requires: (a) Compliance with (1) title VI of the Civil Rights Act of 1964, title...
24 CFR 886.313 - Other Federal requirements.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) The Flood Disaster Protection Act of 1973; (9) Executive Order 11988, Flood Plains Management; (10) Executive Order 11990, Protection of Wetlands. [44 FR 70365, Dec. 6, 1979, as amended at 57 FR 14760, Apr.... Participation in this program requires: (a) Compliance with (1) title VI of the Civil Rights Act of 1964, title...
24 CFR 886.313 - Other Federal requirements.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) The Flood Disaster Protection Act of 1973; (9) Executive Order 11988, Flood Plains Management; (10) Executive Order 11990, Protection of Wetlands. [44 FR 70365, Dec. 6, 1979, as amended at 57 FR 14760, Apr.... Participation in this program requires: (a) Compliance with (1) title VI of the Civil Rights Act of 1964, title...
24 CFR 886.313 - Other Federal requirements.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) The Flood Disaster Protection Act of 1973; (9) Executive Order 11988, Flood Plains Management; (10) Executive Order 11990, Protection of Wetlands. [44 FR 70365, Dec. 6, 1979, as amended at 57 FR 14760, Apr.... Participation in this program requires: (a) Compliance with (1) title VI of the Civil Rights Act of 1964, title...
24 CFR 886.313 - Other Federal requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) The Flood Disaster Protection Act of 1973; (9) Executive Order 11988, Flood Plains Management; (10) Executive Order 11990, Protection of Wetlands. [44 FR 70365, Dec. 6, 1979, as amended at 57 FR 14760, Apr.... Participation in this program requires: (a) Compliance with (1) title VI of the Civil Rights Act of 1964, title...
13 CFR 109.440 - Requirements imposed under other laws and orders.
Code of Federal Regulations, 2012 CFR
2012-01-01
... laws and orders. 109.440 Section 109.440 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION... Requirements imposed under other laws and orders. Loans made by the ILP Intermediary under this program must comply with all applicable laws, including §§ 120.170 (Flood insurance), 120.172 (Flood-plain and...
13 CFR 109.440 - Requirements imposed under other laws and orders.
Code of Federal Regulations, 2014 CFR
2014-01-01
... laws and orders. 109.440 Section 109.440 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION... Requirements imposed under other laws and orders. Loans made by the ILP Intermediary under this program must comply with all applicable laws, including §§ 120.170 (Flood insurance), 120.172 (Flood-plain and...
13 CFR 109.440 - Requirements imposed under other laws and orders.
Code of Federal Regulations, 2013 CFR
2013-01-01
... laws and orders. 109.440 Section 109.440 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION... Requirements imposed under other laws and orders. Loans made by the ILP Intermediary under this program must comply with all applicable laws, including §§ 120.170 (Flood insurance), 120.172 (Flood-plain and...
44 CFR 60.3 - Flood plain management criteria for flood-prone areas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... improvements, that fully enclosed areas below the lowest floor that are usable solely for parking of vehicles... that they permit the automatic entry and exit of floodwaters. (6) Require that manufactured homes that... building standards. Such enclosed space shall be useable solely for parking of vehicles, building access...
44 CFR 60.3 - Flood plain management criteria for flood-prone areas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... improvements, that fully enclosed areas below the lowest floor that are usable solely for parking of vehicles... that they permit the automatic entry and exit of floodwaters. (6) Require that manufactured homes that... building standards. Such enclosed space shall be useable solely for parking of vehicles, building access...
Water-quality assessment of the lower Illinois River Basin; environmental setting
Warner, Kelly L.
1998-01-01
The lower Illinois River Basin (LIRB) encompasses 18,000 square miles of central and western Illinois. Historical and recent information from Federal, State, and local agencies describing the physiography, population, land use, soils, climate, geology, streamflow, habitat, ground water, water use, and aquatic biology is summarized to describe the environmental setting of the LIRB. The LIRB is in the Till Plains Section of the Central Lowland physiographic province. The basin is characterized by flat topography, which is dissected by the Illinois River. The drainage pattern of the LIRB has been shaped by many bedrock and glacial geologic processes. Erosion prior to and during Pleistocene time created wide and deep bedrock valleys. The thickest deposits and most major aquifers are in buried bedrock valleys. The Wisconsinan glaciation, which bisects the northern half of the LIRB, affects the distribution and characteristics of glacial deposits in the basin. Agriculture is the largest land use and forested land is the second largest land use in the LIRB. The major urban areas are near Peoria, Springfield, Decatur, and Bloomington-Normal. Soil type and distribution affect the amount of soil erosion, which results in sedimentation of lakes and reservoirs in the basin. Rates of soil erosion of up to 2 percent per year of farmland soil have been measured. Many of the 300 reservoirs, lakes, and wetlands are disappearing because of sedimentation resulting from agriculture activities, levee building, and urbanization. Sedimentation and the destruction of habitat appreciably affect the ecosystem. The Illinois River is a large river-floodplain ecosystem where biological productivity is enhanced by annual flood pulses that advance and retreat over the flood plain and temporarily expand backwater and flood-plain lakes. Ground-water discharge to streams affects the flow and water quality of the streams. The water budget of several subbasins show variability in ground-water contribution from runoff and storage. More than half of the drinking water, including domestic and public-supply use, in the LIRB is from ground water. Fifty-two percent of the public-supply water is from surface water. Ground-water withdrawals mostly are from glacial sand and gravel aquifers. Structural features, such as monoclines, synclines, and anticlines, in the buried bedrock affect the water quality of the aquifers. There are five natural environmental divisions in the LIRB. The Grand Prairie covers most of the northeastern half of the basin, and the Western Forest-Prairie covers most of the southwestern half. Implications of environmental setting for water quality in the LIRB are related primarily to land use. The balanced fish community indicates that the lower Illinois River is affected less from urban and industrial waste than the upper Illinois River. A decrease in dissolved oxygen concentrations and turbidity in the lower reaches of the basin in 1993 have resulted from the recent influx of European zebra mussels to the LIRB. Many factors affect water quality in the LIRB. Bedrock and surface topography, type of glacial material, and land use most directly affect water quality in the basin.
Producing high-quality slash pine seeds
James Barnett; Sue Varela
2003-01-01
Slash pine is a desirable species. It serves many purposes and is well adapted to poorly drained flatwoods and seasonally flooded areas along the lower Coastal Plain of the Southeastern US. The use of high-quality seeds has been shown to produce uniform seedlings for outplanting, which is key to silvicultural success along the Coastal Plain and elsewhere. We present...
Feaster, Toby D.; Gotvald, Anthony J.; Weaver, J. Curtis
2014-01-01
Reliable estimates of the magnitude and frequency of floods are essential for the design of transportation and water-conveyance structures, flood-insurance studies, and flood-plain management. Such estimates are particularly important in densely populated urban areas. In order to increase the number of streamflow-gaging stations (streamgages) available for analysis, expand the geographical coverage that would allow for application of regional regression equations across State boundaries, and build on a previous flood-frequency investigation of rural U.S Geological Survey streamgages in the Southeast United States, a multistate approach was used to update methods for determining the magnitude and frequency of floods in urban and small, rural streams that are not substantially affected by regulation or tidal fluctuations in Georgia, South Carolina, and North Carolina. The at-site flood-frequency analysis of annual peak-flow data for urban and small, rural streams (through September 30, 2011) included 116 urban streamgages and 32 small, rural streamgages, defined in this report as basins draining less than 1 square mile. The regional regression analysis included annual peak-flow data from an additional 338 rural streamgages previously included in U.S. Geological Survey flood-frequency reports and 2 additional rural streamgages in North Carolina that were not included in the previous Southeast rural flood-frequency investigation for a total of 488 streamgages included in the urban and small, rural regression analysis. The at-site flood-frequency analyses for the urban and small, rural streamgages included the expected moments algorithm, which is a modification of the Bulletin 17B log-Pearson type III method for fitting the statistical distribution to the logarithms of the annual peak flows. Where applicable, the flood-frequency analysis also included low-outlier and historic information. Additionally, the application of a generalized Grubbs-Becks test allowed for the detection of multiple potentially influential low outliers. Streamgage basin characteristics were determined using geographical information system techniques. Initial ordinary least squares regression simulations reduced the number of basin characteristics on the basis of such factors as statistical significance, coefficient of determination, Mallow’s Cp statistic, and ease of measurement of the explanatory variable. Application of generalized least squares regression techniques produced final predictive (regression) equations for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probability flows for urban and small, rural ungaged basins for three hydrologic regions (HR1, Piedmont–Ridge and Valley; HR3, Sand Hills; and HR4, Coastal Plain), which previously had been defined from exploratory regression analysis in the Southeast rural flood-frequency investigation. Because of the limited availability of urban streamgages in the Coastal Plain of Georgia, South Carolina, and North Carolina, additional urban streamgages in Florida and New Jersey were used in the regression analysis for this region. Including the urban streamgages in New Jersey allowed for the expansion of the applicability of the predictive equations in the Coastal Plain from 3.5 to 53.5 square miles. Average standard error of prediction for the predictive equations, which is a measure of the average accuracy of the regression equations when predicting flood estimates for ungaged sites, range from 25.0 percent for the 10-percent annual exceedance probability regression equation for the Piedmont–Ridge and Valley region to 73.3 percent for the 0.2-percent annual exceedance probability regression equation for the Sand Hills region.
1999-09-23
This is an image of equatorial Africa, centered on the equator at longitude 15degrees east. This image is a mosaic of almost 4,000 separate images obtained in 1996 by the L-band imaging radar onboard the Japanese Earth Resources Satellite. Using radar to penetrate the persistent clouds prevalent in tropical forests, the Japanese Earth Resources Satellite was able for the first time to image at high resolution this continental scale region during single flooding seasons. The area shown covers about 7.4 million square kilometers (2.8 million square miles) of land surface, spans more than 5,000 kilometers(3,100 miles) east and west and some 2,000 kilometers (1,240 miles) north and south. North is up in this image. At the full resolution of the mosaic (100 meters or 330 feet), this image is more than 500 megabytes in size, and was processed from imagery totaling more than 60 gigabytes. Central Africa was imaged twice in 1996, once between January and March, which is the major low-flood season in the Congo Basin, and once between October and November, which is the major high-flood season in the Congo Basin. The red color corresponds to the data from the low-flood season, the green to the high-flood season, and the blue to the "texture" of the low-flood data. The forests appear green as a result, the flooded and palm forests, as well as urban areas, appear yellow, the ocean and lakes appear black, and savanna areas appear blue, black or green, depending on the savanna type, surface topography and other factors. The areas of the image that are black and white were mapped only between January and March 1996. In these areas, the black areas are savanna or open water, the gray are forests, and the white areas are flooded forests or urban areas. The Congo River dominates the middle of the image, where the nearby forests that are periodically flooded by the Congo and its tributaries stand out as yellow. The Nile River flows north from Lake Victoria in the middle right of the color portion of the mosaic. http://photojournal.jpl.nasa.gov/catalog/PIA01348
SCARANO, FABIO R.
2002-01-01
The Brazilian Atlantic rainforest consists of a typical tropical rainforest on mountain slopes, and stands out as a biodiversity hotspot for its high species richness and high level of species endemism. This forest is bordered by plant communities with lower species diversity, due mostly to more extreme environmental conditions than those found in the mesic rainforest. Between the mountain slopes and the sea, the coastal plains have swamp forests, dry semi‐deciduous forests and open thicket vegetation on marine sand deposits. At the other extreme, on top of the mountains (>2000 m a.s.l.), the rainforest is substituted by high altitude fields and open thicket vegetation on rocky outcrops. Thus, the plant communities that are marginal to the rainforest are subjected either to flooding, drought, oceanicity or cold winter temperatures. It was found that positive interactions among plants play an important role in the structuring and functioning of a swamp forest, a coastal sandy vegetation and a cold, high altitude vegetation in the state of Rio de Janeiro. Moreover, only a few species seem to adopt this positive role and, therefore, the functioning of these entire systems may rely on them. Curiously, these nurse plants are often epiphytes in the rainforest, and at the study sites are typically terrestrial. Many exhibit crassulacean acid metabolism. Conservation initiatives must treat the Atlantic coastal vegetation as a complex rather than a rainforest alone. PMID:12324276
Flood of May 5 and 6, 1981, Mobile, Alabama
Ming, C.O.; Nelson, G.H.
1981-01-01
Heavy and intense rainfall in the late evening and early morning hours, May 5 and 6, 1981, caused widespread flooding along streams and low-lying areas in the port city of Mobile, Ala. More than 12 inches of rain fell between 6 p.m. May 5, and 3 a.m. May 6. Damage caused by flooding was estimated by the Mobile Department of Public Works to be millions of dollars. Maximum water surface elevations on streams in the area were 2 to 3 feet higher than those that occurred during a similar flood in April 1980. The approximate extent of flooding delineated on maps using flood profiles obtained by field surveys will provide a basis for formulating effective flood plain zoning that could minimize existing and future flood problems. (USGS)
Rising floodwaters: mapping impacts and perceptions of flooding in Indonesian Borneo
NASA Astrophysics Data System (ADS)
Wells, Jessie A.; Wilson, Kerrie A.; Abram, Nicola K.; Nunn, Malcolm; Gaveau, David L. A.; Runting, Rebecca K.; Tarniati, Nina; Mengersen, Kerrie L.; Meijaard, Erik
2016-06-01
The roles of forest and wetland ecosystems in regulating flooding have drawn increasing attention in the contexts of climate change adaptation and disaster risk reduction. However, data on floods are scarce in many of the countries where people are most exposed and vulnerable to their impacts. Here, our separate analyses of village interview surveys (364 villages) and news archives (16 sources) show that floods have major impacts on lives and livelihoods in Indonesian Borneo, and flooding risks are associated with features of the local climate and landscape, particularly land uses that have seen rapid expansions over the past 30 years. In contrast with government assessments, we find that flooding is far more widespread, and that frequent, local, events can have large cumulative impacts. Over three years, local news agencies reported floods that affected 868 settlements, 966 times (including 89 in urban areas), inundated at least 197 000 houses, and displaced more than 776 000 people, possibly as many as 1.5 million (i.e. 5%-10% of the total population). Spatial analyses based on surveys in 364 villages show that flood frequency is associated with land use in catchment areas, including forest cover and condition, and the area of wetlands, mines (open-cut coal or gold mines), and oil palm. The probability that floods have become more frequent over the past 30 years was higher for villages closer to mines, and in watersheds with more extensive oil palm, but lower in watersheds with greater cover of selectively-logged or intact forests. We demonstrate that in data-poor regions, multiple sources of information can be integrated to gain insights into the hydrological services provided by forest and wetland ecosystems, and motivate more comprehensive assessment of flooding risks and options for ecosystem-based adaptation.
Habitat-specific foraging of prothonotary warblers: Deducing habitat quality
Lyons, J.E.
2005-01-01
Foraging behavior often reflects food availability in predictable ways. For example, in habitats where food availability is high, predators should attack prey more often and move more slowly than in habitats where food availability is low. To assess relative food availability and habitat quality, I studied the foraging behavior of breeding Prothonotary Warblers (Protonotaria citrea) in two forest habitat types, cypress-gum swamp forest and coastal-plain levee forest. I quantified foraging behavior with focal animal sampling and continuous recording during foraging bouts. I measured two aspects of foraging behavior: 1) prey attack rate (attacks per minute), using four attack maneuvers (glean, sally, hover, strike), and 2) foraging speed (movements per minute), using three types of movement (hop, short flight [???1 m], long flight [>1 m]). Warblers attacked prey more often in cypress-gum swamp forest than in coastal-plain levee forest. Foraging speed, however, was not different between habitats. I also measured foraging effort (% time spent foraging) and relative frequency of attack maneuvers employed in each habitat; neither of these variables was influenced by forest type. I conclude that Prothonotary Warblers encounter more prey when foraging in cypress-gum swamps than in coastal-plain levee forest, and that greater food availability results in higher density and greater reproductive success for birds breeding in cypress-gum swamp.
Effects of historical land-cover changes on flooding and sedimentation, North Fish Creek, Wisconsin
Fitzpatrick, Faith A.; Knox, James C.; Whitman, Heather E.
1999-01-01
Results from hydrologic and sediment-transport modeling indicate that modern flood peaks and sediment loads in North Fish Creek may be double that expected under pre-settlement forest cover. During maximum agricultural activity in the mid-1920's to mid-1930's, flood peaks probably were about 3 times larger and sediment loads were about 5 times larger than expected under pre-settlement forest cover. These results indicate that future changes from pasture or cropland to forest will help reduce flood peaks, thereby reducing erosion and sedimentation. The addition of detention basins (to decrease flood peaks) on tributaries to North Fish Creek, or bank and instream restoration (to decrease erosion) in the upper main stem, also may help reduce the contribution of sediment from the upper main stem to the transitional section and lower main stem of the creek.
M.A. Eisenbies; W.M. Aust; J.A. Burger; M.B. Adams
2007-01-01
The connection between forests and water resources is well established, but the relationships among controlling factors are only partly understood. Concern over the effects of forestry operations, particularly harvesting, on extreme flooding events is a recurrent issue in forest and watershed management. Due to the complexity of the system, and the cost of installing...
Extreme flood sensitivity to snow and forest harvest, western Cascades, Oregon, United States
Julia A. Jones; Reed M. Perkins
2010-01-01
We examined the effects of snow, event size, basin size, and forest harvest on floods using >1000 peak discharge events from 1953 to 2006 from three small 2), paired-watershed forest-harvest experiments and six large (60-600 km2) basins spanning the transient (400-800 m) and seasonal (>800 m) snow zones in the...
NASA Astrophysics Data System (ADS)
Wahl, N. A.; Wöllecke, B.; Bens, O.; Hüttl, R. F.
Former floodplains in many European countries increasingly suffer from serious floods due to intensified human activity. These floods have caused safety and ecological problems as well as they have resulted in economic losses in agricultural used watersheds. In this context, the influence of the management practice of forest transformation in forested areas on soil hydraulic properties is presented and discussed as a means of preventing such disasters at a reasonable cost and during a foreseeable period. Investigations were carried out in northeastern Germany on forest stands differing in tree populations and stand structure. It was found that infiltration capacity and hydraulic conductivity K exhibit overall low values nevertheless the tree species. This finding appears to be related to water repellency, the predominating texture, and a poor macroporosity. During the different stages of forest transformation, the type and amount of soil organic matter and humus in the litter layer change, leading to a decrease of the water capacity of the litter layer and the uppermost part of the mineral soil. Furthermore, these changes affect soil properties connected with water repellency. It is concluded that for the approximate duration of one century the practice of forest transformation does not contribute to flood prevention through enhanced infiltration capacity or water retention.
Rydlund, Jr., Paul H.; Otero-Benitez, William; Heimann, David C.
2008-01-01
A study was done by the U.S. Geological Survey, in cooperation with the city of Grain Valley, Jackson County, Missouri, to simulate the hydraulic characteristics of Sni-A-Bar Creek and selected tributaries within the corporate limits. The 10-, 50-, 100-, and 500-year recurrence interval streamflows were simulated to determine potential backwater effects on the Sni-A-Bar Creek main stem and to delineate flood-plain boundaries on the tributaries. The water-surface profiles through the bridge structures within the model area indicated that backwater effects from the constrictions were not substantial. The water-surface profile of Sni-A-Bar Creek generated from the one- and two-dimensional models indicated that the Gateway Western Railroad structure provided the greatest amount of contraction of flow within the modeled area. The results at the location of the upstream face of the railroad structure indicated a change in water-surface elevation from 0.2 to 0.8 foot (corresponding to simulated 10-year and 500-year flood occurrences). Results from all analyses indicated minimal backwater effects as a result of an overall minimal energy grade line slope and velocity head along Sni-A-Bar Creek. The flood plains for the 100-year recurrence interval floods on the Sni-A-Bar tributaries were mapped to show the extent of inundated areas. The updated flooding characteristics will allow city managers to contrast changes in flood risk and zoning as determined through the National Flood Insurance Program.
Changes in soil fertility following prescribed burning on Coastal Plain pine sites
William H. McKee
1982-01-01
Soil and forest floor samples were collected from four prescribed burning studies in the Atlantic and Gulf Coastal Plains. The surface textures of soils ranged from sands to silt loams and the drainage classes from well to poorly drained. Burning treatments had been in force from 8 to 65 years. Reduction of the forest floor and its chemical constituents was related to...
Guofang Miao; Asko Noormets; Jean-Christophe Domec; Carl C. Trettin; Steve G. McNulty; Ge Sun; John S. King
2013-01-01
Anthropogenic and environmental pressures on wetland hydrology may trigger changes in carbon (C) cycling, potentially exposing vast amounts of soil C to rapid decomposition. We measured soil CO2 efflux (Rs) continuously from 2009 to 2010 in a lower coastal plain forested wetland in North Carolina, U.S., to characterize its...
W. Cao; Ge Sun; Steve G. McNulty; J. Chen; A. Noormets; R. W. Skaggs; Devendra M. Amatya
2006-01-01
Evapotranspiration (ET) is the primary component of the forest hydrologic cycle, which includes plant transpiration, canopy rainfall interception, and soil evaporation. Quantifying ET processes and potential biophysical regulations is needed for assessing forest water management options. Loblolly pines are widely planted in the coastal plain of the Southeastern US, but...
David J. Nowak; Robert E. III Hoehn; Daniel E. Crane; Allison R. Bodine
2012-01-01
This report details the evaluation of the urban tree resources of the north-central Great Plains region of the United States. Specifically this report provides a more comprehensive understanding of the species composition and structural and functional benefits of the urban forests in the states of Kansas (33.1 million urban trees), Nebraska (13.3 million urban trees),...
Forest statistics for the Northern Coastal Plain of South Carolina, 1986
John B. Tansey
1987-01-01
This report highlights the principal findings of the sixth forest survey in the Northern Coastal Plain of South Carolina. Fieldwork began in April 1986 and was completed in July 1986. Five previous surveys, completed in 1936, 1947, 1958, 1968, and 1978, provide statistics for measuring changes and trends over the past 50 years. The primary emphasis in this report is on...
Handbook for Federal Insurance Administration: Flood-insurance studies
Kennedy, E.J.
1973-01-01
A flood insurance study, made for the Federal Insurance Administration (FIA) of the Department of Housing and Urban Development (HUD) is an analysis of flood inundation frequency for all flood plains within the corporate limits of the community being studied. The study is an application of surveying, hydrology, and hydraulics to determine flood insurance premium rates. Much of the surveying needed can be done by private firms, either by ground methods or photogrammetry. Contracts are needed to let large surveys but purchase orders can be used for small ones. Photogrammetric stereo models, digital regression models, and step-backwater models are needed for most studies. Damage survey data are not involved.
How can we deal with ANN in flood forecasting? As a simulation model or updating kernel!
NASA Astrophysics Data System (ADS)
Hassan Saddagh, Mohammad; Javad Abedini, Mohammad
2010-05-01
Flood forecasting and early warning, as a non-structural measure for flood control, is often considered to be the most effective and suitable alternative to mitigate the damage and human loss caused by flood. Forecast results which are output of hydrologic, hydraulic and/or black box models should secure accuracy of flood values and timing, especially for long lead time. The application of the artificial neural network (ANN) in flood forecasting has received extensive attentions in recent years due to its capability to capture the dynamics inherent in complex processes including flood. However, results obtained from executing plain ANN as simulation model demonstrate dramatic reduction in performance indices as lead time increases. This paper is intended to monitor the performance indices as it relates to flood forecasting and early warning using two different methodologies. While the first method employs a multilayer neural network trained using back-propagation scheme to forecast output hydrograph of a hypothetical river for various forecast lead time up to 6.0 hr, the second method uses 1D hydrodynamic MIKE11 model as forecasting model and multilayer neural network as updating kernel to monitor and assess the performance indices compared to ANN alone in light of increase in lead time. Results presented in both graphical and tabular format indicate superiority of MIKE11 coupled with ANN as updating kernel compared to ANN as simulation model alone. While plain ANN produces more accurate results for short lead time, the errors increase expeditiously for longer lead time. The second methodology provides more accurate and reliable results for longer forecast lead time.
The Effects of Intermittent Flooding on Seedlings of Three Forest Species
P.H. Anderson; S.R. Pezeshki
1999-01-01
Under greenhouse conditions, seedlings of three forest species, baldcypress (Taxodium distichum), nuttall oak (Quercus nuttallii), and swamp chestnut oak (Quercus michauxii) were subjected to an intermittent flooding and subsequent physiological and growth responses to such conditions were evaluated....
NASA Technical Reports Server (NTRS)
1999-01-01
This is an image of equatorial Africa, centered on the equator at longitude 15degrees east. This image is a mosaic of almost 4,000 separate images obtained in 1996 by the L-band imaging radar onboard the Japanese Earth Resources Satellite. Using radar to penetrate the persistent clouds prevalent in tropical forests, the Japanese Earth Resources Satellite was able for the first time to image at high resolution this continental scale region during single flooding seasons. The area shown covers about 7.4 million square kilometers (2.8 million square miles) of land surface, spans more than 5,000 kilometers(3,100 miles) east and west and some 2,000 kilometers (1,240 miles) north and south. North is up in this image. At the full resolution of the mosaic (100 meters or 330 feet), this image is more than 500 megabytes in size, and was processed from imagery totaling more than 60 gigabytes.
Central Africa was imaged twice in 1996, once between January and March, which is the major low-flood season in the Congo Basin, and once between October and November, which is the major high-flood season in the Congo Basin. The red color corresponds to the data from the low-flood season, the green to the high-flood season, and the blue to the 'texture' of the low-flood data. The forests appear green as a result, the flooded and palm forests, as well as urban areas, appear yellow, the ocean and lakes appear black, and savanna areas appear blue, black or green, depending on the savanna type, surface topography and other factors. The areas of the image that are black and white were mapped only between January and March 1996. In these areas, the black areas are savanna or open water, the gray are forests, and the white areas are flooded forests or urban areas. The Congo River dominates the middle of the image, where the nearby forests that are periodically flooded by the Congo and its tributaries stand out as yellow. The Nile River flows north from Lake Victoria in the middle right of the color portion of the mosaic.This image is one of the products resulting from the Global Rain Forest Mapping project, a joint project between the National Space Development Agency of Japan, the Space Applications Institute of the Joint Research Centre of the European Commission, NASA's Jet Propulsion Laboratory and an international team of scientists. The goal of the Global Rain Forest Mapping mission is to map with the Japanese Earth Resources Satellite the world's tropical rain forests. The Japanese satellite was launched in 1992 by the National Space Development Agency of Japan and the Japanese Ministry of International Trade and Industry, with support from the Remote Sensing Technology Center of Japan.Barlow, Roger A.; Nardi, Mark R.; Reyes, Betzaida
2008-01-01
Sussex County, Delaware, occupies a 938-square-mile area of low relief near sea level in the Atlantic Coastal Plain. The county is bounded on the east by the Delaware Bay and the Atlantic Ocean, including a barrier-island system, and inland bays that provide habitat for valuable living resources. Eastern Sussex County is an area of rapid population growth with a long-established beach-resort community, where land elevation is a key factor in determining areas that are appropriate for development. Of concern to State and local planners are evacuation routes inland to escape flooding from severe coastal storms, as most major transportation routes traverse areas of low elevation that are subject to inundation. The western half of the county is typically rural in character, and land use is largely agricultural with some scattered forest land cover. Western Sussex County has several low-relief river flood-prone areas, where accurate high-resolution elevation data are needed for Federal Emergency Management Agency (FEMA) Digital Flood Insurance Rate Map (DFIRM) studies. This fact sheet describes the methods and techniques used to collect and process LiDAR elevation data, the generation of the digital elevation model (DEM) and the 2-foot contours, and the quality-assurance procedures and results. It indicates where to view metadata on the data sets and where to acquire bare-earth mass points, DEM data, and contour data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Justin, Charles
2009-04-01
Abstract -The majority of studies investigating the importance of coarse woody debris (CWD) to forest- floor vertebrates have taken place in the Pacific Northwest and southern Appalachian Mountains, while comparative studies in the southeastern Coastal Plain are lacking. My study was a continuation of a long-term project investigating the importance of CWD as a habitat component for shrew and herpetofaunal communities within managed pine stands in the southeastern Coastal Plain. Results suggest that addition of CWD can increase abundance of southeastern and southern short-tailed shrews. However, downed wood does not appear to be a critical habitat component for amphibians andmore » reptiles. Rising petroleum costs and advances in wood utilization technology have resulted in an emerging biofuels market with potential to decrease CWD volumes left in forests following timber harvests. Therefore, forest managers must understand the value of CWD as an ecosystem component to maintain economically productive forests while conserving biological diversity.« less
Predicting geomorphically-induced flood risk for the Nepalese Terai communities
NASA Astrophysics Data System (ADS)
Dingle, Elizabeth; Creed, Maggie; Attal, Mikael; Sinclair, Hugh; Mudd, Simon; Borthwick, Alistair; Dugar, Sumit; Brown, Sarah
2017-04-01
Rivers sourced from the Himalaya irrigate the Indo-Gangetic Plain via major river networks that support 10% of the global population. However, many of these rivers are also the source of devastating floods. During the 2014 Karnali River floods in west Nepal, the Karnali rose to around 16 m at Chisapani (where it enters the Indo-Gangetic Plain), 1 m higher than the previous record in 1983; the return interval for this event was estimated to be 1000 years. Flood risk may currently be underestimated in this region, primarily because changes to the channel bed are not included when identifying areas at risk of flooding from events of varying recurrence intervals. Our observations in the field, corroborated by satellite imagery, show that river beds are highly mobile and constantly evolve through each monsoon. Increased bed levels due to sediment aggradation decreases the capacity of the river, increasing significantly the risk of devastating flood events; we refer to these as 'geomorphically-induced floods'. Major, short-lived episodes of sediment accumulation in channels are caused by stochastic variability in sediment flux generated by storms, earthquakes and glacial outburst floods from upstream parts of the catchment. Here, we generate a field-calibrated, geomorphic flood risk model for varying upstream scenarios, and predict changing flood risk for the Karnali River. A numerical model is used to carry out a sensitivity analysis of changes in channel geometry (particularly aggradation or degradation) based on realistic flood scenarios. In these scenarios, water and sediment discharge are varied within a range of plausible values, up to extreme sediment and water fluxes caused by widespread landsliding and/or intense monsoon precipitation based on existing records. The results of this sensitivity analysis will be used to inform flood hazard maps of the Karnali River floodplain and assess the vulnerability of the populations in the region.
Flash flood characterisation of the Haor area of Bangladesh
NASA Astrophysics Data System (ADS)
Bhattacharya, B.; Suman, A.
2012-04-01
Haors are large bowl-shaped flood plain depressions located mostly in north-eastern part of Bangladesh covering about 25% of the entire region. During dry season haors are used for agriculture and during rainy season it is used as fisheries. Haors have profound ecological importance. About 8000 migratory wild birds visit the area annually. Some of the haors are declared at Ramsar sites. Haors are frequently affected by the flash floods due to hilly topography and steep slope of the rivers draining the area. These flash floods spill onto low-lying flood plain lands in the region, inundating crops, damaging infrastructure by erosion and often causing loss of lives and properties. Climate change is exacerbating the situation. For appropriate risk mitigation mechanism it is necessary to explore flood characteristics of that region. The area is not at all studied well. Under a current project a numerical 1D2D model based on MIKE Flood is developed to study the flooding characteristics and estimate the climate change impacts on the haor region. Under this study the progression of flood levels at some key haors in relation to the water level data at specified gauges in the region is analysed. As the region is at the border with India so comparing with the gauges at the border with India is carried out. The flooding in the Haor area is associated with the rainfall in the upstream catchment in India (Meghalaya, Barak and Tripura basins in India). The flood propagation in some of the identified haors in relation to meteorological forcing in the three basins in India is analysed as well. Subsequently, a ranking of haors is done based on individual risks. Based on the IPCC recommendation the precipitation scenario in the upstream catchments under climate change is considered. The study provides the fundamental inputs for preparing a flood risk management plan of the region.
Simulating Catchment Scale Afforestation for Mitigating Flooding
NASA Astrophysics Data System (ADS)
Barnes, M. S.; Bathurst, J. C.; Quinn, P. F.; Birkinshaw, S.
2016-12-01
After the 2013-14, and the more recent 2015-16, winter floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. However, the role of forests as a natural flood management practice remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. This project aims to improve the understanding of the impacts of upland afforestation on flood risk at the sub-catchment and full catchment scales. This will be achieved through an integrated fieldwork and modelling approach, with the use of a series of process based hydrological models to scale up and examine the effects forestry can have on flooding. Furthermore, there is a need to analyse the extent to which land management practices, catchment system engineering and the installation of runoff attenuation features (RAFs), such as engineered log jams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. Additionally, the proportion of a catchment or riparian reach that would need to be forested in order to achieve a significant impact on reducing downstream flooding will be defined. The consequential impacts of a corresponding reduction in agriculturally productive farmland and the potential decline of water resource availability will also be considered in order to safeguard the UK's food security and satisfy the global demand on water resources.
A Synoptic Climatology of Combined Severe/Weather/Flash Flood Events
NASA Astrophysics Data System (ADS)
Pallozzi, Kyle J.
Classical forms of severe weather such as tornadoes, damaging convective wind gusts, and large hail, as well as flash flooding events, all have potentially large societal impacts. This impact is further magnified when these hazards occur simultaneously in time and space. A major challenge for operational forecasters is how to accurately predict the occurrence of combined storm hazards, and how to communicate the associated multiple threat hazards to the public. A seven-year climatology (2009-2015) of combined severe weather/flash flooding (SVR/FF) events across the contiguous United States was developed in attempt to study the combined SVR/FF event hazards further. A total of 211 total cases were identified and sub-divided into seven subcategories based on their convective morphology and meteorological characteristics. Heatmaps of event report frequency were created to extract spatial, seasonal and interannual patterns in SVR/FF event activity. Diurnal trends were examined from time series plots of tornado, hail, wind and flash flood/flood reports. Event-centered composites of environmental variables were created for each subcategory from 13 km RUC/RAP analyses. Representative cases studies were conducted for each subcategory. A "ring of fire" with the highest levels of SVR/FF event activity was noted across the central United States. SVR/FF events were least common in the Southeast, High Plains, and Northern Plains. Enhanced SVR/FF activity reflected contributions from synoptic events during the cool and shoulder seasons over the Lower Mississippi, Arkansas and Tennessee Valleys, and MCS activity during the warm season over the lower Great Plains, and the Upper Mississippi, Missouri and Ohio River Valleys. Results from the composite analyses indicated that relatively high values of CAPE, surface-500 hPa shear and precipitable water were observed for all subcategories. Case studies show that many high-end SVR/FF events featured slow-moving, or quasi-stationary fronts/outflow boundaries, a moist troposphere and front-paralleling 850-300 hPa mean winds. In this environment, individual convective cells can be advected downstream along the initiating boundary, resulting in flood-producing training echoes. A relatively moist troposphere leads to efficient precipitation production, limits cold-pool formation/off-boundary propagation, and further increases the likelihood of flash flooding.
12 CFR Appendix A to Part 1010 - Standard and Model Forms and Clauses
Code of Federal Regulations, 2013 CFR
2013-01-01
....114 Subdivision Characteristics and Climate 1010.115 (a) General Topography (b) Water Coverage (c) Drainage and Fill (d) Flood Plain (e) Flooding and Soil Erosion (f) Nuisances (g) Hazards (h) Climate (i... of the land. Changes in plant and animal life, air and water quality and noise levels may affect your...
12 CFR Appendix A to Part 1010 - Standard and Model Forms and Clauses
Code of Federal Regulations, 2012 CFR
2012-01-01
....114 Subdivision Characteristics and Climate 1010.115 (a) General Topography (b) Water Coverage (c) Drainage and Fill (d) Flood Plain (e) Flooding and Soil Erosion (f) Nuisances (g) Hazards (h) Climate (i... of the land. Changes in plant and animal life, air and water quality and noise levels may affect your...
12 CFR Appendix A to Part 1010 - Standard and Model Forms and Clauses
Code of Federal Regulations, 2014 CFR
2014-01-01
....114 Subdivision Characteristics and Climate 1010.115 (a) General Topography (b) Water Coverage (c) Drainage and Fill (d) Flood Plain (e) Flooding and Soil Erosion (f) Nuisances (g) Hazards (h) Climate (i... of the land. Changes in plant and animal life, air and water quality and noise levels may affect your...
Flood dependency of cottonwood establishment along the Missouri River, Montana, USA
Scott, M.L.; Auble, G.T.; Friedman, J.M.
1997-01-01
Flow variability plays a central role in structuring the physical environment of riverine ecosystems. However, natural variability in flows along many rivers has been modified by water management activities. We quantified the relationship between flow and establishment of the dominant tree (plains cottonwood, Populus deltoides subsp. monilifera) along one of the least hydrologically altered alluvial reaches of the Missouri River: Coal Banks Landing to Landusky, Montana. Our purpose was to refine our understanding of how local fluvial geomorphic processes condition the relationship between flow regime and cottonwood recruitment. We determined date and elevation of tree establishment and related this information to historical peak stage and discharge over a 112-yr hydrologic record. Of the excavated trees, 72% were established in the year of a flow >1400 m3/s (recurrence interval of 9.3 yr) or in the following 2 yr. Flows of this magnitude or greater create the necessary bare, moist establishment sites at an elevation high enough to allow cottonwoods to survive subsequent floods and ice jams. Almost all cottonwoods that have survived the most recent flood (1978) were established >1.2 m above the lower limit of perennial vegetation (active channel shelf). Most younger individuals were established between 0 and 1.2 m, and are unlikely to survive over the long term. Protection of riparian cottonwood forest along this National Wild and Scenic section of the Missouri River depends upon maintaining the historical magnitude, frequency, and duration of floods > 1400 m3/s. Here, a relatively narrow valley constrains lateral channel movement that could otherwise facilitate cottonwood recruitment at lower flows. Effective management of flows to promote or maintain cottonwood recruitment requires an understanding of locally dominant fluvial geomorphic processes.
Owen-Joyce, Sandra J.; Wilson, Richard P.; Carpenter, Michael C.; Fink, James B.
2000-01-01
Accounting for the use of Colorado River water is required by the U.S. Supreme Court decree, 1964, Arizona v. California. Water pumped from wells on the flood plain and from certain wells on alluvial slopes outside the flood plain is presumed to be river water and is accounted for as Colorado River water. The accounting-surface method developed for the area upstream from Laguna Dam was modified for use downstream from Laguna Dam to identify wells outside the flood plain of the lower Colorado River that yield water that will be replaced by water from the river. Use of the same method provides a uniform criterion of identification for all users pumping water from wells by determining if the static water-level elevation in the well is above or below the elevation of the accounting surface. Wells that have a static water-level elevation equal to or below the accounting surface are presumed to yield water that will be replaced by water from the Colorado River. Wells that have a static water-level elevation above the accounting surface are presumed to yield river water stored above river level. The method is based on the concept of a river aquifer and an accounting surface within the river aquifer. The river aquifer consists of permeable sediments and sedimentary rocks that are hydraulically connected to the Colorado River so that water can move between the river and the aquifer in response to withdrawal of water from the aquifer or differences in water-level elevations between the river and the aquifer. The subsurface limit of the river aquifer is the nearly impermeable bedrock of the bottom and sides of the basins that underlie the Yuma area and adjacent valleys. The accounting surface represents the elevation and slope of the unconfined static water table in the river aquifer outside the flood plain of the Colorado River that would exist if the river were the only source of water to the river aquifer. The accounting surface was generated by using water-surface profiles of the Colorado River from Laguna Dam to about the downstream limit of perennial flow at Morelos Dam. The accounting surface extends outward from the edges of the flood plain to the subsurface boundary of the river aquifer. Maps at a scale of 1:100,000 show the extent of the river aquifer and elevation of the accounting surface downstream from Laguna Dam in Arizona and California.
Availability and quality of ground water, southern Ute Indian Reservation, southwestern Colorado
Brogden, Robert E.; Hutchinson, E. Carter; Hillier, Donald E.
1979-01-01
Population growth and the potential development of subsurface mineral resources have increased the need for information on the availability and quality of ground water on the Southern Ute Indian Reservation. The U.S. Geological Survey, in cooperation with the Southern Ute Tribal Council, the Four Corners Regional Planning Commission, and the U.S. Bureau of Indian Affairs, conducted a study during 1974-76 to assess the ground-water resources of the reservation. Water occurs in aquifers in the Dakota Sandstone, Mancos Shale, Mesaverde Group, Lewis Shale, Pictured Cliffs Sandstone, Fruitland Formation, Kirtland Shale, Animas and San Jose Formations, and terrace and flood-plain deposits. Well yields from sandstone and shale aquifers are small, generally in the range from 1 to 10 gallons per minute with maximum reported yields of 75 gallons per minute. Well yields from terrace deposits generally range from 5 to 10 gallons per minute with maximum yields of 50 gallons per minute. Well yields from flood-plain deposits are as much as 25 gallons per minute but average 10 gallons per minute. Water quality in aquifers depends in part on rock type. Water from sandstone, terrace, and flood-plain aquifers is predominantly a calcium bicarbonate type, whereas water from shale aquifers is predominantly a sodium bicarbonate type. Water from rocks containing interbeds of coal or carbonaceous shales may be either a calcium or sodium sulfate type. Dissolved-solids concentrations of ground water ranged from 115 to 7,130 milligrams per liter. Water from bedrock aquifers is the most mineralized, while water from terrace and flood-plain aquifers is the least mineralized. In many water samples collected from bedrock, terrace, and flood-plain aquifers, the concentrations of arsenic, chloride, dissolved solids, fluoride, iron, manganese, nitrate, selenium, and sulfate exceeded U.S. Public Health Service (1962) recommended limits for drinking water. Selenium in the ground water in excess of U.S. Public Health Service (1962) recommended limit of 10 micrograms per liter for drinking water occurs throughout the reservation but principally in the central part. Of the 265 wells and springs sampled, 74 contained water with selenium concentrations in excess of the recommended limit. Selenium concentrations exceeded 10 micrograms per liter principally in water from aquifers in the San Jose and Animas Formations. The maximum selenium concentration determined during the study was 13,000 micrograms per liter in a sample obtained from the San Jose Formation. The only known documented case of human selenium poisoning caused by drinking ground water occurred on the reservation.
Easterling, W.E.; Brandle, J.R.; Hays, C.J.; Guo, Q.; Guertin, D.S.
2001-01-01
The expansion and contraction of marginal cropland in the Great Plains often involves small forested strips of land that provide important ecological benefits. The effect of human disturbance on these forests is not well known. Because of their unique structure such forests are not well-represented by forest gap models. In this paper, the development, testing and application of a new model known as Seedscape are described. Seedscape is a modification of the JABOWA-II model, and it uses a spatially-explicit landscape to resolve small-scale features of highly fragmented forests in the eastern Great Plains. It was tested and evaluated with observations from two sites, one in Nebraska and a second in eastern Iowa. Seedscape realistically simulates succession at the Nebraska site, but is less successful at the Iowa site. Seedscape was also applied to the Nebraska site to simulate the effect that varying forest corridor widths, in response to the presumed expansion/contraction of adjacent agricultural land, has on succession properties. Results suggest that small differences in widths have negligible effects on forest composition, but large differences in widths may cause statistically-significant changes in the relative importance of some species. We assert that long-term ecological change in human dominated landscapes is not well understood, in part, because of inadequate modeling techniques. Seedscape provides a much-needed tool for assessing the ecological implications of land use change in forests of predominately agricultural landscapes.
Warwick, Peter D.; Flores, Romeo M.; Nichols, Douglas J.; Murphy, Edward C.; Pashin, Jack C.; Gastaldo, Robert A.
2004-01-01
The Fort Union Formation in the Williston Basin of North Dakota, South Dakota, and Montana comprises chronostratigraphic and depositional sequences of Paleocene age. Individual chronostratigraphic sequences are defined by palynostratigraphic (pollen and spore) biozones and radiometric (40Ar/39Ar) ages obtained from tonsteins or volcanic ash layers. Analyses of depositional sequences are based on lithofacies constrained by the radiometric ages and biozones.The lower Paleocene (biozones P1-P3) contains three marine parasequences (landward stepping) in southwestern North Dakota that sequentially onlapped westward between 65 and 61 Ma (lower Ludlow and Cannonball Members). Maximum flooding (transgressive systems tract) occurred during an approximate 1-m.y. interval from 65 to 64 Ma, which regionally is correlated biostratigraphically to a tidally influenced, distributary-shoreface, and fluvial-channel complex in the Cave Hills, northwestern South Dakota, and to channel-dominated fluvial (low-stand incised paleovalley systems) and tidally influenced, flood-plain-deltaic transition facies in the Ekalaka area of southeastern Montana.The progradational parasequences in the Cannonball Member consist of shore-face sandstone beds (with ravinement lag deposits) deposited by strand-plain barrier systems. Landward of the barrier systems, tidal-estuarine and mire deposits included thick but laterally discontinuous peat accumulations (e.g., Beta and Yule coal beds in the Ludlow Member, southwestern North Dakota). However, landward of the coastal deposits, the laterally equivalent T-Cross-Big Dirty coal zone (dated 64.78 Ma) in southeastern Montana formed as thick, laterally extensive peat accumulations in mires in a fluvial setting. In the flood-plain-deltaic, tidal transition zone near Ekalaka, Montana, the Ludlow Member consists of flood-plain facies, discontinuous coal beds, and rooted and burrowed horizons that contain the marine or brackish trace fossil Skolithos. The flood-plain-deltaic tidal transition zone facies are incised by a massive, agglomerated channel sandstone complex (paleovalley fill) that is exposed along the modern Snow Creek drainage south of Mill Iron, Montana. The flood-plain-tidal transition zone was reworked during the maximum sea level highstand during the early Paleocene. This event was followed by a fall of sea level and deposition of the paleovalley fill.Sea level fall during the mid-Paleocene (biozones P3 and P4) produced a regressive shallow-marine and lower deltaic tidal system (seaward stepping) that deposited strata that thin toward the east. These strata are overlain by a widespread paleosol (Rhame bed) and, in turn, a lignite-bearing fluvial facies (Tongue River Member) containing the laterally persistent Harmon-Hanson coal zone (61.23 Ma). Upper Paleocene biozone P5 is represented by fluvial, coal-bearing strata that contain several economically minable coal beds (HT Butte, Hagel, and Beulah-Zap zones, Sentinel Butte Member).The Fort Union Formation of the Williston Basin contains significant coal resources. These coal deposits are now being explored for their potential coal-bed gas resources. A better understanding of the depositional setting for these deposits can lead to improved exploration and exploitation practices and a better understanding of regional paleogeography and paleoclimate during the Paleocene.
K.W. Outcalt; D.G. Brockway
2010-01-01
Longleaf pine (Pinus palustris Mill.) forests of the Gulf Coastal Plain historically burned every 2â4 years with low intensity fires, which maintained open stands with herbaceous dominated understories. During the early and mid 20th century however, reduced fire frequency allowed fuel to accumulate and hardwoods to increase in the midstory and overstory layers, while...
Production and Decomposition Rates of a Coastal Plain Forest Following the Impact of Hurrican Hugo
Joseph Fail
1999-01-01
Recovery of a coastal plain mixed hardwood-pine forest following the impact of Hurricane Hugo in 1989 was monitored for four years, 1991-1995. Eight 400 m2 plots were set in each of two treatment areas-an Unsalvaged and a Salvaged site. Wind-downed trees were kept on the site in the Unsalvaged Site and removed in the Salvaged Site. It was...
Flood Hazard Mapping Assessment for Lebanon
NASA Astrophysics Data System (ADS)
Abdallah, Chadi; Darwich, Talal; Hamze, Mouin; Zaarour, Nathalie
2014-05-01
Of all natural disasters, floods affect the greatest number of people worldwide and have the greatest potential to cause damage. In fact, floods are responsible for over one third of people affected by natural disasters; almost 190 million people in more than 90 countries are exposed to catastrophic floods every year. Nowadays, with the emerging global warming phenomenon, this number is expected to increase, therefore, flood prediction and prevention has become a necessity in many places around the globe to decrease damages caused by flooding. Available evidence hints at an increasing frequency of flooding disasters being witnessed in the last 25 years in Lebanon. The consequences of such events are tragic including annual financial losses of around 15 million dollars. In this work, a hydrologic-hydraulic modeling framework for flood hazard mapping over Lebanon covering 19 watershed was introduced. Several empirical, statistical and stochastic methods to calculate the flood magnitude and its related return periods, where rainfall and river gauge data are neither continuous nor available on a long term basis with an absence of proper river sections that under estimate flows during flood events. TRMM weather satellite information, automated drainage networks, curve numbers and other geometrical characteristics for each basin was prepared using WMS-software and then exported into HMS files to implement the hydrologic modeling (rainfall-runoff) for single designed storm of uniformly distributed depth along each basin. The obtained flow hydrographs were implemented in the hydraulic model (HEC-RAS) where relative water surface profiles are calculated and flood plains are delineated. The model was calibrated using the last flood event of January 2013, field investigation, and high resolution satellite images. Flow results proved to have an accuracy ranging between 83-87% when compared to the computed statistical and stochastic methods. Results included the generation of recurrence flood plain maps of 10, 50 & 100 years intensity maps along with flood hazard maps for each watershed. It is of utmost significance for this study to be effective that the produced flood intensity and hazard maps will be made available to decision-makers, planners and relevant community stakeholders.
NASA Astrophysics Data System (ADS)
Klimczak, Christian; Watters, Thomas R.; Ernst, Carolyn M.; Freed, Andrew M.; Byrne, Paul K.; Solomon, Sean C.; Blair, David M.; Head, James W.
2012-09-01
Since its insertion into orbit about Mercury in March 2011, the MESSENGER spacecraft has imaged most previously unseen regions of the planet in unprecedented detail, revealing extensive regions of contiguous smooth plains at high northern latitudes and surrounding the Caloris basin. These smooth plains, thought to be emplaced by flood volcanism, are populated with several hundred ghost craters and basins, nearly to completely buried impact features having rims for which the surface expressions are now primarily rings of deformational landforms. Associated with some ghost craters are interior groups of graben displaying mostly polygonal patterns. The origin of these graben is not yet fully understood, but comparison with numerical models suggests that the majority of such features are the result of stresses from local thermal contraction. In this paper, we highlight a previously unreported category of ghost craters, quantify extensional strains across graben-bearing ghost craters, and make use of graben geometries to gain insights into the subsurface geology of smooth plains areas. In particular, the style and mechanisms of graben development imply that flooding of impact craters and basins led to substantial pooling of lavas, to thicknesses of ˜1.5 km. In addition, surface strains derived from groups of graben are generally in agreement with theoretically and numerically derived strains for thermal contraction.
Simulation of wetlands forest vegetation dynamics
Phipps, R.L.
1979-01-01
A computer program, SWAMP, was designed to simulate the effects of flood frequency and depth to water table on southern wetlands forest vegetation dynamics. By incorporating these hydrologic characteristics into the model, forest vegetation and vegetation dynamics can be simulated. The model, based on data from the White River National Wildlife Refuge near De Witt, Arkansas, "grows" individual trees on a 20 x 20-m plot taking into account effects on the tree growth of flooding, depth to water table, shade tolerance, overtopping and crowding, and probability of death and reproduction. A potential application of the model is illustrated with simulations of tree fruit production following flood-control implementation and lumbering. ?? 1979.
NASA Astrophysics Data System (ADS)
Khanh Triet Nguyen, Van; Dung Nguyen, Viet; Fujii, Hideto; Kummu, Matti; Merz, Bruno; Apel, Heiko
2016-04-01
The Vietnamese Mekong Delta (VMD) plays an important role in food security and socio-economic development of the country. Being a low-lying coastal region, the VMD is particularly susceptible to both riverine and tidal floods, which provide, on (the) one hand, the basis for the rich agricultural production and the livelihood of the people, but on the other hand pose a considerable hazard depending on the severity of the floods. But despite of potentially hazardous flood, the area remain active as a rice granary due to its nutrient-rich soils and sediment input, and dense waterways, canals and the long standing experience of the population living with floods. In response to both farmers' requests and governmental plans, the construction of flood protection infrastructure in the delta progressed rapidly in the last twenty years, notably at areas prone to deep flooding, i.e. the Plain of Reeds (PoR) and Long Xuyen Quadrangle (LXQ). Triple rice cropping becomes possible in farmlands enclosed by "full-dykes", i.e. dykes strong and high enough to prevent flooding of the flood plains for most of the floods. In these protected flood plains rice can be grown even during the peak flood period (September to November). However, little is known about the possibly (and already alleged) negative impacts of this fully flood protection measure to downstream areas. This study aims at quantifying how the flood regime in the lower part of the VMD (e.g. Can Tho, My Thuan, …) has been changed in the last 2 recent "big flood" events of 2000 and 2011 due to the construction of the full-dyke system in the upper part. First, an evaluation of 35 years of daily water level data was performed in order to detect trends at key gauging stations: Kratie: upper boundary of the Delta, Tan Chau and Chau Doc: areas with full-dyke construction, Can Tho and My Thuan: downstream. Results from the Mann-Kendall (MK) test show a decreasing trend of the annual maximum water level at 3 stations Kratie, Tan Chau and Chau Doc. The MK test statistic results (Z) for these stations are -0.23, -1.39 and -0.84 respectively. In contrary, significant increasing trend (at α = 1%) of annual flood peak at Can Tho and My Thuan is calculated, with the Z value are 5.20 and 4.28. A Monte Carlo experiment by adding assumed observation errors of 5%, 10% and 15% results in similar trend for these stations. After the trend analysis, a set of scenarios are generated based on various hydrological boundaries, infrastructure developments and climate change scenarios. The scenarios are simulated with the quasi-2D hydrodynamic model for the Mekong Delta (Dung, 2011; Manh, 2014) in order to separate and quantify the impacts of flood protection measures to the flood regime in the lower part of the delta in a spatially explicit manner, with a special focus on the urban and economic centers Can Tho and My Thuan. Based on these scenarios the change in flood hazard caused by the infrastructure development that has to be expected is described and possible mitigation actions are proposed.
NASA Technical Reports Server (NTRS)
Deutschman, W. A. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Detection of short-lived events has continued. Forest fires, oil spills, vegetation damage, volcanoes, storm ridges, earthquakes, and floods have been detected and analyzed.
Forest diversity and disturbance: changing influences and the future of Virginia's Forests
Christine J. Small; James L. Chamberlain
2015-01-01
The Virginia landscape supports a remarkable diversity of forests, from maritime dunes, swamp forests, and pine savannas of the Atlantic coastal plain, to post-agricultural pine-hardwood forests of the piedmont, to mixed oak, mixed-mesophytic, northern hardwood, and high elevation conifer forests in Appalachian mountain provinces. Virginiaâs forests also have been...
Geomorphology of the lower Copper River, Alaska
Brabets, T.P.
1996-01-01
The Copper River, located in southcentral Alaska, drains an area of more than 24,000 square miles. About 30 miles above its mouth, this large river enters Miles Lake, a proglacial lake formed by the retreat of Miles Glacier. Downstream from the outlet of Miles Lake, the Copper River flows past the face of Childs Glacier before it enters a large, broad, alluvial flood plain. The Copper River Highway traverses this flood plain and in 1996, 11 bridges were located along this section of the highway. These bridges cross parts or all of the Copper River and in recent years, some of these bridges have sustained serious damage due to the changing course of the Copper River. Although the annual mean discharge of the lower Copper River is 57,400 cubic feet per second, most of the flow occurs during the summer months from snowmelt, rainfall, and glacial melt. Approximately every six years, an outburst flood from Van Cleve Lake, a glacier-dammed lake formed by Miles Glacier, releases approximately 1 million acre-feet of water into the Copper River. At the peak outflow rate from Van Cleve Lake, the flow of the Copper River will increase an additional 140,000 and 190,000 cubic feet per second. Bedload sampling and continuous seismic reflection were used to show that Miles Lake traps virtually all the bedload being transported by the Copper River as it enters the lake from the north. The reservoir-like effect of Miles Lake results in the armoring of the channel of the Copper River downstream from Miles Lakes, past Childs Glacier, until it reaches the alluvial flood plain. At this point, bedload transport begins again. The lower Copper River transports 69 million tons per year of suspended sediment, approximately the same quantity as the Yukon River, which drains an area of more than 300,000 square miles. By correlating concurrent flows from a long-term streamflow- gaging station on the Copper River with a short-term streamflow-gaging station at the outlet of Miles Lake, long-term flow characteristics of the lower Copper River were synthesized. Historical discharge and cross-section data indicate that as late as 1970, most of the flow of the lower Copper River was through the first three bridges of the Copper River Highway as it begins to traverse the alluvial flood plain. In the mid 1980's, a percentage of the flow had shifted away from these three bridges and in 1995, only 51 percent of the flow of the Copper River passed through them. Eight different years of aerial photography of the lower Copper River were analyzed using Geographical Information System techniques. This analysis indicated that no major channel changes were caused by the 1964 earthquake. A flood in 1981 that had a recurrence interval of more than 100 years caused significant channel changes in the lower Copper River. A probability analysis of the lower Copper River indicated stable areas and the long-term locations of channels. By knowing the number of times a particular area has been occupied by water and the last year an area was occupied by water, areas of instability can be located. A Markov analysis of the lower Copper River indicated that the tendency of the flood plain is to remain in its current state. Large floods of the magnitude of the 1981 event are believed to be the cause of major changes in the lower Copper River.
Geomorphology of the lower Copper River, Alaska
Brabets, Timothy P.
1997-01-01
The Copper River, located in southcentral Alaska, drains an area of more than 24,000 square miles. About 30 miles above its mouth, this large river enters Miles Lake, a proglacial lake formed by the retreat of Miles Glacier. Downstream from the outlet of Miles Lake, the Copper River flows past the face of Childs Glacier before it enters a large, broad, alluvial flood plain. The Copper River Highway traverses this flood plain and in 1995, 11 bridges were located along this section of the highway. These bridges cross parts of the Copper River and in recent years, some of these bridges have sustained serious damage due to the changing course of the Copper River. Although the annual mean discharge of the lower Copper River is 57,400 cubic feet per second, most of the flow occurs during the summer months from snowmelt, rainfall, and glacial melt. Approximately every six years, an outburst flood from Van Cleve Lake, a glacier-dammed lake formed by Miles Glacier, releases approximately 1 million acre-feet of water into the Copper River. When the outflow rate from Van Cleve Lake reaches it peak, the flow of the Copper River will increase between 150,000 to 190,000 cubic feet per second. Data collected by bedload sampling and continuous seismic reflection indicated that Miles Lake traps virtually all the bedload being transported by the Copper River as it enters the lake from the north. The reservoir-like effect of Miles Lake results in the armoring of the channel of the Copper River downstream from Miles Lake, past Childs Glacier, until it reaches the alluvial flood plain. At this point, bedload transport begins again. The lower Copper River transports 69 million tons per year of suspended sediment, approximately the same quantity as the Yukon River, which drains an area of more than 300,000 square miles. By correlating concurrent flows from a long-term streamflow-gaging station on the Copper River with a short-term streamflow-gaging station at the outlet of Miles Lake, long-term flow characteristics of the lower Copper River were synthesized. Historical discharge and cross-section data indicate that as late as 1970, most of the flow of the lower Copper River was through the first three bridges of the Copper River Highway as it begins to traverse the alluvial flood plain. In the mid 1980's, a percentage of the flow had shifted away from these three bridges and in 1995, only 51 percent of the flow of the Copper River passed through them. Eight different years of aerial photography of the lower Copper River were analyzed using Geographical Information System techniques. This analysis indicated that no major channel changes were caused by the 1964 earthquake. However, a flood in 1981 that had a recurrence interval of more than 100 years caused significant channel changes in the lower Copper River. A probability analysis of the lower Copper River indicated stable areas and the long-term locations of channels. By knowing the number of times a particular area has been occupied by water and the last year an area was occupied by water, areas of instability can be located. A Markov analysis of the lower Copper River indicated that the tendency of the flood plain is to remain in its current state. Large floods of the magnitude of the 1981 event are believed to be the cause of major changes in the lower Copper River.
Sieges, Mason L.; Smolinsky, Jaclyn A.; Baldwin, Michael J.; Barrow, Wylie C.; Randall, Lori A.; Buler, Jeffrey J.
2014-01-01
In response to the Deepwater Horizon oil spill in spring 2010, the Natural Resources Conservation Service implemented the Migratory Bird Habitat Initiative (MBHI) to provide temporary wetland habitat for migrating and wintering waterfowl, shorebirds, and other birds along the northern Gulf of Mexico via managed flooding of agricultural lands. We used weather-surveillance radar to conduct broad regional assessments of bird response to MBHI activities within the Mississippi Alluvial Valley and the West Gulf Coastal Plain. Across both regions, birds responded positively to MBHI management by exhibiting greater relative bird densities within sites relative to pre-management conditions in prior years and relative to surrounding non-flooded agricultural lands. Bird density at MBHI sites was generally greatest during winter for both regions. Unusually high flooding in the years prior to implementation of the MBHI confounded detection of overall changes in remotely sensed soil wetness across sites. The magnitude of bird response at MBHI sites compared to prior years and to non-flooded agricultural lands was generally related to the surrounding landscape context: proximity to areas of high bird density, amount of forested wetlands, emergent marsh, non-flooded agriculture, or permanent open water. However, these relationships varied in strength and direction between regions and seasons, a finding which we attribute to differences in seasonal bird composition and broad regional differences in landscape configuration and composition. We detected greater increases in relative bird use at sites in closer proximity to areas of high bird density during winter in both regions. Additionally, bird density was greater during winter at sites with more emergent marsh in the surrounding landscape. Thus, bird use of managed wetlands could be maximized by enrolling lands located near areas of known bird concentration and within a mosaic of existing wetlands. Weather-radar observations provide strong evidence that MBHI sites located inland from coastal wetlands impacted by the oil spill provided wetland habitat used by a variety of birds.
Janine M. Albaugh; Eric B. Sucre; Zakiya H. Leggett; Jean-Christophe Domec; John S. King
2012-01-01
There is growing interest in using switchgrass (Panicum virgatum L.) as a biofuel crop and for its potential to sequester carbon. However, there are limited data on the establishment success of this species when grown as a forest intercrop in coastal plain settings of the U.S. Southeast. Therefore, we studied establishment success of switchgrass...
Tzeng, Hsy-Yu; Wang, Wei; Tseng, Yen-Hsueh; Chiu, Ching-An; Kuo, Chu-Chia
2018-01-01
Global warming-induced extreme climatic changes have increased the frequency of severe typhoons bringing heavy rains; this has considerably affected the stability of the forest ecosystems. Since the Taiwan 921 earthquake occurred in 21 September 1999, the mountain geology of the Island of Taiwan has become unstable and typhoon-induced floods and mudslides have changed the topography and geomorphology of the area; this has further affected the stability and functions of the riparian ecosystem. In this study, the vegetation of the unique Aowanda Formosan gum forest in Central Taiwan was monitored for 3 years after the occurrence of floods and mudslides during 2009–2011. Tree growth and survival, effects of floods and mudslides, and factors influencing tree survival were investigated. We hypothesized that (1) the effects of floods on the survival are significantly different for each tree species; (2) tree diameter at breast height (DBH) affects tree survival–i.e., the larger the DBH, the higher the survival rate; and (3) the relative position of trees affects tree survival after disturbances by floods and mudslides–the farther trees are from the river, the higher is their survival rate. Our results showed that after floods and mudslides, the lifespans of the major tree species varied significantly. Liquidambar formosana displayed the highest flood tolerance, and the trunks of Lagerstoemia subcostata began rooting after disturbances. Multiple regression analysis indicated that factors such as species, DBH, distance from sampled tree to the above boundary of sample plot (far from the riverbank), and distance from the upstream of the river affected the lifespans of trees; the three factors affected each tree species to different degrees. Furthermore, we showed that insect infestation had a critical role in determining tree survival rate. Our 3-year monitoring investigation revealed that severe typhoon-induced floods and mudslides disturbed the riparian vegetation in the Formosan gum forest, replacing the original vegetation and beginning secondary succession. Moreover, flooding provided new habitats for various plants to establish their progeny. By using our results, lifecycles of trees (including death) can be understood in detail, facilitating riparian vegetation engineering in forests severely disturbed by typhoon-induced floods and mudslides. PMID:29304149
Tzeng, Hsy-Yu; Wang, Wei; Tseng, Yen-Hsueh; Chiu, Ching-An; Kuo, Chu-Chia; Tsai, Shang-Te
2018-01-01
Global warming-induced extreme climatic changes have increased the frequency of severe typhoons bringing heavy rains; this has considerably affected the stability of the forest ecosystems. Since the Taiwan 921 earthquake occurred in 21 September 1999, the mountain geology of the Island of Taiwan has become unstable and typhoon-induced floods and mudslides have changed the topography and geomorphology of the area; this has further affected the stability and functions of the riparian ecosystem. In this study, the vegetation of the unique Aowanda Formosan gum forest in Central Taiwan was monitored for 3 years after the occurrence of floods and mudslides during 2009-2011. Tree growth and survival, effects of floods and mudslides, and factors influencing tree survival were investigated. We hypothesized that (1) the effects of floods on the survival are significantly different for each tree species; (2) tree diameter at breast height (DBH) affects tree survival-i.e., the larger the DBH, the higher the survival rate; and (3) the relative position of trees affects tree survival after disturbances by floods and mudslides-the farther trees are from the river, the higher is their survival rate. Our results showed that after floods and mudslides, the lifespans of the major tree species varied significantly. Liquidambar formosana displayed the highest flood tolerance, and the trunks of Lagerstoemia subcostata began rooting after disturbances. Multiple regression analysis indicated that factors such as species, DBH, distance from sampled tree to the above boundary of sample plot (far from the riverbank), and distance from the upstream of the river affected the lifespans of trees; the three factors affected each tree species to different degrees. Furthermore, we showed that insect infestation had a critical role in determining tree survival rate. Our 3-year monitoring investigation revealed that severe typhoon-induced floods and mudslides disturbed the riparian vegetation in the Formosan gum forest, replacing the original vegetation and beginning secondary succession. Moreover, flooding provided new habitats for various plants to establish their progeny. By using our results, lifecycles of trees (including death) can be understood in detail, facilitating riparian vegetation engineering in forests severely disturbed by typhoon-induced floods and mudslides.
Biomass and carbon pools of disturbed riparian forests
Laura A.B. Giese; W.M. Aust; Randall K. Kolka; Carl C. Trettin
2003-01-01
Quantification of carbon pools as affected by forest ageldevelopment can facilitate riparian restoration and increase awareness of the potential for forests to sequester global carbon. Riparian forest biomass and carbon pools were quantified for four riparian forests representing different sera1 stages in the South Carolina Upper Coastal Plain. Three of the riparian...
Biomass and carbon pools of disturbed riparian forests
Laura A. B. Giese; W. M. Aust; Randall K. Kolka; Carl C. Trettin
2003-01-01
Quantification of carbon pools as affected by forest age/development can facilitate riparian restoration and increase awareness of the potential for forests to sequester global carbon. Riparian forest biomass and carbon pools were quantified for four riparian forests representing different seral stages in the South Carolina Upper Coastal Plain. Three of the riparian...
Evaporation and the sub-canopy energy environment in a flooded forest
USDA-ARS?s Scientific Manuscript database
The combination of canopy cover and a free water surface makes the sub-canopy environment of flooded forested wetlands unlike other aquatic or terrestrial systems. The sub-canopy vapor flux and energy budget are not well understood in wetlands, but they importantly control water level and understory...
Amazon Flooded Forest. Teacher Resource Guide.
ERIC Educational Resources Information Center
Duvall, Todd
This teacher's resource guide was created to accompany the Amazon Flooded Forest exhibit at the Oregon Zoo. The enclosed lessons and activities are designed to extend into several aspects of daily curriculum including science, math, reading, writing, speaking, and geography. The materials are intended for use in grades 3-6 although most activities…
Ashley, Roger P.; Rytuba, James J.
2008-01-01
Clear Creek, one of the major tributaries of the upper Sacramento River, drains the eastern Trinity Mountains. Alluvial plain and terrace gravels of lower Clear Creek, at the northwest edge of the Sacramento Valley, contain placer gold that has been mined since the Gold Rush by various methods including hydraulic mining and dredging. In addition, from the 1950s to the 1980s aggregate-mining operations removed gravel from the lower Clear Creek flood plain. Since Clear Creek is an important stream for salmon production, a habitat restoration program is underway to repair damage from mining and improve conditions for spawning. This program includes moving dredge tailings to increase the area of spawning gravel and to fill gravel pits in the flood plain, raising the concern that mercury lost to these tailings in the gold recovery process may be released and become available to biota. The purposes of our study are to identify sources, transport, and dispersal of mercury in the lower Clear Creek area and identify environments in which bioavailable methylmercury is produced. Analytical data acquired include total mercury and methylmercury concentrations in sediments, tailings, and water. Mercury concentrations in bedrock and unmined gravels in and around the mined area are low and are taken to represent background concentrations. Bulk mercury values in placer mining tailings range from near-background in coarse dry materials to more than 40 times background in sands and silts exposed to mercury in sluices. Tailings are entrained in flood-plain sediments and active stream sediments; consequently, mercury concentrations in these materials range from background to about two to three times background. Mercury in sediments and tailings is associated with fine size fractions. The source of most of this mercury is historical gold mining in the Clear Creek watershed. Although methylmercury levels are low in most of these tailings and sediments, flood-plain sediment in shallow flood-plain ponds, tailings in a dredge pond, and active stream sediment in a Clear Creek backwater have elevated levels of methylmercury. Stream waters in the area show low mercury levels during both summer and winter base-flow conditions. During winter high flows total mercury increases by about one order of magnitude; this additional mercury is associated with suspended particulate material. Methylmercury is low in stream waters. Ponds in various environments generally have higher total mercury levels in waters than Clear Creek under base-flow conditions and higher methylmercury levels in both sediments and waters. Ponds are probably the main source of bioavailable mercury in the lower Clear Creek area. Several saline springs occur in the area. The saline waters are enriched in lithium, boron, and mercury, similar to connate waters that are expelled along thrust faults to the south on the west side of the Sacramento Valley. Saline springs may locally contribute some mercury to pond and drainage waters.
Drier Forest Composition Associated with Hydrologic Change in the Apalachicola River, Florida
Darst, Melanie R.; Light, Helen M.
2008-01-01
Forests of the Apalachicola River floodplain had shorter flood durations, were drier in composition, and had 17 percent fewer trees in 2004 than in 1976. The change to drier forest composition is expected to continue for at least 80 more years. Floodplain drying was caused by large declines in river levels resulting from erosion of the river channel after 1954 and from decreased flows in spring and summer months since the 1970s. Water-level declines have been greatest at low and medium flows, which are the most common flows (occurring about 80 percent of the time). Water levels have remained relatively unchanged during large floods which continue to occur about three times per decade. A study conducted by the U.S. Geological Survey compared temporal changes in hydrologic conditions, forest composition, forest characteristics, and individual species of trees, as well as estimated the potential for change in composition of floodplain forests in the nontidal reach of the Apalachicola River. The study was conducted with the cooperation of the Florida Department of Environmental Protection and the Northwest Florida Water Management District. Forest composition and field observations from studies conducted in 1976-1984 (termed '1976 data') were used as baseline data for comparison with data from plots sampled in 2004-2006 ('2004 data'). Flood durations were shorter in all periods subsequent to 1923-1976. The periods of record used to calculate flood durations for forest data were subsets of the complete record available (1923-2004). At sampled plots in all forest types and reaches combined, flood durations changed an average of more than 70 percent toward the baseline flood duration of the next drier forest type. For all forest types, changes in flood durations toward the next drier type were greatest in the upper reach (95.9 percent) and least in the lower reach (42.0 percent). All forests are expected to be 38.2 percent drier in species composition by 2085, the year when the median age of surviving 2004 subcanopy trees will reach the median age (99 years) of the 2004 large canopy trees. The change will be greatest for forests in the upper reach (45.0 percent). Forest composition changes from pre-1954 to 2085 were calculated using Floodplain Indices from 1976 and 2004 tree-size classes and replicate plots. Species composition in high bottomland hardwood forests is expected to continue to change, and some low bottomland hardwood forests are expected to become high bottomland hardwood forests. Organisms associated with floodplain forests will be affected by the changes in tree species, which will alter the timing of leaf-out, fruiting, and leaf-drop, the types of fruit and debris produced, and soil chemistry. Swamps will contain more bottomland hardwood species, but will also have an overall loss of tree density. The density of trees in swamps significantly decreased by 37 percent from 1976 to 2004. Of the estimated 4.3 million (17 percent) fewer trees that existed in the nontidal floodplain in 2004 than in 1976, 3.3 million trees belonged to four swamp species: popash, Ogeechee tupelo, water tupelo, and bald cypress. Water tupelo, the most important tree in the nontidal floodplain in terms of basal area and density, has declined in number of trees by nearly 20 percent since 1976. Ogeechee tupelo, the species valuable to the tupelo honey industry, has declined in number of trees by at least 44 percent. Greater hydrologic variability in recent years may be the reason swamps have had a large decrease in tree density. Drier conditions are detrimental for the growth of swamp species, and periodic large floods kill invading bottomland hardwood trees. The loss of canopy density in swamps may result in the swamp floor being exposed to more light with an increase in the amount of ground cover present, which in turn, would reduce tree replacement. The microclimate of the swamp floor would become wa
The Tempe volcanic province of Mars and comparisons with the Snake River Plains of Idaho
NASA Technical Reports Server (NTRS)
Plescia, J. B.
1981-01-01
The Tempe volcanic region of Mars, a relatively low plain of probable basaltic flood lava affinity, is shown to be comparable in many respects to features of the Snake River Plains of Idaho, including both scale and type of features observed. Superimposed upon the Tempe plain are a variety of features that appear structurally controlled, along an orientation of N60 deg E; comprising low shields, irregular hills that may be silicic domes, and possible composite cones. The Tempe/Snake River match is held to be the first in which direct comparison can be made between Martian and terrestrial geologic-geomorphic features without encountering problems of scale.
NASA Astrophysics Data System (ADS)
Pišút, Peter; Břízová, Eva; Čejka, Tomáš; Pipík, Radovan
2010-12-01
Žitný ostrov, the largest island of the Danube River (SW Slovakia) gained its present shape in the Neoholocene period. As a result of increased flood and geomorphological Danube river activity dated to 1378-1528 AD, the Lower Dudváh River was abandoned and its alluvium became a part of the Žitný ostrov. Study of a Dudváh terrestrialized paleomeander by means of pollen and macrofossil analysis provides new information about the paleoenvironments of the Danubian Plain. The meander under study was cut-off during the Sub-Boreal period when the land was mostly covered by oak-dominated mixed forest with a notable high frequency of
Hydrology of flooded and wetland forests
Williams, T.M.; Krauss, Ken W.; Okruszko, T.; Amatya, D.; Williams, T.M.; Bren, L.; de Jong, C.
2016-01-01
In this chapter we will examine the hydrology of forested areas that are subject to soil saturation by rain, groundwater, or surface flooding. They include mangroves and other tidal forests, the forested portions of peatlands, and tree dominated wetlands defined by the Ramsar Convention (Mathews 1993). They also include estuarine tidal forests, palustrine forested wetlands, and the portion of palustrine scrub-shrub which are made up of immature tree species of the Cowardin et al. (1985) classification. A broad outline of ecology of all wetlands are described in Mitsch and Gosselink (2015), wetlands specifically with tidal influence are described by Tiner (2013), while descriptions of northern and southern forested wetlands can be found in Trettin et al. (1996) and Messina and Conner (1998) respectively.
Causes of sinks near Tucson, Arizona, USA
Hoffmann, J.P.; Pool, D.R.; Konieczki, A.D.; Carpenter, M.C.
1998-01-01
Land subsidence in the form of sinks has occurred on and near farmlands near Tucson, Pima County, Arizona, USA. The sinks occur in alluvial deposits along the flood plain of the Santa Cruz River, and have made farmlands dangerous and unsuitable for farming. More than 1700 sinks are confined to the flood plain of the Santa Cruz River and are grouped along two north-northwestward-trending bands that are approximately parallel to the river and other flood-plain drainages. An estimated 17,000 m3 of sediment have been removed in the formation of the sinks. Thirteen trenches were dug to depths of 4-6 m to characterize near-surface sediments in sink and nonsink areas. Sediments below about 2 m included a large percentage of dispersive clays in sink areas. Sediments in nonsink areas contain a large component of medium- to coarse-grained, moderately to well sorted sand that probably fills a paleochannel. Electromagnetic surveys support the association of silts and clays in sink areas that are highly electrically conductive relative to sand in nonsink areas. Sinks probably are caused by the near-surface process of subsurface erosion of dispersive sediments along pre-existing cracks in predominantly silt and clay sediments. The pre-existing cracks probably result from desiccation or tension that developed during periods of water-table decline and channel incision during the past 100 years or in earlier periods.
Floods of April 1952 in the Missouri River basin
Wells, J.V.B.
1955-01-01
The floods of April 1952 in the Milk River basin, along the Missouri River from the mouth of the Little Missouri River to the mouth of the Kansas River, and for scattered tributaries of the Missouri River in North and South Dakota were the greatest ever observed. The damage amounted to an estimated $179 million. The outstanding featur6 of the floods was the extraordinary peak discharge generated in the Missouri River at and downstream from Bismarck, N. Dak., on April 6 when a large ice jam upstream from the city was suddenly released. Inflow from flooding tributaries maintained the peak discharge at approximately the same magnitude in the transit of the flood across South Dakota; downstream from Yankton, S. Dak., attenuation of the peak discharge was continuous because of natural storage in the wide flood plains. The outstanding characteristic of floods in the Milk River basin was their duration--the flood crested at Havre, Mont., on April 3 and at Nashua, Mont.. on April 18. The floods were caused by an abnormally heavy accumulation of snow that was converted into runoff in a few days of very warm weather at the end of March. The heaviest water content of the snow pack at breakup was in a narrow arc extending through Aberdeen, S. Dak., Pierre, S. Dak.. and northwestward toward the southwest corner of North Dakota. The water content in part of this concentrated cover exceeded 6 inches. The winter of 1951-52, which followed a wet cold fall that made the ground impervious, was one of the most severe ever experienced in South Dakota and northern Montana. Depths of snow and low temperatures combined to produce, at the end of March, one of the heaviest snow covers in the history of the Great Plains. The Missouri River ice was intact upstream from Chamberlain, S. Dak., at the end of March, and the breakup of the ice with inflow of local runoff was one of the spectacular features of the flood. Runoff from the Yellowstone River combining with the flood pouring from the Little Missouri River caused the Missouri River to crest at an all-time high at Elbowoods, N. Dak., on April 4. As this crest moved downstream to Bismarck, its intensity was increased by the alternate storing and release of ice jams plus the inflow from the Knife River. The crest discharge of 500,000 cfs came at Bismarck at 6 p. m. on April 6. following a very sharp rise from 80,000 cfs at 11 a.m. Overflow occurred along the Missouri River from Elbowoods to the mouth with high damage to cities. farmland, and installations located in the flood plain. Cleanup and repair operations following the flood continued for many weeks. Few of the flooded farms produced a crop during 1952. This report presents detailed records of stage and discharge for the flood period on the Missouri River and tributaries from Fort Peck. Mont., to the mouth. Information on damages and river stages collected by other agencies is also presented.
Challenges of Modeling Flood Risk at Large Scales
NASA Astrophysics Data System (ADS)
Guin, J.; Simic, M.; Rowe, J.
2009-04-01
Flood risk management is a major concern for many nations and for the insurance sector in places where this peril is insured. A prerequisite for risk management, whether in the public sector or in the private sector is an accurate estimation of the risk. Mitigation measures and traditional flood management techniques are most successful when the problem is viewed at a large regional scale such that all inter-dependencies in a river network are well understood. From an insurance perspective the jury is still out there on whether flood is an insurable peril. However, with advances in modeling techniques and computer power it is possible to develop models that allow proper risk quantification at the scale suitable for a viable insurance market for flood peril. In order to serve the insurance market a model has to be event-simulation based and has to provide financial risk estimation that forms the basis for risk pricing, risk transfer and risk management at all levels of insurance industry at large. In short, for a collection of properties, henceforth referred to as a portfolio, the critical output of the model is an annual probability distribution of economic losses from a single flood occurrence (flood event) or from an aggregation of all events in any given year. In this paper, the challenges of developing such a model are discussed in the context of Great Britain for which a model has been developed. The model comprises of several, physically motivated components so that the primary attributes of the phenomenon are accounted for. The first component, the rainfall generator simulates a continuous series of rainfall events in space and time over thousands of years, which are physically realistic while maintaining the statistical properties of rainfall at all locations over the model domain. A physically based runoff generation module feeds all the rivers in Great Britain, whose total length of stream links amounts to about 60,000 km. A dynamical flow routing algorithm propagates the flows for each simulated event. The model incorporates a digital terrain model (DTM) at 10m horizontal resolution, which is used to extract flood plain cross-sections such that a one-dimensional hydraulic model can be used to estimate extent and elevation of flooding. In doing so the effect of flood defenses in mitigating floods are accounted for. Finally a suite of vulnerability relationships have been developed to estimate flood losses for a portfolio of properties that are exposed to flood hazard. Historical experience indicates that a for recent floods in Great Britain more than 50% of insurance claims occur outside the flood plain and these are primarily a result of excess surface flow, hillside flooding, flooding due to inadequate drainage. A sub-component of the model addresses this issue by considering several parameters that best explain the variability of claims off the flood plain. The challenges of modeling such a complex phenomenon at a large scale largely dictate the choice of modeling approaches that need to be adopted for each of these model components. While detailed numerically-based physical models exist and have been used for conducting flood hazard studies, they are generally restricted to small geographic regions. In a probabilistic risk estimation framework like our current model, a blend of deterministic and statistical techniques have to be employed such that each model component is independent, physically sound and is able to maintain the statistical properties of observed historical data. This is particularly important because of the highly non-linear behavior of the flooding process. With respect to vulnerability modeling, both on and off the flood plain, the challenges include the appropriate scaling of a damage relationship when applied to a portfolio of properties. This arises from the fact that the estimated hazard parameter used for damage assessment, namely maximum flood depth has considerable uncertainty. The uncertainty can be attributed to various sources among which are imperfections in the hazard modeling, inherent errors in the DTM, lack of accurate information on the properties that are being analyzed, imperfections in the vulnerability relationships, inability of the model to account for local mitigation measures that are usually undertaken when a real event is unfolding and lack of details in the claims data that are used for model calibration. Nevertheless, the model once calibrated provides a very robust framework for analyzing relative and absolute risk. The paper concludes with key economic statistics of flood risk for Great Britain as a whole including certain large loss-causing scenarios affecting the greater London region. The model estimates a total financial loss of 5.6 billion GBP to all properties at a 1% annual aggregate exceedance probability level.
Sediment Buffering and Transport in the Holocene Indus River System
NASA Astrophysics Data System (ADS)
Clift, P. D.; Giosan, L.; Henstock, T.; Tabrez, A. R.; Vanlaningham, S.; Alizai, A. H.; Limmer, D. R.; Danish, M.
2009-12-01
Submarine fans are the largest sediment bodies on Earth and potentially hold records of erosion that could be used to assess the response of continents to changing climate in terms of both physical erosion and chemical weathering. However, buffering between the mountain sources and the abyssal plain may make detailed correlation of climate and erosion records difficult. We investigated the nature of sediment transport in the Indus drainage in SW Asia. Through trenching in the flood plain, drilling in the delta and new seismic and coring data from the shelf and canyon we can now constrain sediment transport from source to sink since the Last Glacial Maximum (LGM). The Indus was affected by intensification of the summer monsoon during the Early Holocene and subsequent weakening since ca. 8 ka. Sediment delivery to the delta was very rapid at 12-8 ka, but slowed along with the weakening monsoon. At the LGM erosion in the Karakoram dominated the supply of sandy material, while the proportion of Lesser Himalayan flux increased with strengthening summer rainfall after 12 ka. Total load also increased at that time. Since 5 ka incision of rivers into the upper parts of the flood plain has reworked Lower Holocene sediments, although the total flux slowed. Coring in the Indus canyon shows that sediment has not reached the lower canyon since ca. 7 ka, but that sedimentation has recently been very rapid in the head of the canyon. We conclude that variations in sealevel and terrestrial climate have introduced a lag of at least 7 k.y. into the deep sea fan record and that monsoon strength is a primary control on whether sediment is stored or released in the flood plain.
NASA Astrophysics Data System (ADS)
Riveros-Iregui, D. A.; Moser, H. A.; Christenson, E. C.; Gray, J.; Hedgespeth, M. L.; Jass, T. L.; Lowry, D. S.; Martin, K.; Nichols, E. G.; Stewart, J. R.; Emanuel, R. E.
2017-12-01
In October 2016, Hurricane Matthew brought extreme flooding to eastern North Carolina, including record regional flooding along the Lumber River and its tributaries in the North Carolina Coastal Plain. Situated in a region dominated by large-scale crop-cultivation and containing some of the highest densities of concentrated animal feeding operations (CAFOs) and animal processing operations in the U.S., the Lumber River watershed is also home to the Lumbee Tribe of American Indians. Most of the tribe's 60,000+ members live within or immediately adjacent to the 3,000 km2 watershed where they maintain deep cultural and historical connections. The region, however, also suffers from high rates of poverty and large disparities in healthcare, education, and infrastructure, conditions exacerbated by Hurricane Matthew. We summarize ongoing efforts to characterize the short- and long-term impacts of extreme flooding on water quality in (1) low gradient streams and riverine wetlands of the watershed; (2) surficial aquifers, which provide water resources for the local communities, and (3) public drinking water supplies, which derive from deeper, confined aquifers but whose infrastructure suffered widespread damage following Hurricane Matthew. Our results provide mechanistic understanding of flood-related connectivity across multiple hydrologic compartments, and provide important implications for how hydrological natural hazards combine with land use to drive water quality impacts and affect vulnerable populations.
NASA Astrophysics Data System (ADS)
Mora, Juan P.; Smith-Ramírez, Cecilia; Zúñiga-Feest, Alejandra
2013-01-01
In flooded habitats, inundations affect important forest regeneration processes, such as seed dispersal and germination. The main seed dispersal mechanism used by species in Austral South American temperate swamp and riparian forests is endozoochory, which releases seeds from the fleshy pericarp. Endozoochory could be favorable or unfavorable in wetland habitats, since this mechanism exposes seeds directly to water and can, in some cases, be detrimental to germination. In this study, we studied whether or not the fleshy pericarp favors germination after the flooding period's end. Furthermore, we quantified if the number of days which the fruit was found to be floating related to its germination success. We used the seeds of three common fleshy fruit species of flooded habitats from southern Chile, the trees Luma apiculata and Rhaphithamnus spinosus, and the vine Luzuriaga radicans. We simulated flooding periods of 7, 15, 30 and 45 days submerging seeds, with and without pericarps, in water. We found that the pericarp's presence significantly increased Luma's germination success and significantly decreased that of Luzuriaga. The germination of Rhaphithamnus was low after periods of flooding in both seed treatments, with no significant differences found between them. The fruits could float for an average of one to four weeks, depending on the species, which did not relate to their germination success. These results show that germination was affected by the presence of fleshy pericarps in flooded conditions and furthermore, that flotation allows for hydrochory from one week to one month. We suggest that in swamp forests multiple seed dispersal mechanisms are advantageous, especially for fleshy-fruited species.
Productivity and carbon sequestration of forests in the southern United States
Kurt H. Johnsen; Tara L. Keyser; John R. Butnor; Carlos A. Gonzalez-Beenecke; Donald J. Kaczmarek; Chris A. Maier; Heather R. McCarthy; Ge. Sun
2014-01-01
Sixty percent of the Southern United States landscape is forested (Wear 2002). Forest types vary greatly among the five subregions of the South, which include the Coastal Plain, Piedmont, Appalachian-Cumberland, Mid-South, and the Mississippi Alluvial Valley. Current inventory data show upland hardwood forests being the predominant forest type in the South (>30...
Changing tree composition by life history strategy in a grassland-forest landscape
Brice B. Hanberry; John M. Kabrick; Hong S. He
2014-01-01
After rapid deforestation in the eastern United States, which generally occurred during the period of 1850-1920, forests did not return to historical composition and structure. We examined forest compositional change and then considered how historical land use and current land use may influence forests in a grassland-forest landscape, the Missouri Plains, where...
Quantifying flooding regime in floodplain forests to guide river restoration
Christian O. Marks; Keith H. Nislow; Francis J. Magilligan
2014-01-01
Determining the flooding regime needed to support distinctive floodplain forests is essential for effective river conservation under the ubiquitous human alteration of river flows characteristic of the Anthropocene Era. At over 100 sites throughout the Connecticut River basin, the largest river system in New England, we characterized species composition, valley and...
Origin and character of loesslike silt in the southern Qinghai-Xizang (Tibet) Plateau, China
Pewe, T.L.; Tungsheng, Liu; Slatt, R.M.; Bingyuan, Li
1995-01-01
Retransported, tan, loesslike silt is widespread in the southern Qinghai-Xizang (Tibet) Plateau. The silt occurs mainly in the lowlands and lower slopes and is absent on steep slopes and active flood plains. The silt covers most alluvial fans and is interbedded with the sand and gravel of the fans. It is well exposed in the agricultural fields on low terraces in the valleys and in the steep-walled scarps of dissected valley fill. The silt is primary loess on the low hill tops; however, the poorly to well-stratified loesslike silt on the lower slopes and in valley bottoms of the major river valleys is retransported loess. It probably was originally deposited by winds blowing across broad vegetation-free flood plains.
Twentieth century arroyo changes in Chaco Culture National Historical Park
Gellis, Allen C.
2002-01-01
Chaco Wash arroyo channel changes in the 20th century have become a major concern of the National Park Service. Several archeologic and cultural sites are located in the Chaco Wash corridor; thus, increased erosional activity of Chaco Wash, such as channel incision and increased meandering, may affect these sites. Through field surveys, photogrammetric analyses, and reviews of existing reports and maps, arroyo changes at Chaco Culture National Historic Park were documented. Arroyo changes were documented for the inner active channel and the entire arroyo cross section. The inner channel of Chaco Wash evolved from a wide, braided channel in the 1930's to a narrower channel with a well-developed flood plain by the 1970's. From 1934 to 1973 the active channel narrowed an average of 26 meters, and from the 1970's to 2000 the channel narrowed an average of 9 meters. Overall from 1934 to 2000, the inner channel narrowed an average of 30 meters. From 1934 to 2000, the top of Chaco Wash widened at four cross sections, narrowed at one, and remained the same at another. The top of Chaco Wash widened at a rate of 0.4 meter per year from the 1970's to 2000 compared with 0.2 meter per year from 1934 to 1973. At 50-percent depth or halfway down the arroyo channel, four cross sections widened and two cross sections narrowed from 1934 to 2000. Rates of widening at 50-percent depth decreased from 0.2 meter per year from 1934 to 1973 to 0.1 meter per year from the 1970's to 2000. From 1934 to 2000, arroyo depth decreased at five of six cross sections and increased at one cross section. Arroyo depth between 1934 and 1973 decreased an average 1.4 meters from aggradation and between the 1970's and 2000 increased an average 0.4 meter from channel scour. From 1934 to 2000, arroyo cross-sectional area decreased at all six cross sections. Cross-sectional areas in Chaco Wash decreased from 1934 to 1973 as a result of sediment deposition and both decreased and increased from the 1970's to 2000. The cross-sectional area decreased by the 1970's due to channel narrowing and flood-plain formation. Increases in cross-sectional area are from channel scour and channel widening. Photogrammetric analyses of volumetric changes for a 1.7-kilometer reach of Chaco Wash showed sediment deposition from 1934 to 1973 of 64 square meters per unit length of channel over 1.7 kilometers to erosion from 1973 to 2000 of 7 square meters per unit length of channel. Chaco Wash evolved from a braided channel in the 1930's to a narrow, sinuous inner channel by the 1970's. Chaco Wash was widening in the 1930's, leading to sediment deposition and formation of an inner flood plain. Channel narrowing resulted from increased sediment deposition on the flood plain. Sediment deposition may be related to a decrease in peak flows, an increase in flood-plain vegetation, or an increase in the transport of fine-grained sediment. Increases in bankfull depth of Chaco Wash between the 1970's and 2000 were due to aggradation of the flood plain and channel scour. Thus, rates of aggradation and cross-sectional filling were greater from 1934 to the 1970's than from the 1970's to 2000.
The Price of Precision: Large-Scale Mapping of Forest Structure and Biomass Using Airborne Lidar
NASA Astrophysics Data System (ADS)
Dubayah, R.
2015-12-01
Lidar remote sensing provides one of the best means for acquiring detailed information on forest structure. However, its application over large areas has been limited largely because of its expense. Nonetheless, extant data exist over many states in the U.S., funded largely by state and federal consortia and mainly for infrastructure, emergency response, flood plain and coastal mapping. These lidar data are almost always acquired in leaf-off seasons, and until recently, usually with low point count densities. Even with these limitations, they provide unprecedented wall-to-wall mappings that enable development of appropriate methodologies for large-scale deployment of lidar. In this talk we summarize our research and lessons learned in deriving forest structure over regional areas as part of NASA's Carbon Monitoring System (CMS). We focus on two areas: the entire state of Maryland and Sonoma County, California. The Maryland effort used low density, leaf-off data acquired by each county in varying epochs, while the on-going Sonoma work employs state-of-the-art, high density, wall-to-wall, leaf-on lidar data. In each area we combine these lidar coverages with high-resolution multispectral imagery from the National Agricultural Imagery Program (NAIP) and in situ plot data to produce maps of canopy height, tree cover and biomass, and compare our results against FIA plot data and national biomass maps. Our work demonstrates that large-scale mapping of forest structure at high spatial resolution is achievable but products may be complex to produce and validate over large areas. Furthermore, fundamental issues involving statistical approaches, plot types and sizes, geolocation, modeling scales, allometry, and even the definitions of "forest" and "non-forest" must be approached carefully. Ultimately, determining the "price of precision", that is, does the value of wall-to-wall forest structure data justify their expense, should consider not only carbon market applications, but the other ways the underlying lidar data may be used.
Umaña, María Natalia; Norden, Natalia; Cano, Angela; Stevenson, Pablo R
2012-01-01
The Amazon harbours one of the richest ecosystems on Earth. Such diversity is likely to be promoted by plant specialization, associated with the occurrence of a mosaic of landscape units. Here, we integrate ecological and phylogenetic data at different spatial scales to assess the importance of habitat specialization in driving compositional and phylogenetic variation across the Amazonian forest. To do so, we evaluated patterns of floristic dissimilarity and phylogenetic turnover, habitat association and phylogenetic structure in three different landscape units occurring in terra firme (Hilly and Terrace) and flooded forests (Igapó). We established two 1-ha tree plots in each of these landscape units at the Caparú Biological Station, SW Colombia, and measured edaphic, topographic and light variables. At large spatial scales, terra firme forests exhibited higher levels of species diversity and phylodiversity than flooded forests. These two types of forests showed conspicuous differences in species and phylogenetic composition, suggesting that environmental sorting due to flood is important, and can go beyond the species level. At a local level, landscape units showed floristic divergence, driven both by geographical distance and by edaphic specialization. In terms of phylogenetic structure, Igapó forests showed phylogenetic clustering, whereas Hilly and Terrace forests showed phylogenetic evenness. Within plots, however, local communities did not show any particular trend. Overall, our findings suggest that flooded forests, characterized by stressful environments, impose limits to species occurrence, whereas terra firme forests, more environmentally heterogeneous, are likely to provide a wider range of ecological conditions and therefore to bear higher diversity. Thus, Amazonia should be considered as a mosaic of landscape units, where the strength of habitat association depends upon their environmental properties.
Umaña, María Natalia; Norden, Natalia; Cano, Ángela; Stevenson, Pablo R.
2012-01-01
The Amazon harbours one of the richest ecosystems on Earth. Such diversity is likely to be promoted by plant specialization, associated with the occurrence of a mosaic of landscape units. Here, we integrate ecological and phylogenetic data at different spatial scales to assess the importance of habitat specialization in driving compositional and phylogenetic variation across the Amazonian forest. To do so, we evaluated patterns of floristic dissimilarity and phylogenetic turnover, habitat association and phylogenetic structure in three different landscape units occurring in terra firme (Hilly and Terrace) and flooded forests (Igapó). We established two 1-ha tree plots in each of these landscape units at the Caparú Biological Station, SW Colombia, and measured edaphic, topographic and light variables. At large spatial scales, terra firme forests exhibited higher levels of species diversity and phylodiversity than flooded forests. These two types of forests showed conspicuous differences in species and phylogenetic composition, suggesting that environmental sorting due to flood is important, and can go beyond the species level. At a local level, landscape units showed floristic divergence, driven both by geographical distance and by edaphic specialization. In terms of phylogenetic structure, Igapó forests showed phylogenetic clustering, whereas Hilly and Terrace forests showed phylogenetic evenness. Within plots, however, local communities did not show any particular trend. Overall, our findings suggest that flooded forests, characterized by stressful environments, impose limits to species occurrence, whereas terra firme forests, more environmentally heterogeneous, are likely to provide a wider range of ecological conditions and therefore to bear higher diversity. Thus, Amazonia should be considered as a mosaic of landscape units, where the strength of habitat association depends upon their environmental properties. PMID:23028844
Crew Earth Observations (CEO) taken during Expedition Five on the ISS
2002-08-18
ISS005-E-10000 (18 August 2002) --- This is the first of two images recently released by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center, showing the devastating European flooding in August. The images were captured by astronauts using a digital still camera onboard the International Space Station (ISS). The photographs show flooding around the Danube Bend area just north of Budapest near the city of Vác, Hungary. The flood peaked in Budapest the day after this photo was made, on August 19, at about 8.5 meters (28 feet), exceeding the previous 1965 flood record. This image shows the waters inundating farmland in the flood plain. Image no. ISS005-E-10926 shows the area four days later.
Soricid response to coarse woody debris manipulations in Coastal Plain loblolly pine forests.
Kurtis R. Moseley; Audrey K. Owens; Steven B. Castleberry; W. Mark Ford; John C. Kilgo; Timothy S. McCay
2009-01-01
We assessed shrew (soricids) response to coarse woody debris (CWD) manipulations in managed upland loblolly pine (Pinus taeda) stands in the upper Coastal Plain of South Carolina over multiple years and...
Wehmeyer, Loren L.; Wagner, Chad R.
2011-01-01
The relation between dam releases and dissolved-oxygen concentration, saturation and deficit, downstream from Roanoke Rapids Dam in North Carolina was evaluated from 2005 to 2009. Dissolved-oxygen data collected at four water-quality monitoring stations downstream from Roanoke Rapids Dam were used to determine if any statistical relations or discernible quantitative or qualitative patterns linked Roanoke River in-stream dissolved-oxygen levels to hydropower peaking at Roanoke Rapids Dam. Unregulated tributaries that inundate and drain portions of the Roanoke River flood plain are crucial in relation to in-stream dissolved oxygen. Hydropower peaking from 2005 to 2009 both inundated and drained portions of the flood plain independently of large storms. The effects of these changes in flow on dissolved-oxygen dynamics are difficult to isolate, however, because of (1) the variable travel time for water to move down the 112-mile reach of the Roanoke River from Roanoke Rapids Dam to Jamesville, North Carolina, and (2) the range of in-situ conditions, particularly inundation history and water temperature, in the flood plain. Statistical testing was conducted on the travel-time-adjusted hourly data measured at each of the four water-quality stations between May and November 2005-2009 when the weekly mean flow was 5,000-12,000 cubic feet per second (a range when Roanoke Rapids Dam operations likely affect tributary and flood-plain water levels). Results of this statistical testing indicate that at the 99-percent confidence interval dissolved-oxygen levels downstream from Roanoke Rapids Dam were lower during peaking weeks than during non-peaking weeks in three of the five years and higher in one of the five years; no data were available for weeks with peaking in 2007. For the four years of statistically significant differences in dissolved oxygen between peaking and non-peaking weeks, three of the years had statistically signficant differences in water temperature. Years with higher water temperature during peaking had lower dissolved oxygen during peaking. Only 2009 had no constistent statistically significant water-temperature difference at all sites, and dissolved-oxygen levels downstream from Roanoke Rapids Dam during peaking weeks that year were lower than during non-peaking weeks. Between 2005 and 2009, daily mean dissolved-oxygen concentrations below the State standard occurred during only 1 of the 17 (6 percent) peaking weeks, with no occurrence of instantaneous dissolved-oxygen concentrations below the State standard. This occurrence was during a 9-day period in July 2005 when the daily maximum air temperatures approached or exceeded 100 degrees Fahrenheit, and the draining of the flood plains from peaking operations was followed by consecutive days of low flows.
18 CFR 806.14 - Contents of application.
Code of Federal Regulations, 2011 CFR
2011-04-01
... plain and flood hazard zones. (B) Recreation potential. (C) Fish and wildlife (habitat quality, kind and number of species). (D) Natural environment uses (scenic vistas, natural and manmade travel corridors...
7 CFR 610.4 - Technical assistance furnished.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., zoning (rural, urban, and flood plain), school, and institution boards, highway departments, and tax assessors. (3) Citizen groups, youth groups, recreation groups, and garden clubs. (4) State and local units...
7 CFR 610.4 - Technical assistance furnished.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., zoning (rural, urban, and flood plain), school, and institution boards, highway departments, and tax assessors. (3) Citizen groups, youth groups, recreation groups, and garden clubs. (4) State and local units...
Natural flood retention in mountain areas by forests and forest like short rotation coppices
NASA Astrophysics Data System (ADS)
Reinhardt-Imjela, Christian; Schulte, Achim; Hartwich, Jens
2017-04-01
Natural water retention is an important element of flood risk management in flood generating headwater areas in the low mountain ranges of Central Europe. In this context forests are of particular interest because of the high infiltration capacities of the soils and to increase water retention reforestation of agricultural land would be worthwhile. However competing claims for land use in intensely cultivated regions in Central Europe impede reforestation plans so the potential for a significant increase of natural water retention in forests is strongly limited. Nevertheless the development of innovative forms of land use and crop types opens new perspectives for a combination of agricultural land use with the water retention potential of forests. Recently the increasing demand for renewable energy resources leads to the cultivation of fast growing poplar and willow hybrids on agricultural land in short rotation coppices (SRC). Harvested in cycles of three to six years the wood from the plantations can be used as wood chips for heat and electricity production in specialized power plants. With short rotation plantations a crop type is established on arable land which is similar to forests so that an improvement of water retention can be expected. To what extend SRC may contribute to flood attenuation in headwater areas is investigated for the Chemnitzbach watershed (48 km2) in the Eastern Ore Mountains (Free State of Saxony, Germany), a low mountain range which is an important source of flood runoff in the Elbe basin. The study is based on a rainfall-runoff model of flood events using the conceptual modelling system NASIM. First results reveal a significant reduction of the flood peaks after the implementation of short rotation coppices. However the effect strongly depends on two factors. The first factor is the availability of areas for the plantations. For a substantial impact on the watershed scale large areas are required and with decreasing percentages of SRC the water retention effect decreases. The second factor is the hydraulic behavior of soils. The initial properties of the SRC soils (pore volume, field capacity, hydraulic conductivity etc.) shortly after implementation of the plantation can be assumed to be similar to arable land if there is no prior conditioning such as deep tilling. However with increasing age of the plantation the properties are expected to converge to forest soils with their higher water retention capacities. Accordingly the infiltration potentials of the plantation strongly depends on the development of soil properties underneath. In general it can be concluded that short rotation coppices cannot solve flood problems in mountain areas solely. However together with other natural and distributed measures (e.g. retention basins, reforestation, conservation tillage etc.) they can be interesting elements of flood retention strategies in mountain areas.
The Effects of Saltwater Intrusion to Flood Mitigation Project
NASA Astrophysics Data System (ADS)
Azida Abu Bakar, Azinoor; Khairudin Khalil, Muhammad
2018-03-01
The objective of this study is to determine the effects of saltwater intrusion to flood mitigation project located in the flood plains in the district of Muar, Johor. Based on the studies and designs carried out, one of the effective flood mitigation options identified is the Kampung Tanjung Olak bypass and Kampung Belemang bypass at the lower reaches of Sungai Muar. But, the construction of the Kampung Belemang and Tanjung Olak bypass, while speeding up flood discharges, may also increase saltwater intrusion during drought low flows. Establishing the dynamics of flooding, including replicating the existing situation and the performance with prospective flood mitigation interventions, is most effectively accomplished using computer-based modelling tools. The finding of this study shows that to overcome the problem, a barrage should be constructed at Sungai Muar to solve the saltwater intrusion and low yield problem of the river.
The evolution of the New Jersey Pine Plains.
Ledig, F Thomas; Hom, John L; Smouse, Peter E
2013-04-01
Fire in the New Jersey Pine Plains has selectively maintained a dwarf growth form of pitch pine (Pinus rigida), which is distinct from the surrounding tall forest of the Pine Barrens and has several other inherited adaptations that enable it to survive in an environment dominated by fire. Pitch pine progeny from two Pine Plains sites, the West and East Pine Plains, were grown in common garden environments with progeny from two Pine Barrens stands, Batsto and Great Egg Harbor River. The tests were replicated in five locations: in New Jersey, Connecticut, two sites in Massachusetts, and Korea. One of the tests was monitored for up to 36 yr. Progeny of Pine Plains origin were, in general, shorter, more crooked, precocious, bore more cones, had a higher frequency of serotinous cones, and had a higher frequency of stem cones than did Pine Barrens progeny, wherever they were grown. The Pine Plains is an ecotype that has evolved in response to disturbance. The several characters that distinguish it from the surrounding tall forest of the Pine Barrens are inherited. The dwarf stature and crooked form not only enable the ecotype to persist in an environment of frequent fires but also increase its flammability.
Nursery Diseases of Western Conifers
Jerry W. Riffle; Richard S. Jr. Smith
1979-01-01
Forest tree nurseries in the Western United States, the region immediately west of the Great Plains, currently produce over 250 million trees per year. Recent Federal legislation requires the Forest Service to increase its efforts in reforestation of nonstocked forest land, and some States now require owners of forest land to provide for reforestation immediately...
Applications of Experimental Suomi-NPP VIIRS Flood Inundation Maps in Operational Flood Forecasting
NASA Astrophysics Data System (ADS)
Deweese, M. M.
2017-12-01
Flooding is the most costly natural disaster across the globe. In 2016 flooding caused more fatalities than any other natural disaster in the United States. The U.S. National Weather Service (NWS) is mandated to forecast rivers for the protection of life and property and the enhancement of the national economy. Since 2014, the NWS North Central River Forecast Center has utilized experimental near real time flood mapping products from the JPSS Suomi-NPP VIIRS satellite. These products have been demonstrated to provide reliable and high value information for forecasters in ice jam and snowmelt flooding in data sparse regions of the northern plains. In addition, they have proved valuable in rainfall induced flooding within the upper Mississippi River basin. Aerial photography and ground observations have validated the accuracy of the products. Examples are provided from numerous flooding events to demonstrate the operational application of this satellite derived information as a remotely sensed observational data source and it's utility in real time flood forecasting.
Spieker, Andrew Maute
1970-01-01
Water management can be an integral part of urban comprehensive planning in a large metropolitan area. Water both imposes constraints on land use and offers opportunities for coordinated land and water management. Salt Creek basin in Cook and Du Page Counties of the Chicago metropolitan area is typical of rapidly developing suburban areas and has been selected to illustrate some of these constraints and opportunities and to suggest the effects of alternative solutions. The present study concentrates on the related problems of ground-water recharge, water quality, management of flood plains, and flood-control measures. Salt Creek basin has a drainage area of 150 square miles. It is in flat to. gently rolling terrain, underlain by glacial drift as much as 200 feet thick which covers a dolomite aquifer. In 1964, the population of the basin was about 400,000, and 40 percent of the land was in urban development. The population is expected to number 550,000 to 650,000 by 1990, and most of the land will be taken by urban development. Salt Creek is a sluggish stream, typical of small drainage channels in the headwaters area of northeastern Illinois. Low flows of 15 to 25 cubic feet per second in the lower part of the basin consist largely of sewage effluent. Nearly all the public water supplies in the basin depend on ground water. Of the total pumpage of 27.5 million gallons per day, 17.5 million gallons per day is pumped from the deep (Cambrian-Ordovician) aquifers and 10 million gallons per day is pumped from the shallow (Silurian dolomite and glacial drift) aquifers. The potential yield of the shallow aquifers, particularly glacial drift in the northern part of the basin, far exceeds present use. The largest concentration of pumpage from the shallow ,aquifers is in the Hinsdale-La Grange area. Salt Creek serves as an important source of recharge to these supplies, particularly just east of Hinsdale. The entire reach of Salt Creek south and east of Elmhurst can be regarded as an area of potential recharge to the shallow aquifers. Preservation of the effectiveness of these potential recharge areas should be considered in land-use planning. Salt Creek is polluted in times of both low and high flow. Most communities in the basin in Du Page County discharge their treated sewage into the creek, whereas those in Cook County transfer their sewage to plants of the Metropolitan Sanitary District outside the basin. During periods of high runoff, combined storm runoff and overflow from sanitary sewers enter the creek. Such polluted water detracts from the stream's esthetic and recreational potential and poses a threat to ground-water supplies owing to induced recharge of polluted water to shallow aquifers. Alternative approaches .to the pollution problem include improvement of the degree of sewage treatment, detention and treatment of storm runoff, dilution of sewage through flow augmentation, or transfer of sewage from the basin to a central treatment plant. To result in an enhanced environment, the streambed would have to be cleansed of accumulated sludge deposits. The overbank flooding in Salt Creek basin every 2 to 3 years presents problems because of encroachments and developments on the flood plains. Flood plains in an urban area can be managed by identifying them, by recognizing that either their natural storage capacity or equivalent artificial capacity is needed to accommodate floods, and by planning land use accordingly. Examples of effective floodplain management include (1) preservation of greenbelts or regional parks along stream courses, (2) use of flood plains for recreation, parking lots. or other low-intensity uses, (3) use of flood-proofed commercial buildings, and (4) provision for compensatory storage to replace natural storage capacity. Results of poor flood-plain management include uncontrolled residential development and encroachment by fill into natural storage areas where no compensatory storage has been
NASA Astrophysics Data System (ADS)
Vourlitis, G. L.; Dalmagro, H. J.; Arruda, P. H. Z. D.; Lathuilliere, M. J.; Borges Pinto, O.; Couto, E. G.; Nogueira, J. D. S.; Johnson, M. S.
2016-12-01
Wetlands have a great potential for carbon (C) storage because frequent waterlogging can inhibit microbial respiration. However, waterlogging can also promote methane (CH4) production, which reduces ecosystem C sequestration. Unfortunately, the C storage dynamics of seasonally flooded (hyperseasonal) tropical forests are poorly understood even though the large C stocks, warm temperature, and prolonged flooding have the potential to cause high rates of CO2 storage and CH4 emission. Thus, the aim of this study was to provide a continuous ecosystem-level quantification of CO2 and CH4 fluxes and carbon balance for a hyperseasonal forest in the Brazilian Pantanal using eddy covariance. Trace gas fluxes were measured using an eddy covariance system installed on a 28 m tall tower. The study area was chosen because it represents approximately 12% of the total area of the Pantanal, which consists of seasonal floodplains with an annual flood pulse that results from an intense rainy season (October to April) that is followed by an intense dry season (May to September). The measurements were performed over two flood cycles and an intervening drought period between the years 2014 and 2015. In 2015 the study area was flooded for 190 days, which was 22 days longer than in 2014. Mean (± SD) rates of CH4 flux during the 2014 and 2015 flooded period were 0.091 ± 0.04 µmol m-2 s-1 and 0.118 ± 0.04 µmol m-2 s-1, respectively, and almost zero (0.001 ± 0.0001 µmol m-2 s-1) during 2015 dry season. In contrast, mean CO2 flux rates during the flooded period were -1.58 and -1.50 µmol m-2 s-1 for 2014 and 2015, respectively, showing the net ecosystem CO2 uptake, while during the dry season, the forest was a net source of CO2 to the atmosphere of on average 0.73 µmol m-2 s-1. Total wet season carbon balance (CO2 + CH4) was virtually identical in 2014 and 2015 (ca. -255 gC m-2) even though the 2015 flood period was longer; however, the ecosystem lost 139 gC m-2 during the dry period of 2015. These data indicate that hyperseasonal forests of the Pantanal, and presumably other seasonally flooded tropical forests, are potentially large sources of CH4, but overall large C sinks.
7 CFR 654.1 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Federal financially-assisted projects. (i) Watershed Protection and Flood Prevention (WP&FP). See part 622...) Emergency Watershed Protection (EWP). See part 624 of this title. (4) Great Plains Conservation Program (GP...
7 CFR 654.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Federal financially-assisted projects. (i) Watershed Protection and Flood Prevention (WP&FP). See part 622...) Emergency Watershed Protection (EWP). See part 624 of this title. (4) Great Plains Conservation Program (GP...
7 CFR 654.1 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Federal financially-assisted projects. (i) Watershed Protection and Flood Prevention (WP&FP). See part 622...) Emergency Watershed Protection (EWP). See part 624 of this title. (4) Great Plains Conservation Program (GP...
7 CFR 654.1 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Federal financially-assisted projects. (i) Watershed Protection and Flood Prevention (WP&FP). See part 622...) Emergency Watershed Protection (EWP). See part 624 of this title. (4) Great Plains Conservation Program (GP...
7 CFR 654.1 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Federal financially-assisted projects. (i) Watershed Protection and Flood Prevention (WP&FP). See part 622...) Emergency Watershed Protection (EWP). See part 624 of this title. (4) Great Plains Conservation Program (GP...
An Old-Growth Definition for Evergreen Bay Forests and Related Seral Communities
Martha R. McKevlin
1996-01-01
This document describes old-growth conditions in an evergreen bay forest stand. Bay forests occur throughout the Atlantic and Gulf Coastal Plains. However, they are considered rare and are present across the landscape in a patchwork mosaic with other forest types in various stages of succession. Bay forests can be found associated with pocosins, Carolina bays and...
Overbank flooding is thought to be a critical process controlling nitrogen retention and cycling. In this study we investigated the effects of season and flood frequency on soil nitrification rates at ten sites in forested floodplains of Upper Mississippi River, Pool 8...A rough ...
Kolva, J.R.
1985-01-01
A previous study of flood magitudes and frequencies in Ohio concluded that existing regionalized flood equations may not be adequate for estimating peak flows in small basins that are heavily forested, surface mined, or located in northwestern Ohio. In order to provide a large data base for improving estimation of flood peaks in these basins, 30 crest-stage gages were installed in 1977, in cooperation with the Ohio Department of Transportation, to provide a 10-year record of flood data The study area consists of two distinct parts: Northwestern Ohio, which contains 8 sites, and southern and eastern Ohio, which contains 22 sites in small forested or surface-mined drainage basins. Basin characteristics were determined for all 30 sites for 1978 conditions. Annual peaks were recorded or estimated for all 30 sites for water years 1978-82; an additional year of peak discharges was available at four sites. The 2-year (Q2) and 5-year (Q5) flood peaks were determined from these annual peaks.Q2 and Q5 values also were calculated using published regionalized regression equations for Ohio. The ratios of the observed to predicted 2-year (R2) and 5-year (R5) values were then calculated. This study found that observed flood peaks aree lower than estimated peaks by a significant amount in surface-mined basins. The average ratios of observed to predicted R2 values are 0.51 for basins with more than 40 percent surface-minded land, and 0.68 for sites with any surface-mined land. The average R5 value is 0.55 for sites with more than 40 percent surface-minded land, and 0.61 for sites with any surface-mined land. Estimated flood peaks from forested basins agree with the observed values fairly well. R2 values average 0.87 for sites with 20 percent or more forested land, but no surface-mined land, and R5 values average 0.96. If all sites with more than 20 percent forested land and some surface-mined land are considered, R2 the values average 0.86, and the R5 values average 0.82.
Reconstructing the spatial pattern of historical forest land in China in the past 300 years
NASA Astrophysics Data System (ADS)
Yang, Xuhong; Jin, Xiaobin; Xiang, Xiaomin; Fan, Yeting; Shan, Wei; Zhou, Yinkang
2018-06-01
The reconstruction of the historical forest spatial distribution is of a great significance to understanding land surface cover in historical periods as well as its climate and ecological effects. Based on the maximum scope of historical forest land before human intervention, the characteristics of human behaviors in farmland reclamation and deforestation for heating and timber, we create a spatial evolution model to reconstruct the spatial pattern of historical forest land. The model integrates the land suitability for reclamation, the difficulty of deforestation, the attractiveness of timber trading markets and the abundance of forest resources to calibrate the potential scope of historical forest land with the rationale that the higher the probability of deforestation for reclamation and wood, the greater the likelihood that the forest land will be deforested. Compared to the satellite-based forest land distribution in 2000, about 78.5% of our reconstructed historical forest grids are of the absolute error between 25% and -25% while as many as 95.85% of those grids are of the absolute error between 50% and -50%, which indirectly validates the feasibility of our reconstructed model. Then, we simulate the spatial distribution of forest land in China in 1661, 1724, 1820, 1887, 1933 and 1952 with the grid resolution of 1 km × 1 km. Our result shows that (1) the reconstructed historical forest land in China in the past 300 years concentrates in DaXingAnLing, XiaoXingAnLing, ChangBaiShan, HengDuanShan, DaBaShan, WuYiShan, DaBieShan, XueFengShang and etc.; (2) in terms of the spatial evolution, historical forest land shrank gradually in LiaoHe plains, SongHuaJiang-NenJiang plains and SanJiang plains of eastnorth of China, Sichuan basins and YunNan-GuiZhou Plateaus; and (3) these observations are consistent to the proceeding of agriculture reclamation in China in past 300 years towards Northeast China and Southwest China.
1972-06-01
Recreation Water pollution Delaware River Sewage disposal N Navi ation ABSTRACT ( R ,..-,- "war .04 ,, 09e -, Identifby block numb.,) The problems of water...characteristics ....... ..... . ...... 2 Land use and development .. ....... . . , 3 Water supply ................. .* 8 Sewage disposal...AND SURROUNDING AREA . . . * * 19 8 SEWAGE TREATMENT PLANT ON NORTH BRANCH PENNSAKEN CREEK FLOOD PLAIN ...... . . 21 9 DEBRIS IN POCACK CREEK
Sacramento Metropolitan Area, California
1992-02-01
restriction would apply to virtually all of West Sacramento. Future conditions in the bypass areas are expected to remain essentially the same. During...frequency, the stage-frequency curve in the study area essentially becomes flat because of the large storage volume behind upstream levee breaches. This curve...and 400-year flood plains are also essentially the same (15 to 16 feet) because of the following: 1) the flood volume for each event is sufficient to
NASA Astrophysics Data System (ADS)
Machida, Masahiko; Yamada, Susumu; Itakura, Mitsuhiro; Okumura, Masahiko; Kitamura, Akihiro
2014-05-01
Radioactive Cs recontamination brought about by deposition of silt and clay on river beds has been a central issue of environmental recovery problems in Fukushima prefecture after the Fukushima Dai-ichi nuclear power plant (FDNPP) accident. In fact, the river-side sediment monitored by using remote controlled helicopters and direct sampling measurements has been confirmed to be highly contaminated compared to the other areas, which just naturally decay. Such contamination transportation is especially remarkable in a few rivers in coastal areas of Fukushima prefecture, because their water and sediment are supplied from the highly contaminated area along the northwest direction from FDNPPs. Thus, we numerically study the sediment transportation in rivers by using 2D river simulation framework named iRIC developed by Shimizu et al. Consequently, we find that flood brought about by typhoon is mainly required for the massive transport and the sediment deposition in the flood plain is efficiently promoted by plants naturally grown on the plain. In this presentation, we reveal when and where the sediment deposition occurs in the event of floods through direct numerical simulations. We believe that the results are suggestive for the next planning issue related with decontamination in highly-contaminated evacuated districts.
Kelly, Brian P.
2001-01-01
The source of water is important to the ecological function of Missouri River flood-plain wetlands. There are four potential sources of water to flood-plain wetlands: direct flow from the river channel during high river stage, ground-water movement into the wetlands in response to river-stage changes and aquifer recharge, direct precipitation, and runoff from surrounding uplands. Concurrent measurements of river stage, rainfall, ground-water level, and wetland stage were compared for two Missouri River flood-plain wetlands located near Rocheport, Missouri, to characterize the spatial and temporal relations between river stage, rainfall, ground-water levels and wetland stage, determine the source of water to each wetland, and compare measured and estimated stage and ground-water levels at each site. The two sites chosen for this study were wetland NC-5, a non-connected, 50 feet deep scour constantly filled with water, formed during the flood of 1993, and wetland TC-1, a shallow, temporary wetland intermittently filled with water. Because these two wetlands bracket a range of wetland types of the Missouri River flood plain, the responses of other Missouri River wetlands to changes in river stage, rainfall, and runoff should be similar to the responses exhibited by wetlands NC-5 and TC-1. For wetlands deep enough to intersect the ground-water table in the alluvial aquifer, such as wetland NC-5, the ground-water response factor can estimate flood-plain wetland stage changes in response to known river-stage changes. Measured maximum stage and ground-water-level changes at NC-5 fall within the range of estimated changes using the ground-water response factor. Measured maximum ground-water-level changes at TC-1 are similar to, but consistently greater than the estimated values, and are most likely the result of alluvial deposits with higher than average hydraulic conductivity located between wetland TC-1 and the Missouri River. Similarity between ground-water level and stage hydrography at wetland NC-5 indicate that ground-water-level fluctuations caused by river-stage changes control the stage of wetland NC-5. A 2-day lag time exists between river-stage changes and ground water and stage changes at wetland NC-5. The lack of a measurable response of wetland NC-5 stage to rainfall indicate that rainfall is not a large source of water to wetland NC-5. Stage in wetland TC-1 only increased at high river stage in June and July 1999, and from runoff caused by local rainfall during the winter. The 2-day lag time between peak stages at wetland TC-1 and peak Missouri River stages compared to the 1-day lag time between Missouri River stage and ground-water peaks at wetland TC-1 indicates ground-water flow does not directly affect wetland stage at TC-1, but surface-water flow does affect wetland stage at TC-1 during high river stage. Comparing wetland TC-1 stage to potential water sources indicates the most likely explanation for the rise in stage at wetland TC-1 is surface runoff supplied via seepage through the levees and upward flow of ground water through alluvial deposits of higher hydraulic conductivity during high river stage. The rate of decrease in wetland TC-1 stage was limited by the rate at which ground-water level decreased. Stage response to rainfall at wetland TC-1 during the winter months and no response to greater rainfall amounts during spring and summer months indicate that evapotranspiration may limit the affect of rainfall on stage at wetland TC-1 during the growing season.
14 CFR 1216.204 - General implementation requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Unified National Program for Flood Plain Management (U.S. Water Resources Council, 1978). (1) Descriptive... permits and grants to enable them to similarly evaluate, in accordance with the Orders, the effects of...
14 CFR 1216.204 - General implementation requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Unified National Program for Flood Plain Management (U.S. Water Resources Council, 1978). (1) Descriptive... permits and grants to enable them to similarly evaluate, in accordance with the Orders, the effects of...
14 CFR 1216.204 - General implementation requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Unified National Program for Flood Plain Management (U.S. Water Resources Council, 1978). (1) Descriptive... permits and grants to enable them to similarly evaluate, in accordance with the Orders, the effects of...
14 CFR 1216.204 - General implementation requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Unified National Program for Flood Plain Management (U.S. Water Resources Council, 1978). (1) Descriptive... permits and grants to enable them to similarly evaluate, in accordance with the Orders, the effects of...
Padmalal, Damodaran; Limaye, Ruta B.; S., Vishnu Mohan; Jennerjahn, Tim; Gamre, Pradeep G.
2016-01-01
Holocene sequences in the humid tropical region of Kerala, South-western (SW) India have preserved abundance of organic—rich sediments in the form of peat and its rapid development in a narrow time frame towards Middle Holocene has been found to be significant. The sub—coastal areas and flood plains of the Greater Pamba Basin have provided palaeorecords of peat indicating that the deposits are essentially formed within freshwater. The combination of factors like stabilized sea level and its subsequent fall since the Middle Holocene, topographic relief and climatic conditions led to rapid peat accumulation across the coastal lowlands. The high rainfall and massive floods coupled with a rising sea level must have inundated > 75% of the coastal plain land converting it into a veritable lagoon—lake system that eventually led to abrupt termination of the forest ecosystem and also converted the floodplains into peatland where accumulation of peat almost to 2.0–3.0 m thickness in coastal lowlands and river basins during the shorter interval in the Middle Holocene. Vast areas of the coastal plains of Kerala have been converted into carbon rich peatland during the Middle Holocene and transforming the entire coastal stretch and associated landforms as one of the relatively youngest peatlands in the extreme southern tip of India. Unlike the uninterrupted formation of peatlands of considerable extent during the Holocene in Southeast Asia, the south Peninsular Indian region has restricted and short intervals of peatlands in the floodplains and coastal lowlands. Such a scenario is attributed to the topographic relief of the terrain and the prevailing hydrological regimes and environmental conditions as a consequence of monsoon variability since Middle Holocene in SW India. Considering the tropical coastal lowlands and associated peatlands are excellent repositories of carbon, they are very important for regional carbon cycling and habitat diversity. The alarming rate of land modification and development is destabilizing these carbon pools resulting in large scale carbon emissions to the atmosphere and loss of low-latitude peat palaeorecords. Therefore, these palaeorecords are to be conserved and addressed for better understanding and utilizing the carbon pool for effective climate change adaptation. This communication is the first attempt of addressing the peat formation and peatland development during the Holocene from the tropical region of Peninsular India. PMID:27163658
Kumaran, Navnith K P; Padmalal, Damodaran; Limaye, Ruta B; S, Vishnu Mohan; Jennerjahn, Tim; Gamre, Pradeep G
2016-01-01
Holocene sequences in the humid tropical region of Kerala, South-western (SW) India have preserved abundance of organic-rich sediments in the form of peat and its rapid development in a narrow time frame towards Middle Holocene has been found to be significant. The sub-coastal areas and flood plains of the Greater Pamba Basin have provided palaeorecords of peat indicating that the deposits are essentially formed within freshwater. The combination of factors like stabilized sea level and its subsequent fall since the Middle Holocene, topographic relief and climatic conditions led to rapid peat accumulation across the coastal lowlands. The high rainfall and massive floods coupled with a rising sea level must have inundated > 75% of the coastal plain land converting it into a veritable lagoon-lake system that eventually led to abrupt termination of the forest ecosystem and also converted the floodplains into peatland where accumulation of peat almost to 2.0-3.0 m thickness in coastal lowlands and river basins during the shorter interval in the Middle Holocene. Vast areas of the coastal plains of Kerala have been converted into carbon rich peatland during the Middle Holocene and transforming the entire coastal stretch and associated landforms as one of the relatively youngest peatlands in the extreme southern tip of India. Unlike the uninterrupted formation of peatlands of considerable extent during the Holocene in Southeast Asia, the south Peninsular Indian region has restricted and short intervals of peatlands in the floodplains and coastal lowlands. Such a scenario is attributed to the topographic relief of the terrain and the prevailing hydrological regimes and environmental conditions as a consequence of monsoon variability since Middle Holocene in SW India. Considering the tropical coastal lowlands and associated peatlands are excellent repositories of carbon, they are very important for regional carbon cycling and habitat diversity. The alarming rate of land modification and development is destabilizing these carbon pools resulting in large scale carbon emissions to the atmosphere and loss of low-latitude peat palaeorecords. Therefore, these palaeorecords are to be conserved and addressed for better understanding and utilizing the carbon pool for effective climate change adaptation. This communication is the first attempt of addressing the peat formation and peatland development during the Holocene from the tropical region of Peninsular India.
Soil color - a window for public and educators to understands soils
NASA Astrophysics Data System (ADS)
Libohova, Zamir; Beaudette, Dylan; Wills, Skye; Monger, Curtis; Lindbo, David
2017-04-01
Soil color is one of the most visually striking properties recorded by soil scientists around the world. Soil color is an important characteristic related to soil properties such organic matter, parent materials, drainage. It is a simplified way for the public and educators alike to understand soils and their functions. Soil color is a quick measurement that can be recorded by people using color charts or digital cameras, offering an opportunity for the citizen science projects to contribute to soil science. The US Soil Survey has recorded soil colors using Munsell color system for over 20,000 soil types representing a wide range of conditions throughout the Unites States. The objective of this research was to generate a US soil color map based on color descriptions from the Official Series Descriptions (OSDs). A color calculator developed in R and ArcMap were used to spatially display the soil colors. Soil colors showed vertical trends related to soil depth and horizontal trends related to parent material and climate. Soil colors represent development processes depending upon environment and time that have influenced their appearance and geographic distribution. Dark colors represent soils that are rich in organic matter, such as the soils of the Midwest USA, which are some of the most fertile soils in the world. These soils are relatively "young" in that they developed over the last 20,000 years in materials left behind after continental Glaciers retreated and reflect long- term prairie vegetation that dominated this area prior to European settlements. Dark soils of the Pacific Northwest reflect the influence of forests (and volcanic activity) but are shallower and less fertile than the deep dark Midwest soils. Soils of the eastern and southern Coastal Plains are older and are enriched with iron oxides ('rust') which gives them their red coloring. Soils of flood plains, like the broad Mississippi Valley, have multi-colored soils that reflect the process of flooding, scouring, depositions and standing water areas, providing a mosaic of process-driven colors. In the drier areas of the High Plains and Desert Southwest, soils are lighter in color and reflect the presence of sands like Nebraska Sand Hills or enrichment with light-colored carbonates and salts. The mountainous regions such as Appalachians, Ozarks etc., were predominantly red to brown due to higher clay content and older soils.
Forest conservation in Nepal: encouraging women's participation.
Molnar, A
1987-01-01
The deforestation in Nepal is upsetting the delicate ecological balance and effecting the lives of many of the people, especially the hill women, who use these resources in their household. The deforestation increases erosion, causing landslides, and raises the silt in rivers, changing their course and flooding the southern plains. The majority of Nepal's population is rural and they depend on agriculture for their livelihood. It is estimated that 95% of the wood taken in deforestation is used for fuel primarily used in cooking. The farmers developed a complicated system of land preparation and terracing, but this has not stopped erosion on the steeper slopes. Since women are the ones who get the wood for fuel and other products they must become an integral part of any conservation plan. With the Nationalization Act of 1957, the forest land became the property of the government and therefore managed under the Ministry of Forests through the department officers. Later legislation involved the communities in replanting and longterm care and transfer of tracts for protection and management. In addition nurseries were created for seedlings and the improved wood burning stoves were distributed. Women were not initially involved in these programs because of their traditional role, but through training programs involving local communities, the importance of women in forestry conservation was recognized. Women were first employed in nursery labor and then as supervisors and now more are involved in project activities and forestry staff. They have been most helpful in training others in using the new fuel-efficient stoves.
Delayed effects of flood control on a flood-dependent riparian forest
Katz, Gabrielle L.; Friedman, Jonathan M.; Beatty, Susan W.
2005-01-01
The downstream effects of dams on riparian forests are strongly mediated by the character and magnitude of adjustment of the fluvial–geomorphic system. To examine the effects of flow regulation on sand-bed streams in eastern Colorado, we studied the riparian forest on three river segments, the dam-regulated South Fork Republican River downstream of Bonny Dam, the unregulated South Fork Republican River upstream of Bonny Dam, and the unregulated Arikaree River. Although Bonny Dam significantly reduced peak and mean discharge downstream since 1951, there was little difference in forest structure between the regulated and unregulated segments. On all river segments, the riparian forest was dominated by the native pioneer tree, Populus deltoides, which became established during a period of channel narrowing beginning after the 1935 flood of record and ending by 1965. The nonnative Elaeagnus angustifolia was present on all river segments, with recruitment ongoing. The lack of contrast in forest structure between regulated and unregulated reaches resulted primarily from the fact that no large floods occurred on any of the study segments since dam construction. Most of the riparian forest in the study area was located on the broad narrowing terrace, which was rarely inundated on the unregulated segments, resulting in little contrast with the regulated segment. A minor dam effect occurred on the small modern floodplain, which was actively disturbed on the unregulated segments, but not on the regulated segments. Although Bonny Dam had the potential to significantly influence downstream riparian ecosystems, this influence had not been expressed, and may never be if a large flood does not occur within the lifetime of the dam. Minor dam effects to riparian systems can be expected downstream of large dams in some settings, including the present example in which there was insufficient time for the dam effects to by fully expressed.
Flood hydrology and dam-breach hydraulic analyses of five reservoirs in Colorado
Stevens, Michael R.; Hoogestraat, Galen K.
2013-01-01
The U.S. Department of Agriculture Forest Service has identified hazard concerns for areas downstream from five Colorado dams on Forest Service land. In 2009, the U.S. Geological Survey, in cooperation with the Forest Service, initiated a flood hydrology analysis to estimate the areal extent of potential downstream flood inundation and hazard to downstream life, property, and infrastructure if dam breach occurs. Readily available information was used for dam-breach assessments of five small Colorado reservoirs (Balman Reservoir, Crystal Lake, Manitou Park Lake, McGinnis Lake, and Million Reservoir) that are impounded by an earthen dam, and no new data were collected for hydraulic modeling. For each reservoir, two dam-breach scenarios were modeled: (1) the dam is overtopped but does not fail (break), and (2) the dam is overtopped and dam-break occurs. The dam-breach scenarios were modeled in response to the 100-year recurrence, 500-year recurrence, and the probable maximum precipitation, 24-hour duration rainstorms to predict downstream flooding. For each dam-breach and storm scenario, a flood inundation map was constructed to estimate the extent of flooding in areas of concern downstream from each dam. Simulation results of the dam-break scenarios were used to determine the hazard classification of the dam structure (high, significant, or low), which is primarily based on the potential for loss of life and property damage resulting from the predicted downstream flooding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J.R.
1986-01-01
Pre-law coal surface-mined lands in Pyramid State Park, Perry County, Illinois, were examined 1976-1980 to determine changes in fauna and flora from that on the area in 1954-1960. Vegetative development on naturally revegetated spoils reflected diverse habitat conditions with interspersion of cover types; some of oldest spoils displayed inhibited succession while others exhibited early flood plain forest development. Ground and overstory species richness and overstory density increased since mid 1950's and ground cover domination by therophytes in 1954-1956 shifted to phanerophytes and hemicryptophytes in 1976-1978. Thirty vegetative compositional and structural parameters indicated that ground cover was limited by subcanopy rathermore » than large scattered trees. Aquatic vegetation communities developed but hydrosphere was not well represented; emergent vegetation was limited by morphology of basins. Although isolated sites exhibited deleterious conditions, vegetation was not generally inhibited by physico-chemical factors. The 29 mammals reflected an increase in species richness. Abundance of early successional forms decreased while occupants of shrub/forest increased. Past habitat enhancement influenced wildlife distribution; and plantations attracted woodland fauna. Leveled spoil crests, valleys and clearings with fescue retarded succession and provided open areas and edges for others.« less
NASA Astrophysics Data System (ADS)
Pham, Trinh Hung
Monitoring hydrological behavior of a large tropical watershed following a forest cover variation has an important role in water resource management planning as well as for forest sustainable management. Traditional methods in forest hydrology studies are Experimental watersheds, Upstream-downstream, Experimental plots, Statistical regional analysis and Watershed simulation. Those methodes have limitations for large watersheds concerning the monitoring time, the lack of input data especially about forest cover and the capacity of extrapolating results accurately in terms of large watersheds. Moreover, there is still currently a scientific debate in forest ecology on relation between water and forest. The reason of this problem comes from geographical differences in publication concerning study zones, experimental watershed size and applied methods. It gives differences in the conclusions on the influence of tropical forest cover change on the changes of outlet water and yet on the yearly runoff in terms of large watershed. In order to exceed the limitations of actual methods, to solve the difficulty of acquiring forest cover data and to have a better understanding of the relation between tropical forest cover change and hydrological behavior evolution of a large watershed, it is necessary to develop a new approach by using numeric remote sensing. We used the watershed of Dong Nai as a case study. Results show that a fusion between TM and ETM+ Landsat image series and hydro-meteorologic data allow us to observe and detect flooding trends and flooding peaks after an intensive forest cover change from 16% to 20%. Flooding frequency and flooding peaks have clearly decreased when there is an increase of the forest cover from 1983 to 1990. The influence of tropical forest cover on the hydrological behavior is varying with geographical locations of watershed. There is a significant relation between forest cover evolution and environmental facteurs as the runoff coefficient (R = 0,87) and the yearly precipitation (R = 0,93).
Stem Cubic-Foot Volume Tables for Tree Species in the Upper Coastal Plain
Alexander Clark; Ray A. Souter
1996-01-01
Stemwood cubic-foot volume inside bark tables are presented for 11 species and 8 species groups based on equations used to estimate timber sale volumes on national forests in the Upper Coastal Plain. Tables are based on form class measurement data for 521 trees sampled in the Upper Coastal Plain and taper data collected across the South. A series of tables is...
14 CFR § 1216.204 - General implementation requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Unified National Program for Flood Plain Management (U.S. Water Resources Council, 1978). (1) Descriptive... permits and grants to enable them to similarly evaluate, in accordance with the Orders, the effects of...
Gates, Joseph Spencer; Stanley, W.D.
1976-01-01
Airborne-electromagnetic and earth-resistivity surveys were used to explore for fresh ground water in the Hueco Bolson southeast of El Paso, Texas. Aerial surveys were made along about 500 miles (800 km) of flight line, and 67 resistivity soundings were made along 110 miles (180 km) of profile. The surveys did not indicate the presence of any large bodies of fresh ground water, but several areas may be underlain by small to moderate amounts of fresh to slightly saline water.The material underlying the flood plain of the Rio Grande is predominantly clay or sand of low resistivity. Along a band on the mesa next to and parallel to the flood plain, more resistive material composed partly of deposits of an ancient river channel extends to depths of about 400 to 1,700 feet (120 to 520 m). Locally, the lower part of this more resistive material is saturated with fresh to slightly saline water. The largest body of fresh to slightly saline ground water detected in this study is between Fabens and Tornillo, Texas, mostly in the sandhill area between the flood plain and the mesa. Under assumed conditions, the total amount of water in storage may be as much as 400,000 to 800,000 acre-feet (500 million to 1 billion m ).The resistivity data indicate that the deep artesian zone southwest of Fabens extends from a depth of about 1,200 feet (365 m) to about 2,800 feet (855 m).
Patterns and trends of early successional forests in the Eastern United States
Margaret K. Trani; Robert T. Brooks; Thomas L. Schmidt; Victor A. Rudis; Christine M. Gabbard
2001-01-01
We assessed the status of early successional forest conditions for 33 Eastern States within the New England, Middle Atlantic, Great Lakes, Central Plains, Coastal South, and Interior South subregions. We used Forest Inventory and Analysis surveys to analyze trends from 1946 to 1998. Dramatic regional differences occurred in distribution of early successional forests....
An Old-Growth Definition for Western Hardwood Gallery Forests
Kelly Kindscher; Jenny Holah
1998-01-01
Western hardwood gallery forests are found across an extremely large, diverse geographical area that encompasses the Great Plains in the United States and Canada. Remnant forests of this type still exist in the "Prairie Peninsula," which historically projected an eastern finger into Ohio. The forests are restricted to floodplains of major rivers and are in...
Flood prediction, its risk and mitigation for the Babura River with GIS
NASA Astrophysics Data System (ADS)
Tarigan, A. P. M.; Hanie, M. Z.; Khair, H.; Iskandar, R.
2018-03-01
This paper describes the flood prediction along the Babura River, the catchment of which is within the comparatively larger watershed of the Deli River which crosses the centre part of Medan City. The flood plain and ensuing inundation area were simulated using HECRAS based on the available data of rainfall, catchment, and river cross-sections. The results were shown in a GIS format in which the city map of Medan and other infrastructure layers were stacked for spatial analysis. From the resulting GIS, it can be seen that 13 sub-districts were likely affected by the flood, and then the risk calculation of the flood damage could be estimated. In the spirit of flood mitigation thoughts, 6 locations of evacuation centres were identified and 15 evacuation routes were recommended to reach the centres. It is hoped that the flood prediction and its risk estimation in this study will inspire the preparedness of the stakeholders for the probable threat of flood disaster.
Soil physical and chemical properties associated with flat rock and riparian forest communities
David O. Mitchem; James E. Johnson; Laura S. Gellerstedt
2006-01-01
Flat Rock forest communities are unique ecosystems found adjacent to some large rivers in the Central and Southern Appalachian Mountains. Characterized by thin, alluvial soils overlying flat, resistant sandstone, these areas are maintained by severe flooding and have unique associated plant systems. With the advent of dams to control flooding in the 20th century, many...
Fitzpatrick, Faith A.; Knox, James C.; Schubauer-Berigan, Joseph P.
2007-01-01
The history of overbank sedimentation in the vicinity of Halfway Creek Marsh near La Crosse, Wis., was examined during 2005?06 by the U.S. Geological Survey and University of Wisconsin?Madison as part of a broader study of sediment and nutrient loadings to the Upper Mississippi River bottomlands by the U.S. Environmental Protection Agency, U.S. Fish and Wildlife Service, and U.S. Geological Survey. Historical sedimentation patterns and rates were interpreted from field-scale topographic surveys and sediment cores collected from the marsh and upstream flood plains. Historical maps and aerial photographs were used to establish the timing of disturbances and to document changes in channel patterns after Euro-American settlement (post 1846). Episodic overbank sedimentation patterns and rates were linked to watershed agricultural activity, large floods, artificial levee construction, channel alterations, and dam failures over the past 160 years. These forces affected sedimentation on and between levees, the development of alluvial fans and flood-plain splays, and the general pattern of flood-plain sedimentation through the upper and lower marsh. Historical overbank deposits, episodically deposited after about 1860, are as much as 6 feet thick in the upper marsh and as much as 4 feet thick in the lower marsh, representing a total volume of approximately 1.8 million cubic yards. These stratified deposits consist of multiple layers of silt and clay, very fine to fine sand, and some medium to very coarse sand. Coarse-grained deposits are associated with flood-plain splays caused by breaches in artificial levees during large floods. Estimated sedimentation rates were highest from 1919 to 1936 [26,890 cubic yards per year (yd3/yr)] and exceeded by about 30 times the 1846?85 rate of 920 yd3/yr and exceeded by 7 times the 1994?2006 rate of 3,740 yd3/yr. The 1994?2006 sedimentation rate was the lowest since Euro-American settlement, but natural levees along the 1994?2006 channel of Halfway Creek through the lower marsh continued to form and are currently (2006) about 1 foot higher than the surrounding marsh. Natural levee building in the lower marsh from 1994?2006 was accentuated by the lack of overbank sediment storage in the upper marsh. The historical storage of sediment in the upper and lower marsh affects modern streamflow and sediment transport processes of Halfway Creek and Sand Lake Coulee through the marsh, and it also affects marsh vegetation and wildlife habitat. Results from this investigation will help improve the understanding of how past overbank sedimentation patterns continue to influence modern and future water quality, sediment transport, nutrient loads, and water-related resources in riparian habitats common to the Upper Mississippi River National Wildlife and Fish Refuge.
Magnitude and frequency of flooding on the Myakka River, Southwest Florida
Hammett, K.M.; Turner, J.F.; Murphy, W.R.
1978-01-01
Increasing numbers of urban and agricultural developments are being located on waterfront property in the Myakka River flood plain in southwest Florida. Under natural conditions, a large depression, Tatum Sawgrass, was available as a flood storage area in the upper Myakka River basin. Construction of dikes across the lower part of Tatum Sawgrass has restricted use of the depression for temporary storage of Myakka River flood water overflow, and has resulted in increased flood-peak discharges and flood heights in downstream reaches of the Myakka River. The difference between natural and diked condition flood-peak discharges and flood heights is presented to illustrate the effects of the dikes. Flood-peak discharges, water-surface elevations and flood profiles also are provided for diked conditions. Analytical procedures used to evaluate diking effects are described in detail. The study reach includes Myakka River main stem upstream from U.S. Highway 41, near Myakka Shores in Sarasota County, to State Road 70 near Myakka City in Manatee County (including Tatum Sawgrass and Clay Gully), and Blackburn Canal from Venice By-Way to Myakka River. (Woodard-USGS)
Severe winter rings of oak trees (Quercus robur L.) from Central European Russia.
Khasanov, B F
2013-11-01
Oak trees were sampled in a flood plain forest in the valley of the Zapadnaya Dvina (Daugava) river (Tver region, Russia). Annual rings of the time period from 1826 to 2010 were studied. Anatomically distinct rings with a stripe of small-sized cells in the innermost part and narrow earlywood vessels located in three to four rows occurred in 1861, 1862, 1929, 1940, 1942, 1956 and 1979. Deviations of earlywood development were associated with the drop of winter temperature below -42 °C. The percentage of severe winter ring (SWR) occurrence depends upon tree age and decreases from 75.6 % in younger specimens (under 41 years old at the time of the severe winter) to 27.1 % in middle-aged ones (from 41 to 80 years) to 3.5 % in trees older than 80 years. Described anatomical features can be used in the reconstruction of severe winter frequency in the past.
American River Watershed Investigation, California. Volume 8. Appendix T
1991-12-01
American River in 1988. This model was developed for establishing new flood plain information for the Federal Emergency Management Agency for flood...PERTINENT CORRESPONDENCE B PLAN FORMULATION C ECONOMICS D WATER SUPPLY NEEDS E LAND USE Volume 2 F CULTURAL AND PALEONTOLOGICAL RESOURCES G SECTION 404...that the information provided in the Response to Comments Appendix will not be nearly as thorough as the discussions that are presented in the report
Kimbrow, D.R.
2014-01-01
Topographic data at selected areas within the Alabama River flood plain near Montgomery, Alabama, were collected using a truck-mounted mobile terrestrial light detection and ranging system. These data were collected for inclusion in a flood inundation model developed by the National Weather Service in Birmingham, Alabama. Data are presented as ArcGIS point shapefiles with the extension .shp.
Improvement and extension of a radar forest backscattering model
NASA Technical Reports Server (NTRS)
Simonett, David S.; Wang, Yong
1989-01-01
Radar modeling of mangal forest stands, in the Sundarbans area of Southern Bangladesh, was developed. The modeling employs radar system parameters with forest data on tree height, spacing, biomass, species combinations, and water (including slightly conductive water), content both in leaves and trunks of the mangal. For Sundri and Gewa tropical mangal forests, six model components are proposed, which are required to explain the contributions of various forest species combinations in the attenuation and scattering of mangal vegetated nonflooded or flooded surfaces. Statistical data of simulated images were compared with those of SIR-B images both to refine the modeling procedures and to appropriately characterize the model output. The possibility of delineation of flooded or nonflooded boundaries is discussed.
Bottomland Hardwood Forests along the Upper Mississippi River
Yin, Y.; Nelson, J.C.; Lubinski, S.J.
1997-01-01
Bottomland hardwood forests along the United States' Upper Mississippi River have been drastically reduced in acreage and repeatedly logged during the nineteenth and twentieth centuries. Conversion to agricultural land, timber harvesting, and river modifications for flood prevention and for navigation were the primary factors that caused the changes. Navigation structures and flood-prevention levees have altered the fluvial geomorphic dynamics of the river and floodplain system. Restoration and maintenance of the diversity, productivity, and natural regeneration dynamics of the bottomland hardwood forests under the modified river environment represent a major management challenge.
44 CFR 60.22 - Planning considerations for flood-prone areas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... land in relation to the hazards involved, and (iii) does not increase the danger to human life; (2... plain management regulations, each community shall consider at least the following factors— (1) Human...
Stem Cubic-Foot Volume Tables for Tree Species in the Gulf and Atlantic Coastal Plain
Alexander Clark; Ray A. Souter
1996-01-01
Stemwood cubic-foot volume inside bark tables are presented for 14 species and 9 species groups based on equations used to estimate timber sale volumes on national forests in the Gulf and Atlantic Coastal Plain. Tables are based on form class measurement data for 2,728 trees sampled in the Gulf and Atlantic Coastal Plain and taper data collected across the South. A...
Flood tolerance of oak seedlings from bottomland and upland sites
Michael P. Walsh; Jerry Van Sambeek; Mark Coggeshall; David Gwaze
2009-01-01
Artificial regeneration of oak species in floodplains presents numerous challenges because of the seasonal flooding associated with these areas. Utilizing not only flood-tolerant oak species, but also flood tolerant seed sources of the oak species, may serve to enhance seedling survival and growth rates. Despite the importance of these factors to hardwood forest...
The history of widespread decrease in oak dominance exemplified in a grassland--forest landscape
Brice B. Hanberry; Daniel C. Dey; Hong S. He
2014-01-01
Regionally-distinctive open oak forest ecosystems have been replaced either by intensive agriculture and grazing fields or by denser forests throughout eastern North America and Europe. To quantify changes in tree communities and density in the Missouri Plains, a grassland-forest landscape, we used historical surveys from1815 to 1864 and current surveys from 2004 to...
J.L. Chambers; W.H. Conner; R.F. Keim; S.P. Faulkner; J.W. Day; E.S. Gardiner; M.S. Hughes; S.L. King; K.W. McLeod; C.A. Miller; J.A. Nyman; G.P. Shaffer
2006-01-01
Over 345,000 ha of forested swamps occur throughout the Mississippi River Deltaic Plain. Natural and anthropogenic changes in hydrology and geomorphology at local and landscape levels have reduced the productivity in many of these coastal wetland forests areas and have caused the complete loss of forest cover in some places. A summary and interpretation of the...
Old forests and endangered woodpeckers: old-growth in the Southern Coastal Plain
Robert Mitchell; Todd Engstrom; Rebecca Sharitz; Diane De Steven; Kevin Hiers; Robert Cooper; Katherine. Kirkman
2009-01-01
Southern old-growth forests are small and rare, but critical in their support of biodiversity. While the remnant old-growth forests contain diversity that is significant regionally and globally, they most likely represent only a portion of the variety that old forests once sustained. High within-habitat diversity and rarity in the landscape magnify the conservation...
Devendra Amatya; Andy Harrison
2016-01-01
Studies examining potential evapotranspiration (PET) for a mature forest reference compared with standard grass are limited in the current literature. Data from three long-term weather stations located within 10 km of each other in the USDA Forest Service Santee Experimental Forest (SEF) in coastal South Carolina were used to (1) evaluate monthly and annual PET...
Old-growth Montane Longleaf Pine Forest Age Structure: A Preliminary Assessment
J. Morgan Varner; John S. Kush; Ralph S. Meldahl
1998-01-01
Presettlement longleaf pine forests of the Southeast have been described as uneven-aged forests comprised of even-aged patches. Less than 4000 ha of old-growth longleaf forest remains. From these few sites remaining, a limited volume of age related literature has evolved, and these studies have been limited to the Lower Coastal Plain physiographic province. This study...
Status of the Longleaf Pine Forests of the West Gulf Coastal Plain
Kenneth W. Outcalt
1997-01-01
Datafrom the USDA Forest Service, forest inventory and analyses permanent field plot were used to track changes in longleaf pine (Pinuspalustris Mill.) communities in Texas and Louisiana between 1985 and 1995. The decline of longleaf forest has continued in Louisiana. Texas had much less longleaf type in 1985, but unlike Louisiana there has been a small increase in the...
Management and utilization of forest resources in Papua New Guinea
P.B.L. Srivastava
1992-01-01
Papua New Guinea, with an area of about 46.7 million ha and population of 3.7 million, is blessed with a large natural forest resource. Over 80 percent of the land is covered with forests of various types, ranging from swamp and lowland rain forests in coastal plains to alpine vegetation and moss forests in the highlands, most of which are owned by the people. About 15...
Hydraulic analysis, Mad River at State Highway 41, Springfield, Ohio
Mayo, Ronald I.
1977-01-01
A hydraulic analysis of the lad River in a reach at Springfield, Ohio was made to determine the effects of relocating State Highway 41 in 1S76. The main channel was cleaned by dredging in the vicinity cf the new highway bridge and at the Detroit, Toledo and Ironton Railway bridge upstream. The new highway was placed on a high fill with relief structures for flood plain drainage consisting of a 12-foot corrugated metal pipe culvert and a bridge opening to accommodate the Detroit, Toledo and Ironton Railway and a property access road. The effect of the new highway embankment on drainage from the flood plain was requested. Also requested was the effect that might be expected on the elevation of flood waters above the new highway embankment if the access road through the new highway embankment were raised.The study indicates that the improvement in the capacity of the main channel to carry water was such that, up to a discharge equivalent to a 25-year frequency flood, the water-surface elevation in the reach upstream from the Detroit, Toledo and Ironton Railway bridge would be about 0.6 foot lower than under conditions prior to the construction on State Highway 41. Diversion through the Mad River left bank levee break above the Detroit, Toledo and Ironton Railway bridge to the flood Flain would be decreased about one-half in terms of rate of discharge in cubic feet per second. The maximum difference in elevation cf the flood water between the upstream and downstream side of the new State Highway 41 embankment would be about 0.2 foot, with an additional 0.4 foot to be expected if the access road were raised 1.5 feet.
Nagler, Pamela L.; Doody, Tanya M.; Glenn, Edward P.; Jarchow, Christopher J.; Barreto-Munoz, Armando; Didan, Kamel
2016-01-01
Floodplain red gum forests (Eucalyptus camaldulensis plus associated grasses, reeds and sedges) are sites of high biodiversity in otherwise arid regions of southeastern Australia. They depend on periodic floods from rivers, but dams and diversions have reduced flood frequencies and volumes, leading to deterioration of trees and associated biota. There is a need to determine their water requirements so environmental flows can be administered to maintain or restore the forests. Their water requirements include the frequency and extent of overbank flooding, which recharges the floodplain soils with water, as well as the actual amount of water consumed in evapotranspiration (ET). We estimated the flooding requirements and ET for a 38 134 ha area of red gum forest fed by the Murrumbidgee River in Yanga National Park, New South Wales. ET was estimated by three methods: sap flux sensors placed in individual trees; a remote sensing method based on the Enhanced Vegetation Index from MODIS satellite imagery and a water balance method based on differences between river flows into and out of the forest. The methods gave comparable estimates yet covered different spatial and temporal scales. We estimated flood frequency and volume requirements by comparing Normalized Difference Vegetation Index values from Landsat images with flood history from 1995 to 2014, which included both wet periods and dry periods. ET during wet years is about 50% of potential ET but is much less in dry years because of the trees' ability to control stomatal conductance. Based on our analyses plus other studies, red gum trees at this location require environmental flows of 2000 GL yr−1 every other year, with peak flows of 20 000 ML d−1, to produce flooding sufficient to keep them in good condition. However, only about 120–200 GL yr−1 of river water is consumed in ET, with the remainder flowing out of the forest where it enters the Murray River system.
NASA Astrophysics Data System (ADS)
Beyeler, J. D.; Rossi, R. K.; Kennard, P. M.; Beason, S. R.
2013-12-01
Climate change is drastically affecting the alpine landscape of Mount Rainier, encouraging glacial retreat, changes in snowpack thickness and longevity, and sediment delivery to downstream fluvial systems, leading to an extremely transport limited system and aggradation of the river valleys. River aggradation encourages devastating interactions between the pro-glacial braided fluvial systems and streamside floodplain ecosystems, in most places occupied by old-growth conifer forests. Current aggradation rates of the channels, bordered by late seral stage riparian forests, inhibit floodplain development, leading to an inverted relationship between perched river channels and lower-elevation adjacent floodplains. This disequilibrium creates a steeper gradient laterally towards the floodplains, rather than downstream; promoting flooding of streamside forest, removal and burial of vegetation with coarse alluvium, incision of avulsion channels, tree mortality, wood recruitment to channels, and ultimately widening the alluviated valley towards the glacially carved hillslopes. Aggradation and loss of streamside old-growth forest poses a significant problem to park infrastructure (e.g. roads, trails, and campgrounds) due to flood damage with as frequent as a two-year event. Other park rivers, the White River and Tahoma Creek, characterize two end-member cases. Despite an extremely perched channel, the White River is relatively stable; experiencing small avulsions while the old-growth streamside forest has remained mostly intact. These relatively small avulsions however severely impact park infrastructure, causing extensive flood damage and closure of the heavily trafficked state highway. Conversely debris flows on Tahoma Creek destroyed the streamside forest and migration across the valley is uninhibited. Mature streamside forests tend to oppose avulsions, sieving wood at the channel margins, promoting sediment deposition and deflection of erosive flows. Our study seeks to understand the Carbon River avulsion vulnerability, relative to White River and Tahoma Creek, and whether recent avulsions are a harbinger of a threshold loss of riparian forest leading to unfettered future river channel shifting. To this end, we are analyzing historic aerial imagery, multiple LiDAR datasets, and the flood record as well as field mapping channels to identify historically active, inactive, and abandoned avulsions through time and in relation to susceptibility of forest mortality and infrastructure destruction by mainstem avulsions of the Carbon River and widening of the river valley. Our work contributes to the understanding of river avulsions and landscape response to climate change via channel migration due to interactions between sediment aggradation, flood events, and interactions with streamside forests.
Rosa, Sarah N.; Oki, Delwyn S.
2010-01-01
Reliable estimates of the magnitude and frequency of floods are necessary for the safe and efficient design of roads, bridges, water-conveyance structures, and flood-control projects and for the management of flood plains and flood-prone areas. StreamStats provides a simple, fast, and reproducible method to define drainage-basin characteristics and estimate the frequency and magnitude of peak discharges in Hawaii?s streams using recently developed regional regression equations. StreamStats allows the user to estimate the magnitude of floods for streams where data from stream-gaging stations do not exist. Existing estimates of the magnitude and frequency of peak discharges in Hawaii can be improved with continued operation of existing stream-gaging stations and installation of additional gaging stations for areas where limited stream-gaging data are available.
Coffman, David K.; Malstaff, Greg; Heitmuller, Franklin T.
2011-01-01
The U.S. Geological Survey, in cooperation with the Texas Water Development Board, described and characterized examples of geomorphic units within the channels and alluvial valleys of Texas Gulf Coastal Plain rivers using a geomorphic unit classification scale that differentiates geomorphic units on the basis of their location either outside or inside the river channel. The geomorphic properties of a river system determine the distribution and type of potential habitat both within and adjacent to the channel. This report characterizes the geomorphic units contained in the river channels and alluvial valleys of Texas Gulf Coastal Plain rivers in the context of the River Styles framework. This report is intended to help Texas Instream Flow Program practitioners, river managers, ecologists and biologists, and others interested in the geomorphology and the physical processes of the rivers of the Texas Gulf Coastal Plain (1) gain insights into how geomorphic units develop and adjust spatially and temporally, and (2) be able to recognize common geomorphic units from the examples cataloged in this report. Recent aerial imagery (high-resolution digital orthoimagery) collected in 2008 and 2009 were inspected by using geographic information system software to identify representative examples of the types of geomorphic units that occurred in the study area. Geomorphic units outside the channels of Texas Gulf Coastal Plain rivers are called \\"valley geomorphic units\\" in this report. Valley geomorphic units for the Texas Gulf Coastal Plain rivers described in this report are terraces, flood plains, crevasses and crevasse splays, flood-plain depressions, tie channels, tributaries, paleochannels, anabranches, distributaries, natural levees, neck cutoffs, oxbow lakes, and constructed channels. Channel geomorphic units occur in the river channel and are subject to frequent stresses associated with flowing water and sediment transport; they adjust (change) relatively quickly in response to short-term variations in flow. Channel geomorphic units described in this report are channel banks, benches and ledges, bank failures, point bars, cross-bar channels, channel bars, exposed bedrock, pools, runs, and crossovers.
NASA Astrophysics Data System (ADS)
Klimova, N. V.; Chernova, N. A.; Pologova, N. N.
2018-03-01
Paludified forests formed in transitional forest-bog zone aren’t studied enough, inspite of its high expected diversity and large areas in the south of boreal forest zone of West Siberia. In this article wet birch (Betula pubescens) forests of forest-bog ecotones of eutrophic paludification are investigated on Vasyugan plain with nutrient-rich calcareous clays as soil-forming rocks. Species diversity and ecocoenotic structure of these phytocoenoses are discussed. They correlated with wetness and nutrient-availability of habitats evaluated with indicator values of plants. The participation of hydrophylous species is increasing as wetness of habitats increasing in the forest-to-bog direction like in mesotrophic paludification series. However the number of species is higher in the phytocoenoses of eutrophic paludification. The share of species required to nutrient availability is also higher, both in number and in abundance. A lot of these species are usual for eutrophic boreal forested swamps with groundwater input and absent in forests of mesotrophic paludification. Accordingly the nutrient-availability of habitats is also higher. All these features we connect with birch to be a forest forming species instead of dark-coniferous and with the influence of nutrient-rich parent rocks, which is evident in forest-bog ecotones of Vasyugan plain gradually decreasing together with peat horizon thickening.
STS-55 Earth observation of agricultural development in northern Argentina
NASA Technical Reports Server (NTRS)
1993-01-01
STS-55 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, is of agricultural development in northern Argentina. This photograph is from a mapping strip of photographs acquired by the STS-55 crew. This mapping strip runs from the 'eyelash forests' of the Bolivian Andes, southeast across the Chaco Plains, and into the upper Parana River Basin of north-central Argentina. The formerly densely forested areas between the upper Rio Pilcomayo and the Rio Teuco of NW Argentina rest on deep, rich alluvial and loess deposits. These modern soils were carried into the region by rivers from the Andes and by dust storms from large playa areas of the Altiplano (high plains) of Peru and Boliva. In this scene, representative of the long mapping strip, the process of converting forests to agriculture is far advanced. The original road network, a series of grids laid out in the forest, has nearly coalesced into a farm and ranch landscape. Some few relict forests are still visible as distin
Progress in and prospects for fluvial flood modelling.
Wheater, H S
2002-07-15
Recent floods in the UK have raised public and political awareness of flood risk. There is an increasing recognition that flood management and land-use planning are linked, and that decision-support modelling tools are required to address issues of climate and land-use change for integrated catchment management. In this paper, the scientific context for fluvial flood modelling is discussed, current modelling capability is considered and research challenges are identified. Priorities include (i) appropriate representation of spatial precipitation, including scenarios of climate change; (ii) development of a national capability for continuous hydrological simulation of ungauged catchments; (iii) improved scientific understanding of impacts of agricultural land-use and land-management change, and the development of new modelling approaches to represent those impacts; (iv) improved representation of urban flooding, at both local and catchment scale; (v) appropriate parametrizations for hydraulic simulation of in-channel and flood-plain flows, assimilating available ground observations and remotely sensed data; and (vi) a flexible decision-support modelling framework, incorporating developments in computing, data availability, data assimilation and uncertainty analysis.
Silviculture is the primary land use within many Coastal Plain watersheds of the southeastern United States, where most forested wetlands are found along headwater intermittent streams. Our study compared invertebrate assemblages and breakdown of buried detritus (leaves, wood, a...
44 CFR 60.4 - Flood plain management criteria for mudslide (i.e., mudflow)-prone areas.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., that (i) a site investigation and further review be made by persons qualified in geology and soils... submitted for all corrective measures, accompanied by supporting soils engineering and geology reports...
44 CFR 60.4 - Flood plain management criteria for mudslide (i.e., mudflow)-prone areas.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., that (i) a site investigation and further review be made by persons qualified in geology and soils... submitted for all corrective measures, accompanied by supporting soils engineering and geology reports...
44 CFR 60.4 - Flood plain management criteria for mudslide (i.e., mudflow)-prone areas.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., that (i) a site investigation and further review be made by persons qualified in geology and soils... submitted for all corrective measures, accompanied by supporting soils engineering and geology reports...
44 CFR 60.4 - Flood plain management criteria for mudslide (i.e., mudflow)-prone areas.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., that (i) a site investigation and further review be made by persons qualified in geology and soils... submitted for all corrective measures, accompanied by supporting soils engineering and geology reports...