Mathematical modeling of high-pH chemical flooding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhuyan, D.; Lake, L.W.; Pope, G.A.
1990-05-01
This paper describes a generalized compositional reservoir simulator for high-pH chemical flooding processes. This simulator combines the reaction chemistry associated with these processes with the extensive physical- and flow-property modeling schemes of an existing micellar/polymer flood simulator, UTCHEM. Application of the model is illustrated for cases from a simple alkaline preflush to surfactant-enhanced alkaline-polymer flooding.
The impact of bathymetry input on flood simulations
NASA Astrophysics Data System (ADS)
Khanam, M.; Cohen, S.
2017-12-01
Flood prediction and mitigation systems are inevitable for improving public safety and community resilience all over the worldwide. Hydraulic simulations of flood events are becoming an increasingly efficient tool for studying and predicting flood events and susceptibility. A consistent limitation of hydraulic simulations of riverine dynamics is the lack of information about river bathymetry as most terrain data record water surface elevation. The impact of this limitation on the accuracy on hydraulic simulations of flood has not been well studies over a large range of flood magnitude and modeling frameworks. Advancing our understanding of this topic is timely given emerging national and global efforts for developing automated flood predictions systems (e.g. NOAA National Water Center). Here we study the response of flood simulation to the incorporation of different bathymetry and floodplain surveillance source. Different hydraulic models are compared, Mike-Flood, a 2D hydrodynamic model, and GSSHA, a hydrology/hydraulics model. We test a hypothesis that the impact of inclusion/exclusion of bathymetry data on hydraulic model results will vary in its magnitude as a function of river size. This will allow researcher and stake holders more accurate predictions of flood events providing useful information that will help local communities in a vulnerable flood zone to mitigate flood hazards. Also, it will help to evaluate the accuracy and efficiency of different modeling frameworks and gage their dependency on detailed bathymetry input data.
An integrated modeling approach to predict flooding on urban basin.
Dey, Ashis Kumar; Kamioka, Seiji
2007-01-01
Correct prediction of flood extents in urban catchments has become a challenging issue. The traditional urban drainage models that consider only the sewerage-network are able to simulate the drainage system correctly until there is no overflow from the network inlet or manhole. When such overflows exist due to insufficient drainage capacity of downstream pipes or channels, it becomes difficult to reproduce the actual flood extents using these traditional one-phase simulation techniques. On the other hand, the traditional 2D models that simulate the surface flooding resulting from rainfall and/or levee break do not consider the sewerage network. As a result, the correct flooding situation is rarely addressed from those available traditional 1D and 2D models. This paper presents an integrated model that simultaneously simulates the sewerage network, river network and 2D mesh network to get correct flood extents. The model has been successfully applied into the Tenpaku basin (Nagoya, Japan), which experienced severe flooding with a maximum flood depth more than 1.5 m on September 11, 2000 when heavy rainfall, 580 mm in 28 hrs (return period > 100 yr), occurred over the catchments. Close agreements between the simulated flood depths and observed data ensure that the present integrated modeling approach is able to reproduce the urban flooding situation accurately, which rarely can be obtained through the traditional 1D and 2D modeling approaches.
Real-time simulation of large-scale floods
NASA Astrophysics Data System (ADS)
Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.
2016-08-01
According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.
NASA Astrophysics Data System (ADS)
Tanaka, T.; Tachikawa, Y.; Ichikawa, Y.; Yorozu, K.
2017-12-01
Flood is one of the most hazardous disasters and causes serious damage to people and property around the world. To prevent/mitigate flood damage through early warning system and/or river management planning, numerical modelling of flood-inundation processes is essential. In a literature, flood-inundation models have been extensively developed and improved to achieve flood flow simulation with complex topography at high resolution. With increasing demands on flood-inundation modelling, its computational burden is now one of the key issues. Improvements of computational efficiency of full shallow water equations are made from various perspectives such as approximations of the momentum equations, parallelization technique, and coarsening approaches. To support these techniques and more improve the computational efficiency of flood-inundation simulations, this study proposes an Automatic Domain Updating (ADU) method of 2-D flood-inundation simulation. The ADU method traces the wet and dry interface and automatically updates the simulation domain in response to the progress and recession of flood propagation. The updating algorithm is as follow: first, to register the simulation cells potentially flooded at initial stage (such as floodplains nearby river channels), and then if a registered cell is flooded, to register its surrounding cells. The time for this additional process is saved by checking only cells at wet and dry interface. The computation time is reduced by skipping the processing time of non-flooded area. This algorithm is easily applied to any types of 2-D flood inundation models. The proposed ADU method is implemented to 2-D local inertial equations for the Yodo River basin, Japan. Case studies for two flood events show that the simulation is finished within two to 10 times smaller time showing the same result as that without the ADU method.
Validation of 2D flood models with insurance claims
NASA Astrophysics Data System (ADS)
Zischg, Andreas Paul; Mosimann, Markus; Bernet, Daniel Benjamin; Röthlisberger, Veronika
2018-02-01
Flood impact modelling requires reliable models for the simulation of flood processes. In recent years, flood inundation models have been remarkably improved and widely used for flood hazard simulation, flood exposure and loss analyses. In this study, we validate a 2D inundation model for the purpose of flood exposure analysis at the river reach scale. We validate the BASEMENT simulation model with insurance claims using conventional validation metrics. The flood model is established on the basis of available topographic data in a high spatial resolution for four test cases. The validation metrics were calculated with two different datasets; a dataset of event documentations reporting flooded areas and a dataset of insurance claims. The model fit relating to insurance claims is in three out of four test cases slightly lower than the model fit computed on the basis of the observed inundation areas. This comparison between two independent validation data sets suggests that validation metrics using insurance claims can be compared to conventional validation data, such as the flooded area. However, a validation on the basis of insurance claims might be more conservative in cases where model errors are more pronounced in areas with a high density of values at risk.
Global SWOT Data Assimilation of River Hydrodynamic Model; the Twin Simulation Test of CaMa-Flood
NASA Astrophysics Data System (ADS)
Ikeshima, D.; Yamazaki, D.; Kanae, S.
2016-12-01
CaMa-Flood is a global scale model for simulating hydrodynamics in large scale rivers. It can simulate river hydrodynamics such as river discharge, flooded area, water depth and so on by inputting water runoff derived from land surface model. Recently many improvements at parameters or terrestrial data are under process to enhance the reproducibility of true natural phenomena. However, there are still some errors between nature and simulated result due to uncertainties in each model. SWOT (Surface water and Ocean Topography) is a satellite, which is going to be launched in 2021, can measure open water surface elevation. SWOT observed data can be used to calibrate hydrodynamics model at river flow forecasting and is expected to improve model's accuracy. Combining observation data into model to calibrate is called data assimilation. In this research, we developed data-assimilated river flow simulation system in global scale, using CaMa-Flood as river hydrodynamics model and simulated SWOT as observation data. Generally at data assimilation, calibrating "model value" with "observation value" makes "assimilated value". However, the observed data of SWOT satellite will not be available until its launch in 2021. Instead, we simulated the SWOT observed data using CaMa-Flood. Putting "pure input" into CaMa-Flood produce "true water storage". Extracting actual daily swath of SWOT from "true water storage" made simulated observation. For "model value", we made "disturbed water storage" by putting "noise disturbed input" to CaMa-Flood. Since both "model value" and "observation value" are made by same model, we named this twin simulation. At twin simulation, simulated observation of "true water storage" is combined with "disturbed water storage" to make "assimilated value". As the data assimilation method, we used ensemble Kalman filter. If "assimilated value" is closer to "true water storage" than "disturbed water storage", the data assimilation can be marked effective. Also by changing the input disturbance of "disturbed water storage", acceptable rate of uncertainty at the input may be discussed.
A high-resolution physically-based global flood hazard map
NASA Astrophysics Data System (ADS)
Kaheil, Y.; Begnudelli, L.; McCollum, J.
2016-12-01
We present the results from a physically-based global flood hazard model. The model uses a physically-based hydrologic model to simulate river discharges, and 2D hydrodynamic model to simulate inundation. The model is set up such that it allows the application of large-scale flood hazard through efficient use of parallel computing. For hydrology, we use the Hillslope River Routing (HRR) model. HRR accounts for surface hydrology using Green-Ampt parameterization. The model is calibrated against observed discharge data from the Global Runoff Data Centre (GRDC) network, among other publicly-available datasets. The parallel-computing framework takes advantage of the river network structure to minimize cross-processor messages, and thus significantly increases computational efficiency. For inundation, we implemented a computationally-efficient 2D finite-volume model with wetting/drying. The approach consists of simulating flood along the river network by forcing the hydraulic model with the streamflow hydrographs simulated by HRR, and scaled up to certain return levels, e.g. 100 years. The model is distributed such that each available processor takes the next simulation. Given an approximate criterion, the simulations are ordered from most-demanding to least-demanding to ensure that all processors finalize almost simultaneously. Upon completing all simulations, the maximum envelope of flood depth is taken to generate the final map. The model is applied globally, with selected results shown from different continents and regions. The maps shown depict flood depth and extent at different return periods. These maps, which are currently available at 3 arc-sec resolution ( 90m) can be made available at higher resolutions where high resolution DEMs are available. The maps can be utilized by flood risk managers at the national, regional, and even local levels to further understand their flood risk exposure, exercise certain measures of mitigation, and/or transfer the residual risk financially through flood insurance programs.
Flood Scenario Simulation and Disaster Estimation of Ba-Ma Creek Watershed in Nantou County, Taiwan
NASA Astrophysics Data System (ADS)
Peng, S. H.; Hsu, Y. K.
2018-04-01
The present study proposed several scenario simulations of flood disaster according to the historical flood event and planning requirement in Ba-Ma Creek Watershed located in Nantou County, Taiwan. The simulations were made using the FLO-2D model, a numerical model which can compute the velocity and depth of flood on a two-dimensional terrain. Meanwhile, the calculated data were utilized to estimate the possible damage incurred by the flood disaster. The results thus obtained can serve as references for disaster prevention. Moreover, the simulated results could be employed for flood disaster estimation using the method suggested by the Water Resources Agency of Taiwan. Finally, the conclusions and perspectives are presented.
Simulated CONUS Flash Flood Climatologies from Distributed Hydrologic Models
NASA Astrophysics Data System (ADS)
Flamig, Z.; Gourley, J. J.; Vergara, H. J.; Kirstetter, P. E.; Hong, Y.
2016-12-01
This study will describe a CONUS flash flood climatology created over the period from 2002 through 2011. The MRMS reanalysis precipitation dataset was used as forcing into the Ensemble Framework For Flash Flood Forecasting (EF5). This high resolution 1-sq km 5-minute dataset is ideal for simulating flash floods with a distributed hydrologic model. EF5 features multiple water balance components including SAC-SMA, CREST, and a hydrophobic model all coupled with kinematic wave routing. The EF5/SAC-SMA and EF5/CREST water balance schemes were used for the creation of dual flash flood climatologies based on the differing water balance principles. For the period from 2002 through 2011 the daily maximum streamflow, unit streamflow, and time of peak streamflow was stored along with the minimum soil moisture. These variables are used to describe the states of the soils right before a flash flood event and the peak streamflow that was simulated during the flash flood event. The results will be shown, compared and contrasted. The resulting model simulations will be verified on basins less than 1,000-sq km with USGS gauges to ensure the distributed hydrologic models are reliable. The results will also be compared spatially to Storm Data flash flood event observations to judge the degree of agreement between the simulated climatologies and observations.
NASA Astrophysics Data System (ADS)
Ye, L.; Wu, J.; Wang, L.; Song, T.; Ji, R.
2017-12-01
Flooding in small-scale watershed in hilly area is characterized by short time periods and rapid rise and recession due to the complex underlying surfaces, various climate type and strong effect of human activities. It is almost impossible for a single hydrological model to describe the variation of flooding in both time and space accurately for all the catchments in hilly area because the hydrological characteristics can vary significantly among different catchments. In this study, we compare the performance of 5 hydrological models with varying degrees of complexity for simulation of flash flood for 14 small-scale watershed in China in order to find the relationship between the applicability of the hydrological models and the catchments characteristics. Meanwhile, given the fact that the hydrological data is sparse in hilly area, the effect of precipitation data, DEM resolution and their interference on the uncertainty of flood simulation is also illustrated. In general, the results showed that the distributed hydrological model (HEC-HMS in this study) performed better than the lumped hydrological models. Xinajiang and API models had good simulation for the humid catchments when long-term and continuous rainfall data is provided. Dahuofang model can simulate the flood peak well while the runoff generation module is relatively poor. In addition, the effect of diverse modelling data on the simulations is not simply superposed, and there is a complex interaction effect among different modelling data. Overall, both the catchment hydrological characteristics and modelling data situation should be taken into consideration in order to choose the suitable hydrological model for flood simulation for small-scale catchment in hilly area.
Uncertainty Analysis of A Flood Risk Mapping Procedure Applied In Urban Areas
NASA Astrophysics Data System (ADS)
Krause, J.; Uhrich, S.; Bormann, H.; Diekkrüger, B.
In the framework of IRMA-Sponge program the presented study was part of the joint research project FRHYMAP (flood risk and hydrological mapping). A simple con- ceptual flooding model (FLOODMAP) has been developed to simulate flooded areas besides rivers within cities. FLOODMAP requires a minimum of input data (digital el- evation model (DEM), river line, water level plain) and parameters and calculates the flood extent as well as the spatial distribution of flood depths. of course the simulated model results are affected by errors and uncertainties. Possible sources of uncertain- ties are the model structure, model parameters and input data. Thus after the model validation (comparison of simulated water to observed extent, taken from airborne pictures) the uncertainty of the essential input data set (digital elevation model) was analysed. Monte Carlo simulations were performed to assess the effect of uncertain- ties concerning the statistics of DEM quality and to derive flooding probabilities from the set of simulations. The questions concerning a minimum resolution of a DEM re- quired for flood simulation and concerning the best aggregation procedure of a given DEM was answered by comparing the results obtained using all available standard GIS aggregation procedures. Seven different aggregation procedures were applied to high resolution DEMs (1-2m) in three cities (Bonn, Cologne, Luxembourg). Basing on this analysis the effect of 'uncertain' DEM data was estimated and compared with other sources of uncertainties. Especially socio-economic information and monetary transfer functions required for a damage risk analysis show a high uncertainty. There- fore this study helps to analyse the weak points of the flood risk and damage risk assessment procedure.
A Hydrological Modeling Framework for Flood Risk Assessment for Japan
NASA Astrophysics Data System (ADS)
Ashouri, H.; Chinnayakanahalli, K.; Chowdhary, H.; Sen Gupta, A.
2016-12-01
Flooding has been the most frequent natural disaster that claims lives and imposes significant economic losses to human societies worldwide. Japan, with an annual rainfall of up to approximately 4000 mm is extremely vulnerable to flooding. The focus of this research is to develop a macroscale hydrologic model for simulating flooding toward an improved understanding and assessment of flood risk across Japan. The framework employs a conceptual hydrological model, known as the Probability Distributed Model (PDM), as well as the Muskingum-Cunge flood routing procedure for simulating streamflow. In addition, a Temperature-Index model is incorporated to account for snowmelt and its contribution to streamflow. For an efficient calibration of the model, in terms of computational timing and convergence of the parameters, a set of A Priori parameters is obtained based on the relationships between the model parameters and the physical properties of watersheds. In this regard, we have implemented a particle tracking algorithm and a statistical model which use high resolution Digital Terrain Models to estimate different time related parameters of the model such as time to peak of the unit hydrograph. In addition, global soil moisture and depth data are used to generate A Priori estimation of maximum soil moisture capacity, an important parameter of the PDM model. Once the model is calibrated, its performance is examined during the Typhoon Nabi which struck Japan in September 2005 and caused severe flooding throughout the country. The model is also validated for the extreme precipitation event in 2012 which affected Kyushu. In both cases, quantitative measures show that simulated streamflow depicts good agreement with gauge-based observations. The model is employed to simulate thousands of possible flood events for the entire Japan which makes a basis for a comprehensive flood risk assessment and loss estimation for the flood insurance industry.
A web GIS based integrated flood assessment modeling tool for coastal urban watersheds
NASA Astrophysics Data System (ADS)
Kulkarni, A. T.; Mohanty, J.; Eldho, T. I.; Rao, E. P.; Mohan, B. K.
2014-03-01
Urban flooding has become an increasingly important issue in many parts of the world. In this study, an integrated flood assessment model (IFAM) is presented for the coastal urban flood simulation. A web based GIS framework has been adopted to organize the spatial datasets for the study area considered and to run the model within this framework. The integrated flood model consists of a mass balance based 1-D overland flow model, 1-D finite element based channel flow model based on diffusion wave approximation and a quasi 2-D raster flood inundation model based on the continuity equation. The model code is written in MATLAB and the application is integrated within a web GIS server product viz: Web Gram Server™ (WGS), developed at IIT Bombay, using Java, JSP and JQuery technologies. Its user interface is developed using open layers and the attribute data are stored in MySQL open source DBMS. The model is integrated within WGS and is called via Java script. The application has been demonstrated for two coastal urban watersheds of Navi Mumbai, India. Simulated flood extents for extreme rainfall event of 26 July, 2005 in the two urban watersheds of Navi Mumbai city are presented and discussed. The study demonstrates the effectiveness of the flood simulation tool in a web GIS environment to facilitate data access and visualization of GIS datasets and simulation results.
Hydraulic modeling of flow impact on bridge structures: a case study on Citarum bridge
NASA Astrophysics Data System (ADS)
Siregar, R. I.
2018-02-01
Flood waves because of the rapid catchment response to high intense rainfall, breaches of flood defenses may induce huge impact forces on structures, causing structural damage or even failures. Overflowing stream that passes over the bridge, it means to discharge flood water level is smaller than the capacity of the river flow. In this study, the researches present the methodological approach of flood modeling on bridge structures. The amount of force that obtained because of the hydrostatic pressure received by the bridge at the time of the flood caused the bridge structure disrupted. This paper presents simulation of flow impact on bridge structures with some event flood conditions. Estimating the hydrostatic pressure developed new model components, to quantify the flow impact on structures. Flow parameters applied the model for analyzing, such as discharge, velocity, and water level or head that effect of bridge structures. The simulation will illustrate the capability of bridge structures with some event flood river and observe the behavior of the flow that occurred during the flood. Hydraulic flood modeling use HEC-RAS for simulation. This modeling will describe the impact on bridge structures. Based on the above modelling resulted, in 2008 has flood effect more than other years on the Citarum Bridge, because its flow overflow on the bridge.
Analysis on flood generation processes by means of a continuous simulation model
NASA Astrophysics Data System (ADS)
Fiorentino, M.; Gioia, A.; Iacobellis, V.; Manfreda, S.
2006-03-01
In the present research, we exploited a continuous hydrological simulation to investigate on key variables responsible of flood peak formation. With this purpose, a distributed hydrological model (DREAM) is used in cascade with a rainfall generator (IRP-Iterated Random Pulse) to simulate a large number of extreme events providing insight into the main controls of flood generation mechanisms. Investigated variables are those used in theoretically derived probability distribution of floods based on the concept of partial contributing area (e.g. Iacobellis and Fiorentino, 2000). The continuous simulation model is used to investigate on the hydrological losses occurring during extreme events, the variability of the source area contributing to the flood peak and its lag-time. Results suggest interesting simplification for the theoretical probability distribution of floods according to the different climatic and geomorfologic environments. The study is applied to two basins located in Southern Italy with different climatic characteristics.
NASA Astrophysics Data System (ADS)
Schumann, G.
2016-12-01
Routinely obtaining real-time 2-D inundation patterns of a flood event at a meaningful spatial resolution and over large scales is at the moment only feasible with either operational aircraft flights or satellite imagery. Of course having model simulations of floodplain inundation available to complement the remote sensing data is highly desirable, for both event re-analysis and forecasting event inundation. Using the Texas 2015 flood disaster, we demonstrate the value of multi-scale EO data for large scale 2-D floodplain inundation modeling and forecasting. A dynamic re-analysis of the Texas 2015 flood disaster was run using a 2-D flood model developed for accurate large scale simulations. We simulated the major rivers entering the Gulf of Mexico and used flood maps produced from both optical and SAR satellite imagery to examine regional model sensitivities and assess associated performance. It was demonstrated that satellite flood maps can complement model simulations and add value, although this is largely dependent on a number of important factors, such as image availability, regional landscape topology, and model uncertainty. In the preferred case where model uncertainty is high, landscape topology is complex (i.e. urbanized coastal area) and satellite flood maps are available (in case of SAR for instance), satellite data can significantly reduce model uncertainty by identifying the "best possible" model parameter set. However, most often the situation is occurring where model uncertainty is low and spatially contiguous flooding can be mapped from satellites easily enough, such as in rural large inland river floodplains. Consequently, not much value from satellites can be added. Nevertheless, where a large number of flood maps are available, model credibility can be increased substantially. In the case presented here this was true for at least 60% of the many thousands of kilometers of river flow length simulated, where satellite flood maps existed. The next steps of this project is to employ a technique termed "targeted observation" approach, which is an assimilation based procedure that allows quantifying the impact observations have on model predictions at the local scale and also along the entire river system, when assimilated with the model at specific "overpass" locations.
Hydrograph simulation models of the Hillsborough and Alafia Rivers, Florida: a preliminary report
Turner, James F.
1972-01-01
Mathematical (digital) models that simulate flood hydrographs from rainfall records have been developed for the following gaging stations in the Hillsborough and Alafia River basins of west-central Florida: Hillsborough River near Tampa, Alafia River at Lithia, and north Prong Alafia River near Keysville. These models, which were developed from historical streamflow and and rainfall records, are based on rainfall-runoff and unit-hydrograph procedures involving an arbitrary separation of the flood hydrograph. These models assume the flood hydrograph to be composed of only two flow components, direct (storm) runoff, and base flow. Expressions describing these two flow components are derived from streamflow and rainfall records and are combined analytically to form algorithms (models), which are programmed for processing on a digital computing system. Most Hillsborough and Alafia River flood discharges can be simulated with expected relative errors less than or equal to 30 percent and flood peaks can be simulated with average relative errors less than 15 percent. Because of the inadequate rainfall network that is used in obtaining input data for the North Prong Alafia River model, simulated peaks are frequently in error by more than 40 percent, particularly for storms having highly variable areal rainfall distribution. Simulation errors are the result of rainfall sample errors and, to a lesser extent, model inadequacy. Data errors associated with the determination of mean basin precipitation are the result of the small number and poor areal distribution of rainfall stations available for use in the study. Model inadequacy, however, is attributed to the basic underlying theory, particularly the rainfall-runoff relation. These models broaden and enhance existing water-management capabilities within these basins by allowing the establishment and implementation of programs providing for continued development in these areas. Specifically, the models serve not only as a basis for forecasting floods, but also for simulating hydrologic information needed in flood-plain mapping and delineating and evaluating alternative flood control and abatement plans.
Evaluation of various modelling approaches in flood routing simulation and flood area mapping
NASA Astrophysics Data System (ADS)
Papaioannou, George; Loukas, Athanasios; Vasiliades, Lampros; Aronica, Giuseppe
2016-04-01
An essential process of flood hazard analysis and mapping is the floodplain modelling. The selection of the modelling approach, especially, in complex riverine topographies such as urban and suburban areas, and ungauged watersheds may affect the accuracy of the outcomes in terms of flood depths and flood inundation area. In this study, a sensitivity analysis implemented using several hydraulic-hydrodynamic modelling approaches (1D, 2D, 1D/2D) and the effect of modelling approach on flood modelling and flood mapping was investigated. The digital terrain model (DTMs) used in this study was generated from Terrestrial Laser Scanning (TLS) point cloud data. The modelling approaches included 1-dimensional hydraulic-hydrodynamic models (1D), 2-dimensional hydraulic-hydrodynamic models (2D) and the coupled 1D/2D. The 1D hydraulic-hydrodynamic models used were: HECRAS, MIKE11, LISFLOOD, XPSTORM. The 2D hydraulic-hydrodynamic models used were: MIKE21, MIKE21FM, HECRAS (2D), XPSTORM, LISFLOOD and FLO2d. The coupled 1D/2D models employed were: HECRAS(1D/2D), MIKE11/MIKE21(MIKE FLOOD platform), MIKE11/MIKE21 FM(MIKE FLOOD platform), XPSTORM(1D/2D). The validation process of flood extent achieved with the use of 2x2 contingency tables between simulated and observed flooded area for an extreme historical flash flood event. The skill score Critical Success Index was used in the validation process. The modelling approaches have also been evaluated for simulation time and requested computing power. The methodology has been implemented in a suburban ungauged watershed of Xerias river at Volos-Greece. The results of the analysis indicate the necessity of sensitivity analysis application with the use of different hydraulic-hydrodynamic modelling approaches especially for areas with complex terrain.
NASA Astrophysics Data System (ADS)
Li, J.
2017-12-01
Large-watershed flood simulation and forecasting is very important for a distributed hydrological model in the application. There are some challenges including the model's spatial resolution effect, model performance and accuracy and so on. To cope with the challenge of the model's spatial resolution effect, different model resolution including 1000m*1000m, 600m*600m, 500m*500m, 400m*400m, 200m*200m were used to build the distributed hydrological model—Liuxihe model respectively. The purpose is to find which one is the best resolution for Liuxihe model in Large-watershed flood simulation and forecasting. This study sets up a physically based distributed hydrological model for flood forecasting of the Liujiang River basin in south China. Terrain data digital elevation model (DEM), soil type and land use type are downloaded from the website freely. The model parameters are optimized by using an improved Particle Swarm Optimization(PSO) algorithm; And parameter optimization could reduce the parameter uncertainty that exists for physically deriving model parameters. The different model resolution (200m*200m—1000m*1000m ) are proposed for modeling the Liujiang River basin flood with the Liuxihe model in this study. The best model's spatial resolution effect for flood simulation and forecasting is 200m*200m.And with the model's spatial resolution reduction, the model performance and accuracy also become worse and worse. When the model resolution is 1000m*1000m, the flood simulation and forecasting result is the worst, also the river channel divided based on this resolution is differs from the actual one. To keep the model with an acceptable performance, minimum model spatial resolution is needed. The suggested threshold model spatial resolution for modeling the Liujiang River basin flood is a 500m*500m grid cell, but the model spatial resolution with a 200m*200m grid cell is recommended in this study to keep the model at a best performance.
NASA Astrophysics Data System (ADS)
Zhou, Jianzhong; Zhang, Hairong; Zhang, Jianyun; Zeng, Xiaofan; Ye, Lei; Liu, Yi; Tayyab, Muhammad; Chen, Yufan
2017-07-01
An accurate flood forecasting with long lead time can be of great value for flood prevention and utilization. This paper develops a one-way coupled hydro-meteorological modeling system consisting of the mesoscale numerical weather model Weather Research and Forecasting (WRF) model and the Chinese Xinanjiang hydrological model to extend flood forecasting lead time in the Jinshajiang River Basin, which is the largest hydropower base in China. Focusing on four typical precipitation events includes: first, the combinations and mode structures of parameterization schemes of WRF suitable for simulating precipitation in the Jinshajiang River Basin were investigated. Then, the Xinanjiang model was established after calibration and validation to make up the hydro-meteorological system. It was found that the selection of the cloud microphysics scheme and boundary layer scheme has a great impact on precipitation simulation, and only a proper combination of the two schemes could yield accurate simulation effects in the Jinshajiang River Basin and the hydro-meteorological system can provide instructive flood forecasts with long lead time. On the whole, the one-way coupled hydro-meteorological model could be used for precipitation simulation and flood prediction in the Jinshajiang River Basin because of its relatively high precision and long lead time.
NASA Astrophysics Data System (ADS)
Ravazzani, G.; Montaldo, N.; Mancini, M.; Rosso, R.
2003-04-01
Event-based hydrologic models need the antecedent soil moisture condition, as critical boundary initial condition for flood simulation. Land-surface models (LSMs) have been developed to simulate mass and energy transfers, and to update the soil moisture condition through time from the solution of water and energy balance equations. They are recently used in distributed hydrologic modeling for flood prediction systems. Recent developments have made LSMs more complex by inclusion of more processes and controlling variables, increasing parameter number and uncertainty of their estimates. This also led to increasing of computational burden and parameterization of the distributed hydrologic models. In this study we investigate: 1) the role of soil moisture initial conditions in the modeling of Alpine basin floods; 2) the adequate complexity level of LSMs for the distributed hydrologic modeling of Alpine basin floods. The Toce basin is the case study; it is located in the North Piedmont (Italian Alps), and it has a total drainage area of 1534 km2 at Candoglia section. Three distributed hydrologic models of different level of complexity are developed and compared: two (TDLSM and SDLSM) are continuous models, one (FEST02) is an event model based on the simplified SCS-CN method for rainfall abstractions. In the TDLSM model a two-layer LSM computes both saturation and infiltration excess runoff, and simulates the evolution of the water table spatial distribution using the topographic index; in the SDLSM model a simplified one-layer distributed LSM only computes hortonian runoff, and doesn’t simulate the water table dynamic. All the three hydrologic models simulate the surface runoff propagation through the Muskingum-Cunge method. TDLSM and SDLSM models have been applied for the two-year (1996 and 1997) simulation period, during which two major floods occurred in the November 1996 and in the June 1997. The models have been calibrated and tested comparing simulated and observed hydrographs at Candoglia. Sensitivity analysis of the models to significant LSM parameters were also performed. The performances of the three models in the simulation of the two major floods are compared. Interestingly, the results indicate that the SDLSM model is able to sufficiently well predict the major floods of this Alpine basin; indeed, this model is a good compromise between the over-parameterized and too complex TDLSM model and the over-simplified FEST02 model.
NASA Astrophysics Data System (ADS)
Noh, Seong Jin; Lee, Seungsoo; An, Hyunuk; Kawaike, Kenji; Nakagawa, Hajime
2016-11-01
An urban flood is an integrated phenomenon that is affected by various uncertainty sources such as input forcing, model parameters, complex geometry, and exchanges of flow among different domains in surfaces and subsurfaces. Despite considerable advances in urban flood modeling techniques, limited knowledge is currently available with regard to the impact of dynamic interaction among different flow domains on urban floods. In this paper, an ensemble method for urban flood modeling is presented to consider the parameter uncertainty of interaction models among a manhole, a sewer pipe, and surface flow. Laboratory-scale experiments on urban flood and inundation are performed under various flow conditions to investigate the parameter uncertainty of interaction models. The results show that ensemble simulation using interaction models based on weir and orifice formulas reproduces experimental data with high accuracy and detects the identifiability of model parameters. Among interaction-related parameters, the parameters of the sewer-manhole interaction show lower uncertainty than those of the sewer-surface interaction. Experimental data obtained under unsteady-state conditions are more informative than those obtained under steady-state conditions to assess the parameter uncertainty of interaction models. Although the optimal parameters vary according to the flow conditions, the difference is marginal. Simulation results also confirm the capability of the interaction models and the potential of the ensemble-based approaches to facilitate urban flood simulation.
A 30m resolution hydrodynamic model of the entire conterminous United States.
NASA Astrophysics Data System (ADS)
Bates, P. D.; Neal, J. C.; Smith, A.; Sampson, C.; Johnson, K.; Wing, O.
2016-12-01
In this paper we describe the development and validation of a 30m resolution hydrodynamic model covering the entire conterminous United States. The model can be used to simulate inundation and water depths resulting from either return period flows (so equivalent to FEMA Flood Insurance Rate Maps), hindcasts of historic events or forecasts of future river flow from a rainfall-runoff or land surface model. As topographic data the model uses the U.S. Geological Survey National Elevation Dataset or NED, and return period flows are generated using a regional flood frequency analysis methodology (Smith et al., 2015. Worldwide flood frequency estimation. Water Resources Research, 51, 539-553). Flood defences nationwide are represented using data from the US Army Corps of Engineers. Using these data flows are simulated using an explicit and highly efficient finite difference solution of the local inertial form of the Shallow Water equations identical to that implemented in the LISFLOOD-FP model. Even with this efficient numerical solution a simulation at this resolution over a whole continent is a huge undertaking, and a variety of High Performance Computing technologies therefore need to be employed to make these simulations possible. The size of the output datasets is also challenging, and to solve this we use the GIS and graphical display functions of Google Earth Engine to facilitate easy visualisation and interrogation of the results. The model is validated against the return period flood extents contained in FEMA Flood Insurance Rate Maps and real flood event data from the Texas 2015 flood event which was hindcast using the model. Finally, we present an application of the model to the Upper Mississippi river basin where simulations both with and without flood defences are used to determine floodplain areas benefitting from protection in order to quantify the benefits of flood defence spending.
Enhancing Flood Prediction Reliability Using Bayesian Model Averaging
NASA Astrophysics Data System (ADS)
Liu, Z.; Merwade, V.
2017-12-01
Uncertainty analysis is an indispensable part of modeling the hydrology and hydrodynamics of non-idealized environmental systems. Compared to reliance on prediction from one model simulation, using on ensemble of predictions that consider uncertainty from different sources is more reliable. In this study, Bayesian model averaging (BMA) is applied to Black River watershed in Arkansas and Missouri by combining multi-model simulations to get reliable deterministic water stage and probabilistic inundation extent predictions. The simulation ensemble is generated from 81 LISFLOOD-FP subgrid model configurations that include uncertainty from channel shape, channel width, channel roughness and discharge. Model simulation outputs are trained with observed water stage data during one flood event, and BMA prediction ability is validated for another flood event. Results from this study indicate that BMA does not always outperform all members in the ensemble, but it provides relatively robust deterministic flood stage predictions across the basin. Station based BMA (BMA_S) water stage prediction has better performance than global based BMA (BMA_G) prediction which is superior to the ensemble mean prediction. Additionally, high-frequency flood inundation extent (probability greater than 60%) in BMA_G probabilistic map is more accurate than the probabilistic flood inundation extent based on equal weights.
Development of an alkaline/surfactant/polymer compositional reservoir simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhuyan, D.
1989-01-01
The mathematical formulation of a generalized three-dimensional compositional reservoir simulator for high-pH chemical flooding processes is presented in this work. The model assumes local thermodynamic equilibrium with respect to both reaction chemistry and phase behavior and calculates equilibrium electrolyte and phase compositions as a function of time and position. The reaction chemistry considers aqueous electrolytic chemistry, precipitation/dissolution of minerals, ion exchange reactions on matrix surface, reaction of acidic components of crude oil with the bases in the aqueous solution and cation exchange reactions with the micelles. The simulator combines this detailed reaction chemistry associated with these processes with the extensivemore » physical and flow property modeling schemes of an existing chemical flood simulator (UTCHEM) to model the multiphase, multidimensional displacement processes. The formulation of the chemical equilibrium model is quite general and is adaptable to simulate a variety of chemical descriptions. In addition to its use in the simulation of high-pH chemical flooding processes, the model will find application in the simulation of other reactive flow problems like the ground water contamination, reinjection of produced water, chemical waste disposal, etc. in one, two or three dimensions and under multiphase flow conditions. In this work, the model is used to simulate several hypothetical cases of high-pH chemical floods, which include cases from a simple alkaline preflush of a micellar/polymer flood to surfactant enhanced alkaline-polymer flooding and the results are analyzed. Finally, a few published alkaline, alkaline-polymer and surfactant-alkaline-polymer corefloods are simulated and compared with the experimental results.« less
NASA Astrophysics Data System (ADS)
Ikeuchi, Hiroaki; Hirabayashi, Yukiko; Yamazaki, Dai; Muis, Sanne; Ward, Philip; Verlaan, Martin; Winsemius, Hessel; Kanae, Shinjiro
2017-04-01
The world's mega-delta regions and estuaries are susceptible to various water-related disasters, such as river flooding and storm surge. Moreover, simultaneous occurrence of them would be more devastating than a situation where they occur in isolation. Therefore, it is important to provide information about compound risks of fluvial and coastal floods at a large scale, both their statistical dependency as well as their combined resulting flooding in delta regions. Here we report on a first attempt to address this issue globally by developing a method to couple a global river model (CaMa-Flood) and a global tide and surge reanalysis (GTSR) dataset. A state-of-the-art global river routing model, CaMa-Flood, was modified to represent varying sea levels due to tides and storm surges as downstream boundary condition, and the GTSR dataset was post-processed to serve as inputs to the CaMa-Flood river routing simulation and a long-term simulation was performed to incorporate the temporal dependency between coastal tide and surge on the one hand, and discharge on the other. The coupled model was validated against observations, showing better simulation results of water levels in deltaic regions than simulation without GTSR. For example in the Ganges Delta, correlation coefficients were increased by 0.06, and root mean square errors were reduced by 0.22 m. Global coupling simulations revealed that storm surges affected river water levels in coastal regions worldwide, especially in low-lying flat areas with increases in water level larger than 0.5 m. By employing enhanced storm surge simulation with tropical storm tracks, we also applied the model to examine impacts of past hurricane and cyclone storm events on river flood inundation.
Topography-based Flood Planning and Optimization Capability Development Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judi, David R.; Tasseff, Byron A.; Bent, Russell W.
2014-02-26
Globally, water-related disasters are among the most frequent and costly natural hazards. Flooding inflicts catastrophic damage on critical infrastructure and population, resulting in substantial economic and social costs. NISAC is developing LeveeSim, a suite of nonlinear and network optimization models, to predict optimal barrier placement to protect critical regions and infrastructure during flood events. LeveeSim currently includes a high-performance flood model to simulate overland flow, as well as a network optimization model to predict optimal barrier placement during a flood event. The LeveeSim suite models the effects of flooding in predefined regions. By manipulating a domain’s underlying topography, developers alteredmore » flood propagation to reduce detrimental effects in areas of interest. This numerical altering of a domain’s topography is analogous to building levees, placing sandbags, etc. To induce optimal changes in topography, NISAC used a novel application of an optimization algorithm to minimize flooding effects in regions of interest. To develop LeveeSim, NISAC constructed and coupled hydrodynamic and optimization algorithms. NISAC first implemented its existing flood modeling software to use massively parallel graphics processing units (GPUs), which allowed for the simulation of larger domains and longer timescales. NISAC then implemented a network optimization model to predict optimal barrier placement based on output from flood simulations. As proof of concept, NISAC developed five simple test scenarios, and optimized topographic solutions were compared with intuitive solutions. Finally, as an early validation example, barrier placement was optimized to protect an arbitrary region in a simulation of the historic Taum Sauk dam breach.« less
NASA Astrophysics Data System (ADS)
Cheng, T.; Xu, Z.; Hong, S.
2017-12-01
Flood disasters frequently attack the urban area in Jinan City during past years, and the city is faced with severe road flooding which greatly threaten pedestrians' safety. Therefore, it is of great significance to investigate the pedestrian risk during floods under specific topographic condition. In this study, a model coupled hydrological and hydrodynamic processes is developed in the study area to simulate the flood routing process on the road for the "7.18" rainstorm and validated with post-disaster damage survey information. The risk of pedestrian is estimated with a flood risk assessment model. The result shows that the coupled model performs well in the rainstorm flood process. On the basis of the simulation result, the areas with extreme risk, medium risk, and mild risk are identified, respectively. Regions with high risk are generally located near the mountain front area with steep slopes. This study will provide scientific support for the flood control and disaster reduction in Jinan City.
Simulated and observed 2010 floodwater elevations in the Pawcatuck and Wood Rivers, Rhode Island
Zarriello, Phillip J.; Straub, David E.; Smith, Thor E.
2014-01-01
Heavy, persistent rains from late February through March 2010 caused severe flooding that set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models of Pawcatuck River (26.9 miles) and Wood River (11.6 miles) were updated from the most recent approved U.S. Department of Homeland Security-Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) for specified flows and boundary conditions. The hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) using steady-state simulations and incorporate new field-survey data at structures, high resolution land-surface elevation data, and updated flood flows from a related study. The models were used to simulate the 0.2-percent annual exceedance probability (AEP) flood, which is the AEP determined for the 2010 flood in the Pawcatuck and Wood Rivers. The simulated WSEs were compared to high-water mark (HWM) elevation data obtained in a related study following the March–April 2010 flood, which included 39 HWMs along the Pawcatuck River and 11 HWMs along the Wood River. The 2010 peak flow generally was larger than the 0.2-percent AEP flow, which, in part, resulted in the FIS and updated model WSEs to be lower than the 2010 HWMs. The 2010 HWMs for the Pawcatuck River averaged about 1.6 feet (ft) higher than the 0.2-percent AEP WSEs simulated in the updated model and 2.5 ft higher than the WSEs in the FIS. The 2010 HWMs for the Wood River averaged about 1.3 ft higher than the WSEs simulated in the updated model and 2.5 ft higher than the WSEs in the FIS. The improved agreement of the updated simulated water elevations to observed 2010 HWMs provides a measure of the hydraulic model performance, which indicates the updated models better represent flooding at other AEPs than the existing FIS models.
Prediction of Flood Warning in Taiwan Using Nonlinear SVM with Simulated Annealing Algorithm
NASA Astrophysics Data System (ADS)
Lee, C.
2013-12-01
The issue of the floods is important in Taiwan. It is because the narrow and high topography of the island make lots of rivers steep in Taiwan. The tropical depression likes typhoon always causes rivers to flood. Prediction of river flow under the extreme rainfall circumstances is important for government to announce the warning of flood. Every time typhoon passed through Taiwan, there were always floods along some rivers. The warning is classified to three levels according to the warning water levels in Taiwan. The propose of this study is to predict the level of floods warning from the information of precipitation, rainfall duration and slope of riverbed. To classify the level of floods warning by the above-mentioned information and modeling the problems, a machine learning model, nonlinear Support vector machine (SVM), is formulated to classify the level of floods warning. In addition, simulated annealing (SA), a probabilistic heuristic algorithm, is used to determine the optimal parameter of the SVM model. A case study of flooding-trend rivers of different gradients in Taiwan is conducted. The contribution of this SVM model with simulated annealing is capable of making efficient announcement for flood warning and keeping the danger of flood from residents along the rivers.
Flash Floods Simulation using a Physical-Based Hydrological Model at Different Hydroclimatic Regions
NASA Astrophysics Data System (ADS)
Saber, Mohamed; Kamil Yilmaz, Koray
2016-04-01
Currently, flash floods are seriously increasing and affecting many regions over the world. Therefore, this study will focus on two case studies; Wadi Abu Subeira, Egypt as arid environment, and Karpuz basin, Turkey as Mediterranean environment. The main objective of this work is to simulate flash floods at both catchments considering the hydrometeorological differences between them which in turn effect their flash flood behaviors. An integrated methodology incorporating Hydrological River Basin Environmental Assessment Model (Hydro-BEAM) and remote sensing observations was devised. Global Satellite Mapping of Precipitation (GSMAP) were compared with the rain gauge network at the target basins to estimate the bias in an effort to further use it effectively in simulation of flash floods. Based on the preliminary results of flash floods simulation on both basins, we found that runoff behaviors of flash floods are different due to the impacts of climatology, hydrological and topographical conditions. Also, the simulated surface runoff hydrographs are reasonably coincide with the simulated ones. Consequently, some mitigation strategies relying on this study could be introduced to help in reducing the flash floods disasters at different climate regions. This comparison of different climatic basins would be a reasonable implication for the potential impact of climate change on the flash floods frequencies and occurrences.
Modeling of Flood Risk for the Continental United States
NASA Astrophysics Data System (ADS)
Lohmann, D.; Li, S.; Katz, B.; Goteti, G.; Kaheil, Y. H.; Vojjala, R.
2011-12-01
The science of catastrophic risk modeling helps people to understand the physical and financial implications of natural catastrophes (hurricanes, flood, earthquakes, etc.), terrorism, and the risks associated with changes in life expectancy. As such it depends on simulation techniques that integrate multiple disciplines such as meteorology, hydrology, structural engineering, statistics, computer science, financial engineering, actuarial science, and more in virtually every field of technology. In this talk we will explain the techniques and underlying assumptions of building the RMS US flood risk model. We especially will pay attention to correlation (spatial and temporal), simulation and uncertainty in each of the various components in the development process. Recent extreme floods (e.g. US Midwest flood 2008, US Northeast flood, 2010) have increased the concern of flood risk. Consequently, there are growing needs to adequately assess the flood risk. The RMS flood hazard model is mainly comprised of three major components. (1) Stochastic precipitation simulation module based on a Monte-Carlo analogue technique, which is capable of producing correlated rainfall events for the continental US. (2) Rainfall-runoff and routing module. A semi-distributed rainfall-runoff model was developed to properly assess the antecedent conditions, determine the saturation area and runoff. The runoff is further routed downstream along the rivers by a routing model. Combined with the precipitation model, it allows us to correlate the streamflow and hence flooding from different rivers, as well as low and high return-periods across the continental US. (3) Flood inundation module. It transforms the discharge (output from the flow routing) into water level, which is further combined with a two-dimensional off-floodplain inundation model to produce comprehensive flood hazard map. The performance of the model is demonstrated by comparing to the observation and published data. Output from the flood hazard model is used to drive a flood loss model that is coupled to a financial model.
NASA Astrophysics Data System (ADS)
Comer, Joanne; Indiana Olbert, Agnieszka; Nash, Stephen; Hartnett, Michael
2017-02-01
Urban developments in coastal zones are often exposed to natural hazards such as flooding. In this research, a state-of-the-art, multi-scale nested flood (MSN_Flood) model is applied to simulate complex coastal-fluvial urban flooding due to combined effects of tides, surges and river discharges. Cork city on Ireland's southwest coast is a study case. The flood modelling system comprises a cascade of four dynamically linked models that resolve the hydrodynamics of Cork Harbour and/or its sub-region at four scales: 90, 30, 6 and 2 m. Results demonstrate that the internalization of the nested boundary through the use of ghost cells combined with a tailored adaptive interpolation technique creates a highly dynamic moving boundary that permits flooding and drying of the nested boundary. This novel feature of MSN_Flood provides a high degree of choice regarding the location of the boundaries to the nested domain and therefore flexibility in model application. The nested MSN_Flood model through dynamic downscaling facilitates significant improvements in accuracy of model output without incurring the computational expense of high spatial resolution over the entire model domain. The urban flood model provides full characteristics of water levels and flow regimes necessary for flood hazard identification and flood risk assessment.
A satellite and model based flood inundation climatology of Australia
NASA Astrophysics Data System (ADS)
Schumann, G.; Andreadis, K.; Castillo, C. J.
2013-12-01
To date there is no coherent and consistent database on observed or simulated flood event inundation and magnitude at large scales (continental to global). The only compiled data set showing a consistent history of flood inundation area and extent at a near global scale is provided by the MODIS-based Dartmouth Flood Observatory. However, MODIS satellite imagery is only available from 2000 and is hampered by a number of issues associated with flood mapping using optical images (e.g. classification algorithms, cloud cover, vegetation). Here, we present for the first time a proof-of-concept study in which we employ a computationally efficient 2-D hydrodynamic model (LISFLOOD-FP) complemented with a sub-grid channel formulation to generate a complete flood inundation climatology of the past 40 years (1973-2012) for the entire Australian continent. The model was built completely from freely available SRTM-derived data, including channel widths, bank heights and floodplain topography, which was corrected for vegetation canopy height using a global ICESat canopy dataset. Channel hydraulics were resolved using actual channel data and bathymetry was estimated within the model using hydraulic geometry. On the floodplain, the model simulated the flow paths and inundation variables at a 1 km resolution. The developed model was run over a period of 40 years and a floodplain inundation climatology was generated and compared to satellite flood event observations. Our proof-of-concept study demonstrates that this type of model can reliably simulate past flood events with reasonable accuracies both in time and space. The Australian model was forced with both observed flow climatology and VIC-simulated flows in order to assess the feasibility of a model-based flood inundation climatology at the global scale.
Study on the flood simulation techniques for estimation of health risk in Dhaka city, Bangladesh
NASA Astrophysics Data System (ADS)
Hashimoto, M.; Suetsugi, T.; Sunada, K.; ICRE
2011-12-01
Although some studies have been carried out on the spread of infectious disease with the flooding, the relation between flooding and the infectious expansion has not been clarified yet. The improvement of the calculation precision of inundation and its relation with the infectious disease, surveyed epidemiologically, are therefore investigated in a case study in Dhaka city, Bangladesh. The inundation was computed using a flood simulation model that is numerical 2D-model. The "sensitivity to inundation" of hydraulic factors such as drainage channel, dike, and the building occupied ratio was examined because of the lack of digital data set related to flood simulation. Each element in the flood simulation model was incorporated progressively and results were compared with the calculation result as inspection materials by the inundation classification from the existing study (Mollah et al., 2007). The results show that the influences by ''dyke'' and "drainage channel" factors are remarkable to water level near each facility. The inundation level and duration have influence on wide areas when "building occupied ratio" is also considered. The correlation between maximum inundation depth and health risk (DALY, Mortality, Morbidity) was found, but the validation of the inundation model for this case has not been performed yet. The flood simulation model needs to be validated by observed inundation depth. The drainage facilities such as sewer network or the pumping system will be also considered in the further research to improve the precision of the inundation model.
Hydrological Modelling using HEC-HMS for Flood Risk Assessment of Segamat Town, Malaysia
NASA Astrophysics Data System (ADS)
Romali, N. S.; Yusop, Z.; Ismail, A. Z.
2018-03-01
This paper presents an assessment of the applicability of using Hydrologic Modelling System developed by the Hydrologic Engineering Center (HEC-HMS) for hydrological modelling of Segamat River. The objective of the model application is to assist in the assessment of flood risk by providing the peak flows of 2011 Segamat flood for the generation of flood mapping of Segamat town. The capability of the model was evaluated by comparing the historical observed data with the simulation results of the selected flood events. The model calibration and validation efficiency was verified using Nash-Sutcliffe model efficiency coefficient. The results demonstrate the interest to implement the hydrological model for assessing flood risk where the simulated peak flow result is in agreement with historical observed data. The model efficiency of the calibrated and validated exercises is 0.90 and 0.76 respectively, which is acceptable.
NASA Astrophysics Data System (ADS)
Sutanudjaja, Edwin; van Beek, Rens; Winsemius, Hessel; Ward, Philip; Bierkens, Marc
2017-04-01
The Aqueduct Global Flood Analyzer, launched in 2015, is an open-access and free-of-charge web-based interactive platform which assesses and visualises current and future projections of river flood impacts across the globe. One of the key components in the Analyzer is a set of river flood inundation hazard maps derived from the global hydrological model simulation of PCR-GLOBWB. For the current version of the Analyzer, accessible on http://floods.wri.org/#/, the early generation of PCR-GLOBWB 1.0 was used and simulated at 30 arc-minute ( 50 km at the equator) resolution. In this presentation, we will show the new version of these hazard maps. This new version is based on the latest version of PCR-GLOBWB 2.0 (https://github.com/UU-Hydro/PCR-GLOBWB_model, Sutanudjaja et al., 2016, doi:10.5281/zenodo.60764) simulated at 5 arc-minute ( 10 km at the equator) resolution. The model simulates daily hydrological and water resource fluxes and storages, including the simulation of overbank volume that ends up on the floodplain (if flooding occurs). The simulation was performed for the present day situation (from 1960) and future climate projections (until 2099) using the climate forcing created in the ISI-MIP project. From the simulated flood inundation volume time series, we then extract annual maxima for each cell, and fit these maxima to a Gumbel extreme value distribution. This allows us to derive flood volume maps of any hazard magnitude (ranging from 2-year to 1000-year flood events) and for any time period (e.g. 1960-1999, 2010-2049, 2030-2069, and 2060-2099). The derived flood volumes (at 5 arc-minute resolution) are then spread over the high resolution terrain model using an updated GLOFRIS downscaling module (Winsemius et al., 2013, doi:10.5194/hess-17-1871-2013). The updated version performs a volume spreading sequentially from more upstream basins to downstream basins, hence enabling a better inclusion of smaller streams, and takes into account spreading of water over diverging deltaic regions. This results in a set of high resolution hazard maps of flood inundation depth at 30 arc-second ( 1 km at the equator) resolution. Together with many other updates and new features, the resulting flood hazard maps will be used in the next generation of the Aqueduct Global Flood Analyzer.
Simulation of Columbia River Floods in the Hanford Reach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waichler, Scott R.; Serkowski, John A.; Perkins, William A.
Columbia River water elevations and flows in the Hanford Reach affect the environment and facilities along the shoreline, including movement of contaminants in groundwater, fish habitat, and infrastructure subject to flooding. This report describes the hydraulic simulation of hypothetical flood flows using the best available topographic and bathymetric data for the Hanford Reach and the Modular Aquatic Simulation System in 1 Dimension (MASS1) hydrodynamic model. The MASS1 model of the Hanford Reach was previously calibrated to field measurements of water surface elevations. The current model setup can be used for other studies of flow, water levels, and temperature in themore » Reach. The existing MASS1 channel geometry and roughness and other model configuration inputs for the Hanford Reach were used for this study, and previous calibration and validation results for the model are reprinted here for reference. The flood flows for this study were simulated by setting constant flow rates obtained from the U.S. Army Corps of Engineers (USACE) for the Columbia, Snake, and Yakima Rivers, and a constant water level at McNary Dam, and then running the model to steady state. The discharge levels simulated were all low-probability events; for example, a 100-year flood is one that would occur on average every 100 years, or put another way, in any given year there is a 1% chance that a discharge of that level or higher will occur. The simulated floods and their corresponding Columbia River discharges were 100-year (445,000 cfs), 500-year (520,000 cfs), and the USACE-defined Standard Project Flood (960,000 cfs). The resulting water levels from the steady-state floods can be viewed as “worst case” outcomes for the respective discharge levels. The MASS1 output for water surface elevations was converted to the North American Vertical Datum of 1988 and projected across the channel and land surface to enable mapping of the floodplain for each scenario. Floodplain maps show that for the 100-year and 500-year discharge levels, flooding is mainly confined to the topographic trench that is the river channel. The flooded area for the Standard Project Flood extends out of the channel area in some places, particularly in the 100-F Area. All of the output from the simulations have been archived and are available for future investigations in the Hanford Reach.« less
Why continuous simulation? The role of antecedent moisture in design flood estimation
NASA Astrophysics Data System (ADS)
Pathiraja, S.; Westra, S.; Sharma, A.
2012-06-01
Continuous simulation for design flood estimation is increasingly becoming a viable alternative to traditional event-based methods. The advantage of continuous simulation approaches is that the catchment moisture state prior to the flood-producing rainfall event is implicitly incorporated within the modeling framework, provided the model has been calibrated and validated to produce reasonable simulations. This contrasts with event-based models in which both information about the expected sequence of rainfall and evaporation preceding the flood-producing rainfall event, as well as catchment storage and infiltration properties, are commonly pooled together into a single set of "loss" parameters which require adjustment through the process of calibration. To identify the importance of accounting for antecedent moisture in flood modeling, this paper uses a continuous rainfall-runoff model calibrated to 45 catchments in the Murray-Darling Basin in Australia. Flood peaks derived using the historical daily rainfall record are compared with those derived using resampled daily rainfall, for which the sequencing of wet and dry days preceding the heavy rainfall event is removed. The analysis shows that there is a consistent underestimation of the design flood events when antecedent moisture is not properly simulated, which can be as much as 30% when only 1 or 2 days of antecedent rainfall are considered, compared to 5% when this is extended to 60 days of prior rainfall. These results show that, in general, it is necessary to consider both short-term memory in rainfall associated with synoptic scale dependence, as well as longer-term memory at seasonal or longer time scale variability in order to obtain accurate design flood estimates.
Large-scale derived flood frequency analysis based on continuous simulation
NASA Astrophysics Data System (ADS)
Dung Nguyen, Viet; Hundecha, Yeshewatesfa; Guse, Björn; Vorogushyn, Sergiy; Merz, Bruno
2016-04-01
There is an increasing need for spatially consistent flood risk assessments at the regional scale (several 100.000 km2), in particular in the insurance industry and for national risk reduction strategies. However, most large-scale flood risk assessments are composed of smaller-scale assessments and show spatial inconsistencies. To overcome this deficit, a large-scale flood model composed of a weather generator and catchments models was developed reflecting the spatially inherent heterogeneity. The weather generator is a multisite and multivariate stochastic model capable of generating synthetic meteorological fields (precipitation, temperature, etc.) at daily resolution for the regional scale. These fields respect the observed autocorrelation, spatial correlation and co-variance between the variables. They are used as input into catchment models. A long-term simulation of this combined system enables to derive very long discharge series at many catchment locations serving as a basic for spatially consistent flood risk estimates at the regional scale. This combined model was set up and validated for major river catchments in Germany. The weather generator was trained by 53-year observation data at 528 stations covering not only the complete Germany but also parts of France, Switzerland, Czech Republic and Australia with the aggregated spatial scale of 443,931 km2. 10.000 years of daily meteorological fields for the study area were generated. Likewise, rainfall-runoff simulations with SWIM were performed for the entire Elbe, Rhine, Weser, Donau and Ems catchments. The validation results illustrate a good performance of the combined system, as the simulated flood magnitudes and frequencies agree well with the observed flood data. Based on continuous simulation this model chain is then used to estimate flood quantiles for the whole Germany including upstream headwater catchments in neighbouring countries. This continuous large scale approach overcomes the several drawbacks reported in traditional approaches for the derived flood frequency analysis and therefore is recommended for large scale flood risk case studies.
Simulation of Flood Profiles for Fivemile Creek at Tarrant, Alabama, 2006
Lee, K.G.; Hedgecock, T.S.
2007-01-01
A one-dimensional step-backwater model was used to simulate flooding conditions for Fivemile Creek at Tarrant, Alabama. The 100-year flood stage published in the current flood insurance study for Tarrant by the Federal Emergency Management Agency was significantly exceeded by the March 2000 and May 2003 floods in this area. A peak flow of 14,100 cubic feet per second was computed by the U.S. Geological Survey for the May 2003 flood in the vicinity of Lawson Road. Using this estimated peak flow, flood-plain surveys with associated roughness coefficients, and the surveyed high-water profile for the May 2003 flood, a flow model was calibrated to closely match this known event. The calibrated model was then used to simulate flooding for the 10-, 50-, 100-, and 500-year recurrence interval floods. The results indicate that for the 100-year recurrence interval, the flood profile is about 2.5 feet higher, on average, than the profile published by the Federal Emergency Management Agency. The absolute maximum and minimum difference is 6.80 feet and 0.67 foot, respectively. All water-surface elevations computed for the 100-year flood are higher than those published by the Federal Emergency Management Agency, except for cross section H. The results of this study provide the community with flood-profile information that can be used for existing flood-plain mitigation, future development, and safety plans for the city.
Simulating Scenario Floods for Hazard Assessment on the Lower Bicol Floodplain, the Philippines
NASA Astrophysics Data System (ADS)
Usamah, Muhibuddin Bin; Alkema, Dinand
This paper describes the first results from a study to the behavior of floods in the lower Bicol area, the Philippines. A 1D2D dynamic hydraulic model was applied to simulate a set of scenario floods through the complex topography of the city Naga and surrounding area. The simulation results are integrated into a multi-parameter hazard zonation for the five scenario floods.
2013-04-30
resulting impact on residents and transportation infrastructure. The three-dimensional coastal ocean model FVCOM coupled with a two-dimensional...shallow water model is used to simulate hydrodynamic flooding from coastal ocean water with fine-resolution meshes, and a topography-based hydrologic... ocean model FVCOM coupled with a two-dimensional shallow water model is used to simulate hydrodynamic flooding from coastal ocean water with fine
Progress in and prospects for fluvial flood modelling.
Wheater, H S
2002-07-15
Recent floods in the UK have raised public and political awareness of flood risk. There is an increasing recognition that flood management and land-use planning are linked, and that decision-support modelling tools are required to address issues of climate and land-use change for integrated catchment management. In this paper, the scientific context for fluvial flood modelling is discussed, current modelling capability is considered and research challenges are identified. Priorities include (i) appropriate representation of spatial precipitation, including scenarios of climate change; (ii) development of a national capability for continuous hydrological simulation of ungauged catchments; (iii) improved scientific understanding of impacts of agricultural land-use and land-management change, and the development of new modelling approaches to represent those impacts; (iv) improved representation of urban flooding, at both local and catchment scale; (v) appropriate parametrizations for hydraulic simulation of in-channel and flood-plain flows, assimilating available ground observations and remotely sensed data; and (vi) a flexible decision-support modelling framework, incorporating developments in computing, data availability, data assimilation and uncertainty analysis.
Simulation of wetlands forest vegetation dynamics
Phipps, R.L.
1979-01-01
A computer program, SWAMP, was designed to simulate the effects of flood frequency and depth to water table on southern wetlands forest vegetation dynamics. By incorporating these hydrologic characteristics into the model, forest vegetation and vegetation dynamics can be simulated. The model, based on data from the White River National Wildlife Refuge near De Witt, Arkansas, "grows" individual trees on a 20 x 20-m plot taking into account effects on the tree growth of flooding, depth to water table, shade tolerance, overtopping and crowding, and probability of death and reproduction. A potential application of the model is illustrated with simulations of tree fruit production following flood-control implementation and lumbering. ?? 1979.
Unstructured mesh adaptivity for urban flooding modelling
NASA Astrophysics Data System (ADS)
Hu, R.; Fang, F.; Salinas, P.; Pain, C. C.
2018-05-01
Over the past few decades, urban floods have been gaining more attention due to their increase in frequency. To provide reliable flooding predictions in urban areas, various numerical models have been developed to perform high-resolution flood simulations. However, the use of high-resolution meshes across the whole computational domain causes a high computational burden. In this paper, a 2D control-volume and finite-element flood model using adaptive unstructured mesh technology has been developed. This adaptive unstructured mesh technique enables meshes to be adapted optimally in time and space in response to the evolving flow features, thus providing sufficient mesh resolution where and when it is required. It has the advantage of capturing the details of local flows and wetting and drying front while reducing the computational cost. Complex topographic features are represented accurately during the flooding process. For example, the high-resolution meshes around the buildings and steep regions are placed when the flooding water reaches these regions. In this work a flooding event that happened in 2002 in Glasgow, Scotland, United Kingdom has been simulated to demonstrate the capability of the adaptive unstructured mesh flooding model. The simulations have been performed using both fixed and adaptive unstructured meshes, and then results have been compared with those published 2D and 3D results. The presented method shows that the 2D adaptive mesh model provides accurate results while having a low computational cost.
Flood simulation and verification with IoT sensors
NASA Astrophysics Data System (ADS)
Chang, Che-Hao; Hsu, Chih-Tsung; Wu, Shiang-Jen; Huang, Sue-Wei
2017-04-01
2D flood dynamic simulation is a vivid tool to demonstrate the possible expose area that sustain impact of high rise of water level. Along with progress in high resolution digital terrain model, the simulation results are quite convinced yet not proved to be close to what is really happened. Due to the dynamic and uncertain essence, the expose area usually could not be well defined during a flood event. Recent development in IoT sensors bring a low power and long distance communication which help us to collect real time flood depths. With these time series of flood depths at different locations, we are capable of verifying the simulation results corresponding to the flood event. 16 flood gauges with IoT specification as well as two flood events in Annan district, Tainan city, Taiwan are examined in this study. During the event in 11, June, 2016, 12 flood gauges works well and 8 of them provide observation match to simulation.
Modeling the Historical Flood Events in France
NASA Astrophysics Data System (ADS)
Ali, Hani; Blaquière, Simon
2017-04-01
We will present the simulation results for different scenarios based on the flood model developed by AXA Global P&C CAT Modeling team. The model uses a Digital Elevation Model (DEM) with 75 m resolution, a hydrographic system (DB Carthage), daily rainfall data from "Météo France", water level from "HYDRO Banque" the French Hydrological Database (www.hydro.eaufrance.fr), for more than 1500 stations, hydrological model from IRSTEA and in-house hydraulic tool. In particular, the model re-simulates the most important and costly flood events that occurred during the past decade in France: we will present the re-simulated meteorological conditions since 1964 and estimate insurance loss incurred on current AXA portfolio of individual risks.
NASA Astrophysics Data System (ADS)
Chen, Y. W.; Chang, L. C.
2012-04-01
Typhoons which normally bring a great amount of precipitation are the primary natural hazard in Taiwan during flooding season. Because the plentiful rainfall quantities brought by typhoons are normally stored for the usage of the next draught period, the determination of release strategies for flood operation of reservoirs which is required to simultaneously consider not only the impact of reservoir safety and the flooding damage in plain area but also for the water resource stored in the reservoir after typhoon becomes important. This study proposes a two-steps study process. First, this study develop an optimal flood operation model (OFOM) for the planning of flood control and also applies the OFOM on Tseng-wun reservoir and the downstream plain related to the reservoir. Second, integrating a typhoon event database with the OFOM mentioned above makes the proposed planning model have ability to deal with a real-time flood control problem and names as real-time flood operation model (RTFOM). Three conditions are considered in the proposed models, OFOM and RTFOM, include the safety of the reservoir itself, the reservoir storage after typhoons and the impact of flooding in the plain area. Besides, the flood operation guideline announced by government is also considered in the proposed models. The these conditions and the guideline can be formed as an optimization problem which is solved by the genetic algorithm (GA) in this study. Furthermore, a distributed runoff model, kinematic-wave geomorphic instantaneous unit hydrograph (KW-GIUH), and a river flow simulation model, HEC-RAS, are used to simulate the river water level of Tseng-wun basin in the plain area and the simulated level is shown as an index of the impact of flooding. Because the simulated levels are required to re-calculate iteratively in the optimization model, applying a recursive artificial neural network (recursive ANN) instead of the HEC-RAS model can significantly reduce the computational burden of the entire optimization problem. This study applies the developed methodology to Tseng-wun Reservoir. Forty typhoon events are collected as the historical database and six typhoon events are used to verify the proposed model. These typhoons include Typhoon Sepat and Typhoon Korsa in 2007 and Typhoon Kalmaegi, Typhoon Fung-Wong, Typhoon Sinlaku and Typhoon Jangmi in 2008. The results show that the proposed model can reduce the flood duration at the downstream area. For example, the real-time flood control model can reduce the flood duration by four and three hours for Typhoon Korsa and Typhoon Sinlaku respectively. This results indicate that the developed model can be a very useful tool for real-time flood control operation of reservoirs.
Soong, David T.; Straub, Timothy D.; Murphy, Elizabeth A.
2006-01-01
Results of hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kane County, Illinois, indicate that the 100-year and 500-year flood plains range from approximately 25 acres in the tributary F watershed (a headwater subbasin at the northeastern corner of the watershed) to almost 1,800 acres in Blackberry Creek main stem. Based on 1996 land-cover data, most of the land in the 100-year and 500-year flood plains was cropland, forested and wooded land, and grassland. A relatively small percentage of urban land was in the flood plains. The Blackberry Creek watershed has undergone rapid urbanization in recent decades. The population and urbanized lands in the watershed are projected to double from the 1990 condition by 2020. Recently, flood-induced damage has occurred more frequently in urbanized areas of the watershed. There are concerns about the effect of urbanization on flood peaks and volumes, future flood-mitigation plans, and potential effects on the water quality and stream habitats. This report describes the procedures used in developing the hydrologic models, estimating the flood-peak discharge magnitudes and recurrence intervals for flood-hazard analysis, developing the hydraulic model, and the results of the analysis in graphical and tabular form. The hydrologic model, Hydrological Simulation Program-FORTRAN (HSPF), was used to perform the simulation of continuous water movements through various patterns of land uses in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and to determine the 100-year floodway. The hydraulic model was calibrated and verified using high water marks and observed inundation maps for the July 17-18, 1996, flood event. Digital maps of the 100-year and 500-year flood plains and the 100-year floodway for each tributary and the main stem of Blackberry Creek were compiled.
Process-based model with flood control measures towards more realistic global flood modeling
NASA Astrophysics Data System (ADS)
Tang, Q.; Zhang, X.; Wang, Y.; Mu, M.; Lv, A.; Li, Z.
2017-12-01
In the profoundly human-influenced era, the Anthropocene, increased amount of land was developed in flood plains and many flood control measures were implemented to protect people and infrastructures placed in the flood-prone areas. These human influences (for example, dams and dykes) have altered peak streamflow and flood risk, and are already an integral part of flood. However, most of the process-based flood models have yet to taken into account the human influences. In this study, we used a hydrological model together with an advanced hydrodynamic model to assess flood risk at the Baiyangdian catchment. The Baiyangdian Lake is the largest shallow freshwater lake in North China, and it was used as a flood storage area in the past. A new development hub for the Beijing-Tianjin-Hebei economic triangle, namely the Xiongan new area, was recently established in the flood-prone area around the lake. The shuttle radar topography mission (SRTM) digital elevation model (DEMs) was used to parameterize the hydrodynamic model simulation, and the inundation estimates were compared with published flood maps and observed inundation area during the extreme historical flood events. A simple scheme was carried out to consider the impacts of flood control measures, including the reservoirs in the headwaters and the dykes to be built. By comparing model simulations with and without the influences of flood control measures, we demonstrated the importance of human influences in altering the inundated area and depth under design flood conditions. Based on the SRTM DEM and dam and reservoir data in the Global Reservoir and Dam (GRanD) database, we further discuss the potential to develop a global flood model with human influences.
NASA Astrophysics Data System (ADS)
Hdeib, Rouya; Abdallah, Chadi; Moussa, Roger; Colin, Francois
2017-04-01
Developing flood inundation maps of defined exceedance probabilities is required to provide information on the flood hazard and the associated risk. A methodology has been developed to model flood inundation in poorly gauged basins, where reliable information on the hydrological characteristics of floods are uncertain and partially captured by the traditional rain-gauge networks. Flood inundation is performed through coupling a hydrological rainfall-runoff (RR) model (HEC-HMS) with a hydraulic model (HEC-RAS). The RR model is calibrated against the January 2013 flood event in the Awali River basin, Lebanon (300 km2), whose flood peak discharge was estimated by post-event measurements. The resulting flows of the RR model are defined as boundary conditions of the hydraulic model, which is run to generate the corresponding water surface profiles and calibrated against 20 post-event surveyed cross sections after the January-2013 flood event. An uncertainty analysis is performed to assess the results of the models. Consequently, the coupled flood inundation model is simulated with design storms and flood inundation maps are generated of defined exceedance probabilities. The peak discharges estimated by the simulated RR model were in close agreement with the results from different empirical and statistical methods. This methodology can be extended to other poorly gauged basins facing common stage-gauge failure or characterized by floods with a stage exceeding the gauge measurement level, or higher than that defined by the rating curve.
Simulating and Forecasting Flooding Events in the City of Jeddah, Saudi Arabia
NASA Astrophysics Data System (ADS)
Ghostine, Rabih; Viswanadhapalli, Yesubabu; Hoteit, Ibrahim
2014-05-01
Metropolitan cities in the Kingdom of Saudi Arabia, as Jeddah and Riyadh, are more frequently experiencing flooding events caused by strong convective storms that produce intense precipitation over a short span of time. The flooding in the city of Jeddah in November 2009 was described by civil defense officials as the worst in 27 years. As of January 2010, 150 people were reported killed and more than 350 were missing. Another flooding event, less damaging but comparably spectacular, occurred one year later (Jan 2011) in Jeddah. Anticipating floods before they occur could minimize human and economic losses through the implementation of appropriate protection, provision and rescue plans. We have developed a coupled hydro-meteorological model for simulating and predicting flooding events in the city of Jeddah. We use the Weather Research Forecasting (WRF) model assimilating all available data in the Jeddah region for simulating the storm events in Jeddah. The resulting rain is then used on 10 minutes intervals to feed up an advanced numerical shallow water model that has been discretized on an unstructured grid using different numerical schemes based on the finite elements or finite volume techniques. The model was integrated on a high-resolution grid size varying between 0.5m within the streets of Jeddah and 500m outside the city. This contribution will present the flooding simulation system and the simulation results, focusing on the comparison of the different numerical schemes on the system performances in terms of accuracy and computational efficiency.
Simulations of cataclysmic outburst floods from Pleistocene Glacial Lake Missoula
Denlinger, Roger P.; O'Connell, D. R. H.
2009-01-01
Using a flow domain that we constructed from 30 m digital-elevation model data of western United States and Canada and a two-dimensional numerical model for shallow-water flow over rugged terrain, we simulated outburst floods from Pleistocene Glacial Lake Missoula. We modeled a large, but not the largest, flood, using initial lake elevation at 1250 m instead of 1285 m. Rupture of the ice dam, centered on modern Lake Pend Oreille, catastrophically floods eastern Washington and rapidly fills the broad Pasco, Yakima, and Umatilla Basins. Maximum flood stage is reached in Pasco and Yakima Basins 38 h after the dam break, whereas maximum flood stage in Umatilla Basin occurs 17 h later. Drainage of these basins through narrow Columbia gorge takes an additional 445 h. For this modeled flood, peak discharges in eastern Washington range from 10 to 20 × 106 m3/s. However, constrictions in Columbia gorge limit peak discharges to 6 m3/s and greatly extend the duration of flooding. We compare these model results with field observations of scabland distribution and high-water indicators. Our model predictions of the locations of maximum scour (product of bed shear stress and average flow velocity) match the distribution of existing scablands. We compare model peak stages to high-water indicators from the Rathdrum-Spokane valley, Walulla Gap, and along Columbia gorge. Though peak stages from this less-than-maximal flood model attain or exceed peak-stage indicators along Rathdrum-Spokane valley and along Columbia gorge, simulated peak stages near Walulla Gap are 10–40 m below observed peak-stage indicators. Despite this discrepancy, our match to field observations in most of the region indicates that additional sources of water other than Glacial Lake Missoula are not required to explain the Missoula floods.
Impact of urbanization on flood of Shigu creek in Dongguan city
NASA Astrophysics Data System (ADS)
Pan, Luying; Chen, Yangbo; Zhang, Tao
2018-06-01
Shigu creek is a highly urbanized small watershed in Dongguan City. Due to rapid urbanization, quick flood response has been observed, which posted great threat to the flood security of Dongguan City. To evaluate the impact of urbanization on the flood changes of Shigu creek is very important for the flood mitigation of Shigu creek, which will provide insight for flood planners and managers for if to build a larger flood mitigation system. In this paper, the Land cover/use changes of Shigu creek from 1987-2015 induced by urbanization was first extracted from a local database, then, the Liuxihe model, a physically based distributed hydrological model, is employed to simulate the flood processes impacted by urbanization. Precipitation of 3 storms was used for flood processes simulation. The results show that the runoff coefficient and peak flow have increased sharply.
NASA Astrophysics Data System (ADS)
Saber, M.; Sefelnasr, A.; Yilmaz, K. K.
2015-12-01
Flash flood is a natural hydrological phenomenon which affects many regions of the world. The behavior and effect of this phenomenon is different from one region to the other regions depending on several issues such as climatology and hydrological and topographical conditions at the target regions. Wadi assiut, Egypt as arid environment, and Gumara catchment, Lake Tana, Ethiopia, as humid conditions have been selected for application. The main target of this work is to simulate flash floods at both catchments considering the difference between them on the flash flood behaviors based on the variability of both of them. In order to simulate the flash floods, remote sensing data and a physical-based distributed hydrological model, Hydro-BEAM-WaS (Hydrological River Basin Environmental Assessment Model incorporating Wadi System) have been integrated used in this work. Based on the simulation results of flash floods in these regions, it was found that the time to reach the maximum peak is very short and consequently the warning time is very short as well. It was found that the flash floods starts from zero flow in arid environment, but on the contrary in humid arid, it starts from Base flow which is changeable based on the simulated events. Distribution maps of flash floods showing the vulnerable regions of these selected areas have been developed. Consequently, some mitigation strategies relying on this study have been introduced. The proposed methodology can be applied effectively for flash flood forecasting at different climate regions, however the paucity of observational data.
A holistic approach for large-scale derived flood frequency analysis
NASA Astrophysics Data System (ADS)
Dung Nguyen, Viet; Apel, Heiko; Hundecha, Yeshewatesfa; Guse, Björn; Sergiy, Vorogushyn; Merz, Bruno
2017-04-01
Spatial consistency, which has been usually disregarded because of the reported methodological difficulties, is increasingly demanded in regional flood hazard (and risk) assessments. This study aims at developing a holistic approach for deriving flood frequency at large scale consistently. A large scale two-component model has been established for simulating very long-term multisite synthetic meteorological fields and flood flow at many gauged and ungauged locations hence reflecting the spatially inherent heterogeneity. The model has been applied for the region of nearly a half million km2 including Germany and parts of nearby countries. The model performance has been multi-objectively examined with a focus on extreme. By this continuous simulation approach, flood quantiles for the studied region have been derived successfully and provide useful input for a comprehensive flood risk study.
Analysis and Comparison on the Flood Simulation in Typical Hilly & Semi-mountainous Region
NASA Astrophysics Data System (ADS)
Luan, Qinghua; Wang, Dong; Zhang, Xiang; Liu, Jiahong; Fu, Xiaoran; Zhang, Kun; Ma, Jun
2017-12-01
Water-logging and flood are both serious in hilly and semi-mountainous cities of China, but the related research is rare. Lincheng Economic Development Zone (EDZ) in Hebei Province as the typical city was selected and storm water management model (SWMM) was applied for flood simulation in this study. The regional model was constructed through calibrating and verifying the runoff coefficient of different flood processes. Different designed runoff processes in five-year, ten-year and twenty-year return periods in basic scenario and in the low impact development (LID) scenario, respectively, were simulated and compared. The result shows that: LID measures have effect on peak reduction in the study area, but the effectiveness is not significant; the effectiveness of lagging peak time is poor. These simulation results provide decision support for the rational construction of LID in the study area, and provide the references for regional rain flood management.
Effect of inlet modelling on surface drainage in coupled urban flood simulation
NASA Astrophysics Data System (ADS)
Jang, Jiun-Huei; Chang, Tien-Hao; Chen, Wei-Bo
2018-07-01
For a highly developed urban area with complete drainage systems, flood simulation is necessary for describing the flow dynamics from rainfall, to surface runoff, and to sewer flow. In this study, a coupled flood model based on diffusion wave equations was proposed to simulate one-dimensional sewer flow and two-dimensional overland flow simultaneously. The overland flow model provides details on the rainfall-runoff process to estimate the excess runoff that enters the sewer system through street inlets for sewer flow routing. Three types of inlet modelling are considered in this study, including the manhole-based approach that ignores the street inlets by draining surface water directly into manholes, the inlet-manhole approach that drains surface water into manholes that are each connected to multiple inlets, and the inlet-node approach that drains surface water into sewer nodes that are connected to individual inlets. The simulation results were compared with a high-intensity rainstorm event that occurred in 2015 in Taipei City. In the verification of the maximum flood extent, the two approaches that considered street inlets performed considerably better than that without street inlets. When considering the aforementioned models in terms of temporal flood variation, using manholes as receivers leads to an overall inefficient draining of the surface water either by the manhole-based approach or by the inlet-manhole approach. Using the inlet-node approach is more reasonable than using the inlet-manhole approach because the inlet-node approach greatly reduces the fluctuation of the sewer water level. The inlet-node approach is more efficient in draining surface water by reducing flood volume by 13% compared with the inlet-manhole approach and by 41% compared with the manhole-based approach. The results show that inlet modeling has a strong influence on drainage efficiency in coupled flood simulation.
The validity of flow approximations when simulating catchment-integrated flash floods
NASA Astrophysics Data System (ADS)
Bout, B.; Jetten, V. G.
2018-01-01
Within hydrological models, flow approximations are commonly used to reduce computation time. The validity of these approximations is strongly determined by flow height, flow velocity and the spatial resolution of the model. In this presentation, the validity and performance of the kinematic, diffusive and dynamic flow approximations are investigated for use in a catchment-based flood model. Particularly, the validity during flood events and for varying spatial resolutions is investigated. The OpenLISEM hydrological model is extended to implement both these flow approximations and channel flooding based on dynamic flow. The flow approximations are used to recreate measured discharge in three catchments, among which is the hydrograph of the 2003 flood event in the Fella river basin. Furthermore, spatial resolutions are varied for the flood simulation in order to investigate the influence of spatial resolution on these flow approximations. Results show that the kinematic, diffusive and dynamic flow approximation provide least to highest accuracy, respectively, in recreating measured discharge. Kinematic flow, which is commonly used in hydrological modelling, substantially over-estimates hydrological connectivity in the simulations with a spatial resolution of below 30 m. Since spatial resolutions of models have strongly increased over the past decades, usage of routed kinematic flow should be reconsidered. The combination of diffusive or dynamic overland flow and dynamic channel flooding provides high accuracy in recreating the 2003 Fella river flood event. Finally, in the case of flood events, spatial modelling of kinematic flow substantially over-estimates hydrological connectivity and flow concentration since pressure forces are removed, leading to significant errors.
NASA Astrophysics Data System (ADS)
Kalyanapu, A. J.; Dullo, T. T.; Gangrade, S.; Kao, S. C.; Marshall, R.; Islam, S. R.; Ghafoor, S. K.
2017-12-01
Hurricane Harvey that made landfall in the southern Texas this August is one of the most destructive hurricanes during the 2017 hurricane season. During its active period, many areas in coastal Texas region received more than 40 inches of rain. This downpour caused significant flooding resulting in about 77 casualties, displacing more than 30,000 people, inundating hundreds of thousands homes and is currently estimated to have caused more than $70 billion in direct damage. One of the significantly affected areas is Harris County where the city of Houston, TX is located. Covering over two HUC-8 drainage basins ( 2702 mi2), this county experienced more than 80% of its annual average rainfall during this event. This study presents an effort to reconstruct flooding caused by extreme rainfall due to Hurricane Harvey in Harris County, Texas. This computationally intensive task was performed at a 30-m spatial resolution using a rapid flood model called Flood2D-GPU, a graphics processing unit (GPU) accelerated model, on Oak Ridge National Laboratory's (ORNL) Titan Supercomputer. For this task, the hourly rainfall estimates from the National Center for Environmental Prediction Stage IV Quantitative Precipitation Estimate were fed into the Variable Infiltration Capacity (VIC) hydrologic model and Routing Application for Parallel computation of Discharge (RAPID) routing model to estimate flow hydrographs at 69 locations for Flood2D-GPU simulation. Preliminary results of the simulation including flood inundation extents, maps of flood depths and inundation duration will be presented. Future efforts will focus on calibrating and validating the simulation results and assessing the flood damage for better understanding the impacts made by Hurricane Harvey.
Cigrand, Charles V.
2018-03-26
The U.S. Geological Survey (USGS) in cooperation with the city of West Branch and the Herbert Hoover National Historic Site of the National Park Service assessed flood-mitigation scenarios within the West Branch Wapsinonoc Creek watershed. The scenarios are intended to demonstrate several means of decreasing peak streamflows and improving the conveyance of overbank flows from the West Branch Wapsinonoc Creek and its tributary Hoover Creek where they flow through the city and the Herbert Hoover National Historic Site located within the city.Hydrologic and hydraulic models of the watershed were constructed to assess the flood-mitigation scenarios. To accomplish this, the models used the U.S. Army Corps of Engineers Hydrologic Engineering Center-Hydrologic Modeling System (HEC–HMS) version 4.2 to simulate the amount of runoff and streamflow produced from single rain events. The Hydrologic Engineering Center-River Analysis System (HEC–RAS) version 5.0 was then used to construct an unsteady-state model that may be used for routing streamflows, mapping areas that may be inundated during floods, and simulating the effects of different measures taken to decrease the effects of floods on people and infrastructure.Both models were calibrated to three historic rainfall events that produced peak streamflows ranging between the 2-year and 10-year flood-frequency recurrence intervals at the USGS streamgage (05464942) on Hoover Creek. The historic rainfall events were calibrated by using data from two USGS streamgages along with surveyed high-water marks from one of the events. The calibrated HEC–HMS model was then used to simulate streamflows from design rainfall events of 24-hour duration ranging from a 20-percent to a 1-percent annual exceedance probability. These simulated streamflows were incorporated into the HEC–RAS model.The unsteady-state HEC–RAS model was calibrated to represent existing conditions within the watershed. HEC–RAS model simulations with the existing conditions and streamflows from the design rainfall events were then done to serve as a baseline for evaluating flood-mitigation scenarios. After these simulations were completed, three different flood-mitigation scenarios were developed with HEC–RAS: a detention-storage scenario, a conveyance improvement scenario, and a combination of both. In the detention-storage scenario, four in-channel detention structures were placed upstream from the city of West Branch to attenuate peak streamflows. To investigate possible improvements to conveying floodwaters through the city of West Branch, a section of abandoned railroad embankment and an old truss bridge were removed in the model, because these structures were producing backwater areas during flooding events. The third scenario combines the detention and conveyance scenarios so their joint efficiency could be evaluated. The scenarios with the design rainfall events were run in the HEC–RAS model so their flood-mitigation effects could be analyzed across a wide range of flood magnitudes.
Can global hydrological models reproduce large scale river flood regimes?
NASA Astrophysics Data System (ADS)
Eisner, Stephanie; Flörke, Martina
2013-04-01
River flooding remains one of the most severe natural hazards. On the one hand, major flood events pose a serious threat to human well-being, causing deaths and considerable economic damage. On the other hand, the periodic occurrence of flood pulses is crucial to maintain the functioning of riverine floodplains and wetlands, and to preserve the ecosystem services the latter provide. In many regions, river floods reveal a distinct seasonality, i.e. they occur at a particular time during the year. This seasonality is related to regionally dominant flood generating processes which can be expressed in river flood types. While in data-rich regions (esp. Europe and North America) the analysis of flood regimes can be based on observed river discharge time series, this data is sparse or lacking in many other regions of the world. This gap of knowledge can be filled by global modeling approaches. However, to date most global modeling studies have focused on mean annual or monthly water availability and their change over time while simulating discharge extremes, both floods and droughts, still remains a challenge for large scale hydrological models. This study will explore the ability of the global hydrological model WaterGAP3 to simulate the large scale patterns of river flood regimes, represented by seasonal pattern and the dominant flood type. WaterGAP3 simulates the global terrestrial water balance on a 5 arc minute spatial grid (excluding Greenland and Antarctica) at a daily time step. The model accounts for human interference on river flow, i.e. water abstraction for various purposes, e.g. irrigation, and flow regulation by large dams and reservoirs. Our analysis will provide insight in the general ability of global hydrological models to reproduce river flood regimes and thus will promote the creation of a global map of river flood regimes to provide a spatially inclusive and comprehensive picture. Understanding present-day flood regimes can support both flood risk analysis and the assessment of potential regional impacts of climate change on river flooding.
Can Atmospheric Reanalysis Data Sets Be Used to Reproduce Flooding Over Large Scales?
NASA Astrophysics Data System (ADS)
Andreadis, Konstantinos M.; Schumann, Guy J.-P.; Stampoulis, Dimitrios; Bates, Paul D.; Brakenridge, G. Robert; Kettner, Albert J.
2017-10-01
Floods are costly to global economies and can be exceptionally lethal. The ability to produce consistent flood hazard maps over large areas could provide a significant contribution to reducing such losses, as the lack of knowledge concerning flood risk is a major factor in the transformation of river floods into flood disasters. In order to accurately reproduce flooding in river channels and floodplains, high spatial resolution hydrodynamic models are needed. Despite being computationally expensive, recent advances have made their continental to global implementation feasible, although inputs for long-term simulations may require the use of reanalysis meteorological products especially in data-poor regions. We employ a coupled hydrologic/hydrodynamic model cascade forced by the 20CRv2 reanalysis data set and evaluate its ability to reproduce flood inundation area and volume for Australia during the 1973-2012 period. Ensemble simulations using the reanalysis data were performed to account for uncertainty in the meteorology and compared with a validated benchmark simulation. Results show that the reanalysis ensemble capture the inundated areas and volumes relatively well, with correlations for the ensemble mean of 0.82 and 0.85 for area and volume, respectively, although the meteorological ensemble spread propagates in large uncertainty of the simulated flood characteristics.
NASA Astrophysics Data System (ADS)
Guo, B.
2017-12-01
Mountain watershed in Western China is prone to flash floods. The Wenchuan earthquake on May 12, 2008 led to the destruction of surface, and frequent landslides and debris flow, which further exacerbated the flash flood hazards. Two giant torrent and debris flows occurred due to heavy rainfall after the earthquake, one was on August 13 2010, and the other on August 18 2010. Flash floods reduction and risk assessment are the key issues in post-disaster reconstruction. Hydrological prediction models are important and cost-efficient mitigation tools being widely applied. In this paper, hydrological observations and simulation using remote sensing data and the WMS model are carried out in the typical flood-hit area, Longxihe watershed, Dujiangyan City, Sichuan Province, China. The hydrological response of rainfall runoff is discussed. The results show that: the WMS HEC-1 model can well simulate the runoff process of small watershed in mountainous area. This methodology can be used in other earthquake-affected areas for risk assessment and to predict the magnitude of flash floods. Key Words: Rainfall-runoff modeling. Remote Sensing. Earthquake. WMS.
Toward economic flood loss characterization via hazard simulation
NASA Astrophysics Data System (ADS)
Czajkowski, Jeffrey; Cunha, Luciana K.; Michel-Kerjan, Erwann; Smith, James A.
2016-08-01
Among all natural disasters, floods have historically been the primary cause of human and economic losses around the world. Improving flood risk management requires a multi-scale characterization of the hazard and associated losses—the flood loss footprint. But this is typically not available in a precise and timely manner, yet. To overcome this challenge, we propose a novel and multidisciplinary approach which relies on a computationally efficient hydrological model that simulates streamflow for scales ranging from small creeks to large rivers. We adopt a normalized index, the flood peak ratio (FPR), to characterize flood magnitude across multiple spatial scales. The simulated FPR is then shown to be a key statistical driver for associated economic flood losses represented by the number of insurance claims. Importantly, because it is based on a simulation procedure that utilizes generally readily available physically-based data, our flood simulation approach has the potential to be broadly utilized, even for ungauged and poorly gauged basins, thus providing the necessary information for public and private sector actors to effectively reduce flood losses and save lives.
Probabilistic modelling of flood events using the entropy copula
NASA Astrophysics Data System (ADS)
Li, Fan; Zheng, Qian
2016-11-01
The estimation of flood frequency is vital for the flood control strategies and hydraulic structure design. Generating synthetic flood events according to statistical properties of observations is one of plausible methods to analyze the flood frequency. Due to the statistical dependence among the flood event variables (i.e. the flood peak, volume and duration), a multidimensional joint probability estimation is required. Recently, the copula method is widely used for multivariable dependent structure construction, however, the copula family should be chosen before application and the choice process is sometimes rather subjective. The entropy copula, a new copula family, employed in this research proposed a way to avoid the relatively subjective process by combining the theories of copula and entropy. The analysis shows the effectiveness of the entropy copula for probabilistic modelling the flood events of two hydrological gauges, and a comparison of accuracy with the popular copulas was made. The Gibbs sampling technique was applied for trivariate flood events simulation in order to mitigate the calculation difficulties of extending to three dimension directly. The simulation results indicate that the entropy copula is a simple and effective copula family for trivariate flood simulation.
River flood risk in Jakarta under scenarios of future change
NASA Astrophysics Data System (ADS)
Budiyono, Yus; Aerts, Jeroen C. J. H.; Tollenaar, Daniel; Ward, Philip J.
2016-03-01
Given the increasing impacts of flooding in Jakarta, methods for assessing current and future flood risk are required. In this paper, we use the Damagescanner-Jakarta risk model to project changes in future river flood risk under scenarios of climate change, land subsidence, and land use change. Damagescanner-Jakarta is a simple flood risk model that estimates flood risk in terms of annual expected damage, based on input maps of flood hazard, exposure, and vulnerability. We estimate baseline flood risk at USD 186 million p.a. Combining all future scenarios, we simulate a median increase in risk of +180 % by 2030. The single driver with the largest contribution to that increase is land subsidence (+126 %). We simulated the impacts of climate change by combining two scenarios of sea level rise with simulations of changes in 1-day extreme precipitation totals from five global climate models (GCMs) forced by the four Representative Concentration Pathways (RCPs). The results are highly uncertain; the median change in risk due to climate change alone by 2030 is a decrease by -46 %, but we simulate an increase in risk under 12 of the 40 GCM-RCP-sea level rise combinations. Hence, we developed probabilistic risk scenarios to account for this uncertainty. If land use change by 2030 takes places according to the official Jakarta Spatial Plan 2030, risk could be reduced by 12 %. However, if land use change in the future continues at the same rate as the last 30 years, large increases in flood risk will take place. Finally, we discuss the relevance of the results for flood risk management in Jakarta.
NASA Astrophysics Data System (ADS)
Liao, H. Y.; Lin, Y. J.; Chang, H. K.; Shang, R. K.; Kuo, H. C.; Lai, J. S.; Tan, Y. C.
2017-12-01
Taiwan encounters heavy rainfalls frequently. There are three to four typhoons striking Taiwan every year. To provide lead time for reducing flood damage, this study attempt to build a flood early-warning system (FEWS) in Tanshui River using time series correction techniques. The predicted rainfall is used as the input for the rainfall-runoff model. Then, the discharges calculated by the rainfall-runoff model is converted to the 1-D river routing model. The 1-D river routing model will output the simulating water stages in 487 cross sections for the future 48-hr. The downstream water stage at the estuary in 1-D river routing model is provided by storm surge simulation. Next, the water stages of 487 cross sections are corrected by time series model such as autoregressive (AR) model using real-time water stage measurements to improve the predicted accuracy. The results of simulated water stages are displayed on a web-based platform. In addition, the models can be performed remotely by any users with web browsers through a user interface. The on-line video surveillance images, real-time monitoring water stages, and rainfalls can also be shown on this platform. If the simulated water stage exceeds the embankments of Tanshui River, the alerting lights of FEWS will be flashing on the screen. This platform runs periodically and automatically to generate the simulation graphic data of flood water stages for flood disaster prevention and decision making.
NASA Astrophysics Data System (ADS)
Gilligan, J. M.; Corey, B.; Camp, J. V.; John, N. J.; Sengupta, P.
2015-12-01
The complex interactions between land use and natural hazards pose serious challenges in education, research, and public policy. Where complex nonlinear interactions produce unintuitive results, interactive computer simulations can be useful tools for education and decision support. Emotions play important roles in cognition and learning, especially where risks are concerned. Interactive simulations have the potential to harness emotional engagement to enhance learning and understanding of risks in coupled human-natural systems. We developed a participatory agent-based simulation of cities at risk of river flooding. Participants play the role of managers of neighboring cities along a flood-prone river and make choices about building flood walls to protect their inhabitants. Simulated agents participate in dynamic real estate markets in which demand for property, and thus values and decisions to build, respond to experience with flooding over time. By reducing high-frequency low-magnitude flooding, flood walls may stimulate development, thus increasing tax revenues but also increasing vulnerability to uncommon floods that overtop the walls. Flood waves are launched stochastically and propagate downstream. Flood walls that restrict overbank flow at one city can increase the amplitude of a flood wave at neighboring cities, both up and downstream. We conducted a pilot experiment with a group of three pre-service teachers. The subjects successfully learned key concepts of risk tradeoffs and unintended consequences that can accompany flood-control measures. We also observed strong emotional responses, including hope, fear, and sense of loss. This emotional engagement with a model of coupled human-natural systems was very different from previous experiments on participatory simulations of purely natural systems for physics pedagogy. We conducted a second session in which the participants were expert engineers. We will present the results of these experiments and the prospects for using such models for middle-school, high-school, and post-secondary environmental science pedagogy, for improving public understanding of flood risks, and as decision support tools for planners.
A 2D simulation model for urban flood management
NASA Astrophysics Data System (ADS)
Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo
2014-05-01
The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and keep it as large as possible while maintaining the stability of the flow calculations; -Operate on a square grid at any resolution while retaining at least some details of the ground topography of the basic grid, the storage, and the form roughness and conveyance of the ground surface; -Account for the overall average ground slope for particular coarse cells; -Have the facility to refine the grid locally; -Have the facility to treat ponds or lakes as single, irregular cells; -Permit prescribed inflows and arbitrary outflows across the boundaries of the model domain or internally, and sources and sinks at any interior cell; -Simulate runoff for spatial rainfall while permitting infiltration; -Use ground surface cover and soil type indices to determine surface roughness, interception and infiltration parameters; -Present results at the basic cell level; -Have the facility to begin a model run with monitored soil moisture data; -Have the facility to hot-start a simulation using dumped data from a previous simulation; -Operate with a graphics cards for parallel processing; -Have the facility to link directly to the urban drainage simulation software such as SWMM through an Open Modelling Interface; -Be linked to the Netherlands national rainfall database for continuous simulation of rainfall-runoff for particular polders and urban areas; -Make the engine available as Open Source together with benchmark datasets; PriceXD forms a key modelling component of an integrated urban water management system consisting of an on-line database and a number of complementary modelling systems for urban hydrology, groundwater, potable water distribution, wastewater and stormwater drainage (separate and combined sewerage), wastewater treatment, and surface channel networks. This will be a 'plug and play' system. By linking the models together, confidence in the accuracy of the above-ground damage and construction costs is comparable to the below-ground costs. What is more, PriceXD can be used to examine additional physical phenomenon such as the interaction between flood flows and flows to and from inlets distributed along the pipes of the underground network, and to optimize the removal of blockages and improve asset management. Finally, PriceXD is already an integral component on a number of operational projects and platforms, including the MyWater distributed platform and the HydroNET web portal, where it is already applied to realistic case studies on the Netherlands (namely the Rijnland area), facilitating the access to both the model execution and results, by abstracting most of the complexity out of the model setup and configuration.
Numerical Model of Transitory Flood Flow in 2005 on River Timis
NASA Astrophysics Data System (ADS)
Ghitescu, Marie-Alice; Lazar, Gheorghe; Titus Constantin, Albert; Nicoara, Serban-Vlad
2017-10-01
The paper presents numerical modelling of fluid flow transiting on the Timis River, downstream Lugoj section - N.H. COSTEIU, the occurrence of accidental flood waves from 4 April to 11 April 2005. Numerical simulation aims to estimate water levels on the route pattern on some areas and areas associated respectively floodplain adjacent construction site on the right bank of Timis river, on existing conditions in 2005. The model simulation from 2005 flood event shows that the model can be used for future inundation studies in this locality.
Mapping flood hazards under uncertainty through probabilistic flood inundation maps
NASA Astrophysics Data System (ADS)
Stephens, T.; Bledsoe, B. P.; Miller, A. J.; Lee, G.
2017-12-01
Changing precipitation, rapid urbanization, and population growth interact to create unprecedented challenges for flood mitigation and management. Standard methods for estimating risk from flood inundation maps generally involve simulations of floodplain hydraulics for an established regulatory discharge of specified frequency. Hydraulic model results are then geospatially mapped and depicted as a discrete boundary of flood extents and a binary representation of the probability of inundation (in or out) that is assumed constant over a project's lifetime. Consequently, existing methods utilized to define flood hazards and assess risk management are hindered by deterministic approaches that assume stationarity in a nonstationary world, failing to account for spatio-temporal variability of climate and land use as they translate to hydraulic models. This presentation outlines novel techniques for portraying flood hazards and the results of multiple flood inundation maps spanning hydroclimatic regions. Flood inundation maps generated through modeling of floodplain hydraulics are probabilistic reflecting uncertainty quantified through Monte-Carlo analyses of model inputs and parameters under current and future scenarios. The likelihood of inundation and range of variability in flood extents resulting from Monte-Carlo simulations are then compared with deterministic evaluations of flood hazards from current regulatory flood hazard maps. By facilitating alternative approaches of portraying flood hazards, the novel techniques described in this presentation can contribute to a shifting paradigm in flood management that acknowledges the inherent uncertainty in model estimates and the nonstationary behavior of land use and climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.A.; Sepehrnoori, K.
1995-12-31
The objective of this research is to develop cost-effective surfactant flooding technology by using simulation studies to evaluate and optimize alternative design strategies taking into account reservoir characteristics process chemistry, and process design options such as horizontal wells. Task 1 is the development of an improved numerical method for our simulator that will enable us to solve a wider class of these difficult simulation problems accurately and affordably. Task 2 is the application of this simulator to the optimization of surfactant flooding to reduce its risk and cost. In this quarter, we have continued working on Task 2 to optimizemore » surfactant flooding design and have included economic analysis to the optimization process. An economic model was developed using a spreadsheet and the discounted cash flow (DCF) method of economic analysis. The model was designed specifically for a domestic onshore surfactant flood and has been used to economically evaluate previous work that used a technical approach to optimization. The DCF model outputs common economic decision making criteria, such as net present value (NPV), internal rate of return (IRR), and payback period.« less
Hamman, Josheph J; Hamlet, Alan F.; Fuller, Roger; Grossman, Eric E.
2016-01-01
Current understanding of the combined effects of sea level rise (SLR), storm surge, and changes in river flooding on near-coastal environments is very limited. This project uses a suite of numerical models to examine the combined effects of projected future climate change on flooding in the Skagit floodplain and estuary. Statistically and dynamically downscaled global climate model scenarios from the ECHAM-5 GCM were used as the climate forcings. Unregulated daily river flows were simulated using the VIC hydrology model, and regulated river flows were simulated using the SkagitSim reservoir operations model. Daily tidal anomalies (TA) were calculated using a regression approach based on ENSO and atmospheric pressure forcing simulated by the WRF regional climate model. A 2-D hydrodynamic model was used to estimate water surface elevations in the Skagit floodplain using resampled hourly hydrographs keyed to regulated daily flood flows produced by the reservoir simulation model, and tide predictions adjusted for SLR and TA. Combining peak annual TA with projected sea level rise, the historical (1970–1999) 100-yr peak high water level is exceeded essentially every year by the 2050s. The combination of projected sea level rise and larger floods by the 2080s yields both increased flood inundation area (+ 74%), and increased average water depth (+ 25 cm) in the Skagit floodplain during a 100-year flood. Adding sea level rise to the historical FEMA 100-year flood resulted in a 35% increase in inundation area by the 2040's, compared to a 57% increase when both SLR and projected changes in river flow were combined.
NASA Astrophysics Data System (ADS)
Yuan, Yanbin; Zhou, You; Zhu, Yaqiong; Yuan, Xiaohui; Sælthun, N. R.
2007-11-01
Based on digital technology, flood routing simulation system development is an important component of "digital catchment". Taking QingJiang catchment as a pilot case, in-depth analysis on informatization of Qingjiang catchment management being the basis, aiming at catchment data's multi-source, - dimension, -element, -subject, -layer and -class feature, the study brings the design thought and method of "subject-point-source database" (SPSD) to design system structure in order to realize the unified management of catchments data in great quantity. Using the thought of integrated spatial information technology for reference, integrating hierarchical structure development model of digital catchment is established. The model is general framework of the flood routing simulation system analysis, design and realization. In order to satisfy the demands of flood routing three-dimensional simulation system, the object-oriented spatial data model are designed. We can analyze space-time self-adapting relation between flood routing and catchments topography, express grid data of terrain by using non-directed graph, apply breadth first search arithmetic, set up search method for the purpose of dynamically searching stream channel on the basis of simulated three-dimensional terrain. The system prototype is therefore realized. Simulation results have demonstrated that the proposed approach is feasible and effective in the application.
Validation of a Global Hydrodynamic Flood Inundation Model
NASA Astrophysics Data System (ADS)
Bates, P. D.; Smith, A.; Sampson, C. C.; Alfieri, L.; Neal, J. C.
2014-12-01
In this work we present first validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model (LISFLOOD-FP) to simulate flood inundation at 1km resolution globally and then use downscaling algorithms to determine flood extent and depth at 90m spatial resolution. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. We compare these predictions to flood hazard maps developed by national government agencies in the UK and Germany using similar methods but employing detailed local data, and to observed flood extent at a number of sites including St. Louis, USA and Bangkok in Thailand. Results show that global flood hazard models can have considerable skill given careful treatment to overcome errors in the publicly available data that are used as their input.
Global hydrodynamic modelling of flood inundation in continental rivers: How can we achieve it?
NASA Astrophysics Data System (ADS)
Yamazaki, D.
2016-12-01
Global-scale modelling of river hydrodynamics is essential for understanding global hydrological cycle, and is also required in interdisciplinary research fields . Global river models have been developed continuously for more than two decades, but modelling river flow at a global scale is still a challenging topic because surface water movement in continental rivers is a multi-spatial-scale phenomena. We have to consider the basin-wide water balance (>1000km scale), while hydrodynamics in river channels and floodplains is regulated by much smaller-scale topography (<100m scale). For example, heavy precipitation in upstream regions may later cause flooding in farthest downstream reaches. In order to realistically simulate the timing and amplitude of flood wave propagation for a long distance, consideration of detailed local topography is unavoidable. I have developed the global hydrodynamic model CaMa-Flood to overcome this scale-discrepancy of continental river flow. The CaMa-Flood divides river basins into multiple "unit-catchments", and assumes the water level is uniform within each unit-catchment. One unit-catchment is assigned to each grid-box defined at the typical spatial resolution of global climate models (10 100 km scale). Adopting a uniform water level in a >10km river segment seems to be a big assumption, but it is actually a good approximation for hydrodynamic modelling of continental rivers. The number of grid points required for global hydrodynamic simulations is largely reduced by this "unit-catchment assumption". Alternative to calculating 2-dimensional floodplain flows as in regional flood models, the CaMa-Flood treats floodplain inundation in a unit-catchment as a sub-grid physics. The water level and inundated area in each unit-catchment are diagnosed from water volume using topography parameters derived from high-resolution digital elevation models. Thus, the CaMa-Flood is at least 1000 times computationally more efficient compared to regional flood inundation models while the reality of simulated flood dynamics is kept. I will explain in detail how the CaMa-Flood model has been constructed from high-resolution topography datasets, and how the model can be used for various interdisciplinary applications.
Validation of a 30m resolution flood hazard model of the conterminous United States
NASA Astrophysics Data System (ADS)
Sampson, C. C.; Wing, O.; Smith, A.; Bates, P. D.; Neal, J. C.
2017-12-01
We present a 30m resolution two-dimensional hydrodynamic model of the entire conterminous US that has been used to simulate continent-wide flood extent for ten return periods. The model uses a highly efficient numerical solution of the shallow water equations to simulate fluvial flooding in catchments down to 50 km2 and pluvial flooding in all catchments. We use the US National Elevation Dataset (NED) to determine topography for the model and the US Army Corps of Engineers National Levee Dataset to explicitly represent known flood defences. Return period flows and rainfall intensities are estimated using regionalized frequency analyses. We validate these simulations against the complete catalogue of Federal Emergency Management Agency (FEMA) Special Flood Hazard Area maps. We also compare the results obtained from the NED-based continental model with results from a 90m resolution global hydraulic model built using SRTM terrain and identical boundary conditions. Where the FEMA Special Flood Hazard Areas are based on high quality local models the NED-based continental scale model attains a Hit Rate of 86% and a Critical Success Index (CSI) of 0.59; both are typical of scores achieved when comparing high quality reach-scale models to observed event data. The NED model also consistently outperformed the coarser SRTM model. The correspondence between the continental model and FEMA improves in temperate areas and for basins above 400 km2. Given typical hydraulic modeling uncertainties in the FEMA maps, it is probable that the continental-scale model can replicate them to within error. The continental model covers the entire continental US, compared to only 61% for FEMA, and also maps flooding in smaller watersheds not included in the FEMA coverage. The simulations were performed using computing hardware costing less than 100k, whereas the FEMA flood layers are built from thousands of individual local studies that took several decades to develop at an estimated cost (up to 2013) of 4.5 - $7.5bn. The continental model is relatively straightforward to modify and could be re-run under different scenarios, such as climate change. The results show that continental-scale models may now offer sufficient rigor to inform some decision-making needs with far lower cost and greater coverage than traditional patchwork approaches.
NASA Astrophysics Data System (ADS)
Zhao, F.; Veldkamp, T.; Frieler, K.; Schewe, J.; Ostberg, S.; Willner, S. N.; Schauberger, B.; Gosling, S.; Mueller Schmied, H.; Portmann, F. T.; Leng, G.; Huang, M.; Liu, X.; Tang, Q.; Hanasaki, N.; Biemans, H.; Gerten, D.; Satoh, Y.; Pokhrel, Y. N.; Stacke, T.; Ciais, P.; Chang, J.; Ducharne, A.; Guimberteau, M.; Wada, Y.; Kim, H.; Yamazaki, D.
2017-12-01
Global hydrological models (GHMs) have been applied to assess global flood hazards, but their capacity to capture the timing and amplitude of peak river discharge—which is crucial in flood simulations—has traditionally not been the focus of examination. Here we evaluate to what degree the choice of river routing scheme affects simulations of peak discharge and may help to provide better agreement with observations. To this end we use runoff and discharge simulations of nine GHMs forced by observational climate data (1971-2010) within the ISIMIP2a project. The runoff simulations were used as input for the global river routing model CaMa-Flood. The simulated daily discharge was compared to the discharge generated by each GHM using its native river routing scheme. For each GHM both versions of simulated discharge were compared to monthly and daily discharge observations from 1701 GRDC stations as a benchmark. CaMa-Flood routing shows a general reduction of peak river discharge and a delay of about two to three weeks in its occurrence, likely induced by the buffering capacity of floodplain reservoirs. For a majority of river basins, discharge produced by CaMa-Flood resulted in a better agreement with observations. In particular, maximum daily discharge was adjusted, with a multi-model averaged reduction in bias over about 2/3 of the analysed basin area. The increase in agreement was obtained in both managed and near-natural basins. Overall, this study demonstrates the importance of routing scheme choice in peak discharge simulation, where CaMa-Flood routing accounts for floodplain storage and backwater effects that are not represented in most GHMs. Our study provides important hints that an explicit parameterisation of these processes may be essential in future impact studies.
Increased flood risks in the Sacramento-San Joaquin Valleys, CA, under climate change
NASA Astrophysics Data System (ADS)
Das, T.; Hidalgo-Leon, H.; Dettinger, M.; Cayan, D.
2008-12-01
Natural calamities like floods cause immense damages to human society globally, and California is no exception. A simulation analysis of flood generation in the western Sierra Nevada of California was carried out on simulated by the Variable Infiltration Capacity (VIC) hydrologic model under prescribed changes in precipitation (+10 percent) and temperature (+3oC and +5oC) to evaluate likely changes in 3-day flood- frequency curves under climate change. An additional experiment was carried out where snow production was artificially turned off in VIC. All these experiments showed larger flood magnitudes from California's Northern Sierra Nevada (NSN) and Southern Sierra Nevada (SSN), but the changes (for floods larger than the historical 20-year floods) were significant (at 90 percent confidence level) only in the SSN for severe warming cases. Another analysis using downscaled daily precipitation and temperature projections from three General Circulation Models (CNRM CM3, GFDL CM2.1 and NCAR PCM1) and emission scenario A2 as input to VIC yielded a general increase in the 3-days annual maximum flows under climate change. The increases are significant (at 90 percent confidence level) in the SSN for the period 2051-2099 with all the three climate models analyzed. In the NSN the increases are significant only with the CNRM CM3 model. In general, the frequency of floods increases or stayed same under the projected future climates, and some of the projected floods were unprecedentedly large when compared to historical simulations.
Quality control of the RMS US flood model
NASA Astrophysics Data System (ADS)
Jankowfsky, Sonja; Hilberts, Arno; Mortgat, Chris; Li, Shuangcai; Rafique, Farhat; Rajesh, Edida; Xu, Na; Mei, Yi; Tillmanns, Stephan; Yang, Yang; Tian, Ye; Mathur, Prince; Kulkarni, Anand; Kumaresh, Bharadwaj Anna; Chaudhuri, Chiranjib; Saini, Vishal
2016-04-01
The RMS US flood model predicts the flood risk in the US with a 30 m resolution for different return periods. The model is designed for the insurance industry to estimate the cost of flood risk for a given location. Different statistical, hydrological and hydraulic models are combined to develop the flood maps for different return periods. A rainfall-runoff and routing model, calibrated with observed discharge data, is run with 10 000 years of stochastic simulated precipitation to create time series of discharge and surface runoff. The 100, 250 and 500 year events are extracted from these time series as forcing for a two-dimensional pluvial and fluvial inundation model. The coupling of all the different models which are run on the large area of the US implies a certain amount of uncertainty. Therefore, special attention is paid to the final quality control of the flood maps. First of all, a thorough quality analysis of the Digital Terrain model and the river network was done, as the final quality of the flood maps depends heavily on the DTM quality. Secondly, the simulated 100 year discharge in the major river network (600 000 km) is compared to the 100 year discharge derived using extreme value distribution of all USGS gauges with more than 20 years of peak values (around 11 000 gauges). Thirdly, for each gauge the modelled flood depth is compared to the depth derived from the USGS rating curves. Fourthly, the modelled flood depth is compared to the base flood elevation given in the FEMA flood maps. Fifthly, the flood extent is compared to the FEMA flood extent. Then, for historic events we compare flood extents and flood depths at given locations. Finally, all the data and spatial layers are uploaded on geoserver to facilitate the manual investigation of outliers. The feedback from the quality control is used to improve the model and estimate its uncertainty.
NASA Astrophysics Data System (ADS)
Darma Tarigan, Suria
2016-01-01
Flooding is caused by excessive rainfall flowing downstream as cumulative surface runoff. Flooding event is a result of complex interaction of natural system components such as rainfall events, land use, soil, topography and channel characteristics. Modeling flooding event as a result of interaction of those components is a central theme in watershed management. The model is usually used to test performance of various management practices in flood mitigation. There are various types of management practices for flood mitigation including vegetative and structural management practices. Existing hydrological model such as SWAT and HEC-HMS models have limitation to accommodate discrete management practices such as infiltration well, small farm reservoir, silt pits in its analysis due to the lumped structure of these models. Aim of this research is to use raster spatial analysis functions of Geo-Information System (RGIS-HM) to model flooding event in Ciliwung watershed and to simulate impact of discrete management practices on surface runoff reduction. The model was validated using flooding data event of Ciliwung watershed on 29 January 2004. The hourly hydrograph data and rainfall data were available during period of model validation. The model validation provided good result with Nash-Suthcliff efficiency of 0.8. We also compared the RGIS-HM with Netlogo Hydrological Model (NL-HM). The RGIS-HM has similar capability with NL-HM in simulating discrete management practices in watershed scale.
Flood management: prediction of microbial contamination in large-scale floods in urban environments.
Taylor, Jonathon; Lai, Ka Man; Davies, Mike; Clifton, David; Ridley, Ian; Biddulph, Phillip
2011-07-01
With a changing climate and increased urbanisation, the occurrence and the impact of flooding is expected to increase significantly. Floods can bring pathogens into homes and cause lingering damp and microbial growth in buildings, with the level of growth and persistence dependent on the volume and chemical and biological content of the flood water, the properties of the contaminating microbes, and the surrounding environmental conditions, including the restoration time and methods, the heat and moisture transport properties of the envelope design, and the ability of the construction material to sustain the microbial growth. The public health risk will depend on the interaction of these complex processes and the vulnerability and susceptibility of occupants in the affected areas. After the 2007 floods in the UK, the Pitt review noted that there is lack of relevant scientific evidence and consistency with regard to the management and treatment of flooded homes, which not only put the local population at risk but also caused unnecessary delays in the restoration effort. Understanding the drying behaviour of flooded buildings in the UK building stock under different scenarios, and the ability of microbial contaminants to grow, persist, and produce toxins within these buildings can help inform recovery efforts. To contribute to future flood management, this paper proposes the use of building simulations and biological models to predict the risk of microbial contamination in typical UK buildings. We review the state of the art with regard to biological contamination following flooding, relevant building simulation, simulation-linked microbial modelling, and current practical considerations in flood remediation. Using the city of London as an example, a methodology is proposed that uses GIS as a platform to integrate drying models and microbial risk models with the local building stock and flood models. The integrated tool will help local governments, health authorities, insurance companies and residents to better understand, prepare for and manage a large-scale flood in urban environments. Copyright © 2011 Elsevier Ltd. All rights reserved.
Conditional flood frequency and catchment state: a simulation approach
NASA Astrophysics Data System (ADS)
Brettschneider, Marco; Bourgin, François; Merz, Bruno; Andreassian, Vazken; Blaquiere, Simon
2017-04-01
Catchments have memory and the conditional flood frequency distribution for a time period ahead can be seen as non-stationary: it varies with the catchment state and climatic factors. From a risk management perspective, understanding the link of conditional flood frequency to catchment state is a key to anticipate potential periods of higher flood risk. Here, we adopt a simulation approach to explore the link between flood frequency obtained by continuous rainfall-runoff simulation and the initial state of the catchment. The simulation chain is based on i) a three state rainfall generator applied at the catchment scale, whose parameters are estimated for each month, and ii) the GR4J lumped rainfall-runoff model, whose parameters are calibrated with all available data. For each month, a large number of stochastic realizations of the continuous rainfall generator for the next 12 months are used as inputs for the GR4J model in order to obtain a large number of stochastic realizations for the next 12 months. This process is then repeated for 50 different initial states of the soil moisture reservoir of the GR4J model and for all the catchments. Thus, 50 different conditional flood frequency curves are obtained for the 50 different initial catchment states. We will present an analysis of the link between the catchment states, the period of the year and the strength of the conditioning of the flood frequency compared to the unconditional flood frequency. A large sample of diverse catchments in France will be used.
NASA Technical Reports Server (NTRS)
Zhao, Fang; Veldkamp, Ted I. E.; Frieler, Katja; Schewe, Jacob; Ostberg, Sebastian; Willner, Sven; Schauberger, Bernhard; Gosling, Simon N.; Schmied, Hannes Muller; Portmann, Felix T.;
2017-01-01
Global hydrological models (GHMs) have been applied to assess global flood hazards, but their capacity to capture the timing and amplitude of peak river discharge which is crucial in flood simulations has traditionally not been the focus of examination. Here we evaluate to what degree the choice of river routing scheme affects simulations of peak discharge and may help to provide better agreement with observations. To this end we use runoff and discharge simulations of nine GHMs forced by observational climate data (1971-2010) within the ISIMIP2a (Inter-Sectoral Impact Model Intercomparison Project phase 2a) project. The runoff simulations were used as input for the global river routing model CaMa-Flood (Catchment-based Macro-scale Floodplain). The simulated daily discharge was compared to the discharge generated by each GHM using its native river routing scheme. For each GHM both versions of simulated discharge were compared to monthly and daily discharge observations from 1701 GRDC (Global Runoff Data Centre) stations as a benchmark. CaMa-Flood routing shows a general reduction of peak river discharge and a delay of about two to three weeks in its occurrence, likely induced by the buffering capacity of floodplain reservoirs. For a majority of river basins, discharge produced by CaMa-Flood resulted in a better agreement with observations. In particular, maximum daily discharge was adjusted, with a multi-model averaged reduction in bias over about two-thirds of the analysed basin area. The increase in agreement was obtained in both managed and near-natural basins. Overall, this study demonstrates the importance of routing scheme choice in peak discharge simulation, where CaMa-Flood routing accounts for floodplain storage and backwater effects that are not represented in most GHMs. Our study provides important hints that an explicit parameterisation of these processes may be essential in future impact studies.
Simulation of Flood Profiles for Catoma Creek near Montgomery, Alabama, 2008
Lee, K.G.; Hedgecock, T.S.
2008-01-01
A one-dimensional step-backwater model was used to simulate flooding conditions for Catoma Creek near Montgomery, Alabama. A peak flow of 50,000 cubic feet per second was computed by the U.S. Geological Survey for the March 1990 flood at the Norman Bridge Road gaging station. Using this estimated peak flow, flood-plain surveys with associated roughness coefficients, and surveyed high-water marks for the March 1990 flood, a flow model was calibrated to closely match the known event. The calibrated model then was used to simulate flooding for the 10-, 50-, 100-, and 500-year recurrence-interval floods. The 100-year flood stage for the Alabama River also was computed in the vicinity of the Catoma Creek confluence using observed high-water profiles from the 1979 and 1990 floods and gaging-station data. The results indicate that the 100-year flood profile for Catoma Creek within the 15-mile study reach is about 2.5 feet higher, on average, than the profile published by the Federal Emergency Management Agency. The maximum and minimum differences are 6.0 feet and 0.8 foot, respectively. All water-surface elevations computed for the 100-year flood are higher than those published by the Federal Emergency Management Agency. The 100-year flood stage computed for the Alabama River in the vicinity of the Catoma Creek confluence was about 4.5 feet lower than the elevation published by the Federal Emergency Management Agency. The results of this study provide the community with flood-profile information that can be used for flood-plain mitigation, future development, and safety plans for the city.
Murphy, Elizabeth A.; Straub, Timothy D.; Soong, David T.; Hamblen, Christopher S.
2007-01-01
Results of the hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kendall County, Illinois, indicate that the 100-year and 500-year flood plains cover approximately 3,699 and 3,762 acres of land, respectively. On the basis of land-cover data for 2003, most of the land in the flood plains was cropland and residential land. Although many acres of residential land were included in the flood plain, this land was mostly lawns, with 25 homes within the 100-year flood plain, and 41 homes within the 500-year flood plain in the 2003 aerial photograph. This report describes the data collection activities to refine the hydrologic and hydraulic models used in an earlier study of the Kane County part of the Blackberry Creek watershed and to extend the flood-frequency analysis through water year 2003. The results of the flood-hazard analysis are presented in graphical and tabular form. The hydrologic model, Hydrological Simulation Program - FORTRAN (HSPF), was used to simulate continuous water movement through various land-use patterns in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center- River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and the 100-year floodway. The hydraulic model was calibrated and verified using observations during three storms at two crest-stage gages and the U.S. Geological Survey streamflowgaging station near Yorkville. Digital maps of the 100-year and 500-year flood plains and the 100-year floodway for each tributary and the main stem of Blackberry Creek were compiled.
Taylor, Jonathon; Biddulph, Phillip; Davies, Michael; Lai, Ka man
2013-01-01
London is expected to experience more frequent periods of intense rainfall and tidal surges, leading to an increase in the risk of flooding. Damp and flooded dwellings can support microbial growth, including mould, bacteria, and protozoa, as well as persistence of flood-borne microorganisms. The amount of time flooded dwellings remain damp will depend on the duration and height of the flood, the contents of the flood water, the drying conditions, and the building construction, leading to particular properties and property types being prone to lingering damp and human pathogen growth or persistence. The impact of flooding on buildings can be simulated using Heat Air and Moisture (HAM) models of varying complexity in order to understand how water can be absorbed and dry out of the building structure. This paper describes the simulation of the drying of building archetypes representative of the English building stock using the EnergyPlus based tool 'UCL-HAMT' in order to determine the drying rates of different abandoned structures flooded to different heights and during different seasons. The results are mapped out using GIS in order to estimate the spatial risk across London in terms of comparative flood vulnerability, as well as for specific flood events. Areas of South and East London were found to be particularly vulnerable to long-term microbial exposure following major flood events. Copyright © 2012 Elsevier Ltd. All rights reserved.
How can we deal with ANN in flood forecasting? As a simulation model or updating kernel!
NASA Astrophysics Data System (ADS)
Hassan Saddagh, Mohammad; Javad Abedini, Mohammad
2010-05-01
Flood forecasting and early warning, as a non-structural measure for flood control, is often considered to be the most effective and suitable alternative to mitigate the damage and human loss caused by flood. Forecast results which are output of hydrologic, hydraulic and/or black box models should secure accuracy of flood values and timing, especially for long lead time. The application of the artificial neural network (ANN) in flood forecasting has received extensive attentions in recent years due to its capability to capture the dynamics inherent in complex processes including flood. However, results obtained from executing plain ANN as simulation model demonstrate dramatic reduction in performance indices as lead time increases. This paper is intended to monitor the performance indices as it relates to flood forecasting and early warning using two different methodologies. While the first method employs a multilayer neural network trained using back-propagation scheme to forecast output hydrograph of a hypothetical river for various forecast lead time up to 6.0 hr, the second method uses 1D hydrodynamic MIKE11 model as forecasting model and multilayer neural network as updating kernel to monitor and assess the performance indices compared to ANN alone in light of increase in lead time. Results presented in both graphical and tabular format indicate superiority of MIKE11 coupled with ANN as updating kernel compared to ANN as simulation model alone. While plain ANN produces more accurate results for short lead time, the errors increase expeditiously for longer lead time. The second methodology provides more accurate and reliable results for longer forecast lead time.
NASA Astrophysics Data System (ADS)
Green, Daniel; Pattison, Ian; Yu, Dapeng
2016-04-01
Surface water (pluvial) flooding occurs when rainwater from intense precipitation events is unable to infiltrate into the subsurface or drain via natural or artificial drainage channels. Surface water flooding poses a serious hazard to urban areas across the world, with the UK's perceived risk appearing to have increased in recent years due to surface water flood events seeming more severe and frequent. Surface water flood risk currently accounts for 1/3 of all UK flood risk, with approximately two million people living in urban areas at risk of a 1 in 200-year flood event. Research often focuses upon using numerical modelling techniques to understand the extent, depth and severity of actual or hypothetical flood scenarios. Although much research has been conducted using numerical modelling, field data available for model calibration and validation is limited due to the complexities associated with data collection in surface water flood conditions. Ultimately, the data which numerical models are based upon is often erroneous and inconclusive. Physical models offer a novel, alternative and innovative environment to collect data within, creating a controlled, closed system where independent variables can be altered independently to investigate cause and effect relationships. A physical modelling environment provides a suitable platform to investigate rainfall-runoff processes occurring within an urban catchment. Despite this, physical modelling approaches are seldom used in surface water flooding research. Scaled laboratory experiments using a 9m2, two-tiered 1:100 physical model consisting of: (i) a low-cost rainfall simulator component able to simulate consistent, uniformly distributed (>75% CUC) rainfall events of varying intensity, and; (ii) a fully interchangeable, modular plot surface have been conducted to investigate and quantify the influence of a number of terrestrial and meteorological factors on overland flow and rainfall-runoff patterns within a modelled urban setting. Terrestrial factors investigated include altering the physical model's catchment slope (0°- 20°), as well as simulating a number of spatially-varied impermeability and building density/configuration scenarios. Additionally, the influence of different storm dynamics and intensities were investigated. Preliminary results demonstrate that rainfall-runoff responses in the physical modelling environment are highly sensitive to slight increases in catchment gradient and rainfall intensity and that more densely distributed building layouts significantly increase peak flows recorded at the physical model outflow when compared to sparsely distributed building layouts under comparable simulated rainfall conditions.
Coupled 1-D sewer and street networks and 2-D flooding model to rapidly evaluate surface inundation
NASA Astrophysics Data System (ADS)
Kao, Hong-Ming; Hsu, Hao-Ming
2017-04-01
Flash floods have occurred frequently in the urban areas around the world and cause the infrastructure and people living to expose continuously in the high risk level of pluvial flooding. According to historical surveys, the major reasons of severe surface inundations in the urban areas can be attributed to heavy rainfall in the short time and/or drainage system failure. In order to obtain real-time flood forecasting with high accuracy and less uncertainty, an appropriate system for predicting floods is necessary. For the reason, this study coupled 1-D sewer and street networks and 2-D flooding model as an operational modelling system for rapidly evaluating surface inundation. The proposed system is constructed by three significant components: (1) all the rainfall-runoff of a sub-catchment collected via gullies is simulated by the RUNOFF module of the Storm Water Management Model (SWMM); (2) and directly drained to the 1-D sewer and street networks via manholes as inflow discharges to conduct flow routing by using the EXTRAN module of SWMM; (3) after the 1-D simulations, the surcharges from manholes are considered as point sources in 2-D overland flow simulations that are executed by the WASH123D model. It can thus be used for urban flood modelling that reflects the rainfall-runoff processes, and the dynamic flow interactions between the storm sewer system and the ground surface in urban areas. In the present study, we adopted the Huwei Science and Technology Park, located in the south-western part of Taiwan, as the demonstration area because of its high industrial values. The region has an area about 1 km2 with approximately 1 km in both length and width. It is as isolated urban drainage area in which there is a complete sewer system that collects the runoff and drains to the detention pond. Based on the simulated results, the proposed modelling system was found that the simulated floods fit to the survey records because the physical rainfall-runoff phenomena in urban environment were better reflected. Keywords: SWMM, WASH123D, surface inundation, real-time.
Adjusting Satellite Rainfall Error in Mountainous Areas for Flood Modeling Applications
NASA Astrophysics Data System (ADS)
Zhang, X.; Anagnostou, E. N.; Astitha, M.; Vergara, H. J.; Gourley, J. J.; Hong, Y.
2014-12-01
This study aims to investigate the use of high-resolution Numerical Weather Prediction (NWP) for evaluating biases of satellite rainfall estimates of flood-inducing storms in mountainous areas and associated improvements in flood modeling. Satellite-retrieved precipitation has been considered as a feasible data source for global-scale flood modeling, given that satellite has the spatial coverage advantage over in situ (rain gauges and radar) observations particularly over mountainous areas. However, orographically induced heavy precipitation events tend to be underestimated and spatially smoothed by satellite products, which error propagates non-linearly in flood simulations.We apply a recently developed retrieval error and resolution effect correction method (Zhang et al. 2013*) on the NOAA Climate Prediction Center morphing technique (CMORPH) product based on NWP analysis (or forecasting in the case of real-time satellite products). The NWP rainfall is derived from the Weather Research and Forecasting Model (WRF) set up with high spatial resolution (1-2 km) and explicit treatment of precipitation microphysics.In this study we will show results on NWP-adjusted CMORPH rain rates based on tropical cyclones and a convective precipitation event measured during NASA's IPHEX experiment in the South Appalachian region. We will use hydrologic simulations over different basins in the region to evaluate propagation of bias correction in flood simulations. We show that the adjustment reduced the underestimation of high rain rates thus moderating the strong rainfall magnitude dependence of CMORPH rainfall bias, which results in significant improvement in flood peak simulations. Further study over Blue Nile Basin (western Ethiopia) will be investigated and included in the presentation. *Zhang, X. et al. 2013: Using NWP Simulations in Satellite Rainfall Estimation of Heavy Precipitation Events over Mountainous Areas. J. Hydrometeor, 14, 1844-1858.
NASA Astrophysics Data System (ADS)
Moncoulon, D.; Labat, D.; Ardon, J.; Onfroy, T.; Leblois, E.; Poulard, C.; Aji, S.; Rémy, A.; Quantin, A.
2013-07-01
The analysis of flood exposure at a national scale for the French insurance market must combine the generation of a probabilistic event set of all possible but not yet occurred flood situations with hazard and damage modeling. In this study, hazard and damage models are calibrated on a 1995-2012 historical event set, both for hazard results (river flow, flooded areas) and loss estimations. Thus, uncertainties in the deterministic estimation of a single event loss are known before simulating a probabilistic event set. To take into account at least 90% of the insured flood losses, the probabilistic event set must combine the river overflow (small and large catchments) with the surface runoff due to heavy rainfall, on the slopes of the watershed. Indeed, internal studies of CCR claim database has shown that approximately 45% of the insured flood losses are located inside the floodplains and 45% outside. 10% other percent are due to seasurge floods and groundwater rise. In this approach, two independent probabilistic methods are combined to create a single flood loss distribution: generation of fictive river flows based on the historical records of the river gauge network and generation of fictive rain fields on small catchments, calibrated on the 1958-2010 Météo-France rain database SAFRAN. All the events in the probabilistic event sets are simulated with the deterministic model. This hazard and damage distribution is used to simulate the flood losses at the national scale for an insurance company (MACIF) and to generate flood areas associated with hazard return periods. The flood maps concern river overflow and surface water runoff. Validation of these maps is conducted by comparison with the address located claim data on a small catchment (downstream Argens).
User's guide for MAGIC-Meteorologic and hydrologic genscn (generate scenarios) input converter
Ortel, Terry W.; Martin, Angel
2010-01-01
Meteorologic and hydrologic data used in watershed modeling studies are collected by various agencies and organizations, and stored in various formats. Data may be in a raw, un-processed format with little or no quality control, or may be checked for validity before being made available. Flood-simulation systems require data in near real-time so that adequate flood warnings can be made. Additionally, forecasted data are needed to operate flood-control structures to potentially mitigate flood damages. Because real-time data are of a provisional nature, missing data may need to be estimated for use in floodsimulation systems. The Meteorologic and Hydrologic GenScn (Generate Scenarios) Input Converter (MAGIC) can be used to convert data from selected formats into the Hydrologic Simulation System-Fortran hourly-observations format for input to a Watershed Data Management database, for use in hydrologic modeling studies. MAGIC also can reformat the data to the Full Equations model time-series format, for use in hydraulic modeling studies. Examples of the application of MAGIC for use in the flood-simulation system for Salt Creek in northeastern Illinois are presented in this report.
Hydrologic Simulation in Mediterranean flood prone Watersheds using high-resolution quality data
NASA Astrophysics Data System (ADS)
Eirini Vozinaki, Anthi; Alexakis, Dimitrios; Pappa, Polixeni; Tsanis, Ioannis
2015-04-01
Flooding is a significant threat causing lots of inconveniencies in several societies, worldwide. The fact that the climatic change is already happening, increases the flooding risk, which is no longer a substantial menace to several societies and their economies. The improvement of spatial-resolution and accuracy of the topography and land use data due to remote sensing techniques could provide integrated flood inundation simulations. In this work hydrological analysis of several historic flood events in Mediterranean flood prone watersheds (island of Crete/Greece) takes place. Satellite images of high resolution are elaborated. A very high resolution (VHR) digital elevation model (DEM) is produced from a GeoEye-1 0.5-m-resolution satellite stereo pair and is used for floodplain management and mapping applications such as watershed delineation and river cross-section extraction. Sophisticated classification algorithms are implemented for improving Land Use/ Land Cover maps accuracy. In addition, soil maps are updated with means of Radar satellite images. The above high-resolution data are innovatively used to simulate and validate several historical flood events in Mediterranean watersheds, which have experienced severe flooding in the past. The hydrologic/hydraulic models used for flood inundation simulation in this work are HEC-HMS and HEC-RAS. The Natural Resource Conservation Service (NRCS) curve number (CN) approach is implemented to account for the effect of LULC and soil on the hydrologic response of the catchment. The use of high resolution data provides detailed validation results and results of high precision, accordingly. Furthermore, the meteorological forecasting data, which are also combined to the simulation model results, manage the development of an integrated flood forecasting and early warning system tool, which is capable of confronting or even preventing this imminent risk. The research reported in this paper was fully supported by the "ARISTEIA II" Action ("REINFORCE" program) of the "Operational Education and Life Long Learning programme" and is co-funded by the European Social Fund (ESF) and National Resources.
Hedgecock, T. Scott
2003-01-01
A two-dimensional finite-element surface-water model was used to study the effects of proposed modifications to the State Highway 203 corridor (proposed Elba Bypass/relocated U.S. Highway 84) on water-surface elevations and flow distributions during flooding in the Pea River and Whitewater Creek Basins at Elba, Coffee County, Alabama. Flooding was first simulated for the March 17, 1990, flood, using the 1990 flood-plain conditions to calibrate the model to match measured data collected by the U.S. Geological Survey and the U.S. Army Corps of Engineers after the flood. After model calibration, the effects of flooding were simulated for four scenarios: (1) floods having the 50- and 100-year recurrence intervals for the existing flood-plain, bridge, highway, and levee conditions; (2) floods having the 50- and 100-year recurrence intervals for the existing flood-plain and levee conditions with the State Highway 203 embankment and bridge removed; (3) floods having the 50- and 100-year recurrence intervals for the existing flood-plain, bridge, and highway conditions with proposed modifications (elevating) to the levee; and (4) floods having the 50- and 100-year recurrence intervals for the proposed conditions reflecting the Elba Bypass and modified levee. The simulation of floodflow for the Pea River and Whitewater Creek flood of March 17, 1990, in the study reach compared closely to flood profile data obtained after the flood. The flood of March 17, 1990, had an estimated peak discharge of 58,000 cubic feet per second at the gage (just below the confluence) and was estimated to be between a 50-year and 100-year flood event. The estimated peak discharge for Pea River and Whitewater Creek was 40,000 and 42,000 cubic feet per second, respectively. Simulation of floodflows for the 50-year flood (51,400 cubic feet per second) at the gage for existing flood-plain, bridge, highway, and levee conditions indicated that about 31 percent of the peak flow was conveyed by the State Highway 203 bridge over Whitewater Creek, approximately 12 percent overtopped the State Highway 203 embankment, and about 57 percent was conveyed by the Pea River flood plain east of State Highway 125. For this simulation, flow from Pea River (2,380 cubic feet per second) overtopped State Highway 125 and crossed over into the Whitewater Creek flood plain north of State Highway 203, creating one common flood plain. The water-surface elevation estimated at the downstream side of the State Highway 203 bridge crossing Whitewater Creek was 202.82 feet. The girders for both the State Highway 203 and U.S. Highway 84 bridges were partially submerged, but U.S. Highway 84 was not overtopped. For the 100-year flood (63,500 cubic feet per second) at the gage, the simulation indicated that about 25 percent of the peak flow was conveyed by the State Highway 203 bridge over Whitewater Creek, approximately 24 percent overtopped the State Highway 203 embankment, and about 51 percent was conveyed by the Pea River flood plain east of State Highway 125. The existing levee adjacent to Whitewater Creek was overtopped by a flow of 3,200 cubic feet per second during the 100-year flood. For this simulation, flow from Pea River (6,710 cubic feet per second) overtopped State Highway 125 and crossed over into the Whitewater Creek flood plain north of State Highway 203. The water-surface elevation estimated at the downstream side of the State Highway 203 bridge crossing Whitewater Creek was 205.60 feet. The girders for both the State Highway 203 and U.S. Highway 84 bridges were partially submerged, and the west end of the U.S. Highway 84 bridge was overtopped. Simulation of floodflows for the 50-year flood at the gage for existing flood-plain and levee conditions, but with the State Highway 203 embankment and bridge removed, yielded a lower water-surface elevation (202.90 feet) upstream of this bridge than that computed for the existing conditions. For the 100-year flood, the simulation indi
High resolution global flood hazard map from physically-based hydrologic and hydraulic models.
NASA Astrophysics Data System (ADS)
Begnudelli, L.; Kaheil, Y.; McCollum, J.
2017-12-01
The global flood map published online at http://www.fmglobal.com/research-and-resources/global-flood-map at 90m resolution is being used worldwide to understand flood risk exposure, exercise certain measures of mitigation, and/or transfer the residual risk financially through flood insurance programs. The modeling system is based on a physically-based hydrologic model to simulate river discharges, and 2D shallow-water hydrodynamic model to simulate inundation. The model can be applied to large-scale flood hazard mapping thanks to several solutions that maximize its efficiency and the use of parallel computing. The hydrologic component of the modeling system is the Hillslope River Routing (HRR) hydrologic model. HRR simulates hydrological processes using a Green-Ampt parameterization, and is calibrated against observed discharge data from several publicly-available datasets. For inundation mapping, we use a 2D Finite-Volume Shallow-Water model with wetting/drying. We introduce here a grid Up-Scaling Technique (UST) for hydraulic modeling to perform simulations at higher resolution at global scale with relatively short computational times. A 30m SRTM is now available worldwide along with higher accuracy and/or resolution local Digital Elevation Models (DEMs) in many countries and regions. UST consists of aggregating computational cells, thus forming a coarser grid, while retaining the topographic information from the original full-resolution mesh. The full-resolution topography is used for building relationships between volume and free surface elevation inside cells and computing inter-cell fluxes. This approach almost achieves computational speed typical of the coarse grids while preserving, to a significant extent, the accuracy offered by the much higher resolution available DEM. The simulations are carried out along each river of the network by forcing the hydraulic model with the streamflow hydrographs generated by HRR. Hydrographs are scaled so that the peak corresponds to the return period corresponding to the hazard map being produced (e.g. 100 years, 500 years). Each numerical simulation models one river reach, except for the longest reaches which are split in smaller parts. Here we show results for selected river basins worldwide.
NASA Astrophysics Data System (ADS)
Huang, C.; Hsu, N.
2013-12-01
This study imports Low-Impact Development (LID) technology of rainwater catchment systems into a Storm-Water runoff Management Model (SWMM) to design the spatial capacity and quantity of rain barrel for urban flood mitigation. This study proposes a simulation-optimization model for effectively searching the optimal design. In simulation method, we design a series of regular spatial distributions of capacity and quantity of rainwater catchment facilities, and thus the reduced flooding circumstances using a variety of design forms could be simulated by SWMM. Moreover, we further calculate the net benefit that is equal to subtract facility cost from decreasing inundation loss and the best solution of simulation method would be the initial searching solution of the optimization model. In optimizing method, first we apply the outcome of simulation method and Back-Propagation Neural Network (BPNN) for developing a water level simulation model of urban drainage system in order to replace SWMM which the operating is based on a graphical user interface and is hard to combine with optimization model and method. After that we embed the BPNN-based simulation model into the developed optimization model which the objective function is minimizing the negative net benefit. Finally, we establish a tabu search-based algorithm to optimize the planning solution. This study applies the developed method in Zhonghe Dist., Taiwan. Results showed that application of tabu search and BPNN-based simulation model into the optimization model not only can find better solutions than simulation method in 12.75%, but also can resolve the limitations of previous studies. Furthermore, the optimized spatial rain barrel design can reduce 72% of inundation loss according to historical flood events.
A fast method for optical simulation of flood maps of light-sharing detector modules.
Shi, Han; Du, Dong; Xu, JianFeng; Moses, William W; Peng, Qiyu
2015-12-01
Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. We present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We simulated conventional block detector designs with different slotted light guide patterns using the new approach and compared the outcomes with those from GATE simulations. While the two approaches generated comparable flood maps, the new approach was more than 200-600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials.
The Importance of Precise Digital Elevation Models (DEM) in Modelling Floods
NASA Astrophysics Data System (ADS)
Demir, Gokben; Akyurek, Zuhal
2016-04-01
Digital elevation Models (DEM) are important inputs for topography for the accurate modelling of floodplain hydrodynamics. Floodplains have a key role as natural retarding pools which attenuate flood waves and suppress flood peaks. GPS, LIDAR and bathymetric surveys are well known surveying methods to acquire topographic data. It is not only time consuming and expensive to obtain topographic data through surveying but also sometimes impossible for remote areas. In this study it is aimed to present the importance of accurate modelling of topography for flood modelling. The flood modelling for Samsun-Terme in Blacksea region of Turkey is done. One of the DEM is obtained from the point observations retrieved from 1/5000 scaled orthophotos and 1/1000 scaled point elevation data from field surveys at x-sections. The river banks are corrected by using the orthophotos and elevation values. This DEM is named as scaled DEM. The other DEM is obtained from bathymetric surveys. 296 538 number of points and the left/right bank slopes were used to construct the DEM having 1 m spatial resolution and this DEM is named as base DEM. Two DEMs were compared by using 27 x-sections. The maximum difference at thalweg of the river bed is 2m and the minimum difference is 20 cm between two DEMs. The channel conveyance capacity in base DEM is larger than the one in scaled DEM and floodplain is modelled in detail in base DEM. MIKE21 with flexible grid is used in 2- dimensional shallow water flow modelling. The model by using two DEMs were calibrated for a flood event (July 9, 2012). The roughness is considered as the calibration parameter. From comparison of input hydrograph at the upstream of the river and output hydrograph at the downstream of the river, the attenuation is obtained as 91% and 84% for the base DEM and scaled DEM, respectively. The time lag in hydrographs does not show any difference for two DEMs and it is obtained as 3 hours. Maximum flood extents differ for the two DEMs, larger flooded area is simulated from scaled DEM. The main difference is observed for the braided and meandering parts of the river. For the meandering part of the river, additional 1.82 106 m3 water (5% of the total volume) is calculated as the flooded volume simulated by using the scaled DEM. For the braided stream part 0.187 106 m3 more water is simulated as the flooded volume by the scaled DEM. The flood extent around the braided part of the river is 27.6 ha larger in the simulated flood map obtained from scaled DEM compared to the one obtained from base DEM. Around the meandering part of the river scaled DEM gave 59.8 ha more flooded area. The importance of correct topography of the braided and meandering part of the river in flood modelling and the uncertainty it brings to modelling are discussed in detail.
Wiche, Gregg J.; Gilbert, J.J.; Froehlich, David C.; Lee, Jonathan K.
1988-01-01
In April 1979 and April 1980, major flooding along the lower Pearl River caused extensive damage to homes located on the flood plain in the Slidell, Louisiana, area. In response to questions about causes of these floods and means of mitigating future floods, the U.S. Geological Survey, in cooperation with the Louisiana Department of Transportation and Development, Office of Highways, and the U.S. Department of Transportation, Federal Highway Administration, used a two-dimensional finite-element surface-water flow-modeling system to study the effect of four alternative modifications for improving the hydraulic characteristics of the Interstate Highway 10 crossing of the flood plain near Slidell. The analysis used the model's capability to simulate changes in flood-plain topography, flood-plain vegetative cover, and highway-embankment geometry. Compared with the existing highway crossing, the four alternative modifications reduce backwater and average velocities through bridge openings for a flood of the magnitude of the 1980 flood. The four alternatives also eliminate roadway overtopping during such a flood. For the four modifications, maximum backwater on the west side of the flood plain ranges from 0.3 to 1.1 feet and on the east side from 0.3 to 0.7 foot. Results of the alternative-model simulations show that backwater is greater on the west side of the flood plain than on the east side, but upstream from Interstate Highway 10 backwater decreases more rapidly in the upstream direction on the west side of the flood plain than on the east side. Downstream from Interstate Highway 10, modeling of the four alternatives indicates that backwater and drawdown still occur on the east and west sides of the flood plain, respectively, but are less than the values computed for the April 1980 flood with Interstate Highway 10 in place. In addition to other highway-crossing modifications, alternatives 2 and 3 include simulation of a new 2,000-foot bridge opening, and ,alternative 4 includes simulation of a 1,000-foot bridge opening. The new bridge conveys 25, 23, and 21 percent of the total computed discharge in alternatives 2, 3, and 4, respectively. The average velocity through the new bridge is 2.0, 1.9, and 3.4 feet per second for alternatives 2, 3, and 4, respectively.
High-fidelity numerical modeling of the Upper Mississippi River under extreme flood condition
NASA Astrophysics Data System (ADS)
Khosronejad, Ali; Le, Trung; DeWall, Petra; Bartelt, Nicole; Woldeamlak, Solomon; Yang, Xiaolei; Sotiropoulos, Fotis
2016-12-01
We present data-driven numerical simulations of extreme flooding in a large-scale river coupling coherent-structure resolving hydrodynamics with bed morphodynamics under live-bed conditions. The study area is a ∼ 3.2 km long and ∼ 300 m wide reach of the Upper Mississippi River, near Minneapolis MN, which contains several natural islands and man-made hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the Virtual Flow Simulator (VFS-Rivers) model, a recently developed in-house code, to investigate the flow and bed evolution of the river during a 100-year flood event. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. We integrate data from airborne Light Detection and Ranging (LiDAR), sub-aqueous sonar apparatus on-board a boat and in-situ laser scanners to construct a digital elevation model of the river bathymetry and surrounding flood plain, including islands and bridge piers. A field campaign under base-flow condition is also carried out to collect mean flow measurements via Acoustic Doppler Current Profiler (ADCP) to validate the hydrodynamic module of the VFS-Rivers model. Our simulation results for the bed evolution of the river under the 100-year flood reveal complex sediment transport dynamics near the bridge piers consisting of both scour and refilling events due to the continuous passage of sand dunes. We find that the scour depth near the bridge piers can reach to a maximum of ∼ 9 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems.
NASA Astrophysics Data System (ADS)
Wang, Y.; Ramaswamy, V.; Saleh, F.
2017-12-01
Barnegat Bay located on the east coast of New Jersey, United States and is separated from the Atlantic Ocean by the narrow Barnegat Peninsula which acts as a barrier island. The bay is fed by several rivers which empty through small estuaries along the inner shore. In terms of vulnerability from flooding, the Barnegat Peninsula is under the influence of both coastal storm surge and riverine flooding. Barnegat Bay was hit by Hurricane Sandy causing flood damages with extensive cross-island flow at many streets perpendicular to the shoreline. The objective of this work is to identify and quantify the sources of flooding using a two dimensional inland hydrodynamic model. The hydrodynamic model was forced by three observed coastal boundary conditions, and one hydrologic boundary condition from United States Geological Survey (USGS). The model reliability was evaluated with both FEMA spatial flooding extend and USGS High water marks. Simulated flooding extent showed good agreement with the reanalysis spatial inundation extents. Results offered important perspectives on the flow of the water into the bay, the velocity and the depth of the inundated areas. Using such information can enable emergency managers and decision makers identify evacuation and deploy flood defenses.
NASA Astrophysics Data System (ADS)
Fewtrell, Timothy J.; Duncan, Alastair; Sampson, Christopher C.; Neal, Jeffrey C.; Bates, Paul D.
2011-01-01
This paper describes benchmark testing of a diffusive and an inertial formulation of the de St. Venant equations implemented within the LISFLOOD-FP hydraulic model using high resolution terrestrial LiDAR data. The models are applied to a hypothetical flooding scenario in a section of Alcester, UK which experienced significant surface water flooding in the June and July floods of 2007 in the UK. The sensitivity of water elevation and velocity simulations to model formulation and grid resolution are analyzed. The differences in depth and velocity estimates between the diffusive and inertial approximations are within 10% of the simulated value but inertial effects persist at the wetting front in steep catchments. Both models portray a similar scale dependency between 50 cm and 5 m resolution which reiterates previous findings that errors in coarse scale topographic data sets are significantly larger than differences between numerical approximations. In particular, these results confirm the need to distinctly represent the camber and curbs of roads in the numerical grid when simulating surface water flooding events. Furthermore, although water depth estimates at grid scales coarser than 1 m appear robust, velocity estimates at these scales seem to be inconsistent compared to the 50 cm benchmark. The inertial formulation is shown to reduce computational cost by up to three orders of magnitude at high resolutions thus making simulations at this scale viable in practice compared to diffusive models. For the first time, this paper highlights the utility of high resolution terrestrial LiDAR data to inform small-scale flood risk management studies.
Vincenzi, Simone; Crivelli, Alain J; Jesensek, Dusan; De Leo, Giulio A
2008-06-01
Theoretical and empirical models of populations dynamics have paid little attention to the implications of density-dependent individual growth on the persistence and regulation of small freshwater salmonid populations. We have therefore designed a study aimed at testing our hypothesis that density-dependent individual growth is a process that enhances population recovery and reduces extinction risk in salmonid populations in a variable environment subject to disturbance events. This hypothesis was tested in two newly introduced marble trout (Salmo marmoratus) populations living in Slovenian streams (Zakojska and Gorska) subject to severe autumn floods. We developed a discrete-time stochastic individual-based model of population dynamics for each population with demographic parameters and compensatory responses tightly calibrated on data from individually tagged marble trout. The occurrence of severe flood events causing population collapses was explicitly accounted for in the model. We used the model in a population viability analysis setting to estimate the quasi-extinction risk and demographic indexes of the two marble trout populations when individual growth was density-dependent. We ran a set of simulations in which the effect of floods on population abundance was explicitly accounted for and another set of simulations in which flood events were not included in the model. These simulation results were compared with those of scenarios in which individual growth was modelled with density-independent Von Bertalanffy growth curves. Our results show how density-dependent individual growth may confer remarkable resilience to marble trout populations in case of major flood events. The resilience to flood events shown by the simulation results can be explained by the increase in size-dependent fecundity as a consequence of the drop in population size after a severe flood, which allows the population to quickly recover to the pre-event conditions. Our results suggest that density-dependent individual growth plays a potentially powerful role in the persistence of freshwater salmonids living in streams subject to recurrent yet unpredictable flood events.
Modeling flash floods in southern France for road management purposes
NASA Astrophysics Data System (ADS)
Vincendon, Béatrice; Édouard, Simon; Dewaele, Hélène; Ducrocq, Véronique; Lespinas, Franck; Delrieu, Guy; Anquetin, Sandrine
2016-10-01
Flash-floods are among the most devastating hazards in the Mediterranean. A major subset of damage and casualties caused by flooding is related to road submersion. Distributed hydrological nowcasting can be used for road flooding monitoring. This requires rainfall-runoff simulations at a high space and time resolution. Distributed hydrological models, such as the ISBA-TOP coupled system used in this study, are designed to simulate discharges for any cross-section of a river but they are generally calibrated for certain outlets and give deteriorated results for the sub-catchment outlets. The paper first analyses ISBA-TOP discharge simulations in the French Mediterranean region for target points different from the outlets used for calibration. The sensitivity of the model to its governing factors is examined to highlight the validity of results obtained for ungauged river sections compared with those obtained for the main gauged outlets. The use of improved model inputs is found beneficial for sub-catchments simulation. The calibration procedure however provides the parameters' values for the main outlets only and these choices influence the simulations for ungauged catchments or sub-catchments. As a result, a new version of ISBA-TOP system without any parameter to calibrate is used to produce diagnostics relevant for quantifying the risk of road submersion. A first diagnostic is the simulated runoff spatial distribution, it provides a useful information about areas with a high risk of submersion. Then an indicator of the flood severity is given by simulated discharges presented with respect to return periods. The latter has to be used together with information about the vulnerability of road-river cross-sections.
NASA Astrophysics Data System (ADS)
Chen, Huili; Liang, Zhongyao; Liu, Yong; Liang, Qiuhua; Xie, Shuguang
2017-10-01
The projected frequent occurrences of extreme flood events will cause significant losses to crops and will threaten food security. To reduce the potential risk and provide support for agricultural flood management, prevention, and mitigation, it is important to account for flood damage to crop production and to understand the relationship between flood characteristics and crop losses. A quantitative and effective evaluation tool is therefore essential to explore what and how flood characteristics will affect the associated crop loss, based on accurately understanding the spatiotemporal dynamics of flood evolution and crop growth. Current evaluation methods are generally integrally or qualitatively based on statistic data or ex-post survey with less diagnosis into the process and dynamics of historical flood events. Therefore, a quantitative and spatial evaluation framework is presented in this study that integrates remote sensing imagery and hydraulic model simulation to facilitate the identification of historical flood characteristics that influence crop losses. Remote sensing imagery can capture the spatial variation of crop yields and yield losses from floods on a grid scale over large areas; however, it is incapable of providing spatial information regarding flood progress. Two-dimensional hydraulic model can simulate the dynamics of surface runoff and accomplish spatial and temporal quantification of flood characteristics on a grid scale over watersheds, i.e., flow velocity and flood duration. The methodological framework developed herein includes the following: (a) Vegetation indices for the critical period of crop growth from mid-high temporal and spatial remote sensing imagery in association with agricultural statistics data were used to develop empirical models to monitor the crop yield and evaluate yield losses from flood; (b) The two-dimensional hydraulic model coupled with the SCS-CN hydrologic model was employed to simulate the flood evolution process, with the SCS-CN model as a rainfall-runoff generator and the two-dimensional hydraulic model implementing the routing scheme for surface runoff; and (c) The spatial combination between crop yield losses and flood dynamics on a grid scale can be used to investigate the relationship between the intensity of flood characteristics and associated loss extent. The modeling framework was applied for a 50-year return period flood that occurred in Jilin province, Northeast China, which caused large agricultural losses in August 2013. The modeling results indicated that (a) the flow velocity was the most influential factor that caused spring corn, rice and soybean yield losses from extreme storm event in the mountainous regions; (b) the power function archived the best results that fit the velocity-loss relationship for mountainous areas; and (c) integrated remote sensing imagery and two-dimensional hydraulic modeling approach are helpful for evaluating the influence of historical flood event on crop production and investigating the relationship between flood characteristics and crop yield losses.
Zarriello, Phillip J.; Olson, Scott A.; Flynn, Robert H.; Strauch, Kellan R.; Murphy, Elizabeth A.
2014-01-01
Heavy, persistent rains from late February through March 2010 caused severe flooding that set, or nearly set, peaks of record for streamflows and water levels at many long-term streamgages in Rhode Island. In response to this event, hydraulic models were updated for selected reaches covering about 56 river miles in the Pawtuxet River Basin to simulate water-surface elevations (WSEs) at specified flows and boundary conditions. Reaches modeled included the main stem of the Pawtuxet River, the North and South Branches of the Pawtuxet River, Pocasset River, Simmons Brook, Dry Brook, Meshanticut Brook, Furnace Hill Brook, Flat River, Quidneck Brook, and two unnamed tributaries referred to as South Branch Pawtuxet River Tributary A1 and Tributary A2. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 using steady-state simulations. Updates to the models included incorporation of new field-survey data at structures, high resolution land-surface elevation data, and updated flood flows from a related study. The models were assessed using high-water marks (HWMs) obtained in a related study following the March– April 2010 flood and the simulated water levels at the 0.2-percent annual exceedance probability (AEP), which is the estimated AEP of the 2010 flood in the basin. HWMs were obtained at 110 sites along the main stem of the Pawtuxet River, the North and South Branches of the Pawtuxet River, Pocasset River, Simmons Brook, Furnace Hill Brook, Flat River, and Quidneck Brook. Differences between the 2010 HWM elevations and the simulated 0.2-percent AEP WSEs from flood insurance studies (FISs) and the updated models developed in this study varied with most differences attributed to the magnitude of the 0.2-percent AEP flows. WSEs from the updated models generally are in closer agreement with the observed 2010 HWMs than with the FIS WSEs. The improved agreement of the updated simulated water elevations to observed 2010 HWMs provides a measure of the hydraulic model performance, which indicates the updated models better represent flooding at other AEPs than the existing FIS models.
Kouyi, G Lipeme; Fraisse, D; Rivière, N; Guinot, V; Chocat, B
2009-01-01
Many investigations have been carried out in order to develop models which allow the linking of complex physical processes involved in urban flooding. The modelling of the interactions between overland flows on streets and flooding flows from rivers and sewer networks is one of the main objectives of recent and current research programs in hydraulics and urban hydrology. This paper outlines the original one-dimensional linking of heavy rainfall-runoff in urban areas and flooding flows from rivers and sewer networks under the RIVES project framework (Estimation of Scenario and Risks of Urban Floods). The first part of the paper highlights the capacity of Canoe software to simulate the street flows. In the second part, we show the original method of connection which enables the modelling of interactions between processes in urban flooding. Comparisons between simulated results and the results of Despotovic et al. or Gomez & Mur show a good agreement for the calibrated one-dimensional connection model. The connection operates likes a manhole with the orifice/weir coefficients used as calibration parameters. The influence of flooding flows from river was taken into account as a variable water depth boundary condition.
NASA Astrophysics Data System (ADS)
Kumbier, Kristian; Carvalho, Rafael C.; Vafeidis, Athanasios T.; Woodroffe, Colin D.
2018-02-01
Many previous modelling studies have considered storm-tide and riverine flooding independently, even though joint-probability analysis highlighted significant dependence between extreme rainfall and extreme storm surges in estuarine environments. This study investigates compound flooding by quantifying horizontal and vertical differences in coastal flood risk estimates resulting from a separation of storm-tide and riverine flooding processes. We used an open-source version of the Delft3D model to simulate flood extent and inundation depth due to a storm event that occurred in June 2016 in the Shoalhaven Estuary, south-eastern Australia. Time series of observed water levels and discharge measurements are used to force model boundaries, whereas observational data such as satellite imagery, aerial photographs, tidal gauges and water level logger measurements are used to validate modelling results. The comparison of simulation results including and excluding riverine discharge demonstrated large differences in modelled flood extents and inundation depths. A flood risk assessment accounting only for storm-tide flooding would have underestimated the flood extent of the June 2016 storm event by 30 % (20.5 km2). Furthermore, inundation depths would have been underestimated on average by 0.34 m and by up to 1.5 m locally. We recommend considering storm-tide and riverine flooding processes jointly in estuaries with large catchment areas, which are known to have a quick response time to extreme rainfall. In addition, comparison of different boundary set-ups at the intermittent entrance in Shoalhaven Heads indicated that a permanent opening, in order to reduce exposure to riverine flooding, would increase tidal range and exposure to both storm-tide flooding and wave action.
Boosting flood warning schemes with fast emulator of detailed hydrodynamic models
NASA Astrophysics Data System (ADS)
Bellos, V.; Carbajal, J. P.; Leitao, J. P.
2017-12-01
Floods are among the most destructive catastrophic events and their frequency has incremented over the last decades. To reduce flood impact and risks, flood warning schemes are installed in flood prone areas. Frequently, these schemes are based on numerical models which quickly provide predictions of water levels and other relevant observables. However, the high complexity of flood wave propagation in the real world and the need of accurate predictions in urban environments or in floodplains hinders the use of detailed simulators. This sets the difficulty, we need fast predictions that meet the accuracy requirements. Most physics based detailed simulators although accurate, will not fulfill the speed demand. Even if High Performance Computing techniques are used (the magnitude of required simulation time is minutes/hours). As a consequence, most flood warning schemes are based in coarse ad-hoc approximations that cannot take advantage a detailed hydrodynamic simulation. In this work, we present a methodology for developing a flood warning scheme using an Gaussian Processes based emulator of a detailed hydrodynamic model. The methodology consists of two main stages: 1) offline stage to build the emulator; 2) online stage using the emulator to predict and generate warnings. The offline stage consists of the following steps: a) definition of the critical sites of the area under study, and the specification of the observables to predict at those sites, e.g. water depth, flow velocity, etc.; b) generation of a detailed simulation dataset to train the emulator; c) calibration of the required parameters (if measurements are available). The online stage is carried on using the emulator to predict the relevant observables quickly, and the detailed simulator is used in parallel to verify key predictions of the emulator. The speed gain given by the emulator allows also to quantify uncertainty in predictions using ensemble methods. The above methodology is applied in real world scenario.
NASA Astrophysics Data System (ADS)
Ben Khalfallah, C.; Saidi, S.
2018-06-01
The floods have become a scourge in recent years (Floods of, 2003, 2006, 2009, 2011, and 2012), increasingly frequent and devastating. Tunisia does not escape flooding problems, the flood management requires basically a better knowledge of the phenomenon (flood), and the use of predictive methods. In order to limit this risk, we became interested in hydrodynamics modeling of Medjerda basin. To reach this aim, rainfall distribution is studied and mapped using GIS tools. In addition, flood and return period estimation of rainfall are calculated using Hyfran. Also, Simulations of recent floods are calculated and mapped using HEC-RAS and HEC-GeoRAS for the most recent flood occurred in February-March 2015 in Medjerda basin. The analysis of the results shows a good correlation between simulated parameters and those measured. There is a flood of the river exceeding 240 m3/s (DGRE, 2015) and more flowing sections are observed in the future simulations; for return periods of 10yr, 20yr and 50yr.
NASA Astrophysics Data System (ADS)
Patel, Dhruvesh; Ramirez, Jorge; Srivastava, Prashant; Bray, Michaela; Han, Dawei
2017-04-01
Surat, known as the diamond city of Gujart is situated 100 km downstream of Ukai dam and near the mouth of river Tapi and affected by the flood at every alternate year. The city experienced catastrophic floods in 1933, 1959, 1968, 1970, 1994, 1998 and 2006. It is estimated that a single flood event during August 6-12, 2006 in Surat and Hazira twin-city, caused heavy damages, resulted in the death of 300 people and property damage worth € 289 million. The peak discharge of 25768 m3 s-1 release from Ukai dam was responsible for the disastrous flood in Surat city. To identifylow lying areas prone to inundation and reduce the uncertainty in flood mitigation measures, HEC-RAS based 1D/2D Couple hydrodynamic modeling is carried out for Surat city. Release from the Ukai dam and tidal level of the sea are considered for upstream and downstream boundary condition. 299 surveyed cross-sections have been considered for 1D modeling, whereas a topographic map at 0.5 m contour interval was used to produce a 5 m grid and SRTM (30 & 90 m) grid has been considered for Suart and Lower Tapi Basin (LTB). Flow is simulated under unsteady conditions, calibrated for the year 1998 and validated for the year 2006. The simulated result shows that the 9th August 18.00 hr was the worst day for Surat city and maximum 75-77 % area was under inundation. Most of the flooded area experienced 0.25 m/s water velocity with the duration of 90 hr. Due to low velocity and high duration of the flood, a low lying area within the west zone and south-west zone of the city was badly affected by the flood, whereas the south zone and south-east zone was least. Simulated results show good correlation when compared with an observed flood level map. The simulated results will be helpful to improve the flood resilience strategy at Surat city and reduce the uncertainty for flood inundation mapping for future dam releases. The present case study shows the applicability of 1D/2D coupled hydrodynamic modeling for flood inundation mapping and can be applied for flood assessment at locations with similar geographical conditions.
NASA Astrophysics Data System (ADS)
Bhuyian, M. N. M.; Kalyanapu, A. J.; Dullo, T. T.; VandenBerge, D.
2017-12-01
The Obion River, located in North-West Tennessee was channelized in last century to increase flow capacity and reduce flooding. Upstream of the river mainly consists of multiple tributaries that merge near Rives. The lowest water level (LWL) downstream of Rives has increased about four feet since 1980. It is estimated that this phenomenon could reduce 20% of channel conveyance if water surface slope is assumed same as channel slope. Reduction in conveyance would result in a frequent exposure to flood stage and higher stage for a given flood. Bed level change and exposure to flood stage are critical to levee safety. In the Obion River, levee breach was responsible for flooding in instances even when flood stage was lower than the levee crest. In such a circumstance, accurate simulation of inundation extent via conventional flood model is challenging because, the flood models consider ground data as static and cannot accommodate breaching unless the location of breaching is specified. Therefore, the objective of this study is to propose an approach for determining hotspots of levee breach via fine resolution hydrodynamic modeling to reduce uncertainty in flood inundation modeling. A two-dimensional LiDAR based hydrodynamic model for the Obion River would be used to determine levee breach hotspots using simulated flow parameters (i.e. current velocity, change in stage, time of exposure to high stage etc.) for a design flood event. Identifying breaching hotspots would allow determining probabilistic flood extent under probable breaching conditions. This should reduce uncertainty in inundation mapping in a channelized riverine system.
NASA Astrophysics Data System (ADS)
Delaney, C.; Hartman, R. K.; Mendoza, J.; Evans, K. M.; Evett, S.
2016-12-01
Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation or flow forecasts to inform the flood operations of reservoirs. Previous research and modeling for flood control reservoirs has shown that FIRO can reduce flood risk and increase water supply for many reservoirs. The risk-based method of FIRO presents a unique approach that incorporates flow forecasts made by NOAA's California-Nevada River Forecast Center (CNRFC) to model and assess risk of meeting or exceeding identified management targets or thresholds. Forecasted risk is evaluated against set risk tolerances to set reservoir flood releases. A water management model was developed for Lake Mendocino, a 116,500 acre-foot reservoir located near Ukiah, California. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United State Army Corps of Engineers and is operated by the Sonoma County Water Agency for water supply. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has been plagued with water supply reliability issues since 2007. FIRO is applied to Lake Mendocino by simulating daily hydrologic conditions from 1985 to 2010 in the Upper Russian River from Lake Mendocino to the City of Healdsburg approximately 50 miles downstream. The risk-based method is simulated using a 15-day, 61 member streamflow hindcast by the CNRFC. Model simulation results of risk-based flood operations demonstrate a 23% increase in average end of water year (September 30) storage levels over current operations. Model results show no increase in occurrence of flood damages for points downstream of Lake Mendocino. This investigation demonstrates that FIRO may be a viable flood control operations approach for Lake Mendocino and warrants further investigation through additional modeling and analysis.
NASA Astrophysics Data System (ADS)
Doroszkiewicz, J. M.; Romanowicz, R. J.
2016-12-01
The standard procedure of climate change impact assessment on future hydrological extremes consists of a chain of consecutive actions, starting from the choice of GCM driven by an assumed CO2 scenario, through downscaling of climatic forcing to a catchment scale, estimation of hydrological extreme indices using hydrological modelling tools and subsequent derivation of flood risk maps with the help of a hydraulic model. Among many possible sources of uncertainty, the main are the uncertainties related to future climate scenarios, climate models, downscaling techniques and hydrological and hydraulic models. Unfortunately, we cannot directly assess the impact of these different sources of uncertainties on flood risk in future due to lack of observations of future climate realizations. The aim of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the processes involved, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-sections. The study shows that the application of a simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the uncertainty of future climate projections, an uncertainty of flow routing model, the propagation of that uncertainty through the hydraulic model, and finally, the uncertainty related to the derivation of flood risk maps.
NASA Astrophysics Data System (ADS)
Xia, Junqiang; Zhang, Xiaolei; Wang, Zenghui; Li, Jie; Zhou, Meirong
2018-06-01
Hyperconcentrated sediment-laden floods often occur in a braided reach of the Lower Yellow River, usually leading to significant channel evolution. A one-dimensional (1D) morphodynamic model using a dynamically coupled solution approach is developed to simulate hyperconcentrated flood and channel evolution in the braided reach with an extremely irregular cross-sectional geometry. In the model, the improved equations for hydrodynamics account for the effects of sediment concentration and bed evolution, which are coupled with the equations of non-equilibrium sediment transport and bed evolution. The model was validated using measurements from the 1977 and 2004 hyperconcentrated floods. Furthermore, the effects were investigated of different cross-sectional spacings and allocation modes of channel deformation area on the model results. It was found that a suitable cross-sectional distance of less than 3 km should be adopted when simulating hyperconcentrated floods, and the results using the uniform allocation mode can agree better with measurements than other two allocation modes.
NASA Astrophysics Data System (ADS)
Paquet, Emmanuel; Lawrence, Deborah
2013-04-01
The SCHADEX method for extreme flood estimation was developed by Paquet et al. (2006, 2013), and since 2008, it is the reference method used by Electricité de France (EDF) for dam spillway design. SCHADEX is a so-called "semi-continuous" stochastic simulation method in that flood events are simulated on an event basis and are superimposed on a continuous simulation of the catchment saturation hazard usingrainfall-runoff modelling. The MORDOR hydrological model (Garçon, 1999) has thus far been used for the rainfall-runoff modelling. MORDOR is a conceptual, lumped, reservoir model with daily areal rainfall and air temperature as the driving input data. The principal hydrological processes represented are evapotranspiration, direct and indirect runoff, ground water, snow accumulation and melt, and routing. The model has been intensively used at EDF for more than 15 years, in particular for inflow forecasts for French mountainous catchments. SCHADEX has now also been applied to the Atnasjø catchment (463 km²), a well-documented inland catchment in south-central Norway, dominated by snowmelt flooding during spring/early summer. To support this application, a weather pattern classification based on extreme rainfall was first established for Norway (Fleig, 2012). This classification scheme was then used to build a Multi-Exponential Weather Pattern distribution (MEWP), as introduced by Garavaglia et al. (2010) for extreme rainfall estimation. The MORDOR model was then calibrated relative to daily discharge data for Atnasjø. Finally, a SCHADEX simulation was run to build a daily discharge distribution with a sufficient number of simulations for assessing the extreme quantiles. Detailed results are used to illustrate how SCHADEX handles the complex and interacting hydrological processes driving flood generation in this snow driven catchment. Seasonal and monthly distributions, as well as statistics for several thousand simulated events reaching a 1000 years return level value and assessment of snowmelt role in extreme floods are presented. This study illustrates the complexity of the extreme flood estimation in snow driven catchments, and the need for a good representation of snow accumulation and melting processes in simulations for design flood estimations. In particular, the SCHADEX method is able to represent a range of possible catchment conditions (representing both soil moisture and snowmelt) in which extreme flood events can occur. This study is part of a collaboration between NVE and EDF, initiated within the FloodFreq COST Action (http://www.cost-floodfreq.eu/). References: Fleig, A., Scientific Report of the Short Term Scientific Mission Anne Fleig visiting Électricité de France, FloodFreq COST action - STSM report, 2012 Garavaglia, F., Gailhard, J., Paquet, E., Lang, M., Garçon, R., and Bernardara, P., Introducing a rainfall compound distribution model based on weather patterns sub-sampling, Hydrol. Earth Syst. Sci., 14, 951-964, doi:10.5194/hess-14-951-2010, 2010 Garçon, R. Modèle global pluie-débit pour la prévision et la prédétermination des crues, La Houille Blanche, 7-8, 88-95. doi: 10.1051/lhb/1999088 Paquet, E., Gailhard, J. and Garçon, R. (2006), Evolution of the GRADEX method: improvement by atmospheric circulation classification and hydrological modeling, La Houille Blanche, 5, 80-90. doi: 10.1051/lhb/2006091 Paquet, E., Garavaglia, F., Garçon, R. and Gailhard, J. (2012), The SCHADEX method: a semi-continuous rainfall-runoff simulation for extreme food estimation, Journal of Hydrology, under revision
Huizinga, Richard J.
2007-01-01
The Blue River Channel Modification project being implemented by the U.S. Army Corps of Engineers (USACE) is intended to provide flood protection within the Blue River valley in the Kansas City, Mo., metropolitan area. In the latest phase of the project, concerns have arisen about preserving the Civil War historic area of Byram's Ford and the associated Big Blue Battlefield while providing flood protection for the Byram's Ford Industrial Park. In 1996, the USACE used a physical model built at the Waterways Experiment Station (WES) in Vicksburg, Miss., to examine the feasibility of a proposed grade control structure (GCS) that would be placed downstream from the historic river crossing of Byram's Ford to provide a subtle transition of flow from the natural channel to the modified channel. The U.S. Geological Survey (USGS), in cooperation with the USACE, modified an existing two-dimensional finite element surface-water model of the river between 63d Street and Blue Parkway (the 'original model'), used the modified model to simulate the existing (as of 2006) unimproved channel and the proposed channel modifications and GCS, and analyzed the results from the simulations and those from the WES physical model. Modifications were made to the original model to create a model that represents existing (2006) conditions between the north end of Swope Park immediately upstream from 63d Street and the upstream limit of channel improvement on the Blue River (the 'model of existing conditions'). The model of existing conditions was calibrated to two measured floods. The model of existing conditions also was modified to create a model that represents conditions along the same reach of the Blue River with proposed channel modifications and the proposed GCS (the 'model of proposed conditions'). The models of existing conditions and proposed conditions were used to simulate the 30-, 50-, and 100-year recurrence floods. The discharge from the calibration flood of May 15, 1990, also was simulated in the models of existing and proposed conditions to provide results for that flood with the current downstream channel modifications and with the proposed channel modifications and GCS. Results from the model of existing conditions show that the downstream channel modifications as they exist (2006) may already be affecting flows in the unmodified upstream channel. The 30-year flood does not inundate most of the Byram's Ford Industrial Park near the upstream end of the study area. Analysis of the 1990 flood (with the historical 1990 channel conditions) and the 1990 flood simulated with the existing (2006) conditions indicates a substantial increase in velocity throughout the study area and a substantial decrease in inundated area from 1990 to 2006. Results from the model of proposed conditions show that the proposed channel modifications will contain the 30-year flood and that the spoil berm designed to provide additional flood protection for the Byram's Ford Industrial Park for the 30-year flood prevents inundation of the industrial park. In the vicinity of Byram's Ford for the 30-year flood, the maximum depth increased from 39.7 feet (ft) in the model of existing conditions to 43.5 ft in the model of proposed conditions, with a resulting decrease in velocity from 6.61 to 4.55 feet per second (ft/s). For the 50-year flood, the maximum depth increased from 42.3 to 45.8 ft, with a decrease in velocity from 6.12 to 4.16 ft/s from existing to proposed conditions. For the 100-year flood, the maximum depth increased from 44.0 to 46.6 ft, with a decrease in velocity from 5.64 to 4.12 ft/s from existing to proposed conditions. When the May 15, 1990, discharge is simulated in the model of existing conditions (with the existing (2006) modified channel downstream of the study area), the maximum depth increases from 38.4 to 42.0 ft, with a decrease in velocity from 6.54 to 4.84 ft/s from existing (2006) to proposed conditions. Analysis of the results fro
NASA Astrophysics Data System (ADS)
Sampson, C. C.; Wing, O.; Quinn, N.; Smith, A.; Neal, J. C.; Schumann, G.; Bates, P.
2017-12-01
During an ongoing natural disaster data are required on: (1) the current situation (nowcast); (2) its likely immediate evolution (forecast); and (3) a consistent view post-event of what actually happened (hindcast or reanalysis). We describe methods used to achieve all three tasks for flood inundation during the Harvey and Irma events using a continental scale 2D hydrodynamic model (Wing et al., 2017). The model solves the local inertial form of the Shallow Water equations over a regular grid of 1 arcsecond ( 30m). Terrain data are taken from the USGS National Elevation Dataset with known flood defences represented using the U.S. Army Corps of Engineers National Levee Dataset. Channels are treated as sub-grid scale features using the HydroSHEDS global hydrography data set. The model is driven using river flows, rainfall and coastal water levels. It simulates river flooding in basins > 50 km2, and fluvial and coastal flooding everywhere. Previous wide area validation tests show this model to be capable of matching FEMA maps and USGS local models built with bespoke data with hit rates of 86% and 92% respectively (Wing et al., 2017). Boundary conditions were taken from NOAA QPS data to produce nowcast and forecast simulations in near real time, before updating with NOAA observations to produce the hindcast. During the event simulation results were supplied to major insurers and multi-nationals who used them to estimate their likely capital exposure and to mitigate flood damage to their infrastructure whilst the event was underway. Simulations were validated against modelled flood footprints computed by FEMA and USACE, and composite satellite imagery produced by the Dartmouth Flood Observatory. For the Harvey event, hit rates ranged from 60-84% against these data sources, but a lack of metadata meant it was difficult to perform like-for-like comparisons. The satellite data also appeared to miss known flooding in urban areas that was picked up in the models. Despite these limitations, the validation was able to pick our areas, notably along the Colorado River near Houston, where our model under-performed and identify areas for future development. The study shows that high resolution near real-time inundation predictions over very large areas during complex events with multiple flood drivers are now a reality.
NASA Astrophysics Data System (ADS)
Jackson, C.; Sava, E.; Cervone, G.
2017-12-01
Hurricane Harvey has been noted as the wettest cyclone on record for the US as well as the most destructive (so far) for the 2017 hurricane season. An entire year worth of rainfall occurred over the course of a few days. The city of Houston was greatly impacted as the storm lingered over the city for five days, causing a record-breaking 50+ inches of rain as well as severe damage from flooding. Flood model simulations were performed to reconstruct the event in order to better understand, assess, and predict flooding dynamics for the future. Additionally, number of remote sensing platforms, and on ground instruments that provide near real-time data have also been used for flood identification, monitoring, and damage assessment. Although both flood models and remote sensing techniques are able to identify inundated areas, rapid and accurate flood prediction at a high spatio-temporal resolution remains a challenge. Thus a methodological approach which fuses the two techniques can help to better validate what is being modeled and observed. Recent advancements in data fusion techniques of remote sensing with near real time heterogeneous datasets have allowed emergency responders to more efficiently extract increasingly precise and relevant knowledge from the available information. In this work the use of multiple sources of contributed data, coupled with remotely sensed and open source geospatial datasets is demonstrated to generate an understanding of potential damage assessment for the floods after Hurricane Harvey in Harris County, Texas. The feasibility of integrating multiple sources at different temporal and spatial resolutions into hydrodynamic models for flood inundation simulations is assessed. Furthermore the contributed datasets are compared against a reconstructed flood extent generated from the Flood2D-GPU model.
The dynamics of human-water systems: comparing observations and simulations
NASA Astrophysics Data System (ADS)
Di Baldassarre, G.; Ciullo, A.; Castellarin, A.; Viglione, A.
2016-12-01
Real-word data of human-flood interactions are compared to the results of stylized socio-hydrological models. These models build on numerous examples from different parts of the world and consider two main prototypes of floodplain systems. Green systems, whereby societies cope with flood risk via non-structural measures, e.g. resettling out of floodplain areas ("living with floods" approach); and Technological systems, whereby societies cope with flood risk by also via structural measures, e.g. building levees ("fighting floods" approach). The floodplain systems of the Tiber River in Rome and the Ganges-Brahmaputra-Meghna Rivers in Bangladesh systems are used as case studies. The comparison of simulations and observations shows the potential of socio-hydrological models in capturing the dynamics of risk emerging from the interactions and feedbacks between social and hydrological processes, such as learning and forgetting effects. It is then discussed how the proposed approach can contribute to a better understanding of flood risk changes and therefore support the process of disaster risk reduction.
The framework of a UAS-aided flash flood modeling system for coastal regions
NASA Astrophysics Data System (ADS)
Zhang, H.; Xu, H.
2016-02-01
Flash floods cause severe economic damage and are one of the leading causes of fatalities connected with natural disasters in the Gulf Coast region. Current flash flood modeling systems rely on empirical hydrological models driven by precipitation estimates only. Although precipitation is the driving factor for flash floods, soil moisture, urban drainage system and impervious surface have been recognized to have significant impacts on the development of flash floods. We propose a new flash flooding modeling system that integrates 3-D hydrological simulation with satellite and multi-UAS observations. It will have three advantages over existing modeling systems. First, it will incorporate 1-km soil moisture data through integrating satellite images from European SMOS mission and NASA's SMAP mission. The utilization of high-resolution satellite images will provide essential information to determine antecedent soil moisture condition, which is an essential control on flood generation. Second, this system is able to adjust flood forecasting based on real-time inundation information collected by multi-UAS. A group of UAS will be deployed during storm events to capture the changing extent of flooded areas and water depth at multiple critical locations simultaneously. Such information will be transmitted to a hydrological model to validate and improve flood simulation. Third, the backbone of this system is a state-of-the-art 3-D hydrological model that assimilates the hydrological information from satellites and multi-UAS. The model is able to address surface water-groundwater interactions and reflect the effects of various infrastructures. Using Web-GIS technologies, the modeling results will be available online as interactive flood maps accessible to the public. To support the development and verification of this modeling system, surface and subsurface hydrological observations will be conducted in a number of small watersheds in the Coastal Bend region. We envision this system will provide an innovative means to benefit the forecasting, evaluation and mitigation of flash floods in costal regions.
Modeling unstable alcohol flooding of DNAPL-contaminated columns
NASA Astrophysics Data System (ADS)
Roeder, Eberhard; Falta, Ronald W.
Alcohol flooding, consisting of injection of a mixture of alcohol and water, is one source removal technology for dense non-aqueous phase liquids (DNAPLs) currently under investigation. An existing compositional multiphase flow simulator (UTCHEM) was adapted to accurately represent the equilibrium phase behavior of ternary and quaternary alcohol/DNAPL systems. Simulator predictions were compared to laboratory column experiments and the results are presented here. It was found that several experiments involved unstable displacements of the NAPL bank by the alcohol flood or of the alcohol flood by the following water flood. Unstable displacement led to additional mixing compared to ideal displacement. This mixing was approximated by a large dispersion in one-dimensional simulations and or by including permeability heterogeneities on a very small scale in three-dimensional simulations. Three-dimensional simulations provided the best match. Simulations of unstable displacements require either high-resolution grids, or need to consider the mixing of fluids in a different manner to capture the resulting effects on NAPL recovery.
NASA Astrophysics Data System (ADS)
Shibuo, Yoshihiro; Ikoma, Eiji; Lawford, Peter; Oyanagi, Misa; Kanauchi, Shizu; Koudelova, Petra; Kitsuregawa, Masaru; Koike, Toshio
2014-05-01
While availability of hydrological- and hydrometeorological data shows growing tendency and advanced modeling techniques are emerging, such newly available data and advanced models may not always be applied in the field of decision-making. In this study we present an integrated system of ensemble streamflow forecast (ESP) and virtual dam simulator, which is designed to support river and dam manager's decision making. The system consists of three main functions: real time hydrological model, ESP model, and dam simulator model. In the real time model, the system simulates current condition of river basins, such as soil moisture and river discharges, using LSM coupled distributed hydrological model. The ESP model takes initial condition from the real time model's output and generates ESP, based on numerical weather prediction. The dam simulator model provides virtual dam operation and users can experience impact of dam control on remaining reservoir volume and downstream flood under the anticipated flood forecast. Thus the river and dam managers shall be able to evaluate benefit of priori dam release and flood risk reduction at the same time, on real time basis. Furthermore the system has been developed under the concept of data and models integration, and it is coupled with Data Integration and Analysis System (DIAS) - a Japanese national project for integrating and analyzing massive amount of observational and model data. Therefore it has advantage in direct use of miscellaneous data from point/radar-derived observation, numerical weather prediction output, to satellite imagery stored in data archive. Output of the system is accessible over the web interface, making information available with relative ease, e.g. from ordinary PC to mobile devices. We have been applying the system to the Upper Tone region, located northwest from Tokyo metropolitan area, and we show application example of the system in recent flood events caused by typhoons.
iFLOOD: A Real Time Flood Forecast System for Total Water Modeling in the National Capital Region
NASA Astrophysics Data System (ADS)
Sumi, S. J.; Ferreira, C.
2017-12-01
Extreme flood events are the costliest natural hazards impacting the US and frequently cause extensive damages to infrastructure, disruption to economy and loss of lives. In 2016, Hurricane Matthew brought severe damage to South Carolina and demonstrated the importance of accurate flood hazard predictions that requires the integration of riverine and coastal model forecasts for total water prediction in coastal and tidal areas. The National Weather Service (NWS) and the National Ocean Service (NOS) provide flood forecasts for almost the entire US, still there are service-gap areas in tidal regions where no official flood forecast is available. The National capital region is vulnerable to multi-flood hazards including high flows from annual inland precipitation events and surge driven coastal inundation along the tidal Potomac River. Predicting flood levels on such tidal areas in river-estuarine zone is extremely challenging. The main objective of this study is to develop the next generation of flood forecast systems capable of providing accurate and timely information to support emergency management and response in areas impacted by multi-flood hazards. This forecast system is capable of simulating flood levels in the Potomac and Anacostia River incorporating the effects of riverine flooding from the upstream basins, urban storm water and tidal oscillations from the Chesapeake Bay. Flood forecast models developed so far have been using riverine data to simulate water levels for Potomac River. Therefore, the idea is to use forecasted storm surge data from a coastal model as boundary condition of this system. Final output of this validated model will capture the water behavior in river-estuary transition zone far better than the one with riverine data only. The challenge for this iFLOOD forecast system is to understand the complex dynamics of multi-flood hazards caused by storm surges, riverine flow, tidal oscillation and urban storm water. Automated system simulations will help to develop a seamless integration with the boundary systems in the service-gap area with new insights into our scientific understanding of such complex systems. A visualization system is being developed to allow stake holders and the community to have access to the flood forecasting for their region with sufficient lead time.
Zarriello, Phillip J.; Straub, David E.; Westenbroek, Stephen M.
2014-01-01
Heavy persistent rains from late February through March 2010 caused severe flooding and set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models were updated for selected reaches covering about 33 river miles in Moshassuck and Woonasquatucket River Basins from the most recent approved Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) from specified flows and boundary conditions. Reaches modeled include the main stem of the Moshassuck River and its main tributary, the West River, and three tributaries to the West River—Upper Canada Brook, Lincoln Downs Brook, and East Branch West River; and the main stem of the Woonasquatucket River. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 and incorporate new field-survey data at structures, high-resolution land-surface elevation data, and flood flows from a related study. The models were used to simulate steady-state WSEs at the 1- and 2-percent annual exceedance probability (AEP) flows, which is the estimated AEP of the 2010 flood in the Moshassuck River Basin and the Woonasquatucket River, respectively. The simulated WSEs were compared to the high-water mark (HWM) elevation data obtained in these basins in a related study following the March–April 2010 flood, which included 18 HWMs along the Moshassuck River and 45 HWMs along the Woonasquatucket River. Differences between the 2010 HWMs and the simulated 2- and 1-percent AEP WSEs from the FISs and the updated models developed in this study varied along the reach. Most differences could be attributed to the magnitude of the 2- and 1-percent AEP flows used in the FIS and updated model flows. Overall, the updated model and the FIS WSEs were not appreciably different when compared to the observed 2010 HWMs along the Woonasquatucket and Moshassuck Rivers.
NASA Astrophysics Data System (ADS)
Goteti, G.; Kaheil, Y. H.; Katz, B. G.; Li, S.; Lohmann, D.
2011-12-01
In the United States, government agencies as well as the National Flood Insurance Program (NFIP) use flood inundation maps associated with the 100-year return period (base flood elevation, BFE), produced by the Federal Emergency Management Agency (FEMA), as the basis for flood insurance. A credibility check of the flood risk hydraulic models, often employed by insurance companies, is their ability to reasonably reproduce FEMA's BFE maps. We present results from the implementation of a flood modeling methodology aimed towards reproducing FEMA's BFE maps at a very fine spatial resolution using a computationally parsimonious, yet robust, hydraulic model. The hydraulic model used in this study has two components: one for simulating flooding of the river channel and adjacent floodplain, and the other for simulating flooding in the remainder of the catchment. The first component is based on a 1-D wave propagation model, while the second component is based on a 2-D diffusive wave model. The 1-D component captures the flooding from large-scale river transport (including upstream effects), while the 2-D component captures the flooding from local rainfall. The study domain consists of the contiguous United States, hydrologically subdivided into catchments averaging about 500 km2 in area, at a spatial resolution of 30 meters. Using historical daily precipitation data from the Climate Prediction Center (CPC), the precipitation associated with the 100-year return period event was computed for each catchment and was input to the hydraulic model. Flood extent from the FEMA BFE maps is reasonably replicated by the 1-D component of the model (riverine flooding). FEMA's BFE maps only represent the riverine flooding component and are unavailable for many regions of the USA. However, this modeling methodology (1-D and 2-D components together) covers the entire contiguous USA. This study is part of a larger modeling effort from Risk Management Solutions° (RMS) to estimate flood risk associated with extreme precipitation events in the USA. Towards this greater objective, state-of-the-art models of flood hazard and stochastic precipitation are being implemented over the contiguous United States. Results from the successful implementation of the modeling methodology will be presented.
Wagner, Daniel M.
2013-01-01
In the early morning hours of June 11, 2010, substantial flooding occurred at Albert Pike Recreation Area in the Ouachita National Forest of west-central Arkansas, killing 20 campers. The U.S. Forest Service needed information concerning the extent and depth of flood inundation, the water velocity, and flow paths throughout Albert Pike Recreation Area for the flood and for streamflows corresponding to annual exceedence probabilities of 1 and 2 percent. The two-dimensional flow model Fst2DH, part of the Federal Highway Administration’s Finite Element Surface-water Modeling System, and the graphical user interface Surface-water Modeling System (SMS) were used to perform a steady-state simulation of the flood in a 1.5-mile reach of the Little Missouri River at Albert Pike Recreation Area. Peak streamflows of the Little Missouri River and tributary Brier Creek served as inputs to the simulation, which was calibrated to the surveyed elevations of high-water marks left by the flood and then used to predict flooding that would result from streamflows corresponding to annual exceedence probabilities of 1 and 2 percent. The simulated extent of the June 11, 2010, flood matched the observed extent of flooding at Albert Pike Recreation Area. The mean depth of inundation in the camp areas was 8.5 feet in Area D, 7.4 feet in Area C, 3.8 feet in Areas A, B, and the Day Use Area, and 12.5 feet in Lowry’s Camp Albert Pike. The mean water velocity was 7.2 feet per second in Area D, 7.6 feet per second in Area C, 7.2 feet per second in Areas A, B, and the Day Use Area, and 7.6 feet per second in Lowry’s Camp Albert Pike. A sensitivity analysis indicated that varying the streamflow of the Little Missouri River had the greatest effect on simulated water-surface elevation, while varying the streamflow of tributary Brier Creek had the least effect. Simulated water-surface elevations were lower than those modeled by the U.S. Forest Service using the standard-step method, but the comparison between the two was favorable with a mean absolute difference of 0.58 feet in Area C and 0.32 feet in Area D. Results of a HEC-RAS model of the Little Missouri River watershed upstream from the U.S. Geological Survey streamflow-gaging station near Langley showed no difference in mean depth in the areas in common between the models, and a difference in mean velocity of only 0.5 foot per second. Predictions of flooding that would result from streamflows corresponding to annual exceedence probabilities of 1 and 2 percent indicated that the extent of inundation of the June 11, 2010, flood exceeded that of the 1 percent flood, and that for both the 1 and 2 percent floods, all of Areas C and D, and parts of Areas A, B, and the Day Use Area were inundated. Predicted water-surface elevations for the 1 and 2 percent floods were approximately 1 foot lower than those predicted by the U.S. Forest Service using a standard-step model.
A fast method for optical simulation of flood maps of light-sharing detector modules
Shi, Han; Du, Dong; Xu, JianFeng; Moses, William W.; Peng, Qiyu
2016-01-01
Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. We present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We simulated conventional block detector designs with different slotted light guide patterns using the new approach and compared the outcomes with those from GATE simulations. While the two approaches generated comparable flood maps, the new approach was more than 200–600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials. PMID:27660376
A fast method for optical simulation of flood maps of light-sharing detector modules
Shi, Han; Du, Dong; Xu, JianFeng; ...
2015-09-03
Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. Here, we present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We also simulated conventional block detector designs with different slotted light guide patterns using the new approachmore » and compared the outcomes with those from GATE simulations. And while the two approaches generated comparable flood maps, the new approach was more than 200–600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials.« less
NASA Astrophysics Data System (ADS)
Le Bihan, Guillaume; Payrastre, Olivier; Gaume, Eric; Pons, Frederic; Moncoulon, David
2016-04-01
Hydrometeorological forecasting is an essential component of real-time flood management. The information it provides is of great help for crisis managers to anticipate the inundations and the associated risks. In the particular case of flash-floods, which may affect a large amount of small watersheds spread over the territory (up to 300 000 km of waterways considering a drained area of 5 km² minimum in France), appropriate flood forecasting systems are still under development. In France, highly distributed hydrological models have been implemented, enabling a real-time assessment of the potential intensity of flash-floods from the records of weather radars: AIGA-hydro system (Lavabre et al., 2005; Javelle et al., 2014), PreDiFlood project (Naulin et al., 2013). The approach presented here aims to go one step further by offering a direct assessment of the potential impacts of the simulated floods on inhabited areas. This approach is based on an a priori analysis of the study area in order (1) to evaluate with a simplified hydraulic approach (DTM treatment) the potentially flooded areas for different discharge levels, and (2) to identify the associated buildings and/or population at risk from geographic databases. This preliminary analysis enables to build an impact model (discharge-impact curve) on each river reach, which is then used to directly estimate the potentially affected assets based on a distributed rainfall runoff model. The overall principle of this approach was already presented at the 8th Hymex workshop. Therefore, the presentation will be here focused on the first validation results in terms of (1) accuracy of flooded areas simulated from DTM treatments, and (2) relevance of estimated impacts. The inundated areas simulated were compared to the European Directive cartography results (where available), showing an overall good correspondence in a large majority of cases, but also very significant errors for approximatively 10% of the river reaches incorporated in the model. The stage/discharge relations obtained at gauging stations were also compared to the real rating curves, showing a very different behavior of the method depending on the local configuration of the considered site. Some developments are now in progress in order to evaluate and validate, as far as possible, the results of the entire simulation chain at the event scale. This work relies on the comparison of simulation results (estimated flood impacts) with insurance losses data (provided by CCR) for several significant past flood events. The first results of this work will be presented.
NASA Astrophysics Data System (ADS)
Bozza, Andrea; Durand, Arnaud; Allenbach, Bernard; Confortola, Gabriele; Bocchiola, Daniele
2013-04-01
We present a feasibility study to explore potential of high-resolution imagery, coupled with hydraulic flood modeling to predict flooding risks, applied to the case study of Gonaives basins (585 km²), Haiti. We propose a methodology working at different scales, providing accurate results and a faster intervention during extreme flood events. The 'Hispaniola' island, in the Caribbean tropical zone, is often affected by extreme floods events. Floods are caused by tropical springs and hurricanes, and may lead to several damages, including cholera epidemics, as recently occurred, in the wake of the earthquake upon January 12th 2010 (magnitude 7.0). Floods studies based upon hydrological and hydraulic modeling are hampered by almost complete lack of ground data. Thenceforth, and given the noticeable cost involved in the organization of field measurement campaigns, the need for exploitation of remote sensing images data. HEC-RAS 1D modeling is carried out under different scenarios of available Digital Elevation Models. The DEMs are generated using optical remote sensing satellite (WorldView-1) and SRTM, combined with information from an open source database (Open Street Map). We study two recent flood episodes, where flood maps from remote sensing were available. Flood extent and land use have been assessed by way of data from SPOT-5 satellite, after hurricane Jeanne in 2004 and hurricane Hanna in 2008. A semi-distributed, DEM based hydrological model is used to simulate flood flows during the hurricanes. Precipitation input is taken from daily rainfall data derived from TRMM satellite, plus proper downscaling. The hydraulic model is calibrated using floodplain friction as tuning parameters against the observed flooded area. We compare different scenarios of flood simulation, and the predictive power of model calibration. The method provide acceptable results in depicting flooded areas, especially considering the tremendous lack of ground data, and show the potential of remote sensing information in prediction of flood events in this area, for the purpose of risk assessment and land use planning, and possibly for flood forecast during extreme events.
NASA Astrophysics Data System (ADS)
Kobayashi, Kenichiro; Otsuka, Shigenori; Apip; Saito, Kazuo
2016-08-01
This paper presents a study on short-term ensemble flood forecasting specifically for small dam catchments in Japan. Numerical ensemble simulations of rainfall from the Japan Meteorological Agency nonhydrostatic model (JMA-NHM) are used as the input data to a rainfall-runoff model for predicting river discharge into a dam. The ensemble weather simulations use a conventional 10 km and a high-resolution 2 km spatial resolutions. A distributed rainfall-runoff model is constructed for the Kasahori dam catchment (approx. 70 km2) and applied with the ensemble rainfalls. The results show that the hourly maximum and cumulative catchment-average rainfalls of the 2 km resolution JMA-NHM ensemble simulation are more appropriate than the 10 km resolution rainfalls. All the simulated inflows based on the 2 and 10 km rainfalls become larger than the flood discharge of 140 m3 s-1, a threshold value for flood control. The inflows with the 10 km resolution ensemble rainfall are all considerably smaller than the observations, while at least one simulated discharge out of 11 ensemble members with the 2 km resolution rainfalls reproduces the first peak of the inflow at the Kasahori dam with similar amplitude to observations, although there are spatiotemporal lags between simulation and observation. To take positional lags into account of the ensemble discharge simulation, the rainfall distribution in each ensemble member is shifted so that the catchment-averaged cumulative rainfall of the Kasahori dam maximizes. The runoff simulation with the position-shifted rainfalls shows much better results than the original ensemble discharge simulations.
Soong, David T.; Murphy, Elizabeth A.; Straub, Timothy D.; Zeeb, Hannah L.
2016-11-22
Results of a flood-hazard analysis conducted by the U.S. Geological Survey, in cooperation with the Argonne National Laboratory, for four headwater streams within the Argonne National Laboratory property indicate that the 1-percent and 0.2-percent annual exceedance probability floods would cause multiple roads to be overtopped. Results indicate that most of the effects on the infrastructure would be from flooding of Freund Brook. Flooding on the Northeast and Southeast Drainage Ways would be limited to overtopping of one road crossing for each of those streams. The Northwest Drainage Way would be the least affected with flooding expected to occur in open grass or forested areas.The Argonne Site Sustainability Plan outlined the development of hydrologic and hydraulic models and the creation of flood-plain maps of the existing site conditions as a first step in addressing resiliency to possible climate change impacts as required by Executive Order 13653 “Preparing the United States for the Impacts of Climate Change.” The Hydrological Simulation Program-FORTRAN is the hydrologic model used in the study, and the Hydrologic Engineering Center‒River Analysis System (HEC–RAS) is the hydraulic model. The model results were verified by comparing simulated water-surface elevations to observed water-surface elevations measured at a network of five crest-stage gages on the four study streams. The comparison between crest-stage gage and simulated elevations resulted in an average absolute difference of 0.06 feet and a maximum difference of 0.19 feet.In addition to the flood-hazard model development and mapping, a qualitative stream assessment was conducted to evaluate stream channel and substrate conditions in the study reaches. This information can be used to evaluate erosion potential.
Westerman, Drew A.; Clark, Brian R.
2013-01-01
The results from the precipitation-runoff hydrologic model, the one-dimensional unsteady-state hydraulic model, and a separate two-dimensional model developed as part of a coincident study, each complement the other in terms of streamflow timing, water-surface elevations, and velocities propagated by the June 11, 2010, flood event. The simulated grids for water depth and stream velocity from each model were directly compared by subtracting the one-dimensional hydraulic model grid from the two-dimensional model grid. The absolute mean difference for the simulated water depth was 0.9 foot. Additionally, the absolute mean difference for the simulated stream velocity was 1.9 feet per second.
NASA Astrophysics Data System (ADS)
Beckers, Joost; Buckman, Lora; Bachmann, Daniel; Visser, Martijn; Tollenaar, Daniel; Vatvani, Deepak; Kramer, Nienke; Goorden, Neeltje
2015-04-01
Decision making in disaster management requires fast access to reliable and relevant information. We believe that online information and services will become increasingly important in disaster management. Within the EU FP7 project RASOR (Rapid Risk Assessment and Spatialisation of Risk) an online platform is being developed for rapid multi-hazard risk analyses to support disaster management anywhere in the world. The platform will provide access to a plethora of GIS data that are relevant to risk assessment. It will also enable the user to run numerical flood models to simulate historical and newly defined flooding scenarios. The results of these models are maps of flood extent, flood depths and flow velocities. The RASOR platform will enable to overlay historical event flood maps with observations and Earth Observation (EO) imagery to fill in gaps and assess the accuracy of the flood models. New flooding scenarios can be defined by the user and simulated to investigate the potential impact of future floods. A series of flood models have been developed within RASOR for selected case study areas around the globe that are subject to very different flood hazards: • The city of Bandung in Indonesia, which is prone to fluvial flooding induced by heavy rainfall. The flood hazard is exacerbated by land subsidence. • The port of Cilacap on the south coast of Java, subject to tsunami hazard from submarine earthquakes in the Sunda trench. • The area south of city of Rotterdam in the Netherlands, prone to coastal and/or riverine flooding. • The island of Santorini in Greece, which is subject to tsunamis induced by landslides. Flood models have been developed for each of these case studies using mostly EO data, augmented by local data where necessary. Particular use was made of the new TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) product from the German Aerospace centre (DLR) and EADS Astrium. The presentation will describe the flood models and the flooding scenarios that can be defined by the RASOR end user to support risk management in each area. Ongoing work for three more case studies (Haiti, Po valley in Italy and Jakarta, Indonesia) will also be discussed.
NASA Astrophysics Data System (ADS)
Moncoulon, D.; Labat, D.; Ardon, J.; Leblois, E.; Onfroy, T.; Poulard, C.; Aji, S.; Rémy, A.; Quantin, A.
2014-09-01
The analysis of flood exposure at a national scale for the French insurance market must combine the generation of a probabilistic event set of all possible (but which have not yet occurred) flood situations with hazard and damage modeling. In this study, hazard and damage models are calibrated on a 1995-2010 historical event set, both for hazard results (river flow, flooded areas) and loss estimations. Thus, uncertainties in the deterministic estimation of a single event loss are known before simulating a probabilistic event set. To take into account at least 90 % of the insured flood losses, the probabilistic event set must combine the river overflow (small and large catchments) with the surface runoff, due to heavy rainfall, on the slopes of the watershed. Indeed, internal studies of the CCR (Caisse Centrale de Reassurance) claim database have shown that approximately 45 % of the insured flood losses are located inside the floodplains and 45 % outside. Another 10 % is due to sea surge floods and groundwater rise. In this approach, two independent probabilistic methods are combined to create a single flood loss distribution: a generation of fictive river flows based on the historical records of the river gauge network and a generation of fictive rain fields on small catchments, calibrated on the 1958-2010 Météo-France rain database SAFRAN. All the events in the probabilistic event sets are simulated with the deterministic model. This hazard and damage distribution is used to simulate the flood losses at the national scale for an insurance company (Macif) and to generate flood areas associated with hazard return periods. The flood maps concern river overflow and surface water runoff. Validation of these maps is conducted by comparison with the address located claim data on a small catchment (downstream Argens).
Changes in Benefits of Flood Protection Standard under Climate Change
NASA Astrophysics Data System (ADS)
Lim, W. H.; Koirala, S.; Yamazaki, D.; Hirabayashi, Y.; Kanae, S.
2014-12-01
Understanding potential risk of river flooding under future climate scenarios might be helpful for developing risk management strategies (including mitigation, adaptation). Such analyses are typically performed at the macro scales (e.g., regional, global) where the climate model output could support (e.g., Hirabayashi et al., 2013, Arnell and Gosling, 2014). To understand the potential benefits of infrastructure upgrading as part of climate adaptation strategies, it is also informative to understand the potential impact of different flood protection standards (in terms of return periods) on global river flooding under climate change. In this study, we use a baseline period (forced by observed hydroclimate conditions) and CMIP5 model output (historic and future periods) to drive a global river routing model called CaMa-Flood (Yamazaki et al., 2011) and simulate the river water depth at a spatial resolution of 15 min x 15 min. From the simulated results of baseline period, we use the annual maxima river water depth to fit the Gumbel distribution and prepare the return period-flood risk relationship (involving population and GDP). From the simulated results of CMIP5 model, we also used the annual maxima river water depth to obtain the Gumbel distribution and then estimate the exceedance probability (historic and future periods). We apply the return period-flood risk relationship (above) to the exceedance probability and evaluate the potential risk of river flooding and changes in the benefits of flood protection standard (e.g., 100-year flood of the baseline period) from the past into the future (represented by the representative concentration pathways). In this presentation, we show our preliminary results. References: Arnell, N.W, Gosling, S., N., 2014. The impact of climate change on river flood risk at the global scale. Climatic Change 122: 127-140, doi: 10.1007/s10584-014-1084-5. Hirabayashi et al., 2013. Global flood risk under climate change. Nature Climate Change 3: 816-821, doi: 10.1038/nclimate1911. Yamazaki et al., 2011. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research 47, W04501, doi: 10.1029/2010wr009726.
Validation of a 30 m resolution flood hazard model of the conterminous United States
NASA Astrophysics Data System (ADS)
Wing, Oliver E. J.; Bates, Paul D.; Sampson, Christopher C.; Smith, Andrew M.; Johnson, Kris A.; Erickson, Tyler A.
2017-09-01
This paper reports the development of a ˜30 m resolution two-dimensional hydrodynamic model of the conterminous U.S. using only publicly available data. The model employs a highly efficient numerical solution of the local inertial form of the shallow water equations which simulates fluvial flooding in catchments down to 50 km2 and pluvial flooding in all catchments. Importantly, we use the U.S. Geological Survey (USGS) National Elevation Dataset to determine topography; the U.S. Army Corps of Engineers National Levee Dataset to explicitly represent known flood defenses; and global regionalized flood frequency analysis to characterize return period flows and rainfalls. We validate these simulations against the complete catalogue of Federal Emergency Management Agency (FEMA) Special Flood Hazard Area (SFHA) maps and detailed local hydraulic models developed by the USGS. Where the FEMA SFHAs are based on high-quality local models, the continental-scale model attains a hit rate of 86%. This correspondence improves in temperate areas and for basins above 400 km2. Against the higher quality USGS data, the average hit rate reaches 92% for the 1 in 100 year flood, and 90% for all flood return periods. Given typical hydraulic modeling uncertainties in the FEMA maps and USGS model outputs (e.g., errors in estimating return period flows), it is probable that the continental-scale model can replicate both to within error. The results show that continental-scale models may now offer sufficient rigor to inform some decision-making needs with dramatically lower cost and greater coverage than approaches based on a patchwork of local studies.
Huizinga, Richard J.
2007-01-01
The evaluation of scour at bridges throughout the State of Missouri has been ongoing since 1991, and most of these evaluations have used one-dimensional hydraulic analysis and application of conventional scour depth prediction equations. Occasionally, the complex conditions of a site dictate a more thorough assessment of the stream hydraulics beyond a one-dimensional model. This was the case for structure A-1700, the Interstate 155 bridge crossing the Mississippi River near Caruthersville, Missouri. To assess the complex hydraulics at this site, a two-dimensional hydrodynamic flow model was used to simulate flow conditions on the Mississippi River in the vicinity of the Interstate 155 structure A-1700. The model was used to simulate flow conditions for three discharges: a flood that occurred on April 4, 1975 (the calibration flood), which had a discharge of 1,658,000 cubic feet per second; the 100-year flood, which has a discharge of 1,960,000 cubic feet per second; and the project design flood, which has a discharge of 1,974,000 cubic feet per second. The project design flood was essentially equivalent to the flood that would cause impending overtopping of the mainline levees along the Mississippi River in the vicinity of structure A-1700. Discharge and river-stage readings from the flood of April 4, 1975, were used to calibrate the flow model. The model was then used to simulate the 100-year and project design floods. Hydraulic flow parameters obtained from the three flow simulations were applied to scour depth prediction equations to determine contraction, local pier, and abutment scour depths at structure A-1700. Contraction scour and local pier scour depths computed for the project design discharge generally were the greatest, whereas the depths computed for the calibration flood were the least. The maximum predicted total scour depth (contraction and local pier scour) for the calibration flood was 66.1 feet; for the 100-year flood, the maximum predicted total scour depth was 74.6 feet; for the project design flood, the maximum predicted total scour depth was 93.0 feet. If scour protection did not exist, bent 14 and piers 15 through 21 would be substantially exposed or undermined by the predicted total scour depths in all of the flood simulations. However, piers 18 through 21 have a riprap blanket around the base of each, and the riprap blanket observed on the right bank around bent 14 is thought to extend around the base of pier 15, which would limit the amount of scour that would occur at these piers. Furthermore, the footings and caissons that are not exposed by computed contraction scour may arrest local pier scour, which will limit local pier scour at several bents and piers. Nevertheless, main-channel piers 16 and 17 and all of the bents on the left (as viewed facing downstream) overbank are moderately to substantially exposed by the predicted scour depths from the three flood simulations, and there is no known scour protection at these piers or bents. Abutment scour depths were computed for structure A-1700, but abutment scour is expected to be mitigated by the presence of guidebanks upstream from the bridge abutments, as well as riprap revetment on the abutment and guidebank faces.
Reconstruction of the 1945 Wieringermeer Flood
NASA Astrophysics Data System (ADS)
Hoes, O. A. C.; Hut, R. W.; van de Giesen, N. C.; Boomgaard, M.
2013-03-01
The present state-of-the-art in flood risk assessment focuses on breach models, flood propagation models, and economic modelling of flood damage. However, models need to be validated with real data to avoid erroneous conclusions. Such reference data can either be historic data, or can be obtained from controlled experiments. The inundation of the Wieringermeer polder in the Netherlands in April 1945 is one of the few examples for which sufficient historical information is available. The objective of this article is to compare the flood simulation with flood data from 1945. The context, the breach growth process and the flood propagation are explained. Key findings for current flood risk management addresses the importance of the drainage canal network during the inundation of a polder, and the uncertainty that follows from not knowing the breach growth parameters. This case study shows that historical floods provide valuable data for the validation of models and reveal lessons that are applicable in current day flood risk management.
NASA Astrophysics Data System (ADS)
Munoz-Arriola, F.; Torres-Alavez, J.; Mohamad Abadi, A.; Walko, R. L.
2014-12-01
Our goal is to investigate possible sources of predictability of hydrometeorological extreme events in the Northern High Plains. Hydrometeorological extreme events are considered the most costly natural phenomena. Water deficits and surpluses highlight how the water-climate interdependence becomes crucial in areas where single activities drive economies such as Agriculture in the NHP. Nonetheless we recognize the Water-Climate interdependence and the regulatory role that human activities play, we still grapple to identify what sources of predictability could be added to flood and drought forecasts. To identify the benefit of multi-scale climate modeling and the role of initial conditions on flood and drought predictability on the NHP, we use the Ocean Land Atmospheric Model (OLAM). OLAM is characterized by a dynamic core with a global geodesic grid with hexagonal (and variably refined) mesh cells and a finite volume discretization of the full compressible Navier Stokes equations, a cut-grid cell method for topography (that reduces error in computational gradient computation and anomalous vertical dispersion). Our hypothesis is that wet conditions will drive OLAM's simulations of precipitation to wetter conditions affecting both flood forecast and drought forecast. To test this hypothesis we simulate precipitation during identified historical flood events followed by drought events in the NHP (i.e. 2011-2012 years). We initialized OLAM with CFS-data 1-10 days previous to a flooding event (as initial conditions) to explore (1) short-term and high-resolution and (2) long-term and coarse-resolution simulations of flood and drought events, respectively. While floods are assessed during a maximum of 15-days refined-mesh simulations, drought is evaluated during the following 15 months. Simulated precipitation will be compared with the Sub-continental Observation Dataset, a gridded 1/16th degree resolution data obtained from climatological stations in Canada, US, and Mexico. This in-progress research will ultimately contribute to integrate OLAM and VIC models and improve predictability of extreme hydrometeorological events.
NASA Astrophysics Data System (ADS)
Kirstetter, G.; Popinet, S.; Fullana, J. M.; Lagrée, P. Y.; Josserand, C.
2015-12-01
The full resolution of shallow-water equations for modeling flash floods may have a high computational cost, so that majority of flood simulation softwares used for flood forecasting uses a simplification of this model : 1D approximations, diffusive or kinematic wave approximations or exotic models using non-physical free parameters. These kind of approximations permit to save a lot of computational time by sacrificing in an unquantified way the precision of simulations. To reduce drastically the cost of such 2D simulations by quantifying the lost of precision, we propose a 2D shallow-water flow solver built with the open source code Basilisk1, which is using adaptive refinement on a quadtree grid. This solver uses a well-balanced central-upwind scheme, which is at second order in time and space, and treats the friction and rain terms implicitly in finite volume approach. We demonstrate the validity of our simulation on the case of the flood of Tewkesbury (UK) occurred in July 2007, as shown on Fig. 1. On this case, a systematic study of the impact of the chosen criterium for adaptive refinement is performed. The criterium which has the best computational time / precision ratio is proposed. Finally, we present the power law giving the computational time in respect to the maximum resolution and we show that this law for our 2D simulation is close to the one of 1D simulation, thanks to the fractal dimension of the topography. [1] http://basilisk.fr/
NASA Astrophysics Data System (ADS)
Papaioannou, George; Vasiliades, Lampros; Loukas, Athanasios; Aronica, Giuseppe T.
2017-04-01
Probabilistic flood inundation mapping is performed and analysed at the ungauged Xerias stream reach, Volos, Greece. The study evaluates the uncertainty introduced by the roughness coefficient values on hydraulic models in flood inundation modelling and mapping. The well-established one-dimensional (1-D) hydraulic model, HEC-RAS is selected and linked to Monte-Carlo simulations of hydraulic roughness. Terrestrial Laser Scanner data have been used to produce a high quality DEM for input data uncertainty minimisation and to improve determination accuracy on stream channel topography required by the hydraulic model. Initial Manning's n roughness coefficient values are based on pebble count field surveys and empirical formulas. Various theoretical probability distributions are fitted and evaluated on their accuracy to represent the estimated roughness values. Finally, Latin Hypercube Sampling has been used for generation of different sets of Manning roughness values and flood inundation probability maps have been created with the use of Monte Carlo simulations. Historical flood extent data, from an extreme historical flash flood event, are used for validation of the method. The calibration process is based on a binary wet-dry reasoning with the use of Median Absolute Percentage Error evaluation metric. The results show that the proposed procedure supports probabilistic flood hazard mapping at ungauged rivers and provides water resources managers with valuable information for planning and implementing flood risk mitigation strategies.
Moving towards a new paradigm for global flood risk estimation
NASA Astrophysics Data System (ADS)
Troy, Tara J.; Devineni, Naresh; Lima, Carlos; Lall, Upmanu
2013-04-01
Traditional approaches to flood risk assessment are typically indexed to an instantaneous peak flow event at a specific recording gage on a river, and then extrapolated through hydraulic modeling of that peak flow to the potential area that is likely to be inundated. Recent research shows that property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. The existing notion of a flood return period based on just the instantaneous peak flow rate at a stream gauge consequently needs to be revisited, especially for floods due to persistent rainfall as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Depending on the flood event type considered, different rainfall inducing mechanisms (tropical storm, local convection, frontal system, recurrent tropical waves) may be involved. Each of these will have a characteristic spatial scale, expression and orientation and temporal characteristics. We develop stochastic models that can reproduce these attributes with appropriate intensity-duration-frequency and spatial expression, and hence provide a basis for conditioning basin hydrologic attributes for flood risk assessment. Past work on Non-homogeneous Hidden Markov Models (NHMM) is used as a basis to develop this capability at regional scales. In addition, a dynamic hierarchical Bayesian network model that is continuous and not based on discretization to states is tested and compared against NHMM. The exogenous variables in these models comes from the analysis of key synoptic circulation patterns which will be used as predictors for the regional spatio-temporal models. The stochastic simulations of rainfall are then used as input to a flood modeling system, which consists of a series of physically based models. Rainfall-runoff generation is produced by the Variable Infiltration Capacity (VIC) model. When the modeled streamflow crosses a threshold, a full kinematic wave routing model is implemented at a finer resolution (<=1km) in order to more accurately model streamflow under flood conditions and estimate inundation. This approach allows for efficient computational simulation of the hydrology when not under potential for flooding with high-resolution flood wave modeling when there is flooding potential. We demonstrate the results of this flood risk estimation system for the Ohio River basin in the United States, a large river basin that is historically prone to flooding, with the intention of using it to do global flood risk assessment.
Soong, David T.; Murphy, Elizabeth A.; Straub, Timothy D.
2009-01-01
The effects of stormwater detention basins with specified release rates are examined on the watershed scale with a Hydrological Simulation Program - FORTRAN (HSPF) continuous-simulation model. Modeling procedures for specifying release rates from detention basins with orifice and weir discharge configurations are discussed in this report. To facilitate future detention modeling as a tool for watershed management, a chart relating watershed impervious area to detention volume is presented. The report also presents a case study of the Blackberry Creek watershed in Kane County, Ill., a rapidly urbanizing area seeking to avoid future flood damages from increased urbanization, to illustrate the effects of various detention basin release rates on flood peaks and volumes and flood frequencies. The case study compares flows simulated with a 1996 land-use HSPF model to those simulated with four different 2020 projected land-use HSPF model scenarios - no detention, and detention basins with release rates of 0.08, 0.10, and 0.12 cubic feet per second per acre (ft3/s-acre), respectively. Results of the simulations for 15 locations, which included the downstream ends of all tributaries and various locations along the main stem, showed that a release rate of 0.10 ft3/s-acre, in general, can maintain postdevelopment 100-year peak-flood discharge at a similar magnitude to that of 1996 land-use conditions. Although the release rate is designed to reduce the 100-year peak flow, reduction of the 2-year peak flow is also achieved for a smaller proportion of the peak. Results also showed that the 0.10 ft3/s-acre release rate was less effective in watersheds with relatively high percentages of preexisting (1996) development than in watersheds with less preexisting development.
Simplified energy-balance model for pragmatic multi-dimensional device simulation
NASA Astrophysics Data System (ADS)
Chang, Duckhyun; Fossum, Jerry G.
1997-11-01
To pragmatically account for non-local carrier heating and hot-carrier effects such as velocity overshoot and impact ionization in multi-dimensional numerical device simulation, a new simplified energy-balance (SEB) model is developed and implemented in FLOODS[16] as a pragmatic option. In the SEB model, the energy-relaxation length is estimated from a pre-process drift-diffusion simulation using the carrier-velocity distribution predicted throughout the device domain, and is used without change in a subsequent simpler hydrodynamic (SHD) simulation. The new SEB model was verified by comparison of two-dimensional SHD and full HD DC simulations of a submicron MOSFET. The SHD simulations yield detailed distributions of carrier temperature, carrier velocity, and impact-ionization rate, which agree well with the full HD simulation results obtained with FLOODS. The most noteworthy feature of the new SEB/SHD model is its computational efficiency, which results from reduced Newton iteration counts caused by the enhanced linearity. Relative to full HD, SHD simulation times can be shorter by as much as an order of magnitude since larger voltage steps for DC sweeps and larger time steps for transient simulations can be used. The improved computational efficiency can enable pragmatic three-dimensional SHD device simulation as well, for which the SEB implementation would be straightforward as it is in FLOODS or any robust HD simulator.
NASA Astrophysics Data System (ADS)
Hoch, J. M.; Bierkens, M. F.; Van Beek, R.; Winsemius, H.; Haag, A.
2015-12-01
Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World's population and the associated implications, sound knowledge of flood hazard and related risk is crucial. Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation. Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory. The present research constitutes a first step into a globally applicable approach to fully couple hydrologic with hydrodynamic computations while discriminating between 1D-channels and 2D-floodplains. Such a fully-fledged set-up would be able to provide higher-order flood hazard information, e.g. time to flooding and flood duration, ultimately leading to improved flood risk assessment and management at the large scale.
SIMULATION OF FLOOD HYDROGRAPHS FOR GEORGIA STREAMS.
Inman, E.J.; Armbruster, J.T.
1986-01-01
Flood hydrographs are needed for the design of many highway drainage structures and embankments. A method for simulating these flood hydrographs at urban and rural ungauged sites in Georgia is presented. The O'Donnell method was used to compute unit hydrographs from 355 flood events from 80 stations. An average unit hydrograph and an average lag time were computed for each station. These average unit hydrographs were transformed to unit hydrographs having durations of one-fourth, one-third, one-half, and three-fourths lag time and then reduced to dimensionless terms by dividing the time by lag time and the discharge by peak discharge. Hydrographs were simulated for these 355 flood events and their widths were compared with the widths of the observed hydrographs at 50 and 75 percent of peak flow. For simulating hydrographs at sites larger than 500 mi**2, the U. S. Geological Survey computer model CONROUT can be used.
NASA Astrophysics Data System (ADS)
Ryu, Young; Lim, Yoon-Jin; Ji, Hee-Sook; Park, Hyun-Hee; Chang, Eun-Chul; Kim, Baek-Jo
2017-11-01
In flash flood forecasting, it is necessary to consider not only traditional meteorological variables such as precipitation, evapotranspiration, and soil moisture, but also hydrological components such as streamflow. To address this challenge, the application of high resolution coupled atmospheric-hydrological models is emerging as a promising alternative. This study demonstrates the feasibility of linking a coupled atmospheric-hydrological model (WRF/WRFHydro) with 150-m horizontal grid spacing for flash flood forecasting in Korea. The study area is the Namgang Dam basin in Southern Korea, a mountainous area located downstream of Jiri Mountain (1915 m in height). Under flash flood conditions, the simulated precipitation over the entire basin is comparable to the domain-averaged precipitation, but discharge data from WRF-Hydro shows some differences in the total available water and the temporal distribution of streamflow (given by the timing of the streamflow peak following precipitation), compared to observations. On the basis of sensitivity tests, the parameters controlling the infiltration of excess precipitation and channel roughness depending on stream order are refined and their influence on temporal distribution of streamflow is addressed with intent to apply WRF-Hydro to flash flood forecasting in the Namgang Dam basin. The simulation results from the WRF-Hydro model with optimized parameters demonstrate the potential utility of a coupled atmospheric-hydrological model for forecasting heavy rain-induced flash flooding over the Korean Peninsula.
NASA Astrophysics Data System (ADS)
Coe, M. T.; Costa, M. H.; Howard, E. A.
2006-12-01
In this paper we analyze the hydrology of the Amazon River system for the latter half of the 20th century with our recently completed model of terrestrial hydrology (Terrestrial Hydrology Model with Biogeochemistry, THMB). We evaluate the simulated hydrology of the Central Amazon basin against limited observations of river discharge, floodplain inundation, and water height and analyze the spatial and temporal variability of the hydrology for the period 1939-1998. We compare the simulated discharge and floodplain inundated area to the simulations by Coe et al., 2002 using a previous version of this model. The new model simulates the discharge and flooded area in better agreement with the observations than the previous model. The coefficient of correlation between the simulated and observed discharge for the greater than 27000 monthly observations of discharge at 120 sites throughout the Brazilian Amazon is 0.9874 compared to 0.9744 for the previous model. The coefficient of correlation between the simulated monthly flooded area and the satellite-based estimates by Sippel et al., 1998 exceeds 0.7 for 8 of the 12 mainstem reaches. The seasonal and inter-annual variability of the water height and the river slope compares favorably to the satellite altimetric measurements of height reported by Birkett et al., 2002.
NASA Astrophysics Data System (ADS)
Xuejiao, M.; Chang, J.; Wang, Y.
2017-12-01
Flood risk reduction with non-engineering measures has become the main idea for flood management. It is more effective for flood risk management to take various non-engineering measures. In this paper, a flood control operation model for cascade reservoirs in the Upper Yellow River was proposed to lower the flood risk of the water system with multi-reservoir by combining the reservoir flood control operation (RFCO) and flood early warning together. Specifically, a discharge control chart was employed to build the joint RFCO simulation model for cascade reservoirs in the Upper Yellow River. And entropy-weighted fuzzy comprehensive evaluation method was adopted to establish a multi-factorial risk assessment model for flood warning grade. Furthermore, after determining the implementing mode of countermeasures with future inflow, an intelligent optimization algorithm was used to solve the optimization model for applicable water release scheme. In addition, another model without any countermeasure was set to be a comparative experiment. The results show that the model developed in this paper can further decrease the flood risk of water system with cascade reservoirs. It provides a new approach to flood risk management by coupling flood control operation and flood early warning of cascade reservoirs.
Flooding Capability for River-based Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis L.; Prescott, Steven; Ryan, Emerald
2015-10-01
This report describes the initial investigation into modeling and simulation tools for application of riverine flooding representation as part of the Risk-Informed Safety Margin Characterization (RISMC) Pathway external hazards evaluations. The report provides examples of different flooding conditions and scenarios that could impact river and watershed systems. Both 2D and 3D modeling approaches are described.
Simulation of extreme reservoir level distribution with the SCHADEX method (EXTRAFLO project)
NASA Astrophysics Data System (ADS)
Paquet, Emmanuel; Penot, David; Garavaglia, Federico
2013-04-01
The standard practice for the design of dam spillways structures and gates is to consider the maximum reservoir level reached for a given hydrologic scenario. This scenario has several components: peak discharge, flood volumes on different durations, discharge gradients etc. Within a probabilistic analysis framework, several scenarios can be associated with different return times, although a reference return level (e.g. 1000 years) is often prescribed by the local regulation rules or usual practice. Using continuous simulation method for extreme flood estimation is a convenient solution to provide a great variety of hydrological scenarios to feed a hydraulic model of dam operation: flood hydrographs are explicitly simulated by a rainfall-runoff model fed by a stochastic rainfall generator. The maximum reservoir level reached will be conditioned by the scale and the dynamics of the generated hydrograph, by the filling of the reservoir prior to the flood, and by the dam gates and spillway operation during the event. The simulation of a great number of floods will allow building a probabilistic distribution of maximum reservoir levels. A design value can be chosen at a definite return level. An alternative approach is proposed here, based on the SCHADEX method for extreme flood estimation, proposed by Paquet et al. (2006, 2013). SCHADEX is a so-called "semi-continuous" stochastic simulation method in that flood events are simulated on an event basis and are superimposed on a continuous simulation of the catchment saturation hazard using rainfall-runoff modelling. The SCHADEX process works at the study time-step (e.g. daily), and the peak flow distribution is deduced from the simulated daily flow distribution by a peak-to-volume ratio. A reference hydrograph relevant for extreme floods is proposed. In the standard version of the method, both the peak-to-volume and the reference hydrograph are constant. An enhancement of this method is presented, with variable peak-to-volume ratios and hydrographs applied to each simulated event. This allows accounting for different flood dynamics, depending on the season, the generating precipitation event, the soil saturation state, etc. In both cases, a hydraulic simulation of dam operation is performed, in order to compute the distribution of maximum reservoir levels. Results are detailed for an extreme return level, showing that a 1000 years return level reservoir level can be reached during flood events whose components (peaks, volumes) are not necessarily associated with such return level. The presentation will be illustrated by the example of a fictive dam on the Tech River at Reynes (South of France, 477 km²). This study has been carried out within the EXTRAFLO project, Task 8 (https://extraflo.cemagref.fr/). References: Paquet, E., Gailhard, J. and Garçon, R. (2006), Evolution of the GRADEX method: improvement by atmospheric circulation classification and hydrological modeling, La Houille Blanche, 5, 80-90. doi:10.1051/lhb:2006091. Paquet, E., Garavaglia, F., Garçon, R. and Gailhard, J. (2012), The SCHADEX method: a semi-continuous rainfall-runoff simulation for extreme food estimation, Journal of Hydrology, under revision
Simulating storm surge inundation and damage potential within complex port facilities
NASA Astrophysics Data System (ADS)
Mawdsley, Robert; French, Jon; Fujiyama, Taku; Achutan, Kamalasudhan
2017-04-01
Storm surge inundation of port facilities can cause damage to critical elements of infrastructure, significantly disrupt port operations and cause downstream impacts on vital supply chains. A tidal surge in December 2013 in the North Sea partly flooded the Port of Immingham, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. This flooding caused damage to port and rail transport infrastructure and disrupted operations for several weeks. This research aims to improve resilience to storm surges using hydrodynamic modelling coupled to an agent-based model of port operations. Using the December 2013 event to validate flood extent, depth and duration, we ran a high resolution hydrodynamic simulation using the open source Telemac 2D finite element code. The underlying Digital Elevation Model (DEM) was derived from Environment Agency LiDAR data, with ground truthing of the flood defences along the port frontage. Major infrastructure and buildings are explicitly resolved with varying degrees of permeability. Telemac2D simulations are run in parallel and take only minutes on a single 16 cpu compute node. Inundation characteristics predicted using Telemac 2D differ from a simple Geographical Information System 'bath-tub' analysis of the DEM based upon horizontal application of the maximum water level across the port topography. The hydrodynamic simulation predicts less extensive flooding and more closely matches observed flood extent. It also provides more precise depth and duration curves. Detailed spatial flood depth and duration maps were generated for a range of tide and surge scenarios coupled to mean sea-level rise projections. These inundation scenarios can then be integrated with critical asset databases and an agent-based model of port operation (MARS) that is capable of simulating storm surge disruption along wider supply chains. Port operators are able to act on information from a particular flood scenario to perform adaptive responses (e.g. pre-emptive relocation of equipment), as well as estimate the likely duration of any disruption to port and supply chain operation. High resolution numerical inundation modelling, coupled to accurate storm surge forecasting and an agent based port operation model, thus has the potential to significantly reduce damage and disruption costs associated with storm surge impacts on port infrastructure and systems.
NASA Astrophysics Data System (ADS)
Bates, P. D.; Quinn, N.; Sampson, C. C.; Smith, A.; Wing, O.; Neal, J. C.
2017-12-01
Remotely sensed data has transformed the field of large scale hydraulic modelling. New digital elevation, hydrography and river width data has allowed such models to be created for the first time, and remotely sensed observations of water height, slope and water extent has allowed them to be calibrated and tested. As a result, we are now able to conduct flood risk analyses at national, continental or even global scales. However, continental scale analyses have significant additional complexity compared to typical flood risk modelling approaches. Traditional flood risk assessment uses frequency curves to define the magnitude of extreme flows at gauging stations. The flow values for given design events, such as the 1 in 100 year return period flow, are then used to drive hydraulic models in order to produce maps of flood hazard. Such an approach works well for single gauge locations and local models because over relatively short river reaches (say 10-60km) one can assume that the return period of an event does not vary. At regional to national scales and across multiple river catchments this assumption breaks down, and for a given flood event the return period will be different at different gauging stations, a pattern known as the event `footprint'. Despite this, many national scale risk analyses still use `constant in space' return period hazard layers (e.g. the FEMA Special Flood Hazard Areas) in their calculations. Such an approach can estimate potential exposure, but will over-estimate risk and cannot determine likely flood losses over a whole region or country. We address this problem by using a stochastic model to simulate many realistic extreme event footprints based on observed gauged flows and the statistics of gauge to gauge correlations. We take the entire USGS gauge data catalogue for sites with > 45 years of record and use a conditional approach for multivariate extreme values to generate sets of flood events with realistic return period variation in space. We undertake a number of quality checks of the stochastic model and compare real and simulated footprints to show that the method is able to re-create realistic patterns even at continental scales where there is large variation in flood generating mechanisms. We then show how these patterns can be used to drive a large scale 2D hydraulic to predict regional scale flooding.
NASA Astrophysics Data System (ADS)
Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan
2017-10-01
Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash-Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.
NASA Astrophysics Data System (ADS)
Theofanidi, Sofia; Cloke, Hannah Louise; Clark, Joanna
2017-04-01
Floods are a global threat to social, economic and environmental development and there is a likelihood, that they could occur more frequently in the future due to climatic change. The severity of their impacts, which can last for years, has led to the urgent need for local communities and national authorities to develop flood warning systems for a better flood preparedness and emergency response. The flood warning systems often rely on hydrological forecasting tools to predict the hydrological response of a watershed before or during a flood event. Hydrological models have been substantially upgraded since the first use of hydrographs and the use of simple conceptual models. Hydrodynamic and hydraulic routing enables the spatial and temporal prediction of flow rates (peak discharges) and water levels. Moreover, the hydrodynamic modeling in 2D permits the estimation of the flood inundation area. This can be particularly useful because the flood zones can provide essential information about the flood risk and the flood damage. In this study, we use a hydrodynamic model which can simulate water levels and river flows in open channel conditions. The model can incorporate the effect of several river structures in the flood modeling process, such as the existence of bridges and weirs. The flood routing method is based on the solution of continuity and energy momentum equations. In addition, the floodplain inundation modeling which is based on the solution of shallow water equations along the channel's banks, will be used for the mapping of flood extent. A GIS interface will serve as a database, including high resolution topography, vector layers of river network, gauging stations, land use and land cover, geology and soil information. The flood frequency analysis, together with historical records on flood warnings, will enable the understanding on the flow regimes and the selection of particular flood events for modeling. One dimensional and two dimensional simulations of the flood events will follow, using simple hydrological boundary conditions. The sensitivity testing of the model, will permit to assess which parameters have the potential to alter significantly the peak discharge during the flood, flood water levels and flood inundation extent. Assessing the model's sensitivity and uncertainty, contributes to the improvement of the flood risk knowledge. The area of study is a subcatchment of the River Thames in the southern part of the United Kingdom. The Thames with its tributaries, support a wide range of social, economic and recreational activities. In addition, the historical and environmental importance of the Thames valley highlights the need for a sustainable flood mitigation planning which includes the better understanding of the flood mechanisms and flood risks.
NASA Astrophysics Data System (ADS)
Ishitsuka, Y.; Yoshimura, K.
2016-12-01
Floods have a potential to be a major source of economic or human damage caused by natural disasters. Flood prediction systems were developed all over the world and to treat the uncertainty of the prediction ensemble simulation is commonly adopted. In this study, ensemble flood prediction system using global scale land surface and hydrodynamic model was developed. The system requests surface atmospheric forcing and Land Surface Model, MATSIRO, calculates runoff. Those generated runoff is inputted to hydrodynamic model CaMa-Flood to calculate discharge and flood inundation. CaMa-Flood can simulate flood area and its fraction by introducing floodplain connected to river channel. Forecast leadtime was set 39hours according to forcing data. For the case study, the flood occurred at Kinu river basin, Japan in 2015 was hindcasted. In a 1761 km² Kinu river basin, 3-days accumulated average rainfall was 384mm and over 4000 people was left in the inundated area. Available ensemble numerical weather prediction data at that time was inputted to the system in a resolution of 0.05 degrees and 1hour time step. As a result, the system predicted the flood occurrence by 45% and 84% at 23 and 11 hours before the water level exceeded the evacuation threshold, respectively. Those prediction lead time may provide the chance for early preparation for the floods such as levee reinforcement or evacuation. Adding to the discharge, flood area predictability was also analyzed. Although those models were applied for Japan region, this system can be applied easily to other region or even global scale. The areal flood prediction in meso to global scale would be useful for detecting hot zones or vulnerable areas over each region.
Flood frequency approach in a Mediterranean Flash Flood basin. A case study in the Besòs catchment
NASA Astrophysics Data System (ADS)
Velasco, D.; Zanon, F.; Corral, C.; Sempere-Torres, D.; Borga, M.
2009-04-01
Flash floods are one of the most devastating natural disasters in the Mediterranean areas. In particular, the region of Catalonia (North-East Spain) is one of the most affected by flash floods in the Iberian Peninsula. The high rainfall intensities generating these events, the specific terrain characteristics giving rise to very fast hydrological responses and the high variability in space and time of both rain and land surface, are the main features of FF and also the main cause of their extreme complexity. Distributed hydrological models have been developed to increase the flow forecast resolution in order to implement effective operational warning systems. Some studies have shown how the distributed-models accuracy is highly sensitive to reduced computational grid scale, so, hydrological model uncertainties must be studied. In these conditions, an estimation of the modeling uncertainty (whatever the accuracy is) becomes highly valuable information to enhance our ability to predict the occurrence of flash flooding. The statistical-distributed modeling approach (Reed, 2004) is proposed in the present study to simulate floods on a small basin and account for hydrologic modeling uncertainty. The Besòs catchment (1020 km2), near Barcelona, has been selected in this study to apply the proposed flood frequency methodology. Hydrometeorological data is available for 11 rain-gauges and 6 streamflow gauges in the last 12 years, and a total of 9 flood events have been identified and analyzed in this study. The DiCHiTop hydrological model (Corral, 2004) was developed to fit operational requirements in the Besòs catchment: distributed, robust and easy to implement. It is a grid-based model that works at a given resolution (here at 1 × 1 km2, the hydrological cell), defining a simplified drainage system at this scale. A loss function is applied at the hydrological cell resolution, provided by a coupled storage model between the SCS model (Mockus, 1957) in urban areas and Topmodel (Beven & Kirkby, 1979) in rural and forested areas. The distributed hydrological model is calibrated using observed streamflow information from the available events. Simulated peak discharges are then compared to observed discharges in these gauged cells, so the relative forecast errors are estimated for all the events. Flood frequency is introduced in the analysis in order to derive probability functions for relative flow error. The next step consists in the extension of the flood frequency error patterns to the corresponding subbasins so it is possible to characterize the accuracy of the simulation in the uncalibrated cells (typically ungaged basins). As a result, the operational flood simulation at every cell in the Besos catchment can be checked and validated (in a first approach) in terms of occurrence. Thus, the distributed warning system can take advantage of the modeling uncertainties for operational tasks.
NASA Astrophysics Data System (ADS)
Chao, Y.; Cheng, C. T.; Hsiao, Y. H.; Hsu, C. T.; Yeh, K. C.; Liu, P. L.
2017-12-01
There are 5.3 typhoons hit Taiwan per year on average in last decade. Typhoon Morakot in 2009, the most severe typhoon, causes huge damage in Taiwan, including 677 casualties and roughly NT 110 billion (3.3 billion USD) in economic loss. Some researches documented that typhoon frequency will decrease but increase in intensity in western North Pacific region. It is usually preferred to use high resolution dynamical model to get better projection of extreme events; because coarse resolution models cannot simulate intense extreme events. Under that consideration, dynamical downscaling climate data was chosen to describe typhoon satisfactorily, this research used the simulation data from AGCM of Meteorological Research Institute (MRI-AGCM). Considering dynamical downscaling methods consume massive computing power, and typhoon number is very limited in a single model simulation, using dynamical downscaling data could cause uncertainty in disaster risk assessment. In order to improve the problem, this research used four sea surfaces temperatures (SSTs) to increase the climate change scenarios under RCP 8.5. In this way, MRI-AGCMs project 191 extreme typhoons in Taiwan (when typhoon center touches 300 km sea area of Taiwan) in late 21th century. SOBEK, a two dimensions flood simulation model, was used to assess the flood risk under four SSTs climate change scenarios in Tainan, Taiwan. The results show the uncertainty of future flood risk assessment is significantly decreased in Tainan, Taiwan in late 21th century. Four SSTs could efficiently improve the problems of limited typhoon numbers in single model simulation.
Effective precipitation duration for runoff peaks based on catchment modelling
NASA Astrophysics Data System (ADS)
Sikorska, A. E.; Viviroli, D.; Seibert, J.
2018-01-01
Despite precipitation intensities may greatly vary during one flood event, detailed information about these intensities may not be required to accurately simulate floods with a hydrological model which rather reacts to cumulative precipitation sums. This raises two questions: to which extent is it important to preserve sub-daily precipitation intensities and how long does it effectively rain from the hydrological point of view? Both questions might seem straightforward to answer with a direct analysis of past precipitation events but require some arbitrary choices regarding the length of a precipitation event. To avoid these arbitrary decisions, here we present an alternative approach to characterize the effective length of precipitation event which is based on runoff simulations with respect to large floods. More precisely, we quantify the fraction of a day over which the daily precipitation has to be distributed to faithfully reproduce the large annual and seasonal floods which were generated by the hourly precipitation rate time series. New precipitation time series were generated by first aggregating the hourly observed data into daily totals and then evenly distributing them over sub-daily periods (n hours). These simulated time series were used as input to a hydrological bucket-type model and the resulting runoff flood peaks were compared to those obtained when using the original precipitation time series. We define then the effective daily precipitation duration as the number of hours n, for which the largest peaks are simulated best. For nine mesoscale Swiss catchments this effective daily precipitation duration was about half a day, which indicates that detailed information on precipitation intensities is not necessarily required to accurately estimate peaks of the largest annual and seasonal floods. These findings support the use of simple disaggregation approaches to make usage of past daily precipitation observations or daily precipitation simulations (e.g. from climate models) for hydrological modeling at an hourly time step.
NASA Astrophysics Data System (ADS)
Santillan, J. R.; Amora, A. M.; Makinano-Santillan, M.; Marqueso, J. T.; Cutamora, L. C.; Serviano, J. L.; Makinano, R. M.
2016-06-01
In this paper, we present a combined geospatial and two dimensional (2D) flood modeling approach to assess the impacts of flooding due to extreme rainfall events. We developed and implemented this approach to the Tago River Basin in the province of Surigao del Sur in Mindanao, Philippines, an area which suffered great damage due to flooding caused by Tropical Storms Lingling and Jangmi in the year 2014. The geospatial component of the approach involves extraction of several layers of information such as detailed topography/terrain, man-made features (buildings, roads, bridges) from 1-m spatial resolution LiDAR Digital Surface and Terrain Models (DTM/DSMs), and recent land-cover from Landsat 7 ETM+ and Landsat 8 OLI images. We then used these layers as inputs in developing a Hydrologic Engineering Center Hydrologic Modeling System (HEC HMS)-based hydrologic model, and a hydraulic model based on the 2D module of the latest version of HEC River Analysis System (RAS) to dynamically simulate and map the depth and extent of flooding due to extreme rainfall events. The extreme rainfall events used in the simulation represent 6 hypothetical rainfall events with return periods of 2, 5, 10, 25, 50, and 100 years. For each event, maximum flood depth maps were generated from the simulations, and these maps were further transformed into hazard maps by categorizing the flood depth into low, medium and high hazard levels. Using both the flood hazard maps and the layers of information extracted from remotely-sensed datasets in spatial overlay analysis, we were then able to estimate and assess the impacts of these flooding events to buildings, roads, bridges and landcover. Results of the assessments revealed increase in number of buildings, roads and bridges; and increase in areas of land-cover exposed to various flood hazards as rainfall events become more extreme. The wealth of information generated from the flood impact assessment using the approach can be very useful to the local government units and the concerned communities within Tago River Basin as an aid in determining in an advance manner all those infrastructures (buildings, roads and bridges) and land-cover that can be affected by different extreme rainfall event flood scenarios.
NASA Astrophysics Data System (ADS)
Li, Zhe; Yang, Dawen; Yang, Hanbo; Wu, Tianjiao; Xu, Jijun; Gao, Bing; Xu, Tao
2015-04-01
The study area, the Three Gorges Region (TGR), plays a critical role in predicting the floods drained into the Three Gorges Reservoir, as reported local floods often exceed 10000m3/s during rainstorm events and trigger fast as well as significant impacts on the Three Gorges Reservoir's regulation. Meanwhile, it is one of typical mountainous areas in China, which is located in the transition zone between two monsoon systems: the East Asian monsoon and the South Asian (Indian) monsoon. This climatic feature, combined with local irregular terrains, has shaped complicated rainfall-runoff regimes in this focal region. However, due to the lack of high-resolution hydrometeorological data and physically-based hydrologic modeling framework, there was little knowledge about rainfall variability and flood pattern in this historically ungauged region, which posed great uncertainties to flash flood forecasting in the past. The present study summarize latest progresses of regional flash floods monitoring and prediction, including installation of a ground-based Hydrometeorological Observation Network (TGR-HMON), application of a regional geomorphology-based hydrological model (TGR-GBHM), development of an integrated forecasting and modeling system (TGR-INFORMS), and evaluation of quantitative precipitation estimations (QPE) and quantitative precipitation forecasting (QPF) products in TGR flash flood forecasting. With these continuing efforts to improve the forecasting performance of flash floods in TGR, we have addressed several critical issues: (1) Current observation network is still insufficient to capture localized rainstorms, and weather radar provides valuable information to forecast flash floods induced by localized rainstorms, although current radar QPE products can be improved substantially in future; (2) Long-term evaluation shows that the geomorphology-based distributed hydrologic model (GBHM) is able to simulate flash flooding processes reasonably, while model performance will decline at hourly scale with larger uncertainties. However, model comparison suggests that this physically-based distributed model (GBHM), compared with a traditional lumped model (Xin'anjiang model), shows more robust performance and larger transferability for prediction in those ungauged basins in TGR; (3) Operational test of our integrated forecasting system (TRG-INFORMS) shows that it works reasonably to simulate the flood routing in Three Gorges reservoir, indicating the accuracy of simulation of total floods generated at region scale; (4) Current operational QPF is too coarse to provide valuable information even for flood forecasting of whole TGR, thus, downscaling and high-resolution QPF are necessary to unravel the potentials of weather forecasting. Finally, according to these results, we also discuss about some possible solutions with high priority for future advanced forecasting scheme of local flash floods in TGR.
NASA Astrophysics Data System (ADS)
Zahmatkesh, Zahra; Karamouz, Mohammad; Nazif, Sara
2015-09-01
Simulation of rainfall-runoff process in urban areas is of great importance considering the consequences and damages of extreme runoff events and floods. The first issue in flood hazard analysis is rainfall simulation. Large scale climate signals have been proved to be effective in rainfall simulation and prediction. In this study, an integrated scheme is developed for rainfall-runoff modeling considering different sources of uncertainty. This scheme includes three main steps of rainfall forecasting, rainfall-runoff simulation and future runoff prediction. In the first step, data driven models are developed and used to forecast rainfall using large scale climate signals as rainfall predictors. Due to high effect of different sources of uncertainty on the output of hydrologic models, in the second step uncertainty associated with input data, model parameters and model structure is incorporated in rainfall-runoff modeling and simulation. Three rainfall-runoff simulation models are developed for consideration of model conceptual (structural) uncertainty in real time runoff forecasting. To analyze the uncertainty of the model structure, streamflows generated by alternative rainfall-runoff models are combined, through developing a weighting method based on K-means clustering. Model parameters and input uncertainty are investigated using an adaptive Markov Chain Monte Carlo method. Finally, calibrated rainfall-runoff models are driven using the forecasted rainfall to predict future runoff for the watershed. The proposed scheme is employed in the case study of the Bronx River watershed, New York City. Results of uncertainty analysis of rainfall-runoff modeling reveal that simultaneous estimation of model parameters and input uncertainty significantly changes the probability distribution of the model parameters. It is also observed that by combining the outputs of the hydrological models using the proposed clustering scheme, the accuracy of runoff simulation in the watershed is remarkably improved up to 50% in comparison to the simulations by the individual models. Results indicate that the developed methodology not only provides reliable tools for rainfall and runoff modeling, but also adequate time for incorporating required mitigation measures in dealing with potentially extreme runoff events and flood hazard. Results of this study can be used in identification of the main factors affecting flood hazard analysis.
NASA Astrophysics Data System (ADS)
Karamuz, Emilia; Kochanek, Krzysztof; Romanowicz, Renata
2014-05-01
Flood frequency analysis (FFA) is customarily performed using annual maximum flows. However, there is a number of different flood descriptors that could be used. Among them are water levels, peaks over the threshold, flood-wave duration, flood volume, etc. In this study we compare different approaches to FFA for their suitability for flood risk assessment. The main goal is to obtain the FFA curve with the smallest possible uncertainty limits, in particular for the distribution tail. The extrapolation of FFA curves is crucial in future flood risk assessment in a changing climate. We compare the FFA curves together with their uncertainty limits obtained using flows, water levels, flood inundation area and volumes for the Warsaw reach of the river Vistula. Moreover, we derive the FFA curves obtained using simulated flows. The results are used to derive the error distribution for the maximum simulated and observed values under different modelling techniques and assess its influence on flood risk predictions for ungauged catchments. MIKE11, HEC-RAS and transfer function model are applied in average and extreme conditions to model flow propagation in the Warsaw Vistula reach. The additional questions we want to answer are what is the range of application of different modelling tools under various flow conditions and how can the uncertainty of flood risk assessment be decreased. This work was partly supported by the projects "Stochastic flood forecasting system (The River Vistula reach from Zawichost to Warsaw)" and "Modern statistical models for analysis of flood frequency and features of flood waves", carried by the Institute of Geophysics, Polish Academy of Sciences on the order of the National Science Centre (contracts Nos. 2011/01/B/ST10/06866 and 2012/05/B/ST10/00482, respectively). The water level and flow data were provided by the Institute of Meteorology and Water Management (IMGW), Poland.
Spatio-Temporal Process Simulation of Dam-Break Flood Based on SPH
NASA Astrophysics Data System (ADS)
Wang, H.; Ye, F.; Ouyang, S.; Li, Z.
2018-04-01
On the basis of introducing the SPH (Smooth Particle Hydrodynamics) simulation method, the key research problems were given solutions in this paper, which ere the spatial scale and temporal scale adapting to the GIS(Geographical Information System) application, the boundary condition equations combined with the underlying surface, and the kernel function and parameters applicable to dam-break flood simulation. In this regards, a calculation method of spatio-temporal process emulation with elaborate particles for dam-break flood was proposed. Moreover the spatio-temporal process was dynamic simulated by using GIS modelling and visualization. The results show that the method gets more information, objectiveness and real situations.
USDA-ARS?s Scientific Manuscript database
This paper presents the development and application of a three-dimensional numerical model for simulating the flow field and pollutant transport in a flood zone near the confluence of the Mississippi River and Iowa River in Oakville, Iowa. Due to a levee breaching along the Iowa River during the US ...
NASA Astrophysics Data System (ADS)
Ikeuchi, Hiroaki; Hirabayashi, Yukiko; Yamazaki, Dai; Muis, Sanne; Ward, Philip J.; Winsemius, Hessel C.; Verlaan, Martin; Kanae, Shinjiro
2017-08-01
Water-related disasters, such as fluvial floods and cyclonic storm surges, are a major concern in the world's mega-delta regions. Furthermore, the simultaneous occurrence of extreme discharges from rivers and storm surges could exacerbate flood risk, compared to when they occur separately. Hence, it is of great importance to assess the compound risks of fluvial and coastal floods at a large scale, including mega-deltas. However, most studies on compound fluvial and coastal flooding have been limited to relatively small scales, and global-scale or large-scale studies have not yet addressed both of them. The objectives of this study are twofold: to develop a global coupled river-coast flood model; and to conduct a simulation of compound fluvial flooding and storm surges in Asian mega-delta regions. A state-of-the-art global river routing model was modified to represent the influence of dynamic sea surface levels on river discharges and water levels. We conducted the experiments by coupling a river model with a global tide and surge reanalysis data set. Results show that water levels in deltas and estuaries are greatly affected by the interaction between river discharge, ocean tides and storm surges. The effects of storm surges on fluvial flooding are further examined from a regional perspective, focusing on the case of Cyclone Sidr in the Ganges-Brahmaputra-Meghna Delta in 2007. Modeled results demonstrate that a >3 m storm surge propagated more than 200 km inland along rivers. We show that the performance of global river routing models can be improved by including sea level dynamics.
NASA Astrophysics Data System (ADS)
Sai Krishna, V. V.; Dikshit, Anil Kumar; Pandey, Kamal
2016-05-01
Urban expansion, water bodies and climate change are inextricably linked with each other. The macro and micro level climate changes are leading to extreme precipitation events which have severe consequences on flooding in urban areas. Flood simulations shall be helpful in demarcation of flooded areas and effective flood planning and preparedness. The temporal availability of satellite rainfall data at varying spatial scale of 0.10 to 0.50 is helpful in near real time flood simulations. The present research aims at analysing stream flow and runoff to monitor flood condition using satellite rainfall data in a hydrologic model. The satellite rainfall data used in the research was NASA's Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG), which is available at 30 minutes temporal resolution. Landsat data was used for mapping the water bodies in the study area. Land use land cover (LULC) data was prepared using Landsat 8 data with maximum likelihood technique that was provided as an input to the HEC-HMS hydrological model. The research was applied to one of the urbanized cities of India, viz. Dehradun, which is the capital of Uttarakhand State. The research helped in identifying the flood vulnerability at the basin level on the basis of the runoff and various socio economic parameters using multi criteria analysis.
Pan-European stochastic flood event set
NASA Astrophysics Data System (ADS)
Kadlec, Martin; Pinto, Joaquim G.; He, Yi; Punčochář, Petr; Kelemen, Fanni D.; Manful, Desmond; Palán, Ladislav
2017-04-01
Impact Forecasting (IF), the model development center of Aon Benfield, has been developing a large suite of catastrophe flood models on probabilistic bases for individual countries in Europe. Such natural catastrophes do not follow national boundaries: for example, the major flood in 2016 was responsible for the Europe's largest insured loss of USD3.4bn and affected Germany, France, Belgium, Austria and parts of several other countries. Reflecting such needs, IF initiated a pan-European flood event set development which combines cross-country exposures with country based loss distributions to provide more insightful data to re/insurers. Because the observed discharge data are not available across the whole Europe in sufficient quantity and quality to permit a detailed loss evaluation purposes, a top-down approach was chosen. This approach is based on simulating precipitation from a GCM/RCM model chain followed by a calculation of discharges using rainfall-runoff modelling. IF set up this project in a close collaboration with Karlsruhe Institute of Technology (KIT) regarding the precipitation estimates and with University of East Anglia (UEA) in terms of the rainfall-runoff modelling. KIT's main objective is to provide high resolution daily historical and stochastic time series of key meteorological variables. A purely dynamical downscaling approach with the regional climate model COSMO-CLM (CCLM) is used to generate the historical time series, using re-analysis data as boundary conditions. The resulting time series are validated against the gridded observational dataset E-OBS, and different bias-correction methods are employed. The generation of the stochastic time series requires transfer functions between large-scale atmospheric variables and regional temperature and precipitation fields. These transfer functions are developed for the historical time series using reanalysis data as predictors and bias-corrected CCLM simulated precipitation and temperature as predictands. Finally, the transfer functions are applied to a large ensemble of GCM simulations with forcing corresponding to present day climate conditions to generate highly resolved stochastic time series of precipitation and temperature for several thousand years. These time series form the input for the rainfall-runoff model developed by the UEA team. It is a spatially distributed model adapted from the HBV model and will be calibrated for individual basins using historical discharge data. The calibrated model will be driven by the precipitation time series generated by the KIT team to simulate discharges at a daily time step. The uncertainties in the simulated discharges will be analysed using multiple model parameter sets. A number of statistical methods will be used to assess return periods, changes in the magnitudes, changes in the characteristics of floods such as time base and time to peak, and spatial correlations of large flood events. The Pan-European flood stochastic event set will permit a better view of flood risk for market applications.
Rydlund, Jr., Paul H.; Otero-Benitez, William; Heimann, David C.
2008-01-01
A study was done by the U.S. Geological Survey, in cooperation with the city of Grain Valley, Jackson County, Missouri, to simulate the hydraulic characteristics of Sni-A-Bar Creek and selected tributaries within the corporate limits. The 10-, 50-, 100-, and 500-year recurrence interval streamflows were simulated to determine potential backwater effects on the Sni-A-Bar Creek main stem and to delineate flood-plain boundaries on the tributaries. The water-surface profiles through the bridge structures within the model area indicated that backwater effects from the constrictions were not substantial. The water-surface profile of Sni-A-Bar Creek generated from the one- and two-dimensional models indicated that the Gateway Western Railroad structure provided the greatest amount of contraction of flow within the modeled area. The results at the location of the upstream face of the railroad structure indicated a change in water-surface elevation from 0.2 to 0.8 foot (corresponding to simulated 10-year and 500-year flood occurrences). Results from all analyses indicated minimal backwater effects as a result of an overall minimal energy grade line slope and velocity head along Sni-A-Bar Creek. The flood plains for the 100-year recurrence interval floods on the Sni-A-Bar tributaries were mapped to show the extent of inundated areas. The updated flooding characteristics will allow city managers to contrast changes in flood risk and zoning as determined through the National Flood Insurance Program.
NASA Astrophysics Data System (ADS)
Seibert, S. P.; Skublics, D.; Ehret, U.
2014-09-01
The coordinated operation of reservoirs in large-scale river basins has great potential to improve flood mitigation. However, this requires large scale hydrological models to translate the effect of reservoir operation to downstream points of interest, in a quality sufficient for the iterative development of optimized operation strategies. And, of course, it requires reservoirs large enough to make a noticeable impact. In this paper, we present and discuss several methods dealing with these prerequisites for reservoir operation using the example of three major floods in the Bavarian Danube basin (45,000 km2) and nine reservoirs therein: We start by presenting an approach for multi-criteria evaluation of model performance during floods, including aspects of local sensitivity to simulation quality. Then we investigate the potential of joint hydrologic-2d-hydrodynamic modeling to improve model performance. Based on this, we evaluate upper limits of reservoir impact under idealized conditions (perfect knowledge of future rainfall) with two methods: Detailed simulations and statistical analysis of the reservoirs' specific retention volume. Finally, we investigate to what degree reservoir operation strategies optimized for local (downstream vicinity to the reservoir) and regional (at the Danube) points of interest are compatible. With respect to model evaluation, we found that the consideration of local sensitivities to simulation quality added valuable information not included in the other evaluation criteria (Nash-Sutcliffe efficiency and Peak timing). With respect to the second question, adding hydrodynamic models to the model chain did, contrary to our expectations, not improve simulations, despite the fact that under idealized conditions (using observed instead of simulated lateral inflow) the hydrodynamic models clearly outperformed the routing schemes of the hydrological models. Apparently, the advantages of hydrodynamic models could not be fully exploited when fed by output from hydrological models afflicted with systematic errors in volume and timing. This effect could potentially be reduced by joint calibration of the hydrological-hydrodynamic model chain. Finally, based on the combination of the simulation-based and statistical impact assessment, we identified one reservoir potentially useful for coordinated, regional flood mitigation for the Danube. While this finding is specific to our test basin, the more interesting and generally valid finding is that operation strategies optimized for local and regional flood mitigation are not necessarily mutually exclusive, sometimes they are identical, sometimes they can, due to temporal offsets, be pursued simultaneously.
Developing of operational hydro-meteorological simulating and displaying system
NASA Astrophysics Data System (ADS)
Wang, Y.; Shih, D.; Chen, C.
2010-12-01
Hydrological hazards, which often occur in conjunction with extreme precipitation events, are the most frequent type of natural disaster in Taiwan. Hence, the researchers at the Taiwan Typhoon and Flood Research Institute (TTFRI) are devoted to analyzing and gaining a better understanding of the causes and effects of natural disasters, and in particular, typhoons and floods. The long-term goal of the TTFRI is to develop a unified weather-hydrological-oceanic model suitable for simulations with local parameterizations in Taiwan. The development of a fully coupled weather-hydrology interaction model is not yet completed but some operational hydro-meteorological simulations are presented as a step in the direction of completing a full model. The predicted rainfall data from Weather Research Forecasting (WRF) are used as our meteorological forcing on watershed modeling. The hydrology and hydraulic modeling are conducted by WASH123D numerical model. And the WRF/WASH123D coupled system is applied to simulate floods during the typhoon landfall periods. The daily operational runs start at 04UTC, 10UTC, 16UTC and 22UTC, about 4 hours after data downloaded from NCEP GFS. This system will execute 72-hr weather forecasts. The simulation of WASH123D will sequentially trigger after receiving WRF rainfall data. This study presents the preliminary framework of establishing this system, and our goal is to build this earlier warning system to alert the public form dangerous. The simulation results are further display by a 3D GIS web service system. This system is established following the Open Geospatial Consortium (OGC) standardization process for GIS web service, such as Web Map Service (WMS) and Web Feature Service (WFS). The traditional 2D GIS data, such as high resolution aerial photomaps and satellite images are integrated into 3D landscape model. The simulated flooding and inundation area can be dynamically mapped on Wed 3D world. The final goal of this system is to real-time forecast flood and the results can be visually displayed on the virtual catchment. The policymaker can easily and real-time gain visual information for decision making at any site through internet.
An at-site flood estimation method in the context of nonstationarity I. A simulation study
NASA Astrophysics Data System (ADS)
Gado, Tamer A.; Nguyen, Van-Thanh-Van
2016-04-01
The stationarity of annual flood peak records is the traditional assumption of flood frequency analysis. In some cases, however, as a result of land-use and/or climate change, this assumption is no longer valid. Therefore, new statistical models are needed to capture dynamically the change of probability density functions over time, in order to obtain reliable flood estimation. In this study, an innovative method for nonstationary flood frequency analysis was presented. Here, the new method is based on detrending the flood series and applying the L-moments along with the GEV distribution to the transformed ;stationary; series (hereafter, this is called the LM-NS). The LM-NS method was assessed through a comparative study with the maximum likelihood (ML) method for the nonstationary GEV model, as well as with the stationary (S) GEV model. The comparative study, based on Monte Carlo simulations, was carried out for three nonstationary GEV models: a linear dependence of the mean on time (GEV1), a quadratic dependence of the mean on time (GEV2), and linear dependence in both the mean and log standard deviation on time (GEV11). The simulation results indicated that the LM-NS method performs better than the ML method for most of the cases studied, whereas the stationary method provides the least accurate results. An additional advantage of the LM-NS method is to avoid the numerical problems (e.g., convergence problems) that may occur with the ML method when estimating parameters for small data samples.
NASA Astrophysics Data System (ADS)
Akbari, A.; Abu Samah, A.; Othman, F.
2012-04-01
Due to land use and climate changes, more severe and frequent floods occur worldwide. Flood simulation as the first step in flood risk management can be robustly conducted with integration of GIS, RS and flood modeling tools. The primary goal of this research is to examine the practical use of public domain satellite data and GIS-based hydrologic model. Firstly, database development process is described. GIS tools and techniques were used in the light of relevant literature to achieve the appropriate database. Watershed delineation and parameterizations were carried out using cartographic DEM derived from digital topography at a scale of 1:25 000 with 30 m cell size and SRTM elevation data at 30 m cell size. The SRTM elevation dataset is evaluated and compared with cartographic DEM. With the assistance of statistical measures such as Correlation coefficient (r), Nash-Sutcliffe efficiency (NSE), Percent Bias (PBias) or Percent of Error (PE). According to NSE index, SRTM-DEM can be used for watershed delineation and parameterization with 87% similarity with Topo-DEM in a complex and underdeveloped terrains. Primary TRMM (V6) data was used as satellite based hytograph for rainfall-runoff simulation. The SCS-CN approach was used for losses and kinematic routing method employed for hydrograph transformation through the reaches. It is concluded that TRMM estimates do not give adequate information about the storms as it can be drawn from the rain gauges. Event-based flood modeling using HEC-HMS proved that SRTM elevation dataset has the ability to obviate the lack of terrain data for hydrologic modeling where appropriate data for terrain modeling and simulation of hydrological processes is unavailable. However, TRMM precipitation estimates failed to explain the behavior of rainfall events and its resultant peak discharge and time of peak.
A new concept to study the effect of climate change on different flood types
NASA Astrophysics Data System (ADS)
Nissen, Katrin; Nied, Manuela; Pardowitz, Tobias; Ulbrich, Uwe; Merz, Bruno
2014-05-01
Flooding is triggered by the interaction of various processes. Especially important are the hydrological conditions prior to the event (e.g. soil saturation, snow cover) and the meteorological conditions during flood development (e.g. rainfall, temperature). Depending on these (pre-) conditions different flood types may develop such as long-rain floods, short-rain floods, flash floods, snowmelt floods and rain-on-snow floods. A new concept taking these factors into account is introduced and applied to flooding in the Elbe River basin. During the period September 1957 to August 2002, 82 flood events are identified and classified according to their flood type. The hydrological and meteorological conditions at each day during the analysis period are detemined. In case of the hydrological conditions, a soil moisture pattern classification is carried out. Soil moisture is simulated with a rainfall-runoff model driven by atmospheric observations. Days of similar soil moisture patterns are identified by a principle component analysis and a subsequent cluster analysis on the leading principal components. The meteorological conditions are identified by applying a cluster analysis to the geopotential height, temperature and humidity fields of the ERA40 reanalysis data set using the SANDRA cluster algorithm. We are able to identify specific pattern combinations of hydrological pre-conditions and meteorological conditions which favour different flood types. Based on these results it is possible to analyse the effect of climate change on different flood types. As an example we show first results obtained using an ensemble of climate scenario simulations of ECHAM5 MPIOM model, taking only the changes in the meteorological conditions into account. According to the simulations, the frequency of the meteorological patterns favouring long-rain, short-rain and flash floods will not change significantly under future climate conditions. A significant increase is, however, predicted for the amount of precipitation associated with many of the relevant meteorological patterns. The increase varies between 12 and 67% depending on the weather pattern.
George, D.L.
2011-01-01
The simulation of advancing flood waves over rugged topography, by solving the shallow-water equations with well-balanced high-resolution finite volume methods and block-structured dynamic adaptive mesh refinement (AMR), is described and validated in this paper. The efficiency of block-structured AMR makes large-scale problems tractable, and allows the use of accurate and stable methods developed for solving general hyperbolic problems on quadrilateral grids. Features indicative of flooding in rugged terrain, such as advancing wet-dry fronts and non-stationary steady states due to balanced source terms from variable topography, present unique challenges and require modifications such as special Riemann solvers. A well-balanced Riemann solver for inundation and general (non-stationary) flow over topography is tested in this context. The difficulties of modeling floods in rugged terrain, and the rationale for and efficacy of using AMR and well-balanced methods, are presented. The algorithms are validated by simulating the Malpasset dam-break flood (France, 1959), which has served as a benchmark problem previously. Historical field data, laboratory model data and other numerical simulation results (computed on static fitted meshes) are shown for comparison. The methods are implemented in GEOCLAW, a subset of the open-source CLAWPACK software. All the software is freely available at. Published in 2010 by John Wiley & Sons, Ltd.
Modelling and scale-up of chemical flooding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.A.; Lake, L.W.; Sepehrnoori, K.
1990-03-01
The objective of this research is to develop, validate, and apply a comprehensive chemical flooding simulator for chemical recovery processes involving surfactants, polymers, and alkaline chemicals in various combinations. This integrated program includes components of laboratory experiments, physical property modelling, scale-up theory, and numerical analysis as necessary and integral components of the simulation activity. We have continued to develop, test, and apply our chemical flooding simulator (UTCHEM) to a wide variety of laboratory and reservoir problems involving tracers, polymers, polymer gels, surfactants, and alkaline agents. Part I is an update on the Application of Higher-Order Methods in Chemical Flooding Simulation.more » This update focuses on the comparison of grid orientation effects for four different numerical methods implemented in UTCHEM. Part II is on Simulation Design Studies and is a continuation of Saad's Big Muddy surfactant pilot simulation study reported last year. Part III reports on the Simulation of Gravity Effects under conditions similar to those of some of the oil reservoirs in the North Sea. Part IV is on Determining Oil Saturation from Interwell Tracers UTCHEM is used for large-scale interwell tracer tests. A systematic procedure for estimating oil saturation from interwell tracer data is developed and a specific example based on the actual field data provided by Sun E P Co. is given. Part V reports on the Application of Vectorization and Microtasking for Reservoir Simulation. Part VI reports on Alkaline Simulation. The alkaline/surfactant/polymer flood compositional simulator (UTCHEM) reported last year is further extended to include reactions involving chemical species containing magnesium, aluminium and silicon as constituent elements. Part VII reports on permeability and trapping of microemulsion.« less
NASA Astrophysics Data System (ADS)
Ng, Z. F.; Gisen, J. I.; Akbari, A.
2018-03-01
Topography dataset is an important input in performing flood inundation modelling. However, it is always difficult to obtain high resolution topography that provide accurate elevation information. Fortunately, there are some open source topography datasets available with reasonable resolution such as SRTM and ASTER-GDEM. In Malaysia particularly in Kuantan, the modelling research on the floodplain area is still lacking. This research aims to: a) to investigate the suitability of ASTER-GDEM to be applied in the 1D-2D flood inundation modelling for the Kuantan River Basin; b) to generate flood inundation map for Kuantan river basin. The topography dataset used in this study is ASTER-GDEM to generate physical characteristics of watershed in the basin. It is used to perform rainfall runoff modelling for hydrological studies and to delineate flood inundation area in the Flood Modeller. The results obtained have shown that a 30m resolution ASTER-GDEM is applicable as an input for the 1D-2D flood modelling. The simulated water level in 2013 has NSE of 0.644 and RSME of 1.259. As a conclusion, ASTER-GDEM can be used as one alternative topography datasets for flood inundation modelling. However, the flood level obtained from the hydraulic modelling shows low accuracy at flat urban areas.
Witt, Emitt C.
2015-01-01
Growing use of two-dimensional (2-D) hydraulic models has created a need for high resolution data to support flood volume estimates, floodplain specific engineering data, and accurate flood inundation scenarios. Elevation data are a critical input to these models that guide the flood-wave across the landscape allowing the computation of valuable engineering specific data that provides a better understanding of flooding impacts on structures, debris movement, bed scour, and direction. High resolution elevation data are becoming publicly available that can benefit the 2-D flood modeling community. Comparison of these newly available data with legacy data suggests that better modeling outcomes are achieved by using 3D Elevation Program (3DEP) lidar point data and the derived 1 m Digital Elevation Model (DEM) product relative to the legacy 3 m, 10 m, or 30 m products currently available in the U.S. Geological Survey (USGS) National Elevation Dataset. Within the low topographic relief of a coastal floodplain, the newer 3DEP data better resolved elevations within the forested and swampy areas achieving simulations that compared well with a historic flooding event. Results show that the 1 m DEM derived from 3DEP lidar source provides a more conservative estimate of specific energy, static pressure, and impact pressure for grid elements at maximum flow relative to the legacy DEM data. Better flood simulations are critically important in coastal floodplains where climate change driven storm frequency and sea level rise will contribute to more frequent flooding events.
Simulating a 40-year flood event climatology of Australia with a view to ocean-land teleconnections
NASA Astrophysics Data System (ADS)
Schumann, Guy J.-P.; Andreadis, Konstantinos; Stampoulis, Dimitrios; Bates, Paul
2015-04-01
We develop, for the first time, a proof-of-concept version for a high-resolution global flood inundation model to generate a flood inundation climatology of the past 40 years (1973-2012) for the entire Australian continent at a native 1 km resolution. The objectives of our study includes (1) deriving an inundation climatology for a continent (Australia) as a demonstrator case to understand the requirements for expanding globally; (2) developing a test bed to assess the potential and value of current and future satellite missions (GRACE, SMAP, ICESat-2, AMSR-2, Sentinels and SWOT) in flood monitoring; and (3) answering science questions such as the linking of inundation to ocean circulation teleconnections. We employ the LISFLOOD-FP hydrodynamic model to generate a flood inundation climatology. The model will be built from freely available SRTM-derived data (channel widths, bank heights and floodplain topography corrected for vegetation canopy using ICESat canopy heights). Lakes and reservoirs are represented and channel hydraulics are resolved using actual channel data with bathymetry inferred from hydraulic geometry. Simulations are run with gauged flows and floodplain inundation climatology are compared to observations from GRACE, flood maps from Landsat, SAR, and MODIS. Simulations have been completed for the entire Australian continent. Additionally, changes in flood inundation have been correlated with indices related to global ocean circulation, such as the El Niño Southern Oscillation index. We will produce data layers on flood event climatology and other derived (default) products from the proposed model including channel and floodplain depths, flow direction, velocity vectors, floodplain water volume, shoreline extent and flooded area. These data layers will be in the form of simple vector and raster formats. Since outputs will be large in size we propose to upload them onto Google Earth under the GEE API license.
Streamflow simulation studies of the Hillsborough, Alafia, and Anclote Rivers, west-central Florida
Turner, J.F.
1979-01-01
A modified version of the Georgia Tech Watershed Model was applied for the purpose of flow simulation in three large river basins of west-central Florida. Calibrations were evaluated by comparing the following synthesized and observed data: annual hydrographs for the 1959, 1960, 1973 and 1974 water years, flood hydrographs (maximum daily discharge and flood volume), and long-term annual flood-peak discharges (1950-72). Annual hydrographs, excluding the 1973 water year, were compared using average absolute error in annual runoff and daily flows and correlation coefficients of monthly and daily flows. Correlations coefficients for simulated and observed maximum daily discharges and flood volumes used for calibrating range from 0.91 to 0.98 and average standard errors of estimate range from 18 to 45 percent. Correlation coefficients for simulated and observed annual flood-peak discharges range from 0.60 to 0.74 and average standard errors of estimate range from 33 to 44 percent. (Woodard-USGS)
Numerical simulation of field scale cosolvent flooding for LNAPL remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roeder, E.; Brame, S.E.; Falta, R.W.
1995-12-31
This paper describes a modeling study which will support remediation of contaminated soils at Hill Air Force Base in Utah. The site is contaminated with a mixture of solvents, jet fuel, and other organic substances which form a separate phase of low density on top of the water table. A test cell within the contaminant zone will be flooded with a cosolvent/water mixture to drive the nonaqueous phase liquids (NAPLs) out. The modeling study is designed to deterine if buoyancy of the flooding solution will cause it to float on top, if heterogeneity of the ground will channel the cosolventmore » around pockets of NAPL, and the sensitivity of the predicted remediation effectiveness to the uncertainty in ternary information. The modeling effort will use UTCHEM, a 3-dimensional finite-difference flooding simulator which solves mass balance equations for up to 21 components in up to 4 phases.« less
NASA Astrophysics Data System (ADS)
Green, Daniel; Pattison, Ian; Yu, Dapeng
2017-04-01
Surface water (pluvial) flooding occurs when excess rainfall from intense precipitation events is unable to infiltrate into the subsurface or drain via natural or artificial drainage channels. Surface water flood events pose a major hazard to urban regions across the world, with nearly two thirds of flood damages in the UK being caused by surface water flood events. The perceived risk of surface water flooding appears to have increased in recent years due to several factors, including (i) precipitation increases associated with climatic change and variability; (ii) population growth meaning more people are occupying flood risk areas, and; (iii) land-use changes. Because urban areas are often associated with a high proportion of impermeable land-uses (e.g. tarmacked or paved surfaces and buildings) and a reduced coverage of vegetated, permeable surfaces, urban surface water flood risk during high intensity precipitation events is often exacerbated. To investigate the influence of urbanisation and terrestrial factors on surface water flood outputs, rainfall intensity, catchment slope, permeability, building density/layout scenarios were designed within a novel, 9m2 physical modelling environment. The two-tiered physical model used consists of (i) a low-cost, nozzle-type rainfall simulator component which is able to simulate consistent, uniformly distributed rainfall events of varying duration and intensity, and; (ii) a reconfigurable, modular plot surface. All experiments within the physical modelling environment were subjected to a spatiotemporally uniform 45-minute simulated rainfall event, while terrestrial factors on the physical model plot surface were altered systematically to investigate their hydrological response on modelled outflow and depth profiles. Results from the closed, controlled physical modelling experiments suggest that meteorological factors, such as the duration and intensity of simulated rainfall, and terrestrial factors, such as model slope, surface permeability and building density have a significant influence on physical model hydrological outputs. For example, changes in building density across the urban model catchment are shown to result in hydrographs having (i) a more rapid rising limb; (ii) higher peak discharges; (iii) a reduction in the total hydrograph time, and; (iv) a faster falling limb, with the dense building scenario having a 22% increase in peak discharge when compared to the no building scenario. Furthermore, the layout of buildings across the plot surface and their proximity to the outflow unit (i.e. downstream, upstream or to the side of the physical model outlet) is shown to influence outflow hydrograph response, with downstream concentrated building scenarios resulting in a delay in hydrograph onset time and a reduction in the time of the total outflow hydrograph event.
Mesh versus bathtub - effects of flood models on exposure analysis in Switzerland
NASA Astrophysics Data System (ADS)
Röthlisberger, Veronika; Zischg, Andreas; Keiler, Margreth
2016-04-01
In Switzerland, mainly two types of maps that indicate potential flood zones are available for flood exposure analyses: 1) Aquaprotect, a nationwide overview provided by the Federal Office for the Environment and 2) communal flood hazard maps available from the 26 cantons. The model used to produce Aquaprotect can be described as a bathtub approach or linear superposition method with three main parameters, namely the horizontal and vertical distance of a point to water features and the size of the river sub-basin. Whereas the determination of flood zones in Aquaprotect is based on a uniform, nationwide model, the communal flood hazard maps are less homogenous, as they have been elaborated either at communal or cantonal levels. Yet their basic content (i.e. indication of potential flood zones for three recurrence periods, with differentiation of at least three inundation depths) is described in national directives and the vast majority of communal flood hazard maps are based on 2D inundation simulations using meshes. Apart from the methodical differences between Aquaprotect and the communal flood hazard maps (and among different communal flood hazard maps), all of these maps include a layer with a similar recurrence period (i.e. Aquaprotect 250 years, flood hazard maps 300 years) beyond the intended protection level of installed structural systems. In our study, we compare the resulting exposure by overlaying the two types of flood maps with a complete, harmonized, and nationwide dataset of building polygons. We assess the different exposure at the national level, and also consider differences among the 26 cantons and the six biogeographically unique regions, respectively. It was observed that while the nationwide exposure rates for both types of flood maps are similar, the differences within certain cantons and biogeographical regions are remarkable. We conclude that flood maps based on bathtub models are appropriate for assessments at national levels, while maps based on 2D simulations are preferable at sub-national levels.
A 3-D SPH model for simulating water flooding of a damaged floating structure
NASA Astrophysics Data System (ADS)
Guo, Kai; Sun, Peng-nan; Cao, Xue-yan; Huang, Xiao
2017-10-01
With the quasi-static analysis method, the terminal floating state of a damaged ship is usually evaluated for the risk assessment. But this is not enough since the ship has the possibility to lose its stability during the transient flooding process. Therefore, an enhanced smoothed particle hydrodynamics (SPH) model is applied in this paper to investigate the response of a simplified cabin model under the condition of the transient water flooding. The enhanced SPH model is presented firstly including the governing equations, the diffusive terms, the boundary implementations and then an algorithm regarding the coupling motions of six degrees of freedom (6-DOF) between the structure and the fluid is described. In the numerical results, a non-damaged cabin floating under the rest condition is simulated. It is shown that a stable floating state can be reached and maintained by using the present SPH scheme. After that, three-dimensional (3-D) test cases of the damaged cabin with a hole at different locations are simulated. A series of model tests are also carried out for the validation. Fairly good agreements are achieved between the numerical results and the experimental data. Relevant conclusions are drawn with respect to the mechanism of the responses of the damaged cabin model under water flooding conditions.
Multivariate flood risk assessment: reinsurance perspective
NASA Astrophysics Data System (ADS)
Ghizzoni, Tatiana; Ellenrieder, Tobias
2013-04-01
For insurance and re-insurance purposes the knowledge of the spatial characteristics of fluvial flooding is fundamental. The probability of simultaneous flooding at different locations during one event and the associated severity and losses have to be estimated in order to assess premiums and for accumulation control (Probable Maximum Losses calculation). Therefore, the identification of a statistical model able to describe the multivariate joint distribution of flood events in multiple location is necessary. In this context, copulas can be viewed as alternative tools for dealing with multivariate simulations as they allow to formalize dependence structures of random vectors. An application of copula function for flood scenario generation is presented for Australia (Queensland, New South Wales and Victoria) where 100.000 possible flood scenarios covering approximately 15.000 years were simulated.
User's guide for a general purpose dam-break flood simulation model (K-634)
Land, Larry F.
1981-01-01
An existing computer program for simulating dam-break floods for forecast purposes has been modified with an emphasis on general purpose applications. The original model was formulated, developed and documented by the National Weather Service. This model is based on the complete flow equations and uses a nonlinear implicit finite-difference numerical method. The first phase of the simulation routes a flood wave through the reservoir and computes an outflow hydrograph which is the sum of the flow through the dam 's structures and the gradually developing breach. The second phase routes this outflow hydrograph through the stream which may be nonprismatic and have segments with subcritical or supercritical flow. The results are discharge and stage hydrographs at the dam as well as all of the computational nodes in the channel. From these hydrographs, peak discharge and stage profiles are tabulated. (USGS)
Two-Dimensional Flood-Inundation Model of the Flint River at Albany, Georgia
Musser, Jonathan W.; Dyar, Thomas R.
2007-01-01
Potential flow characteristics of future flooding along a 4.8-mile reach of the Flint River in Albany, Georgia, were simulated using recent digital-elevation-model data and the U.S. Geological Survey finite-element surface-water modeling system for two-dimensional flow in the horizontal plane (FESWMS-2DH). Simulated inundated areas, in 1-foot (ft) increments, were created for water-surface altitudes at the Flint River at Albany streamgage (02352500) from 192.5-ft altitude with a flow of 123,000 cubic feet per second (ft3/s) to 179.5-ft altitude with a flow of 52,500 ft3/s. The model was calibrated to match actual floods during July 1994 and March 2005 and Federal Emergency Management Administration floodplain maps. Continuity checks of selected stream profiles indicate the area near the Oakridge Drive bridge had lower velocities than other areas of the Flint River, which contributed to a rise in the flood-surface profile. The modeled inundated areas were mapped onto monochrome orthophoto imagery for use in planning for future floods. As part of a cooperative effort, the U.S. Geological Survey, the City of Albany, and Dougherty County, Georgia, conducted this study.
On the performance of satellite precipitation products in riverine flood modeling: A review
NASA Astrophysics Data System (ADS)
Maggioni, Viviana; Massari, Christian
2018-03-01
This work is meant to summarize lessons learned on using satellite precipitation products for riverine flood modeling and to propose future directions in this field of research. Firstly, the most common satellite precipitation products (SPPs) during the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM) eras are reviewed. Secondly, we discuss the main errors and uncertainty sources in these datasets that have the potential to affect streamflow and runoff model simulations. Thirdly, past studies that focused on using SPPs for predicting streamflow and runoff are analyzed. As the impact of floods depends not only on the characteristics of the flood itself, but also on the characteristics of the region (population density, land use, geophysical and climatic factors), a regional analysis is required to assess the performance of hydrologic models in monitoring and predicting floods. The performance of SPP-forced hydrological models was shown to largely depend on several factors, including precipitation type, seasonality, hydrological model formulation, topography. Across several basins around the world, the bias in SPPs was recognized as a major issue and bias correction methods of different complexity were shown to significantly reduce streamflow errors. Model re-calibration was also raised as a viable option to improve SPP-forced streamflow simulations, but caution is necessary when recalibrating models with SPP, which may result in unrealistic parameter values. From a general standpoint, there is significant potential for using satellite observations in flood forecasting, but the performance of SPP in hydrological modeling is still inadequate for operational purposes.
NASA Astrophysics Data System (ADS)
Li, Jiqing; Huang, Jing; Li, Jianchang
2018-06-01
The time-varying design flood can make full use of the measured data, which can provide the reservoir with the basis of both flood control and operation scheduling. This paper adopts peak over threshold method for flood sampling in unit periods and Poisson process with time-dependent parameters model for simulation of reservoirs time-varying design flood. Considering the relationship between the model parameters and hypothesis, this paper presents the over-threshold intensity, the fitting degree of Poisson distribution and the design flood parameters are the time-varying design flood unit period and threshold discriminant basis, deduced Longyangxia reservoir time-varying design flood process at 9 kinds of design frequencies. The time-varying design flood of inflow is closer to the reservoir actual inflow conditions, which can be used to adjust the operating water level in flood season and make plans for resource utilization of flood in the basin.
Flood-inundation maps for the St. Marys River at Fort Wayne, Indiana
Menke, Chad D.; Kim, Moon H.; Fowler, Kathleen K.
2012-01-01
Digital flood-inundation maps for a 9-mile reach of the St. Marys River that extends from South Anthony Boulevard to Main Street at Fort Wayne, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Fort Wayne. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at the USGS streamgage 04182000 St. Marys River near Fort Wayne, Ind. Current conditions at the USGS streamgages in Indiana may be obtained from the National Water Information System: Web Interface. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system. The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, water-surface profiles were simulated for the stream reach by means of a hydraulic one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relation at the USGS streamgage 04182000 St. Marys River near Fort Wayne, Ind. The hydraulic model was then used to simulate 11 water-surface profiles for flood stages at 1-ft intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. A flood inundation map was generated for each water-surface profile stage (11 maps in all) so that for any given flood stage users will be able to view the estimated area of inundation. The availability of these maps along with current stage from USGS streamgages and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post flood recovery efforts.
Catchment scale afforestation for mitigating flooding
NASA Astrophysics Data System (ADS)
Barnes, Mhari; Quinn, Paul; Bathurst, James; Birkinshaw, Stephen
2016-04-01
After the 2013-14 floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. At present, 1 in 6 homes in Britain are at risk of flooding and current EU legislation demands a sustainable, 'nature-based solution'. However, the role of forests as a natural flood management technique remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. SHETRAN, physically-based spatially-distributed hydrological models of the Irthing catchment and Wark forest sub-catchments (northern England) have been developed in order to test the hypothesis of the effect trees have on flood magnitude. The advanced physically-based models have been designed to model scale-related responses from 1, through 10, to 100km2, a first study of the extent to which afforestation and woody debris runoff attenuation features (RAFs) may help to mitigate floods at the full catchment scale (100-1000 km2) and on a national basis. Furthermore, there is a need to analyse the extent to which land management practices, and the installation of nature-based RAFs, such as woody debris dams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. The impacts of riparian planting and the benefits of adding large woody debris of several designs and on differing sizes of channels has also been simulated using advanced hydrodynamic (HiPIMS) and hydrological modelling (SHETRAN). With the aim of determining the effect forestry may have on flood frequency, 1000 years of generated rainfall data representative of current conditions has been used to determine the difference between current land-cover, different distributions of forest cover and the defining scenarios - complete forest removal and complete afforestation of the catchment. The simulations show the percentage of forestry required to have a significant impact on mitigating downstream flood risk at sub-catchment and catchment scale. Key words: Flood peak, nature-based solutions, forest hydrology, hydrological modelling, SHETRAN, flood frequency, flood magnitude, land-cover change, upland afforestation.
Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.; ...
2016-02-12
Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Modelmore » simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO 2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe +2 and S -2 oxidation) to match locally-observed high CO 2 concentrations above reduced zones. Observed seasonal variations in CO 2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m -2 d -1, while including water table variations resulted in an overall decrease in the simulated fluxes. We thus conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.
2016-02-01
Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Modelmore » simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe?2 and S-2 oxidation) to match locally-observed high CO2 concentrations above reduced zones. Observed seasonal variations in CO2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m-2 d-1, while including water table variations resulted in an overall decrease in the simulated fluxes. We conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.« less
Analysis of flood hazard under consideration of dike breaches
NASA Astrophysics Data System (ADS)
Vorogushyn, S.; Apel, H.; Lindenschmidt, K.-E.; Merz, B.
2009-04-01
The study focuses on the development and application of a new modelling system which allows a comprehensive flood hazard assessment along diked river reaches under consideration of dike failures. The proposed Inundation Hazard Assessment Model (IHAM) represents a hybrid probabilistic-deterministic model. It comprises three models interactively coupled at runtime. These are: (1) 1D unsteady hydrodynamic model of river channel and floodplain flow between dikes, (2) probabilistic dike breach model which determines possible dike breach locations, breach widths and breach outflow discharges, and (3) 2D raster-based diffusion wave storage cell model of the hinterland areas behind the dikes. Due to the unsteady nature of the 1D and 2D coupled models, the dependence between hydraulic load at various locations along the reach is explicitly considered. The probabilistic dike breach model describes dike failures due to three failure mechanisms: overtopping, piping and slope instability caused by the seepage flow through the dike core (micro-instability). Dike failures for each mechanism are simulated based on fragility functions. The probability of breach is conditioned by the uncertainty in geometrical and geotechnical dike parameters. The 2D storage cell model driven by the breach outflow boundary conditions computes an extended spectrum of flood intensity indicators such as water depth, flow velocity, impulse, inundation duration and rate of water rise. IHAM is embedded in a Monte Carlo simulation in order to account for the natural variability of the flood generation processes reflected in the form of input hydrographs and for the randomness of dike failures given by breach locations, times and widths. The scenario calculations for the developed synthetic input hydrographs for the main river and tributary were carried out for floods with return periods of T = 100; 200; 500; 1000 a. Based on the modelling results, probabilistic dike hazard maps could be generated that indicate the failure probability of each discretised dike section for every scenario magnitude. Besides the binary inundation patterns that indicate the probability of raster cells being inundated, IHAM generates probabilistic flood hazard maps. These maps display spatial patterns of the considered flood intensity indicators and their associated return periods. The probabilistic nature of IHAM allows for the generation of percentile flood hazard maps that indicate the median and uncertainty bounds of the flood intensity indicators. The uncertainty results from the natural variability of the flow hydrographs and randomness of dike breach processes. The same uncertainty sources determine the uncertainty in the flow hydrographs along the study reach. The simulations showed that the dike breach stochasticity has an increasing impact on hydrograph uncertainty in downstream direction. Whereas in the upstream part of the reach the hydrograph uncertainty is mainly stipulated by the variability of the flood wave form, the dike failures strongly shape the uncertainty boundaries in the downstream part of the reach. Finally, scenarios of polder deployment for the extreme floods with T = 200; 500; 1000 a were simulated with IHAM. The results indicate a rather weak reduction of the mean and median flow hydrographs in the river channel. However, the capping of the flow peaks resulted in a considerable reduction of the overtopping failures downstream of the polder with a simultaneous slight increase of the piping and slope micro-instability frequencies explained by a more durable average impoundment. The developed IHAM simulation system represents a new scientific tool for studying fluvial inundation dynamics under extreme conditions incorporating effects of technical flood protection measures. With its major outputs in form of novel probabilistic inundation and dike hazard maps, the IHAM system has a high practical value for decision support in flood management.
A new modelling framework and mitigation measures for increased resilience to flooding
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Alexakis, Athanasios; Solley, Mark
2015-04-01
Flooding in rivers and estuaries is amongst the most significant challenges our society has yet to tackle effectively. Use of floodwall systems is one of the potential measures that can be used to mitigate the detrimental socio-economical and ecological impacts and alleviate the associated costs of flooding. This work demonstrates the utility of such systems for a case study via appropriate numerical simulations, in addition to conducting scaled flume experiments towards obtaining a better understanding of the performance and efficiency of the flood-wall systems. At first, the results of several characteristic inundation modeling scenarios and flood mitigation options, for a flood-prone region in Scotland. In particular, the history and hydrology of the area are discussed and the assumptions and hydraulic model input (model geometry including instream hydraulic structures -such as bridges and weirs- river and floodplain roughness, initial and boundary conditions) are presented, followed by the model results. Emphasis is given on the potential improvements brought about by mitigating flood risk using flood-wall systems. Further, the implementation of the floodwall in mitigating flood risk is demonstrated via appropriate numerical modeling, utilizing HEC-RAS to simulate the effect of a river's rising stage during a flood event, for a specific area. The later part of this work involves the design, building and utilization of a scaled physical model of a flood-wall system. These experiments are carried out at one of the research flumes in the Water Engineering laboratory of the University of Glasgow. These involve an experimental investigation where the increase of force applied on the floodwall is measured for different degrees of deflection of the water in the stream, under the maximum flow discharge that can be carried through without exceeding the floodwall height (and accounting for the effect of super-elevation). These results can be considered upon the implementation phase of floodwalls, when the floodwalls are placed at any arrangement other than parallel to the flow (e.g. along river bends in meandering channels or at river junctions). Such considerations can lead to site-specific optimal designs of direct flood defenses with the rising floodwall system, both in terms of product performance as well as cost efficiency.
Influence of climate change on flood magnitude and seasonality in the Arga River catchment in Spain
NASA Astrophysics Data System (ADS)
Garijo, Carlos; Mediero, Luis
2018-04-01
Climate change projections suggest that extremes, such as floods, will modify their behaviour in the future. Detailed catchment-scale studies are needed to implement the European Union Floods Directive and give recommendations for flood management and design of hydraulic infrastructure. In this study, a methodology to quantify changes in future flood magnitude and seasonality due to climate change at a catchment scale is proposed. Projections of 24 global climate models are used, with 10 being downscaled by the Spanish Meteorological Agency (Agencia Estatal de Meteorología, AEMET) and 14 from the EURO-CORDEX project, under two representative concentration pathways (RCPs) 4.5 and 8.5, from the Fifth Assessment Report provided by the Intergovernmental Panel on Climate Change. Downscaled climate models provided by the AEMET were corrected in terms of bias. The HBV rainfall-runoff model was selected to simulate the catchment hydrological behaviour. Simulations were analysed through both annual maximum and peaks-over-threshold (POT) series. The results show a decrease in the magnitude of extreme floods for the climate model projections downscaled by the AEMET. However, results for the climate model projections downscaled by EURO-CORDEX show differing trends, depending on the RCP. A small decrease in the flood magnitude was noticed for the RCP 4.5, while an increase was found for the RCP 8.5. Regarding the monthly seasonality analysis performed by using the POT series, a delay in the flood timing from late-autumn to late-winter is identified supporting the findings of recent studies performed with observed data in recent decades.
NASA Astrophysics Data System (ADS)
Khuat Duy, B.; Archambeau, P.; Dewals, B. J.; Erpicum, S.; Pirotton, M.
2009-04-01
Following recurrent inundation problems on the Berwinne catchment, in Belgium, a combined hydrologic and hydrodynamic study has been carried out in order to find adequate solutions for the floods mitigation. Thanks to detailed 2D simulations, the effectiveness of the solutions can be assessed not only in terms of discharge and height reductions in the river, but also with other aspects such as the inundated surfaces reduction and the decrease of inundated buildings and roads. The study is carried out in successive phases. First, the hydrological runoffs are generated using a physically based and spatially distributed multi-layer model solving depth-integrated equations for overland flow, subsurface flow and baseflow. Real floods events are simulated using rainfall series collected at 8 stations (over 20 years of available data). The hydrological inputs are routed through the river network (and through the sewage network if relevant) with the 1D component of the modelling system, which solves the Saint-Venant equations for both free-surface and pressurized flows in a unified way. On the main part of the river, the measured river cross-sections are included in the modelling, and existing structures along the river (such as bridges, sluices or pipes) are modelled explicitely with specific cross sections. Two gauging stations with over 15 years of continuous measurements allow the calibration of both the hydrologic and hydrodynamic models. Second, the flood mitigation solutions are tested in the simulations in the case of an extreme flooding event, and their effects are assessed using detailed 2D simulations on a few selected sensitive areas. The digital elevation model comes from an airborne laser survey with a spatial resolution of 1 point per square metre and is completed in the river bed with a bathymetry interpolated from cross-section data. The upstream discharge is extracted from the 1D simulation for the selected rainfall event. The study carried out with this methodology allowed to assess the suggested solutions with multiple effectiveness criteria and therefore constitutes a very useful support for decision makers.
NASA Astrophysics Data System (ADS)
Baish, A. S.; Vivoni, E. R.; Payan, J. G.; Robles-Morua, A.; Basile, G. M.
2011-12-01
A distributed hydrologic model can help bring consensus among diverse stakeholders in regional flood planning by producing quantifiable sets of alternative futures. This value is acute in areas with high uncertainties in hydrologic conditions and sparse observations. In this study, we conduct an application of the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS) in the Santa Catarina basin of Nuevo Leon, Mexico, where Hurricane Alex in July 2010 led to catastrophic flooding of the capital city of Monterrey. Distributed model simulations utilize best-available information on the regional topography, land cover, and soils obtained from Mexican government agencies or analysis of remotely-sensed imagery from MODIS and ASTER. Furthermore, we developed meteorological forcing for the flood event based on multiple data sources, including three local gauge networks, satellite-based estimates from TRMM and PERSIANN, and the North American Land Data Assimilation System (NLDAS). Remotely-sensed data allowed us to quantify rainfall distributions in the upland, rural portions of the Santa Catarina that are sparsely populated and ungauged. Rural areas had significant contributions to the flood event and as a result were considered by stakeholders for flood control measures, including new reservoirs and upland vegetation management. Participatory modeling workshops with the stakeholders revealed a disconnect between urban and rural populations in regard to understanding the hydrologic conditions of the flood event and the effectiveness of existing and potential flood control measures. Despite these challenges, the use of the distributed flood forecasts developed within this participatory framework facilitated building consensus among diverse stakeholders and exploring alternative futures in the basin.
NASA Astrophysics Data System (ADS)
Pestana, Rita; Matias, Magda; Canelas, Ricardo; Roque, Dora; Araujo, Amelia; Van Zeller, Emilia; Trigo-Teixeira, Antonio; Ferreira, Rui; Oliveira, Rodrigo; Heleno, Sandra; Falcão, Ana Paula; Gonçalves, Alexandre B.
2014-05-01
Floods account for 40% of all natural hazards worldwide and were responsible for the loss of about 100 thousand human lives and affected more than 1,4 million people in the last decade of the 20th century alone. Floods have been the deadliest natural hazard in Portugal in the last 100 years. In terms of inundated area, the largest floods in Portugal occur in the Lower Tagus (LT) River. On average, the river overflows every 2.5 years, at times blocking roads and causing important agricultural damages. The economical relevance of the area and the high frequency of the relevant flood events make the LT floodplain a good pilot region to conduct a data-driven, systematic calibration work of flood hydraulic models. This paper focus on the calibration of 2D-horizontal flood simulation models for the floods of 1997, 2001 and 2006 on a 70-km stretch of the LT River, between Tramagal and Omnias, using the software Tuflow. This computational engine provides 2D solutions based on the Stelling finite-difference, alternating direction implicit (ADI) scheme that solves the full 2D free surface shallow-water flow equations and allowed the introduction of structures that constrain water flow. The models were based on a digital terrain model (DTM) acquired in 2008 by radar techniques (5m of spatial resolution) and on in situ measurements of water elevation in Omnias (downstream boundary condition) and discharge in Tramagal and Zezere (upstream boundary conditions). Due to the relevancy of several dykes on this stretch of the LT River, non-existent on the available DTM, five of them were introduced in the models. All models have the same boundaries and were simulated using steady-state flow initial conditions. The resolution of the 2D grid mesh was 30m. Land cover data for the study area was retrieved from Corine Land Cover 2006 (CO-ordination of INformation on the Environment) with spatial resolution of 100m, and combined with estimated manning coefficients obtained in literature for the different land cover classes. Flood extent maps, derived from satellite-born Synthetic Aperture Radar (SAR), namely ERS SAR and ENVISAT ASAR imagery, provided the spatially distributed data needed for the calibration of the hydraulic models for the several floods. The flood extent maps obtained for each simulation were then compared with the flood extent maps derived from SAR imagery for each flood and the roughness coefficients changed accordingly. The models were also calibrated in terms of the stage at the gauging station Almourol, located 12km downriver from Tramagal. The combination of the calibration results for the several past floods provided 100 meters resolution Manning coefficient maps of the study area. An application of the obtained calibrated Manning coefficient maps was made for the largest flood of the 20th century (February 1979), for which no SAR imagery was available. In this case validation of the model was made in terms of the stage at the gauging station Almourol and at flood stage marks distributed throughout the floodplain.
NASA Astrophysics Data System (ADS)
Kappas, Martin; Nguyen Hong, Quang; Thanh, Nga Pham Thi; Thu, Hang Le Thi; Nguyen Vu, Giang; Degener, Jan; Rafiei Emam, Ammar
2017-04-01
There has been an increasing attention to the large trans-boundary Mekong river basin due to various problems related to water management and flood control, for instance. Vietnam Mekong delta is located at the downstream of the river basin where is affected most by this human-induced reduction in flows from the upstream. On the other hand, the flood plain of nine anastomosing channels is increasingly effected by the seawater intrusion due to sea level rising of climate change. This results in negative impacts of salinization, drought, and floods, while formerly flooding had frequently brought positive natural gain of irrigation water and alluvial aggradation. In this research, our aim is to predict flooding for the better water management adaptation and control. We applied the model HEC-SSP 2.1 to analyze flood flow frequency, two-dimensional unsteady flow calculations in HEC-RAS 5.0 for simulating a floodplain inundation. Remote sensing-based water level (Jason-2) and inundation map were used for validation and comparison with the model simulations. The results revealed a reduction of water level at all the monitoring stations, particularly in the last decade. In addition, a trend of the inundation extension gradually declined, but in some periods it remained severe due to water release from upstream reservoirs during the rainy season (October-November). We found an acceptable agreement between the HEC-RAS and remote sensing flooding maps (around 70%). Based on the flood routine analysis, we could conclude that the water level will continue lower and lead to a trend of drought and salinization harsher in the near future. Keywords: Mekong delta, flood control, inundation, water management, hydrological modelling, remote sensing
A first large-scale flood inundation forecasting model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumann, Guy J-P; Neal, Jeffrey C.; Voisin, Nathalie
2013-11-04
At present continental to global scale flood forecasting focusses on predicting at a point discharge, with little attention to the detail and accuracy of local scale inundation predictions. Yet, inundation is actually the variable of interest and all flood impacts are inherently local in nature. This paper proposes a first large scale flood inundation ensemble forecasting model that uses best available data and modeling approaches in data scarce areas and at continental scales. The model was built for the Lower Zambezi River in southeast Africa to demonstrate current flood inundation forecasting capabilities in large data-scarce regions. The inundation model domainmore » has a surface area of approximately 170k km2. ECMWF meteorological data were used to force the VIC (Variable Infiltration Capacity) macro-scale hydrological model which simulated and routed daily flows to the input boundary locations of the 2-D hydrodynamic model. Efficient hydrodynamic modeling over large areas still requires model grid resolutions that are typically larger than the width of many river channels that play a key a role in flood wave propagation. We therefore employed a novel sub-grid channel scheme to describe the river network in detail whilst at the same time representing the floodplain at an appropriate and efficient scale. The modeling system was first calibrated using water levels on the main channel from the ICESat (Ice, Cloud, and land Elevation Satellite) laser altimeter and then applied to predict the February 2007 Mozambique floods. Model evaluation showed that simulated flood edge cells were within a distance of about 1 km (one model resolution) compared to an observed flood edge of the event. Our study highlights that physically plausible parameter values and satisfactory performance can be achieved at spatial scales ranging from tens to several hundreds of thousands of km2 and at model grid resolutions up to several km2. However, initial model test runs in forecast mode revealed that it is crucial to account for basin-wide hydrological response time when assessing lead time performances notwithstanding structural limitations in the hydrological model and possibly large inaccuracies in precipitation data.« less
Coon, William F.; Johnson, Mark S.
2005-01-01
Urbanization of the 150-square-mile Irondequoit Creek basin in Monroe and Ontario Counties, N.Y., continues to spread southward and eastward from the City of Rochester, on the shore of Lake Ontario. Conversion of forested land to other uses over the past 40 years has increased to the extent that more than 50 percent of the basin is now developed. This expansion has increased flooding and impaired stream-water quality in the northern (downstream) half of the basin. A precipitation-runoff model of the Irondequoit Creek basin was developed with the model code HSPF (Hydrological Simulation Program--FORTRAN) to simulate the effects of land-use changes and stormflow-detention basins on flooding and nonpoint-source pollution on the basin. Model performance was evaluated through a combination of graphical comparisons and statistical tests, and indicated 'very good' agreement (mean error less than 10 percent) between observed and simulated daily and monthly streamflows, between observed and simulated monthly water temperatures, and between observed total suspended solids loads and simulated sediment loads. Agreement between monthly observed and simulated nutrient loads was 'very good' (mean error less than 15 percent) or 'good' (mean error between 15 and 25 percent). Results of model simulations indicated that peak flows and loads of sediment and total phosphorus would increase in a rural subbasin, where 10 percent of the basin was converted from forest and grassland to pervious and impervious developed areas. Subsequent simulation of a stormflow-detention basin at the mouth of this subbasin indicated that peak flows and constituent loads would decrease below those that were generated by the land-use-change scenario, and, in some cases, below those that were simulated by the original land-use scenario. Other results from model simulations of peak flows over a 30-year period (1970-2000), with and without simulation of 50-percent flow reductions at one existing and nine hypothetical stormflow-detention basins, indicated that stormflow-detention basins would likely decrease peak flows 14 to 17 percent on Allen Creek and 17 to 18 percent on Irondequoit Creek at Blossom Road. The model is intended as a management tool that water-resource managers can use to guide decisions regarding future development in the basin. The model and associated files are designed to permit (1) creation of scenarios that represent planned or hypothetical development in the basin, and (2) assessment of the flooding and chemical loads that are likely to result. Instream stormflow-detention basins can be simulated in separate scenarios to assess their effect on flooding and chemical loads. This report (1) provides examples of how the model can be applied to address these issues, (2) discusses the model revisions required to simulate land-use changes and detention basins, and (3) describes the analytical steps necessary to evaluate the model results.
Flow Field Analysis of Fish Farm and Planting Area in Floodplain during Flood
NASA Astrophysics Data System (ADS)
Wu, M.; Tan, H. N.; Lo, W. C.; Tsai, C. T.
2017-12-01
Fish farms constructing and crops planting is common in floodplain in Taiwan. The physiographic soil erosion-deposition (PSED) model was applied to simulate the sediment yield, the runoff, and sediment transport rate of the river watershed corresponding to one-day rainstorms of the return periods of 25, 50, and 100 year. The variation of flow field in the river sections could be simulated by utilizing the alluvial river-movable bed two dimensional (ARMB-2D) model. The results reveal that the tendency of river discharge, sediment deposition and erosion obtained from these two models is agreeable by calibration and verification. The water flow affected by fish farms and planting areas in floodplain during flood was analyzed. Lastly, based on the simulation results obtained from the PESD and ARMB-2D models for one-day rainstorms of the return periods of 25, 50, and 100 year, the illegal fish farms and planting area with severe variations of river flow and affected he capability for flood conveyance will be referred to as the demolishing-to-be areas. We could also suggest the management strategy of application for fish farms constructing and crops planting in river areas by incorporating the ability of our model to provide information of river flow to enhance the flood conveyance.
Simulation of 1998-Big Flood in Changjiang River Catchment, China
NASA Astrophysics Data System (ADS)
Nakayama, T.; Watanabe, M.
2006-05-01
Almost every year, China is affected by severe flooding, which causes considerable economic loss and serious damage to towns and farms. Big floods are mainly concentrated in the middle and lower reaches of the "seven big rivers", which include the Changjiang (Yangtze) River, the Yellow (Huanghe) River, and the Huaihe River. The Changjiang River is the fourth largest water resource to the oceans after the Amazon, Zaire, and Orinoco Rivers. In addition to abnormal weather, artificial effects were considered as main causes of the big flood disaster in the Changjiang River catchment by the previous researches; (i) extreme deforestation and soil erosion in the upper reaches, (ii) shrinking of lake water volumes and their reduced connection with the Changjiang River due to reclamation of lakes that retarded water in the middle reaches, and (iii) restriction of channel capacity following levee construction. Because there is an urgent need to quantify these relations on the spatial scale of the whole catchment in order to prevent flood damage as small as possible, it is very important to evaluate the complicated phenomena of water/heat dynamics in the Changjiang River catchment by using process-based models. The present research focuses on simulating the water/heat dynamics for 1998 big-flood with 60-year recurrent period in the Changjiang River catchment. We compared the flood period of 1998 with the normal period of 1987-1988. We expanded the NIES Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama and Watanabe, 2004; Nakayama et al., 2006) for the application to broader catchments in order to evaluate large- scale flooding in the Changjiang River (NICE-FLD). We simulated the water/heat dynamics in the entire catchment (3,000 km wide by 1,000 km long) with a resolution of 10 km mesh by using the NICE-FLD. The model reproduced excellently the river discharge, soil moisture, evapotranspiration, groundwater level, et al. Furthermore, we evaluated the role of flood storage capacity in the lakes and farms in relation to the water/heat budgets, and simulated the change of water/heat dynamics by human activity in order to help decision-making on sustainable development in the catchment.
NASA Astrophysics Data System (ADS)
van den Bout, Bastian; Jetten, Victor
2017-04-01
Within hydrological models, flow approximations are commonly used to reduce computation time. The validity of these approximations is strongly determined by flow height, flow velocity, the spatial resolution of the model, and by the manner in which flow routing is implemented. The assumptions of these approximations can furthermore limit emergent behavior, and influence flow behavior under space-time scaling. In this presentation, the validity and performance of the kinematic, diffusive and dynamic flow approximations are investigated for use in a catchment-based flood model. Particularly, the validity during flood events and for varying spatial resolutions is investigated. The OpenLISEM hydrological model is extended to implement these flow approximations and channel flooding based on dynamic flow. The kinematic routing uses a predefined converging flow network, the diffusive and dynamic routing uses a 2D flow solution over a DEM. The channel flow in all cases is a 1D kinematic wave approximation. The flow approximations are used to recreate measured discharge in three catchments of different size in China, Spain and Italy, among which is the hydrograph of the 2003 flood event in the Fella river basin (Italy). Furthermore, spatial resolutions are varied for the flood simulation in order to investigate the influence of spatial resolution on these flow approximations. Results show that the kinematic, diffusive and dynamic flow approximation provide least to highest accuracy, respectively, in recreating measured temporal variation of the discharge. Kinematic flow, which is commonly used in hydrological modelling, substantially over-estimates hydrological connectivity in the simulations with a spatial resolution of below 30 meters. Since spatial resolutions of models have strongly increased over the past decades, usage of routed kinematic flow should be reconsidered. In the case of flood events, spatial modelling of kinematic flow substantially over-estimates hydrological connectivity and flow concentration, leading to significant errors. The combination of diffusive or dynamic overland flow and dynamic channel flooding provides high accuracy in recreating the 2003 Fella river flood event. Finally, flow approximations substantially influenced the predictive potential of the (flash) flood model.
Risk assessment of flood disaster and forewarning model at different spatial-temporal scales
NASA Astrophysics Data System (ADS)
Zhao, Jun; Jin, Juliang; Xu, Jinchao; Guo, Qizhong; Hang, Qingfeng; Chen, Yaqian
2018-05-01
Aiming at reducing losses from flood disaster, risk assessment of flood disaster and forewarning model is studied. The model is built upon risk indices in flood disaster system, proceeding from the whole structure and its parts at different spatial-temporal scales. In this study, on the one hand, it mainly establishes the long-term forewarning model for the surface area with three levels of prediction, evaluation, and forewarning. The method of structure-adaptive back-propagation neural network on peak identification is used to simulate indices in prediction sub-model. Set pair analysis is employed to calculate the connection degrees of a single index, comprehensive index, and systematic risk through the multivariate connection number, and the comprehensive assessment is made by assessment matrixes in evaluation sub-model. The comparison judging method is adopted to divide warning degree of flood disaster on risk assessment comprehensive index with forewarning standards in forewarning sub-model and then the long-term local conditions for proposing planning schemes. On the other hand, it mainly sets up the real-time forewarning model for the spot, which introduces the real-time correction technique of Kalman filter based on hydrological model with forewarning index, and then the real-time local conditions for presenting an emergency plan. This study takes Tunxi area, Huangshan City of China, as an example. After risk assessment and forewarning model establishment and application for flood disaster at different spatial-temporal scales between the actual and simulated data from 1989 to 2008, forewarning results show that the development trend for flood disaster risk remains a decline on the whole from 2009 to 2013, despite the rise in 2011. At the macroscopic level, project and non-project measures are advanced, while at the microcosmic level, the time, place, and method are listed. It suggests that the proposed model is feasible with theory and application, thus offering a way for assessing and forewarning flood disaster risk.
Improved simulation of poorly drained forests using Biome-BGC.
Bond-Lamberty, Ben; Gower, Stith T; Ahl, Douglas E
2007-05-01
Forested wetlands and peatlands are important in boreal and terrestrial biogeochemical cycling, but most general-purpose forest process models are designed and parameterized for upland systems. We describe changes made to Biome-BGC, an ecophysiological process model, that improve its ability to simulate poorly drained forests. Model changes allowed for: (1) lateral water inflow from a surrounding watershed, and variable surface and subsurface drainage; (2) adverse effects of anoxic soil on decomposition and nutrient mineralization; (3) closure of leaf stomata in flooded soils; and (4) growth of nonvascular plants (i.e., bryophytes). Bryophytes were treated as ectohydric broadleaf evergreen plants with zero stomatal conductance, whose cuticular conductance to CO(2) was dependent on plant water content. Individual model changes were parameterized with published data, and ecosystem-level model performance was assessed by comparing simulated output to field data from the northern BOREAS site in Manitoba, Canada. The simulation of the poorly drained forest model exhibited reduced decomposition and vascular plant growth (-90%) compared with that of the well-drained forest model; the integrated bryophyte photosynthetic response accorded well with published data. Simulated net primary production, biomass and soil carbon accumulation broadly agreed with field measurements, although simulated net primary production was higher than observed data in well-drained stands. Simulated net primary production in the poorly drained forest was most sensitive to oxygen restriction on soil processes, and secondarily to stomatal closure in flooded conditions. The modified Biome-BGC remains unable to simulate true wetlands that are subject to prolonged flooding, because it does not track organic soil formation, water table changes, soil redox potential or anaerobic processes.
How important are sediments in the flood peaks generated by a Mediterranean catchment?
NASA Astrophysics Data System (ADS)
Puertes, Cristina; Francés, Félix
2016-04-01
Currently, soil erosion and sediment yield have increased their importance because of their impact on the increase in flood peaks, in addition to the sedimentation in reservoirs, channels and flooded urban areas. Hence, this research wants to be a contribution in that sense. The aim was to evaluate the importance of the incorporation of sediment cycle to hydrological models in order to improve the reliability of the simulated floods. It was focused on the flood that took place in Valencia, Spain, in 1957. This flood produced two straight floods, of 2700 and 3700 m3/s peak flows, as a consequence of two heavy rainy days (above 100mm precipitations in 24h), preceded by two rainy days. As a result, it caused 81 dead, thousands homeless and high material damage. The amount of sediments deposited in the city was slightly lower than 2 hm3. Cleaning up tasks lasted more than a month and, although less than one seventh of the sediments volume were removed, public expenditures exceed 23.500.000€ (2015 currency value). In order to carry out this study, it was necessary to make a reconstruction of the event. The first step was to calibrate a distributed hydrological model in the Turia River basin. The total catchment area is 6350 km2, but only the catchment downstream the Benagéber Reservoir was active during the flood. The parameters needed for the calibration were obtained from a 100x100 m Digital Elevation Model, the land use map and the physical characteristics of the basin. The model was calibrated using a time step of one hour and the observed discharge in the outlet point from the period 1990-2013. Previously, a daily model was calibrated and used for the computation of the initial conditions of the hourly model. Once calibrated, a reconstruction of precipitation at hourly discretization for the 1957 event was made. Finally, the sedimentological sub-model was calibrated using only data from the amount of sediments deposited in the city during the overflowing. All this, taking into account the land use changes. The historical event simulation demonstrated that the influence of sediments in flood peaks was not very important in the city: the contribution to the flood peaks was a 12% in the first flood wave and a 5% during the second one, with a maximum of 13%. But it must be underlined that the city is on the coast. In fact, upstream the maximum contribution was a 31%. In addition, soil erosion was higher than 53 hm3, sediments deposited volume in the catchment was 34.4 hm3, sediment discharge in the outlet was 18.7 hm3, and water discharge was 192 hm3. In conclusion, although the incorporation of sediment simulation to the hydrological model was not crucial in the flood simulation in the city of Valencia, it can be in other situations and, in any case, from the point of view of sociologic and economic damages, it is not negligible.
Simulating groundwater-induced sewer flooding
NASA Astrophysics Data System (ADS)
Mijic, A.; Mansour, M.; Stanic, M.; Jackson, C. R.
2016-12-01
During the last decade, Chalk catchments of southern England experienced severe groundwater flooding. High groundwater levels resulted in the groundwater ingress into the sewer network that led to restricted toilet use and the overflow of diluted, but untreated sewage to road surfaces, rivers and water courses. In response to these events the water and sewerage company Thames Water Utilities Ltd (TWUL) had to allocate significant funds to mitigate the impacts. It was estimated that approximately £19m was spent responding to the extreme wet weather of 2013-14, along with the use of a fleet of over 100 tankers. However, the magnitude of the event was so large that these efforts could not stop the discharge of sewage to the environment. This work presents the analysis of the risk of groundwater-induced sewer flooding within the Chalk catchment of the River Lambourn, Berkshire. A spatially distributed groundwater model was used to assess historic groundwater flood risk and the potential impacts of changes in future climate. We then linked this model to an urban groundwater model to enable us to simulate groundwater-sewer interaction in detail. The modelling setup was used to identify relationships between infiltration into sewers and groundwater levels at specific points on TWUL's sewer network, and to estimate historic and future groundwater flood risk, and how this varies across the catchment. The study showed the significance of understanding the impact of groundwater on the urban water systems, and producing information that can inform a water company's response to groundwater flood risk, their decision making process and their asset management planning. However, the knowledge gained through integrated modelling of groundwater-sewer interactions has highlighted limitations of existing approaches for the simulation of these coupled systems. We conclude this work with number of recommendations about how to improve such hydrological/sewer analysis.
Thorndahl, Søren; Nielsen, Jesper Ellerbæk; Jensen, David Getreuer
2016-12-01
Flooding produced by high-intensive local rainfall and drainage system capacity exceedance can have severe impacts in cities. In order to prepare cities for these types of flood events - especially in the future climate - it is valuable to be able to simulate these events numerically, both historically and in real-time. There is a rather untested potential in real-time prediction of urban floods. In this paper, radar data observations with different spatial and temporal resolution, radar nowcasts of 0-2 h leadtime, and numerical weather models with leadtimes up to 24 h are used as inputs to an integrated flood and drainage systems model in order to investigate the relative difference between different inputs in predicting future floods. The system is tested on the small town of Lystrup in Denmark, which was flooded in 2012 and 2014. Results show it is possible to generate detailed flood maps in real-time with high resolution radar rainfall data, but rather limited forecast performance in predicting floods with leadtimes more than half an hour.
Challenges of Modeling Flood Risk at Large Scales
NASA Astrophysics Data System (ADS)
Guin, J.; Simic, M.; Rowe, J.
2009-04-01
Flood risk management is a major concern for many nations and for the insurance sector in places where this peril is insured. A prerequisite for risk management, whether in the public sector or in the private sector is an accurate estimation of the risk. Mitigation measures and traditional flood management techniques are most successful when the problem is viewed at a large regional scale such that all inter-dependencies in a river network are well understood. From an insurance perspective the jury is still out there on whether flood is an insurable peril. However, with advances in modeling techniques and computer power it is possible to develop models that allow proper risk quantification at the scale suitable for a viable insurance market for flood peril. In order to serve the insurance market a model has to be event-simulation based and has to provide financial risk estimation that forms the basis for risk pricing, risk transfer and risk management at all levels of insurance industry at large. In short, for a collection of properties, henceforth referred to as a portfolio, the critical output of the model is an annual probability distribution of economic losses from a single flood occurrence (flood event) or from an aggregation of all events in any given year. In this paper, the challenges of developing such a model are discussed in the context of Great Britain for which a model has been developed. The model comprises of several, physically motivated components so that the primary attributes of the phenomenon are accounted for. The first component, the rainfall generator simulates a continuous series of rainfall events in space and time over thousands of years, which are physically realistic while maintaining the statistical properties of rainfall at all locations over the model domain. A physically based runoff generation module feeds all the rivers in Great Britain, whose total length of stream links amounts to about 60,000 km. A dynamical flow routing algorithm propagates the flows for each simulated event. The model incorporates a digital terrain model (DTM) at 10m horizontal resolution, which is used to extract flood plain cross-sections such that a one-dimensional hydraulic model can be used to estimate extent and elevation of flooding. In doing so the effect of flood defenses in mitigating floods are accounted for. Finally a suite of vulnerability relationships have been developed to estimate flood losses for a portfolio of properties that are exposed to flood hazard. Historical experience indicates that a for recent floods in Great Britain more than 50% of insurance claims occur outside the flood plain and these are primarily a result of excess surface flow, hillside flooding, flooding due to inadequate drainage. A sub-component of the model addresses this issue by considering several parameters that best explain the variability of claims off the flood plain. The challenges of modeling such a complex phenomenon at a large scale largely dictate the choice of modeling approaches that need to be adopted for each of these model components. While detailed numerically-based physical models exist and have been used for conducting flood hazard studies, they are generally restricted to small geographic regions. In a probabilistic risk estimation framework like our current model, a blend of deterministic and statistical techniques have to be employed such that each model component is independent, physically sound and is able to maintain the statistical properties of observed historical data. This is particularly important because of the highly non-linear behavior of the flooding process. With respect to vulnerability modeling, both on and off the flood plain, the challenges include the appropriate scaling of a damage relationship when applied to a portfolio of properties. This arises from the fact that the estimated hazard parameter used for damage assessment, namely maximum flood depth has considerable uncertainty. The uncertainty can be attributed to various sources among which are imperfections in the hazard modeling, inherent errors in the DTM, lack of accurate information on the properties that are being analyzed, imperfections in the vulnerability relationships, inability of the model to account for local mitigation measures that are usually undertaken when a real event is unfolding and lack of details in the claims data that are used for model calibration. Nevertheless, the model once calibrated provides a very robust framework for analyzing relative and absolute risk. The paper concludes with key economic statistics of flood risk for Great Britain as a whole including certain large loss-causing scenarios affecting the greater London region. The model estimates a total financial loss of 5.6 billion GBP to all properties at a 1% annual aggregate exceedance probability level.
Haj, Adel E.; Christiansen, Daniel E.; Viger, Roland J.
2014-01-01
In 2011 the Missouri River Mainstem Reservoir System (Reservoir System) experienced the largest volume of flood waters since the initiation of record-keeping in the nineteenth century. The high levels of runoff from both snowpack and rainfall stressed the Reservoir System’s capacity to control flood waters and caused massive damage and disruption along the river. The flooding and resulting damage along the Missouri River brought increased public attention to the U.S. Army Corps of Engineers (USACE) operation of the Reservoir System. To help understand the effects of Reservoir System operation on the 2011 Missouri River flood flows, the U.S. Geological Survey Precipitation-Runoff Modeling System was used to construct a model of the Missouri River Basin to simulate flows at streamgages and dam locations with the effects of Reservoir System operation (regulation) on flow removed. Statistical tests indicate that the Missouri River Precipitation-Runoff Modeling System model is a good fit for high-flow monthly and annual stream flow estimation. A comparison of simulated unregulated flows and measured regulated flows show that regulation greatly reduced spring peak flow events, consolidated two summer peak flow events to one with a markedly decreased magnitude, and maintained higher than normal base flow beyond the end of water year 2011. Further comparison of results indicate that without regulation, flows greater than those measured would have occurred and been sustained for much longer, frequently in excess of 30 days, and flooding associated with high-flow events would have been more severe.
D Hydrodynamics Simulation of Amazonian Seasonally Flooded Wetlands
NASA Astrophysics Data System (ADS)
Pinel, S. S.; Bonnet, M. P.; Da Silva, J. S.; Cavalcanti, R., Sr.; Calmant, S.
2016-12-01
In the low Amazonian basin, interactions between floodplains and river channels are important in terms of water exchanges, sediments, or nutrients. These wetlands are considered as hotspot of biodiversity and are among the most productive in the world. However, they are threatened by climatic changes and anthropic activities. Hence, considering the implications for predicting inundation status of floodplain habitats, the strong interactions between water circulation, energy fluxes, biogeochemical and ecological processes, detailed analyses of flooding dynamics are useful and needed. Numerical inundation models offer means to study the interactions among different water sources. Modeling floods events in this area is challenging because flows respond to dynamic hydraulic controls coming from several water sources, complex geomorphology, and vegetation. In addition, due to the difficulty of access, there is a lack of existing hydrological data. In this context, the use of monitoring systems by remote sensing is a good option. In this study, we simulated filling and drainage processes of an Amazon floodplain (Janauacá Lake, AM, Brazil) over a 6 years period (2006-2012). Common approaches of flow modeling in the Amazon region consist of coupling a 1D simulation of the main channel flood wave to a 2D simulation of the inundation of the floodplain. Here, our approach differs as the floodplain is fully simulated. Model used is the 3D model IPH-ECO, which consists of a three-dimensional hydrodynamic module coupled with an ecosystem module. The IPH-ECO hydrodynamic module solves the Reynolds-Averaged Navier-Stokes equations using a semi-implicit discretization. After having calibrated the simulation against roughness coefficients, we validated the model in terms of vertical accuracy against water levels (daily in situ and altimetrics data), in terms of flood extent against inundation maps deduced from available remote-sensed product imagery (ALOS-1/PALSAR.), and in terms of velocity. We analyzed the inter-annual variability in hydrological fluxes and inundation dynamics of the floodplain unit. Dominant sources of inflow varied seasonally: among direct rain and local runoff (November to April), Amazon River (May to August) and seepage (September to October).
Modeling field-scale cosolvent flooding for DNAPL source zone remediation
NASA Astrophysics Data System (ADS)
Liang, Hailian; Falta, Ronald W.
2008-02-01
A three-dimensional, compositional, multiphase flow simulator was used to model a field-scale test of DNAPL removal by cosolvent flooding. The DNAPL at this site was tetrachloroethylene (PCE), and the flooding solution was an ethanol/water mixture, with up to 95% ethanol. The numerical model, UTCHEM accounts for the equilibrium phase behavior and multiphase flow of a ternary ethanol-PCE-water system. Simulations of enhanced cosolvent flooding using a kinetic interphase mass transfer approach show that when a very high concentration of alcohol is injected, the DNAPL/water/alcohol mixture forms a single phase and local mass transfer limitations become irrelevant. The field simulations were carried out in three steps. At the first level, a simple uncalibrated layered model is developed. This model is capable of roughly reproducing the production well concentrations of alcohol, but not of PCE. A more refined (but uncalibrated) permeability model is able to accurately simulate the breakthrough concentrations of injected alcohol from the production wells, but is unable to accurately predict the PCE removal. The final model uses a calibration of the initial PCE distribution to get good matches with the PCE effluent curves from the extraction wells. It is evident that the effectiveness of DNAPL source zone remediation is mainly affected by characteristics of the spatial heterogeneity of porous media and the variable (and unknown) DNAPL distribution. The inherent uncertainty in the DNAPL distribution at real field sites means that some form of calibration of the initial contaminant distribution will almost always be required to match contaminant effluent breakthrough curves.
Modeling field-scale cosolvent flooding for DNAPL source zone remediation.
Liang, Hailian; Falta, Ronald W
2008-02-19
A three-dimensional, compositional, multiphase flow simulator was used to model a field-scale test of DNAPL removal by cosolvent flooding. The DNAPL at this site was tetrachloroethylene (PCE), and the flooding solution was an ethanol/water mixture, with up to 95% ethanol. The numerical model, UTCHEM accounts for the equilibrium phase behavior and multiphase flow of a ternary ethanol-PCE-water system. Simulations of enhanced cosolvent flooding using a kinetic interphase mass transfer approach show that when a very high concentration of alcohol is injected, the DNAPL/water/alcohol mixture forms a single phase and local mass transfer limitations become irrelevant. The field simulations were carried out in three steps. At the first level, a simple uncalibrated layered model is developed. This model is capable of roughly reproducing the production well concentrations of alcohol, but not of PCE. A more refined (but uncalibrated) permeability model is able to accurately simulate the breakthrough concentrations of injected alcohol from the production wells, but is unable to accurately predict the PCE removal. The final model uses a calibration of the initial PCE distribution to get good matches with the PCE effluent curves from the extraction wells. It is evident that the effectiveness of DNAPL source zone remediation is mainly affected by characteristics of the spatial heterogeneity of porous media and the variable (and unknown) DNAPL distribution. The inherent uncertainty in the DNAPL distribution at real field sites means that some form of calibration of the initial contaminant distribution will almost always be required to match contaminant effluent breakthrough curves.
Mastin, M.C.; Le, Thanh
2001-01-01
The U.S. Geological Survey, in cooperation with Pierce County Department of Public Works, Washington, has developed an operational tool called the Puyallup Flood-Alert System to alert users of impending floods in the Puyallup River Basin. The system acquires and incorporates meteorological and hydrological data into the Streamflow Synthesis and Reservoir Regulation (SSARR) hydrologic flow-routing model to simulate floods in the Puyallup River Basin. SSARRMENU is the user-interactive graphical interface between the user, the input and output data, and the SSARR model. In a companion cooperative project with Pierce County, the SSARR model for the Puyallup River Basin was calibrated and validated. The calibrated model is accessed through SSARRMENU, which has been specifically programed for the Puyallup River and the needs of Pierce County. SSARRMENU automates the retrieval of data from ADAPS (Automated DAta Processing System, the U.S. Geological Survey?s real-time hydrologic database), formats the data for use with SSARR, initiates SSARR model runs, displays alerts for impending floods, and provides utilities to display the simulated and observed data. An on-screen map of the basin and a series of menu items provide the user wi
Flood-inundation maps for the Tippecanoe River near Delphi, Indiana
Menke, Chad D.; Bunch, Aubrey R.; Kim, Moon H.
2013-01-01
Digital flood-inundation maps for an 11-mile reach of the Tippecanoe River that extends from County Road W725N to State Road 18 below Oakdale Dam, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at USGS streamgage 03333050, Tippecanoe River near Delphi, Ind. Current conditions at the USGS streamgages in Indiana may be obtained online at http://waterdata.usgs.gov/in/nwis/current/?type=flow. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, water-surface profiles were simulated for the stream reach by means of a hydraulic one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation at USGS streamgage 03333050, Tippecanoe River near Delphi, Ind., and USGS streamgage 03332605, Tippecanoe River below Oakdale Dam, Ind. The hydraulic model was then used to simulate 13 water-surface profiles for flood stages at 1-foot intervals reference to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. A flood inundation map was generated for each water-surface profile stage (13 maps in all) so that, for any given flood stage, users will be able to view the estimated area of inundation. The availability of these maps, along with current stage from USGS streamgages and forecasted stream stages from the NWS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
Effects of the 2008 flood on economic performance and food security in Yemen: a simulation analysis.
Breisinger, Clemens; Ecker, Olivier; Thiele, Rainer; Wiebelt, Manfred
2016-04-01
Extreme weather events such as floods and droughts can have devastating consequences for individual well being and economic development, in particular in poor societies with limited availability of coping mechanisms. Combining a dynamic computable general equilibrium model of the Yemeni economy with a household-level calorie consumption simulation model, this paper assesses the economy-wide, agricultural and food security effects of the 2008 tropical storm and flash flood that hit the Hadramout and Al-Mahrah governorates. The estimation results suggest that agricultural value added, farm household incomes and rural food security deteriorated long term in the flood-affected areas. Due to economic spillover effects, significant income losses and increases in food insecurity also occurred in areas that were unaffected by flooding. This finding suggests that while most relief efforts are typically concentrated in directly affected areas, future efforts should also consider surrounding areas and indirectly affected people. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.
Calibration of a rainfall-runoff hydrological model and flood simulation using data assimilation
NASA Astrophysics Data System (ADS)
Piacentini, A.; Ricci, S. M.; Thual, O.; Coustau, M.; Marchandise, A.
2010-12-01
Rainfall-runoff models are crucial tools for long-term assessment of flash floods or real-time forecasting. This work focuses on the calibration of a distributed parsimonious event-based rainfall-runoff model using data assimilation. The model combines a SCS-derived runoff model and a Lag and Route routing model for each cell of a regular grid mesh. The SCS-derived runoff model is parametrized by the initial water deficit, the discharge coefficient for the soil reservoir and a lagged discharge coefficient. The Lag and Route routing model is parametrized by the velocity of travel and the lag parameter. These parameters are assumed to be constant for a given catchment except for the initial water deficit and the velocity travel that are event-dependent (landuse, soil type and moisture initial conditions). In the present work, a BLUE filtering technique was used to calibrate the initial water deficit and the velocity travel for each flood event assimilating the first available discharge measurements at the catchment outlet. The advantages of the BLUE algorithm are its low computational cost and its convenient implementation, especially in the context of the calibration of a reduced number of parameters. The assimilation algorithm was applied on two Mediterranean catchment areas of different size and dynamics: Gardon d'Anduze and Lez. The Lez catchment, of 114 km2 drainage area, is located upstream Montpellier. It is a karstic catchment mainly affected by floods in autumn during intense rainstorms with short Lag-times and high discharge peaks (up to 480 m3.s-1 in September 2005). The Gardon d'Anduze catchment, mostly granite and schistose, of 545 km2 drainage area, lies over the departements of Lozère and Gard. It is often affected by flash and devasting floods (up to 3000 m3.s-1 in September 2002). The discharge observations at the beginning of the flood event are assimilated so that the BLUE algorithm provides optimal values for the initial water deficit and the velocity travel before the flood peak. These optimal values are used for a new simulation of the event in forecast mode (under the assumption of perfect rain-fall). On both catchments, it was shown over a significant number of flood events, that the data assimilation procedure improves the flood peak forecast. The improvement is globally more important for the Gardon d'Anduze catchment where the flood events are stronger. The peak can be forecasted up to 36 hours head of time assimilating very few observations (up to 4) during the rise of the water level. For multiple peaks events, the assimilation of the observations from the first peak leads to a significant improvement of the second peak simulation. It was also shown that the flood rise is often faster in reality than it is represented by the model. In this case and when the flood peak is under estimated in the simulation, the use of the first observations can be misleading for the data assimilation algorithm. The careful estimation of the observation and background error variances enabled the satisfying use of the data assimilation in these complex cases even though it does not allow the model error correction.
NASA Astrophysics Data System (ADS)
Apel, H.; Trepat, O. M.; Hung, N. N.; Chinh, D. T.; Merz, B.; Dung, N. V.
2015-08-01
Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas, and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either fluvial or pluvial flood hazard, studies of combined fluvial and pluvial flood hazard are hardly available. Thus this study aims at the analysis of fluvial and pluvial flood hazard individually, but also at developing a method for the analysis of combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as example. In this tropical environment the annual monsoon triggered floods of the Mekong River can coincide with heavy local convective precipitation events causing both fluvial and pluvial flooding at the same time. Fluvial flood hazard was estimated with a copula based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. Pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data, and a stochastic rain storm generator. Inundation was simulated by a 2-dimensional hydrodynamic model implemented on a Graphical Processor Unit (GPU) for time-efficient flood propagation modelling. All hazards - fluvial, pluvial and combined - were accompanied by an uncertainty estimation considering the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median) and the uncertainty by percentile maps. The results are critically discussed and ways for their usage in flood risk management are outlined.
Risk assessment of tropical cyclone rainfall flooding in the Delaware River Basin
NASA Astrophysics Data System (ADS)
Lu, P.; Lin, N.; Smith, J. A.; Emanuel, K.
2016-12-01
Rainfall-induced inland flooding is a leading cause of death, injury, and property damage from tropical cyclones (TCs). In the context of climate change, it has been shown that extreme precipitation from TCs is likely to increase during the 21st century. Assessing the long-term risk of inland flooding associated with landfalling TCs is therefore an important task. Standard risk assessment techniques, which are based on observations from rain gauges and stream gauges, are not broadly applicable to TC induced flooding, since TCs are rare, extreme events with very limited historical observations at any specific location. Also, rain gauges and stream gauges can hardly capture the complex spatial variation of TC rainfall and flooding. Furthermore, the utility of historically based assessments is compromised by climate change. Regional dynamical downscaling models can resolve many features of TC precipitation. In terms of risk assessment, however, it is computationally demanding to run such models to obtain long-term climatology of TC induced flooding. Here we apply a computationally efficient climatological-hydrological method to assess the risk of inland flooding associated with landfalling TCs. It includes: 1) a deterministic TC climatology modeling method to generate large numbers of synthetic TCs with physically correlated characteristics (i.e., track, intensity, size) under observed and projected climates; 2) a simple physics-based tropical cyclone rainfall model which is able to simulate rainfall fields associated with each synthetic storm; 3) a hydrologic modeling system that takes in rainfall fields to simulate flood peaks over an entire drainage basin. We will present results of this method applied to the Delaware River Basin in the mid-Atlantic US.
NASA Astrophysics Data System (ADS)
Guan, M.; Wright, N.; Sleigh, P. A.; Carrivick, J.; Staines, K.
2013-12-01
Outburst floods are one of the most catastrophic natural hazards for populations and infrastructure. Such high-magnitude sudden onset floods generally comprise of an advancing intense kinematic water wave that can induce considerable sediment transport. The exploration and investigation of sediment-laden outburst floods cannot be limited solely to water flow but must also include the flood-induced sediment transport. Understanding the complex flow-bed interaction process in large (field) scale outburst floods is still limited, not least due to a lack of well-constrained field data, but also because consensus on appropriate modelling schemes has yet to be decided. In recent years, attention has focussed on the numerical models capable of describing the process of erosion, transport and deposition in such flows and they are now at a point at which they provide useful quantitative data. Although the "exact" measure of bed change is still unattainable the numerical models enhance and improve insights into large outburst flood events. In this study, a volcano-induced jökulhlaup or glacial outburst flood (GLOF) at Sólheimajökull, Iceland is reproduced by novel 2D hydro-morphodynamic model that considers both bedload and suspended load based on shallow water theory. The simulation of sediment-laden outburst flood is shown to perform well, with further insights into the flow-bed interaction behaviour obtained from the modelling output. These results are beneficial to flood risk management and hazard prevention and mitigation. In summary, the modelling outputs show that (1) the quantity of bed erosion and deposition are sensitive to the sediment gain size, yet, the influences are not so significant when considering flow discharge; (2) finer resolution of topography increases the computational time significantly yet the results are not affected correspondingly; (3) the bed changes simulated by the present model achieves reasonably good agreement with those by the commercial Delft3D; (4) the flood is accelerated by about 30% due to the incorporation of sediment transport; (5) the rapid sediment-laden outburst flood causes a rapid morphological change and considerable amount of erosion and deposition, and the total erosion and deposition volumes increase simultaneously and tend to an approximate constant value; (6) and the peak erosion rate and deposition rate occurs at the peak flow. Spatial distribution of bed erosion and deposition in the river channel after the GLOF
Lee, J.K.; Bennett, C. S.
1981-01-01
A two-dimensional finite element surface water model was used to study the hydraulic impact of the proposed Interstate Route 326 crossing of the Congaree River near Columbia, SC. The finite element model was assessed as a potential operational tool for analyzing complex highway crossings and other modifications of river flood plains. Infrared aerial photography was used to define regions of homogeneous roughness in the flood plain. Finite element networks approximating flood plain topography were designed using elements of three roughness types. High water marks established during an 8-yr flood that occurred in October 1976 were used to calibrate the model. The maximum flood of record, an approximately 100-yr flood that occurred in August 1908, was modeled in three cases: dikes on the right bank, dikes on the left bank, and dikes on both banks. In each of the three cases, simulations were performed both without and with the proposed highway embankments in place. Detailed information was obtained about backwater effects upstream from the proposed highway embankments, changes in flow distribution resulting from the embankments, and local velocities in the bridge openings. On the basis of results from the model study, the South Carolina Department of Highways and Public Transportation changed the design of several bridge openings. A simulation incorporating the new design for the case with dikes on the left bank indicated that both velocities in the bridge openings and backwater were reduced. A major problem in applying the model was the difficulty in predicting the network detail necessary to avoid local errors caused by roughness discontinuities and large depth gradients. (Lantz-PTT)
A hydrodynamic modelling of proposed dams in reducing flood hazard in Kelantan Catchment
NASA Astrophysics Data System (ADS)
Maruti, S. F.; Amerudin, S.; Kadir, W. H. W.; Yusof, Z. M.
2018-04-01
Flood is natural disaster that can cause damage and death. The flood that hit Kelantan in 2014 was the worst flood in Malaysian history. Although the disaster could not be avoided, awareness and preparedness could have helped to reduce the impact. Kuala Krai located at the downstream area in Kelantan catchment is the most affected due to the 2014 floods. The confluence of Lebir and Galas rivers into Kelantan river has led to the increase of flood magnitude to the downstream area. Therefore, Kemubu dam and Lebir dam, located along Galas river and Lebir river, respectively, have been proposed by the Kelantan authority to reduce the flood hazard. In this paper, a hydrodynamic modelling study is carried out, which is coupled of 1D and 2D model to simulate the flood event with and without the proposed dams. The model is developed using a Digital Terrain Model (DTM), which was generated from Airborne LiDAR and SRTM data sources. The hydrograph and water level for 2014 floods event were obtained and was set as an input data for boundary conditions. The modelling results of maximum velocity of 33 m/s and water depth of 19 m were used to generate flood hazard map. The result has found that the proposed dams were able to reduce the flood hazard, particularly at Kuala Krai, Kelantan.
Spatial and Temporal Flood Risk Assessment for Decision Making Approach
NASA Astrophysics Data System (ADS)
Azizat, Nazirah; Omar, Wan-Mohd-Sabki Wan
2018-03-01
Heavy rainfall, adversely impacting inundation areas, depends on the magnitude of the flood. Significantly, location of settlements, infrastructure and facilities in floodplains result in many regions facing flooding risks. A problem faced by the decision maker in an assessment of flood vulnerability and evaluation of adaptation measures is recurrent flooding in the same areas. Identification of recurrent flooding areas and frequency of floods should be priorities for flood risk management. However, spatial and temporal variability become major factors of uncertainty in flood risk management. Therefore, dynamic and spatial characteristics of these changes in flood impact assessment are important in making decisions about the future of infrastructure development and community life. System dynamics (SD) simulation and hydrodynamic modelling are presented as tools for modelling the dynamic characteristics of flood risk and spatial variability. This paper discusses the integration between spatial and temporal information that is required by the decision maker for the identification of multi-criteria decision problems involving multiple stakeholders.
NASA Astrophysics Data System (ADS)
Doroszkiewicz, Joanna; Romanowicz, Renata
2016-04-01
Uncertainty in the results of the hydraulic model is not only associated with the limitations of that model and the shortcomings of data. An important factor that has a major impact on the uncertainty of the flood risk assessment in a changing climate conditions is associated with the uncertainty of future climate scenarios (IPCC WG I, 2013). Future climate projections provided by global climate models are used to generate future runoff required as an input to hydraulic models applied in the derivation of flood risk maps. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the uncertainty of future climate projections, an uncertainty of flow routing model, the propagation of that uncertainty through the hydraulic model, and finally, the uncertainty related to the derivation of flood risk maps. One of the aims of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the process, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-section. The study shows that the application of the simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Acknowledgements: This work was supported by the project CHIHE (Climate Change Impact on Hydrological Extremes), carried out in the Institute of Geophysics Polish Academy of Sciences, funded by Norway Grants (contract No. Pol-Nor/196243/80/2013). The hydro-meteorological observations were provided by the Institute of Meteorology and Water Management (IMGW), Poland.
NASA Technical Reports Server (NTRS)
Baker, R. David; Wang, Yansen; Tao, Wei-Kuo; Wetzel, Peter; Belcher, Larry R.
2004-01-01
High-resolution mesoscale model simulations of the 6-7 May 2000 Missouri flash flood event were performed to test the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation. In this flash flood event, a mesoscale convective system (MCS) produced over 340 mm of rain in roughly 9 hours in some locations. Two different types of model initialization were employed: 1) NCEP global reanalysis with 2.5-degree grid spacing and 12-hour temporal resolution, and 2) Eta reanalysis with 40- km grid spacing and $hour temporal resolution. In addition, two different land surface treatments were considered. A simple land scheme. (SLAB) keeps soil moisture fixed at initial values throughout the simulation, while a more sophisticated land model (PLACE) allows for r interactive feedback. Simulations with high-resolution Eta model initialization show considerable improvement in the intensity of precipitation due to the presence in the initialization of a residual mesoscale convective vortex (hlCV) from a previous MCS. Simulations with the PLACE land model show improved location of heavy precipitation. Since soil moisture can vary over time in the PLACE model, surface energy fluxes exhibit strong spatial gradients. These surface energy flux gradients help produce a strong low-level jet (LLJ) in the correct location. The LLJ then interacts with the cold outflow boundary of the MCS to produce new convective cells. The simulation with both high-resolution model initialization and time-varying soil moisture test reproduces the intensity and location of observed rainfall.
Dynamic building risk assessment theoretic model for rainstorm-flood utilization ABM and ABS
NASA Astrophysics Data System (ADS)
Lai, Wenze; Li, Wenbo; Wang, Hailei; Huang, Yingliang; Wu, Xuelian; Sun, Bingyun
2015-12-01
Flood is one of natural disasters with the worst loss in the world. It needs to assess flood disaster risk so that we can reduce the loss of flood disaster. Disaster management practical work needs the dynamic risk results of building. Rainstorm flood disaster system is a typical complex system. From the view of complex system theory, flood disaster risk is the interaction result of hazard effect objects, rainstorm flood hazard factors, and hazard environments. Agent-based modeling (ABM) is an important tool for complex system modeling. Rainstorm-flood building risk dynamic assessment method (RFBRDAM) was proposed using ABM in this paper. The interior structures and procedures of different agents in proposed meth had been designed. On the Netlogo platform, the proposed method was implemented to assess the building risk changes of the rainstorm flood disaster in the Huaihe River Basin using Agent-based simulation (ABS). The results indicated that the proposed method can dynamically assess building risk of the whole process for the rainstorm flood disaster. The results of this paper can provide one new approach for flood disaster building risk dynamic assessment and flood disaster management.
NASA Astrophysics Data System (ADS)
Matingo, Thomas; Gumindoga, Webster; Makurira, Hodson
2018-05-01
Flash floods are experienced almost annually in the ungauged Mbire District of the Middle Zambezi Basin. Studies related to hydrological modelling (rainfall-runoff) and flood forecasting require major inputs such as precipitation which, due to shortage of observed data, are increasingly using indirect methods for estimating precipitation. This study therefore evaluated performance of CMORPH and TRMM satellite rainfall estimates (SREs) for 30 min, 1 h, 3 h and daily intensities through hydrologic and flash flood modelling in the Lower Middle Zambezi Basin for the period 2013-2016. On a daily timestep, uncorrected CMORPH and TRMM show Probability of Detection (POD) of 61 and 59 %, respectively, when compared to rain gauge observations. The best performance using Correlation Coefficient (CC) was 70 and 60 % on daily timesteps for CMORPH and TRMM, respectively. The best RMSE for CMORPH was 0.81 % for 30 min timestep and for TRMM was 2, 11 % on 3 h timestep. For the year 2014 to 2015, the HEC-HMS (Hydrological Engineering Centre-Hydrological Modelling System) daily model calibration Nash Sutcliffe efficiency (NSE) for Musengezi sub catchment was 59 % whilst for Angwa it was 55 %. Angwa sub-catchment daily NSE results for the period 2015-2016 was 61 %. HEC-RAS flash flood modeling at 100, 50 and 25 year return periods for Angwa sub catchment, inundated 811 and 867 ha for TRMM rainfall simulated discharge at 3 h and daily timesteps, respectively. For CMORPH generated rainfall, the inundation was 818, 876, 890 and 891 ha at daily, 3 h, 1 h and 30 min timesteps. The 30 min time step for CMORPH effectively captures flash floods with the measure of agreement between simulated flood extent and ground control points of 69 %. For TRMM, the 3 h timestep effectively captures flash floods with coefficient of 67 %. The study therefore concludes that satellite products are most effective in capturing localized hydrological processes such as flash floods for sub-daily rainfall, because of improved spatial and temporal resolution.
Adjustment of spatio-temporal precipitation patterns in a high Alpine environment
NASA Astrophysics Data System (ADS)
Herrnegger, Mathew; Senoner, Tobias; Nachtnebel, Hans-Peter
2018-01-01
This contribution presents a method for correcting the spatial and temporal distribution of precipitation fields in a mountainous environment. The approach is applied within a flood forecasting model in the Upper Enns catchment in the Central Austrian Alps. Precipitation exhibits a large spatio-temporal variability in Alpine areas. Additionally the density of the monitoring network is low and measurements are subjected to major errors. This can lead to significant deficits in water balance estimation and stream flow simulations, e.g. for flood forecasting models. Therefore precipitation correction factors are frequently applied. For the presented study a multiplicative, stepwise linear correction model is implemented in the rainfall-runoff model COSERO to adjust the precipitation pattern as a function of elevation. To account for the local meteorological conditions, the correction model is derived for two elevation zones: (1) Valley floors to 2000 m a.s.l. and (2) above 2000 m a.s.l. to mountain peaks. Measurement errors also depend on the precipitation type, with higher magnitudes in winter months during snow fall. Therefore, additionally, separate correction factors for winter and summer months are estimated. Significant improvements in the runoff simulations could be achieved, not only in the long-term water balance simulation and the overall model performance, but also in the simulation of flood peaks.
Simulation of Urban Rainfall-Runoff in Piedmont Cities: A Case Study in Jinan City, China
NASA Astrophysics Data System (ADS)
Chang, X.; Xu, Z.; Zhao, G.; Li, H.
2017-12-01
During the past decades, frequent flooding disasters in urban areas resulted in catastrophic impacts such as human life casualties and property damages especially in piedmont cities due to its specific topography. In this study, a piedmont urban flooding model was developed in the Huangtaiqiao catchment based on SWMM. The sub-catchments in this piedmont area were divided into mountainous area, plain area and main urban area according to the variations of underlying surface topography. The impact of different routing mode and channel roughness on simulation results was quantitatively analyzed under different types of scenarios, and genetic algorithm was used to optimize model parameters. Results show that the simulation is poor (with a mean Nash coefficient of 0.61) when using the traditional routing mode in SWMM model, which usually ignores terrain variance in piedmont area. However, when the difference of routing mode, percent routed and channel roughness are considered, the prediction precision of model were significantly increased (with a mean Nash coefficient of 0.86), indicating that the difference of surface topography significantly affects the simulation results in piedmont cities. The relevant results would provide the scientific basis and technical support for rainfall-runoff simulation, flood control and disaster alleviation in piedmont cities.
Bivariate at-site frequency analysis of simulated flood peak-volume data using copulas
NASA Astrophysics Data System (ADS)
Gaál, Ladislav; Viglione, Alberto; Szolgay, Ján.; Blöschl, Günter; Bacigál, Tomáå.¡
2010-05-01
In frequency analysis of joint hydro-climatological extremes (flood peaks and volumes, low flows and durations, etc.), usually, bivariate distribution functions are fitted to the observed data in order to estimate the probability of their occurrence. Bivariate models, however, have a number of limitations; therefore, in the recent past, dependence models based on copulas have gained increased attention to represent the joint probabilities of hydrological characteristics. Regardless of whether standard or copula based bivariate frequency analysis is carried out, one is generally interested in the extremes corresponding to low probabilities of the fitted joint cumulative distribution functions (CDFs). However, usually there is not enough flood data in the right tail of the empirical CDFs to derive reliable statistical inferences on the behaviour of the extremes. Therefore, different techniques are used to extend the amount of information for the statistical inference, i.e., temporal extension methods that allow for making use of historical data or spatial extension methods such as regional approaches. In this study, a different approach was adopted which uses simulated flood data by rainfall-runoff modelling, to increase the amount of data in the right tail of the CDFs. In order to generate artificial runoff data (i.e. to simulate flood records of lengths of approximately 106 years), a two-step procedure was used. (i) First, the stochastic rainfall generator proposed by Sivapalan et al. (2005) was modified for our purpose. This model is based on the assumption of discrete rainfall events whose arrival times, durations, mean rainfall intensity and the within-storm intensity patterns are all random, and can be described by specified distributions. The mean storm rainfall intensity is disaggregated further to hourly intensity patterns. (ii) Secondly, the simulated rainfall data entered a semi-distributed conceptual rainfall-runoff model that consisted of a snow routine, a soil moisture routine and a flow routing routine (Parajka et al., 2007). The applicability of the proposed method was demonstrated on selected sites in Slovakia and Austria. The pairs of simulated flood volumes and flood peaks were analysed in terms of their dependence structure and different families of copulas (Archimedean, extreme value, Gumbel-Hougaard, etc.) were fitted to the observed and simulated data. The question to what extent measured data can be used to find the right copula was discussed. The study is supported by the Austrian Academy of Sciences and the Austrian-Slovak Co-operation in Science and Education "Aktion". Parajka, J., Merz, R., Blöschl, G., 2007: Uncertainty and multiple objective calibration in regional water balance modeling - Case study in 320 Austrian catchments. Hydrological Processes, 21, 435-446. Sivapalan, M., Blöschl, G., Merz, R., Gutknecht, D., 2005: Linking flood frequency to long-term water balance: incorporating effects of seasonality. Water Resources Research, 41, W06012, doi:10.1029/2004WR003439.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.; Sepehrnoori, K.
1995-08-01
This research consists of the parallel development of a new chemical flooding simulator and the application of our existing UTCHEM simulation code to model surfactant flooding. The new code is based upon a completely new numerical method that combines for the first time higher-order finite-difference methods, flux limiters, and implicit algorithms. Results indicate that this approach has significant advantages in some problems and will likely enable us to simulate much larger and more realistic chemical floods once it is fully developed. Additional improvements have also been made to the UTCHEM code, and it has been applied to the study ofmore » stochastic reservoirs with and without horizontal wells to evaluate methods to reduce the cost and risk of surfactant flooding. During the second year of this contract, we have already made significant progress on both of these tasks and are ahead of schedule on both of them.« less
Testing the Joint UK Land Environment Simulator (JULES) for flood forecasting
NASA Astrophysics Data System (ADS)
Batelis, Stamatios-Christos; Rosolem, Rafael; Han, Dawei; Rahman, Mostaquimur
2017-04-01
Land Surface Models (LSM) are based on physics principles and simulate the exchanges of energy, water and biogeochemical cycles between the land surface and lower atmosphere. Such models are typically applied for climate studies or effects of land use changes but as the resolution of LSMs and supporting observations are continuously increasing, its representation of hydrological processes need to be addressed adequately. For example, changes in climate and land use can alter the hydrology of a region, for instance, by altering its flooding regime. LSMs can be a powerful tool because of their ability to spatially represent a region with much finer resolution. However, despite such advantages, its performance has not been extensively assessed for flood forecasting simply because its representation of typical hydrological processes, such as overland flow and river routing, are still either ignored or roughly represented. In this study, we initially test the Joint UK Land Environment Simulator (JULES) as a flood forecast tool focusing on its river routing scheme. In particular, JULES river routing parameterization is based on the Rapid Flow Model (RFM) which relies on six prescribed parameters (two surface and two subsurface wave celerities, and two return flow fractions). Although this routing scheme is simple, the prescription of its six default parameters is still too generalized. Our aim is to understand the importance of each RFM parameter in a series of JULES simulations at a number of catchments in the UK for the 2006-2015 period. This is carried out, for instance, by making a number of assumptions of parameter behaviour (e.g., spatially uniform versus varying and/or temporally constant or time-varying parameters within each catchment). Hourly rainfall radar in combination with the CHESS (Climate, Hydrological and Ecological research Support System) meteorological daily data both at 1 km2 resolution are used. The evaluation of the model is based on hourly runoff data provided by the National River Flood Archive using a number of model performance metrics. We use a calibrated conceptually-based lumped model, more typically applied in flood studies, as a benchmark for our analysis.
NASA Astrophysics Data System (ADS)
Neal, J. C.; Wood, M.; Bermúdez, M.; Hostache, R.; Freer, J. E.; Bates, P. D.; Coxon, G.
2017-12-01
Remote sensing of flood inundation extent has long been a potential source of data for constraining and correcting simulations of floodplain inundation. Hydrodynamic models and the computing resources to run them have developed to the extent that simulation of flood inundation in two-dimensional space is now feasible over large river basins in near real-time. However, despite substantial evidence that there is useful information content within inundation extent data, even from low resolution SAR such as that gathered by Envisat ASAR in wide swath mode, making use of the information in a data assimilation system has proved difficult. He we review recent applications of the Ensemble Kalman Filter (EnKF) and Particle Filter for assimilating SAR data, with a focus on the River Severn UK and compare these with complementary research that has looked at the internal error sources and boundary condition errors using detailed terrestrial data that is not available in most locations. Previous applications of the EnKF to this reach have focused on upstream boundary conditions as the source of flow error, however this description of errors was too simplistic for the simulation of summer flood events where localised intense rainfall can be substantial. Therefore, we evaluate the introduction of uncertain lateral inflows to the ensemble. A further limitation of the existing EnKF based methods is the need to convert flood extent to water surface elevations by intersecting the shoreline location with a high quality digital elevation model (e.g. LiDAR). To simplify this data processing step, we evaluate a method to directly assimilate inundation extent as a EnKF model state rather than assimilating water heights, potentially allowing the scheme to be used where high-quality terrain data are sparse.
The August 1975 Flood over Central China
NASA Astrophysics Data System (ADS)
Yang, Long; Smith, James; Liu, Maofeng; Baeck, MaryLynn
2016-04-01
The August 1975 flood in Central China was one of the most destructive floods in history, resulting in 26 000 fatalities, leaving about 10 million people with insufficient shelter, and producing long-lasting famine and disease. Extreme rainfall responsible for this flood event was associated with typhoon Nina during 5-7 August 1975. Despite the prominence of the August 1975 flood, analyses of the storms producing the flood and the resulting flood are sparse. Even fewer attempts were made from the perspective of numerical simulations. We examine details of extreme rainfall for the August 1975 flood based on downscaling simulations using the Weather Research and Forecasting (WRF) model driven by 20th Century Reanalysis fields. We further placed key hydrometeorological features for the flood event in a climatological context through the analyses of the 20th Century Reanalysis fields. Results indicate interrelated roles of multiple mesoscale ingredients for deep, moist convection in producing extreme rainfall for the August 1975 flood, superimposed over an anomalous synoptic environment. Attribution analyses on the source of water vapor for this flood event will be conducted based on a Lagrangian parcel tracking algorithm LAGRANTO. Analytical framework developed in this study aims to explore utilization of hydrometeorological approach in flood-control engineering designs by providing details on key elements of flood-producing storms.
Simulation of Record Rainfall Event Over Mumbai on 26 July, 2005
NASA Astrophysics Data System (ADS)
Singh, G. P.; Oh, Jai-Ho; Chaudhary, H. K.
2010-05-01
The Santa Cruz observatory at Mumbai airport recorded a very heavy precipitation of 94.4 cm (in less than 24 hours) on 26 July 2005. The country important commercial city came to a complete standstill due to severe flooding. This flooding situation caused a severe damage of life and poverty. The Financial Times and Economics Times news on 4 August 2005 have reported that the number of dead in the Maharashtra floods could well be above 1000 and around Rs. 5000 crores estimated loss in the state. We have simulated a case of extremely high precipitation using a National Centre for Atmospheric Research regional climate model (RegCM3) at 20 km horizontal resolution. Results indicate that the model captures well the well-marked cyclonic circulation (low) and the simulated precipitation is more close to observed value of precipitation when FC, KUO and AS convective cumulus parametrizations schemes are used.
NASA Astrophysics Data System (ADS)
Dullo, T. T.; Gangrade, S.; Marshall, R.; Islam, S. R.; Ghafoor, S. K.; Kao, S. C.; Kalyanapu, A. J.
2017-12-01
The damage and cost of flooding are continuously increasing due to climate change and variability, which compels the development and advance of global flood hazard models. However, due to computational expensiveness, evaluation of large-scale and high-resolution flood regime remains a challenge. The objective of this research is to use a coupled modeling framework that consists of a dynamically downscaled suite of eleven Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models, a distributed hydrologic model called DHSVM, and a computational-efficient 2-dimensional hydraulic model called Flood2D-GPU to study the impacts of climate change on flood regime in the Alabama-Coosa-Tallapoosa (ACT) River Basin. Downscaled meteorologic forcings for 40 years in the historical period (1966-2005) and 40 years in the future period (2011-2050) were used as inputs to drive the calibrated DHSVM to generate annual maximum flood hydrographs. These flood hydrographs along with 30-m resolution digital elevation and estimated surface roughness were then used by Flood2D-GPU to estimate high-resolution flood depth, velocities, duration, and regime. Preliminary results for the Conasauga river basin (an upper subbasin within ACT) indicate that seven of the eleven climate projections show an average increase of 25 km2 in flooded area (between historic and future projections). Future work will focus on illustrating the effects of climate change on flood duration and area for the entire ACT basin.
NASA Astrophysics Data System (ADS)
Bellos, Vasilis; Tsakiris, George
2016-09-01
The study presents a new hybrid method for the simulation of flood events in small catchments. It combines a physically-based two-dimensional hydrodynamic model and the hydrological unit hydrograph theory. Unit hydrographs are derived using the FLOW-R2D model which is based on the full form of two-dimensional Shallow Water Equations, solved by a modified McCormack numerical scheme. The method is tested at a small catchment in a suburb of Athens-Greece for a storm event which occurred in February 2013. The catchment is divided into three friction zones and unit hydrographs of 15 and 30 min are produced. The infiltration process is simulated by the empirical Kostiakov equation and the Green-Ampt model. The results from the implementation of the proposed hybrid method are compared with recorded data at the hydrometric station at the outlet of the catchment and the results derived from the fully hydrodynamic model FLOW-R2D. It is concluded that for the case studied, the proposed hybrid method produces results close to those of the fully hydrodynamic simulation at substantially shorter computational time. This finding, if further verified in a variety of case studies, can be useful in devising effective hybrid tools for the two-dimensional flood simulations, which are lead to accurate and considerably faster results than those achieved by the fully hydrodynamic simulations.
NASA Astrophysics Data System (ADS)
Bondareva, L.; Zakharov, Yu; Goudov, A.
2017-04-01
The paper is dedicated to the mathematical model of slurry wastewater treatment and disposal in a flooded mine working. The goal of the research is to develop and analyze the mathematical model of suspended impurities flow and distribution. Impurity sedimentation model is under consideration. Due to the sediment compaction problem solution domain can be modified. The model allows making a forecast whether volley emission is possible. Numerical simulation results for “Kolchuginskaya” coal mine presented. Impurity concentration diagrams in outflow corresponding to the real full-scale data obtained. Safely operation time mine workings like a wastewater treatment facility are estimated. The carried out calculations demonstrate that the method of industrial wastewater treatment in flooded waste mine workings can be put into practice but it is very important to observe all the processes going on to avoid volley emission of accumulated impurities.
Uncertainty in surface water flood risk modelling
NASA Astrophysics Data System (ADS)
Butler, J. B.; Martin, D. N.; Roberts, E.; Domuah, R.
2009-04-01
Two thirds of the flooding that occurred in the UK during summer 2007 was as a result of surface water (otherwise known as ‘pluvial') rather than river or coastal flooding. In response, the Environment Agency and Interim Pitt Reviews have highlighted the need for surface water risk mapping and warning tools to identify, and prepare for, flooding induced by heavy rainfall events. This need is compounded by the likely increase in rainfall intensities due to climate change. The Association of British Insurers has called for the Environment Agency to commission nationwide flood risk maps showing the relative risk of flooding from all sources. At the wider European scale, the recently-published EC Directive on the assessment and management of flood risks will require Member States to evaluate, map and model flood risk from a variety of sources. As such, there is now a clear and immediate requirement for the development of techniques for assessing and managing surface water flood risk across large areas. This paper describes an approach for integrating rainfall, drainage network and high-resolution topographic data using Flowroute™, a high-resolution flood mapping and modelling platform, to produce deterministic surface water flood risk maps. Information is provided from UK case studies to enable assessment and validation of modelled results using historical flood information and insurance claims data. Flowroute was co-developed with flood scientists at Cambridge University specifically to simulate river dynamics and floodplain inundation in complex, congested urban areas in a highly computationally efficient manner. It utilises high-resolution topographic information to route flows around individual buildings so as to enable the prediction of flood depths, extents, durations and velocities. As such, the model forms an ideal platform for the development of surface water flood risk modelling and mapping capabilities. The 2-dimensional component of Flowroute employs uniform flow formulae (Manning's Equation) to direct flow over the model domain, sourcing water from the channel or sea so as to provide a detailed representation of river and coastal flood risk. The initial development step was to include spatially-distributed rainfall as a new source term within the model domain. This required optimisation to improve computational efficiency, given the ubiquity of ‘wet' cells early on in the simulation. Collaboration with UK water companies has provided detailed drainage information, and from this a simplified representation of the drainage system has been included in the model via the inclusion of sinks and sources of water from the drainage network. This approach has clear advantages relative to a fully coupled method both in terms of reduced input data requirements and computational overhead. Further, given the difficulties associated with obtaining drainage information over large areas, tests were conducted to evaluate uncertainties associated with excluding drainage information and the impact that this has upon flood model predictions. This information can be used, for example, to inform insurance underwriting strategies and loss estimation as well as for emergency response and planning purposes. The Flowroute surface-water flood risk platform enables efficient mapping of areas sensitive to flooding from high-intensity rainfall events due to topography and drainage infrastructure. As such, the technology has widespread potential for use as a risk mapping tool by the UK Environment Agency, European Member States, water authorities, local governments and the insurance industry. Keywords: Surface water flooding, Model Uncertainty, Insurance Underwriting, Flood inundation modelling, Risk mapping.
A search for model parsimony in a real time flood forecasting system
NASA Astrophysics Data System (ADS)
Grossi, G.; Balistrocchi, M.
2009-04-01
As regards the hydrological simulation of flood events, a physically based distributed approach is the most appealing one, especially in those areas where the spatial variability of the soil hydraulic properties as well as of the meteorological forcing cannot be left apart, such as in mountainous regions. On the other hand, dealing with real time flood forecasting systems, less detailed models requiring a minor number of parameters may be more convenient, reducing both the computational costs and the calibration uncertainty. In fact in this case a precise quantification of the entire hydrograph pattern is not necessary, while the expected output of a real time flood forecasting system is just an estimate of the peak discharge, the time to peak and in some cases the flood volume. In this perspective a parsimonious model has to be found in order to increase the efficiency of the system. A suitable case study was identified in the northern Apennines: the Taro river is a right tributary to the Po river and drains about 2000 km2 of mountains, hills and floodplain, equally distributed . The hydrometeorological monitoring of this medium sized watershed is managed by ARPA Emilia Romagna through a dense network of uptodate gauges (about 30 rain gauges and 10 hydrometers). Detailed maps of the surface elevation, land use and soil texture characteristics are also available. Five flood events were recorded by the new monitoring network in the years 2003-2007: during these events the peak discharge was higher than 1000 m3/s, which is actually quite a high value when compared to the mean discharge rate of about 30 m3/s. The rainfall spatial patterns of such storms were analyzed in previous works by means of geostatistical tools and a typical semivariogram was defined, with the aim of establishing a typical storm structure leading to flood events in the Taro river. The available information was implemented into a distributed flood event model with a spatial resolution of 90m; then the hydrologic detail was reduced by progressively assuming a uniform rainfall field and constant soil properties. A semi-distributed model, obtained by subdividing the catchment into three sub-catchment, and a lumped model were also applied to simulate the selected flood events. Errors were quantified in terms of the peak discharge ratio, the flood volume and the time to peak by comparing the simulated hydrographs to the observed ones.
NASA Astrophysics Data System (ADS)
Wolfs, Vincent; Willems, Patrick
2013-10-01
Many applications in support of water management decisions require hydrodynamic models with limited calculation time, including real time control of river flooding, uncertainty and sensitivity analyses by Monte-Carlo simulations, and long term simulations in support of the statistical analysis of the model simulation results (e.g. flood frequency analysis). Several computationally efficient hydrodynamic models exist, but little attention is given to the modelling of floodplains. This paper presents a methodology that can emulate output from a full hydrodynamic model by predicting one or several levels in a floodplain, together with the flow rate between river and floodplain. The overtopping of the embankment is modelled as an overflow at a weir. Adaptive neuro fuzzy inference systems (ANFIS) are exploited to cope with the varying factors affecting the flow. Different input sets and identification methods are considered in model construction. Because of the dual use of simplified physically based equations and data-driven techniques, the ANFIS consist of very few rules with a low number of input variables. A second calculation scheme can be followed for exceptionally large floods. The obtained nominal emulation model was tested for four floodplains along the river Dender in Belgium. Results show that the obtained models are accurate with low computational cost.
Storm Duration and Antecedent Moisture Conditions for Flood Discharge Estimation
DOT National Transportation Integrated Search
2003-11-01
Design flows estimated by flood hydrograph simulation can be reasonably accurate or greatly in error, depending upon the modeling procedures and inputs selected. The objectives of this research project were (1) to determine which combinations of mode...
NASA Astrophysics Data System (ADS)
Podhoranyi, M.; Kuchar, S.; Portero, A.
2016-08-01
The primary objective of this study is to present techniques that cover usage of a hydrodynamic model as the main tool for monitoring and assessment of flood events while focusing on modelling of inundation areas. We analyzed the 2010 flood event (14th May - 20th May) that occurred in the Moravian-Silesian region (Czech Republic). Under investigation were four main catchments: Opava, Odra, Olše and Ostravice. Four hydrodynamic models were created and implemented into the Floreon+ platform in order to map inundation areas that arose during the flood event. In order to study the dynamics of the water, we applied an unsteady flow simulation for the entire area (HEC-RAS 4.1). The inundation areas were monitored, evaluated and recorded semi-automatically by means of the Floreon+ platform. We focused on information about the extent and presence of the flood areas. The modeled flooded areas were verified by comparing them with real data from different sources (official reports, aerial photos and hydrological networks). The study confirmed that hydrodynamic modeling is a very useful tool for mapping and monitoring of inundation areas. Overall, our models detected 48 inundation areas during the 2010 flood event.
Coupling Fluvial and Oceanic Drivers in Flooding Forecasts for San Francisco Bay
NASA Astrophysics Data System (ADS)
Herdman, L.; Kim, J.; Cifelli, R.; Barnard, P.; Erikson, L. H.; Johnson, L. E.; Chandrasekar, V.
2016-12-01
San Francisco Bay is a highly urbanized estuary and the surrounding communities are susceptible to flooding along the bay shoreline and inland rivers and creeks that drain to the Bay. A forecast model that integrates fluvial and oceanic drivers is necessary for predicting flooding in this complex urban environment. This study introduces the state-of-the-art coupling of the USGS Coastal Storm Modeling System (CoSMoS) with the NWS Research Distributed Hydrologic Model (RDHM) for San Francisco Bay. For this application, we utilize Delft3D-FM, a hydrodynamic model based on a flexible mesh grid, to calculate water levels that account for tidal forcing, seasonal water level anomalies, surge and in-Bay generated wind waves from the wind and pressure fields of a NWS forecast model. The tributary discharges from RDHM are dynamic, meteorologically driven allowing for operational use of CoSMoS which has previously relied on statistical estimates of river discharge. The flooding extent is determined by overlaying the resulting maximum water levels onto a recently updated 2-m digital elevation model of the study area which best resolves the extensive levee and tidal marsh systems in the region. The results we present here are focused on the interaction of the Bay and the Napa River watershed. This study demonstrates the interoperability of the CoSMoS and RDHM prediction models. We also use this pilot region to examine storm flooding impacts in a series of storm scenarios that simulate 5-100yr return period events in terms of either coastal or fluvial events. These scenarios demonstrate the wide range of possible flooding outcomes considering rainfall recurrence intervals, soil moisture conditions, storm surge, wind speed, and tides (spring and neap). With a simulated set of over 25 storm scenarios we show how the extent, level, and duration of flooding is dependent on these atmospheric and hydrologic parameters and we also determine a range of likely flood events.
Czuba, Christiana; Czuba, Jonathan A.; Gendaszek, Andrew S.; Magirl, Christopher S.
2010-01-01
The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River. PDF version of a presentation on hydrodynamic modelling in the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.
Calibrating a Rainfall-Runoff and Routing Model for the Continental United States
NASA Astrophysics Data System (ADS)
Jankowfsky, S.; Li, S.; Assteerawatt, A.; Tillmanns, S.; Hilberts, A.
2014-12-01
Catastrophe risk models are widely used in the insurance industry to estimate the cost of risk. The models consist of hazard models linked to vulnerability and financial loss models. In flood risk models, the hazard model generates inundation maps. In order to develop country wide inundation maps for different return periods a rainfall-runoff and routing model is run using stochastic rainfall data. The simulated discharge and runoff is then input to a two dimensional inundation model, which produces the flood maps. In order to get realistic flood maps, the rainfall-runoff and routing models have to be calibrated with observed discharge data. The rainfall-runoff model applied here is a semi-distributed model based on the Topmodel (Beven and Kirkby, 1979) approach which includes additional snowmelt and evapotranspiration models. The routing model is based on the Muskingum-Cunge (Cunge, 1969) approach and includes the simulation of lakes and reservoirs using the linear reservoir approach. Both models were calibrated using the multiobjective NSGA-II (Deb et al., 2002) genetic algorithm with NLDAS forcing data and around 4500 USGS discharge gauges for the period from 1979-2013. Additional gauges having no data after 1979 were calibrated using CPC rainfall data. The model performed well in wetter regions and shows the difficulty of simulating areas with sinks such as karstic areas or dry areas. Beven, K., Kirkby, M., 1979. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 24 (1), 43-69. Cunge, J.A., 1969. On the subject of a flood propagation computation method (Muskingum method), J. Hydr. Research, 7(2), 205-230. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on evolutionary computation, 6(2), 182-197.
NASA Astrophysics Data System (ADS)
Singh, Krishan P.; Snorrason, Arni
1984-02-01
Important breach parameters were identified and their ranges were estimated from a detailed study of historical earthdam failures due to overtopping. The U.S. Army Corps of Engineers Hydrologic Engineering Center (HEC) and the National Weather Service (NWS) dam breach models were chosen for evaluation and simulation. Both models use similar input data and breach descriptions, but the HEC uses the hydrologic routing method (modified Puls method), whereas the NWS uses the St. Vénant equations for routing. Information on eight dams in Illinois was taken from the Corps of Engineers inspection reports, and surveyed cross-sections of the downstream channels were supplied by the Division of Water Resources of the Illinois Department of Transportation. Various combinations of breach parameters (failure time, TF; depth of overtopping, hf; and breach size, B) were used for breach simulations by both methods with the 1.00PMF, 0.50PMF and 0.25PMF (probable maximum flood) inflow hydrographs. In general, the flood stage profiles predicted by the NWS were smoother and more reasonable than those predicted by the HEC. For channels with relatively steep slopes, the methods compared fairly well, whereas for the channels with mild slope, the HEC model often predicted oscillating, erratic flood stages, mainly due to its inability to route flood waves satisfactorily in non-prismatic channels. The breach outflow peaks are affected significantly by B but less so by hf. The ratio of outflow peak to inflow peak and the effect of TF on outflow decrease as the drainage area above the dam and impounded storage increase. Flood stage profiles predicted with cross-sections taken from 7.5' maps compared favorably with those predicted using surveyed cross-sections. For the range of breach parameters studied, the range of outflow peaks and flood stages downstream from the dam can be determined for regulatory and disaster prevention measures.
NASA Astrophysics Data System (ADS)
Gädeke, Anne; Gusyev, Maksym; Magome, Jun; Sugiura, Ai; Cullmann, Johannes; Takeuchi, Kuniyoshi
2015-04-01
The global flood risk assessment is prerequisite to set global measurable targets of post-Hyogo Framework for Action (HFA) that mobilize international cooperation and national coordination towards disaster risk reduction (DRR) and requires the establishment of a uniform flood risk assessment methodology on various scales. To address these issues, the International Flood Initiative (IFI) has initiated a Flagship Project, which was launched in year 2013, to support flood risk reduction benchmarking at global, national and local levels. In the Flagship Project road map, it is planned to identify the original risk (1), to identify the reduced risk (2), and to facilitate the risk reduction actions (3). In order to achieve this goal at global, regional and local scales, international research collaboration is absolutely necessary involving domestic and international institutes, academia and research networks such as UNESCO International Centres. The joint collaboration by ICHARM and BfG was the first attempt that produced the first step (1a) results on the flood discharge estimates with inundation maps under way. As a result of this collaboration, we demonstrate the outcomes of the first step of the IFI Flagship Project to identify flood hazard in the Rhine river basin on the global and local scale. In our assessment, we utilized a distributed hydrological Block-wise TOP (BTOP) model on 20-km and 0.5-km scales with local precipitation and temperature input data between 1980 and 2004. We utilized existing 20-km BTOP model, which is applied globally, and constructed the local scale 0.5-km BTOP model for the Rhine River basin. For the BTOP model results, both calibrated 20-km and 0.5-km BTOP models had similar statistical performance and represented observed flood river discharges, epecially for 1993 and 1995 floods. From 20-km and 0.5-km BTOP simulation, the flood discharges of the selected return period were estimated using flood frequency analysis and were comparable to the the river gauging station data at the German part of the Rhine river basin. This is an important finding that both 0.5-km and 20-km BTOP models produce similar flood peak discharges although the 0.5-km BTOP model results indicate the importance of scale in the local flood hazard assessment. In summary, we highlight that this study serves as a demonstrative example of institutional collaboration and is stepping stone for the next step implementation of the IFI Flagship Project.
Application of bayesian networks to real-time flood risk estimation
NASA Astrophysics Data System (ADS)
Garrote, L.; Molina, M.; Blasco, G.
2003-04-01
This paper presents the application of a computational paradigm taken from the field of artificial intelligence - the bayesian network - to model the behaviour of hydrologic basins during floods. The final goal of this research is to develop representation techniques for hydrologic simulation models in order to define, develop and validate a mechanism, supported by a software environment, oriented to build decision models for the prediction and management of river floods in real time. The emphasis is placed on providing decision makers with tools to incorporate their knowledge of basin behaviour, usually formulated in terms of rainfall-runoff models, in the process of real-time decision making during floods. A rainfall-runoff model is only a step in the process of decision making. If a reliable rainfall forecast is available and the rainfall-runoff model is well calibrated, decisions can be based mainly on model results. However, in most practical situations, uncertainties in rainfall forecasts or model performance have to be incorporated in the decision process. The computation paradigm adopted for the simulation of hydrologic processes is the bayesian network. A bayesian network is a directed acyclic graph that represents causal influences between linked variables. Under this representation, uncertain qualitative variables are related through causal relations quantified with conditional probabilities. The solution algorithm allows the computation of the expected probability distribution of unknown variables conditioned to the observations. An approach to represent hydrologic processes by bayesian networks with temporal and spatial extensions is presented in this paper, together with a methodology for the development of bayesian models using results produced by deterministic hydrologic simulation models
Wang, Jun; Yi, Si; Li, Mengya; Wang, Lei; Song, Chengcheng
2018-04-15
We compared the effects of three key environmental factors of coastal flooding: sea level rise (SLR), land subsidence (LS) and bathymetric change (BC) in the coastal areas of Shanghai. We use the hydrological simulation model MIKE 21 to simulate flood magnitudes under multiple scenarios created from combinations of the key environmental factors projected to year 2030 and 2050. Historical typhoons (TC9711, TC8114, TC0012, TC0205 and TC1109), which caused extremely high surges and considerable losses, were selected as reference tracks to generate potential typhoon events that would make landfalls in Shanghai (SHLD), in the north of Zhejiang (ZNLD) and moving northwards in the offshore area of Shanghai (MNS) under those scenarios. The model results provided assessment of impact of single and compound effects of the three factors (SLR, LS and BC) on coastal flooding in Shanghai for the next few decades. Model simulation showed that by the year 2030, the magnitude of storm flooding will increase due to the environmental changes defined by SLR, LS, and BC. Particularly, the compound scenario of the three factors will generate coastal floods that are 3.1, 2.7, and 1.9 times greater than the single factor change scenarios by, respectively, SLR, LS, and BC. Even more drastically, in 2050, the compound impact of the three factors would be 8.5, 7.5, and 23.4 times of the single factors. It indicates that the impact of environmental changes is not simple addition of the effects from individual factors, but rather multiple times greater of that when the projection time is longer. We also found for short-term scenarios, the bathymetry change is the most important factor for the changes in coastal flooding; and for long-term scenarios, sea level rise and land subsidence are the major factors that coastal flood prevention and management should address. Copyright © 2017 Elsevier B.V. All rights reserved.
Nitrogen dynamics in flooded soil systems: an overview on concepts and performance of models
Nurulhuda, Khairudin; Gaydon, Donald S; Jing, Qi; Zakaria, Mohamad P; Struik, Paul C
2017-01-01
Abstract Extensive modelling studies on nitrogen (N) dynamics in flooded soil systems have been published. Consequently, many N dynamics models are available for users to select from. With the current research trend, inclined towards multidisciplinary research, and with substantial progress in understanding of N dynamics in flooded soil systems, the objective of this paper is to provide an overview of the modelling concepts and performance of 14 models developed to simulate N dynamics in flooded soil systems. This overview provides breadth of knowledge on the models, and, therefore, is valuable as a first step in the selection of an appropriate model for a specific application. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:28940491
Simulation of flood hydrographs for Georgia streams
Inman, Ernest J.
1987-01-01
Flood hydrographs are needed for the design of many highway drainage structures and embankments. A method for simulating these flood hydrographs at ungaged sites in Georgia is presented in this report. The O'Donnell method was used to compute unit hydrographs and lagtimes for 355 floods at 80 gaging stations. An average unit hydrograph and an average lagtime were computed for each station. These average unit hydrographs were transformed to unit hydrographs having durations of one-fourth, one-third, one-half, and three-fourths lagtime, then reduced to dimensionless terms by dividing the time by lagtime and the discharge by peak discharge. Hydrographs were simulated for these 355 floods and their widths were compared with the widths of the observed hydrographs at 50 and 75 percent of peak flow. The dimensionless hydrograph based on one-half lagtime duration provided the best fit of the observed data. Multiple regression analysis was then used to define relations between lagtime and certain physical basin characteristics; of these characteristics, drainage area and slope were found to be significant for the rural-stream equations and drainage area, slope, and impervious area were found to be significant for the Atlanta urban-stream equation. A hydrograph can be simulated from the dimensionless hydrograph, the peak discharge of a specific recurrence interval, and the lagtime obtained from regression equations for any site in Georgia having a drainage area of less than 500 square miles. For simulating hydrographs at sites having basins larger than 500 square miles, the U.S. Geological Survey computer model CONROUT can be used. This model routes streamflow from an upstream channel location to a user-defined location downstream. The product of CONROUT is a simulated discharge hydrograph for the downstream site that has a peak discharge of a specific recurrence interval.
NASA Astrophysics Data System (ADS)
Piotrowski, J.; Goska, R.; Chen, B.; Krajewski, W. F.; Young, N.; Weber, L.
2009-12-01
In June 2008, the state of Iowa experienced an unprecedented flood event which resulted in an economic loss of approximately $2.88 billion. Flooding in the Iowa River corridor, which exceeded the previous flood of record by 3 feet, devastated several communities, including Coralville and Iowa City, home to the University of Iowa. Recognizing an opportunity to capture a unique dataset detailing the impacts of the historic flood, the investigators contacted the National Center for Airborne Laser Mapping (NCALM), which performed an aerial Light Detection and Ranging (LiDAR) survey along the Iowa River. The survey, conducted immediately following the flood peak, provided coverage of a 60-mile reach. The goal of the present research is to develop a process by which flood extents and water surface elevations can be accurately extracted from the LiDAR data set and to evaluate the benefit of such data in calibrating one- and two-dimensional hydraulic models. Whereas data typically available for model calibration include sparsely distributed point observations and high water marks, the LiDAR data used in the present study provide broad-scale, detailed, and continuous information describing the spatial extent and depth of flooding. Initial efforts were focused on a 10-mile, primarily urban reach of the Iowa River extending from Coralville Reservoir, a United States Army Corps of Engineers flood control project, downstream through the Coralville and Iowa City. Spatial extent and depth of flooding were estimated from the LiDAR data. At a given cross-sectional location, river channel and floodplain measurements were compared. When differences between floodplain and river channel measurements were less than a standard deviation of the vertical uncertainty in the LiDAR survey, floodplain measurements were classified as flooded. A flood water surface DEM was created using measurements classified as flooded. A two-dimensional, depth-averaged numerical model of a 10-mile reach of the Iowa River corridor was developed using the United States Bureau of Reclamation SRH-2D hydraulic modeling software. The numerical model uses an unstructured numerical mesh and variable surface roughness, assigned according to observed land use and cover. The numerical model was calibrated using inundation extents and water surface elevations derived from the LiDAR data. It was also calibrated using high water marks and land survey data collected daily during the 2008 flood. The investigators compared the two calibrations to evaluate the benefit of high-resolution LiDAR data in improving the accuracy of a two-dimensional urban flood simulation.
NASA Astrophysics Data System (ADS)
Demir, I.
2013-12-01
Recent developments in web technologies make it easy to manage and visualize large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The floodplain simulation system is a web-based 3D interactive flood simulation environment to create real world flooding scenarios. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create and modify predefined scenarios, control environmental parameters, and evaluate flood mitigation techniques. The web-based simulation system provides an environment to children and adults learn about the flooding, flood damage, and effects of development and human activity in the floodplain. The system provides various scenarios customized to fit the age and education level of the users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various flooding and land use scenarios.
NASA Astrophysics Data System (ADS)
Mohanty, M. P.; Karmakar, S.; Ghosh, S.
2017-12-01
Many countries across the Globe are victims of floods. To monitor them, various sophisticated algorithms and flood models are used by the scientific community. However, there still lies a gap to efficiently mapping flood risk. The limitations being: (i) scarcity of extensive data inputs required for precise flood modeling, (ii) fizzling performance of models in large and complex terrains (iii) high computational cost and time, and (iv) inexpertise in handling model simulations by civic bodies. These factors trigger the necessity of incorporating uncomplicated and inexpensive, yet precise approaches to identify areas at different levels of flood risk. The present study addresses this issue by utilizing various easily available, low cost data in a GIS environment for a large flood prone and data poor region. A set of geomorphic indicators of Digital Elevation Model (DEM) are analysed through linear binary classification, and are used to identify the flood hazard. The performance of these indicators is then investigated using receiver operating characteristics (ROC) curve, whereas the calibration and validation of the derived flood maps are accomplished through a comparison with dynamically coupled 1-D 2-D flood model outputs. A high degree of similarity on flood inundation proves the reliability of the proposed approach in identifying flood hazard. On the other hand, an extensive list of socio-economic indicators is selected to represent the flood vulnerability at a very finer forward sortation level using multivariate Data Envelopment Analysis (DEA). A set of bivariate flood risk maps is derived combining the flood hazard and socio-economic vulnerability maps. Given the acute problem of floods in developing countries, the proposed methodology which may be characterized by low computational cost, lesser data requirement and limited flood modeling complexity may facilitate local authorities and planners for deriving effective flood management strategies.
Field-scale simulation of chemical flooding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saad, N.
1989-01-01
A three-dimensional compositional chemical flooding simulator (UTCHEM) has been improved. The new mathematical formulation, boundary conditions, and a description of the physicochemical models of the simulator are presented. This improved simulator has been used for the study of the low tension pilot project at the Big Muddy field near Casper, Wyoming. Both the tracer injection conducted prior to the injection of the chemical slug, and the chemical flooding stages of the pilot project, have been analyzed. Not only the oil recovery but also the tracers, polymer, alcohol and chloride histories have been successfully matched with field results. Simulation results indicatemore » that, for this fresh water reservoir, the salinity gradient during the preflush and the resulting calcium pickup by the surfactant slug played a major role in the success of the project. In addition, analysis of the effects of the crossflow on the performance of the pilot project indicates that, for the well spacing of the pilot, crossflow does not play as important a role as it might for a large-scale project. To improve the numerical efficiency of the simulator, a third order convective differencing scheme has been applied to the simulator. This method can be used with non-uniform mesh, and therefore is suited for simulation studies of large-scale multiwell heterogeneous reservoirs. Comparison of the results with one and two dimensional analytical solutions shows that this method is effective in eliminating numerical dispersion using relatively large grid blocks. Results of one, two and three-dimensional miscible water/tracer flow, water flooding, polymer flooding, and micellar-polymer flooding test problems, and results of grid orientation studies, are presented.« less
Liu, Ze-bin; Cheng, Rui-mei; Xiao, Wen-fa; Guo, Quan-shui; Wang, Na
2015-04-01
The light responses of photosynthesis of two-year-old Distytum chinense seedlings subjected to a simulated reservoir flooding environment in autumn and winter seasons were measured by using a Li-6400 XT portable photosynthesis system, and the light response curves were fitted and analyzed by three models of the rectangular hyperbola, non-rectangular hyperbola and modified rectangular hyperbola to investigate the applicability of different light response models for the D. chinense in different flooding durations and the adaption regulation of light response parameters to flooding stress. The results showed that the fitting effect of the non-rectangular hyperbola model for light response process of D. chinense under normal growth condition and under short-term flooding (15 days of flooding) was better than that of the other two models, while the fitting effect of the modified rectangular hyperbola model for light response process of D. chinense under longer-term flooding (30, 45 and 60 days of flooding) was better than that of the other two models. The modified rectangular hyperbola model gave the best fitted results of light compensation point (LCP) , maximum net photosynthetic rate (P(n max)) and light saturation point (LSP), and the non-rectangular hyperbola model gave the best fitted result of dark respiration rate (R(d)). The apparent quantum yield (Φ), P(n max) and LSP of D. chinense gradually decreased, and the LCP and R(d) of D. chinense gradually increased in early flooding (30 days), but D. chinense gradually produced adaptability for flooding as the flooding duration continued to increase, and various physiological indexes were gradually stabilized. Thus, this species has adaptability to some degree to the flooding environment.
Data assimilation of citizen collected information for real-time flood hazard mapping
NASA Astrophysics Data System (ADS)
Sayama, T.; Takara, K. T.
2017-12-01
Many studies in data assimilation in hydrology have focused on the integration of satellite remote sensing and in-situ monitoring data into hydrologic or land surface models. For flood predictions also, recent studies have demonstrated to assimilate remotely sensed inundation information with flood inundation models. In actual flood disaster situations, citizen collected information including local reports by residents and rescue teams and more recently tweets via social media also contain valuable information. The main interest of this study is how to effectively use such citizen collected information for real-time flood hazard mapping. Here we propose a new data assimilation technique based on pre-conducted ensemble inundation simulations and update inundation depth distributions sequentially when local data becomes available. The propose method is composed by the following two-steps. The first step is based on weighting average of preliminary ensemble simulations, whose weights are updated by Bayesian approach. The second step is based on an optimal interpolation, where the covariance matrix is calculated from the ensemble simulations. The proposed method was applied to case studies including an actual flood event occurred. It considers two situations with more idealized one by assuming continuous flood inundation depth information is available at multiple locations. The other one, which is more realistic case during such a severe flood disaster, assumes uncertain and non-continuous information is available to be assimilated. The results show that, in the first idealized situation, the large scale inundation during the flooding was estimated reasonably with RMSE < 0.4 m in average. For the second more realistic situation, the error becomes larger (RMSE 0.5 m) and the impact of the optimal interpolation becomes comparatively less effective. Nevertheless, the applications of the proposed data assimilation method demonstrated a high potential of this method for assimilating citizen collected information for real-time flood hazard mapping in the future.
A chemical EOR benchmark study of different reservoir simulators
NASA Astrophysics Data System (ADS)
Goudarzi, Ali; Delshad, Mojdeh; Sepehrnoori, Kamy
2016-09-01
Interest in chemical EOR processes has intensified in recent years due to the advancements in chemical formulations and injection techniques. Injecting Polymer (P), surfactant/polymer (SP), and alkaline/surfactant/polymer (ASP) are techniques for improving sweep and displacement efficiencies with the aim of improving oil production in both secondary and tertiary floods. There has been great interest in chemical flooding recently for different challenging situations. These include high temperature reservoirs, formations with extreme salinity and hardness, naturally fractured carbonates, and sandstone reservoirs with heavy and viscous crude oils. More oil reservoirs are reaching maturity where secondary polymer floods and tertiary surfactant methods have become increasingly important. This significance has added to the industry's interest in using reservoir simulators as tools for reservoir evaluation and management to minimize costs and increase the process efficiency. Reservoir simulators with special features are needed to represent coupled chemical and physical processes present in chemical EOR processes. The simulators need to be first validated against well controlled lab and pilot scale experiments to reliably predict the full field implementations. The available data from laboratory scale include 1) phase behavior and rheological data; and 2) results of secondary and tertiary coreflood experiments for P, SP, and ASP floods under reservoir conditions, i.e. chemical retentions, pressure drop, and oil recovery. Data collected from corefloods are used as benchmark tests comparing numerical reservoir simulators with chemical EOR modeling capabilities such as STARS of CMG, ECLIPSE-100 of Schlumberger, REVEAL of Petroleum Experts. The research UTCHEM simulator from The University of Texas at Austin is also included since it has been the benchmark for chemical flooding simulation for over 25 years. The results of this benchmark comparison will be utilized to improve chemical design for field-scale studies using commercial simulators. The benchmark tests illustrate the potential of commercial simulators for chemical flooding projects and provide a comprehensive table of strengths and limitations of each simulator for a given chemical EOR process. Mechanistic simulations of chemical EOR processes will provide predictive capability and can aid in optimization of the field injection projects. The objective of this paper is not to compare the computational efficiency and solution algorithms; it only focuses on the process modeling comparison.
Increasing Flood Risk due to Run-off Outflow near Estuarine City during Storm Event
NASA Astrophysics Data System (ADS)
Son, S.; Lee, C.; Do, K.; Jung, T.
2017-12-01
Tropical cyclone easily causes inundation damage to low-lying coastal area and the damage may be amplified due to tide motion, sea-level rise, riverine discharges. Specifically, typhoons are accompanied by intensive rainfall, which will of course raise the river water level and thus enhance the flooding damages. If the tidal cycle coincides the high water, flooding will be even aggravated. In the present study, we simulated storm surge motions at the coastal area considering combined effects of tidal and river discharge with aim to improve the accuracy of flooding prediction. The quasi 3-dimension ocean circulation model, Delf3D was used which solves the unsteady shallow water equation in the 2D and 3D. Since Delft3D is much applicable to accommodate the indirect flooding factors such as riverine discharge and short waves, outer-coupled modeling system was established to account for combined tide-surge-riverine discharge effects. In such integrated system, 11 tidal constituents were input as open boundary condition using TPXO 7.2 model, while the water level per unit time was preliminary calculated by HEC-HMS model and input as the upstream boundary conditions for river inside the domain. Typhoon MAEMI which attacked Masan city located at southern coast of South Korea and caused severe inundation damages in 2003 was selected for the study event. Basic information for typhoon such as path, wind speed, atmospheric pressure every 3 hours was provided by the Korea Meteorological Agency and was adopted. The simulation was implemented with tide and storm surge boundary conditions focusing on the target area, Masan, while the additional consideration on the discharge of the river inside the domain was also made. Simulated water level at the fixed location was compared to the observation for its verification and the extent of inundation areas of Masan were compared between observed and calculated. The marginal contribution of riverine discharge on the flooding area(or depth) was assessed by comparing tide-surge with tide-surge-riverine discharge simulations. Finally, the importance of the specific consideration on the riverine discharge during storm surge modeling can be addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Lai R.; Qian, Yun
2009-02-12
Twenty years of regional climate simulated by the Weather Research and Forecasting model for North America has been analyzed to study the influence of the atmospheric rivers and the role of the land surface on heavy precipitation and flooding in the western U.S. Compared to observations, the simulation realistically captured the 95th percentile extreme precipitation, mean precipitation intensity, as well as the mean precipitation and temperature anomalies of all the atmospheric river events between 1980-1999. Contrasting the 1986 President Day and 1997 New Year Day atmospheric river events, differences in atmospheric stability are found to have an influence on themore » spatial distribution of precipitation in the Coastal Range of northern California. Although both cases yield similar amounts of heavy precipitation, the 1997 case was found to produce more runoff compared to the 1986 case. Antecedent soil moisture, the ratio of snowfall to total precipitation (which depends on temperature), and existing snowpack all seem to play a role, leading to a higher runoff to precipitation ratio simulated for the 1997 case. This study underscores the importance of characterizing or simulating atmospheric rivers and the land surface conditions for predicting floods, and for assessing the potential impacts of climate change on heavy precipitation and flooding in the western U.S.« less
Effects of variability in probable maximum precipitation patterns on flood losses
NASA Astrophysics Data System (ADS)
Zischg, Andreas Paul; Felder, Guido; Weingartner, Rolf; Quinn, Niall; Coxon, Gemma; Neal, Jeffrey; Freer, Jim; Bates, Paul
2018-05-01
The assessment of the impacts of extreme floods is important for dealing with residual risk, particularly for critical infrastructure management and for insurance purposes. Thus, modelling of the probable maximum flood (PMF) from probable maximum precipitation (PMP) by coupling hydrological and hydraulic models has gained interest in recent years. Herein, we examine whether variability in precipitation patterns exceeds or is below selected uncertainty factors in flood loss estimation and if the flood losses within a river basin are related to the probable maximum discharge at the basin outlet. We developed a model experiment with an ensemble of probable maximum precipitation scenarios created by Monte Carlo simulations. For each rainfall pattern, we computed the flood losses with a model chain and benchmarked the effects of variability in rainfall distribution with other model uncertainties. The results show that flood losses vary considerably within the river basin and depend on the timing and superimposition of the flood peaks from the basin's sub-catchments. In addition to the flood hazard component, the other components of flood risk, exposure, and vulnerability contribute remarkably to the overall variability. This leads to the conclusion that the estimation of the probable maximum expectable flood losses in a river basin should not be based exclusively on the PMF. Consequently, the basin-specific sensitivities to different precipitation patterns and the spatial organization of the settlements within the river basin need to be considered in the analyses of probable maximum flood losses.
Capabilities of stochastic rainfall models as data providers for urban hydrology
NASA Astrophysics Data System (ADS)
Haberlandt, Uwe
2017-04-01
For planning of urban drainage systems using hydrological models, long, continuous precipitation series with high temporal resolution are needed. Since observed time series are often too short or not available everywhere, the use of synthetic precipitation is a common alternative. This contribution compares three precipitation models regarding their suitability to provide 5 minute continuous rainfall time series for a) sizing of drainage networks for urban flood protection and b) dimensioning of combined sewage systems for pollution reduction. The rainfall models are a parametric stochastic model (Haberlandt et al., 2008), a non-parametric probabilistic approach (Bárdossy, 1998) and a stochastic downscaling of dynamically simulated rainfall (Berg et al., 2013); all models are operated both as single site and multi-site generators. The models are applied with regionalised parameters assuming that there is no station at the target location. Rainfall and discharge characteristics are utilised for evaluation of the model performance. The simulation results are compared against results obtained from reference rainfall stations not used for parameter estimation. The rainfall simulations are carried out for the federal states of Baden-Württemberg and Lower Saxony in Germany and the discharge simulations for the drainage networks of the cities of Hamburg, Brunswick and Freiburg. Altogether, the results show comparable simulation performance for the three models, good capabilities for single site simulations but low skills for multi-site simulations. Remarkably, there is no significant difference in simulation performance comparing the tasks flood protection with pollution reduction, so the models are finally able to simulate both the extremes and the long term characteristics of rainfall equally well. Bárdossy, A., 1998. Generating precipitation time series using simulated annealing. Wat. Resour. Res., 34(7): 1737-1744. Berg, P., Wagner, S., Kunstmann, H., Schädler, G., 2013. High resolution regional climate model simulations for Germany: part I — validation. Climate Dynamics, 40(1): 401-414. Haberlandt, U., Ebner von Eschenbach, A.-D., Buchwald, I., 2008. A space-time hybrid hourly rainfall model for derived flood frequency analysis. Hydrol. Earth Syst. Sci., 12: 1353-1367.
Projected Flood Risks in China based on CMIP5
NASA Astrophysics Data System (ADS)
Xu, Ying
2016-04-01
Based on the simulations from 22 CMIP5 models and in combination with data on population, GDP, arable land, and terrain elevation, the spatial distributions of the flood risk levels are calculated and analyzed under RCP8.5 for the baseline period (1986-2005), the near term future period (2016-2035), the middle term future period (2046-2065), and the long term future period (2080-2099). (1) Areas with higher flood hazard risk levels in the future are concentrated in southeastern China, and the areas with the risk level III continue to expand. The major changes in flood hazard risks will occur in the middle and long term future. (2) In future, the areas of high vulnerability to flood hazards will be located in China's eastern region. In the middle and late 21st century, the extent of the high vulnerability area will expand eastward and its intensity will gradually increase. The highest vulnerability values are found in the provinces of Beijing, Tianjin, Hebei, Henan, Anhui, Shandong, Shanghai, Jiangsu, and in parts of the Pearl River Delta. Furthermore, the major cities in northeast China, as well as Wuhan, Changsha and Nanchang are highly vulnerable. (3) The regions with high flood risk levels will be located in eastern China, in the middle and lower reaches of Yangtze River and stretching northward to Beijing and Tianjin. High-risk flood areas are also occurring in major cities in Northeast China, in some parts of Shaanxi and Shanxi, and in some coastal areas in Southeast China. (4) Compared to the baseline period, the high flood risks will increase on a regional level towards the end of the 21st century, although the areas of flood hazards show little variation. In this paper, the projected future flood risks for different periods were analyzed under the RCP8.5 emission scenarios. By comparing the results with the simulations under the RCP 2.6 and RCP 4.5 scenarios, both scenarios show no differences in the spatial distribution, but in the intensity of flood hazard risks, which are weaker than for the RCP8.5 scenarios. By using the simulations from climate model ensembles to project future flood risks, uncertainty exists for various factors, such as the coarse resolution of global climate models, different approaches to flood assessments, the selection of the weighting coefficients, as well as the used greenhouse gas emission scheme, and the estimations of future population, GDP, and arable land. Therefore, further analysis is needed to reduce the uncertainties of future flood risks.
USDA-ARS?s Scientific Manuscript database
In this study, the flow fields and sediment transport in Lake Pontchartrain during a flood release from Bonnet Carré Spillway (BCS) was simulated using the computational model CCHE2D developed at the National Center for Computational Hydroscience and Engineering (NCCHE), the University of Mississipp...
An evaluation of Computational Fluid dynamics model for flood risk analysis
NASA Astrophysics Data System (ADS)
Di Francesco, Silvia; Biscarini, Chiara; Montesarchio, Valeria
2014-05-01
This work presents an analysis of the hydrological-hydraulic engineering requisites for Risk evaluation and efficient flood damage reduction plans. Most of the research efforts have been dedicated to the scientific and technical aspects of risk assessment, providing estimates of possible alternatives and of the risk associated. In the decision making process for mitigation plan, the contribute of scientist is crucial, due to the fact that Risk-Damage analysis is based on evaluation of flow field ,of Hydraulic Risk and on economical and societal considerations. The present paper will focus on the first part of process, the mathematical modelling of flood events which is the base for all further considerations. The evaluation of potential catastrophic damage consequent to a flood event and in particular to dam failure requires modelling of the flood with sufficient detail so to capture the spatial and temporal evolutions of the event, as well of the velocity field. Thus, the selection of an appropriate mathematical model to correctly simulate flood routing is an essential step. In this work we present the application of two 3D Computational fluid dynamics models to a synthetic and real case study in order to evaluate the correct evolution of flow field and the associated flood Risk . The first model is based on a opensource CFD platform called openFoam. Water flow is schematized with a classical continuum approach based on Navier-Stokes equation coupled with Volume of fluid (VOF) method to take in account the multiphase character of river bottom-water- air systems. The second model instead is based on the Lattice Boltzmann method, an innovative numerical fluid dynamics scheme based on Boltzmann's kinetic equation that represents the flow dynamics at the macroscopic level by incorporating a microscopic kinetic approach. Fluid is seen as composed by particles that can move and collide among them. Simulation results from both models are promising and congruent to experimental results available in literature, thought the LBM model requires less computational effort respect to the NS one.
Assessing and optimising flood control options along the Arachthos river floodplain (Epirus, Greece)
NASA Astrophysics Data System (ADS)
Drosou, Athina; Dimitriadis, Panayiotis; Lykou, Archontia; Kossieris, Panagiotis; Tsoukalas, Ioannis; Efstratiadis, Andreas; Mamassis, Nikos
2015-04-01
We present a multi-criteria simulation-optimization framework for the optimal design and setting of flood protection structures along river banks. The methodology is tested in the lower course of the Arachthos River (Epirus, Greece), downstream of the hydroelectric dam of Pournari. The entire study area is very sensitive, particularly because the river crosses the urban area of Arta, which is located just after the dam. Moreover, extended agricultural areas that are crucial for the local economy are prone to floods. In the proposed methodology we investigate two conflicting criteria, i.e. the minimization of flood hazards (due to damages to urban infrastructures, crops, etc.) and the minimization of construction costs of the essential hydraulic structures (e.g. dikes). For the hydraulic simulation we examine two flood routing models, named 1D HEC-RAS and quasi-2D LISFLOOD, whereas the optimization is carried out through the Surrogate-Enhanced Evolutionary Annealing-Simplex (SE-EAS) algorithm that couples the strengths of surrogate modeling with the effectiveness and efficiency of the EAS method.
Lenz, Bernard N.; Saad, David A.; Fitzpatrick, Faith A.
2003-01-01
The effects of land cover on flooding and base-flow characteristics of Whittlesey Creek, Bayfield County, Wis., were examined in a study that involved ground-water-flow and rainfall-runoff modeling. Field data were collected during 1999-2001 for synoptic base flow, streambed head and temperature, precipitation, continuous streamflow and stream stage, and other physical characteristics. Well logs provided data for potentiometric-surface altitudes and stratigraphic descriptions. Geologic, soil, hydrography, altitude, and historical land-cover data were compiled into a geographic information system and used in two ground-water-flow models (GFLOW and MODFLOW) and a rainfall-runoff model (SWAT). A deep ground-water system intersects Whittlesey Creek near the confluence with the North Fork, producing a steady base flow of 17?18 cubic feet per second. Upstream from the confluence, the creek has little or no base flow; flow is from surface runoff and a small amount of perched ground water. Most of the base flow to Whittlesey Creek originates as recharge through the permeable sands in the center of the Bayfield Peninsula to the northwest of the surface-water-contributing basin. Based on simulations, model-wide changes in recharge caused a proportional change in simulated base flow for Whittlesey Creek. Changing the simulated amount of recharge by 25 to 50 percent in only the ground-water-contributing area results in relatively small changes in base flow to Whittlesey Creek (about 2?11 percent). Simulated changes in land cover within the Whittlesey Creek surface-water-contributing basin would have minimal effects on base flow and average annual runoff, but flood peaks (based on daily mean flows on peak-flow days) could be affected. Based on the simulations, changing the basin land cover to a reforested condition results in a reduction in flood peaks of about 12 to 14 percent for up to a 100-yr flood. Changing the basin land cover to 25 percent urban land or returning basin land cover to the intensive row-crop agriculture of the 1920s results in flood peaks increasing by as much as 18 percent. The SWAT model is limited to a daily time step, which is adequate for describing the surface-water/ground-water interaction and percentage changes. It may not, however, be adequate in describing peak flow because the instantaneous peak flow in Whittlesey Creek during a flood can be more than twice the magnitude of the daily mean flow during that same flood. In addition, the storage and infiltration capacities of wetlands in the basin are not fully understood and need further study.
NASA Astrophysics Data System (ADS)
Wang, F.; Annable, M. D.; Jawitz, J. W.
2012-12-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a PCE-contaminated dry cleaner site, located in Jacksonville, Florida. The EST is an analytical solution with field-measurable input parameters. Here, measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ alcohol (ethanol) flood. In addition, a simulated partitioning tracer test from a calibrated spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The ethanol prediction based on both the field partitioning tracer test and the UTCHEM tracer test simulation closely matched the field data. The PCE EST prediction showed a peak shift to an earlier arrival time that was concluded to be caused by well screen interval differences between the field tracer test and alcohol flood. This observation was based on a modeling assessment of potential factors that may influence predictions by using UTCHEM simulations. The imposed injection and pumping flow pattern at this site for both the partitioning tracer test and alcohol flood was more complex than the natural gradient flow pattern (NGFP). Both the EST model and UTCHEM were also used to predict PCE dissolution under natural gradient conditions, with much simpler flow patterns than the forced-gradient double five spot of the alcohol flood. The NGFP predictions based on parameters determined from tracer tests conducted with complex flow patterns underestimated PCE concentrations and total mass removal. This suggests that the flow patterns influence aqueous dissolution and that the aqueous dissolution under the NGFP is more efficient than dissolution under complex flow patterns.
NASA Astrophysics Data System (ADS)
Saleh, F.; Garambois, P. A.; Biancamaria, S.
2017-12-01
Floods are considered the major natural threats to human societies across all continents. Consequences of floods in highly populated areas are more dramatic with losses of human lives and substantial property damage. This risk is projected to increase with the effects of climate change, particularly sea-level rise, increasing storm frequencies and intensities and increasing population and economic assets in such urban watersheds. Despite the advances in computational resources and modeling techniques, significant gaps exist in predicting complex processes and accurately representing the initial state of the system. Improving flood prediction models and data assimilation chains through satellite has become an absolute priority to produce accurate flood forecasts with sufficient lead times. The overarching goal of this work is to assess the benefits of the Surface Water Ocean Topography SWOT satellite data from a flood prediction perspective. The near real time methodology is based on combining satellite data from a simulator that mimics the future SWOT data, numerical models, high resolution elevation data and real-time local measurement in the New York/New Jersey area.
Hydrodynamic modeling of urban flooding taking into account detailed data about city infrastructure
NASA Astrophysics Data System (ADS)
Belikov, Vitaly; Norin, Sergey; Aleksyuk, Andrey; Krylenko, Inna; Borisova, Natalya; Rumyantsev, Alexey
2017-04-01
Flood waves moving across urban areas have specific features. Thus, the linear objects of infrastructure (such as embankments, roads, dams) can change the direction of flow or block the water movement. On the contrary, paved avenues and wide streets in the cities contribute to the concentration of flood waters. Buildings create an additional resistance to the movement of water, which depends on the urban density and the type of constructions; this effect cannot be completely described by Manning's resistance law. In addition, part of the earth surface, occupied by buildings, is excluded from the flooded area, which results in a substantial (relative to undeveloped areas) increase of the depth of flooding, especially for unsteady flow conditions. An approach to numerical simulation of urban areas flooding that consists in direct allocating of all buildings and structures on the computational grid are proposed. This can be done in almost full automatic way with usage of modern software. Real geometry of all objects of infrastructure can be taken into account on the base of highly detailed digital maps and satellite images. The calculations based on two-dimensional Saint-Venant equations on irregular adaptive computational meshes, which can contain millions of cells and take into account tens of thousands of buildings and other objects of infrastructure. Flood maps, received as result of modeling, are the basis for the damage and risk assessment for urban areas. The main advantage of the developed method is high-precision calculations, realistic modeling results and appropriate graphical display of the flood dynamics and dam-break wave's propagation on urban areas. Verification of this method has been done on the experimental data and real events simulations, including catastrophic flooding of the Krymsk city in 2012 year.
Increasing risk of great floods in a changing climate
Milly, P.C.D.; Wetherald, R.T.; Dunne, K.A.; Delworth, T.L.
2002-01-01
Radiative effects of anthropogenic changes in atmospheric composition are expected to cause climate changes, in particular an intensification of the global water cycle with a consequent increase in flood risk. But the detection of anthropogenically forced changes in flooding is difficult because of the substantial natural variability; the dependence of streamflow trends on flow regime further complicates the issue. Here we investigate the changes in risk of great floods - that is, floods with discharges exceeding 100-year levels from basins larger than 200,000 km2 - using both streamflow measurements and numerical simulations of the anthropogenic climate change associated with greenhouse gases and direct radiative effects of sulphate aerosols. We find that the frequency of great floods increased substantially during the twentieth century. The recent emergence of a statistically significant positive trend in risk of great floods is consistent with results from the climate model, and the model suggests that the trend will continue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.A.; Lake, L.W.; Sepehrnoori, K.
1988-11-01
The objective of this research is to develop, validate, and apply a comprehensive chemical flooding simulator for chemical recovery processes involving surfactants, polymers, and alkaline chemicals in various combinations. This integrated program includes components of laboratory experiments, physical property modelling, scale-up theory, and numerical analysis as necessary and integral components of the simulation activity. Developing, testing and applying flooding simulator (UTCHEM) to a wide variety of laboratory and reservoir problems involving tracers, polymers, polymer gels, surfactants, and alkaline agent has been continued. Improvements in both the physical-chemical and numerical aspects of UTCHEM have been made which enhance its versatility, accuracymore » and speed. Supporting experimental studies during the past year include relative permeability and trapping of microemulsion, tracer flow studies oil recovery in cores using alcohol free surfactant slugs, and microemulsion viscosity measurements. These have enabled model improvement simulator testing. Another code called PROPACK has also been developed which is used as a preprocessor for UTCHEM. Specifically, it is used to evaluate input to UTCHEM by computing and plotting key physical properties such as phase behavior interfacial tension.« less
Huizinga, Richard J.
2008-01-01
In cooperation with the Missouri Department of Transportation, the U.S. Geological Survey determined hydrologic and hydraulic parameters for the Gasconade River at the site of a proposed bridge replacement and highway realignment of State Highway 17 near Waynesville, Missouri. Information from a discontinued streamflow-gaging station on the Gasconade River near Waynesville was used to determine streamflow statistics for analysis of the 25-, 50-, 100-, and 500-year floods at the site. Analysis of the streamflow-gaging stations on the Gasconade River upstream and downstream from Waynesville indicate that flood peaks attenuate between the upstream gaging station near Hazelgreen and the Waynesville gaging station, such that the peak discharge observed on the Gasconade River near Waynesville will be equal to or only slightly greater (7 percent or less) than that observed near Hazelgreen. A flood event occurred on the Gasconade River in March 2008, and a flood measurement was obtained near the peak at State Highway 17. The elevation of high-water marks from that event indicated it was the highest measured flood on record with a measured discharge of 95,400 cubic feet per second, and a water-surface elevation of 766.18 feet near the location of the Waynesville gaging station. The measurements obtained for the March flood resulted in a shift of the original stage-discharge relation for the Waynesville gaging station, and the streamflow statistics were modified based on the new data. A two-dimensional hydrodynamic flow model was used to simulate flow conditions on the Gasconade River in the vicinity of State Highway 17. A model was developed that represents existing (2008) conditions on State Highway 17 (the 'model of existing conditions'), and was calibrated to the floods of March 20, 2008, December 4, 1982, and April 14, 1945. Modifications were made to the model of existing conditions to create a model that represents conditions along the same reach of the Gasconade River with preliminary proposed replacement bridges and realignment of State Highway 17 (the 'model of proposed conditions'). The models of existing and proposed conditions were used to simulate the 25-, 50-, 100-, and 500-year recurrence floods, as well as the March 20, 2008 flood. Results from the model of proposed conditions show that the proposed replacement structures and realignment of State Highway 17 will result in additional backwater upstream from State Highway 17 ranging from approximately 0.18 foot for the 25-year flood to 0.32 foot for the 500-year flood. Velocity magnitudes in the proposed overflow structures were greater than in the existing structures [by as much as 4.9 feet per second in the left (west) overflow structure for the 500-year flood], and shallow, high-velocity flow occurs at the upstream edges of the abutments of the proposed overflow structures in the 100- and 500-year floods where flow overtops parts of the existing road embankment that will be left in place in the proposed scenario. Velocity magnitude in the main channel of the model of proposed conditions increased by a maximum of 1.2 feet per second over the model of existing conditions, with the maximum occurring approximately 1,500 feet downstream from existing main channel structure J-802.
Tradeoffs among watershed model calibration targets for parameter estimation
Hydrologic models are commonly calibrated by optimizing a single objective function target to compare simulated and observed flows, although individual targets are influenced by specific flow modes. Nash-Sutcliffe efficiency (NSE) emphasizes flood peaks in evaluating simulation f...
Huizinga, Richard J.; Rydlund, Jr., Paul H.
2001-01-01
The evaluation of scour at bridges throughout the State of Missouri has been ongoing since 1991, and most of these evaluations have used one-dimensional hydraulic analysis and application of conventional scour depth equations. Occasionally, the conditions of a site dictate that a more thorough hydraulic assessment is required. To provide the hydraulic parameters required to determine the potential scour depths at the bridge over Horse Island Chute near Chester, Illinois, a two-dimensional finite-element surface-water model (FESWMS-2DH) was used to simulate flood flows in the vicinity of the Missouri State Highway 51 crossing of the Mississippi River and Horse Island Chute. The model was calibrated using flood-flow information collected during the 1993 flood. A flood profile along the Illinois side of the Mississippi River on August 5, 1993, with a corresponding measured discharge of 944,000 cubic feet per second was used to calibrate the model. Two additional flood-flow simulations were run: the flood peak that occurred on August 6, 1993, with a maximum discharge of 1,000,000 cubic feet per second, and the discharge that caused impending overtopping of the road embankment in the vicinity of the Horse Island Chute bridge, with a discharge of 894,000 cubic feet per second (impendent discharge). Hydraulic flow parameters obtained from the simulations were applied to scour depth equations to determine general contraction and local pier and abutment scour depths at the Horse Island Chute bridge. The measured discharge of 944,000 cubic feet per second resulted in 13.3 feet of total combined contraction and local pier scour at Horse Island Chute bridge. The maximum discharge of 1,000,000 cubic feet per second resulted in 15.8 feet of total scour and the impendent discharge of 894,000 cubic feet per second resulted in 11.6 feet of total scour.
NASA Astrophysics Data System (ADS)
Lim, Wee Ho; Yamazaki, Dai; Koirala, Sujan; Hirabayashi, Yukiko; Kanae, Shinjiro; Dadson, Simon J.; Hall, Jim W.
2016-04-01
Global warming increases the water-holding capacity of the atmosphere and this could lead to more intense rainfalls and possibly increasing natural hazards in the form of flooding in some regions. This implies that traditional practice of using historical hydrological records alone is somewhat limited for supporting long-term water infrastructure planning. This has motivated recent global scale studies to evaluate river flood risks (e.g., Hirabayashi et al., 2013, Arnell and Gosling, 2014, Sadoff et al., 2015) and adaptations benefits (e.g., Jongman et al., 2015). To support decision-making in river flood risk reduction, this study takes a further step to examine the benefits and corresponding residual risks for a range of flood protection levels. To do that, we channelled runoff information of a baseline period (forced by observed hydroclimate conditions) and each CMIP5 model (historic and future periods) into a global river routing model called CaMa-Flood (Yamazaki et al., 2011). We incorporated the latest global river width data (Yamazaki et al., 2014) into CaMa-Flood and simulate the river water depth at a spatial resolution of 15 min x 15 min. From the simulated results of baseline period, we use the annual maxima river water depth to fit the Gumbel distribution and prepare the return period-flood risk relationship (involving population and GDP). From the simulated results of CMIP5 model, we also used the annual maxima river water depth to obtain the Gumbel distribution and then estimate the exceedance probability (historic and future periods). We apply the return period-flood risk relationship (above) to the exceedance probability and evaluate the flood protection benefits. We quantify the corresponding residual risks using a mathematical approach that is consistent with the modelling structure of CaMa-Flood. Globally and regionally, we find that the benefits of flood protection level peak somewhere between 20 and 500 years; residual risks diminish substantially when flood protection level exceeds 20 years. These findings might be useful for decision-makers to weight the size of water infrastructure investment and emergency response capacity under climate change. References: Arnell, N.W, Gosling, S.N., 2014. The impact of climate change on river flood risk at the global scale. Climatic Change 122: 127-140, doi: 10.1007/s10584-014-1084-5. Hirabayashi et al., 2013. Global flood risk under climate change. Nature Climate Change 3: 816-821, doi: 10.1038/nclimate1911. Jongman et al., 2015. Declining vulnerability to river floods and the global benefits of adaptation. Proceedings of National Academy of the United States of America 112, E2271-E2280, doi: 10.1073/pnas.1414439112. Sadoff et al., 2015. Securing Water, Sustaining Growth: Report of the GWP/OECD Task Force on Water Security and Sustainable Growth, University of Oxford, UK, 180 pp. Yamazaki et al., 2011. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research 47, W04501, doi: 10.1029/2010wr009726. Yamazaki et al., 2014. Development of the Global Width Database for Large Rivers. Water Resources Research 50, 3467-3480, doi: 10.1002/2013WR014664.
Development of river flood model in lower reach of urbanized river basin
NASA Astrophysics Data System (ADS)
Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio
2014-05-01
Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in the region.
NASA Astrophysics Data System (ADS)
Apel, Heiko; Martínez Trepat, Oriol; Nghia Hung, Nguyen; Thi Chinh, Do; Merz, Bruno; Viet Dung, Nguyen
2016-04-01
Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either a fluvial or pluvial flood hazard, studies of a combined fluvial and pluvial flood hazard are hardly available. Thus this study aims to analyse a fluvial and a pluvial flood hazard individually, but also to develop a method for the analysis of a combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as an example. In this tropical environment the annual monsoon triggered floods of the Mekong River, which can coincide with heavy local convective precipitation events, causing both fluvial and pluvial flooding at the same time. The fluvial flood hazard was estimated with a copula-based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. The pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data and a stochastic rainstorm generator. Inundation for all flood scenarios was simulated by a 2-dimensional hydrodynamic model implemented on a Graphics Processing Unit (GPU) for time-efficient flood propagation modelling. The combined fluvial-pluvial flood scenarios were derived by adding rainstorms to the fluvial flood events during the highest fluvial water levels. The probabilities of occurrence of the combined events were determined assuming independence of the two flood types and taking the seasonality and probability of coincidence into account. All hazards - fluvial, pluvial and combined - were accompanied by an uncertainty estimation taking into account the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median) and the uncertainty by percentile maps. The results are critically discussed and their usage in flood risk management are outlined.
Uncertainty estimation of simulated water levels for the Mitch flood event in Tegucigalpa
NASA Astrophysics Data System (ADS)
Fuentes Andino, Diana Carolina; Halldin, Sven; Keith, Beven; Chong-Yu, Xu
2013-04-01
Hurricane Mitch in 1998 left a devastating flood in Tegucigalpa, the capital city of Honduras. Due to the extremely large magnitude of the Mitch flood, hydrometric measurements were not taken during the event. However, post-event indirect measurements of the discharge were obtained by the U.S. Geological Survey (USGS) and post-event surveyed high water marks were obtained by the Japan International Cooperation agency (JICA). This work proposes a methodology to simulate the water level during the Mitch event when the available data is associated with large uncertainty. The results of the two-dimensional hydrodynamic model LISFLOOD-FP will be evaluated using the Generalized Uncertainty Estimation (GLUE) framework. The main challenge in the proposed methodology is to formulate an approach to evaluate the model results when there are large uncertainties coming from both the model parameters and the evaluation data.
NASA Astrophysics Data System (ADS)
Florian, Ehmele; Michael, Kunz
2016-04-01
Several major flood events occurred in Germany in the past 15-20 years especially in the eastern parts along the rivers Elbe and Danube. Examples include the major floods of 2002 and 2013 with an estimated loss of about 2 billion Euros each. The last major flood events in the State of Baden-Württemberg in southwest Germany occurred in the years 1978 and 1993/1994 along the rivers Rhine and Neckar with an estimated total loss of about 150 million Euros (converted) each. Flood hazard originates from a combination of different meteorological, hydrological and hydraulic processes. Currently there is no defined methodology available for evaluating and quantifying the flood hazard and related risk for larger areas or whole river catchments instead of single gauges. In order to estimate the probable maximum loss for higher return periods (e.g. 200 years, PML200), a stochastic model approach is designed since observational data are limited in time and space. In our approach, precipitation is linearly composed of three elements: background precipitation, orographically-induces precipitation, and a convectively-driven part. We use linear theory of orographic precipitation formation for the stochastic precipitation model (SPM), which is based on fundamental statistics of relevant atmospheric variables. For an adequate number of historic flood events, the corresponding atmospheric conditions and parameters are determined in order to calculate a probability density function (pdf) for each variable. This method involves all theoretically possible scenarios which may not have happened, yet. This work is part of the FLORIS-SV (FLOod RISk Sparkassen Versicherung) project and establishes the first step of a complete modelling chain of the flood risk. On the basis of the generated stochastic precipitation event set, hydrological and hydraulic simulations will be performed to estimate discharge and water level. The resulting stochastic flood event set will be used to quantify the flood risk and to estimate probable maximum loss (e.g. PML200) for a given property (buildings, industry) portfolio.
A compositional reservoir simulator on distributed memory parallel computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rame, M.; Delshad, M.
1995-12-31
This paper presents the application of distributed memory parallel computes to field scale reservoir simulations using a parallel version of UTCHEM, The University of Texas Chemical Flooding Simulator. The model is a general purpose highly vectorized chemical compositional simulator that can simulate a wide range of displacement processes at both field and laboratory scales. The original simulator was modified to run on both distributed memory parallel machines (Intel iPSC/960 and Delta, Connection Machine 5, Kendall Square 1 and 2, and CRAY T3D) and a cluster of workstations. A domain decomposition approach has been taken towards parallelization of the code. Amore » portion of the discrete reservoir model is assigned to each processor by a set-up routine that attempts a data layout as even as possible from the load-balance standpoint. Each of these subdomains is extended so that data can be shared between adjacent processors for stencil computation. The added routines that make parallel execution possible are written in a modular fashion that makes the porting to new parallel platforms straight forward. Results of the distributed memory computing performance of Parallel simulator are presented for field scale applications such as tracer flood and polymer flood. A comparison of the wall-clock times for same problems on a vector supercomputer is also presented.« less
NASA Astrophysics Data System (ADS)
Vergara, H. J.; Kirstetter, P.; Gourley, J. J.; Flamig, Z.; Hong, Y.
2015-12-01
The macro scale patterns of simulated streamflow errors are studied in order to characterize uncertainty in a hydrologic modeling system forced with the Multi-Radar/Multi-Sensor (MRMS; http://mrms.ou.edu) quantitative precipitation estimates for flood forecasting over the Conterminous United States (CONUS). The hydrologic model is centerpiece of the Flooded Locations And Simulated Hydrograph (FLASH; http://flash.ou.edu) real-time system. The hydrologic model is implemented at 1-km/5-min resolution to generate estimates of streamflow. Data from the CONUS-wide stream gauge network of the United States' Geological Survey (USGS) were used as a reference to evaluate the discrepancies with the hydrological model predictions. Streamflow errors were studied at the event scale with particular focus on the peak flow magnitude and timing. A total of 2,680 catchments over CONUS and 75,496 events from a 10-year period are used for the simulation diagnostic analysis. Associations between streamflow errors and geophysical factors were explored and modeled. It is found that hydro-climatic factors and radar coverage could explain significant underestimation of peak flow in regions of complex terrain. Furthermore, the statistical modeling of peak flow errors shows that other geophysical factors such as basin geomorphometry, pedology, and land cover/use could also provide explanatory information. Results from this research demonstrate the utility of uncertainty characterization in providing guidance to improve model adequacy, parameter estimates, and input quality control. Likewise, the characterization of uncertainty enables probabilistic flood forecasting that can be extended to ungauged locations.
System dynamics model for predicting floods from snowmelt in North American prairie watersheds
NASA Astrophysics Data System (ADS)
Li, L.; Simonovic, S. P.
2002-09-01
This study uses a system dynamics approach to explore hydrological processes in the geographic locations where the main contribution to flooding is coming from the snowmelt. Temperature is identified as a critical factor that affects watershed hydrological processes. Based on the dynamic processes of the hydrologic cycle occurring in a watershed, the feedback relationships linking the watershed structure, as well as the climate factors, to the streamflow generation were identified prior to the development of a system dynamics model. The model is used to simulate flood patterns generated by snowmelt under temperature change in the spring. Model structure captures a vertical water balance using five tanks representing snow, interception, surface, subsurface and groundwater storage. Calibration and verification results show that temperature change and snowmelt play a key role in flood generation. Results indicate that simulated values match observed data very well. The goodness-of-fit between simulated and observed peak flow data is measured using coefficient of efficiency, coefficient of determination and square of the residual mass curve coefficient. For the Assiniboine River all three measures were in the interval between 0·92 and 0·96 and for the Red River between 0·89 and 0·97. The model is capable of capturing the essential dynamics of streamflow formation. Model input requires a set of initial values for all state variables and the time series of daily temperature and precipitation information. Data from the Red River Basin, shared by Canada and the USA, are used in the model development and testing.
NASA Astrophysics Data System (ADS)
Rössler, O.; Froidevaux, P.; Börst, U.; Rickli, R.; Martius, O.; Weingartner, R.
2014-06-01
A rain-on-snow flood occurred in the Bernese Alps, Switzerland, on 10 October 2011, and caused significant damage. As the flood peak was unpredicted by the flood forecast system, questions were raised concerning the causes and the predictability of the event. Here, we aimed to reconstruct the anatomy of this rain-on-snow flood in the Lötschen Valley (160 km2) by analyzing meteorological data from the synoptic to the local scale and by reproducing the flood peak with the hydrological model WaSiM-ETH (Water Flow and Balance Simulation Model). This in order to gain process understanding and to evaluate the predictability. The atmospheric drivers of this rain-on-snow flood were (i) sustained snowfall followed by (ii) the passage of an atmospheric river bringing warm and moist air towards the Alps. As a result, intensive rainfall (average of 100 mm day-1) was accompanied by a temperature increase that shifted the 0° line from 1500 to 3200 m a.s.l. (meters above sea level) in 24 h with a maximum increase of 9 K in 9 h. The south-facing slope of the valley received significantly more precipitation than the north-facing slope, leading to flooding only in tributaries along the south-facing slope. We hypothesized that the reason for this very local rainfall distribution was a cavity circulation combined with a seeder-feeder-cloud system enhancing local rainfall and snowmelt along the south-facing slope. By applying and considerably recalibrating the standard hydrological model setup, we proved that both latent and sensible heat fluxes were needed to reconstruct the snow cover dynamic, and that locally high-precipitation sums (160 mm in 12 h) were required to produce the estimated flood peak. However, to reproduce the rapid runoff responses during the event, we conceptually represent likely lateral flow dynamics within the snow cover causing the model to react "oversensitively" to meltwater. Driving the optimized model with COSMO (Consortium for Small-scale Modeling)-2 forecast data, we still failed to simulate the flood because COSMO-2 forecast data underestimated both the local precipitation peak and the temperature increase. Thus we conclude that this rain-on-snow flood was, in general, predictable, but requires a special hydrological model setup and extensive and locally precise meteorological input data. Although, this data quality may not be achieved with forecast data, an additional model with a specific rain-on-snow configuration can provide useful information when rain-on-snow events are likely to occur.
Heimann, David C.
2001-01-01
This report presents the results of a study conducted by the U.S. Geological Survey in cooperation with the Missouri Department of Conservation to describe the hydrology, sediment transport, and sediment deposition along a selected reach of Long Branch Creek in Macon County, Missouri. The study was designed to investigate spatial and temporal characteristics of sediment deposition in a remnant forested riparian area and compare these factors by magnitude of discharge events both within and outside the measured range of flood magnitudes. The two-dimensional finite-element numerical models RMA2-WES and SED2D-WES were used in conjunction with measured data to simulate streamflow and sediment transport/deposition characteristics during 2-, 5-, 10-, and 25-year recurrence interval floods. Spatial analysis of simulated sediment deposition results indicated that mean deposition in oxbows and secondary channels exceeded that of the remaining floodplain areas during the 2-, 5-, 10-, and 25-year recurrence interval floods. The simulatedmass deposition per area for oxbows and secondary channels was 1.1 to 1.4 centimeters per square meter compared with 0.1 to 0.60 centimeters per square meter for the remaining floodplain. The temporal variability of total incremental floodplain deposition during a flood was found to be strongly tied to sediment inflowconcentrations. Most floodplain deposition, therefore, occurred at the beginning of the streamflow events and corresponded to peaks in sediment discharge. Simulated total sediment deposition in oxbows and secondary channels increased in the 2-year through 10-year floods and decreased in the 25- year flood while remaining floodplain deposition was highest for the 25-year flood. Despite increases in sediment inflows from the 2-year through 25-year floods, the retention ratio of sediments (the ratio of floodplain deposition to inflow load) was greatest for the 5-year flood and least for the 25-year flood. The decrease in retention ratio at greater flows is likely the result of higher velocities on the floodplain, resulting in higher bed shear stress, greater suspension time of deposited material, and greater sediment transport through the system. Simulated sediment deposition was most sensitive to sediment inflow concentrations and modification of floodplain roughness?factors that can be controlled through management practices. The increase in floodplain sediment deposition resulting from a simulated increase in vegetation density (increase in floodplain roughness from a Manning?s n of 0.11 to 0.12) was 142,000 kilograms, or 6.5 percent for a 10-year recurrence interval flood. This increase was comparable to total oxbow and secondary channel depositionmass in the simulations, but would result in amean increase in floodplain deposition thickness of only 0.025 centimeter. The hydrodynamic model results show the importance of the secondary channels and meander cutoff channels in this system because these areas quickly bring floodwaters and sediment to areas not close to the main channel. The meander cutoff channels in the simulation also effectively decrease flow and velocities in somemain channel sections thereby affecting sediment deposition in the vicinity of these features.
A new hydrological model for estimating extreme floods in the Alps
NASA Astrophysics Data System (ADS)
Receanu, R. G.; Hertig, J.-A.; Fallot, J.-M.
2012-04-01
Protection against flooding is very important for a country like Switzerland with a varied topography and many rivers and lakes. Because of the potential danger caused by extreme precipitation, structural and functional safety of large dams must be guaranteed to withstand the passage of an extreme flood. We introduce a new distributed hydrological model to calculate the PMF from a PMP which is spatially and temporally distributed using clouds. This model has permitted the estimation of extreme floods based on the distributed PMP and the taking into account of the specifics of alpine catchments, in particular the small size of the basins, the complex topography, the large lakes, snowmelt and glaciers. This is an important evolution compared to other models described in the literature, as they mainly use a uniform distribution of extreme precipitation all over the watershed. This paper presents the results of calculation with the developed rainfall-runoff model, taking into account measured rainfall and comparing results to observed flood events. This model includes three parts: surface runoff, underground flow and melting snow. Two Swiss watersheds are studied, for which rainfall data and flow rates are available for a considerably long period, including several episodes of heavy rainfall with high flow events. From these events, several simulations are performed to estimate the input model parameters such as soil roughness and average width of rivers in case of surface runoff. Following the same procedure, the parameters used in the underground flow simulation are also estimated indirectly, since direct underground flow and exfiltration measurements are difficult to obtain. A sensitivity analysis of the parameters is performed at the first step to define more precisely the boundary and initial conditions. The results for the two alpine basins, validated with the Nash equation, show a good correlation between the simulated and observed flows. This good correlation shows that the model is valid and gives us the confidence that the results can be extrapolated to phenomena of extreme rainfall of PMP type.
Digital Rock Simulation of Flow in Carbonate Samples
NASA Astrophysics Data System (ADS)
Klemin, D.; Andersen, M.
2014-12-01
Reservoir engineering has becomes more complex to deal with current challenges, so core analysts must understand and model pore geometries and fluid behaviors at pores scales more rapidly and realistically. We introduce an industry-unique direct hydrodynamic pore flow simulator that operates on pore geometries from digital rock models obtained using microCT or 3D scanning electron microscope (SEM) images. The PVT and rheological models used in the simulator represent real reservoir fluids. Fluid-solid interactions are introduced using distributed micro-scale wetting properties. The simulator uses density functional approach applied for hydrodynamics of complex systems. This talk covers selected applications of the simulator. We performed microCT scanning of six different carbonate rock samples from homogeneous limestones to vuggy carbonates. From these, we constructed digital rock models representing pore geometries for the simulator. We simulated nonreactive tracer flow in all six digital models using a digital fluid description that included a passive tracer solution. During the simulation, we evaluated the composition of the effluent. Results of tracer flow simulations corresponded well with experimental data of nonreactive tracer floods for the same carbonate rock types. This simulation data of the non-reactive tracer flow can be used to calculate the volume of the rock accessible by the fluid, which can be further used to predict response of a porous medium to a reactive fluid. The described digital core analysis workflow provides a basis for a wide variety of activities, including input to design acidizing jobs and evaluating treatment efficiency and EOR economics. Digital rock multiphase flow simulations of a scanned carbonate rock evaluated the effect of wettability on flow properties. Various wetting properties were tested: slightly oil wet, slightly water wet, and water wet. Steady-state relative permeability simulations yielded curves for all three ranges of wetting properties. The wetting variation affected phase mobility and residual phase saturations for primary oil flood and floods with varying ratios of oil and water.
Nested 1D-2D approach for urban surface flood modeling
NASA Astrophysics Data System (ADS)
Murla, Damian; Willems, Patrick
2015-04-01
Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of interactions within the 1D sewer network. Other areas that recorded flooding outside the main streets have been also included with the second mesh resolution for an accurate determination of flood maps (12.5m2 - 50m2). Permeable areas have been identified and used as infiltration zones using the Horton infiltration model. A mesh sensitivity analysis has been performed for the low flood risk areas for a proper model optimization. As outcome of that analysis, the third mesh resolution has been chosen (75m2 - 300m2). Performance tests have been applied for several synthetic design storms as well as historical storm events displaying satisfactory results upon comparing the flood mapping outcomes produced by the different approaches. Accounting for the infiltration in the green city spaces reduces the flood extents in the range 39% - 68%, while the average reduction in flood volume equals 86%. Acknowledgement: Funding for this research was provided by the Interreg IVB NWE programme (project RainGain) and the Belgian Science Policy Office (project PLURISK). The high resolution topographical information data were obtained from the geographical information service AGIV; the original full hydrodynamic sewer network model from the service company Farys, and the InfoWorks licence from Innovyze.
Nuclear Power Plant Mechanical Component Flooding Fragility Experiments Status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, C. L.; Savage, B.; Johnson, B.
This report describes progress on Nuclear Power Plant mechanical component flooding fragility experiments and supporting research. The progress includes execution of full scale fragility experiments using hollow-core doors, design of improvements to the Portal Evaluation Tank, equipment procurement and initial installation of PET improvements, designation of experiments exploiting the improved PET capabilities, fragility mathematical model development, Smoothed Particle Hydrodynamic simulations, wave impact simulation device research, and pipe rupture mechanics research.
Dam break analysis and flood inundation map of Krisak dam for emergency action plan
NASA Astrophysics Data System (ADS)
Juliastuti, Setyandito, Oki
2017-11-01
The Indonesian Regulation which refers to the ICOLD Regulation (International Committee on Large Dam required have the Emergency Action Plan (EAP) guidelines because of the dams have potential failure. In EAP guidelines there is a management of evacuation where the determination of the inundation map based on flood modeling. The purpose of the EAP is to minimize the risk of loss of life and property in downstream which caused by dam failure. This paper will describe about develop flood modeling and inundation map in Krisak dam using numerical methods through dam break analysis (DBA) using hydraulic model Zhong Xing HY-21. The approaches of dam failure simulation are overtopping and piping. Overtopping simulation based on quadrangular, triangular and trapezium fracture. Piping simulation based on cracks of orifice. Using results of DBA, hazard classification of Krisak dam is very high. The nearest village affected dam failure is Singodutan village (distance is 1.45 kilometer from dam) with inundation depth is 1.85 meter. This result can be used by stakeholders such as emergency responders and the community at risk in formulating evacuation procedure.
NASA Astrophysics Data System (ADS)
Ersoy, Mehmet; Lakkis, Omar; Townsend, Philip
2016-04-01
The flow of water in rivers and oceans can, under general assumptions, be efficiently modelled using Saint-Venant's shallow water system of equations (SWE). SWE is a hyperbolic system of conservation laws (HSCL) which can be derived from a starting point of incompressible Navier-Stokes. A common difficulty in the numerical simulation of HSCLs is the conservation of physical entropy. Work by Audusse, Bristeau, Perthame (2000) and Perthame, Simeoni (2001), proposed numerical SWE solvers known as kinetic schemes (KSs), which can be shown to have desirable entropy-consistent properties, and are thus called well-balanced schemes. A KS is derived from kinetic equations that can be integrated into the SWE. In flood risk assessment models the SWE must be coupled with other equations describing interacting meteorological and hydrogeological phenomena such as rain and groundwater flows. The SWE must therefore be appropriately modified to accommodate source and sink terms, so kinetic schemes are no longer valid. While modifications of SWE in this direction have been recently proposed, e.g., Delestre (2010), we depart from the extant literature by proposing a novel model that is "entropy-consistent" and naturally extends the SWE by respecting its kinetic formulation connections. This allows us to derive a system of partial differential equations modelling flow of a one-dimensional river with both a precipitation term and a groundwater flow model to account for potential infiltration and recharge. We exhibit numerical simulations of the corresponding kinetic schemes. These simulations can be applied to both real world flood prediction and the tackling of wider issues on how climate and societal change are affecting flood risk.
NASA Astrophysics Data System (ADS)
Lima, C. H.; Lall, U.
2010-12-01
Flood frequency statistical analysis most often relies on stationary assumptions, where distribution moments (e.g. mean, standard deviation) and associated flood quantiles do not change over time. In this sense, one expects that flood magnitudes and their frequency of occurrence will remain constant as observed in the historical information. However, evidence of inter-annual and decadal climate variability and anthropogenic change as well as an apparent increase in the number and magnitude of flood events across the globe have made the stationary assumption questionable. Here, we show how to estimate flood quantiles (e.g. 100-year flood) at ungauged basins without needing to consider stationarity. A statistical model based on the well known flow-area scaling law is proposed to estimate flood flows at ungauged basins. The slope and intercept scaling law coefficients are assumed time varying and a hierarchical Bayesian model is used to include climate information and reduce parameter uncertainties. Cross-validated results from 34 streamflow gauges located in a nested Basin in Brazil show that the proposed model is able to estimate flood quantiles at ungauged basins with remarkable skills compared with data based estimates using the full record. The model as developed in this work is also able to simulate sequences of flood flows considering global climate changes provided an appropriate climate index developed from the General Circulation Model is used as a predictor. The time varying flood frequency estimates can be used for pricing insurance models, and in a forecast mode for preparations for flooding, and finally, for timing infrastructure investments and location. Non-stationary 95% interval estimation for the 100-year Flood (shaded gray region) and 95% interval for the 100-year flood estimated from data (horizontal dashed and solid lines). The average distribution of the 100-year flood is shown in green in the right side.
Fast Flood damage estimation coupling hydraulic modeling and Multisensor Satellite data
NASA Astrophysics Data System (ADS)
Fiorini, M.; Rudari, R.; Delogu, F.; Candela, L.; Corina, A.; Boni, G.
2011-12-01
Damage estimation requires a good representation of the Elements at risk and their vulnerability, the knowledge of the flooded area extension and the description of the hydraulic forcing. In this work the real time use of a simplified two dimensional hydraulic model constrained by satellite retrieved flooded areas is analyzed. The main features of such a model are computational speed and simple start-up, with no need to insert complex information but a subset of simplified boundary and initial condition. Those characteristics allow the model to be fast enough to be used in real time for the simulation of flooding events. The model fills the gap of information left by single satellite scenes of flooded area, allowing for the estimation of the maximum flooding extension and magnitude. The static information provided by earth observation (like SAR extension of flooded areas at a certain time) are interpreted in a dynamic consistent way and very useful hydraulic information (e.g., water depth, water speed and the evolution of flooded areas)are provided. These information are merged with satellite identification of elements exposed to risk that are characterized in terms of their vulnerability to floods in order to obtain fast estimates of Food damages. The model has been applied in several flooding events occurred worldwide. amongst the other activations in the Mediterranean areas like Veneto (IT) (October 2010), Basilicata (IT) (March 2011) and Shkoder (January 2010 and December 2010) are considered and compared with larger types of floods like the one of Queensland in December 2010.
NASA Astrophysics Data System (ADS)
Breinl, Korbinian; Turkington, Thea
2017-04-01
We developed a new methodology for classifying flood types, which appears to be particularly suitable for climate change impact studies. Climate change is not only expected to change the magnitude and frequency of Alpine floods but also the types of floods. The distribution of existing flood types may change and new flood types may develop. A shift away from solely focusing on the magnitude and frequency of floods in flood hazard assessment and disaster risk management towards the causal types of floods is required as the types and therefore also timing and characteristics of floods will have implications on both the local social and ecological systems. The flood types are classified using k-means clustering of temperature and precipitation indicators, capturing differences in rainfall amounts, antecedent rainfall, snow-cover, and the day of the year. In a first step, we used the open-source multi-site weather generator TripleM coupled with the fast conceptual rainfall-runoff model HBV to extrapolate the observed discharge time series and generate a large inventory of different types of observed flood events and flood types. The weather generator was then parameterized based on projections of rainfall and temperature to simulate future flood types and events. We selected four climate projections (mild dry, mild wet, warm dry and warm wet conditions) from a set of 15, which originated from the EURO-CORDEX dataset. We worked in two catchments in the Austrian and French Alps that have been affected by floods in the past: the medium-sized Salzach catchment in Austria, which is dominated by rainfall driven flooding during the summer and autumn period, and the small Ubaye catchment in the Southern French Alps, which is dominated by rain-on-snow floods in the spring period. The analysis of the simulated future flood types shows clear changes in the distribution and characteristics of flood types in both study areas under the different climate projections examined.
NASA Astrophysics Data System (ADS)
Pfurtscheller, Clemens; Vetter, Michael; Werthmann, Markus
2010-05-01
In times of increasing scarcity of private or public resources and uncertain changes in natural environment caused by climate variations, prevention and risk management against floods and coherent processes in mountainous regions, like debris flows or log jams, should be faced as a main challenge for globalised enterprises whose production facilities are located in flood-prone areas. From an entrepreneurial perspective, vulnerability of production facilities which causes restrictions or a total termination of production processes has to be optimised by means of cost-benefit-principles. Modern production enterprises are subject to globalisation and accompanying aspects, like short order and delivery periods, interlinking production processes and just-in-time manufacturing, so a breakdown of production provokes substantial financial impacts, unemployment and a decline of gross regional product. The aim of the presented project is to identify weak and critical points of the corporate emergency planning ("hot spots") and to assess possible losses triggered by mountainous flood processes using high-resolution digital terrain models (DTM) from airborne LiDAR (ALS). We derive flood-hot spots and model critical locations where the risk of natural hazards is very high. To model those hot spots a flood simulation based on an ALS-DTM has to be calculated. Based on that flood simulation, the flood heights of the overflowed locations which are lower than a threshold are mapped as flood-hot-spots. Then the corporate critical infrastructure, e.g. production facilities or lifelines, which are affected by the flooding, can be figured out. After the identification of hot spots and possible damage potential, the implementation of the results into corporate risk and emergency management guarantees the transdisciplinary approach involving stakeholders, risk and safety management officers and corporate fire brigade. Thus, the interdisciplinary analysis, including remote sensing techniques, like LiDAR, and economic assessment of natural hazards, combining with corporate acting secures production, guarantees income and helps to stabilise region's wealth after major flood events. Beyond that, the assessment of hot spots could be raised as locational issue for greenfield strategy or company foundation.
Using integrated modeling for generating watershed-scale dynamic flood maps for Hurricane Harvey
NASA Astrophysics Data System (ADS)
Saksena, S.; Dey, S.; Merwade, V.; Singhofen, P. J.
2017-12-01
Hurricane Harvey, which was categorized as a 1000-year return period event, produced unprecedented rainfall and flooding in Houston. Although the expected rainfall was forecasted much before the event, there was no way to identify which regions were at higher risk of flooding, the magnitude of flooding, and when the impacts of rainfall would be highest. The inability to predict the location, duration, and depth of flooding created uncertainty over evacuation planning and preparation. This catastrophic event highlighted that the conventional approach to managing flood risk using 100-year static flood inundation maps is inadequate because of its inability to predict flood duration and extents for 500-year or 1000-year return period events in real-time. The purpose of this study is to create models that can dynamically predict the impacts of rainfall and subsequent flooding, so that necessary evacuation and rescue efforts can be planned in advance. This study uses a 2D integrated surface water-groundwater model called ICPR (Interconnected Channel and Pond Routing) to simulate both the hydrology and hydrodynamics for Hurricane Harvey. The methodology involves using the NHD stream network to create a 2D model that incorporates rainfall, land use, vadose zone properties and topography to estimate streamflow and generate dynamic flood depths and extents. The results show that dynamic flood mapping captures the flood hydrodynamics more accurately and is able to predict the magnitude, extent and time of occurrence for extreme events such as Hurricane Harvey. Therefore, integrated modeling has the potential to identify regions that are more susceptible to flooding, which is especially useful for large-scale planning and allocation of resources for protection against future flood risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Lai R.; Qian, Yun
This study examines an ensemble of climate change projections simulated by a global climate model (GCM) and downscaled with a region climate model (RCM) to 40 km spatial resolution for the western North America. One control and three ensemble future climate simulations were produced by the GCM following a business as usual scenario for greenhouse gases and aerosols emissions from 1995 to 2100. The RCM was used to downscale the GCM control simulation (1995-2015) and each ensemble future GCM climate (2040-2060) simulation. Analyses of the regional climate simulations for the Georgia Basin/Puget Sound showed a warming of 1.5-2oC and statisticallymore » insignificant changes in precipitation by the mid-century. Climate change has large impacts on snowpack (about 50% reduction) but relatively smaller impacts on the total runoff for the basin as a whole. However, climate change can strongly affect small watersheds such as those located in the transient snow zone, causing a higher likelihood of winter flooding as a higher percentage of precipitation falls in the form of rain rather than snow, and reduced streamflow in early summer. In addition, there are large changes in the monthly total runoff above the upper 1% threshold (or flood volume) from October through May, and the December flood volume of the future climate is 60% above the maximum monthly flood volume of the control climate. Uncertainty of the climate change projections, as characterized by the spread among the ensemble future climate simulations, is relatively small for the basin mean snowpack and runoff, but increases in smaller watersheds, especially in the transient snow zone, and associated with extreme events. This emphasizes the importance of characterizing uncertainty through ensemble simulations.« less
Estimating parameter values of a socio-hydrological flood model
NASA Astrophysics Data System (ADS)
Holkje Barendrecht, Marlies; Viglione, Alberto; Kreibich, Heidi; Vorogushyn, Sergiy; Merz, Bruno; Blöschl, Günter
2018-06-01
Socio-hydrological modelling studies that have been published so far show that dynamic coupled human-flood models are a promising tool to represent the phenomena and the feedbacks in human-flood systems. So far these models are mostly generic and have not been developed and calibrated to represent specific case studies. We believe that applying and calibrating these type of models to real world case studies can help us to further develop our understanding about the phenomena that occur in these systems. In this paper we propose a method to estimate the parameter values of a socio-hydrological model and we test it by applying it to an artificial case study. We postulate a model that describes the feedbacks between floods, awareness and preparedness. After simulating hypothetical time series with a given combination of parameters, we sample few data points for our variables and try to estimate the parameters given these data points using Bayesian Inference. The results show that, if we are able to collect data for our case study, we would, in theory, be able to estimate the parameter values for our socio-hydrological flood model.
Investigation of flood routing by a dynamic wave model in trapezoidal channels
NASA Astrophysics Data System (ADS)
Sulistyono, B. A.; Wiryanto, L. H.
2017-08-01
The problems of flood wave propagation, in bodies of waters, cause by intense rains or breaking of control structures, represent a great challenge in the mathematical modeling processes. This research concerns about the development and application of a mathematical model based on the Saint Venant's equations, to study the behavior of the propagation of a flood wave in trapezoidal channels. In these equations, the momentum equation transforms to partial differential equation which has two parameters related to cross-sectional area and discharge of the channel. These new formulas have been solved by using an explicit finite difference scheme. In computation procedure, after computing the discharge from the momentum equation, the cross-sectional area will be obtained from the continuity equation for a given point of channel. To evaluate the behavior of the control variables, several scenarios for the main channel as well as for flood waves are considered and different simulations are performed. The simulations demonstrate that for the same bed width, the peak discharge in trapezoidal channel smaller than in rectangular one at a specific distance along the channel length and so, that roughness coefficient and bed slope of the channel play a strong game on the behavior of the flood wave propagation.
Accounting for Rainfall Spatial Variability in Prediction of Flash Floods
NASA Astrophysics Data System (ADS)
Saharia, M.; Kirstetter, P. E.; Gourley, J. J.; Hong, Y.; Vergara, H. J.
2016-12-01
Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 20,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. Next the model is used to predict flash flooding characteristics all over the continental U.S., specifically over regions poorly covered by hydrological observations. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).
NASA Astrophysics Data System (ADS)
Aronica, G. T.; Candela, A.
2007-12-01
SummaryIn this paper a Monte Carlo procedure for deriving frequency distributions of peak flows using a semi-distributed stochastic rainfall-runoff model is presented. The rainfall-runoff model here used is very simple one, with a limited number of parameters and practically does not require any calibration, resulting in a robust tool for those catchments which are partially or poorly gauged. The procedure is based on three modules: a stochastic rainfall generator module, a hydrologic loss module and a flood routing module. In the rainfall generator module the rainfall storm, i.e. the maximum rainfall depth for a fixed duration, is assumed to follow the two components extreme value (TCEV) distribution whose parameters have been estimated at regional scale for Sicily. The catchment response has been modelled by using the Soil Conservation Service-Curve Number (SCS-CN) method, in a semi-distributed form, for the transformation of total rainfall to effective rainfall and simple form of IUH for the flood routing. Here, SCS-CN method is implemented in probabilistic form with respect to prior-to-storm conditions, allowing to relax the classical iso-frequency assumption between rainfall and peak flow. The procedure is tested on six practical case studies where synthetic FFC (flood frequency curve) were obtained starting from model variables distributions by simulating 5000 flood events combining 5000 values of total rainfall depth for the storm duration and AMC (antecedent moisture conditions) conditions. The application of this procedure showed how Monte Carlo simulation technique can reproduce the observed flood frequency curves with reasonable accuracy over a wide range of return periods using a simple and parsimonious approach, limited data input and without any calibration of the rainfall-runoff model.
NASA Astrophysics Data System (ADS)
Wright, N.
2015-12-01
Hydrologic restoration in urban creeks is increasingly regarded as a more sustainable option than traditional grey infrastructures in many countries including the UK and USA. Hydrologic restoration aims to recreate naturally oriented hydro-morphodynamic processes while adding ecological and amenity value to a river corridor. Nevertheless, the long-term hydraulic performance of river restorations is incompletely understood. The aim of this research was to investigate the long-term effects of river restoration on the water storage, flood attenuation and sediment dynamics of two urban creeks through detailed hydro-morphodynamic modelling. The first case study is based on Johnson Creek located at Portland, Oregon, USA, and the second case based on Ouseburn River in Newcastle upon Tyne, N.E. England. This study focuses on the downstream of the Johnson Creek, where creek is reconnected to a restored East Lents floodplain of 0.28 km2. In order to offset the increased urban runoff in the Ouseburn catchment, a number of attenuation ponds were implemented along the river. In this study, an integrated 1D and 2D flood model (ISIS - TUFLOW) and the recently updated layer-based hydro-morphodynamic model have been used to understand the long-term impacts of these restorations on the flood and sediment dynamics. The event-based simulations (500 year, 100 year, 50 year, 10 year and 5 year), as well as the continuous simulations based on the historical flow datasets were systematically undertaken. Simulation results showed that the flood storage as a result of river restoration attenuate the flood peak by up to 25% at the downstream. Results also indicated that about 30% of the sediments generated from the upstream deposited in the resorted regions. The spatial distribution and amount of short and long-term sediment deposition on the floodplain and pond are demonstrated, and the resulting potential loss of the flood storage capacity are analysed and discussed.
The Impact of Corps Flood Control Reservoirs in the June 2008 Upper Mississippi Flood
NASA Astrophysics Data System (ADS)
Charley, W. J.; Stiman, J. A.
2008-12-01
The US Army Corps of Engineers is responsible for a multitude of flood control project on the Mississippi River and its tributaries, including levees that protect land from flooding, and dams to help regulate river flows. The first six months of 2008 were the wettest on record in the upper Mississippi Basin. During the first 2 weeks of June, rainfall over the Midwest ranged from 6 to as much as 16 inches, overwhelming the flood protection system, causing massive flooding and damage. Most severely impacted were the States of Iowa, Illinois, Indiana, Missouri, and Wisconsin. In Iowa, flooding occurred on almost every river in the state. On the Iowa River, record flooding occurred from Marshalltown, Iowa, downstream to its confluence with the Mississippi River. At several locations, flooding exceeded the 500-year event. The flooding affected agriculture, transportation, and infrastructure, including homes, businesses, levees, and other water-control structures. It has been estimated that there was at least 7 billion dollars in damages. While the flooding in Iowa was extraordinary, Corps of Engineers flood control reservoirs helped limit damage and prevent loss of life, even though some reservoirs were filled beyond their design capacity. Coralville Reservoir on the Iowa River, for example, filled to 135% of its design flood storage capacity, with stage a record five feet over the crest of the spillway. In spite of this, the maximum reservoir release was limited to 39,500 cfs, while a peak inflow of 57,000 cfs was observed. CWMS, the Corps Water Management System, is used to help regulate Corps reservoirs, as well as track and evaluate flooding and flooding potential. CWMS is a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. It encompasses data collection, validation and transformation, data storage, visualization, real time model simulation for decision-making support, and data dissemination. The system uses precipitation and flow data, collected in real-time, along with forecasted flow from the National Weather Service to model and optimize reservoir operations and forecast downstream flows and stages, providing communities accurate and timely information to aid their flood-fighting. This involves integrating several simulation modeling programs, including HEC-HMS to forecast flows, HEC-ResSim to model reservoir operations and HEC-RAS to compute forecasted stage hydrographs. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using ArcInfo. By varying future precipitation and releases, engineers can evaluate different "What if?" scenarios. The effectiveness of this tool and Corps reservoirs are examined.
Development of cost-effective surfactant flooding technology. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.A.; Sepehrnoori, K.
1996-11-01
Task 1 of this research was the development of a high-resolution, fully implicit, finite-difference, multiphase, multicomponent, compositional simulator for chemical flooding. The major physical phenomena modeled in this simulator are dispersion, heterogeneous permeability and porosity, adsorption, interfacial tension, relative permeability and capillary desaturation, compositional phase viscosity, compositional phase density and gravity effects, capillary pressure, and aqueous-oleic-microemulsion phase behavior. Polymer and its non-Newtonian rheology properties include shear-thinning viscosity, permeability reduction, inaccessible pore volume, and adsorption. Options of constant or variable space grids and time steps, constant-pressure or constant-rate well conditions, horizontal and vertical wells, and multiple slug injections are also availablemore » in the simulator. The solution scheme used in this simulator is fully implicit. The pressure equation and the mass-conservation equations are solved simultaneously for the aqueous-phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used that greatly reduce numerical dispersion effects. Task 2 was the optimization of surfactant flooding. The code UTCHEM was used to simulate surfactant polymer flooding.« less
Implementation of remote sensing data for flood forecasting
NASA Astrophysics Data System (ADS)
Grimaldi, S.; Li, Y.; Pauwels, V. R. N.; Walker, J. P.; Wright, A. J.
2016-12-01
Flooding is one of the most frequent and destructive natural disasters. A timely, accurate and reliable flood forecast can provide vital information for flood preparedness, warning delivery, and emergency response. An operational flood forecasting system typically consists of a hydrologic model, which simulates runoff generation and concentration, and a hydraulic model, which models riverine flood wave routing and floodplain inundation. However, these two types of models suffer from various sources of uncertainties, e.g., forcing data initial conditions, model structure and parameters. To reduce those uncertainties, current forecasting systems are typically calibrated and/or updated using streamflow measurements, and such applications are limited in well-gauged areas. The recent increasing availability of spatially distributed Remote Sensing (RS) data offers new opportunities for flood events investigation and forecast. Based on an Australian case study, this presentation will discuss the use 1) of RS soil moisture data to constrain a hydrologic model, and 2) of RS-derived flood extent and level to constrain a hydraulic model. The hydrological model is based on a semi-distributed system coupled with a two-soil-layer rainfall-runoff model GRKAL and a linear Muskingum routing model. Model calibration was performed using either 1) streamflow data only or 2) both streamflow and RS soil moisture data. The model was then further constrained through the integration of real-time soil moisture data. The hydraulic model is based on LISFLOOD-FP which solves the 2D inertial approximation of the Shallow Water Equations. Streamflow data and RS-derived flood extent and levels were used to apply a multi-objective calibration protocol. The effectiveness with which each data source or combination of data sources constrained the parameter space was quantified and discussed.
Garner, Andra J; Mann, Michael E; Emanuel, Kerry A; Kopp, Robert E; Lin, Ning; Alley, Richard B; Horton, Benjamin P; DeConto, Robert M; Donnelly, Jeffrey P; Pollard, David
2017-11-07
The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970-2005 to 4.0-5.1 m above mean tidal level by 2080-2100 and ranges from 5.0-15.4 m above mean tidal level by 2280-2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970-2005 and further decreases to ∼5 y by 2030-2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280-2300 for scenarios that include Antarctica's potential partial collapse. Copyright © 2017 the Author(s). Published by PNAS.
Mann, Michael E.; Emanuel, Kerry A.; Alley, Richard B.; Horton, Benjamin P.; DeConto, Robert M.; Donnelly, Jeffrey P.; Pollard, David
2017-01-01
The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970–2005 to 4.0–5.1 m above mean tidal level by 2080–2100 and ranges from 5.0–15.4 m above mean tidal level by 2280–2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970–2005 and further decreases to ∼5 y by 2030–2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280–2300 for scenarios that include Antarctica’s potential partial collapse. PMID:29078274
NASA Astrophysics Data System (ADS)
Garner, Andra J.; Mann, Michael E.; Emanuel, Kerry A.; Kopp, Robert E.; Lin, Ning; Alley, Richard B.; Horton, Benjamin P.; DeConto, Robert M.; Donnelly, Jeffrey P.; Pollard, David
2017-11-01
The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970–2005 to 4.0–5.1 m above mean tidal level by 2080–2100 and ranges from 5.0–15.4 m above mean tidal level by 2280–2300. Further, we find that the return period of a 2.25-m flood has decreased from ˜500 y before 1800 to ˜25 y during 1970–2005 and further decreases to ˜5 y by 2030–2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280–2300 for scenarios that include Antarctica's potential partial collapse.
NASA Astrophysics Data System (ADS)
Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.; Nallasamy, N. D.
2014-12-01
Soil Water Assessment Tool (SWAT) is a basin scale, distributed hydrological model commonly used to predict the effect of management decisions on the hydrologic response of watersheds. Hydrologic response is decided by the various components of water balance. In the case of watersheds located in south India as well as in several other tropical countries around the world, paddy is one of the dominant crop controlling the hydrologic response of a watershed. Hence, the suitability of SWAT in replicating the hydrology of paddy fields needs to be verified. Rice paddy fields are subjected to flooding method of irrigation, while the irrigation subroutines in SWAT are developed to simulate crops grown under non flooding conditions. Moreover irrigation is represented well in field scale models, while it is poorly represented within watershed models like SWAT. Reliable simulation of flooding method of irrigation and hydrology of the fields will assist in effective water resources management of rice paddy fields which are one of the major consumers of surface and ground water resources. The current study attempts to modify the irrigation subroutine in SWAT so as to simulate flooded irrigation condition. A field water balance study was conducted on representative fields located within Gadana, a subbasin located in Tamil Nadu (southern part of India) and dominated by rice paddy based irrigation systems. The water balance of irrigated paddy fields simulated with SWAT was compared with the water balance derived by rice paddy based crop growth model named ORYZA. The variation in water levels along with the soil moisture variation predicted by SWAT was evaluated with respect to the estimates derived from ORYZA. The water levels were further validated with field based water balance measurements taken on a daily scale. It was observed that the modified irrigation subroutine was able to simulate irrigation of rice paddy within SWAT in a realistic way compared to the existing method.
Bennett, C.S.
1984-01-01
A two-dimensional finite-element surface water flow modeling system based on the shallow water equations was used to study the hydraulic impact of the proposed Interstate crossing on the 500-year flood. Infrared aerial photography was used to define regions of homogeneous roughness in the flood plain. Finite-element networks approximating flood plain topography were designed using elements of three roughness types. High water marks established during an 8-year flood that occurred in October 1976 were used to calibrate the model. The 500-year flood (630,000 cu ft/sec) was simulated using the dike on the left bank as the left boundary and the right edge of the flood plain as the right boundary. Simulations were performed without and with the proposed highway embankments in place. Detailed information was obtained about backwater effects upstream from the proposed highway embankments, changes in flow distribution resulting from embankments, and velocities in the vicinity of the bridge openings. The results of the study indicate that the four bridge openings in the right flood plain should be adequate to handle the 500-yr flood flow. Forty percent of the flow passes through the main channel bridge, while the remaining 60% of the flow passes through the three overflow bridges. Average velocities in the bridge openings ranged from 3.4 ft/sec to 6.9 ft/sec with a maximum vertically averaged velocity of 9.3 ft/sec occurring at the right edge of one of the overflow bridges. (Author 's abstract)
Contribution of future urbanisation expansion to flood risk changes
NASA Astrophysics Data System (ADS)
Bruwier, Martin; Mustafa, Ahmed; Archambeau, Pierre; Erpicum, Sébastien; Pirotton, Michel; Teller, Jacques; Dewals, Benjamin
2016-04-01
The flood risk is expected to increase in the future due to climate change and urban development. Climate change modifies flood hazard and urban development influences exposure and vulnerability to floods. While the influence of climate change on flood risk has been studied widely, the impact of urban development also needs to be considered in a sustainable flood risk management approach. The main goal of this study is the determination of the sensitivity of future flood risk to different urban development scenarios at a relatively short-time horizon in the River Meuse basin in Wallonia (Belgium). From the different scenarios, the expected impact of urban development on flood risk is assessed. Three urban expansion scenarios are developed up to 2030 based on a coupled cellular automata (CA) and agent-based (AB) urban expansion model: (i) business-as-usual, (ii) restrictive and (iii) extreme expansion scenarios. The main factor controlling these scenarios is the future urban land demand. Each urban expansion scenario is developed by considering or not high and/or medium flood hazard zones as a constraint for urban development. To assess the model's performance, it is calibrated for the Meuse River valley (Belgium) to simulate urban expansion between 1990 and 2000. Calibration results are then assessed by comparing the 2000 simulated land-use map and the actual 2000 land-use map. The flood damage estimation for each urban expansion scenario is determined for five flood discharges by overlaying the inundation map resulting from a hydraulic computation and the urban expansion map and by using damage curves and specific prices. The hydraulic model Wolf2D has been extensively validated by comparisons between observations and computational results during flood event .This study focuses only on mobile and immobile prices for urban lands, which are associated to the most severe damages caused by floods along the River Meuse. These findings of this study offers tools to drive urban expansion based on numerous policies visions to mitigate future flood risk along the Meuse River. In particular, we assess the impacts on future flood risk of the prohibition of urban development in high and/or medium flood hazard zones. Acknowledgements The research was funded through the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation.
An assessment of flood mitigation measures - "room for the river
NASA Astrophysics Data System (ADS)
Komma, J.; Blöschl, G.; Habereder, C.
2009-04-01
In this paper we analyse the relative effect of different flood mitigation measures for the example of the Kamp catchment in Austria. The main idea is to decrease flood peaks through (a) retaining water in the landscape and (b) providing additional inundation areas along the main stream (room for the river). To increase the retention of excess rainfall in the landscape we introduced two different measures. One measure is the increase of water storage capacity in the study catchment through the change of land use from agriculture to forest. The second measure is the installation of many small sized retention basins without an outlet (micro ponds). The micro ponds are situated at the hill slopes to intercept surface runoff. In case of the room for the river scenario the additional retention volume is gained due to the installation of retention basins along the Kamp river and its tributary Zwettl. Three flood retention basins with culverts at each river are envisaged. The geometry of the bottom outlets is defined for design discharges in a way to gain the greatest flood peak reduction for large flood events (above a 100 yr flood). The study catchment at the Kamp river with a size of 622 km² is located in north-eastern Austria. For the simulation of the different scenarios (retaining water in the landscape) a well calibrated continuous hydrologic model is available. The hydrological model consists of a spatially distributed soil moisture accounting scheme and a flood routing component. To analyse the effect of the room for the river scenario with retention basins along the river reaches a linked 1D/2D hydrodynamic model (TUFLOW) is used. In the river channels a one dimensional simulation is carried out. The flow conditions in the flood plains are represented by two dimensional model elements. The model domain incorporates 18 km of the Kamp and 12 km of the Zwettl river valley. For the assessment of the land use change scenario the hydrologic model parameters for wooded areas are transferred to areas that are currently not forested. Through higher storage capacities in the wooded areas the scenario of afforestation helps to reduce flood peaks. The micro ponds are represented in the hydrological model by a bucket storage component. It is filled by a fraction of the simulated direct runoff and drains into the groundwater with a constant percolation rate. For the scenarios of flood mitigation with retention basins along the river reaches three locations at the Kamp and three locations at the Zwettl river have been chosen for hypothetical retention basins or polders with bottom outlets. The main difference between the "room for the river" method and the "retaining water in the landscape" methods is the magnitude of the flood event for which the retention is maximised. For the case of retaining water in the landscape (either by land use change or microponds) the storage capacity obtained by these measures is filled at the beginning of the event. For small event magnitudes, the flood peak reduction is hence maximised. In the Kamp catchment, significant reductions in the flood peaks can be obtained when retention basins along the main stream are constructed and the flood plains are inundated. The main advantage of the room for the river methodology is that the polders/retention basins can be designed in a way that there is no retention for small flood discharges which leaves the full storage capacity for larger floods at the time of peak. In contrast, for the retaining water in the landscape measures, the storage is exhausted at an early stage of medium and large events, resulting in very small flood peak reductions.
Flood hazard mapping of Palembang City by using 2D model
NASA Astrophysics Data System (ADS)
Farid, Mohammad; Marlina, Ayu; Kusuma, Muhammad Syahril Badri
2017-11-01
Palembang as the capital city of South Sumatera Province is one of the metropolitan cities in Indonesia that flooded almost every year. Flood in the city is highly related to Musi River Basin. Based on Indonesia National Agency of Disaster Management (BNPB), the level of flood hazard is high. Many natural factors caused flood in the city such as high intensity of rainfall, inadequate drainage capacity, and also backwater flow due to spring tide. Furthermore, anthropogenic factors such as population increase, land cover/use change, and garbage problem make flood problem become worse. The objective of this study is to develop flood hazard map of Palembang City by using two dimensional model. HEC-RAS 5.0 is used as modelling tool which is verified with field observation data. There are 21 sub catchments of Musi River Basin in the flood simulation. The level of flood hazard refers to Head Regulation of BNPB number 2 in 2012 regarding general guideline of disaster risk assessment. The result for 25 year return per iod of flood shows that with 112.47 km2 area of inundation, 14 sub catchments are categorized in high hazard level. It is expected that the hazard map can be used for risk assessment.
NASA Astrophysics Data System (ADS)
Haer, Toon; Botzen, Wouter; de Moel, Hans; Aerts, Jeroen
2015-04-01
In the period 1998-2009, floods triggered roughly 52 billion euro in insured economic losses making floods the most costly natural hazard in Europe. Climate change and socio/economic trends are expected to further aggrevate floods losses in many regions. Research shows that flood risk can be significantly reduced if households install protective measures, and that the implementation of such measures can be stimulated through flood insurance schemes and subsidies. However, the effectiveness of such incentives to stimulate implementation of loss-reducing measures greatly depends on the decision process of individuals and is hardly studied. In our study, we developed an Agent-Based Model that integrates flood damage models, insurance mechanisms, subsidies, and household behaviour models to assess the effectiveness of different economic tools on stimulating households to invest in loss-reducing measures. Since the effectiveness depends on the decision making process of individuals, the study compares different household decision models ranging from standard economic models, to economic models for decision making under risk, to more complex decision models integrating economic models and risk perceptions, opinion dynamics, and the influence of flood experience. The results show the effectiveness of incentives to stimulate investment in loss-reducing measures for different household behavior types, while assuming climate change scenarios. It shows how complex decision models can better reproduce observed real-world behaviour compared to traditional economic models. Furthermore, since flood events are included in the simulations, the results provide an analysis of the dynamics in insured and uninsured losses for households, the costs of reducing risk by implementing loss-reducing measures, the capacity of the insurance market, and the cost of government subsidies under different scenarios. The model has been applied to the City of Rotterdam in The Netherlands.
Potential increase in floods in California's Sierra Nevada under future climate projections
Das, T.; Dettinger, M.D.; Cayan, D.R.; Hidalgo, H.G.
2011-01-01
California's mountainous topography, exposure to occasional heavily moisture-laden storm systems, and varied communities and infrastructures in low lying areas make it highly vulnerable to floods. An important question facing the state-in terms of protecting the public and formulating water management responses to climate change-is "how might future climate changes affect flood characteristics in California?" To help address this, we simulate floods on the western slopes of the Sierra Nevada Mountains, the state's primary catchment, based on downscaled daily precipitation and temperature projections from three General Circulation Models (GCMs). These climate projections are fed into the Variable Infiltration Capacity (VIC) hydrologic model, and the VIC-simulated streamflows and hydrologic conditions, from historical and from projected climate change runs, allow us to evaluate possible changes in annual maximum 3-day flood magnitudes and frequencies of floods. By the end of the 21st Century, all projections yield larger-than-historical floods, for both the Northern Sierra Nevada (NSN) and for the Southern Sierra Nevada (SSN). The increases in flood magnitude are statistically significant (at p <= 0. 01) for all the three GCMs in the period 2051-2099. The frequency of flood events above selected historical thresholds also increases under projections from CNRM CM3 and NCAR PCM1 climate models, while under the third scenario, GFDL CM2. 1, frequencies remain constant or decline slightly, owing to an overall drying trend. These increases appear to derive jointly from increases in heavy precipitation amount, storm frequencies, and days with more precipitation falling as rain and less as snow. Increases in antecedent winter soil moisture also play a role in some areas. Thus, a complex, as-yet unpredictable interplay of several different climatic influences threatens to cause increased flood hazards in California's complex western Sierra landscapes. ?? 2011 Springer Science+Business Media B.V.
Comparative analysis of model behaviour for flood prediction purposes using Self-Organizing Maps
NASA Astrophysics Data System (ADS)
Herbst, M.; Casper, M. C.; Grundmann, J.; Buchholz, O.
2009-03-01
Distributed watershed models constitute a key component in flood forecasting systems. It is widely recognized that models because of their structural differences have varying capabilities of capturing different aspects of the system behaviour equally well. Of course, this also applies to the reproduction of peak discharges by a simulation model which is of particular interest regarding the flood forecasting problem. In our study we use a Self-Organizing Map (SOM) in combination with index measures which are derived from the flow duration curve in order to examine the conditions under which three different distributed watershed models are capable of reproducing flood events present in the calibration data. These indices are specifically conceptualized to extract data on the peak discharge characteristics of model output time series which are obtained from Monte-Carlo simulations with the distributed watershed models NASIM, LARSIM and WaSIM-ETH. The SOM helps to analyze this data by producing a discretized mapping of their distribution in the index space onto a two dimensional plane such that their pattern and consequently the patterns of model behaviour can be conveyed in a comprehensive manner. It is demonstrated how the SOM provides useful information about details of model behaviour and also helps identifying the model parameters that are relevant for the reproduction of peak discharges and thus for flood prediction problems. It is further shown how the SOM can be used to identify those parameter sets from among the Monte-Carlo data that most closely approximate the peak discharges of a measured time series. The results represent the characteristics of the observed time series with partially superior accuracy than the reference simulation obtained by implementing a simple calibration strategy using the global optimization algorithm SCE-UA. The most prominent advantage of using SOM in the context of model analysis is that it allows to comparatively evaluating the data from two or more models. Our results highlight the individuality of the model realizations in terms of the index measures and shed a critical light on the use and implementation of simple and yet too rigorous calibration strategies.
Rapid Monte Carlo simulation of detector DQE(f)
Star-Lack, Josh; Sun, Mingshan; Meyer, Andre; Morf, Daniel; Constantin, Dragos; Fahrig, Rebecca; Abel, Eric
2014-01-01
Purpose: Performance optimization of indirect x-ray detectors requires proper characterization of both ionizing (gamma) and optical photon transport in a heterogeneous medium. As the tool of choice for modeling detector physics, Monte Carlo methods have failed to gain traction as a design utility, due mostly to excessive simulation times and a lack of convenient simulation packages. The most important figure-of-merit in assessing detector performance is the detective quantum efficiency (DQE), for which most of the computational burden has traditionally been associated with the determination of the noise power spectrum (NPS) from an ensemble of flood images, each conventionally having 107 − 109 detected gamma photons. In this work, the authors show that the idealized conditions inherent in a numerical simulation allow for a dramatic reduction in the number of gamma and optical photons required to accurately predict the NPS. Methods: The authors derived an expression for the mean squared error (MSE) of a simulated NPS when computed using the International Electrotechnical Commission-recommended technique based on taking the 2D Fourier transform of flood images. It is shown that the MSE is inversely proportional to the number of flood images, and is independent of the input fluence provided that the input fluence is above a minimal value that avoids biasing the estimate. The authors then propose to further lower the input fluence so that each event creates a point-spread function rather than a flood field. The authors use this finding as the foundation for a novel algorithm in which the characteristic MTF(f), NPS(f), and DQE(f) curves are simultaneously generated from the results of a single run. The authors also investigate lowering the number of optical photons used in a scintillator simulation to further increase efficiency. Simulation results are compared with measurements performed on a Varian AS1000 portal imager, and with a previously published simulation performed using clinical fluence levels. Results: On the order of only 10–100 gamma photons per flood image were required to be detected to avoid biasing the NPS estimate. This allowed for a factor of 107 reduction in fluence compared to clinical levels with no loss of accuracy. An optimal signal-to-noise ratio (SNR) was achieved by increasing the number of flood images from a typical value of 100 up to 500, thereby illustrating the importance of flood image quantity over the number of gammas per flood. For the point-spread ensemble technique, an additional 2× reduction in the number of incident gammas was realized. As a result, when modeling gamma transport in a thick pixelated array, the simulation time was reduced from 2.5 × 106 CPU min if using clinical fluence levels to 3.1 CPU min if using optimized fluence levels while also producing a higher SNR. The AS1000 DQE(f) simulation entailing both optical and radiative transport matched experimental results to within 11%, and required 14.5 min to complete on a single CPU. Conclusions: The authors demonstrate the feasibility of accurately modeling x-ray detector DQE(f) with completion times on the order of several minutes using a single CPU. Convenience of simulation can be achieved using GEANT4 which offers both gamma and optical photon transport capabilities. PMID:24593734
Rapid Monte Carlo simulation of detector DQE(f)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Star-Lack, Josh, E-mail: josh.starlack@varian.com; Sun, Mingshan; Abel, Eric
2014-03-15
Purpose: Performance optimization of indirect x-ray detectors requires proper characterization of both ionizing (gamma) and optical photon transport in a heterogeneous medium. As the tool of choice for modeling detector physics, Monte Carlo methods have failed to gain traction as a design utility, due mostly to excessive simulation times and a lack of convenient simulation packages. The most important figure-of-merit in assessing detector performance is the detective quantum efficiency (DQE), for which most of the computational burden has traditionally been associated with the determination of the noise power spectrum (NPS) from an ensemble of flood images, each conventionally having 10{supmore » 7} − 10{sup 9} detected gamma photons. In this work, the authors show that the idealized conditions inherent in a numerical simulation allow for a dramatic reduction in the number of gamma and optical photons required to accurately predict the NPS. Methods: The authors derived an expression for the mean squared error (MSE) of a simulated NPS when computed using the International Electrotechnical Commission-recommended technique based on taking the 2D Fourier transform of flood images. It is shown that the MSE is inversely proportional to the number of flood images, and is independent of the input fluence provided that the input fluence is above a minimal value that avoids biasing the estimate. The authors then propose to further lower the input fluence so that each event creates a point-spread function rather than a flood field. The authors use this finding as the foundation for a novel algorithm in which the characteristic MTF(f), NPS(f), and DQE(f) curves are simultaneously generated from the results of a single run. The authors also investigate lowering the number of optical photons used in a scintillator simulation to further increase efficiency. Simulation results are compared with measurements performed on a Varian AS1000 portal imager, and with a previously published simulation performed using clinical fluence levels. Results: On the order of only 10–100 gamma photons per flood image were required to be detected to avoid biasing the NPS estimate. This allowed for a factor of 10{sup 7} reduction in fluence compared to clinical levels with no loss of accuracy. An optimal signal-to-noise ratio (SNR) was achieved by increasing the number of flood images from a typical value of 100 up to 500, thereby illustrating the importance of flood image quantity over the number of gammas per flood. For the point-spread ensemble technique, an additional 2× reduction in the number of incident gammas was realized. As a result, when modeling gamma transport in a thick pixelated array, the simulation time was reduced from 2.5 × 10{sup 6} CPU min if using clinical fluence levels to 3.1 CPU min if using optimized fluence levels while also producing a higher SNR. The AS1000 DQE(f) simulation entailing both optical and radiative transport matched experimental results to within 11%, and required 14.5 min to complete on a single CPU. Conclusions: The authors demonstrate the feasibility of accurately modeling x-ray detector DQE(f) with completion times on the order of several minutes using a single CPU. Convenience of simulation can be achieved using GEANT4 which offers both gamma and optical photon transport capabilities.« less
NASA Astrophysics Data System (ADS)
Barthélémy, S.; Ricci, S.; Morel, T.; Goutal, N.; Le Pape, E.; Zaoui, F.
2018-07-01
In the context of hydrodynamic modeling, the use of 2D models is adapted in areas where the flow is not mono-dimensional (confluence zones, flood plains). Nonetheless the lack of field data and the computational cost constraints limit the extensive use of 2D models for operational flood forecasting. Multi-dimensional coupling offers a solution with 1D models where the flow is mono-dimensional and with local 2D models where needed. This solution allows for the representation of complex processes in 2D models, while the simulated hydraulic state is significantly better than that of the full 1D model. In this study, coupling is implemented between three 1D sub-models and a local 2D model for a confluence on the Adour river (France). A Schwarz algorithm is implemented to guarantee the continuity of the variables at the 1D/2D interfaces while in situ observations are assimilated in the 1D sub-models to improve results and forecasts in operational mode as carried out by the French flood forecasting services. An implementation of the coupling and data assimilation (DA) solution with domain decomposition and task/data parallelism is proposed so that it is compatible with operational constraints. The coupling with the 2D model improves the simulated hydraulic state compared to a global 1D model, and DA improves results in 1D and 2D areas.
A Framework for Flood Risk Analysis and Benefit Assessment of Flood Control Measures in Urban Areas
Li, Chaochao; Cheng, Xiaotao; Li, Na; Du, Xiaohe; Yu, Qian; Kan, Guangyuan
2016-01-01
Flood risk analysis is more complex in urban areas than that in rural areas because of their closely packed buildings, different kinds of land uses, and large number of flood control works and drainage systems. The purpose of this paper is to propose a practical framework for flood risk analysis and benefit assessment of flood control measures in urban areas. Based on the concept of disaster risk triangle (hazard, vulnerability and exposure), a comprehensive analysis method and a general procedure were proposed for urban flood risk analysis. Urban Flood Simulation Model (UFSM) and Urban Flood Damage Assessment Model (UFDAM) were integrated to estimate the flood risk in the Pudong flood protection area (Shanghai, China). S-shaped functions were adopted to represent flood return period and damage (R-D) curves. The study results show that flood control works could significantly reduce the flood risk within the 66-year flood return period and the flood risk was reduced by 15.59%. However, the flood risk was only reduced by 7.06% when the flood return period exceeded 66-years. Hence, it is difficult to meet the increasing demands for flood control solely relying on structural measures. The R-D function is suitable to describe the changes of flood control capacity. This frame work can assess the flood risk reduction due to flood control measures, and provide crucial information for strategy development and planning adaptation. PMID:27527202
Extreme weather: Subtropical floods and tropical cyclones
NASA Astrophysics Data System (ADS)
Shaevitz, Daniel A.
Extreme weather events have a large effect on society. As such, it is important to understand these events and to project how they may change in a future, warmer climate. The aim of this thesis is to develop a deeper understanding of two types of extreme weather events: subtropical floods and tropical cyclones (TCs). In the subtropics, the latitude is high enough that quasi-geostrophic dynamics are at least qualitatively relevant, while low enough that moisture may be abundant and convection strong. Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. In the first part of this thesis, I examine the possible triggering of convection by the large-scale dynamics and investigate the coupling between the two. Specifically two examples of extreme precipitation events in the subtropics are analyzed, the 2010 and 2014 floods of India and Pakistan and the 2015 flood of Texas and Oklahoma. I invert the quasi-geostrophic omega equation to decompose the large-scale vertical motion profile to components due to synoptic forcing and diabatic heating. Additionally, I present model results from within the Column Quasi-Geostrophic framework. A single column model and cloud-revolving model are forced with the large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation with input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. It is found that convection was triggered primarily by mechanically forced orographic ascent over the Himalayas during the India/Pakistan flood and by upper-level Potential Vorticity disturbances during the Texas/Oklahoma flood. Furthermore, a climate attribution analysis was conducted for the Texas/Oklahoma flood and it is found that anthropogenic climate change was responsible for a small amount of rainfall during the event but the intensity of this event may be greatly increased if it occurs in a future climate. In the second part of this thesis, I examine the ability of high-resolution global atmospheric models to simulate TCs. Specifically, I present an intercomparison of several models' ability to simulate the global characteristics of TCs in the current climate. This is a necessary first step before using these models to project future changes in TCs. Overall, the models were able to reproduce the geographic distribution of TCs reasonably well, with some of the models performing remarkably well. The intensity of TCs varied widely between the models, with some of this difference being due to model resolution.
NASA Astrophysics Data System (ADS)
Schinke, R.; Neubert, M.; Hennersdorf, J.; Stodolny, U.; Sommer, T.; Naumann, T.
2012-09-01
The analysis and management of flood risk commonly focuses on surface water floods, because these types are often associated with high economic losses due to damage to buildings and settlements. The rising groundwater as a secondary effect of these floods induces additional damage, particularly in the basements of buildings. Mostly, these losses remain underestimated, because they are difficult to assess, especially for the entire building stock of flood-prone urban areas. For this purpose an appropriate methodology has been developed and lead to a groundwater damage simulation model named GRUWAD. The overall methodology combines various engineering and geoinformatic methods to calculate major damage processes by high groundwater levels. It considers a classification of buildings by building types, synthetic depth-damage functions for groundwater inundation as well as the results of a groundwater-flow model. The modular structure of this procedure can be adapted in the level of detail. Hence, the model allows damage calculations from the local to the regional scale. Among others it can be used to prepare risk maps, for ex-ante analysis of future risks, and to simulate the effects of mitigation measures. Therefore, the model is a multifarious tool for determining urban resilience with respect to high groundwater levels.
Modelling Inland Flood Events for Hazard Maps in Taiwan
NASA Astrophysics Data System (ADS)
Ghosh, S.; Nzerem, K.; Sassi, M.; Hilberts, A.; Assteerawatt, A.; Tillmanns, S.; Mathur, P.; Mitas, C.; Rafique, F.
2015-12-01
Taiwan experiences significant inland flooding, driven by torrential rainfall from plum rain storms and typhoons during summer and fall. From last 13 to 16 years data, 3,000 buildings were damaged by such floods annually with a loss US$0.41 billion (Water Resources Agency). This long, narrow island nation with mostly hilly/mountainous topography is located at tropical-subtropical zone with annual average typhoon-hit-frequency of 3-4 (Central Weather Bureau) and annual average precipitation of 2502mm (WRA) - 2.5 times of the world's average. Spatial and temporal distributions of countrywide precipitation are uneven, with very high local extreme rainfall intensities. Annual average precipitation is 3000-5000mm in the mountainous regions, 78% of it falls in May-October, and the 1-hour to 3-day maximum rainfall are about 85 to 93% of the world records (WRA). Rivers in Taiwan are short with small upstream areas and high runoff coefficients of watersheds. These rivers have the steepest slopes, the shortest response time with rapid flows, and the largest peak flows as well as specific flood peak discharge (WRA) in the world. RMS has recently developed a countrywide inland flood model for Taiwan, producing hazard return period maps at 1arcsec grid resolution. These can be the basis for evaluating and managing flood risk, its economic impacts, and insured flood losses. The model is initiated with sub-daily historical meteorological forcings and calibrated to daily discharge observations at about 50 river gauges over the period 2003-2013. Simulations of hydrologic processes, via rainfall-runoff and routing models, are subsequently performed based on a 10000 year set of stochastic forcing. The rainfall-runoff model is physically based continuous, semi-distributed model for catchment hydrology. The 1-D wave propagation hydraulic model considers catchment runoff in routing and describes large-scale transport processes along the river. It also accounts for reservoir storage. Major historical flood events have been successfully simulated along with spatial patterns of flows. Comparison of stochastic discharge statistics w.r.t. observed ones from Hydrological Year Books of Taiwan over all recorded years are also in good agreement.
NASA Astrophysics Data System (ADS)
Aktaruzzaman, Md.; Schmitt, Theo G.
2011-11-01
This paper addresses the issue of a detailed representation of an urban catchment in terms of hydraulic and hydrologic attributes. Modelling of urban flooding requires a detailed knowledge of urban surface characteristics. The advancement in spatial data acquisition technology such as airborne LiDAR (Light Detection and Ranging) has greatly facilitated the collection of high-resolution topographic information. While the use of the LiDAR-derived Digital Surface Model (DSM) has gained popularity over the last few years as input data for a flood simulation model, the use of LiDAR intensity data has remained largely unexplored in this regard. LiDAR intensity data are acquired along with elevation data during the data collection mission by an aircraft. The practice of using of just aerial images with RGB (Red, Green and Blue) wavebands is often incapable of identifying types of surface under the shadow. On the other hand, LiDAR intensity data can provide surface information independent of sunlight conditions. The focus of this study is the use of intensity data in combination with aerial images to accurately map pervious and impervious urban areas. This study presents an Object-Based Image Analysis (OBIA) framework for detecting urban land cover types, mainly pervious and impervious surfaces in order to improve the rainfall-runoff modelling. Finally, this study shows the application of highresolution DSM and land cover maps to flood simulation software in order to visualize the depth and extent of urban flooding phenomena.
Huiliang, Wang; Zening, Wu; Caihong, Hu; Xinzhong, Du
2015-09-01
Nonpoint source (NPS) pollution is considered as the main reason for water quality deterioration; thus, to quantify the NPS loads reliably is the key to implement watershed management practices. In this study, water quality and NPS loads from a watershed with limited data availability were studied in a mountainous area in China. Instantaneous water discharge was measured through the velocity-area method, and samples were taken for water quality analysis in both flood and nonflood days in 2010. The streamflow simulated by Hydrological Simulation Program-Fortran (HSPF) from 1995 to 2013 and a regression model were used to estimate total annual loads of various water quality parameters. The concentrations of total phosphorus (TP) and total nitrogen (TN) were much higher during the flood seasons, but the concentrations of ammonia nitrogen (NH3-N) and nitrate nitrogen (NO3-N) were lower during the flood seasons. Nevertheless, only TP concentration was positively correlated with the flow rate. The fluctuation of annual load from this watershed was significant. Statistical results indicated the significant contribution of pollutant fluxes during flood seasons to annual fluxes. The loads of TP, TN, NH3-N, and NO3-N in the flood seasons were accounted for 58-85, 60-82, 63-88, 64-81% of the total annual loads, respectively. This study presented a new method for estimation of the water and NPS loads in the watershed with limited data availability, which simplified data collection to watershed model and overcame the scale problem of field experiment method.
NASA Astrophysics Data System (ADS)
Paquet, E.
2015-12-01
The SCHADEX method aims at estimating the distribution of peak and daily discharges up to extreme quantiles. It couples a precipitation probabilistic model based on weather patterns, with a stochastic rainfall-runoff simulation process using a conceptual lumped model. It allows exploring an exhaustive set of hydrological conditions and watershed responses to intense rainfall events. Since 2006, it has been widely applied in France to about one hundred watersheds for dam spillway design, and also aboard (Norway, Canada and central Europe among others). However, its application to large watersheds (above 10 000 km²) faces some significant issues: spatial heterogeneity of rainfall and hydrological processes and flood peak damping due to hydraulic effects (flood plains, natural or man-made embankment) being the more important. This led to the development of an extreme flood simulation framework for large and heterogeneous watersheds, based on the SCHADEX method. Its main features are: Division of the large (or main) watershed into several smaller sub-watersheds, where the spatial homogeneity of the hydro-meteorological processes can reasonably be assumed, and where the hydraulic effects can be neglected. Identification of pilot watersheds where discharge data are available, thus where rainfall-runoff models can be calibrated. They will be parameters donors to non-gauged watersheds. Spatially coherent stochastic simulations for all the sub-watersheds at the daily time step. Identification of a selection of simulated events for a given return period (according to the distribution of runoff volumes at the scale of the main watershed). Generation of the complete hourly hydrographs at each of the sub-watersheds outlets. Routing to the main outlet with hydraulic 1D or 2D models. The presentation will be illustrated with the case-study of the Isère watershed (9981 km), a French snow-driven watershed. The main novelties of this method will be underlined, as well as its perspectives and future improvements.
NASA Astrophysics Data System (ADS)
Khosronejad, Ali; Sotiropoulos, Fotis; Stony Brook University Team
2016-11-01
We present a coupled flow and morphodynamic simulations of extreme flooding in 3 km long and 300 m wide reach of the Mississippi River in Minnesota, which includes three islands and hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the VFS-Geophysics model to investigate the flow and bed evolution of the river during a 500 year flood. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. The geometrical data of the river, islands and structures are obtained from LiDAR, sub-aqueous sonar and in-situ surveying to construct a digital map of the river bathymetry. Our simulation results for the bed evolution of the river reveal complex sediment dynamics near the hydraulic structures. The numerically captured scour depth near some of the structures reach a maximum of about 10 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems. This work was funded by a Grant from Minnesota Dept. of Transportation.
Urban Flood Prevention and Early Warning System in Jinan City
NASA Astrophysics Data System (ADS)
Feng, Shiyuan; Li, Qingguo
2018-06-01
The system construction of urban flood control and disaster reduction in China is facing pressure and challenge from new urban water disaster. Under the circumstances that it is difficult to build high standards of flood protection engineering measures in urban areas, it is particularly important to carry out urban flood early warning. In Jinan City, a representative inland area, based on the index system of early warning of flood in Jinan urban area, the method of fuzzy comprehensive evaluation was adopted to evaluate the level of early warning. Based on the cumulative rainfall of 3 hours, the CAflood simulation results based on cellular automaton model of urban flooding were used as evaluation indexes to realize the accuracy and integration of urban flood control early warning.
Flood risk assessment in a Spanish Mediterranean catchment
NASA Astrophysics Data System (ADS)
Salazar, S.; Francés, F.; García-Bartual, R.; Ortiz, E.; Múnera, J. C.; Vélez, J. J.
2009-04-01
This paper describes a multidisciplinary approach for the risk assessment and its application to analysing the effects of extreme flood events on the Mediterranean catchment called "Rambla del Poyo" in Valencia (Spain). This catchment located in the East coast of Spain has an area of 380 km2 and is clearly open to the Mediterranean Mesoscale Convective Storms. The climate is semiarid, and the flow regime is typically ephemeral, but with highly frequent flash floods, with peak flows in the order of 500 m3/s. Recently, in 2000 and 2002 the area was severe flooded. The flood prone area is located in the lower part of the basin, with an important concentration of different urban centers and industrial and commercial areas (including part of the Valencia International Airport). For this reason, the analysis of damages of residential, industrial and commercial urbanized areas is essential for the prevention of damages with a proper flood risk management. The approach is based on three main steps. The first step entails a detailed hydrological analysis (parameter estimation, calibration-validation and simulations) using a distributed rainfall-runoff model called TETIS. In the case study, on one hand, high temporal resolutions rain gauge data are scarce, because of this, in addition to a small number of historic events, 100 synthetic rainstorms were generated using the multidimensional stochastic model called RAINGEN, which adequately represents the main structural properties typical of intense convective storms, including occurrence of raincells in space and time and the generated intensities. An equivalent daily maximum precipitation Pd was estimated for each synthetic event, thus allowing a return period assignment using the known statistical distribution of Pd in the region. On the other hand, the initial soil moisture condition can have a strong influence in the runoff production, for this reason, long term daily simulation has been done in order to asses the probability distribution of the initial situation before the extreme flood events (dry and wet conditions). For all combinations of precipitation inputs and initial conditions, 200 hydrological simulations has been done in order to obtain the input hydrographs for the hydraulic model. Finally in this step, a frequency analysis to obtain the non-exceedence probability of the peak discharges has been developed using the annual maximum daily precipitation and the initial soil moisture condition with this expression: « FX (x) = FX |r (x|r).fR (r).dr - where: X= random variable of interest (peak discharge), R= annual maximum daily precipitation, fR(r)= probability density function of R, FXr(x/r)= conditional density function of X given r obtained from simulations. The main objective of second step is flood hazard estimation, which, the hydraulic modelling has been developed using the coupled computing version of Sobek 1D/2D. In this task, the treatment of DEM calculation can be a key task depending on the scale of work. The introduction of buildings, walls, the opening of drainage works⦠improving the quality of results in areas with high anthropogenic influence; in our case has been made 6 simulations with 3 different resolutions, after all, the model has been done with a model one-dimensional (1D), logging throughout the stretch to two-dimensional (2D) grid with the parent of 30x30 metres, except for its passage through the urban, commercial and industrial land uses in the flood prone area where it connects with the child grid of 10x10 metres. Unfortunately, for reasons of computer time, the hydraulic model has not been run for the 200 available events. However, 20 events have been carefully select trying to cover the best probabilistic interest spectrum for this study (from two to one thousand years of return period). From the 20 selected flooding maps it has been developed a GIS computational tool for calculating a regression between the independent variable (maximum water depth) and the dependent variable return period transformed into natural logarithm. Using this methodology have been generated the hazard maps for the return periods of interest. Finally, the third step concerns to the flood risk, which was defined as probabilistic integral of the combination of flood hazard and land use vulnerability: « R = V (h).fH (h).dh 0 Where: R is the flood risk, V(h) is the land use vulnerability, h is the flood magnitude and fH(h) is its probability density function. The land use vulnerability is expressed in terms of stage-damage functions for urban, commercial and industrial land uses. Both, flood hazard and land use vulnerability are defined in terms of magnitude (water depth). This integral has been solved in discrete form using a GIS tools. The flood risk assessment by a resolution of 10 meters in size cell in the flood prone area of the "Rambla del Poyo" has been done. With this useful methodology, we believe that a complete flood risk analysis is needed in order to objectively compare different future scenarios that can affect either the flood hazard and/or the vulnerability in the flood prone area.
NASA Astrophysics Data System (ADS)
Miyamoto, Hitoshi
2015-04-01
Vegetation overgrowth in fluvial floodplains, gravel beds, and sand bars has been a serious engineering problem for riparian management in Japan. From the viewpoints of flood control and ecological conservation, it would be necessary to predict the vegetation dynamics accurately for long-term duration. In this research, we have developed a stochastic model for predicting the vegetation dynamics in fluvial floodplains with emphasis on the interaction with flood impacts. The model consists of the following four components: (i) long-term stochastic behavior of flow discharge, (ii) hydrodynamics in a channel with floodplain vegetation, (iii) variation of riverbed topography, and (iv) vegetation dynamics on floodplains. In the vegetation dynamics model, the flood discharge (i) is stochastically simulated using a filtered Poisson process, one of the conventional approaches in hydrological time-series generation. The component for vegetation dynamics (iv) includes the effects of tree growth, mortality by floods, and infant tree recruitment. Vegetation condition has been observed mainly before and after floods since 2008 at a field site located between 23-24 km from the river mouth in Kako River, Japan. The Kako River has the catchment area of 1,730 km2 and the main channel length of 96 km. This site is one of the vegetation overgrowth sites in the Kako River floodplains. The predominant tree species are willows and bamboos. In the field survey, the position, trunk diameter and height of each tree as well as the riverbed materials were measured after several flood events to investigate their impacts on the floodplain vegetation community. This presentation tries to examine effects of anthropogenic river regulations, i.e., thinning and cutting-down, in the vegetated channel in Kako River by using the vegetation dynamics model. Sensitivity of both the flood water level and the vegetation status in the channel is statistically evaluated in terms of the different cutting-down levels, timings and scales of the thinning, etc., by the Monte Carlo simulation of the model.
NASA Astrophysics Data System (ADS)
Ji, X.; Shen, C.
2017-12-01
Flood inundation presents substantial societal hazards and also changes biogeochemistry for systems like the Amazon. It is often expensive to simulate high-resolution flood inundation and propagation in a long-term watershed-scale model. Due to the Courant-Friedrichs-Lewy (CFL) restriction, high resolution and large local flow velocity both demand prohibitively small time steps even for parallel codes. Here we develop a parallel surface-subsurface process-based model enhanced by multi-resolution meshes that are adaptively switched on or off. The high-resolution overland flow meshes are enabled only when the flood wave invades to floodplains. This model applies semi-implicit, semi-Lagrangian (SISL) scheme in solving dynamic wave equations, and with the assistant of the multi-mesh method, it also adaptively chooses the dynamic wave equation only in the area of deep inundation. Therefore, the model achieves a balance between accuracy and computational cost.
Attribution of floods in the Okavango basin, Southern Africa
NASA Astrophysics Data System (ADS)
Wolski, Piotr; Stone, Dáithí; Tadross, Mark; Wehner, Michael; Hewitson, Bruce
2014-04-01
In the charismatic wetlands of the Okavango Delta, Botswana, the annual floods of 2009-2011 reached magnitudes last seen 20-30 years ago, considerably affecting life of local populations and the economically important tourism industry. In this study, we analyse results from an attribution modelling system designed to examine how anthropogenic greenhouse gas emissions have contributed to weather and flood risk in our current climate. The system is based on comparison of real world climate and hydrological simulations with parallel counterfactual simulations of the climate and hydrological responses under conditions that might have been had human activities not emitted greenhouse gases. The analyses allow us to address the question of whether anthropogenic climate change contributed to increasing the risk of these high flood events in the Okavango system. Results show that the probability of occurrence of high floods during 2009-2011 in the current climate is likely lower than it would have been in a climate without anthropogenic greenhouse gases. This result is robust across the two climate models and various data processing procedures, although the exact figures for the associated decrease in risk differ. Results also differ between the three years examined, indicating that the “time-slice” method used here needs to be applied to multiple years in order to accurately estimate the contribution of emissions to current risk. Simple sensitivity analyses indicate that the reduction in flood risk is attributed to higher temperatures (and thus evaporation) in the current world, with little difference in the analysed domain's rainfall simulated in the two scenarios.
Numerical simulation on the southern flood and northern drought in summer 2014 over Eastern China
NASA Astrophysics Data System (ADS)
Xu, Lianlian; He, Shengping; Li, Fei; Ma, Jiehua; Wang, Huijun
2017-12-01
In summer 2014, Eastern China suffered a typical "southern flood and northern drought" anomalous climate. Observational analyses indicated that the anomalous vertical motion, East Asian subtropical westerly jet stream, and the East Asian summer monsoon (EASM) played important roles in the formation of such precipitation anomaly. Furthermore, using the climate model (IAP-AGCM-4.1) perturbed by simultaneous observed sea surface temperature anomalies (SSTAs) in global scale and four different regions (North Pacific, Indian Ocean, North Atlantic, and Equatorial Pacific), this study investigated the potential contribution of ocean to such "southern flood and northern drought" over Eastern China in summer 2014. The simulations forced by global-scale SSTAs or North Pacific SSTAs displayed the most similarity to the observed "southern flood and northern drought" over Eastern China. It was revealed that the global-scale and North Pacific SSTAs influenced the rainfall over Eastern China via modulating the EASM. The related simulations successfully reproduced the associated atmospheric circulation anomalies. The experiment driven by Indian Ocean SSTAs could also reproduce the similar precipitation anomaly pattern and suggested that the Indian Ocean exerted pronounced influence on the North Pacific Subtropical High. Additionally, the simulations forced by SSTAs in the North Atlantic and Equatorial Pacific successfully reproduced the northern drought but failed to capture the southern flood. The simulations suggested that precipitation anomaly over Eastern China in summer 2014 was a comprehensive effect of global SSTAs and the dominant contribution to the "southern flood and northern drought" pattern came from the North Pacific and Indian Ocean.
NASA Astrophysics Data System (ADS)
Du, Erhu; Cai, Ximing; Sun, Zhiyong; Minsker, Barbara
2017-11-01
Flood warnings from various information sources are important for individuals to make evacuation decisions during a flood event. In this study, we develop a general opinion dynamics model to simulate how individuals update their flood hazard awareness when exposed to multiple information sources, including global broadcast, social media, and observations of neighbors' actions. The opinion dynamics model is coupled with a traffic model to simulate the evacuation processes of a residential community with a given transportation network. Through various scenarios, we investigate how social media affect the opinion dynamics and evacuation processes. We find that stronger social media can make evacuation processes more sensitive to the change of global broadcast and neighbor observations, and thus, impose larger uncertainty on evacuation rates (i.e., a large range of evacuation rates corresponding to sources of information). For instance, evacuation rates are lower when social media become more influential and individuals have less trust in global broadcast. Stubborn individuals can significantly affect the opinion dynamics and reduce evacuation rates. In addition, evacuation rates respond to the percentage of stubborn agents in a nonlinear manner, i.e., above a threshold, the impact of stubborn agents will be intensified by stronger social media. These results highlight the role of social media in flood evacuation processes and the need to monitor social media so that misinformation can be corrected in a timely manner. The joint impacts of social media, quality of flood warnings, and transportation capacity on evacuation rates are also discussed.
NASA Astrophysics Data System (ADS)
Du, E.; Cai, X.; Minsker, B. S.; Sun, Z.
2017-12-01
Flood warnings from various information sources are important for individuals to make evacuation decisions during a flood event. In this study, we develop a general opinion dynamics model to simulate how individuals update their flood hazard awareness when exposed to multiple information sources, including global broadcast, social media, and observations of neighbors' actions. The opinion dynamics model is coupled with a traffic model to simulate the evacuation processes of a residential community with a given transportation network. Through various scenarios, we investigate how social media affect the opinion dynamics and evacuation processes. We find that stronger social media can make evacuation processes more sensitive to the change of global broadcast and neighbor observations, and thus, impose larger uncertainty on evacuation rates (i.e., a large range of evacuation rates corresponding to sources of information). For instance, evacuation rates are lower when social media become more influential and individuals have less trust in global broadcast. Stubborn individuals can significantly affect the opinion dynamics and reduce evacuation rates. In addition, evacuation rates respond to the percentage of stubborn agents in a non-linear manner, i.e., above a threshold, the impact of stubborn agents will be intensified by stronger social media. These results highlight the role of social media in flood evacuation processes and the need to monitor social media so that misinformation can be corrected in a timely manner. The joint impacts of social media, quality of flood warnings and transportation capacity on evacuation rates are also discussed.
Modelling the interaction between flooding events and economic growth
NASA Astrophysics Data System (ADS)
Grames, J.; Prskawetz, A.; Grass, D.; Blöschl, G.
2015-06-01
Socio-hydrology describes the interaction between the socio-economy and water. Recent models analyze the interplay of community risk-coping culture, flooding damage and economic growth (Di Baldassarre et al., 2013; Viglione et al., 2014). These models descriptively explain the feedbacks between socio-economic development and natural disasters like floods. Contrary to these descriptive models, our approach develops an optimization model, where the intertemporal decision of an economic agent interacts with the hydrological system. In order to build this first economic growth model describing the interaction between the consumption and investment decisions of an economic agent and the occurrence of flooding events, we transform an existing descriptive stochastic model into an optimal deterministic model. The intermediate step is to formulate and simulate a descriptive deterministic model. We develop a periodic water function to approximate the former discrete stochastic time series of rainfall events. Due to the non-autonomous exogenous periodic rainfall function the long-term path of consumption and investment will be periodic.
Numerical Simulation of the 2004 Indian Ocean Tsunami: Accurate Flooding and drying in Banda Aceh
NASA Astrophysics Data System (ADS)
Cui, Haiyang; Pietrzak, Julie; Stelling, Guus; Androsov, Alexey; Harig, Sven
2010-05-01
The Indian Ocean Tsunami on December 26, 2004 caused one of the largest tsunamis in recent times and led to widespread devastation and loss of life. One of the worst hit regions was Banda Aceh, which is the capital of the Aceh province, located in the northern part of Sumatra, 150km from the source of the earthquake. A German-Indonesian Tsunami Early Warning System (GITEWS) (www.gitews.de) is currently under active development. The work presented here is carried out within the GITEWS framework. One of the aims of this project is the development of accurate models with which to simulate the propagation, flooding and drying, and run-up of a tsunami. In this context, TsunAWI has been developed by the Alfred Wegener Institute; it is an explicit, () finite element model. However, the accurate numerical simulation of flooding and drying requires the conservation of mass and momentum. This is not possible in the current version of TsunAWi. The P1NC - P1element guarantees mass conservation in a global sense, yet as we show here it is important to guarantee mass conservation at the local level, that is within each individual cell. Here an unstructured grid, finite volume ocean model is presented. It is derived from the P1NC - P1 element, and is shown to be mass and momentum conserving. Then a number of simulations are presented, including dam break problems flooding over both a wet and a dry bed. Excellent agreement is found. Then we present simulations for Banda Aceh, and compare the results to on-site survey data, as well as to results from the original TsunAWI code.
NASA Astrophysics Data System (ADS)
Formetta, Giuseppe; Stewart, Elizabeth; Bell, Victoria; Reynard, Nick
2017-04-01
Estimation of peak discharge for an assigned return period is a crucial issue in engineering hydrology. It is required for designing and managing hydraulic infrastructure such as dams, reservoirs and bridges. In the UK, the Flood Estimation Handbook (FEH) recommends the use of the index flood method to estimate the design flood as the product of a local scale factor (the index flood, IF) and a dimensionless regional growth factor (GF). For gauged catchments the IF is usually estimated as the median annual maximum flood (QMED), while for ungauged catchments it is computed through multiple linear regression models based on a set of morpho-climatic indices of the basin. The GF is estimated by fitting the annual maxima with the generalised logistic distribution (GL) using two methods depending on the record length and the target return period: single-site or pooled analysis. The single site-analysis estimates the GF from the annual maxima of the subject site alone; the pooled analysis uses data from a set of catchments hydrologically similar to the subject site. In this work estimates of floods up to 100-year return period obtained from the FEH approach are compared to those obtained using Grid-to-Grid, a continuous physically-based hydrological model. The model converts rainfall and potential evapotranspiration into river flows by modelling surface/sub-surface runoff, lateral water movements, and snow-pack. It is configured on a 1km2 grid resolution and it uses spatial datasets of topography, soil, and land cover. It was set up in Great Britain and has been evaluated for the period 1960-2014 in forward-mode (i.e. without parameter calibration) using daily meteorological forcing data. The modelled floods with a given return period (5,10, 30, 50, and 100 years) were computed from the modelled discharge annual maxima and compared to the FEH estimates for 100 catchments in Great Britain. Preliminary results suggest that there is a good agreement between modelled and measured floods with a correlation coefficient that ranges from 0.8 for low return periods to 0.65 for the highest. It is shown that model performance is robust and independent of catchment features such as area and mean annual rainfall. The promising results for Great Britain support the aspiration that continuous simulation from large-scale hydrological models, supported by the increasing availability of global weather, climate and hydrological products, could be used to develop robust methods to help engineers estimate design floods in regions with limited gauge data or affected by environmental change.
NASA Astrophysics Data System (ADS)
Lavender, Samantha; Haria, Kajal; Cooksley, Geraint; Farman, Alex; Beaton, Thomas
2016-08-01
The aim was to understand a future market for NovaSAR-S, with a particular focus on flood mapping, through developing a simple Synthetic Aperture Radar (SAR) simulator that can be used in advance of NovaSAR-S data becoming available.The return signal was determined from a combination of a terrain or elevation model, Envisat S-Band Radar Altimeter (RA)-2, Landsat and CORINE land cover information; allowing for a simulation of a SAR image that's influenced by both the geometry and surface type. The test sites correspond to data from the 2014 AirSAR campaign, and validation is performed by using AirSAR together with Envisat Advanced (ASAR) and Advanced Land Observing Satellite "Daichi" (ALOS) Phased Array type L-Band Synthetic Aperture Radar (PALSAR) data.It's envisaged that the resulting simulated data, and the simulator, will not only aid early understanding of NovaSAR-S, but will also aid the development of flood mapping applications.
Catastrophe loss modelling of storm-surge flood risk in eastern England.
Muir Wood, Robert; Drayton, Michael; Berger, Agnete; Burgess, Paul; Wright, Tom
2005-06-15
Probabilistic catastrophe loss modelling techniques, comprising a large stochastic set of potential storm-surge flood events, each assigned an annual rate of occurrence, have been employed for quantifying risk in the coastal flood plain of eastern England. Based on the tracks of the causative extratropical cyclones, historical storm-surge events are categorized into three classes, with distinct windfields and surge geographies. Extreme combinations of "tide with surge" are then generated for an extreme value distribution developed for each class. Fragility curves are used to determine the probability and magnitude of breaching relative to water levels and wave action for each section of sea defence. Based on the time-history of water levels in the surge, and the simulated configuration of breaching, flow is time-stepped through the defences and propagated into the flood plain using a 50 m horizontal-resolution digital elevation model. Based on the values and locations of the building stock in the flood plain, losses are calculated using vulnerability functions linking flood depth and flood velocity to measures of property loss. The outputs from this model for a UK insurance industry portfolio include "loss exceedence probabilities" as well as "average annualized losses", which can be employed for calculating coastal flood risk premiums in each postcode.
Software Tools For Building Decision-support Models For Flood Emergency Situations
NASA Astrophysics Data System (ADS)
Garrote, L.; Molina, M.; Ruiz, J. M.; Mosquera, J. C.
The SAIDA decision-support system was developed by the Spanish Ministry of the Environment to provide assistance to decision-makers during flood situations. SAIDA has been tentatively implemented in two test basins: Jucar and Guadalhorce, and the Ministry is currently planning to have it implemented in all major Spanish basins in a few years' time. During the development cycle of SAIDA, the need for providing as- sistance to end-users in model definition and calibration was clearly identified. System developers usually emphasise abstraction and generality with the goal of providing a versatile software environment. End users, on the other hand, require concretion and specificity to adapt the general model to their local basins. As decision-support models become more complex, the gap between model developers and users gets wider: Who takes care of model definition, calibration and validation?. Initially, model developers perform these tasks, but the scope is usually limited to a few small test basins. Before the model enters operational stage, end users must get involved in model construction and calibration, in order to gain confidence in the model recommendations. However, getting the users involved in these activities is a difficult task. The goal of this re- search is to develop representation techniques for simulation and management models in order to define, develop and validate a mechanism, supported by a software envi- ronment, oriented to provide assistance to the end-user in building decision models for the prediction and management of river floods in real time. The system is based on three main building blocks: A library of simulators of the physical system, an editor to assist the user in building simulation models, and a machine learning method to calibrate decision models based on the simulation models provided by the user.
Streamflow model of Wisconsin River for estimating flood frequency and volume
Krug, William R.; House, Leo B.
1980-01-01
The 100-year flood peak at Wisconsin Dells, computed from the simulated, regulated streamflow data for the period 1915-76, is 82,000 cubic feet per second, including the effects of all the reservoirs in the river system, as they are currently operated. It also includes the effects of Lakes Du Bay, Petenwell, and Castle Rock which are significant for spring floods but are insignificant for summer or fall floods because they are normally maintained nearly full in the summer and fall and have very little storage for floodwaters. (USGS)
NASA Astrophysics Data System (ADS)
Dong, L.
2017-12-01
Abstract: The original urban surface structure changed a lot because of the rapid development of urbanization. Impermeable area has increased a lot. It causes great pressure for city flood control and drainage. Songmushan reservoir basin with high degree of urbanization is taken for an example. Pixel from Landsat is decomposed by Linear spectral mixture model and the proportion of urban area in it is considered as impervious rate. Based on impervious rate data before and after urbanization, an physically based distributed hydrological model, Liuxihe Model, is used to simulate the process of hydrology. The research shows that the performance of the flood forecasting of high urbanization area carried out with Liuxihe Model is perfect and can meet the requirement of the accuracy of city flood control and drainage. The increase of impervious area causes conflux speed more quickly and peak flow to be increased. It also makes the time of peak flow advance and the runoff coefficient increase. Key words: Liuxihe Model; Impervious rate; City flood control and drainage; Urbanization; Songmushan reservoir basin
Reduced Complexity Modelling of Urban Floodplain Inundation
NASA Astrophysics Data System (ADS)
McMillan, H. K.; Brasington, J.; Mihir, M.
2004-12-01
Significant recent advances in floodplain inundation modelling have been achieved by directly coupling 1d channel hydraulic models with a raster storage cell approximation for floodplain flows. The strengths of this reduced-complexity model structure derive from its explicit dependence on a digital elevation model (DEM) to parameterize flows through riparian areas, providing a computationally efficient algorithm to model heterogeneous floodplains. Previous applications of this framework have generally used mid-range grid scales (101-102 m), showing the capacity of the models to simulate long reaches (103-104 m). However, the increasing availability of precision DEMs derived from airborne laser altimetry (LIDAR) enables their use at very high spatial resolutions (100-101 m). This spatial scale offers the opportunity to incorporate the complexity of the built environment directly within the floodplain DEM and simulate urban flooding. This poster describes a series of experiments designed to explore model functionality at these reduced scales. Important questions are considered, raised by this new approach, about the reliability and representation of the floodplain topography and built environment, and the resultant sensitivity of inundation forecasts. The experiments apply a raster floodplain model to reconstruct a 1:100 year flood event on the River Granta in eastern England, which flooded 72 properties in the town of Linton in October 2001. The simulations use a nested-scale model to maintain efficiency. A 2km by 4km urban zone is represented by a high-resolution DEM derived from single-pulse LIDAR data supplied by the UK Environment Agency, together with surveyed data and aerial photography. Novel methods of processing the raw data to provide the individual structure detail required are investigated and compared. This is then embedded within a lower-resolution model application at the reach scale which provides boundary conditions based on recorded flood stage. The high resolution predictions on a scale commensurate with urban structures make possible a multi-criteria validation which combines verification of reach-scale characteristics such as downstream flow and inundation extent with internal validation of flood depth at individual sites.
Real Option Cost Vulnerability Analysis of Electrical Infrastructure
NASA Astrophysics Data System (ADS)
Prime, Thomas; Knight, Phil
2015-04-01
Critical infrastructure such as electricity substations are vulnerable to various geo-hazards that arise from climate change. These geo-hazards range from increased vegetation growth to increased temperatures and flood inundation. Of all the identified geo-hazards, coastal flooding has the greatest impact, but to date has had a low probability of occurring. However, in the face of climate change, coastal flooding is likely to occur more often due to extreme water levels being experienced more frequently due to sea-level rise (SLR). Knowing what impact coastal flooding will have now and in the future on critical infrastructure such as electrical substations is important for long-term management. Using a flood inundation model, present day and future flood events have been simulated, from 1 in 1 year events up to 1 in 10,000 year events. The modelling makes an integrated assessment of impact by using sea-level and surge to simulate a storm tide. The geographical area the model covers is part of the Northwest UK coastline with a range of urban and rural areas. The ensemble of flood maps generated allows the identification of critical infrastructure exposed to coastal flooding. Vulnerability has be assessed using an Estimated Annual Damage (EAD) value. Sampling SLR annual probability distributions produces a projected "pathway" for SLR up to 2100. EAD is then calculated using a relationship derived from the flood model. Repeating the sampling process allows a distribution of EAD up to 2100 to be produced. These values are discounted to present day values using an appropriate discount rate. If the cost of building and maintain defences is also removed from this a Net Present Value (NPV) of building the defences can be calculated. This distribution of NPV can be used as part of a cost modelling process involving Real Options, A real option is the right but not obligation to undertake investment decisions. In terms of investment in critical infrastructure resilience this means that a real option can be deferred or exercised depending on the climate future that has been realised. The real option value is defined as the maximum positive NPV value that is found across the range of potential SLR "futures". Real Options add value in that flood defences may not be built when there is real value in doing so. The cost modelling output is in the form of an accessible database that has detailed real option values varying spatially across the model domain (for each critical infrastructure) and temporally up to 2100. The analysis has shown that in 2100, 8.2% of the substations analysed have a greater than a 1 in 2 chance of exercising the real option to build flood defences against coastal flooding. The cost modelling tool and flood maps that have been developed will help stakeholders in deciding where and when to invest in mitigating against coastal flooding.
Calibration of HEC-Ras hydrodynamic model using gauged discharge data and flood inundation maps
NASA Astrophysics Data System (ADS)
Tong, Rui; Komma, Jürgen
2017-04-01
The estimation of flood is essential for disaster alleviation. Hydrodynamic models are implemented to predict the occurrence and variance of flood in different scales. In practice, the calibration of hydrodynamic models aims to search the best possible parameters for the representation the natural flow resistance. Recent years have seen the calibration of hydrodynamic models being more actual and faster following the advance of earth observation products and computer based optimization techniques. In this study, the Hydrologic Engineering River Analysis System (HEC-Ras) model was set up with high-resolution digital elevation model from Laser scanner for the river Inn in Tyrol, Austria. 10 largest flood events from 19 hourly discharge gauges and flood inundation maps were selected to calibrate the HEC-Ras model. Manning roughness values and lateral inflow factors as parameters were automatically optimized with the Shuffled complex with Principal component analysis (SP-UCI) algorithm developed from the Shuffled Complex Evolution (SCE-UA). Different objective functions (Nash-Sutcliffe model efficiency coefficient, the timing of peak, peak value and Root-mean-square deviation) were used in single or multiple way. It was found that the lateral inflow factor was the most sensitive parameter. SP-UCI algorithm could avoid the local optimal and achieve efficient and effective parameters in the calibration of HEC-Ras model using flood extension images. As results showed, calibration by means of gauged discharge data and flood inundation maps, together with objective function of Nash-Sutcliffe model efficiency coefficient, was very robust to obtain more reliable flood simulation, and also to catch up with the peak value and the timing of peak.
Machine Learning for Flood Prediction in Google Earth Engine
NASA Astrophysics Data System (ADS)
Kuhn, C.; Tellman, B.; Max, S. A.; Schwarz, B.
2015-12-01
With the increasing availability of high-resolution satellite imagery, dynamic flood mapping in near real time is becoming a reachable goal for decision-makers. This talk describes a newly developed framework for predicting biophysical flood vulnerability using public data, cloud computing and machine learning. Our objective is to define an approach to flood inundation modeling using statistical learning methods deployed in a cloud-based computing platform. Traditionally, static flood extent maps grounded in physically based hydrologic models can require hours of human expertise to construct at significant financial cost. In addition, desktop modeling software and limited local server storage can impose restraints on the size and resolution of input datasets. Data-driven, cloud-based processing holds promise for predictive watershed modeling at a wide range of spatio-temporal scales. However, these benefits come with constraints. In particular, parallel computing limits a modeler's ability to simulate the flow of water across a landscape, rendering traditional routing algorithms unusable in this platform. Our project pushes these limits by testing the performance of two machine learning algorithms, Support Vector Machine (SVM) and Random Forests, at predicting flood extent. Constructed in Google Earth Engine, the model mines a suite of publicly available satellite imagery layers to use as algorithm inputs. Results are cross-validated using MODIS-based flood maps created using the Dartmouth Flood Observatory detection algorithm. Model uncertainty highlights the difficulty of deploying unbalanced training data sets based on rare extreme events.
Flood-inundation maps for the Tippecanoe River at Winamac, Indiana
Menke, Chad D.; Bunch, Aubrey R.
2015-09-25
For this study, flood profiles were computed for the Tippecanoe River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at the Tippecanoe River streamgage, in combination with the current (2014) Federal Emergency Management Agency flood-insurance study for Pulaski County. The calibrated hydraulic model was then used to determine nine water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The 1-percent annual exceedance probability (AEP) flood stage (flood with recurrence intervals within 100 years) has not been determined yet for this streamgage location. The rating has not been developed for the 1-percent AEP because the streamgage dates to only 2001. The simulated water-surface profiles were then used with a geographic information system (GIS) digital elevation model (DEM, derived from Light Detection and Ranging [lidar]) in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage 03331753, Tippecanoe River at Winamac, Ind., and forecast stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
NASA Technical Reports Server (NTRS)
Zhang, Xiaodong; Kirilenko, Andrei; Lim, Howe; Teng, Williams
2010-01-01
This slide presentation reviews work to combine the hydrological models and remote sensing observations to monitor Devils Lake in North Dakota, to assist in flood damage mitigation. This reports on the use of a distributed rainfall-runoff model, HEC-HMS, to simulate the hydro-dynamics of the lake watershed, and used NASA's remote sensing data, including the TRMM Multi-Satellite Precipitation Analysis (TMPA) and AIRS surface air temperature, to drive the model.
Operational flash flood forecasting platform based on grid technology
NASA Astrophysics Data System (ADS)
Thierion, V.; Ayral, P.-A.; Angelini, V.; Sauvagnargues-Lesage, S.; Nativi, S.; Payrastre, O.
2009-04-01
Flash flood events of south of France such as the 8th and 9th September 2002 in the Grand Delta territory caused important economic and human damages. Further to this catastrophic hydrological situation, a reform of flood warning services have been initiated (set in 2006). Thus, this political reform has transformed the 52 existing flood warning services (SAC) in 22 flood forecasting services (SPC), in assigning them territories more hydrological consistent and new effective hydrological forecasting mission. Furthermore, national central service (SCHAPI) has been created to ease this transformation and support local services in their new objectives. New functioning requirements have been identified: - SPC and SCHAPI carry the responsibility to clearly disseminate to public organisms, civil protection actors and population, crucial hydrologic information to better anticipate potential dramatic flood event, - a new effective hydrological forecasting mission to these flood forecasting services seems essential particularly for the flash floods phenomenon. Thus, models improvement and optimization was one of the most critical requirements. Initially dedicated to support forecaster in their monitoring mission, thanks to measuring stations and rainfall radar images analysis, hydrological models have to become more efficient in their capacity to anticipate hydrological situation. Understanding natural phenomenon occuring during flash floods mainly leads present hydrological research. Rather than trying to explain such complex processes, the presented research try to manage the well-known need of computational power and data storage capacities of these services. Since few years, Grid technology appears as a technological revolution in high performance computing (HPC) allowing large-scale resource sharing, computational power using and supporting collaboration across networks. Nowadays, EGEE (Enabling Grids for E-science in Europe) project represents the most important effort in term of grid technology development. This paper presents an operational flash flood forecasting platform which have been developed in the framework of CYCLOPS European project providing one of virtual organizations of EGEE project. This platform has been designed to enable multi-simulations processes to ease forecasting operations of several supervised watersheds on Grand Delta (SPC-GD) territory. Grid technology infrastructure, in providing multiple remote computing elements enables the processing of multiple rainfall scenarios, derived to the original meteorological forecasting transmitted by Meteo-France, and their respective hydrological simulations. First results show that from one forecasting scenario, this new presented approach can permit simulations of more than 200 different scenarios to support forecasters in their aforesaid mission and appears as an efficient hydrological decision-making tool. Although, this system seems operational, model validity has to be confirmed. So, further researches are necessary to improve models core to be more efficient in term of hydrological aspects. Finally, this platform could be an efficient tool for developing others modelling aspects as calibration or data assimilation in real time processing.
SURFACE FLOODS IN COIMBRA: simple and dual-drainage studies
NASA Astrophysics Data System (ADS)
Leitão, J. P.; Simões, N. E.; Pina, R.; Marques, A. Sá; Maksimović, Č.; Gonçalves, Gil
2009-09-01
Surface water flooding occurs due to extreme rainfall and the inability of the sewer system to drain all runoff. As a consequence, a considerable volume of water is carried out over the surface through preferential flow paths and can eventually accumulate in natural (or man-made) ponds. This can cause minor material losses but also major incidents with obvious consequences in economic activities and the normal people's life. Unfortunately, due to predicted climate changes and increase of urbanisation levels, the urban flooding phenomenon has been reported more often. The Portuguese city of Coimbra is a medium size city that has suffered several river floods in the past. However, after the construction of hydraulic control structures, the number of fluvial flood events was greatly reduced. In the 1990s two new problems started. On one hand, houses started to be built on flood plain areas; on the other hand, some areas experienced a boom in the degree of urbanisation. This created flood problems of a different type dislocating the flood areas from the traditional flood areas along the river to new areas that did not reported flood in history. The catchment studied has a total area of approximately 1.5 km2 and discharges in the Coselhas brook The catchment can be divided in three regions with different characteristics: (i) the "Lower City" which is a low-lying area with 0.4 km2 and with a combined sewer system; (ii) the "Upper City" which is a considerably hilly area, highly urbanized and with an area of approximately 0.2 km2; and (iii) the remaining area which is also highly urbanized, with an area of 0.9 km2, where the main flood problems are generated. The sewer system is 34.8 km long; 29 km are of the combined type, and only 1.2 km is exclusive for storm water. The time of concentration of the catchment is estimated to be 45 min. On the 9 June 2006, an extreme rainfall event caused severe flooding in the city. After the rainfall had stopped, water continued to flow along the roads towards the Praça 8 de Maio, which is the lowest point in the whole catchment and where water tends to accumulate. As presented in Table 1, the return periods calculated for durations shorter than 30 minutes are not high. In fact, this rainfall event is characterised by an extreme heavy intensity regarding its total duration; thus it cannot be considered a short period event with a high intensity. As its total duration is approximately the time of concentration of the catchment, the flooding event was very significant. A 50 year return period was estimated for the event with 45 minutes duration. Table 1: Return period interpretation of the 9 June 2006 rainfall event Duration 5 (min) 10 (min) 15 (min) 30 (min) 45 (min) Maximum rainfall intensity (mm/h)122.4 76.8 72.4 61.6 47.6 Return period1(year) 10 8 20 > 50 50 Comparing the simulation results and the actual flood locations, it is concluded that the main cause of flooding is not the capacity of the sewer system. Despite the high slopes and the high level of imperviousness of the catchment, the flood seems to be mainly caused due to the limited capacity of the sewer inlets. It suggests that the correct analysis of the hydraulic behaviour of the catchment drainage system should contemplate the analysis of the overland flow system, either using a one- (1D) or two-dimensional (2D) approaches. Hence, simulation of the 9 June 2006 event were also carried out considering the 1D sewer model, an 1D/1D model and an 1D/2D model. The methodology developed at the Imperial College London to generate overland flow networks was used in the 1D/1D model. Infoworks CS was used to do the hydraulic simulations of the 1D/1D and 1D/2D models. The results of the simulations taking into account the overland flow system will be presented in this paper. Local community reports and photos are then used to validate the simulation results obtained. Acknowledgements The authors would like to acknowledge Águas de Coimbra, E.M. and Edinfor (Portugal) for providing the data used in this study. Provision of the software used to carry out the hydraulic simulations.by Wallingford Software is also acknowledged. The first and second authors also acknowledge the financial support from the Fundação para a Ciência e Tecnologia, Portugal [SFRH/BD/21382/2005 and SFRH/BD/37797/2007].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.A.; Sepehrnoori, K.
1994-08-01
This research consists of the parallel development of a new chemical flooding simulator and the application of existing UTCHEM simulation code to model surfactant flooding. The new code is based upon a completely new numerical method that combines for the first time higher order finite difference methods, flux limiters, and implicit algorithms. Early results indicate that this approach has significant advantages in some problems and will likely enable simulation of much larger and more realistic chemical floods once it is fully developed. Additional improvements have also been made to the UTCHEM code and it has been applied for the firstmore » time to the study of stochastic reservoirs with and without horizontal wells to evaluate methods to reduce the cost and risk of surfactant flooding. During the first year of this contract, significant progress has been made on both of these tasks. The authors have found that there are indeed significant differences between the performance predictions based upon the traditional layered reservoir description and the more realistic and flexible descriptions using geostatistics. These preliminary studies of surfactant flooding using horizontal wells shows that although they have significant potential to greatly reduce project life and thus improve the economics of the process, their use requires accurate reservoir descriptions and simulations to be effective. Much more needs to be done to fully understand and optimize their use and develop reliable design criteria.« less
Beyond 'flood hotspots': Modelling emergency service accessibility during flooding in York, UK
NASA Astrophysics Data System (ADS)
Coles, Daniel; Yu, Dapeng; Wilby, Robert L.; Green, Daniel; Herring, Zara
2017-03-01
This paper describes the development of a method that couples flood modelling with network analysis to evaluate the accessibility of city districts by emergency responders during flood events. We integrate numerical modelling of flood inundation with geographical analysis of service areas for the Ambulance Service and the Fire & Rescue Service. The method was demonstrated for two flood events in the City of York, UK to assess the vulnerability of care homes and sheltered accommodation. We determine the feasibility of emergency services gaining access within the statutory 8- and 10-min targets for high-priority, life-threatening incidents 75% of the time, during flood episodes. A hydrodynamic flood inundation model (FloodMap) simulates the 2014 pluvial and 2015 fluvial flood events. Predicted floods (with depth >25 cm and areas >100 m2) were overlain on the road network to identify sites with potentially restricted access. Accessibility of the city to emergency responders during flooding was quantified and mapped using; (i) spatial coverage from individual emergency nodes within the legislated timeframes, and; (ii) response times from individual emergency service nodes to vulnerable care homes and sheltered accommodation under flood and non-flood conditions. Results show that, during the 2015 fluvial flood, the area covered by two of the three Fire & Rescue Service stations reduced by 14% and 39% respectively, while the remaining station needed to increase its coverage by 39%. This amounts to an overall reduction of 6% and 20% for modelled and observed floods respectively. During the 2014 surface water flood, 7 out of 22 care homes (32%) and 15 out of 43 sheltered accommodation nodes (35%) had modelled response times above the 8-min threshold from any Ambulance station. Overall, modelled surface water flooding has a larger spatial footprint than fluvial flood events. Hence, accessibility of emergency services may be impacted differently depending on flood mechanism. Moreover, we expect emergency services to face greater challenges under a changing climate with a growing, more vulnerable population. The methodology developed in this study could be applied to other cities, as well as for scenario-based evaluation of emergency preparedness to support strategic decision making, and in real-time forecasting to guide operational decisions where heavy rainfall lead-time and spatial resolution are sufficient.
Modeling Wettability Alteration using Chemical EOR Processes in Naturally Fractured Reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori
2007-09-30
The objective of our search is to develop a mechanistic simulation tool by adapting UTCHEM to model the wettability alteration in both conventional and naturally fractured reservoirs. This will be a unique simulator that can model surfactant floods in naturally fractured reservoir with coupling of wettability effects on relative permeabilities, capillary pressure, and capillary desaturation curves. The capability of wettability alteration will help us and others to better understand and predict the oil recovery mechanisms as a function of wettability in naturally fractured reservoirs. The lack of a reliable simulator for wettability alteration means that either the concept that hasmore » already been proven to be effective in the laboratory scale may never be applied commercially to increase oil production or the process must be tested in the field by trial and error and at large expense in time and money. The objective of Task 1 is to perform a literature survey to compile published data on relative permeability, capillary pressure, dispersion, interfacial tension, and capillary desaturation curve as a function of wettability to aid in the development of petrophysical property models as a function of wettability. The new models and correlations will be tested against published data. The models will then be implemented in the compositional chemical flooding reservoir simulator, UTCHEM. The objective of Task 2 is to understand the mechanisms and develop a correlation for the degree of wettability alteration based on published data. The objective of Task 3 is to validate the models and implementation against published data and to perform 3-D field-scale simulations to evaluate the impact of uncertainties in the fracture and matrix properties on surfactant alkaline and hot water floods.« less
Flood Simulation based on ArcGIS in the Ungauged Area from Fugu to Wubao of the middle Yellow River
NASA Astrophysics Data System (ADS)
Jin, Shuangyan; Yan, Yiqi; Jiang, Xinhui
2017-12-01
The Qingliangsigou and Jialuhe in the middle Yellow River are selected as the typical tributaries, history flood data in 1980-2013 and Horton infiltration capacity curve are used to calculate the stable infiltration rate and establish the model of runoff yield and concentration, the parameters are calibrated and applied in the ungauged area from Fugu to Wubao. The study area is divided into 20 units based on ArcGIS, Muskingum method parameters in each unit are calibrated, and typical floods of ungauged area from Fugu to Wubao are simulated. The results show that the simulation effects are good: the average error of peak time is about -0.4h, the error of peak discharge is in the forecasting allowable range, and the deterministic coefficient is 0.66.
Ho Chi Minh City adaptation to increasing risk of coastal and fluvial floods
NASA Astrophysics Data System (ADS)
Scussolini, Paolo; Lasage, Ralph
2016-04-01
Coastal megacities in southeast Asia are a hotspot of vulnerability to floods. In such contexts, the combination of fast socio-economic development and of climate change impacts on precipitation and sea level generates concerns about the flood damage to people and assets. This work focuses on Ho Chi Minh City, Vietnam, for which we estimate the present and future direct risk from river and coastal floods. A model cascade is used that comprises the Saigon river basin and the urban network, plus the land-use-dependent damaging process. Changes in discharge for five return periods are simulated, enabling the probabilistic calculation of the expected annual economic damage to assets, for differnt scenarios of global emissions, local socio-economic growth, and land subsidence, up to year 2100. The implementation of a range of adaptation strategies is simulated, including building dykes, elevating, creating reservoirs, managing water and sediment upstream, flood-proofing, halting groundwater abstraction. Results are presented on 1) the relative weight of each future driver in determining the flood risk of Ho Chi Minh, and 2) the efficiency and feasibility of each adaptation strategy.
NASA Astrophysics Data System (ADS)
Liu, Z.; Rajib, M. A.; Jafarzadegan, K.; Merwade, V.
2015-12-01
Application of land surface/hydrologic models within an operational flood forecasting system can provide probable time of occurrence and magnitude of streamflow at specific locations along a stream. Creating time-varying spatial extent of flood inundation and depth requires the use of a hydraulic or hydrodynamic model. Models differ in representing river geometry and surface roughness which can lead to different output depending on the particular model being used. The result from a single hydraulic model provides just one possible realization of the flood extent without capturing the uncertainty associated with the input or the model parameters. The objective of this study is to compare multiple hydraulic models toward generating ensemble flood inundation extents. Specifically, relative performances of four hydraulic models, including AutoRoute, HEC-RAS, HEC-RAS 2D, and LISFLOOD are evaluated under different geophysical conditions in several locations across the United States. By using streamflow output from the same hydrologic model (SWAT in this case), hydraulic simulations are conducted for three configurations: (i) hindcasting mode by using past observed weather data at daily time scale in which models are being calibrated against USGS streamflow observations, (ii) validation mode using near real-time weather data at sub-daily time scale, and (iii) design mode with extreme streamflow data having specific return periods. Model generated inundation maps for observed flood events both from hindcasting and validation modes are compared with remotely sensed images, whereas the design mode outcomes are compared with corresponding FEMA generated flood hazard maps. The comparisons presented here will give insights on probable model-specific nature of biases and their relative advantages/disadvantages as components of an operational flood forecasting system.
Nitrogen dynamics in flooded soil systems: an overview on concepts and performance of models.
Nurulhuda, Khairudin; Gaydon, Donald S; Jing, Qi; Zakaria, Mohamad P; Struik, Paul C; Keesman, Karel J
2018-02-01
Extensive modelling studies on nitrogen (N) dynamics in flooded soil systems have been published. Consequently, many N dynamics models are available for users to select from. With the current research trend, inclined towards multidisciplinary research, and with substantial progress in understanding of N dynamics in flooded soil systems, the objective of this paper is to provide an overview of the modelling concepts and performance of 14 models developed to simulate N dynamics in flooded soil systems. This overview provides breadth of knowledge on the models, and, therefore, is valuable as a first step in the selection of an appropriate model for a specific application. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Linking flood peak, flood volume and inundation extent: a DEM-based approach
NASA Astrophysics Data System (ADS)
Rebolho, Cédric; Furusho-Percot, Carina; Blaquière, Simon; Brettschneider, Marco; Andréassian, Vazken
2017-04-01
Traditionally, flood inundation maps are computed based on the Shallow Water Equations (SWE) in one or two dimensions, with various simplifications that have proved to give good results. However, the complexity of the SWEs often requires a numerical resolution which can need long computing time, as well as detailed cross section data: this often results in restricting these models to rather small areas abundant with high quality data. This, along with the necessity for fast inundation mapping, are the reason why rapid inundation models are being designed, working for (almost) any river with a minimum amount of data and, above all, easily available data. Our model tries to follow this path by using a 100m DEM over France from which are extracted a drainage network and the associated drainage areas. It is based on two pre-existing methods: (1) SHYREG (Arnaud et al.,2013), a regionalized approach used to calculate the 2-year and 10-year flood quantiles (used as approximated bankfull flow and maximum discharge, respectively) for each river pixel of the DEM (below a 10 000 km2 drainage area) and (2) SOCOSE (Mailhol,1980), which gives, amongst other things, an empirical formula of a characteristic flood duration (for each pixel) based on catchment area, average precipitation and temperature. An overflow volume for each river pixel is extracted from a triangular shaped synthetic hydrograph designed with SHYREG quantiles and SOCOSE flood duration. The volume is then spread from downstream to upstream one river pixel at a time. When the entire hydrographic network is processed, the model stops and generates a map of potential inundation area associated with the 10-year flood quantile. Our model can also be calibrated using past-events inundation maps by adjusting two parameters, one which modifies the overflow duration, and the other, equivalent to a minimum drainage area for river pixels to be flooded. Thus, in calibration on a sample of 42 basins, the first draft of the model showed a 0.51 median Fit (intersection of simulated and observed areas divided by the union of the two, Bates and De Roo, 2000) and a 0.74 maximum. Obviously, this approach is quite rough, and would require testing on events of homogeneous return periods (which is not the case for now). The next steps in the test and the development of our method include the use of the AIGA distributed model to simulate past-events hydrographs, the search for a new way to automatically approach bankfull flow and the integration of the results in our model to build dynamic maps of the flood. References Arnaud, P., Eglin, Y., Janet, B., and Payrastre, O. (2013). Notice utilisateur : bases de données SHYREG-Débit. Méthode - Performances - Limites. Bates, P. D. and De Roo, A. P. J. (2000). A simple raster-based model for flood inundation simulation. Journal of Hydrology, 236(1-2):54-77. Mailhol, J. (1980). Pour une approche plus réaliste du temps caractéristique de crues des bassins versants. In Actes du Colloque d'Oxford, volume 129, pages 229-237, Oxford. IAHS-AISH.
Flynn, Robert H.
2014-01-01
In addition to the two digital flood inundation maps, flood profiles were created that depict the study reach flood elevation of tropical storm Irene of August 2011 and the 10-, 2-, 1-, and 0.2-percent AEP floods, also known as the 10-, 50-, 100-, and 500-year floods, respectively. The 10-, 2-, 1-, and 0.2-percent AEP flood discharges were determined using annual peak flow data from the USGS Ottauquechee River near West Bridgewater, Vt. streamgage (station 01150900). Flood profiles were computed for the Ottauquechee River and Reservoir Brook by means of a one-dimensional step-backwater model. The model was calibrated using documented high-water marks of the peak of the tropical storm Irene flood of August 2011 as well as stage discharge data as determined for USGS Ottauquechee River near West Bridgewater, Vt. streamgage (station 01150900). The simulated water-surface profiles were combined with a digital elevation model within a geographic information system to delineate the areas flooded during tropical storm Irene and for the 1-percent AEP water-surface profile. The digital elevation model data were derived from light detection and ranging (lidar) data obtained for a 3,281-foot (1,000-meter) corridor along the Ottauquechee River study reach and were augmented with 33-foot (10- meter) contour interval data in the modeled flood-inundation areas outside the lidar corridor. The 33-foot (10-meter) contour interval USGS 15-minute quadrangle topographic digital raster graphics map used to augment lidar data was produced at a scale of 1:24,000. The digital flood inundation maps and flood profiles along with information regarding current stage from USGS streamgages on the Internet provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.
NASA Astrophysics Data System (ADS)
Kameyama, S.; Nohara, S.; Sato, T.; Fujii, Y.; Kudo, K.
2009-12-01
The Mekong River watershed is undergoing rapid economic progress and population growth, raising conflicts between watershed development and environmental conservation. A typical conflict is between the benefits of dam construction versus the benefits of watershed ecological services. In developed countries, this conflict is changing to a coordinated search for outcomes that are mutually acceptable to all stakeholders. In the Mekong River, however, government policy gives priority to watershed development for ensuring steady energy supplies. Since the 1990s, a series of dams called “the Mekong Cascade” have been under construction. Dam construction has multiple economic values as electric power supply, irrigation water, flood control, etc. On the other hand, the artificial flow discharge controls of dam moderate seasonal hydrologic patterns of the Asian monsoon region. Dam operations can change the sediment transport regime and river structure. Furthermore, their impacts on watershed ecosystems and traditional economic activities of fisheries and agriculture in downstream areas may be severe. We focus on dam impacts on spatio-temporal patterns of sediment transport and seasonal flood in riparian areas downstream from Mekong River dams. Our study river section is located on 100 km down stream from the Golden Triangle region of Myanmar, Laos, and Thailand. We selected a 10-km section in this main channel to simulate seasonal flooding. We modeled the river hydrology in the years 1991 and 2002, before and after the Manwan dam construction (1986-1993). For this simulation, we adapted three models (distributed runoff model, 1-D hydrological model, and 2-D flood simulation with sediment movement algorithm.) Input data on river structure, water velocity, and flow volume were acquired from field survey data in November 2007 and 2008. In the step of parameter decision, we adopted the shuffled complex evolution method. To validate hydrologic parameters, we used annual water level data observed in Chiang Sean and Luang Prabang. To calculate sediment flux volume, we employed a Load-Quantity equation using total suspended solids data from monthly water sampling and flow discharge volumes over 13 months. To evaluate the impact of dam construction and watershed development, we inputted the same year of precipitation data using two watershed conditions with different parameters. Our results from the 1-D model displayed a seasonal delay of water flooding time after summer rainy season and an increase in sediment transport volume from September to October. In the flood simulation by the 2-D model, most of the annual sediment transport was concentrated from July to October. The spatial pattern of sediment dynamics was dependent largely on river structure including river meander shape, river bottom elevation, and geometry of the riparian zone. Our study approaches and simulation results show promise for beginning a quantitative assessment approach to cross-boundary environmental issues in the Mekong River watershed.
Change of flood risk under climate change based on Discharge Probability Index in Japan
NASA Astrophysics Data System (ADS)
Nitta, T.; Yoshimura, K.; Kanae, S.; Oki, T.
2010-12-01
Water-related disasters under the climate change have recently gained considerable interest, and there have been many studies referring to flood risk at the global scale (e.g. Milly et al., 2002; Hirabayashi et al., 2008). In order to build adaptive capacity, however, regional impact evaluation is needed. We thus focus on the flood risk over Japan in the present study. The output from the Regional Climate Model 20 (RCM20), which was developed by the Meteorological Research Institute, was used. The data was first compared with observed data based on Automated Meteorological Data Acquisition System and ground weather observations, and the model biases were corrected using the ratio and difference of the 20-year mean values. The bias-corrected RCM20 atmospheric data were then forced to run a land surface model and a river routing model (Yoshimura et al., 2007; Ngo-Duc, T. et al. 2007) to simulate river discharge during 1981-2000, 2031-2050, and 2081-2100. Simulated river discharge was converted to Discharge Probability Index (DPI), which was proposed by Yoshimura et al based on a statistical approach. The bias and uncertainty of the models are already taken into account in the concept of DPI, so that DPI serves as a good indicator of flood risk. We estimated the statistical parameters for DPI using the river discharge for 1981-2000 with an assumption that the parameters stay the same in the different climate periods. We then evaluated the occurrence of flood events corresponding to DPI categories in each 20 years and averaged them in 9 regions. The results indicate that low DPI flood events (return period of 2 years) will become more frequent in 2031-2050 and high DPI flood events (return period of 200 years) will become more frequent in 2081-2100 compared with the period of 1981-2000, though average precipitation will become larger during 2031-2050 than during 2081-2100 in most regions. It reflects the increased extreme precipitation during 2081-2100.
NASA Astrophysics Data System (ADS)
Lomazzi, M.; Roth, G.; Rudari, R.; Taramasso, A. C.; Ghizzoni, T.; Benedetti, R.; Espa, G.; Terpessi, C.
2009-12-01
The flooding risk impact on society cannot be understated: it influences land use and territorial planning and development at both physical and regulatory levels. To cope with it, a variety of actions can be put in place, involving multidisciplinary competences. Mitigation measures goes from the improvement of monitoring systems to the development of hydraulic structures, throughout land use restrictions, civil protection and insurance plans. All of those options present social and economic impacts, either positive or negative, whose proper estimate should rely on the assumption of appropriate - present and future - scenarios, i.e. quantitative event descriptions in terms of i) the flood hazard, with its probability of occurrence, extension, intensity, and duration, ii) the exposed values and iii) their vulnerability. At present, initial attention has been devoted to the design of flood scenarios, or ensembles of them, and to the evaluation of their frequency of occurrence. In the present work, a model for spatially distributed flood scenarios generation and frequency assessment is proposed and applied to the Italian territory. The study area has been divided into homogeneous regions according to their hydrologic, orographic and meteoclimatic characteristics. A statistical model for flood scenarios simulation has been implemented throughout a conditional approach based on MCMC simulations by using i) a historical flood events catalogue; ii) a homogeneous regions correlation matrix; and iii) an auxiliary variables data set. In this framework, the role of the information stored in the historical flood events catalogue "Aree Vulnerate Italiane" (AVI, http://avi.gndci.cnr.it/), produced by the Italian National Research Council, is of crucial importance.
Multiscale Modelling of the 2011 Tohoku Tsunami with Fluidity: Coastal Inundation and Run-up.
NASA Astrophysics Data System (ADS)
Hill, J.; Martin-Short, R.; Piggott, M. D.; Candy, A. S.
2014-12-01
Tsunami-induced flooding represents one of the most dangerous natural hazards to coastal communities around the world, as exemplified by Tohoku tsunami of March 2011. In order to further understand this hazard and to design appropriate mitigation it is necessary to develop versatile, accurate software capable of simulating large scale tsunami propagation and interaction with coastal geomorphology on a local scale. One such software package is Fluidity, an open source, finite element, multiscale, code that is capable of solving the fully three dimensional Navier-Stokes equations on unstructured meshes. Such meshes are significantly better at representing complex coastline shapes than structured meshes and have the advantage of allowing variation in element size across a domain. Furthermore, Fluidity incorporates a novel wetting and drying algorithm, which enables accurate, efficient simulation of tsunami run-up over complex, multiscale, topography. Fluidity has previously been demonstrated to accurately simulate the 2011 Tohoku tsunami (Oishi et al 2013) , but its wetting and drying facility has not yet been tested on a geographical scale. This study makes use of Fluidity to simulate the 2011 Tohoku tsunami and its interaction with Japan's eastern shoreline, including coastal flooding. The results are validated against observations made by survey teams, aerial photographs and previous modelling efforts in order to evaluate Fluidity's current capabilities and suggest methods of future improvement. The code is shown to perform well at simulating flooding along the topographically complex Tohoku coast of Japan, with major deviations between model and observation arising mainly due to limitations imposed by bathymetry resolution, which could be improved in future. In theory, Fluidity is capable of full multiscale tsunami modelling, thus enabling researchers to understand both wave propagation across ocean basins and flooding of coastal landscapes down to interaction with individual defence structures. This makes the code an exciting candidate for use in future studies aiming to investigate tsunami risk elsewhere in the world. Oishi, Y. et al. Three-dimensional tsunami propagation simulations using an unstructured mesh finite element model. J. Geophys. Res. [Solid Earth] 118, 2998-3018 (2013).
Large scale modelling of catastrophic floods in Italy
NASA Astrophysics Data System (ADS)
Azemar, Frédéric; Nicótina, Ludovico; Sassi, Maximiliano; Savina, Maurizio; Hilberts, Arno
2017-04-01
The RMS European Flood HD model® is a suite of country scale flood catastrophe models covering 13 countries throughout continental Europe and the UK. The models are developed with the goal of supporting risk assessment analyses for the insurance industry. Within this framework RMS is developing a hydrologic and inundation model for Italy. The model aims at reproducing the hydrologic and hydraulic properties across the domain through a modeling chain. A semi-distributed hydrologic model that allows capturing the spatial variability of the runoff formation processes is coupled with a one-dimensional river routing algorithm and a two-dimensional (depth averaged) inundation model. This model setup allows capturing the flood risk from both pluvial (overland flow) and fluvial flooding. Here we describe the calibration and validation methodologies for this modelling suite applied to the Italian river basins. The variability that characterizes the domain (in terms of meteorology, topography and hydrologic regimes) requires a modeling approach able to represent a broad range of meteo-hydrologic regimes. The calibration of the rainfall-runoff and river routing models is performed by means of a genetic algorithm that identifies the set of best performing parameters within the search space over the last 50 years. We first establish the quality of the calibration parameters on the full hydrologic balance and on individual discharge peaks by comparing extreme statistics to observations over the calibration period on several stations. The model is then used to analyze the major floods in the country; we discuss the different meteorological setup leading to the historical events and the physical mechanisms that induced these floods. We can thus assess the performance of RMS' hydrological model in view of the physical mechanisms leading to flood and highlight the main controls on flood risk modelling throughout the country. The model's ability to accurately simulate antecedent conditions and discharge hydrographs over the affected area is also assessed, showing that spatio-temporal correlation is retained through the modelling chain. Results show that our modelling approach can capture a wide range of conditions leading to major floods in the Italian peninsula. Under the umbrella of the RMS European Flood HD models this constitutes, to our knowledge, the only operational flood risk model to be applied at continental scale with a coherent model methodology and a domain wide MonteCarlo stochastic set.
Yoo, Chulsang; Ku, Jung Mo; Jun, Changhyun; Zhu, Ju Hua
2016-01-01
In this study, four infiltration facilities (permeable pavement, infiltration gutter, infiltration trench, and infiltration well) have been investigated and compared with their flood runoff reduction effect. The SEEP/W model was used to estimate the infiltration amount of each facility, and the flood runoff reduction effect was quantified by the decrease in curve number (CN). As a result of this study, we found that: (1) the infiltration could be successfully simulated by the SEEP/W model, whose result could also be quantified effectively by the decrease in CN; (2) among the four infiltration facilities considered in this study, the infiltration well and infiltration trench were found to be most efficient and economical; (3) finally, the intervention effect of the nearby infiltration facility was found not so significant. In an extreme case where the infiltration wells were located at 1 m interval, the intervention effect was found to be just 1%.
New Orleans After Hurricane Katrina: An Unnatural Disaster?
NASA Astrophysics Data System (ADS)
McNamara, D.; Werner, B.; Kelso, A.
2005-12-01
Motivated by destruction in New Orleans following hurricane Katrina, we use a numerical model to explore how natural processes, economic development, hazard mitigation measures and policy decisions intertwine to produce long periods of quiescence punctuated by disasters of increasing magnitude. Physical, economic and policy dynamics are modeled on a grid representing the subsiding Mississippi Delta region surrounding New Orleans. Water flow and resulting sediment erosion and deposition are simulated in response to prescribed river floods and storms. Economic development operates on a limited number of commodities and services such as agricultural products, oil and chemical industries and port services, with investment and employment responding to both local conditions and global constraints. Development permitting, artificial levee construction and pumping are implemented by policy agents who weigh predicted economic benefits (tax revenue), mitigation costs and potential hazards. Economic risk is reduced by a combination of private insurance, federal flood insurance and disaster relief. With this model, we simulate the initiation and growth of New Orleans coupled with an increasing level of protection from a series of flooding events. Hazard mitigation filters out small magnitude events, but terrain and hydrological modifications amplify the impact of large events. In our model, "natural disasters" are the inevitable outcome of the mismatch between policy based on short-time-scale economic calculations and stochastic forcing by infrequent, high-magnitude flooding events. A comparison of the hazard mitigation response to river- and hurricane-induced flooding will be discussed. Supported by NSF Geology and Paleontology and the Andrew W Mellon Foundation.
NASA Astrophysics Data System (ADS)
Shevnina, Elena; Kourzeneva, Ekaterina; Kovalenko, Viktor; Vihma, Timo
2017-05-01
Climate warming has been more acute in the Arctic than at lower latitudes and this tendency is expected to continue. This generates major challenges for economic activity in the region. Among other issues is the long-term planning and development of socio-economic infrastructure (dams, bridges, roads, etc.), which require climate-based forecasts of the frequency and magnitude of detrimental flood events. To estimate the cost of the infrastructure and operational risk, a probabilistic form of long-term forecasting is preferable. In this study, a probabilistic model to simulate the parameters of the probability density function (PDF) for multi-year runoff based on a projected climatology is applied to evaluate changes in extreme floods for the territory of the Russian Arctic. The model is validated by cross-comparison of the modelled and empirical PDFs using observations from 23 sites located in northern Russia. The mean values and coefficients of variation (CVs) of the spring flood depth of runoff are evaluated under four climate scenarios, using simulations of six climate models for the period 2010-2039. Regions with substantial expected changes in the means and CVs of spring flood depth of runoff are outlined. For the sites located within such regions, it is suggested to account for the future climate change in calculating the maximal discharges of rare occurrence. An example of engineering calculations for maximal discharges with 1 % exceedance probability is provided for the Nadym River at Nadym.
NASA Astrophysics Data System (ADS)
Zhang, J.; Fang, N. Z.
2017-12-01
A potential flood forecast system is under development for the Upper Trinity River Basin (UTRB) in North Central of Texas using the WRF-Hydro model. The Routing Application for the Parallel Computation of Discharge (RAPID) is utilized as channel routing module to simulate streamflow. Model performance analysis was conducted based on three quantitative precipitation estimates (QPE): the North Land Data Assimilation System (NLDAS) rainfall, the Multi-Radar Multi-Sensor (MRMS) QPE and the National Centers for Environmental Prediction (NCEP) quality-controlled stage IV estimates. Prior to hydrologic simulation, QPE performance is assessed on two time scales (daily and hourly) using the Community Collaborative Rain, Hail and Snow Network (CoCoRaHS) and Hydrometeorological Automated Data System (HADS) hourly products. The calibrated WRF-Hydro model was then evaluated by comparing the simulated against the USGS observed using various QPE products. The results imply that the NCEP stage IV estimates have the best accuracy among the three QPEs on both time scales, while the NLDAS rainfall performs poorly because of its coarse spatial resolution. Furthermore, precipitation bias demonstrates pronounced impact on flood forecasting skills, as the root mean squared errors are significantly reduced by replacing NLDAS rainfall with NCEP stage IV estimates. This study also demonstrates that accurate simulated results can be achieved when initial soil moisture values are well understood in the WRF-Hydro model. Future research effort will therefore be invested on incorporating data assimilation with focus on initial states of the soil properties for UTRB.
PHYSICAL MODELING OF CONTRACTED FLOW.
Lee, Jonathan K.
1987-01-01
Experiments on steady flow over uniform grass roughness through centered single-opening contractions were conducted in the Flood Plain Simulation Facility at the U. S. Geological Survey's Gulf Coast Hydroscience Center near Bay St. Louis, Miss. The experimental series was designed to provide data for calibrating and verifying two-dimensional, vertically averaged surface-water flow models used to simulate flow through openings in highway embankments across inundated flood plains. Water-surface elevations, point velocities, and vertical velocity profiles were obtained at selected locations for design discharges ranging from 50 to 210 cfs. Examples of observed water-surface elevations and velocity magnitudes at basin cross-sections are presented.
Goode, Daniel J.; Koerkle, Edward H.; Hoffman, Scott A.; Regan, R. Steve; Hay, Lauren E.; Markstrom, Steven L.
2010-01-01
A model was developed to simulate inflow to reservoirs and watershed runoff to streams during three high-flow events between September 2004 and June 2006 for the main-stem subbasin of the Delaware River draining to Trenton, N.J. The model software is a modified version of the U.S. Geological Survey (USGS) Precipitation-Runoff Modeling System (PRMS), a modular, physically based, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on surface-water runoff and general basin hydrology. The PRMS model simulates time periods associated with main-stem flooding that occurred in September 2004, April 2005, and June 2006 and uses both daily and hourly time steps. Output from the PRMS model was formatted for use as inflows to a separately documented reservoir and riverrouting model, the HEC-ResSim model, developed by the U.S. Army Corps of Engineers Hydrologic Engineering Center to evaluate flooding. The models were integrated through a graphical user interface. The study area is the 6,780 square-mile watershed of the Delaware River in the states of Pennsylvania, New Jersey, and New York that drains to Trenton, N.J. A geospatial database was created for use with a geographic information system to assist model discretization, determine land-surface characterization, and estimate model parameters. The USGS National Elevation Dataset at 100-meter resolution, a Digital Elevation Model (DEM), was used for model discretization into streams and hydrologic response units. In addition, geospatial processing was used to estimate initial model parameters from the DEM and other data layers, including land use. The model discretization represents the study area using 869 hydrologic response units and 452 stream segments. The model climate data for point stations were obtained from multiple sources. These sources included daily data for 22 National Weather Service (NWS) Cooperative Climate Station network stations, hourly data for 15 stations from the National Climatic Data Center, hourly data for 1 station from the NWS Middle Atlantic River Forecast Center records, and daily and hourly data for 7 stations operated by the New York City Department of Environmental Protection. The NWS Multisensor Precipitation Estimate data set for 2001-2007 was used for computing daily precipitation for the model and for computing hourly precipitation for storm simulation periods. Calibration of the PRMS model included regression and optimization algorithms, as well as manual adjustments of model parameters. The general goal of the calibration procedure was to minimize the difference between discharge measured at USGS streamgages and the corresponding discharge simulated by the model. Daily streamflow data from 35 USGS streamgages were used in model calibration. The streamflow data represent areas draining from 20.2 to 6,780 square miles. The PRMS model simulates reservoir inflow and watershed runoff for use as input into HECResSim for the purpose of evaluating and comparing the effects of different watershed conditions on main-stem flooding in the Delaware River watershed draining to Trenton, N.J. The PRMS model is useful as a planning tool to simulate the effects of land-use changes and different antecedent conditions on local runoff and reservoir inflow and, as input to the HEC-ResSim model, on flood flows in the main stem of the Delaware River.
Coarse Resolution SAR Imagery to Support Flood Inundation Models in Near Real Time
NASA Astrophysics Data System (ADS)
Di Baldassarre, Giuliano; Schumann, Guy; Brandimarte, Luigia; Bates, Paul
2009-11-01
In recent years, the availability of new emerging data (e.g. remote sensing, intelligent wireless sensors, etc) has led to a sudden shift from a data-sparse to a data-rich environment for hydrological and hydraulic modelling. Furthermore, the increased socioeconomic relevance of river flood studies has motivated the development of complex methodologies for the simulation of the hydraulic behaviour of river systems. In this context, this study aims at assessing the capability of coarse resolution SAR (Synthetic Aperture Radar) imagery to support and quickly validate flood inundation models in near real time. A hydraulic model of a 98km reach of the River Po (Italy), previously calibrated on a high-magnitude flood event with extensive and high quality field data, is tested using a SAR flood image, acquired and processed in near real time, during the June 2008 low-magnitude event. Specifically, the image is an acquisition by the ENVISAT-ASAR sensor in wide swath mode and has been provided through ESA (European Space Agency) Fast Registration system at no cost 24 hours after the acquisition. The study shows that the SAR image enables validation and improvement of the model in a time shorter than the flood travel time. This increases the reliability of model predictions (e.g. water elevation and inundation width along the river reach) and, consequently, assists flood management authorities in undertaking the necessary prevention activities.
Improvement and extension of a radar forest backscattering model
NASA Technical Reports Server (NTRS)
Simonett, David S.; Wang, Yong
1989-01-01
Radar modeling of mangal forest stands, in the Sundarbans area of Southern Bangladesh, was developed. The modeling employs radar system parameters such as wavelength, polarization, and incidence angle, with forest data on tree height, spacing, biomass, species combinations, and water content (including slightly conductive water) both in leaves and trunks of the mangal. For Sundri and Gewa tropical mangal forests, five model components are proposed, which are required to explain the contributions of various forest species combinations in the attenuation and scattering of mangal vegetated nonflooded or flooded surfaces. Statistical data of simulated images (HH components only) were compared with those of SIR-B images both to refine the modeling procedures and to appropriately characterize the model output. The possibility of delineation of flooded or non-flooded boundaries is discussed.
NASA Astrophysics Data System (ADS)
Schroeder, R.; Jacobs, J. M.; Vuyovich, C.; Cho, E.; Tuttle, S. E.
2017-12-01
Each spring the Red River basin (RRB) of the North, located between the states of Minnesota and North Dakota and southern Manitoba, is vulnerable to dangerous spring snowmelt floods. Flat terrain, low permeability soils and a lack of satisfactory ground observations of snow pack conditions make accurate predictions of the onset and magnitude of major spring flood events in the RRB very challenging. This study investigated the potential benefit of using gridded snow water equivalent (SWE) products from passive microwave satellite missions and model output simulations to improve snowmelt flood predictions in the RRB using NOAA's operational Community Hydrologic Prediction System (CHPS). Level-3 satellite SWE products from AMSR-E, AMSR2 and SSM/I, as well as SWE computed from Level-2 brightness temperatures (Tb) measurements, including model output simulations of SWE from SNODAS and GlobSnow-2 were chosen to support the snowmelt modeling exercises. SWE observations were aggregated spatially (i.e. to the NOAA North Central River Forecast Center forecast basins) and temporally (i.e. by obtaining daily screened and weekly unscreened maximum SWE composites) to assess the value of daily satellite SWE observations relative to weekly maximums. Data screening methods removed the impacts of snow melt and cloud contamination on SWE and consisted of diurnal SWE differences and a temperature-insensitive polarization difference ratio, respectively. We examined the ability of the satellite and model output simulations to capture peak SWE and investigated temporal accuracies of screened and unscreened satellite and model output SWE. The resulting SWE observations were employed to update the SNOW-17 snow accumulation and ablation model of CHPS to assess the benefit of using temporally and spatially consistent SWE observations for snow melt predictions in two test basins in the RRB.
Multi-catchment rainfall-runoff simulation for extreme flood estimation
NASA Astrophysics Data System (ADS)
Paquet, Emmanuel
2017-04-01
The SCHADEX method (Paquet et al., 2013) is a reference method in France for the estimation of extreme flood for dam design. The method is based on a semi-continuous rainfall-runoff simulation process: hundreds of different rainy events, randomly drawn up to extreme values, are simulated independently in the hydrological conditions of each day when a rainy event has been actually observed. This allows generating an exhaustive set of crossings between precipitation and soil saturation hazards, and to build a complete distribution of flood discharges up to extreme quantiles. The hydrological model used within SCHADEX, the MORDOR model (Garçon, 1996), is a lumped model, which implies that hydrological processes, e.g. rainfall and soil saturation, are supposed to be homogeneous throughout the catchment. Snow processes are nevertheless represented in relation with altitude. This hypothesis of homogeneity is questionable especially as the size of the catchment increases, or in areas of highly contrasted climatology (like mountainous areas). Conversely, modeling the catchment with a fully distributed approach would cause different problems, in particular distributing the rainfall-runoff model parameters trough space, and within the SCHADEX stochastic framework, generating extreme rain fields with credible spatio-temporal features. An intermediate solution is presented here. It provides a better representation of the hydro-climatic diversity of the studied catchment (especially regarding flood processes) while keeping the SCHADEX simulation framework. It consists in dividing the catchment in several, more homogeneous sub-catchments. Rainfall-runoff models are parameterized individually for each of them, using local discharge data if available. A first SCHADEX simulation is done at the global scale, which allows assigning a probability to each simulated event, mainly based on the global areal rainfall drawn for the event (see Paquet el al., 2013 for details). Then the rainfall of each event is distributed through the different sub-catchments using the spatial patterns calculated in the SPAZM precipitation reanalysis (Gottardi et al., 2012) for comparable situations of the 1948-2005 period. Corresponding runoffs are calculated with the hydrological models and aggregated to compute the discharge at the outlet of the main catchment. A complete distribution of flood discharges is finally computed. This method is illustrated with the example of the Durance at Serre-Ponçon catchment (south of French Alps, 3600 km2) which has been divided in four sub-catchements. The proposed approach is compared with the "classical" SCHADEX approach applied on the whole catchment. References: Garçon, R. (1996). Prévision opérationnelle des apports de la Durance à Serre-Ponçon à l'aide du modèle MORDOR. Bilan de l'année 1994-1995. La Houille Blanche, (5), 71-76. Gottardi, F., Obled, C., Gailhard, J., & Paquet, E. (2012). Statistical reanalysis of precipitation fields based on ground network data and weather patterns: Application over French mountains. Journal of Hydrology, 432, 154-167. Paquet, E., Garavaglia, F., Garçon, R., & Gailhard, J. (2013). The SCHADEX method: A semi-continuous rainfall-runoff simulation for extreme flood estimation. Journal of Hydrology, 495, 23-37.
Vaill, J.E.
1995-01-01
A bridge-scour study by the U.S. Geological Survey, in cooperation with the Colorado Department of Transportation, was begun in 1991 to evaluate bridges in the State for potential scour during floods. A part of that study was to apply a computer model for sediment-transport routing to simulate channel aggradation or degradation and pier scour during floods at three bridge sites in Colorado. Stream-channel reaches upstream and downstream from the bridges were simulated using the Bridge Stream Tube model for Alluvial River Simulation (BRI-STARS). Synthetic flood hydrographs for the 500-year floods were developed for Surveyor Creek near Platner and for the Rio Grande at Wagon Wheel Gap. A part of the recorded mean daily hydrograph for the peak flow of record was used for the Yampa River near Maybell. The recorded hydrograph for the peak flow of record exceeded the computed 500-year-flood magnitude for this stream by about 22 percent. Bed-material particle-size distributions were determined from samples collected at Surveyor Creek and the Rio Grande. Existing data were used for the Yampa River. The model was used to compute a sediment-inflow hydrograph using particle-size data collected and a specified sediment-transport equation at each site. Particle sizes ranged from less than 0.5 to 16 millimeters for Surveyor Creek, less than 4 to 128 millimeters for the Yampa River, and 22.5 to 150 millimeters for the Rio Grande. Computed scour at the peak steamflows ranged from -2.32 feet at Surveyor Creek near Platner to +0.63 foot at the Rio Grande at Wagon Wheel Gap. Pier- scour depths computed at the peak streamflows ranged from 4.46 feet at the Rio Grande at Wagon Wheel Gap to 5.94 feet at the Yampa River near Maybell. The number of streamtubes used in the model varied at each site.
NASA Astrophysics Data System (ADS)
Disse, M.; Rieger, W.
2009-04-01
Not only climate change affects hydrological systems but also land use change and agricultural tillage practises have an important impact on infiltration and runoff generation. In the last five to six decades monocropping, drainage and rectification of small rivers were carried out to optimize crop yields and economic benefits. However, in recent years more holistic and sustainable management concepts are required. The advantages of ecological management of land, soil and water resources are manifold: the biodiversity is higher, the buffer function of soils will be conserved and both low water and floods are positive affected. The target of the presented research project which is financed by the Bavarian environment agency, is to establish an optimal flood retention concept in a mesoscale catchment of 150 km² which emphasizes ecological flood measures like best tillage practices, small retention basins and renaturation of small rivers. To quantify the effects of these measures the water balance model WaSiM-ETH was used. The grid-based water flow and balance simulation model WaSiM-ETH is a well-established tool for investigating the spatial and temporal variability of hydrological processes in complex river basins. The model can be seen as a reasonable compromise between detailed physical basis and minimum data requirements (http://www.wasim.ch/en/index.html). WaSiM was coupled with a 2d-ground water model and an additional drainage tool. Different vegetation was parameterized with high spatial and temporal resolution. Additionally, future climate scenarios like the extension of vegetation periods were considered. The effectiveness of decentralized retention basins could be simulated by a new implemented see storage tool. The presentation will give quantitative results for different flood control measures. The pros and cons of physically based approaches in hydrological modelling will be discussed.
NASA Astrophysics Data System (ADS)
Martini, P.; Carniello, L.; Avanzi, C.
2004-03-01
The paper presents a numerical model for the simulation of flood waves and suspended sediment transport in a lowland river basin of North Eastern Italy. The two dimensional depth integrated momentum and continuity equations are modified to take into account the bottom irregularities that strongly affect the hydrodynamics in partially dry areas, as for example, in the first stages of an inundation process or in tidal flow. The set of equations are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme where the effects of both the small channel network and the regulation devices on the flood wave propagation are accounted for. Transport of suspended sediment and bed evolution are coupled with the hydrodynamics using an appropriate form of the advection-dispersion equation and Exner's equation. Applications to a case study are presented in which the effects of extreme flooding on the Brenta River (Italy) are examined. Urban and rural flood risk areas are identified and the effects of a alleviating action based on a diversion channel flowing into Venice Lagoon are simulated. The results show that this solution strongly reduces the flood risk in the downstream areas and can provide an important source of sediment for the Venice Lagoon. Finally, preliminary results of the sediment dispersion due to currents and waves in the Venice Lagoon are presented.
Nustad, Rochelle A.; Wood, Tamara M.; Bales, Jerad D.
2011-01-01
The U.S. Geological Survey in cooperation with the North Dakota Department of Transportation, North Dakota State Water Commission, and U.S. Army Corps of Engineers, developed a two-dimensional hydrodynamic model of Devils Lake and Stump Lake, North Dakota to be used as a hydrologic tool for evaluating the effects of different inflow scenarios on water levels, circulation, and the transport of dissolved solids through the lake. The numerical model, UnTRIM, and data primarily collected during 2006 were used to develop and calibrate the Devils Lake model. Performance of the Devils Lake model was tested using 2009 data. The Devils Lake model was applied to evaluate the effects of an extreme flooding event on water levels and hydrological modifications within the lake on the transport of dissolved solids through Devils Lake and Stump Lake. For the 2006 calibration, simulated water levels in Devils Lake compared well with measured water levels. The maximum simulated water level at site 1 was within 0.13 feet of the maximum measured water level in the calibration, which gives reasonable confidence that the Devils Lake model is able to accurately simulate the maximum water level at site 1 for the extreme flooding scenario. The timing and direction of winddriven fluctuations in water levels on a short time scale (a few hours to a day) were reproduced well by the Devils Lake model. For this application, the Devils Lake model was not optimized for simulation of the current speed through bridge openings. In future applications, simulation of current speed through bridge openings could be improved by more accurate definition of the bathymetry and geometry of select areas in the model grid. As a test of the performance of the Devils Lake model, a simulation of 2009 conditions from April 1 through September 30, 2009 was performed. Overall, errors in inflow estimates affected the results for the 2009 simulation; however, for the rising phase of the lakes, the Devils Lake model accurately simulated the faster rate of rise in Devils Lake than in Stump Lake, and timing and direction of wind-driven fluctuations in water levels on a short time scale were reproduced well. To help the U.S. Army Corps of Engineers determine the elevation to which the protective embankment for the city of Devils Lake should be raised, an extreme flooding scenario based on an inflow of one-half the probable maximum flood was simulated. Under the conditions and assumptions of the extreme flooding scenario, the water level for both lakes reached a maximum water level around 1,461.9 feet above the National Geodetic Vertical Datum of 1929. One factor limiting the extent of pumping from the Devils Lake State Outlet is sulfate concentrations in West Bay. If sulfate concentrations can be reduced in West Bay, pumping from the Devils Lake State Outlet potentially can increase. The Devils Lake model was used to simulate the transport of dissolved solids using specific conductance data as a surrogate for sulfate. Because the transport of dissolved solids was not calibrated, results from the simulations were not actual expected concentrations. However, the effects of hydrological modifications on the transport of dissolved solids could be evaluated by comparing the effects of hydrological modifications relative to a baseline scenario in which no hydrological modifications were made. Four scenarios were simulated: (1) baseline condition (no hydrological modification), (2) diversion of Channel A, (3) reduction of the area of water exchange between Main Bay and East Bay, and (4) combination of scenarios 2 and 3. Relative to scenario 1, mean concentrations in West Bay for scenarios 2 and 4 were reduced by approximately 9 percent. Given that there is no change in concentration for scenario 3, but about a 9-percent reduction in concentration for scenario 4, the diversion of Channel A was the only hydrologic modification that appeared to have the potential to reduce sulfate c
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandelli, Diego; Prescott, Steven R; Smith, Curtis L
2011-07-01
In the Risk Informed Safety Margin Characterization (RISMC) approach we want to understand not just the frequency of an event like core damage, but how close we are (or are not) to key safety-related events and how might we increase our safety margins. The RISMC Pathway uses the probabilistic margin approach to quantify impacts to reliability and safety by coupling both probabilistic (via stochastic simulation) and mechanistic (via physics models) approaches. This coupling takes place through the interchange of physical parameters and operational or accident scenarios. In this paper we apply the RISMC approach to evaluate the impact of amore » power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., system activation) and to perform statistical analyses (e.g., run multiple RELAP-7 simulations where sequencing/timing of events have been changed according to a set of stochastic distributions). By using the RISMC toolkit, we can evaluate how power uprate affects the system recovery measures needed to avoid core damage after the PWR lost all available AC power by a tsunami induced flooding. The simulation of the actual flooding is performed by using a smooth particle hydrodynamics code: NEUTRINO.« less
Rainfall-Runoff Parameters Uncertainity
NASA Astrophysics Data System (ADS)
Heidari, A.; Saghafian, B.; Maknoon, R.
2003-04-01
Karkheh river basin, located in southwest of Iran, drains an area of over 40000 km2 and is considered a flood active basin. A flood forecasting system is under development for the basin, which consists of a rainfall-runoff model, a river routing model, a reservior simulation model, and a real time data gathering and processing module. SCS, Clark synthetic unit hydrograph, and Modclark methods are the main subbasin rainfall-runoff transformation options included in the rainfall-runoff model. Infiltration schemes, such as exponentioal and SCS-CN methods, account for infiltration losses. Simulation of snow melt is based on degree day approach. River flood routing is performed by FLDWAV model based on one-dimensional full dynamic equation. Calibration and validation of the rainfall-runoff model on Karkheh subbasins are ongoing while the river routing model awaits cross section surveys.Real time hydrometeological data are collected by a telemetry network. The telemetry network is equipped with automatic sensors and INMARSAT-C comunication system. A geographic information system (GIS) stores and manages the spatial data while a database holds the hydroclimatological historical and updated time series. Rainfall runoff parameters uncertainty is analyzed by Monte Carlo and GLUE approaches.
Niemoczynski, Michal J.; Watson, Kara M.
2016-10-19
Digital flood-inundation maps for an approximate 7.5-mile reach of the Peckman River in New Jersey, which extends from Verona Lake Dam in the Township of Verona downstream through the Township of Cedar Grove and the Township of Little Falls to the confluence with the Passaic River in the Borough of Woodland Park, were created by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the probable areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Peckman River at Ozone Avenue at Verona, New Jersey (station number 01389534). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/.Flood profiles were simulated for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relations at USGS streamgages on the Peckman River at Ozone Avenue at Verona, New Jersey (station number 01389534) and the Peckman River at Little Falls, New Jersey (station number 01389550). The hydraulic model was then used to compute eight water-surface profiles for flood stages at 0.5-foot (ft) intervals ranging from 3.0 ft or near bankfull to 6.5 ft, which is approximately the highest recorded water level during the period of record (1979–2014) at USGS streamgage 01389534, Peckman River at Ozone Avenue at Verona, New Jersey. The simulated water-surface profiles were then combined with a geographic information system digital elevation model derived from light detection and ranging (lidar) data to delineate the area flooded at each water level.The availability of these maps along with Internet information regarding current stage from the USGS streamgage provides emergency management personnel and residents with information, such as estimates of inundation extents, based on water stage, that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
A dissolution model that accounts for coverage of mineral surfaces by precipitation in core floods
NASA Astrophysics Data System (ADS)
Pedersen, Janne; Jettestuen, Espen; Madland, Merete V.; Hildebrand-Habel, Tania; Korsnes, Reidar I.; Vinningland, Jan Ludvig; Hiorth, Aksel
2016-01-01
In this paper, we propose a model for evolution of reactive surface area of minerals due to surface coverage by precipitating minerals. The model is used to interpret results from an experiment where a chalk core was flooded with MgCl2 for 1072 days, giving rise to calcite dissolution and magnesite precipitation. The model successfully describes both the long-term behavior of the measured effluent concentrations and the more or less homogeneous distribution of magnesite found in the core after 1072 days. The model also predicts that precipitating magnesite minerals form as larger crystals or aggregates of smaller size crystals, and not as thin flakes or as a monomolecular layer. Using rate constants obtained from literature gave numerical effluent concentrations that diverged from observed values only after a few days of flooding. To match the simulations to the experimental data after approximately 1 year of flooding, a rate constant that is four orders of magnitude lower than reported by powder experiments had to be used. We argue that a static rate constant is not sufficient to describe a chalk core flooding experiment lasting for nearly 3 years. The model is a necessary extension of standard rate equations in order to describe long term core flooding experiments where there is a large degree of textural alteration.
NASA Astrophysics Data System (ADS)
Shustikova, Iuliia; Domeneghetti, Alessio; Neal, Jeffrey; Bates, Paul; Castellarin, Attilio
2017-04-01
Hydrodynamic modeling of inundation events still brings a large array of uncertainties. This effect is especially evident in the models run for geographically large areas. Recent studies suggest using fully two-dimensional (2D) models with high resolution in order to avoid uncertainties and limitations coming from the incorrect interpretation of flood dynamics and an unrealistic reproduction of the terrain topography. This, however, affects the computational efficiency increasing the running time and hardware demands. Concerning this point, our study evaluates and compares numerical models of different complexity by testing them on a flood event that occurred in the basin of the Secchia River, Northern Italy, on 19th January, 2014. The event was characterized by a levee breach and consequent flooding of over 75 km2 of the plain behind the dike within 48 hours causing population displacement, one death and economic losses in excess of 400 million Euro. We test the well-established TELEMAC 2D, and LISFLOOD-FP codes, together with the recently launched HEC-RAS 5.0.3 (2D model), all models are implemented using different grid size (2-200 m) based on the 1 m digital elevation model resolution. TELEMAC is a fully 2D hydrodynamic model which is based on the finite-element or finite-volume approach. Whereas HEC-RAS 5.0.3 and LISFLOOD-FP are both coupled 1D-2D models. All models are calibrated against observed inundation extent and maximum water depths, which are retrieved from remotely sensed data and field survey reports. Our study quantitatively compares the three modeling strategies highlighting differences in terms of the ease of implementation, accuracy of representation of hydraulic processes within floodplains and computational efficiency. Additionally, we look into the different grid resolutions in terms of the results accuracy and computation time. Our study is a preliminary assessment that focuses on smaller areas in order to identify potential modeling schemes that would be efficient for simulating flooding scenarios for large and very large floodplains. This research aims at contributing to the reduction of uncertainties and limitations in hazard and risk assessment.
NASA Astrophysics Data System (ADS)
Steinschneider, S.; Wi, S.; Brown, C. M.
2013-12-01
Flood risk management performance is investigated within the context of integrated climate and hydrologic modeling uncertainty to explore system robustness. The research question investigated is whether structural and hydrologic parameterization uncertainties are significant relative to other uncertainties such as climate change when considering water resources system performance. Two hydrologic models are considered, a conceptual, lumped parameter model that preserves the water balance and a physically-based model that preserves both water and energy balances. In the conceptual model, parameter and structural uncertainties are quantified and propagated through the analysis using a Bayesian modeling framework with an innovative error model. Mean climate changes and internal climate variability are explored using an ensemble of simulations from a stochastic weather generator. The approach presented can be used to quantify the sensitivity of flood protection adequacy to different sources of uncertainty in the climate and hydrologic system, enabling the identification of robust projects that maintain adequate performance despite the uncertainties. The method is demonstrated in a case study for the Coralville Reservoir on the Iowa River, where increased flooding over the past several decades has raised questions about potential impacts of climate change on flood protection adequacy.
Gao, Yuqin; Yuan, Yu; Wang, Huaizhi; Schmidt, Arthur R; Wang, Kexuan; Ye, Liu
2017-05-01
The urban agglomeration polders type of flood control pattern is a general flood control pattern in the eastern plain area and some of the secondary river basins in China. A HEC-HMS model of Qinhuai River basin based on the flood control pattern was established for simulating basin runoff, examining the impact of urban agglomeration polders on flood events, and estimating the effects of urbanization on hydrological processes of the urban agglomeration polders in Qinhuai River basin. The results indicate that the urban agglomeration polders could increase the peak flow and flood volume. The smaller the scale of the flood, the more significant the influence of the polder was to the flood volume. The distribution of the city circle polder has no obvious impact on the flood volume, but has effect on the peak flow. The closer the polder is to basin output, the smaller the influence it has on peak flows. As the level of urbanization gradually improving of city circle polder, flood volumes and peak flows gradually increase compared to those with the current level of urbanization (the impervious rate was 20%). The potential change in flood volume and peak flow with increasing impervious rate shows a linear relationship.
Vulnerability Assessment Using LIDAR Data in Silang-Sta Rosa Subwatershed, Philippines
NASA Astrophysics Data System (ADS)
Bragais, M. A.; Magcale-Macandog, D. B.; Arizapa, J. L.; Manalo, K. M.
2016-10-01
Silang-Sta. Rosa Subwatershed is experiencing rapid urbanization. Its downstream area is already urbanized and the development is moving fast upstream. With the rapid land conversion of pervious to impervious areas and increase frequency of intense rainfall events, the downstream of the watershed is at risk of flood hazard. The widely used freeware HEC-RAS (Hydrologic Engineering Center- River Analysis System) model was used to implement the 2D unsteady flow analysis to develop a flood hazard map. The LiDAR derived digital elevation model (DEM) with 1m resolution provided detailed terrain that is vital for producing reliable flood extent map that can be used for early warning system. With the detailed information from the simulation like areas to be flooded, the predicted depth and duration, we can now provide specific flood forecasting and mitigation plan even at community level. The methodology of using 2D unsteady flow modelling and high resolution DEM in a watershed can be replicated to other neighbouring watersheds specially those areas that are not yet urbanized so that their development will be guided to be flood hazard resilient. LGUs all over the country will benefit from having a high resolution flood hazard map.
NASA Astrophysics Data System (ADS)
Geldiyev, P.
2017-12-01
Rapid urban development and changing climate influences the frequency and magnitude of flooding in Houston area. This proposed project aims to evaluate the flooding risks with the current and future land use changes by 2040 for one subbasin of the San Jacinto Brazos/Neches-Trinity Coastal basin. Surface environments and streamflow data of the Clear Creek are analyzed and stimulated to discuss the possible impact of urbanization on the occurrence of floods. The streamflow data is analyzed and simulated with the application of the Geographic Information Systems and its extensions. Both hydrologic and hydraulic models of the Clear Creek are created with the use of HEC-HMS and HEC-RAS software. Both models are duplicated for the year 2040, based on projected 2040 Landcover Maps developed by Houston and Galveston Area Council. This project examines a type of contemporary hydrologic disturbance and the interaction between land cover and changes in hydrological processes. Expected results will be very significant for urban development and flooding management.
NASA Astrophysics Data System (ADS)
Niswonger, R. G.; Huntington, J. L.; Dettinger, M. D.; Rajagopal, S.; Gardner, M.; Morton, C. G.; Reeves, D. M.; Pohll, G. M.
2013-12-01
Water resources in the Tahoe basin are susceptible to long-term climate change and extreme events because it is a middle-altitude, snow-dominated basin that experiences large inter-annual climate variations. Lake Tahoe provides critical water supply for its basin and downstream populations, but changes in water supply are obscured by complex climatic and hydrologic gradients across the high relief, geologically complex basin. An integrated surface and groundwater model of the Lake Tahoe basin has been developed using GSFLOW to assess the effects of climate change and extreme events on surface and groundwater resources. Key hydrologic mechanisms are identified with this model that explains recent changes in water resources of the region. Critical vulnerabilities of regional water-supplies and hazards also were explored. Maintaining a balance between (a) accurate representation of spatial features (e.g., geology, streams, and topography) and hydrologic response (i.e., groundwater, stream, lake, and wetland flows and storages), and (b) computational efficiency, is a necessity for the desired model applications. Potential climatic influences on water resources are analyzed here in simulations of long-term water-availability and flood responses to selected 100-year climate-model projections. GSFLOW is also used to simulate a scenario depicting an especially extreme storm event that was constructed from a combination of two historical atmospheric-river storm events as part of the USGS MultiHazards Demonstration Project. Historical simulated groundwater levels, streamflow, wetlands, and lake levels compare well with measured values for a 30-year historical simulation period. Results are consistent for both small and large model grid cell sizes, due to the model's ability to represent water table altitude, streams, and other hydrologic features at the sub-grid scale. Simulated hydrologic responses are affected by climate change, where less groundwater resources will be available during more frequent droughts. Simulated floods for the region indicate issues related to drainage in the developed areas around Lake Tahoe, and necessary dam releases that create downstream flood risks.
NASA Astrophysics Data System (ADS)
Gulbin, S.; Kirilenko, A.; Zhang, X.
2016-12-01
Endorheic (terminal) lakes with no water outlets are sensitive indicators of changes in climate and land cover in the watershed. Regional variation in precipitation pattern in the US Northern Great Plaines lead to a long term flooding of Devils Lake (DL), ND, leading to a 10-m water level rise in just two decades, with estimated flood mitigation costs of over $1 billion. While the climate change contribution to flooding has been established, the role of large scale land conversion to agriculture has not been researched. Wetlands play a very important part in hydrological balance by storing, absorbing and slowing peak water discharge. In ND, 49 % of wetlands are drained and converted to agriculture. We investigated the role of wetlands loss in DL flooding in current and future climate. The Soil and Water Assessment Tool (SWAT) was used to simulate streamflow in all DL watershed subbasins. The model was calibrated using the 1991-2000 USGS gauge data for the first 10 years of study period and validated for the second 10 years (2001-2010), resulting in a satisfactory model performance compared against the measured water discharge in five streams in the watershed and against observed DL water level. A set of wetland loss scenarios were created based on the historical data and the Compound Topographic Index. To emulate the historical and future climate conditions, an ensemble of CMIP5 weather integrations based on IPCC AR5 RCP scenarios was downscaled with the MarkSim weather simulator. Model simulations indicate that the land use change in the DL watershed increased the impacts of climate change on hydrology by further elevating DL water level. Conversely, wetland restoration reduce the flooding and moderates risks of a potential high-impact DL overspill to the Sheyenne River watershed. Further research will concentrate on differentiation of climate change impacts under different types of land use change scenarios.
Effects of changes along the risk chain on flood risk
NASA Astrophysics Data System (ADS)
Duha Metin, Ayse; Apel, Heiko; Viet Dung, Nguyen; Guse, Björn; Kreibich, Heidi; Schröter, Kai; Vorogushyn, Sergiy; Merz, Bruno
2017-04-01
Interactions of hydrological and socio-economic factors shape flood disaster risk. For this reason, assessment of flood risk ideally takes into account the whole flood risk chain from atmospheric processes, through the catchment and river system processes to the damage mechanisms in the affected areas. Since very different processes at various scales are interacting along the flood risk, the impact of the single components is rather unclear. However for flood risk management, it is required to know the controlling factor of flood damages. The present study, using the flood-prone Mulde catchment in Germany, discusses the sensitivity of flood risk to disturbances along the risk chain: How do disturbances propagate through the risk chain? How do different disturbances combine or conflict and affect flood risk? In this sensitivity analysis, the five components of the flood risk change are included. These are climate, catchment, river system, exposure and vulnerability. A model framework representing the complete risk chain is combined with observational data to understand how the sensitivities evolve along the risk chain by considering three plausible change scenarios for each of five components. The flood risk is calculated by using the Regional Flood Model (RFM) which is based on a continuous simulation approach, including rainfall-runoff, 1D river network, 2D hinterland inundation and damage estimation models. The sensitivity analysis covers more than 240 scenarios with different combinations of the five components. It is investigated how changes in different components affect risk indicators, such as the risk curve and expected annual damage (EAD). In conclusion, it seems that changes in exposure and vulnerability seem to outweigh changes in hazard.
Jenkins, K; Surminski, S; Hall, J; Crick, F
2017-10-01
Climate change and increasing urbanization are projected to result in an increase in surface water flooding and consequential damages in the future. In this paper, we present insights from a novel Agent Based Model (ABM), applied to a London case study of surface water flood risk, designed to assess the interplay between different adaptation options; how risk reduction could be achieved by homeowners and government; and the role of flood insurance and the new flood insurance pool, Flood Re, in the context of climate change. The analysis highlights that while combined investment in property-level flood protection and sustainable urban drainage systems reduce surface water flood risk, the benefits can be outweighed by continued development in high risk areas and the effects of climate change. In our simulations, Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, the scheme does face increasing financial pressure due to rising surface water flood damages. If the intended transition to risk-based pricing is to take place then a determined and coordinated strategy will be needed to manage flood risk, which utilises insurance incentives, limits new development, and supports resilience measures. Our modelling approach and findings are highly relevant for the ongoing regulatory and political approval process for Flood Re as well as for wider discussions on the potential of insurance schemes to incentivise flood risk management and climate adaptation in the UK and internationally. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shu-Huei, Jhang; Chih-Chung, Wen; Dong-Jiing, Doong; Cheng-Han, Tsai
2017-04-01
Taiwan is an Island in the western Pacific Ocean and experienced more than 3 typhoons in a year. Typhoons bring intense rainfall, high waves, and storm surges, which often resulted in coastal flooding. The flooding can be aggravated by the sea level rise due to the global warming, which may subject Taiwan's coastal areas to more serious damage in the future than present. The objectives of this study are to investigate the flooding caused by typhoons in the Annan District, Tainan, a city on the southwest coast of Taiwan by numerical simulations, considering the effects of sea-level rises according to the level suggested by the 5th Assessment Report of IPCC (Intergovernmental Panel on Climate Change) for 2050 and 2100, respectively. The simulations were carried out by using MIKE21 HD (a hydrodynamic model) and MIKE21 SW (a spectral wave model). In our simulation, we used an intense typhoon, named Soudelor, as our base typhoon, which made its landfall on the east coast of Taiwan in the summer of 2015, traveled through the width of the island, and exited the island to the north of Tainan. The reasons we pick this typhoon are that it passed near our objective area, wind field data for this typhoon are available, and we have well documented coastal wave and water level measurements during the passage of Typhoon Soudelor. We firstly used ECMWF (European Centre for Medium-Range Weather Forecasts) wind field data to reconstruct typhoon waves and storm surges for this typhoon by using coupled MIKE21 SW and MIKE21 HD in a regional model. The resultant simulated wave height and sea-level height matched satisfactorily with the measured data. The wave height and storm surge calculated by the regional model provided the boundary conditions for our fine-grid domain. Then different sea-level rises suggested by the IPCC were incorporated into the fine-grid model. Since river discharge due to intense rainfall has also to be considered for coastal flooding, our fine-grid models encompass the estuary of River Yanshui, and measured upstream river discharges were used to simulate the interactions among tide, current, and wave near the estuary of Yanshui River. Our preliminary results showed that with only the effect of rainwater discharge, the maximum surface level of the river during the storm near the estuary was 1.4 m, which is not higher than the river embankments. With the storm surge, the river level at the same location was 2.2 m. With the storm surge and sea-level rise, the maximum river levels near the estuary were 3.6 m and 3.9 m for 2050 and 2100 scenarios, respective. These levels were higher than the embankment height of 3 m. This showed that due to higher sea-level, the area near the estuary will be flooded.
Increases in flood magnitudes in California under warming climates
Das, Tapash; Maurer, Edwin P.; Pierce, David W.; Dettinger, Michael D.; Cayah, Daniel R.
2013-01-01
Downscaled and hydrologically modeled projections from an ensemble of 16 Global Climate Models suggest that flooding may become more intense on the western slopes of the Sierra Nevada mountains, the primary source for California’s managed water system. By the end of the 21st century, all 16 climate projections for the high greenhouse-gas emission SRES A2 scenario yield larger floods with return periods ranging 2–50 years for both the Northern Sierra Nevada and Southern Sierra Nevada, regardless of the direction of change in mean precipitation. By end of century, discharges from the Northern Sierra Nevada with 50-year return periods increase by 30–90% depending on climate model, compared to historical values. Corresponding flood flows from the Southern Sierra increase by 50–100%. The increases in simulated 50 year flood flows are larger (at 95% confidence level) than would be expected due to natural variability by as early as 2035 for the SRES A2 scenario.
Inland and coastal flooding: developments in prediction and prevention.
Hunt, J C R
2005-06-15
We review the scientific and engineering understanding of various types of inland and coastal flooding by considering the different causes and dynamic processes involved, especially in extreme events. Clear progress has been made in the accuracy of numerical modelling of meteorological causes of floods, hydraulics of flood water movement and coastal wind-wave-surge. Probabilistic estimates from ensemble predictions and the simultaneous use of several models are recent techniques in meteorological prediction that could be considered for hydraulic and oceanographic modelling. The contribution of remotely sensed data from aircraft and satellites is also considered. The need to compare and combine statistical and computational modelling methodologies for long range forecasts and extreme events is emphasized, because this has become possible with the aid of kilometre scale computations and network grid facilities to simulate and analyse time-series and extreme events. It is noted that despite the adverse effects of climatic trends on flooding, appropriate planning of rapidly growing urban areas could mitigate some of the worst effects. However, resources for flood prevention, including research, have to be considered in relation to those for other natural disasters. Policies have to be relevant to the differing geology, meteorology and cultures of the countries affected.
A Fresh Start for Flood Estimation in Ungauged Basins
NASA Astrophysics Data System (ADS)
Woods, R. A.
2017-12-01
The two standard methods for flood estimation in ungauged basins, regression-based statistical models and rainfall-runoff models using a design rainfall event, have survived relatively unchanged as the methods of choice for more than 40 years. Their technical implementation has developed greatly, but the models' representation of hydrological processes has not, despite a large volume of hydrological research. I suggest it is time to introduce more hydrology into flood estimation. The reliability of the current methods can be unsatisfactory. For example, despite the UK's relatively straightforward hydrology, regression estimates of the index flood are uncertain by +/- a factor of two (for a 95% confidence interval), an impractically large uncertainty for design. The standard error of rainfall-runoff model estimates is not usually known, but available assessments indicate poorer reliability than statistical methods. There is a practical need for improved reliability in flood estimation. Two promising candidates to supersede the existing methods are (i) continuous simulation by rainfall-runoff modelling and (ii) event-based derived distribution methods. The main challenge with continuous simulation methods in ungauged basins is to specify the model structure and parameter values, when calibration data are not available. This has been an active area of research for more than a decade, and this activity is likely to continue. The major challenges for the derived distribution method in ungauged catchments include not only the correct specification of model structure and parameter values, but also antecedent conditions (e.g. seasonal soil water balance). However, a much smaller community of researchers are active in developing or applying the derived distribution approach, and as a result slower progress is being made. A change in needed: surely we have learned enough about hydrology in the last 40 years that we can make a practical hydrological advance on our methods for flood estimation! A shift to new methods for flood estimation will not be taken lightly by practitioners. However, the standard for change is clear - can we develop new methods which give significant improvements in reliability over those existing methods which are demonstrably unsatisfactory?
Modelling the interaction between flooding events and economic growth
NASA Astrophysics Data System (ADS)
Grames, Johanna; Fürnkranz-Prskawetz, Alexia; Grass, Dieter; Viglione, Alberto; Blöschl, Günter
2016-04-01
Recently socio-hydrology models have been proposed to analyze the interplay of community risk-coping culture, flooding damage and economic growth. These models descriptively explain the feedbacks between socio-economic development and natural disasters such as floods. Complementary to these descriptive models, we develop a dynamic optimization model, where the inter-temporal decision of an economic agent interacts with the hydrological system. This interdisciplinary approach matches with the goals of Panta Rhei i.e. to understand feedbacks between hydrology and society. It enables new perspectives but also shows limitations of each discipline. Young scientists need mentors from various scientific backgrounds to learn their different research approaches and how to best combine them such that interdisciplinary scientific work is also accepted by different science communities. In our socio-hydrology model we apply a macro-economic decision framework to a long-term flood-scenario. We assume a standard macro-economic growth model where agents derive utility from consumption and output depends on physical capital that can be accumulated through investment. To this framework we add the occurrence of flooding events which will destroy part of the capital. We identify two specific periodic long term solutions and denote them rich and poor economies. Whereas rich economies can afford to invest in flood defense and therefore avoid flood damage and develop high living standards, poor economies prefer consumption instead of investing in flood defense capital and end up facing flood damages every time the water level rises. Nevertheless, they manage to sustain at least a low level of physical capital. We identify optimal investment strategies and compare simulations with more frequent and more intense high water level events.
Improving Flood Predictions in Data-Scarce Basins
NASA Astrophysics Data System (ADS)
Vimal, Solomon; Zanardo, Stefano; Rafique, Farhat; Hilberts, Arno
2017-04-01
Flood modeling methodology at Risk Management Solutions Ltd. has evolved over several years with the development of continental scale flood risk models spanning most of Europe, the United States and Japan. Pluvial (rain fed) and fluvial (river fed) flood maps represent the basis for the assessment of regional flood risk. These maps are derived by solving the 1D energy balance equation for river routing and 2D shallow water equation (SWE) for overland flow. The models are run with high performance computing and GPU based solvers as the time taken for simulation is large in such continental scale modeling. These results are validated with data from authorities and business partners, and have been used in the insurance industry for many years. While this methodology has been proven extremely effective in regions where the quality and availability of data are high, its application is very challenging in other regions where data are scarce. This is generally the case for low and middle income countries, where simpler approaches are needed for flood risk modeling and assessment. In this study we explore new methods to make use of modeling results obtained in data-rich contexts to improve predictive ability in data-scarce contexts. As an example, based on our modeled flood maps in data-rich countries, we identify statistical relationships between flood characteristics and topographic and climatic indicators, and test their generalization across physical domains. Moreover, we apply the Height Above Nearest Drainage (HAND)approach to estimate "probable" saturated areas for different return period flood events as functions of basin characteristics. This work falls into the well-established research field of Predictions in Ungauged Basins.
NASA Astrophysics Data System (ADS)
Anquetin, Sandrine; Vannier, Olivier; Ollagnier, Mélody; Braud, Isabelle
2015-04-01
This work contributes to the evaluation of the dynamics of the human exposure during flash-flood events in the Mediterranean region. Understanding why and how the commuters modify their daily mobility in the Cévennes - Vivarais area (France) is the long-term objective of the study. To reach this objective, the methodology relies on three steps: i) evaluation of daily travel patterns, ii) reconstitution of road flooding events in the region based on hydrological simulation at regional scale in order to capture the time evolution and the intensity of flood and iii) identification of the daily fluctuation of the exposition according to road flooding scenarios and the time evolution of mobility patterns. This work deals with the second step. To do that, the physically based and non-calibrated hydrological model CVN (Vannier, 2013) is implemented to retrieve the hydrological signature of past flash-flood events in Southern France. Four past events are analyzed (September 2002; September 2005 (split in 2 different events); October 2008). Since the regional scale is investigated, the scales of the studied catchments range from few km2 to few hundreds of km2 where many catchments are ungauged. The evaluation is based on a multi-scale approach using complementary observations coming from post-flood experiments (for small and/or ungaugged catchments) and operational hydrological network (for larger catchments). The scales of risk (time and location of the road flooding) are also compared to observed data of road cuts. The discussion aims at improving our understanding on the hydrological processes associated with road flooding vulnerability. We specifically analyze runoff coefficient and the ratio between surface and groundwater flows at regional scale. The results show that on the overall, the three regional simulations provide good scores for the probability of detection and false alarms concerning road flooding (1600 points are analyzed for the whole region). Our evaluation procedure provides new insights on the active hydrological processes at small scales (catchments area < 10 km²) since these small scales, distributed over the whole region, are analyzed through road cuts data and post-flood field investigations. As shown in Vannier (2013), the signature of the altered geological layer is significant on the simulated discharges. For catchments under schisty geology, the simulated discharge, whatever the catchment size, is usually overestimated. Vannier, O, 2013, Apport de la modélisation hydrologique régionale à la compréhension des processus de crue en zone méditerranéenne, PhD-Thesis (in French), Grenoble University.
Projected Risk of Flooding Disaster over China in 21st Century Based on CMIP5 Models
NASA Astrophysics Data System (ADS)
Li, Rouke; Xu, Ying
2016-04-01
Based on the simulations from CMIP5 models, using climate indices which have high correlation with historical disaster data, and in combination with terrain elevation data and the socio-economic data, to project the flooding disaster risk, the vulnerability of flooding hazard affected body and the risk of flooding hazard respectively during the near term(2015-2039), medium term(2045-2069) and long term(2075-2099) under RCP8.5. According to the IPCC AR5 WGII, we used risk evaluation model of disaster: R=E*H*V. R on behalf of disaster risk index. H, E and V express risk, exposure and vulnerability respectively. The results show that the extreme flooding disaster risk will gradually increase during different terms in the future, and regions with high risk level of flooding hazard are might mainly located in southeastern and eastern China. Under the RCP8.5 greenhouse gas emissions scenario, the high risk of flooding disaster in future might mainly appear in eastern part of Sichuan, most of North China, and major of East China. Compared with the baseline period,21st century forward, although the occurrence of floods area changes little, the regional strong risk will increase during the end of the 21st century. Due to the coarse resolution of climate models and the methodology for determining weight coefficients, large uncertainty still exists in the projection of the flooding disaster risk.
Evaluation of Three Models for Simulating Pesticide Runoff from Irrigated Agricultural Fields.
Zhang, Xuyang; Goh, Kean S
2015-11-01
Three models were evaluated for their accuracy in simulating pesticide runoff at the edge of agricultural fields: Pesticide Root Zone Model (PRZM), Root Zone Water Quality Model (RZWQM), and OpusCZ. Modeling results on runoff volume, sediment erosion, and pesticide loss were compared with measurements taken from field studies. Models were also compared on their theoretical foundations and ease of use. For runoff events generated by sprinkler irrigation and rainfall, all models performed equally well with small errors in simulating water, sediment, and pesticide runoff. The mean absolute percentage errors (MAPEs) were between 3 and 161%. For flood irrigation, OpusCZ simulated runoff and pesticide mass with the highest accuracy, followed by RZWQM and PRZM, likely owning to its unique hydrological algorithm for runoff simulations during flood irrigation. Simulation results from cold model runs by OpusCZ and RZWQM using measured values for model inputs matched closely to the observed values. The MAPE ranged from 28 to 384 and 42 to 168% for OpusCZ and RZWQM, respectively. These satisfactory model outputs showed the models' abilities in mimicking reality. Theoretical evaluations indicated that OpusCZ and RZWQM use mechanistic approaches for hydrology simulation, output data on a subdaily time-step, and were able to simulate management practices and subsurface flow via tile drainage. In contrast, PRZM operates at daily time-step and simulates surface runoff using the USDA Soil Conservation Service's curve number method. Among the three models, OpusCZ and RZWQM were suitable for simulating pesticide runoff in semiarid areas where agriculture is heavily dependent on irrigation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Integral assessment of floodplains as a basis for spatially-explicit flood loss forecasts
NASA Astrophysics Data System (ADS)
Zischg, Andreas Paul; Mosimann, Markus; Weingartner, Rolf
2016-04-01
A key aspect of disaster prevention is flood discharge forecasting which is used for early warning and therefore as a decision support for intervention forces. Hereby, the phase between the issued forecast and the time when the expected flood occurs is crucial for an optimal planning of the intervention. Typically, river discharge forecasts cover the regional level only, i.e. larger catchments. However, it is important to note that these forecasts are not useable directly for specific target groups on local level because these forecasts say nothing about the consequences of the predicted flood in terms of affected areas, number of exposed residents and houses. For this, on one hand simulations of the flooding processes and on the other hand data of vulnerable objects are needed. Furthermore, flood modelling in a high spatial and temporal resolution is required for robust flood loss estimation. This is a resource-intensive task from a computing time point of view. Therefore, in real-time applications flood modelling in 2D is not suited. Thus, forecasting flood losses in the short-term (6h-24h in advance) requires a different approach. Here, we propose a method to downscale the river discharge forecast to a spatially-explicit flood loss forecast. The principal procedure is to generate as many flood scenarios as needed in advance to represent the flooded areas for all possible flood hydrographs, e.g. very high peak discharges of short duration vs. high peak discharges with high volumes. For this, synthetic flood hydrographs were derived from the hydrologic time series. Then, the flooded areas of each scenario were modelled with a 2D flood simulation model. All scenarios were intersected with the dataset of vulnerable objects, in our case residential, agricultural and industrial buildings with information about the number of residents, the object-specific vulnerability, and the monetary value of the objects. This dataset was prepared by a data-mining approach. For each flood scenario, the resulting number of affected residents, houses and therefore the losses are computed. This integral assessment leads to a hydro-economical characterisation of each floodplain. Based on that, a transfer function between discharge forecast and damages can be elaborated. This transfer function describes the relationship between predicted peak discharge, flood volume and the number of exposed houses, residents and the related losses. It also can be used to downscale the regional discharge forecast to a local level loss forecast. In addition, a dynamic map delimiting the probable flooded areas on the basis of the forecasted discharge can be prepared. The predicted losses and the delimited flooded areas provide a complementary information for assessing the need of preventive measures on one hand on the long-term timescale and on the other hand 6h-24h in advance of a predicted flood. To conclude, we can state that the transfer function offers the possibility for an integral assessment of floodplains as a basis for spatially-explicit flood loss forecasts. The procedure has been developed and tested in the alpine and pre-alpine environment of the Aare river catchment upstream of Bern, Switzerland.
Little, John R.; Bauer, Daniel P.
1981-01-01
The need for a method for estimating flow characteristics of flood hydrographs between Portland, Colo., and John Martin Reservoir has been promoted with the construction of the Pueble Reservoir. To meet this need a procedure was developed for predicting floodflow peaks, traveltimes, and volumes at any point along the Arkansas River between Portland and John Martin Reservoir without considering the existing Pueble Reservoir detention effects. A streamflow-routing model was calibrated initially and then typical flood simulations were made for the 164.8-mile study reach. Simulations were completed for varying magnitudes of floods and antecedent streamflow conditions. Multiple regression techniques were then used with simulation results as input to provide predictive relationships for food peak, volume, and traveltime. Management practices that may be used to benefit water users in the area include providing methods for the distribution and allotment of the flood waters upstream of Portland to different downstream water users according to Colorado water law and also under the Arkansas River Compact. (USGS)
Long-term strategies of climate change adaptation to manage flooding events in urban areas
NASA Astrophysics Data System (ADS)
Pouget, Laurent; Russo, Beniamino; Redaño, Angel; Ribalaygua, Jaime
2010-05-01
Heavy and sudden rainfalls regularly affect the Mediterranean area, so a great number of people and buildings are exposed to the risk of rain-generated floods. Climate change is expected to modify this risk and, in the case that extreme rainfalls increase in frequencies and intensity, this could result in important damages, particularly in urban areas. This paper presents a project that aims to determine adaptation strategies to future flood risks in urban areas. It has been developed by a panel of water companies (R+i Alliance funding), and includes the evaluation of the climate change impact on the extreme rainfall, the use of innovative modelling tools to accurately forecast the flood risk and, finally, the definition of a pro-active and long-term planning against floods. This methodology has been applied in the city of Barcelona. Current climate models give some projections that are not directly applicable for flood risk studies, either because they do not have an adequate spatial and temporal resolution, or because they do not consider some important local factors, such as orography. These points have been considered within the project, when developing the design storms corresponding to future climatic conditions (e.g. years 2030 or 2050). The methodology uses statistical downscaling techniques based on global climate models predictions, including corrections for extreme events and convective storms, as well as temporal downscaling based on historical observations. The design storms created are used in combination with the predictions of sea level rise and land use evolutions to determine the future risk of flooding in the area of study. Once the boundary conditions are known, an accurate flood hazard assessment is done. It requires a local knowledge of the flow parameters in the whole analyzed domain. In urban catchments, in order to fulfill this requirement, powerful hydrological and hydraulic tools and detailed topographic data represent the unique way for a local estimation of the flow parameters (flow depth, flow velocity, flood duration, etc.). If urban floods are caused by heavy rainfall events and a quick hydrological response of the catchment, the approach to elaborate a flood hazard assessment study should take into account the drainage system capacity, too (in terms of effectiveness of surface drainage structures, as well as storm sewerages). In these cases, the hydrological modelling of the involved subcatchments should be linked to the runoff propagation 2D modelling on the urban surface and the hydraulics of the storm sewers (dual drainage modelling) through a coupled 2D/1D approach. The design storm created and the 2D/1D modelling approach have been used to simulate the future flood risk in the city of Barcelona. From the simulation results, it is possible to understand the flooding processes and the risk associated. It is therefore possible to develop some long-term adaptation strategies to reduce the flood risk for current and future climatic conditions, such as structural measures (e.g. improvement of the stormwater network) and non-structural measures (e.g. enhancement of the flood warning system).
NASA Astrophysics Data System (ADS)
Chen, Y.; Li, J.; Xu, H.
2015-10-01
Physically based distributed hydrological models discrete the terrain of the whole catchment into a number of grid cells at fine resolution, and assimilate different terrain data and precipitation to different cells, and are regarded to have the potential to improve the catchment hydrological processes simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters, but unfortunately, the uncertanties associated with this model parameter deriving is very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study, the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using PSO algorithm and to test its competence and to improve its performances, the second is to explore the possibility of improving physically based distributed hydrological models capability in cathcment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improverd Particle Swarm Optimization (PSO) algorithm is developed for the parameter optimization of Liuxihe model in catchment flood forecasting, the improvements include to adopt the linear decreasing inertia weight strategy to change the inertia weight, and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for Liuxihe model parameter optimization effectively, and could improve the model capability largely in catchment flood forecasting, thus proven that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for Liuxihe model catchment flood forcasting is 20 and 30, respectively.
NASA Astrophysics Data System (ADS)
Fowler, M. D.; Kooperman, G. J.; Pritchard, M. S.; Randerson, J. T.
2017-12-01
River flooding events, which are the most frequently occurring natural disaster today, are expected to become more frequent and intense in response to climate change. However, the magnitude of these changes remains debated, in part due to uncertainty in our understanding of the physical processes that contribute to these events and their representation in global climate models. While the intensification of precipitation has been shown to be a primary driver of increased flooding, plant physiological responses to increasing CO2 may also play an important role. As the atmospheric concentration of CO2 increases, plants may respond by reducing the width of their stomata (i.e. stomatal conductance), which can decrease water lost through transpiration and in turn maintain higher soil moisture levels. On long timescales, reduced transpiration has been shown to increase average runoff, but on short timescales elevated soil moisture can also increase instantaneous runoff by limiting the rate at which water is able to infiltrate the soil surface. Here, through hydrodynamic downscaling, we isolate the portion of flooding amplification that can be attributed to the physiological response to increasing CO2. This builds on a new analysis that has revealed such physiological effects can rival changes caused by the atmospheric response alone in the tails of the runoff distribution. We use a set of four simulations run with the Community Earth System Model: one pre-industrial control simulation and three others that are forced with four times CO2. In the three climate change simulations, the increased CO2 is applied only to the land-surface, only to the atmosphere, and to both, respectively. Thirty years of daily runoff from these experiments are used as input for the hydrodynamic CaMa-Flood model. Our results reveal that both the radiative and physiological responses to climate change contribute significantly to future changes in flood return period and inundated area. This implies that better constraining the sensitivity of stomatal conductance to CO2 is of first order importance to reducing uncertainty for potential flood frequency and associated risk in a changing climate.
NASA Astrophysics Data System (ADS)
Hartmann, A. J.; Ireson, A. M.
2017-12-01
Chalk aquifers represent an important source of drinking water in the UK. Due to its fractured-porous structure, Chalk aquifers are characterized by highly dynamic groundwater fluctuations that enhance the risk of groundwater flooding. The risk of groundwater flooding can be assessed by physically-based groundwater models. But for reliable results, a-priori information about the distribution of hydraulic conductivities and porosities is necessary, which is often not available. For that reason, conceptual simulation models are often used to predict groundwater behaviour. They commonly require calibration by historic groundwater observations. Consequently, their prediction performance may reduce significantly, when it comes to system states that did not occur within the calibration time series. In this study, we calibrate a conceptual model to the observed groundwater level observations at several locations within a Chalk system in Southern England. During the calibration period, no groundwater flooding occurred. We then apply our model to predict the groundwater dynamics of the system at a time that includes a groundwater flooding event. We show that the calibrated model provides reasonable predictions before and after the flooding event but it over-estimates groundwater levels during the event. After modifying the model structure to include topographic information, the model is capable of prediction the groundwater flooding event even though groundwater flooding never occurred in the calibration period. Although straight forward, our approach shows how conceptual process-based models can be applied to predict system states and dynamics that did not occur in the calibration period. We believe such an approach can be transferred to similar cases, especially to regions where rainfall intensities are expected to trigger processes and system states that may have not yet been observed.
PAI-OFF: A new proposal for online flood forecasting in flash flood prone catchments
NASA Astrophysics Data System (ADS)
Schmitz, G. H.; Cullmann, J.
2008-10-01
SummaryThe Process Modelling and Artificial Intelligence for Online Flood Forecasting (PAI-OFF) methodology combines the reliability of physically based, hydrologic/hydraulic modelling with the operational advantages of artificial intelligence. These operational advantages are extremely low computation times and straightforward operation. The basic principle of the methodology is to portray process models by means of ANN. We propose to train ANN flood forecasting models with synthetic data that reflects the possible range of storm events. To this end, establishing PAI-OFF requires first setting up a physically based hydrologic model of the considered catchment and - optionally, if backwater effects have a significant impact on the flow regime - a hydrodynamic flood routing model of the river reach in question. Both models are subsequently used for simulating all meaningful and flood relevant storm scenarios which are obtained from a catchment specific meteorological data analysis. This provides a database of corresponding input/output vectors which is then completed by generally available hydrological and meteorological data for characterizing the catchment state prior to each storm event. This database subsequently serves for training both a polynomial neural network (PoNN) - portraying the rainfall-runoff process - and a multilayer neural network (MLFN), which mirrors the hydrodynamic flood wave propagation in the river. These two ANN models replace the hydrological and hydrodynamic model in the operational mode. After presenting the theory, we apply PAI-OFF - essentially consisting of the coupled "hydrologic" PoNN and "hydrodynamic" MLFN - to the Freiberger Mulde catchment in the Erzgebirge (Ore-mountains) in East Germany (3000 km 2). Both the demonstrated computational efficiency and the prediction reliability underline the potential of the new PAI-OFF methodology for online flood forecasting.
Numerical simulation of flood barriers
NASA Astrophysics Data System (ADS)
Srb, Pavel; Petrů, Michal; Kulhavý, Petr
This paper deals with testing and numerical simulating of flood barriers. The Czech Republic has been hit by several very devastating floods in past years. These floods caused several dozens of causalities and property damage reached billions of Euros. The development of flood measures is very important, especially for the reduction the number of casualties and the amount of property damage. The aim of flood control measures is the detention of water outside populated areas and drainage of water from populated areas as soon as possible. For new flood barrier design it is very important to know its behaviour in case of a real flood. During the development of the barrier several standardized tests have to be carried out. Based on the results from these tests numerical simulation was compiled using Abaqus software and some analyses were carried out. Based on these numerical simulations it will be possible to predict the behaviour of barriers and thus improve their design.
MobRISK: a model for assessing the exposure of road users to flash flood events
NASA Astrophysics Data System (ADS)
Shabou, Saif; Ruin, Isabelle; Lutoff, Céline; Debionne, Samuel; Anquetin, Sandrine; Creutin, Jean-Dominique; Beaufils, Xavier
2017-09-01
Recent flash flood impact studies highlight that road networks are often disrupted due to adverse weather and flash flood events. Road users are thus particularly exposed to road flooding during their daily mobility. Previous exposure studies, however, do not take into consideration population mobility. Recent advances in transportation research provide an appropriate framework for simulating individual travel-activity patterns using an activity-based approach. These activity-based mobility models enable the prediction of the sequence of activities performed by individuals and locating them with a high spatial-temporal resolution. This paper describes the development of the MobRISK microsimulation system: a model for assessing the exposure of road users to extreme hydrometeorological events. MobRISK aims at providing an accurate spatiotemporal exposure assessment by integrating travel-activity behaviors and mobility adaptation with respect to weather disruptions. The model is applied in a flash-flood-prone area in southern France to assess motorists' exposure to the September 2002 flash flood event. The results show that risk of flooding mainly occurs in principal road links with considerable traffic load. However, a lag time between the timing of the road submersion and persons crossing these roads contributes to reducing the potential vehicle-related fatal accidents. It is also found that sociodemographic variables have a significant effect on individual exposure. Thus, the proposed model demonstrates the benefits of considering spatiotemporal dynamics of population exposure to flash floods and presents an important improvement in exposure assessment methods. Such improved characterization of road user exposures can present valuable information for flood risk management services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berenbrock, C.; Kjelstrom, L.C.
1997-10-01
Delineation of areas at the Idaho National Engineering and Environmental Laboratory that would be inundated by a 100-year peak flow in Birch Creek is needed by the US Department of Energy to fulfill flood-plain regulatory requirements. Birch Creek flows southward about 40 miles through an alluvium-filled valley onto the northern part of the Idaho National Engineering and Environmental laboratory site on the eastern Snake River Plain. The lower 10-mile reach of Birch Creek that ends in Birch Creek Playa near several Idaho National Engineering and Environmental Laboratory facilities is of particular concern. Twenty-six channel cross sections were surveyed to developmore » and apply a hydraulic model to simulate water-surface elevations for a hypothetical 100-year peak flow in Birch Creek. Model simulation of the 100-year peak flow (700 cubic feet per second) in reaches upstream from State Highway 22 indicated that flow was confined within channels even when all flow was routed to one channel. Where the highway crosses Birch Creek, about 315 cubic feet per second of water was estimated to move downstream--115 cubic feet per second through a culvert and 200 cubic feet per second over the highway. Simulated water-surface elevation at this crossing was 0.8 foot higher than the elevation of the highway. The remaining 385 cubic feet per second flowed southwestward in a trench along the north side of the highway. Flow also was simulated with the culvert removed. The exact location of flood boundaries on Birch Creek could not be determined because of the highly braided channel and the many anthropogenic features (such as the trench, highway, and diversion channels) in the study area that affect flood hydraulics and flow. Because flood boundaries could not be located exactly, only a generalized flood-prone map was developed.« less
Quasi-continuous stochastic simulation framework for flood modelling
NASA Astrophysics Data System (ADS)
Moustakis, Yiannis; Kossieris, Panagiotis; Tsoukalas, Ioannis; Efstratiadis, Andreas
2017-04-01
Typically, flood modelling in the context of everyday engineering practices is addressed through event-based deterministic tools, e.g., the well-known SCS-CN method. A major shortcoming of such approaches is the ignorance of uncertainty, which is associated with the variability of soil moisture conditions and the variability of rainfall during the storm event.In event-based modeling, the sole expression of uncertainty is the return period of the design storm, which is assumed to represent the acceptable risk of all output quantities (flood volume, peak discharge, etc.). On the other hand, the varying antecedent soil moisture conditions across the basin are represented by means of scenarios (e.g., the three AMC types by SCS),while the temporal distribution of rainfall is represented through standard deterministic patterns (e.g., the alternative blocks method). In order to address these major inconsistencies,simultaneously preserving the simplicity and parsimony of the SCS-CN method, we have developed a quasi-continuous stochastic simulation approach, comprising the following steps: (1) generation of synthetic daily rainfall time series; (2) update of potential maximum soil moisture retention, on the basis of accumulated five-day rainfall; (3) estimation of daily runoff through the SCS-CN formula, using as inputs the daily rainfall and the updated value of soil moisture retention;(4) selection of extreme events and application of the standard SCS-CN procedure for each specific event, on the basis of synthetic rainfall.This scheme requires the use of two stochastic modelling components, namely the CastaliaR model, for the generation of synthetic daily data, and the HyetosMinute model, for the disaggregation of daily rainfall to finer temporal scales. Outcomes of this approach are a large number of synthetic flood events, allowing for expressing the design variables in statistical terms and thus properly evaluating the flood risk.
NASA Astrophysics Data System (ADS)
Cortès, Maria; Turco, Marco; Llasat-Botija, Montserrat; Llasat, Maria Carmen
2018-03-01
Floods in the Mediterranean region are often surface water floods, in which intense precipitation is usually the main driver. Determining the link between the causes and impacts of floods can make it easier to calculate the level of flood risk. However, up until now, the limitations in quantitative observations for flood-related damages have been a major obstacle when attempting to analyse flood risk in the Mediterranean. Flood-related insurance damage claims for the last 20 years could provide a proxy for flood impact, and this information is now available in the Mediterranean region of Catalonia, in northeast Spain. This means a comprehensive analysis of the links between flood drivers and impacts is now possible. The objective of this paper is to develop and evaluate a methodology to estimate flood damages from heavy precipitation in a Mediterranean region. Results show that our model is able to simulate the probability of a damaging event as a function of precipitation. The relationship between precipitation and damage provides insights into flood risk in the Mediterranean and is also promising for supporting flood management strategies.
Development and validation of a two-dimensional fast-response flood estimation model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judi, David R; Mcpherson, Timothy N; Burian, Steven J
2009-01-01
A finite difference formulation of the shallow water equations using an upwind differencing method was developed maintaining computational efficiency and accuracy such that it can be used as a fast-response flood estimation tool. The model was validated using both laboratory controlled experiments and an actual dam breach. Through the laboratory experiments, the model was shown to give good estimations of depth and velocity when compared to the measured data, as well as when compared to a more complex two-dimensional model. Additionally, the model was compared to high water mark data obtained from the failure of the Taum Sauk dam. Themore » simulated inundation extent agreed well with the observed extent, with the most notable differences resulting from the inability to model sediment transport. The results of these validation studies complex two-dimensional model. Additionally, the model was compared to high water mark data obtained from the failure of the Taum Sauk dam. The simulated inundation extent agreed well with the observed extent, with the most notable differences resulting from the inability to model sediment transport. The results of these validation studies show that a relatively numerical scheme used to solve the complete shallow water equations can be used to accurately estimate flood inundation. Future work will focus on further reducing the computation time needed to provide flood inundation estimates for fast-response analyses. This will be accomplished through the efficient use of multi-core, multi-processor computers coupled with an efficient domain-tracking algorithm, as well as an understanding of the impacts of grid resolution on model results.« less
Mathematical modeling of polymer flooding using the unstructured Voronoi grid
NASA Astrophysics Data System (ADS)
Kireev, T. F.; Bulgakova, G. T.; Khatmullin, I. F.
2017-12-01
Effective recovery of unconventional oil reserves necessitates development of enhanced oil recovery techniques such as polymer flooding. The study investigated the model of polymer flooding with effects of adsorption and water salinity. The model takes into account six components that include elements of the classic black oil model. These components are polymer, salt, water, dead oil, dry gas and dissolved gas. Solution of the problem is obtained by finite volume method on unstructured Voronoi grid using fully implicit scheme and the Newton’s method. To compare several different grid configurations numerical simulation of polymer flooding is performed. The oil rates obtained by a hexagonal locally refined Voronoi grid are shown to be more accurate than the oil rates obtained by a rectangular grid with the same number of cells. The latter effect is caused by high solution accuracy near the wells due to the local grid refinement. Minimization of the grid orientation effect caused by the hexagonal pattern is also demonstrated. However, in the inter-well regions with large Voronoi cells flood front tends to flatten and the water breakthrough moment is smoothed.
Itzï (version 17.1): an open-source, distributed GIS model for dynamic flood simulation
NASA Astrophysics Data System (ADS)
Guillaume Courty, Laurent; Pedrozo-Acuña, Adrián; Bates, Paul David
2017-05-01
Worldwide, floods are acknowledged as one of the most destructive hazards. In human-dominated environments, their negative impacts are ascribed not only to the increase in frequency and intensity of floods but also to a strong feedback between the hydrological cycle and anthropogenic development. In order to advance a more comprehensive understanding of this complex interaction, this paper presents the development of a new open-source tool named Itzï
that enables the 2-D numerical modelling of rainfall-runoff processes and surface flows integrated with the open-source geographic information system (GIS) software known as GRASS. Therefore, it takes advantage of the ability given by GIS environments to handle datasets with variations in both temporal and spatial resolutions. Furthermore, the presented numerical tool can handle datasets from different sources with varied spatial resolutions, facilitating the preparation and management of input and forcing data. This ability reduces the preprocessing time usually required by other models. Itzï uses a simplified form of the shallow water equations, the damped partial inertia equation, for the resolution of surface flows, and the Green-Ampt model for the infiltration. The source code is now publicly available online, along with complete documentation. The numerical model is verified against three different tests cases: firstly, a comparison with an analytic solution of the shallow water equations is introduced; secondly, a hypothetical flooding event in an urban area is implemented, where results are compared to those from an established model using a similar approach; and lastly, the reproduction of a real inundation event that occurred in the city of Kingston upon Hull, UK, in June 2007, is presented. The numerical approach proved its ability at reproducing the analytic and synthetic test cases. Moreover, simulation results of the real flood event showed its suitability at identifying areas affected by flooding, which were verified against those recorded after the event by local authorities.
High resolution mapping of flood hazard for South Korea
NASA Astrophysics Data System (ADS)
Ghosh, Sourima; Nzerem, Kechi; Zovi, Francesco; Li, Shuangcai; Mei, Yi; Assteerawatt, Anongnart; Hilberts, Arno; Tillmanns, Stephan; Mitas, Christos
2015-04-01
Floods are one of primary natural hazards that affect South Korea. During the past 15 years, catastrophic flood events which mainly have occurred during the rainy and typhoon seasons - especially under condition where soils are already saturated, have triggered substantial property damage with an average annual loss of around US1.2 billion (determined from WAter Management Information System's flood damage database for years 2002-2011) in South Korea. According to Seoul Metropolitan Government, over 16,000 households in the capital city Seoul were inundated during 2010 flood events. More than 10,000 households in Seoul were apparently flooded during one major flood event due to torrential rain in July 2011. Recently in August 2014, a serious flood event due to heavy rainfall hit the Busan region in the south east of South Korea. Addressing the growing needs, RMS has recently released country-wide high resolution combined flood return period maps for post-drainage local "pluvial" inundation and undefended large-scale "fluvial" inundation to aid the government and the insurance industry in the evaluation of comprehensive flood risk. RMS has developed a flood hazard model for South Korea to generate inundation depths and extents for a range of flood return periods. The model is initiated with 30 years of historical meteorological forcing data and calibrated to daily observations at over 100 river gauges across the country. Simulations of hydrologic processes are subsequently performed based on a 2000 year set of stochastic forcing. Floodplain inundation processes are modelled by numerically solving the shallow water equations using finite volume method on GPUs. Taking into account the existing stormwater drainage standards, economic exposure densities, etc., reasonable flood maps are created from inundation model output. Final hazard maps at one arcsec grid resolution can be the basis for both evaluating and managing flood risk, its economic impacts, and insured flood losses in South Korea.
NASA Astrophysics Data System (ADS)
Nicolae Lerma, Alexandre; Bulteau, Thomas; Elineau, Sylvain; Paris, François; Durand, Paul; Anselme, Brice; Pedreros, Rodrigo
2018-01-01
A modelling chain was implemented in order to propose a realistic appraisal of the risk in coastal areas affected by overflowing as well as overtopping processes. Simulations are performed through a nested downscaling strategy from regional to local scale at high spatial resolution with explicit buildings, urban structures such as sea front walls and hydraulic structures liable to affect the propagation of water in urban areas. Validation of the model performance is based on hard and soft available data analysis and conversion of qualitative to quantitative information to reconstruct the area affected by flooding and the succession of events during two recent storms. Two joint probability approaches (joint exceedance contour and environmental contour) are used to define 100-year offshore conditions scenarios and to investigate the flood response to each scenario in terms of (1) maximum spatial extent of flooded areas, (2) volumes of water propagation inland and (3) water level in flooded areas. Scenarios of sea level rise are also considered in order to evaluate the potential hazard evolution. Our simulations show that for a maximising 100-year hazard scenario, for the municipality as a whole, 38 % of the affected zones are prone to overflow flooding and 62 % to flooding by propagation of overtopping water volume along the seafront. Results also reveal that for the two kinds of statistic scenarios a difference of about 5 % in the forcing conditions (water level, wave height and period) can produce significant differences in terms of flooding like +13.5 % of water volumes propagating inland or +11.3 % of affected surfaces. In some areas, flood response appears to be very sensitive to the chosen scenario with differences of 0.3 to 0.5 m in water level. The developed approach enables one to frame the 100-year hazard and to characterize spatially the robustness or the uncertainty over the results. Considering a 100-year scenario with mean sea level rise (0.6 m), hazard characteristics are dramatically changed with an evolution of the overtopping / overflowing process ratio and an increase of a factor 4.84 in volumes of water propagating inland and 3.47 in flooded surfaces.
Syed, Atiq U.; Bennett, James P.; Rachol, Cynthia M.
2005-01-01
Four dams on the Kalamazoo River between the cities of Plainwell and Allegan, Mich., are in varying states of disrepair. The Michigan Department of Environmental Quality (MDEQ) and U.S. Environmental Protection Agency (USEPA) are considering removing these dams to restore the river channels to pre-dam conditions. This study was initiated to identify sediment characteristics, monitor sediment transport, and predict sediment resuspension and deposition under varying hydraulic conditions. The mathematical model SEDMOD was used to simulate streamflow and sediment transport using three modeling scenarios: (1) sediment transport simulations for 730 days (Jan. 2001 to Dec. 2002), with existing dam structures, (2) sediment transport simulations based on flows from the 1947 flood at the Kalamazoo River with existing dam structures, and (3) sediment transport simulations based on flows from the 1947 flood at the Kalamazoo River with dams removed. Sediment transport simulations based on the 1947 flood hydrograph provide an estimate of sediment transport rates under maximum flow conditions. These scenarios can be used as an assessment of the sediment load that may erode from the study reach at this flow magnitude during a dam failure. The model was calibrated using suspended sediment as a calibration parameter and root mean squared error (RMSE) as an objective function. Analyses of the calibrated model show a slight bias in the model results at flows higher than 75 m3/s; this means that the model-simulated suspended-sediment transport rates are higher than the observed rates; however, the overall calibrated model results show close agreement between simulated and measured values of suspended sediment. Simulation results show that the Kalamazoo River sediment transport mechanism is in a dynamic equilibrium state. Model results during the 730-day simulations indicate significant sediment erosion from the study reach at flow rates higher than 55 m3/s. Similarly, significant sediment deposition occurs during low to average flows (monthly mean flows between 25.49 m3/s and 50.97 m3/s) after a high-flow event. If the flow continues to stay in the low to average range the system shifts towards equilibrium, resulting in a balancing effect between sediment deposition and erosion rates. The 1947 flood-flow simulations show approximately 30,000 m3 more instream sediments erosion for the first 21 days of the dams removed scenario than for the existing-dams scenario, with the same initial conditions for both scenarios. Application of a locally weighted regression smoothing (LOWESS) function to simulation results of the dams removed scenario indicates a steep downtrend with high sediment transport rates during the first 21 days. In comparison, the LOWESS curve for the existing-dams scenario shows a smooth transition of sediment transport rates in response to the change in streamflow. The high erosion rates during the dams-removed scenario are due to the absence of the dams; in contrast, the presence of dams in the existing-dams scenario helps reduce sediment erosion to some extent. The overall results of 60-day simulations for the 1947 flood show no significant difference in total volume of eroded sediment between the two scenarios, because the dams in the study reach have low heads and no control gates. It is important to note that the existing-dams and dams-removed scenarios simulations are run for only 60 days; therefore, the simulations take into account the changes in sediment erosion and deposition rates only during that time period. Over an extended period, more erosion of instream sediments would be expected to occur if the dams are not properly removed than under the existing conditions. On the basis of model simulations, removal of dams would further lower the head in all the channels. This lowering of head could produce higher flow velocities in the study reach, which ultimately would result in accelerated erosion rates.
NASA Astrophysics Data System (ADS)
Babaei, Sahar; Ghazavi, Reza; Erfanian, Mahdi
2018-06-01
Urban runoff increased due to augment of impervious surfaces. In order to flood mitigation during rainy season, determination of critical urban sub-catchments is very important for urban planners. Due to lack of information, adopting a simulation approach is one of the practical ways to identify the surcharged junctions and critical sub-catchments. Occurrence of destructive floods in the rainy seasons indicates the inappropriateness of the urban drainage system in Urmia. The main aims of this study were to estimate the surface runoff of urban sub-catchments using SWMM, to evaluate the accuracy of the drainage system of the study urban area and to prioritize sub-catchments using PROMETHEE II approach and SWMM. In the present study, the occurrence of rainfall event of the Urmia city (West Azerbaijan province, Iran) used for estimation of runoff depth. The study area was divided into 22 sub-catchments. For calibration and validation of model parameters, 3 rainfall events and their related runoff were measured. According to sensitivity analysis CN was the most sensitive parameter for model calibration. Amount of surcharged conduits and junctions indicates that the drainage system of the study area has not enough capacity for converting of the runoff and. For 10 year return period, depth of channels should increase by 20% for prevention of flooding in these sub-catchments. Sub-catchments were prioritized using PROMETHEE II approach and its results were compared with SWMM simulation outcomes. Based on SWMM simulation, S11, S7, S18, S16 and S1 sub-catchments are more critical sub-catchments respectively, while according to PROMETHEE method, S1, S11, S16, S14 and S18 are determined as the critical areas.
Improvement of Sweep Efficiency in Gasflooding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishore Mohanty
2008-12-31
Miscible and near-miscible gasflooding has proven to be one of the few cost effective enhance oil recovery techniques in the past twenty years. As the scope of gas flooding is being expanded to medium viscosity oils in shallow sands in Alaska and shallower reservoirs in the lower 48, there are questions about sweep efficiency in near-miscible regions. The goal of this research is to evaluate sweep efficiency of various gas flooding processes in a laboratory model and develop numerical tools to estimate their effectiveness in the field-scale. Quarter 5-spot experiments were conducted at reservoir pressure to evaluate the sweep efficiencymore » of gas, WAG and foam floods. The quarter 5-spot model was used to model vapor extraction (VAPEX) experiments at the lab scale. A streamline-based compositional simulator and a commercial simulator (GEM) were used to model laboratory scale miscible floods and field-scale pattern floods. An equimolar mixture of NGL and lean gas is multicontact miscible with oil A at 1500 psi; ethane is a multicontact miscible solvent for oil B at pressures higher than 607 psi. WAG improves the microscopic displacement efficiency over continuous gas injection followed by waterflood in corefloods. WAG improves the oil recovery in the quarter 5-spot over the continuous gas injection followed by waterflood. As the WAG ratio increases from 1:2 to 2:1, the sweep efficiency in the 5-spot increases, from 39.6% to 65.9%. A decrease in the solvent amount lowers the oil recovery in WAG floods, but significantly higher amount of oil can be recovered with just 0.1 PV solvent injection over just waterflood. Use of a horizontal production well lowers the oil recovery over the vertical production well during WAG injection phase in this homogeneous 5-spot model. Estimated sweep efficiency decreases from 61.5% to 50.5%. In foam floods, as surfactant to gas slug size ratio increases from 1:10 to 1:1, oil recovery increases. In continuous gasflood VAPEX processes, as the distance between the injection well and production well decreases, the oil recovery and rate decreases in continuous gasflood VAPEX processes. Gravity override is observed for gas injection simulations in vertical (X-Z) cross-sections and 3-D quarter five spot patterns. Breakthrough recovery efficiency increases with the viscous-to-gravity ratio in the range of 1-100. The speed up for the streamline calculations alone is almost linear with the number of processors. The overall speed up factor is sub-linear because of the overhead time spent on the finite-difference calculation, inter-processor communication, and non-uniform processor load. Field-scale pattern simulations showed that recovery from gas and WAG floods depends on the vertical position of high permeability regions and k{sub v}/k{sub h} ratio. As the location of high permeability region moves down and k{sub v}/k{sub h} ratio decreases, oil recovery increases. There is less gravity override. The recovery from the field model is lower than that from the lab 5-spot model, but the effect of WAG ratio is similar.« less
NASA Astrophysics Data System (ADS)
Gaál, Ladislav; Szolgay, Ján.; Bacigál, Tomáå.¡; Kohnová, Silvia
2010-05-01
Copula-based estimation methods of hydro-climatological extremes have increasingly been gaining attention of researchers and practitioners in the last couple of years. Unlike the traditional estimation methods which are based on bivariate cumulative distribution functions (CDFs), copulas are a relatively flexible tool of statistics that allow for modelling dependencies between two or more variables such as flood peaks and flood volumes without making strict assumptions on the marginal distributions. The dependence structure and the reliability of the joint estimates of hydro-climatological extremes, mainly in the right tail of the joint CDF not only depends on the particular copula adopted but also on the data available for the estimation of the marginal distributions of the individual variables. Generally, data samples for frequency modelling have limited temporal extent, which is a considerable drawback of frequency analyses in practice. Therefore, it is advised to deal with statistical methods that improve any part of the process of copula construction and result in more reliable design values of hydrological variables. The scarcity of the data sample mostly in the extreme tail of the joint CDF can be bypassed, e.g., by using a considerably larger amount of simulated data by rainfall-runoff analysis or by including historical information on the variables under study. The latter approach of data extension is used here to make the quantile estimates of the individual marginals of the copula more reliable. In the presented paper it is proposed to use historical information in the frequency analysis of the marginal distributions in the framework of Bayesian Monte Carlo Markov Chain (MCMC) simulations. Generally, a Bayesian approach allows for a straightforward combination of different sources of information on floods (e.g. flood data from systematic measurements and historical flood records, respectively) in terms of a product of the corresponding likelihood functions. On the other hand, the MCMC algorithm is a numerical approach for sampling from the likelihood distributions. The Bayesian MCMC methods therefore provide an attractive way to estimate the uncertainty in parameters and quantile metrics of frequency distributions. The applicability of the method is demonstrated in a case study of the hydroelectric power station Orlík on the Vltava River. This site has a key role in the flood prevention of Prague, the capital city of the Czech Republic. The record length of the available flood data is 126 years from the period 1877-2002, while the flood event observed in 2002 that caused extensive damages and numerous casualties is treated as a historic one. To estimate the joint probabilities of flood peaks and volumes, different copulas are fitted and their goodness-of-fit are evaluated by bootstrap simulations. Finally, selected quantiles of flood volumes conditioned on given flood peaks are derived and compared with those obtained by the traditional method used in the practice of water management specialists of the Vltava River.
NASA Astrophysics Data System (ADS)
Boudet, L.; Sabatier, F.; Radakovitch, O.
2017-11-01
The delta of the Rhone River is one of the most important in the Mediterranean Sea. Beach erosion problems along its coasts have developed in recent decades, raising the need for a better understanding of the sediment transport processes at the Rhone mouth and the adjacent beaches. Because field data are very difficult to obtain in such an energetic environment, a high-resolution numerical model (Delft3D) is applied to this area. This model is calibrated by taking into account hydrodynamical and morphological observations. Special attention is given to storm and flood events, which are the major morphological drivers. Therefore, scenarios with different wave and flow conditions are run to estimate the influence of these events on the sediment transport. The analysis of historical hydrological data shows that storms from the southeast represent 70% of the events between 1979 to 2010 and that 20% of them were followed by a flood within a few days. Consequently, specific simulations for such conditions are performed using Delft3D. The model simulates trends in the bedload sediment transport that are consistent with the bedforms observed in the bathymetry data. The total sediment transport at the outlet is only influenced by the river flow, but sediment transport at the mouth-bar depends on an equilibrium between the influence of floods and storms and the succession of these events. A period of 2 or 3 days separating the storm and flood peaks is sufficient to differentiate wave and river flow-induced sediment transport. The waves constrain the total transport on the mouth-bar and shallow mouth-lobe and induce a longshore transfer towards the adjacent beaches. The riverine sediments can be exported seaward only if a flood is energetic enough compared to the storm intensity. Regardless, when a flood is greater than the decadal return period (7800 m3 s-1), the sediment is transported from the outlet across the mouth-bar and is directed offshore.
NASA Astrophysics Data System (ADS)
Liu, M.; Yang, L.; Smith, J. A.; Vecchi, G. A.
2017-12-01
Extreme rainfall and flooding associated with landfalling tropical cyclones (TC) is responsible for vast socioeconomic losses and fatalities. Landfalling tropical cyclones are an important element of extreme rainfall and flood peak distributions in the eastern United States. Record floods for USGS stream gauging stations over the eastern US are closely tied to landfalling hurricanes. A small number of storms account for the largest record floods, most notably Hurricanes Diane (1955) and Agnes (1972). The question we address is: if the synoptic conditions accompanying those hurricanes were to be repeated in the future, how would the thermodynamic and dynamic storm properties and associated extreme rainfall differ in response to climate change? We examine three hurricanes: Diane (1955), Agnes (1972) and Irene (2011), due to the contrasts in structure/evolution properties and their important roles in dictating the upper tail properties of extreme rainfall and flood frequency over eastern US. Extreme rainfall from Diane is more localized as the storm maintains tropical characteristics, while synoptic-scale vertical motion associated with extratropical transition is a central feature for extreme rainfall induced by Agnes. Our analyses are based on ensemble simulations using the Weather Research and Forecasting (WRF) model, considering combinations of different physics options (i.e., microphysics, boundary layer schemes). The initial and boundary conditions of WRF simulations for the present-day climate are using the Twentieth Century Reanalysis (20thCR). A sub-selection of GCMs is used, as part of phase 5 of the Coupled Model Intercomparison Project (CMIP5), to provide future climate projections. For future simulations, changes in model fields (i.e., temperature, humidity, geopotential height) between present-day and future climate are first derived and then added to the same 20thCR initial and boundary data used for the present-day simulations, and the ensemble is rerun using identical model configurations. Response of extreme rainfall as well as changes in thermodynamic and dynamic storm properties will be presented and analyzed. Contrasting responses across the three storm events to climate change will shed light on critical environmental factors for TC-related extreme rainfall over eastern US.
NASA Astrophysics Data System (ADS)
Yucel, Ismail; Onen, Alper
2013-04-01
Evidence is showing that global warming or climate change has a direct influence on changes in precipitation and the hydrological cycle. Extreme weather events such as heavy rainfall and flooding are projected to become much more frequent as climate warms. Regional hydrometeorological system model which couples the atmosphere with physical and gridded based surface hydrology provide efficient predictions for extreme hydrological events. This modeling system can be used for flood forecasting and warning issues as they provide continuous monitoring of precipitation over large areas at high spatial resolution. This study examines the performance of the Weather Research and Forecasting (WRF-Hydro) model that performs the terrain, sub-terrain, and channel routing in producing streamflow from WRF-derived forcing of extreme precipitation events. The capability of the system with different options such as data assimilation is tested for number of flood events observed in basins of western Black Sea Region in Turkey. Rainfall event structures and associated flood responses are evaluated with gauge and satellite-derived precipitation and measured streamflow values. The modeling system shows skills in capturing the spatial and temporal structure of extreme rainfall events and resulted flood hydrographs. High-resolution routing modules activated in the model enhance the simulated discharges.
NASA Astrophysics Data System (ADS)
Mamy Rakotoarisoa, Mahefa; Fleurant, Cyril; Taibi, Nuscia; Razakamanana, Théodore
2016-04-01
Hydrological risks, especially for floods, are recurrent on the Fiherenana watershed - southwest of Madagascar. The city of Toliara, which is located at the outlet of the river basin, is subjected each year to hurricane hazards and floods. The stakes are of major importance in this part of the island. This study begins with the analysis of hazard by collecting all existing hydro-climatic data on the catchment. It then seeks to determine trends, despite the significant lack of data, using simple statistical models (decomposition of time series). Then, two approaches are conducted to assess the vulnerability of the city of Toliara and the surrounding villages. First, a static approach, from surveys of land and the use of GIS are used. Then, the second method is the use of a multi-agent-based simulation model. The first step is the mapping of a vulnerability index which is the arrangement of several static criteria. This is a microscale indicator (the scale used is the housing). For each House, there are several criteria of vulnerability, which are the potential water depth, the flow rate, or the architectural typology of the buildings. For the second part, simulations involving scenes of agents are used in order to evaluate the degree of vulnerability of homes from flooding. Agents are individual entities to which we can assign behaviours on purpose to simulate a given phenomenon. The aim is not to give a criterion to the house as physical building, such as its architectural typology or its strength. The model wants to know the chances of the occupants of the house to escape from a catastrophic flood. For this purpose, we compare various settings and scenarios. Some scenarios are conducted to take into account the effect of certain decision made by the responsible entities (Information and awareness of the villagers for example). The simulation consists of two essential parts taking place simultaneously in time: simulation of the rise of water and the flow using classical hydrological functions and multi agent system (transfer function and production function) and the simulation of the behaviour of the people facing the arrival of hazard.
The 100-year flood seems to be changing. Can we really tell?
NASA Astrophysics Data System (ADS)
Ceres, R. L., Jr.; Forest, C. E.; Keller, K.
2017-12-01
Widespread flooding from Hurricane Harvey greatly exceeded the Federal Emergency Management Agency's 100-year flood levels. In the US, this flood level is often used as an important line of demarcation where areas above this level are considered safe, while areas below the line are at risk and require additional flood risk mitigation. In the wake of Harvey's damage, the US media has highlighted at least two important questions. First, has the 100-year flood level changed? Second, is the 100-year flood level a good metric for determining flood risk? To address the first question, we use an Observation System Simulation Experiment of storm surge flood levels and find that gradual changes to the 100-year storm surge level may not be reliably detected over the long lifespans expected of major flood risk mitigation strategies. Additionally, we find that common extreme value analysis models lead to biased results and additional uncertainty when incorrect assumptions are used for the underlying statistical model. These incorrect assumptions can lead to examples of negative learning. Addressing the second question, these findings further challenge the validity of using simple return levels such as the 100-year flood as a decision tool for assessing flood risk. These results indicate risk management strategies must account for such uncertainties to build resilient and robust planning tools that stakeholders desperately need.
Numerical simulation on ferrofluid flow in fractured porous media based on discrete-fracture model
NASA Astrophysics Data System (ADS)
Huang, Tao; Yao, Jun; Huang, Zhaoqin; Yin, Xiaolong; Xie, Haojun; Zhang, Jianguang
2017-06-01
Water flooding is an efficient approach to maintain reservoir pressure and has been widely used to enhance oil recovery. However, preferential water pathways such as fractures can significantly decrease the sweep efficiency. Therefore, the utilization ratio of injected water is seriously affected. How to develop new flooding technology to further improve the oil recovery in this situation is a pressing problem. For the past few years, controllable ferrofluid has caused the extensive concern in oil industry as a new functional material. In the presence of a gradient in the magnetic field strength, a magnetic body force is produced on the ferrofluid so that the attractive magnetic forces allow the ferrofluid to be manipulated to flow in any desired direction through the control of the external magnetic field. In view of these properties, the potential application of using the ferrofluid as a new kind of displacing fluid for flooding in fractured porous media is been studied in this paper for the first time. Considering the physical process of the mobilization of ferrofluid through porous media by arrangement of strong external magnetic fields, the magnetic body force was introduced into the Darcy equation and deals with fractures based on the discrete-fracture model. The fully implicit finite volume method is used to solve mathematical model and the validity and accuracy of numerical simulation, which is demonstrated through an experiment with ferrofluid flowing in a single fractured oil-saturated sand in a 2-D horizontal cell. At last, the water flooding and ferrofluid flooding in a complex fractured porous media have been studied. The results showed that the ferrofluid can be manipulated to flow in desired direction through control of the external magnetic field, so that using ferrofluid for flooding can raise the scope of the whole displacement. As a consequence, the oil recovery has been greatly improved in comparison to water flooding. Thus, the ferrofluid flooding is a large potential method for enhanced oil recovery in the future.
NASA Astrophysics Data System (ADS)
Ybanez, R. L.; Lagmay, A. M. A.; David, C. P.
2016-12-01
With climatological hazards increasing globally, the Philippines is listed as one of the most vulnerable countries in the world due to its location in the Western Pacific. Flood hazards mapping and modelling is one of the responses by local government and research institutions to help prepare for and mitigate the effects of flood hazards that constantly threaten towns and cities in floodplains during the 6-month rainy season. Available digital elevation maps, which serve as the most important dataset used in 2D flood modelling, are limited in the Philippines and testing is needed to determine which of the few would work best for flood hazards mapping and modelling. Two-dimensional GIS-based flood modelling with the flood-routing software FLO-2D was conducted using three different available DEMs from the ASTER GDEM, the SRTM GDEM, and the locally available IfSAR DTM. All other parameters kept uniform, such as resolution, soil parameters, rainfall amount, and surface roughness, the three models were run over a 129-sq. kilometer watershed with only the basemap varying. The output flood hazard maps were compared on the basis of their flood distribution, extent, and depth. The ASTER and SRTM GDEMs contained too much error and noise which manifested as dissipated and dissolved hazard areas in the lower watershed where clearly delineated flood hazards should be present. Noise on the two datasets are clearly visible as erratic mounds in the floodplain. The dataset which produced the only feasible flood hazard map is the IfSAR DTM which delineates flood hazard areas clearly and properly. Despite the use of ASTER and SRTM with their published resolution and accuracy, their use in GIS-based flood modelling would be unreliable. Although not as accessible, only IfSAR or better datasets should be used for creating secondary products from these base DEM datasets. For developing countries which are most prone to hazards, but with limited choices for basemaps used in hazards studies, the caution must be taken in the use of globally available GDEMs and higher-resolution DEMs must always be sought.
Assessing the impact of climate and land use changes on extreme floods in a large tropical catchment
NASA Astrophysics Data System (ADS)
Jothityangkoon, Chatchai; Hirunteeyakul, Chow; Boonrawd, Kowit; Sivapalan, Murugesu
2013-05-01
In the wake of the recent catastrophic floods in Thailand, there is considerable concern about the safety of large dams designed and built some 50 years ago. In this paper a distributed rainfall-runoff model appropriate for extreme flood conditions is used to generate revised estimates of the Probable Maximum Flood (PMF) for the Upper Ping River catchment (area 26,386 km2) in northern Thailand, upstream of location of the large Bhumipol Dam. The model has two components: a continuous water balance model based on a configuration of parameters estimated from climate, soil and vegetation data and a distributed flood routing model based on non-linear storage-discharge relationships of the river network under extreme flood conditions. The model is implemented under several alternative scenarios regarding the Probable Maximum Precipitation (PMP) estimates and is also used to estimate the potential effects of both climate change and land use and land cover changes on the extreme floods. These new estimates are compared against estimates using other hydrological models, including the application of the original prediction methods under current conditions. Model simulations and sensitivity analyses indicate that a reasonable Probable Maximum Flood (PMF) at the dam site is 6311 m3/s, which is only slightly higher than the original design flood of 6000 m3/s. As part of an uncertainty assessment, the estimated PMF is sensitive to the design method, input PMP, land use changes and the floodplain inundation effect. The increase of PMP depth by 5% can cause a 7.5% increase in PMF. Deforestation by 10%, 20%, 30% can result in PMF increases of 3.1%, 6.2%, 9.2%, respectively. The modest increase of the estimated PMF (to just 6311 m3/s) in spite of these changes is due to the factoring of the hydraulic effects of trees and buildings on the floodplain as the flood situation changes from normal floods to extreme floods, when over-bank flows may be the dominant flooding process, leading to a substantial reduction in the PMF estimates.
Modeling multi-source flooding disaster and developing simulation framework in Delta
NASA Astrophysics Data System (ADS)
Liu, Y.; Cui, X.; Zhang, W.
2016-12-01
Most Delta regions of the world are densely populated and with advanced economies. However, due to impact of the multi-source flooding (upstream flood, rainstorm waterlogging, storm surge flood), the Delta regions is very vulnerable. The academic circles attach great importance to the multi-source flooding disaster in these areas. The Pearl River Delta urban agglomeration in south China is selected as the research area. Based on analysis of natural and environmental characteristics data of the Delta urban agglomeration(remote sensing data, land use data, topographic map, etc.), hydrological monitoring data, research of the uneven distribution and process of regional rainfall, the relationship between the underlying surface and the parameters of runoff, effect of flood storage pattern, we use an automatic or semi-automatic method for dividing spatial units to reflect the runoff characteristics in urban agglomeration, and develop an Multi-model Ensemble System in changing environment, including urban hydrologic model, parallel computational 1D&2D hydrodynamic model, storm surge forecast model and other professional models, the system will have the abilities like real-time setting a variety of boundary conditions, fast and real-time calculation, dynamic presentation of results, powerful statistical analysis function. The model could be optimized and improved by a variety of verification methods. This work was supported by the National Natural Science Foundation of China (41471427); Special Basic Research Key Fund for Central Public Scientific Research Institutes.
NASA Technical Reports Server (NTRS)
Hong, Yang; Adler, Robert F.; Huffman, George J.; Pierce, Harold
2008-01-01
Advances in flood monitoring/forecasting have been constrained by the difficulty in estimating rainfall continuously over space (catchment-, national-, continental-, or even global-scale areas) and flood-relevant time scale. With the recent availability of satellite rainfall estimates at fine time and space resolution, this paper describes a prototype research framework for global flood monitoring by combining real-time satellite observations with a database of global terrestrial characteristics through a hydrologically relevant modeling scheme. Four major components included in the framework are (1) real-time precipitation input from NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA); (2) a central geospatial database to preprocess the land surface characteristics: water divides, slopes, soils, land use, flow directions, flow accumulation, drainage network etc.; (3) a modified distributed hydrological model to convert rainfall to runoff and route the flow through the stream network in order to predict the timing and severity of the flood wave, and (4) an open-access web interface to quickly disseminate flood alerts for potential decision-making. Retrospective simulations for 1998-2006 demonstrate that the Global Flood Monitor (GFM) system performs consistently at both station and catchment levels. The GFM website (experimental version) has been running at near real-time in an effort to offer a cost-effective solution to the ultimate challenge of building natural disaster early warning systems for the data-sparse regions of the world. The interactive GFM website shows close-up maps of the flood risks overlaid on topography/population or integrated with the Google-Earth visualization tool. One additional capability, which extends forecast lead-time by assimilating QPF into the GFM, also will be implemented in the future.
NASA Astrophysics Data System (ADS)
Salinas, J. L.; Nester, T.; Komma, J.; Bloeschl, G.
2017-12-01
Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of observed rainfall characteristics, such as regional intensity-duration-frequency curves, and spatial and temporal correlations is necessary to adequately model the magnitude and frequency of the flood peaks, by reproducing antecedent soil moisture conditions before extreme rainfall events, and joint probability of flood waves at confluences. In this work, a modification of the model presented by Bardossy and Platte (1992), where precipitation is first modeled on a station basis as a multivariate autoregressive model (mAr) in a Normal space. The spatial and temporal correlation structures are imposed in the Normal space, allowing for a different temporal autocorrelation parameter for each station, and simultaneously ensuring the positive-definiteness of the correlation matrix of the mAr errors. The Normal rainfall is then transformed to a Gamma-distributed space, with parameters varying monthly according to a sinusoidal function, in order to adapt to the observed rainfall seasonality. One of the main differences with the original model is the simulation time-step, reduced from 24h to 6h. Due to a larger availability of daily rainfall data, as opposite to sub-daily (e.g. hourly), the parameters of the Gamma distributions are calibrated to reproduce simultaneously a series of daily rainfall characteristics (mean daily rainfall, standard deviations of daily rainfall, and 24h intensity-duration-frequency [IDF] curves), as well as other aggregated rainfall measures (mean annual rainfall, and monthly rainfall). The calibration of the spatial and temporal correlation parameters is performed in a way that the catchment-averaged IDF curves aggregated at different temporal scales fit the measured ones. The rainfall model is used to generate 10.000 years of synthetic precipitation, fed into a rainfall-runoff model to derive the flood frequency in the Tirolean Alps in Austria. Given the number of generated events, the simulation framework is able to generate a large variety of rainfall patterns, as well as reproduce the variograms of relevant extreme rainfall events in the region of interest.
NASA Astrophysics Data System (ADS)
Iribarren Anacona, Pablo; Norton, Kevin; Mackintosh, Andrew
2015-04-01
Floods from moraine-dammed lake failures can result in severe damage to mountain communities. GLOFs can also cause long-standing effects in riverine landscapes, due to the high intensity (i.e. great depth and high velocities) and long reach capacity of these events. GLOFs may increase in frequency as glaciers retreat and new lakes develop, highlighting the need for a better understanding of GLOF dynamics and the measures to reduce their negative outcomes. In Patagonia at least 16 moraine-dammed lakes have failed in historic time, however, data about GLOF dynamics and impacts are limited since GLOFs have mainly affected uninhabited areas and ungauged rivers. In March 1977, however, a GLOF flooded a small village (~130 inhabitants) in Chilean Patagonia. We reconstruct the dynamics of this event by semi-structured interviews, interpretation of satellite images (Landsat MSS) and two dimensional (2D) hydraulic modelling (using HEC-RAS 5.0 BETA and the SRTM v4 DEM). This reconstruction provides insights into GLOF behaviour, as well as the planning issues that led to socioeconomic consequences, which included relocation of the village. We mapped the flood extent and compiled data of flood depth and timing to constrain the 2D GLOF simulations. Modelling shows that the water released by the GLOF was in the order of 12-13 million cubic metres and that the flood reached Bahía Murta Viejo, located ~26 km from the failed lake, 2-3 hours after the moraine dam was breached. The flood lasted for about ten hours (at the village), although the peak discharge occurred after only one hour at this site. The maximum water depth at Bahía Murta Viejo was 1.5 m, however, water depths of up to 20 metres were simulated in upstream constricted reaches. The overall flood dynamics suggested by interviews and geomorphic mapping, including hydraulic ponding upstream of bedrock gorges, was well represented in the 2D simulations in spite of the coarse resolution (~80 m) of the DEM used. The simulated flood intensity and the damage to buildings reported by Bahía Murta inhabitants also showed a good correspondence. The Engaño Lake had several characteristics in common with other failed lakes in Patagonia. For example, it was dammed by a narrow and steep moraine, and the lake was in contact with a retreating glacier at the time of breaching. However, the GLOF hazard was not identified prior the 1977 flood. Thus, lack of awareness and planning amplified the negative socioeconomic consequences of the GLOF. The 1977 GLOF contributed to the village's gradual relocation to a higher and safer place a few kilometres from the original settlement. The Río Engaño GLOF shows the utility of the HEC-RAS 5.0 2D capabilities in GLOF modelling and illustrates a small-scale and short-distance migration as a coping strategy to a natural hazard which may increase in frequency as atmospheric temperature rise and glaciers retreat.
Dankers, Rutger; Arnell, Nigel W.; Clark, Douglas B.; Falloon, Pete D.; Fekete, Balázs M.; Gosling, Simon N.; Heinke, Jens; Kim, Hyungjun; Masaki, Yoshimitsu; Satoh, Yusuke; Stacke, Tobias; Wada, Yoshihide; Wisser, Dominik
2014-01-01
Climate change due to anthropogenic greenhouse gas emissions is expected to increase the frequency and intensity of precipitation events, which is likely to affect the probability of flooding into the future. In this paper we use river flow simulations from nine global hydrology and land surface models to explore uncertainties in the potential impacts of climate change on flood hazard at global scale. As an indicator of flood hazard we looked at changes in the 30-y return level of 5-d average peak flows under representative concentration pathway RCP8.5 at the end of this century. Not everywhere does climate change result in an increase in flood hazard: decreases in the magnitude and frequency of the 30-y return level of river flow occur at roughly one-third (20–45%) of the global land grid points, particularly in areas where the hydrograph is dominated by the snowmelt flood peak in spring. In most model experiments, however, an increase in flooding frequency was found in more than half of the grid points. The current 30-y flood peak is projected to occur in more than 1 in 5 y across 5–30% of land grid points. The large-scale patterns of change are remarkably consistent among impact models and even the driving climate models, but at local scale and in individual river basins there can be disagreement even on the sign of change, indicating large modeling uncertainty which needs to be taken into account in local adaptation studies. PMID:24344290
NASA Astrophysics Data System (ADS)
Habert, J.; Ricci, S.; Le Pape, E.; Thual, O.; Piacentini, A.; Goutal, N.; Jonville, G.; Rochoux, M.
2016-01-01
This paper presents a data-driven hydrodynamic simulator based on the 1-D hydraulic solver dedicated to flood forecasting with lead time of an hour up to 24 h. The goal of the study is to reduce uncertainties in the hydraulic model and thus provide more reliable simulations and forecasts in real time for operational use by the national hydrometeorological flood forecasting center in France. Previous studies have shown that sequential assimilation of water level or discharge data allows to adjust the inflows to the hydraulic network resulting in a significant improvement of the discharge while leaving the water level state imperfect. Two strategies are proposed here to improve the water level-discharge relation in the model. At first, a modeling strategy consists in improving the description of the river bed geometry using topographic and bathymetric measurements. Secondly, an inverse modeling strategy proposes to locally correct friction coefficients in the river bed and the flood plain through the assimilation of in situ water level measurements. This approach is based on an Extended Kalman filter algorithm that sequentially assimilates data to infer the upstream and lateral inflows at first and then the friction coefficients. It provides a time varying correction of the hydrological boundary conditions and hydraulic parameters. The merits of both strategies are demonstrated on the Marne catchment in France for eight validation flood events and the January 2004 flood event is used as an illustrative example throughout the paper. The Nash-Sutcliffe criterion for water level is improved from 0.135 to 0.832 for a 12-h forecast lead time with the data assimilation strategy. These developments have been implemented at the SAMA SPC (local flood forecasting service in the Haute-Marne French department) and used for operational forecast since 2013. They were shown to provide an efficient tool for evaluating flood risk and to improve the flood early warning system. Complementary with the deterministic forecast of the hydraulic state, the estimation of an uncertainty range is given relying on off-line and on-line diagnosis. The possibilities to further extend the control vector while limiting the computational cost and equifinality problem are finally discussed.
Using SMAP Data to Investigate the Role of Soil Moisture Variability on Realtime Flood Forecasting
NASA Astrophysics Data System (ADS)
Krajewski, W. F.; Jadidoleslam, N.; Mantilla, R.
2017-12-01
The Iowa Flood Center has developed a regional high-resolution flood-forecasting model for the state of Iowa that decomposes the landscape into hillslopes of about 0.1 km2. For the model to benefit, through data assimilation, from SMAP observations of soil moisture (SM) at scales of approximately 100 km2, we are testing a framework to connect SMAP-scale observations to the small-scale SM variability calculated by our rainfall-runoff models. As a step in this direction, we performed data analyses of 15-min point SM observations using a network of about 30 TDR instruments spread throughout the state. We developed a stochastic point-scale SM model that captures 1) SM increases due to rainfall inputs, and 2) SM decay during dry periods. We use a power law model to describe soil moisture decay during dry periods, and a single parameter logistic curve to describe precipitation feedback on soil moisture. We find that the parameters of the models behave as time-independent random variables with stationary distributions. Using data-based simulation, we explore differences in the dynamical range of variability of hillslope and SMAP-scale domains. The simulations allow us to predict the runoff field and streamflow hydrographs for the state of Iowa during the three largest flooding periods (2008, 2014, and 2016). We also use the results to determine the reduction in forecast uncertainty from assimilation of unbiased SMAP-scale soil moisture observations.
Modeling flood reduction effects of low impact development at a watershed scale.
Ahiablame, Laurent; Shakya, Ranish
2016-04-15
Low impact development (LID) is a land development approach that seeks to mimic a site's pre-development hydrology. This study is a case study that assessed flood reduction capabilities of large-scale adoption of LID practices in an urban watershed in central Illinois using the Personal Computer Storm Water Management Model (PCSWMM). Two flood metrics based on runoff discharge were developed to determine action flood (43 m(3)/s) and major flood (95 m(3)/s). Four land use scenarios for urban growth were evaluated to determine the impacts of urbanization on runoff and flooding. Flood attenuation effects of porous pavement, rain barrel, and rain garden at various application levels were also evaluated as retrofitting technologies in the study watershed over a period of 30 years. Simulation results indicated that increase in urban land use from 50 to 94% between 1992 and 2030 increased average annual runoff and flood events by more than 30%, suggesting that urbanization without sound management would increase flood risks. The various implementation levels of the three LID practices resulted in 3-47% runoff reduction in the study watershed. Flood flow events that include action floods and major floods were also reduced by 0-40%, indicating that LID practices can be used to mitigate flood risk in urban watersheds. The study provides an insight into flood management with LID practices in existing urban areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Event-based aquifer-to-atmosphere modeling over the European CORDEX domain
NASA Astrophysics Data System (ADS)
Keune, J.; Goergen, K.; Sulis, M.; Shrestha, P.; Springer, A.; Kusche, J.; Ohlwein, C.; Kollet, S. J.
2014-12-01
Despite the fact that recent studies focus on the impact of soil moisture on climate and especially land-energy feedbacks, groundwater dynamics are often neglected or conceptual groundwater flow models are used. In particular, in the context of climate change and the occurrence of droughts and floods, a better understanding and an improved simulation of the physical processes involving groundwater on continental scales is necessary. This requires the implementation of a physically consistent terrestrial modeling system, which explicitly incorporates groundwater dynamics and the connection with shallow soil moisture. Such a physics-based system enables simulations and monitoring of groundwater storage and enhanced representations of the terrestrial energy and hydrologic cycles over long time periods. On shorter timescales, the prediction of groundwater-related extremes, such as floods and droughts, are expected to improve, because of the improved simulation of components of the hydrological cycle. In this study, we present a fully coupled aquifer-to-atmosphere modeling system over the European CORDEX domain. The integrated Terrestrial Systems Modeling Platform, TerrSysMP, consisting of the three-dimensional subsurface model ParFlow, the Community Land Model CLM3.5 and the numerical weather prediction model COSMO of the German Weather Service, is used. The system is set up with a spatial resolution of 0.11° (12.5km) and closes the terrestrial water and energy cycles from aquifers into the atmosphere. Here, simulations of the fully coupled system are performed over events, such as the 2013 flood in Central Europe and the 2003 European heat wave, and over extended time periods on the order of 10 years. State and flux variables of the terrestrial hydrologic and energy cycle are analyzed and compared to both in situ (e.g. stream and water level gauge networks, FLUXNET) and remotely sensed observations (e.g. GRACE, ESA ICC ECV soil moisture and SMOS). Additionally, the presented modeling system may be useful in the assessment of groundwater-related uncertainties in virtual reality and scenario simulations.
A coupled weather generator - rainfall-runoff approach on hourly time steps for flood risk analysis
NASA Astrophysics Data System (ADS)
Winter, Benjamin; Schneeberger, Klaus; Dung Nguyen, Viet; Vorogushyn, Sergiy; Huttenlau, Matthias; Merz, Bruno; Stötter, Johann
2017-04-01
The evaluation of potential monetary damage of flooding is an essential part of flood risk management. One possibility to estimate the monetary risk is to analyze long time series of observed flood events and their corresponding damages. In reality, however, only few flood events are documented. This limitation can be overcome by the generation of a set of synthetic, physically and spatial plausible flood events and subsequently the estimation of the resulting monetary damages. In the present work, a set of synthetic flood events is generated by a continuous rainfall-runoff simulation in combination with a coupled weather generator and temporal disaggregation procedure for the study area of Vorarlberg (Austria). Most flood risk studies focus on daily time steps, however, the mesoscale alpine study area is characterized by short concentration times, leading to large differences between daily mean and daily maximum discharge. Accordingly, an hourly time step is needed for the simulations. The hourly metrological input for the rainfall-runoff model is generated in a two-step approach. A synthetic daily dataset is generated by a multivariate and multisite weather generator and subsequently disaggregated to hourly time steps with a k-Nearest-Neighbor model. Following the event generation procedure, the negative consequences of flooding are analyzed. The corresponding flood damage for each synthetic event is estimated by combining the synthetic discharge at representative points of the river network with a loss probability relation for each community in the study area. The loss probability relation is based on exposure and susceptibility analyses on a single object basis (residential buildings) for certain return periods. For these impact analyses official inundation maps of the study area are used. Finally, by analyzing the total event time series of damages, the expected annual damage or losses associated with a certain probability of occurrence can be estimated for the entire study area.
NASA Astrophysics Data System (ADS)
Rončák, Peter; Lisovszki, Evelin; Szolgay, Ján; Hlavčová, Kamila; Kohnová, Silvia; Csoma, Rózsa; Poórová, Jana
2017-06-01
The effects of land use management practices on surface runoff are evident on a local scale, but evidence of their impact on the scale of a watershed is limited. This study focuses on an analysis of the impact of land use changes on the flood regime in the Myjava River basin, which is located in Western Slovakia. The Myjava River basin has an area of 641.32 km2 and is typified by the formation of fast runoff processes, intensive soil erosion, and muddy floods. The main factors responsible for these problems with flooding and soil erosion are the basin's location, geology, pedology, agricultural land use, and cropping practices. The GIS-based, spatially distributed WetSpa rainfall-runoff model was used to simulate mean daily discharges in the outlet of the basin as well as the individual components of the water balance. The model was calibrated based on the period between 1997 and 2012 with outstanding results (an NS coefficient of 0.702). Various components of runoff (e.g., surface, interflow and groundwater) and several elements of the hydrological balance (evapotranspiration and soil moisture) were simulated under various land use scenarios. Six land use scenarios (`crop', `grass', `forest', `slope', `elevation' and `optimal') were developed. The first three scenarios exhibited the ability of the WetSpa model to simulate runoff under changed land use conditions and enabled a better adjustment of the land use parameters of the model. Three other "more realistic" land use scenarios, which were based on the distribution of land use classes (arable land, grass and forest) regarding permissible slopes in the catchment, confirmed the possibility of reducing surface runoff and maximum discharges with applicable changes in land use and land management. These scenarios represent practical, realistic and realizable land use management solutions and they could be economically implemented to mitigate soil erosion processes and enhance the flood protection measures in the Myjava River basin.
NASA Astrophysics Data System (ADS)
Spence, C. M.; Brown, C.; Doss-Gollin, J.
2016-12-01
Climate model projections are commonly used for water resources management and planning under nonstationarity, but they do not reliably reproduce intense short-term precipitation and are instead more skilled at broader spatial scales. To provide a credible estimate of flood trend that reflects climate uncertainty, we present a framework that exploits the connections between synoptic-scale oceanic and atmospheric patterns and local-scale flood-producing meteorological events to develop long-term flood hazard projections. We demonstrate the method for the Iowa River, where high flow episodes have been found to correlate with tropical moisture exports that are associated with a pressure dipole across the eastern continental United States We characterize the relationship between flooding on the Iowa River and this pressure dipole through a nonstationary Pareto-Poisson peaks-over-threshold probability distribution estimated based on the historic record. We then combine the results of a trend analysis of dipole index in the historic record with the results of a trend analysis of the dipole index as simulated by General Circulation Models (GCMs) under climate change conditions through a Bayesian framework. The resulting nonstationary posterior distribution of dipole index, combined with the dipole-conditioned peaks-over-threshold flood frequency model, connects local flood hazard to changes in large-scale atmospheric pressure and circulation patterns that are related to flooding in a process-driven framework. The Iowa River example demonstrates that the resulting nonstationary, probabilistic flood hazard projection may be used to inform risk-based flood adaptation decisions.
The HEC RAS model of regulated stream for purposes of flood risk reduction
NASA Astrophysics Data System (ADS)
Fijko, Rastislav; Zeleňáková, Martina
2016-06-01
The work highlights the modeling of water flow in open channels using 1D mathematical model HEC-RAS in the area of interest Lopuchov village in eastern Slovakia. We created a digital model from a geodetic survey, which was used to show the area of inundation in ArcGIS software. We point out the modeling methodology with emphasis to collection of the data and their relevance for determination of boundary conditions in 3D model of the study area in GIS platform. The BIM objects can be exported to the defined model of the area. The obtained results were used for simulation of flooding. The results give to us clearly and distinctly defined areas of inundation, which we used in the processing of Cost benefit analysis. We used the developed model for stating the potential damages in flood vulnerable areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.A.; Sepehrnoori, K.
1994-09-01
The objective of this research is to develop cost-effective surfactant flooding technology by using surfactant simulation studies to evaluate and optimize alternative design strategies taking into account reservoir characteristics, process chemistry, and process design options such as horizontal wells. Task 1 is the development of an improved numerical method for our simulator that will enable us to solve a wider class of these difficult simulation problems accurately and affordably. Task 2 is the application of this simulator to the optimization of surfactant flooding to reduce its risk and cost. The goal of Task 2 is to understand and generalize themore » impact of both process and reservoir characteristics on the optimal design of surfactant flooding. We have studied the effect of process parameters such as salinity gradient, surfactant adsorption, surfactant concentration, surfactant slug size, pH, polymer concentration and well constraints on surfactant floods. In this report, we show three dimensional field scale simulation results to illustrate the impact of one important design parameter, the salinity gradient. Although the use of a salinity gradient to improve the efficiency and robustness of surfactant flooding has been studied and applied for many years, this is the first time that we have evaluated it using stochastic simulations rather than simulations using the traditional layered reservoir description. The surfactant flooding simulations were performed using The University of Texas chemical flooding simulator called UTCHEM.« less
1D and 2D urban dam-break flood modelling in Istanbul, Turkey
NASA Astrophysics Data System (ADS)
Ozdemir, Hasan; Neal, Jeffrey; Bates, Paul; Döker, Fatih
2014-05-01
Urban flood events are increasing in frequency and severity as a consequence of several factors such as reduced infiltration capacities due to continued watershed development, increased construction in flood prone areas due to population growth, the possible amplification of rainfall intensity due to climate change, sea level rise which threatens coastal development, and poorly engineered flood control infrastructure (Gallegos et al., 2009). These factors will contribute to increased urban flood risk in the future, and as a result improved modelling of urban flooding according to different causative factor has been identified as a research priority (Gallegos et al., 2009; Ozdemir et al. 2013). The flooding disaster caused by dam failures is always a threat against lives and properties especially in urban environments. Therefore, the prediction of dynamics of dam-break flows plays a vital role in the forecast and evaluation of flooding disasters, and is of long-standing interest for researchers. Flooding occurred on the Ayamama River (Istanbul-Turkey) due to high intensity rainfall and dam-breaching of Ata Pond in 9th September 2009. The settlements, industrial areas and transportation system on the floodplain of the Ayamama River were inundated. Therefore, 32 people were dead and millions of Euros economic loses were occurred. The aim of this study is 1 and 2-Dimensional flood modelling of the Ata Pond breaching using HEC-RAS and LISFLOOD-Roe models and comparison of the model results using the real flood extent. The HEC-RAS model solves the full 1-D Saint Venant equations for unsteady open channel flow whereas LISFLOOD-Roe is the 2-D shallow water model which calculates the flow according to the complete Saint Venant formulation (Villanueva and Wright, 2006; Neal et al., 2011). The model consists a shock capturing Godunov-type scheme based on the Roe Riemann solver (Roe, 1981). 3 m high resolution Digital Surface Model (DSM), natural characteristics of the pond and its breaching such as depth, wide, length, volume and breaching shape and daily total rainfall data were used in the models. The simulated flooding in the both models were compared with the real flood extent which gathered from photos taken after the flood event, high satellite images acquired after 20 days from the flood event, and field works. The results show that LISFLOOD-Roe hydraulic model gives more than 80% fit to the extent of real flood event. Also both modelling results show that the embankment breaching of the Ata Pond directly affected the flood magnitude and intensity on the area. This study reveals that modelling of the probable flooding in urban areas is necessary and very important in urban planning. References Gallegos, H. A., Schubert, J. E., and Sanders, B. F.: Two dimensional, high-resolution modeling of urban dam-break flooding: A case study of Baldwin Hills California, Adv. Water Resour., 32, 1323-1335, 2009. Neal, J., Villanueva, I., Wright, N., Willis, T., Fewtrell, T. and Bates, P.: How mush physical complexity is needed to model flood inundation? Hydrological Processes, DOI: 10.1002/hyp.8339. Ozdemir H., Sampson C., De Almeida G., Bates P.D.: Evaluating scale and roughness effects in urban flood modelling using terrestrial LiDAR data, Hydrology and Earth System Sciences, vol.17, pp.4015-4030, 2013. Roe P.: Approximate Riemann solvers, parameter vectors, and difference-schemes. Journal of Computational Physics 43(2): 357-372, 1981. Villanueva I, Wright NG.: Linking Riemann and storage cell models for flood prediction. Proceedings of the Institution of Civil Engineers, Journal of Water Management 159: 27-33, 2006.
NASA Astrophysics Data System (ADS)
Kim, Nam Won; Shin, Mun-Ju; Lee, Jeong Eun
2016-04-01
The analysis of storm effects on floods is essential step for designing hydraulic structure and flood plain. There are previous studies for analyzing the relationship between the storm patterns and peak flow, flood volume and durations for various sizes of the catchments, but they are not enough to analyze the natural storm effects on flood responses quantitatively. This study suggests a novel method of quantitative analysis using unique factors extracted from the time series of storms and floods to investigate the relationship between natural storms and their corresponding flood responses. We used a distributed rainfall-runoff model of Grid based Rainfall-runoff Model (GRM) to generate the simulated flow and areal rainfall for 50 catchments in Republic of Korea size from 5.6 km2 to 1584.2 km2, which are including overlapped dependent catchments and non-overlapped independent catchments. The parameters of the GRM model were calibrated to get the good model performances of Nash-Sutcliffe efficiency. Then Flood-Intensity-Duration Curve (FIDC) and Rainfall-Intensity-Duration Curve (RIDC) were generated by Flood-Duration-Frequency and Intensity-Duration-Frequency methods respectively using the time series of hydrographs and hyetographs. Time of concentration developed for the Korea catchments was used as a consistent measure to extract the unique factors from the FIDC and RIDC over the different size of catchments. These unique factors for the storms and floods were analyzed against the different size of catchments to investigate the natural storm effects on floods. This method can be easily used to get the intuition of the natural storm effects with various patterns on flood responses. Acknowledgement This research was supported by a grant (11-TI-C06) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
Evaluation of urban flood damages in climate and land use changes: Case Studies from Southeast Asia
NASA Astrophysics Data System (ADS)
Kefi, M.; Binaya, M. K.; Kumar, P.; Fukushi, K.
2017-12-01
Urbanization, changes in land use and global warming increase the threat of natural disasters such as flooding. In recent decades, it was observed a rise of intensity and frequency of flood events. The exposure both of people and the national economy to flood hazards is amplified and can induce serious economic and social damages. For this reason, local governments adopted several strategies to cope with flood risk in urban areas in particular, but a better comprehension of the flood hazard factors may enhance the efficiency of mitigating measures overall. For this research, a spatial analysis is applied to estimate future direct flood damage for 2030 in three Southeast Asian megacities: Jakarta (Indonesia), Metro-Manila (Philippines) and Hanoi (Vietnam). This comprehensive method combined flood characteristics (flood depth) obtained from flood simulation using FLO-2D, land use generated from supervised classification and remote sensing products, property value of affected buildings and flood damage rate derived from flood depth function. This function is established based on field surveys with local people affected by past flood events. Additionally, two scenarios were analyzed to simulate the future conditions. The first one is related to climate change and it is based on several General Circulation Models (GCMs). However, the second one is establish to point out the effect of adaptation strategies. The findings shows that the climate change combined with the expansion of built-up areas increase the vulnerability of urban areas to flooding and the economic damage. About 16%, 8% and 19% of flood inundation areas are expected to increase respectively in Metro-Manila, Jakarta and Hanoi. However, appropriate flood control measures can be helpful to reduce the impact of natural disaster. Furthermore, flood damage maps are generated at a large scale, which can be helpful to local stakeholders when prioritizing their mitigation strategies on urban disaster resilience.
NASA Astrophysics Data System (ADS)
Semenova, O.; Restrepo, P. J.
2011-12-01
The Red River of the North basin (USA) is considered to be under high risk of flood danger, having experienced serious flooding during the last few years. The region climate can be characterized as cold and, during winter, it exhibits continuous snowcover modified by wind redistribution. High-hazard runoff regularly occurs as a major spring snowmelt event resulting from the relatively rapid release of water from the snowpack on frozen soils. Although in summer/autumn most rainfall occurs from convective storms over small areas and does not generate dangerous floods, the pre-winter state of the soils may radically influence spring maximum flows. Large amount of artificial agricultural tiles and numerous small post-glacial depressions influencing the redistribution of runoff complicates the predictions of high floods. In such conditions any hydrological model would not be successful without proper precipitation input. In this study the simulation of runoff processes for two watersheds in the basin of the Red River of the North, USA, was undertaken using the Hydrograph model developed at the State Hydrological Institute (St. Petersburg, Russia). The Hydrograph is a robust process-based model, where the processes have a physical basis combined with some strategic conceptual simplifications that give it the ability to be applied in the conditions of low information availability. It accounts for the processes of frost and thaw of soils, snow redistribution and depression storage impacts. The assessment of the model parameters was conducted based on the characteristics of soil and vegetation cover. While performing the model runs, the parameters of depression storage and the parameters of different types of flow were manually calibrated to reproduce the observed flow. The model provided satisfactory simulation results in terms not only of river runoff but also variable sates of soil like moisture and temperature over a simulation period 2005 - 2010. For experimental runs precipitation from different sources was used as forcing data to the hydrological model: 1) data of ground meteorological stations; 2) the Snow Data Assimilation System (SNODAS) products containing several variables: snow water equivalent, snow depth, solid and liquid precipitation; 3) MAPX precipitation data which is mean areal precipitation for a watershed calculated using the radar- and gauge-based information. The results demonstrated that in the conditions of high uncertainty of model parameters combining precipitation information from different sources (the SNODAS precipitation in winter with the MAPX precipitation in summer) significantly improves the model performance and predictability of high floods.
NASA Astrophysics Data System (ADS)
Thomas Steven Savage, James; Pianosi, Francesca; Bates, Paul; Freer, Jim; Wagener, Thorsten
2016-11-01
Where high-resolution topographic data are available, modelers are faced with the decision of whether it is better to spend computational resource on resolving topography at finer resolutions or on running more simulations to account for various uncertain input factors (e.g., model parameters). In this paper we apply global sensitivity analysis to explore how influential the choice of spatial resolution is when compared to uncertainties in the Manning's friction coefficient parameters, the inflow hydrograph, and those stemming from the coarsening of topographic data used to produce Digital Elevation Models (DEMs). We apply the hydraulic model LISFLOOD-FP to produce several temporally and spatially variable model outputs that represent different aspects of flood inundation processes, including flood extent, water depth, and time of inundation. We find that the most influential input factor for flood extent predictions changes during the flood event, starting with the inflow hydrograph during the rising limb before switching to the channel friction parameter during peak flood inundation, and finally to the floodplain friction parameter during the drying phase of the flood event. Spatial resolution and uncertainty introduced by resampling topographic data to coarser resolutions are much more important for water depth predictions, which are also sensitive to different input factors spatially and temporally. Our findings indicate that the sensitivity of LISFLOOD-FP predictions is more complex than previously thought. Consequently, the input factors that modelers should prioritize will differ depending on the model output assessed, and the location and time of when and where this output is most relevant.
NASA Astrophysics Data System (ADS)
Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi
2018-01-01
As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG) emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model - Storm Water Management Model - was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020-2040 compared to the volume in 1971-2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. This study highlights the importance of accounting for local adaptation when coping with future urban floods.
Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi
2018-01-15
As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG)more » emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. Furthermore, this study highlights the importance of accounting for local adaptation when coping with future urban floods.« less
NASA Astrophysics Data System (ADS)
Renschler, Chris S.; Wang, Zhihao
2017-10-01
In light of climate and land use change, stakeholders around the world are interested in assessing historic and likely future flood dynamics and flood extents for decision-making in watersheds with dams as well as limited availability of stream gages and costly technical resources. This research evaluates an assessment and communication approach of combining GIS, hydraulic modeling based on latest remote sensing and topographic imagery by comparing the results to an actual flood event and available stream gages. On August 28th 2011, floods caused by Hurricane Irene swept through a large rural area in New York State, leaving thousands of people homeless, devastating towns and cities. Damage was widespread though the estimated and actual floods inundation and associated return period were still unclear since the flooding was artificially increased by flood water release due to fear of a dam break. This research uses the stream section right below the dam between two stream gages North Blenheim and Breakabeen along Schoharie Creek as a case study site to validate the approach. The data fusion approach uses a GIS, commonly available data sources, the hydraulic model HEC-RAS as well as airborne LiDAR data that were collected two days after the flood event (Aug 30, 2011). The aerial imagery of the airborne survey depicts a low flow event as well as the evidence of the record flood such as debris and other signs of damage to validate the hydrologic simulation results with the available stream gauges. Model results were also compared to the official Federal Emergency Management Agency (FEMA) flood scenarios to determine the actual flood return period of the event. The dynamic of the flood levels was then used to visualize the flood and the actual loss of the Old Blenheim Bridge using Google Sketchup. Integration of multi-source data, cross-validation and visualization provides new ways to utilize pre- and post-event remote sensing imagery and hydrologic models to better understand and communicate the complex spatial-temporal dynamics, return periods and potential/actual consequences to decision-makers and the local population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi
As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG)more » emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. Furthermore, this study highlights the importance of accounting for local adaptation when coping with future urban floods.« less
Influence of model reduction on uncertainty of flood inundation predictions
NASA Astrophysics Data System (ADS)
Romanowicz, R. J.; Kiczko, A.; Osuch, M.
2012-04-01
Derivation of flood risk maps requires an estimation of the maximum inundation extent for a flood with an assumed probability of exceedence, e.g. a 100 or 500 year flood. The results of numerical simulations of flood wave propagation are used to overcome the lack of relevant observations. In practice, deterministic 1-D models are used for flow routing, giving a simplified image of a flood wave propagation process. The solution of a 1-D model depends on the simplifications to the model structure, the initial and boundary conditions and the estimates of model parameters which are usually identified using the inverse problem based on the available noisy observations. Therefore, there is a large uncertainty involved in the derivation of flood risk maps. In this study we examine the influence of model structure simplifications on estimates of flood extent for the urban river reach. As the study area we chose the Warsaw reach of the River Vistula, where nine bridges and several dikes are located. The aim of the study is to examine the influence of water structures on the derived model roughness parameters, with all the bridges and dikes taken into account, with a reduced number and without any water infrastructure. The results indicate that roughness parameter values of a 1-D HEC-RAS model can be adjusted for the reduction in model structure. However, the price we pay is the model robustness. Apart from a relatively simple question regarding reducing model structure, we also try to answer more fundamental questions regarding the relative importance of input, model structure simplification, parametric and rating curve uncertainty to the uncertainty of flood extent estimates. We apply pseudo-Bayesian methods of uncertainty estimation and Global Sensitivity Analysis as the main methodological tools. The results indicate that the uncertainties have a substantial influence on flood risk assessment. In the paper we present a simplified methodology allowing the influence of that uncertainty to be assessed. This work was supported by National Science Centre of Poland (grant 2011/01/B/ST10/06866).
Over, Thomas M.; Soong, David T.; Holmes, Robert R.
2011-01-01
Boneyard Creek—which drains an urbanized watershed in the cities of Champaign and Urbana, Illinois, including part of the University of Illinois at Urbana-Champaign (UIUC) campus—has historically been prone to flooding. Using the Stormwater Management Model (SWMM), a hydrologic and hydraulic model of Boneyard Creek was developed for the design of the projects making up the first phase of a long-term plan for flood control on Boneyard Creek, and the construction of the projects was completed in May 2003. The U.S. Geological Survey, in cooperation with the Cities of Champaign and Urbana and UIUC, installed and operated stream and rain gages in order to obtain data for evaluation of the design-model simulations. In this study, design-model simulations were evaluated by using observed postconstruction precipitation and peak-discharge data. Between May 2003 and September 2008, five high-flow events on Boneyard Creek satisfied the study criterion. The five events were simulated with the design model by using observed precipitation. The simulations were run with two different values of the parameter controlling the soil moisture at the beginning of the storms and two different ways of spatially distributing the precipitation, making a total of four simulation scenarios. The simulated and observed peak discharges and stages were compared at gaged locations along the Creek. The discharge at one of these locations was deemed to be critical for evaluating the design model. The uncertainty of the measured peak discharge was also estimated at the critical location with a method based on linear regression of the stage and discharge relation, an estimate of the uncertainty of the acoustic Doppler velocity meter measurements, and the uncertainty of the stage measurements. For four of the five events, the simulated peak discharges lie within the 95-percent confidence interval of the observed peak discharges at the critical location; the fifth was just outside the upper end of this interval. For two of the four simulation scenarios, the simulation results for one event at the critical location were numerically unstable in the vicinity of the discharge peak. For the remaining scenarios, the simulated peak discharges over the five events at the critical location differ from the observed peak discharges (simulated minus observed) by an average of 7.7 and -1.5 percent, respectively. The simulated peak discharges over the four events for which all scenarios have numerically stable results at the critical location differs from the observed peak discharges (simulated minus observed) by an average of -6.8, 4.0, -5.4, and 1.5 percent, for the four scenarios, respectively. Overall, the discharge peaks simulated for this study at the critical location are approximately balanced between overprediction and underprediction and do not indicate significant model bias or inaccuracy. Additional comparisons were made by using peak stages at the critical location and two additional sites and using peak discharges at one additional site. These comparisons showed the same pattern of differences between observed and simulated values across events but varying biases depending on streamgage and measurement type (discharge or stage). Altogether, the results from this study show no clear evidence that the design model is significantly inaccurate or biased and, therefore, no clear evidence that the modeled flood-control projects in Champaign and on the University of Illinois campus have increased flood stages or discharges downstream in Urbana.
Climate and change: simulating flooding impacts on urban transport network
NASA Astrophysics Data System (ADS)
Pregnolato, Maria; Ford, Alistair; Dawson, Richard
2015-04-01
National-scale climate projections indicate that in the future there will be hotter and drier summers, warmer and wetter winters, together with rising sea levels. The frequency of extreme weather events is expected to increase, causing severe damage to the built environment and disruption of infrastructures (Dawson, 2007), whilst population growth and changed demographics are placing new demands on urban infrastructure. It is therefore essential to ensure infrastructure networks are robust to these changes. This research addresses these challenges by focussing on the development of probabilistic tools for managing risk by modelling urban transport networks within the context of extreme weather events. This paper presents a methodology to investigate the impacts of extreme weather events on urban environment, in particular infrastructure networks, through a combination of climate simulations and spatial representations. By overlaying spatial data on hazard thresholds from a flood model and a flood safety function, mitigated by potential adaptation strategies, different levels of disruption to commuting journeys on road networks are evaluated. The method follows the Catastrophe Modelling approach and it consists of a spatial model, combining deterministic loss models and probabilistic risk assessment techniques. It can be applied to present conditions as well as future uncertain scenarios, allowing the examination of the impacts alongside socio-economic and climate changes. The hazard is determined by simulating free surface water flooding, with the software CityCAT (Glenis et al., 2013). The outputs are overlapped to the spatial locations of a simple network model in GIS, which uses journey-to-work (JTW) observations, supplemented with speed and capacity information. To calculate the disruptive effect of flooding on transport networks, a function relating water depth to safe driving car speed has been developed by combining data from experimental reports (Morris et al., 2011) safety literature (Great Britain Department for Transport, 1999), analysis of videos of cars driving through floodwater, and expert judgement. A preliminary analysis has been run in the Tyne & Wear (in North-East England) region to demonstrate how the analysis can be used to assess the disruptions for commuter journeys due to flooding and will be demonstrated in this paper. The research will also investigate the effectiveness of adaptation strategies for extreme rainfall events, such as permeable surfaces and roof storages for buildings. Multiple scenarios (from the every-day-rainfall to the extreme weather phenomena) will be modelled, with different rainfall rates, rainfall durations and return periods. The comparison between the scenarios in which no interventions are adopted and those improved by one of the adaptation option will be compared to determine the cost-effectiveness of the solution considered. Integrating spatial analysis of transport use with an urban flood model and flood safety function enables the investigation of the impacts of extreme weather on infrastructure networks. Further work will develop the analysis in a number of ways (i) testing a range of flood events with different severity and frequency, (ii) exploration of the influence of climate and socio-economic change (iii) analysis of multiple hazard events and (iv) consideration of cascading disruption across different infrastructure networks.
NASA Astrophysics Data System (ADS)
Delaney, C.; Mendoza, J.; Whitin, B.; Hartman, R. K.
2017-12-01
Ensemble Forecast Operations (EFO) is a risk based approach of reservoir flood operations that incorporates ensemble streamflow predictions (ESPs) made by NOAA's California-Nevada River Forecast Center (CNRFC). With the EFO approach, each member of an ESP is individually modeled to forecast system conditions and calculate risk of reaching critical operational thresholds. Reservoir release decisions are computed which seek to manage forecasted risk to established risk tolerance levels. A water management model was developed for Lake Mendocino, a 111,000 acre-foot reservoir located near Ukiah, California, to evaluate the viability of the EFO alternative to improve water supply reliability but not increase downstream flood risk. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United States Army Corps of Engineers and is operated for water supply by the Sonoma County Water Agency. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has suffered from water supply reliability issues since 2007. The EFO alternative was simulated using a 26-year (1985-2010) ESP hindcast generated by the CNRFC, which approximates flow forecasts for 61 ensemble members for a 15-day horizon. Model simulation results of the EFO alternative demonstrate a 36% increase in median end of water year (September 30) storage levels over existing operations. Additionally, model results show no increase in occurrence of flows above flood stage for points downstream of Lake Mendocino. This investigation demonstrates that the EFO alternative may be a viable approach for managing Lake Mendocino for multiple purposes (water supply, flood mitigation, ecosystems) and warrants further investigation through additional modeling and analysis.
Uncertainty estimation of long-range ensemble forecasts of snowmelt flood characteristics
NASA Astrophysics Data System (ADS)
Kuchment, L.
2012-04-01
Long-range forecasts of snowmelt flood characteristics with the lead time of 2-3 months have important significance for regulation of flood runoff and mitigation of flood damages at almost all large Russian rivers At the same time, the application of current forecasting techniques based on regression relationships between the runoff volume and the indexes of river basin conditions can lead to serious errors in forecasting resulted in large economic losses caused by wrong flood regulation. The forecast errors can be caused by complicated processes of soil freezing and soil moisture redistribution, too high rate of snow melt, large liquid precipitation before snow melt. or by large difference of meteorological conditions during the lead-time periods from climatologic ones. Analysis of economic losses had shown that the largest damages could, to a significant extent, be avoided if the decision makers had an opportunity to take into account predictive uncertainty and could use more cautious strategies in runoff regulation. Development of methodology of long-range ensemble forecasting of spring/summer floods which is based on distributed physically-based runoff generation models has created, in principle, a new basis for improving hydrological predictions as well as for estimating their uncertainty. This approach is illustrated by forecasting of the spring-summer floods at the Vyatka River and the Seim River basins. The application of the physically - based models of snowmelt runoff generation give a essential improving of statistical estimates of the deterministic forecasts of the flood volume in comparison with the forecasts obtained from the regression relationships. These models had been used also for the probabilistic forecasts assigning meteorological inputs during lead time periods from the available historical daily series, and from the series simulated by using a weather generator and the Monte Carlo procedure. The weather generator consists of the stochastic models of daily temperature and precipitation. The performance of the probabilistic forecasts were estimated by the ranked probability skill scores. The application of Monte Carlo simulations using weather generator has given better results then using the historical meteorological series.
Potential of 3D City Models to assess flood vulnerability
NASA Astrophysics Data System (ADS)
Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi
2016-04-01
Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of affected building area and estimated loss for a selection of inundation scenarios.
NASA Astrophysics Data System (ADS)
Yin, Jie; Yu, Dapeng; Yin, Zhane; Liu, Min; He, Qing
2016-06-01
Urban pluvial flood are attracting growing public concern due to rising intense precipitation and increasing consequences. Accurate risk assessment is critical to an efficient urban pluvial flood management, particularly in transportation sector. This paper describes an integrated methodology, which initially makes use of high resolution 2D inundation modeling and flood depth-dependent measure to evaluate the potential impact and risk of pluvial flash flood on road network in the city center of Shanghai, China. Intensity-Duration-Frequency relationships of Shanghai rainstorm and Chicago Design Storm are combined to generate ensemble rainfall scenarios. A hydrodynamic model (FloodMap-HydroInundation2D) is used to simulate overland flow and flood inundation for each scenario. Furthermore, road impact and risk assessment are respectively conducted by a new proposed algorithm and proxy. Results suggest that the flood response is a function of spatio-temporal distribution of precipitation and local characteristics (i.e. drainage and topography), and pluvial flash flood is found to lead to proportionate but nonlinear impact on intra-urban road inundation risk. The approach tested here would provide more detailed flood information for smart management of urban street network and may be applied to other big cities where road flood risk is evolving in the context of climate change and urbanization.
NASA Astrophysics Data System (ADS)
Thiéry, Dominique; Amraoui, Nadia; Noyer, Marie-Luce
2018-01-01
During the winter and spring of 2000-2001, large floods occurred in northern France (Somme River Basin) and southern England (Patcham area of Brighton) in valleys that are developed on Chalk outcrops. The floods durations were particularly long (more than 3 months in the Somme Basin) and caused significant damage in both countries. To improve the understanding of groundwater flooding in Chalk catchments, an experimental site was set up in the Hallue basin, which is located in the Somme River Basin (France). Unsaturated fractured chalk formation overlying the Chalk aquifer was monitored to understand its reaction to long and heavy rainfall events when it reaches a near saturation state. The water content and soil temperature were monitored to a depth of 8 m, and the matrix pressure was monitored down to the water table, 26.5 m below ground level. The monitoring extended over a 2.5-year period (2006-2008) under natural conditions and during two periods when heavy, artificial infiltration was induced. The objective of the paper is to describe a vertical numerical flow model based on Richards' equation using these data that was developed to simulate infiltrating rainwater flow from the ground surface to the saturated aquifer. The MARTHE computer code, which models the unsaturated-saturated continuum, was adapted to reproduce the monitored high saturation periods. Composite constitutive functions (hydraulic conductivity-saturation and pressure-saturation) that integrate the increase in hydraulic conductivity near saturation and extra available porosity resulting from fractures were introduced into the code. Using these composite constitutive functions, the model was able to accurately simulate the water contents and pressures at all depths over the entire monitored period, including the infiltration tests. The soil temperature was also accurately simulated at all depths, except during the infiltrations tests, which contributes to the model validation. The model was used to calculate the aquifer recharge over a long period that included droughts and floods. The calculated recharge is realistic as it makes it possible to simulate the corresponding monitored groundwater level data, which increases confidence in the modelling approach.
Near Real Time Flood Warning System for National Capital Territory of Delhi
NASA Astrophysics Data System (ADS)
Goyal, A.; Yadav, H.; Tyagi, H.; Gosain, A. K.
2017-12-01
Extreme floods are common phenomena during Indian Monsoons. The National Capital Territory area of India, Delhi, frequently experiences fluvial as well as pluvial inundation due to its proximity to river Yamuna and poor functioning of its stormwater drainage system. The urban floods result in severe waterlogging and heavy traffic snarls, bringing life in this megapolis to a halt. The city has witnessed six major floods since 1900 and thus its residents are well conscious of potential flood risks but the city still lacks a flood warning system. The flood related risks can be considerably reduced, if not eliminated, by issuing timely warnings and implementing adaptive measures. Therefore, the present study attempts to develop a web based platform that integrates Web-GIS technology and mathematical simulation modelling to provide an effective and reliable early flood warning service for Delhi. The study makes use of India Metorological Department's Doppler radar-derived near real time rainfall estimates of 15 minutes time step. The developed SWMM model has been validated using information from gauges, monitoring sensors and crowd sourcing techniques and utilises capabilities of cloud computing on server side for fast processing. This study also recommends safe evacuation policy and remedial measures for flooding hotspots as part of flood risk management plan. With heightened risk of floods in fast urbanizing areas, this work becomes highly pertinent as flood warning system with adequate lead time can not only save precious lives but can also substantially reduce flood damages.
NASA Astrophysics Data System (ADS)
Wang, X.
2017-12-01
The Pearl River Delta (PRD) in China, the summer rain storm occurs frequently, the flood damage is very serious. Damage assessment is the basis of scientific decision-making in disaster mitigation. All approaches of flood damage analysis contain uncertainties due to the inaccuracies and generalisations used, the lack of data aggravates this problem, making methods very rough. This study presents a detailed flood damage assessment framework in Pearl River Delta rural area, using 2017 "5.7" heavy rain storm event to simulate the process and estimate the flood loss in resident building and property, agriculture production. The framework integrates four modules,1) utilize the remote sensing and statistical yearbook and so on to construct the disaster bearing bodies GIS database; 2) using hydraulics model to simulate the flood extent and depth spatial distribution;3)through field investigation to obtain the flood loss data for all kinds of hazard-affected body, using statistical analysis method to get the damage curves;4)Integrate flood scenarios, disaster bearing bodies GIS database and damage curves to calculate the flood loss estimation value. Using this methodology, in the 2017 "5.7" heavy rain storm event, Huashan Town flood damage loss is underestimate compared with the government report, because of not considering the damage of water conservancy facilities. But the disaster loss value on the spatial distribution is consistent with actual situation. In terms of aggregated values in the whole town, the model is capable of obtaining figures that are within the same order of magnitude. This study produce a flood damage assessment framework taking into account the regional characteristics of PRD rural area, provide a template for future practice. This study only considers the current impacts, the framework should be improved by taking into account socio-economic and climatic changes, as well as implementing adaptation measures to be applied to assess the potential future damages. Key words: Heavy rain storm; flood; damage assessment; Pearl River Delta; rural area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklin, S.P.; Livingston, J.E.; Fitzmorris, R.E.
Infill drilling based on integrated reservoir characterization and flow simulation is increasing recoverable reserves by 20 MMBO, in lagifu-Hedinia Field (IHF). Stratigraphically-zoned models are input to window and full-field flow simulations, and results of the flow simulations target deviated and horizontal wells. Logging and pressure surveys facilitate detailed reservoir management. Flooding surfaces are the dominant control on differential depletion within and between reservoirs. The primary reservoir is the basal Cretaceous Toro Sandstone. Within the IHF, Toro is a 100 m quartz sandstone composed of stacked, coarsening-upward parasequences within a wave-dominated deltaic complex. Flooding surfaces are used to form a hydraulicmore » zonation. The zonation is refined using discontinuities in RIFT pressure gradients and logs from development wells. For flow simulation, models use 3D geostatistical techniques. First, variograms defining spatial correlation are developed. The variograms are used to construct 3D porosity and permeability models which reflect the stratigraphic facies models. Structure models are built using dipmeter, biostratigraphic, and surface data. Deviated wells often cross axial surfaces and geometry is predicted from dip domain and SCAT. Faults are identified using pressure transient data and dipmeter. The Toro reservoir is subnormally pressured and fluid contacts are hydrodynamically tilted. The hydrodynamic flow and tilted contacts are modeled by flow simulation and constrained by maps of the potentiometric surface.« less
Sources of uncertainty in flood inundation maps
Bales, J.D.; Wagner, C.R.
2009-01-01
Flood inundation maps typically have been used to depict inundated areas for floods having specific exceedance levels. The uncertainty associated with the inundation boundaries is seldom quantified, in part, because all of the sources of uncertainty are not recognized and because data available to quantify uncertainty seldom are available. Sources of uncertainty discussed in this paper include hydrologic data used for hydraulic model development and validation, topographic data, and the hydraulic model. The assumption of steady flow, which typically is made to produce inundation maps, has less of an effect on predicted inundation at lower flows than for higher flows because more time typically is required to inundate areas at high flows than at low flows. Difficulties with establishing reasonable cross sections that do not intersect and that represent water-surface slopes in tributaries contribute additional uncertainties in the hydraulic modelling. As a result, uncertainty in the flood inundation polygons simulated with a one-dimensional model increases with distance from the main channel.
Flood characteristics of the Haor area in Bangladesh
NASA Astrophysics Data System (ADS)
Suman, Asadusjjaman; Bhattacharya, Biswa
2013-04-01
In recent years the world has experienced deaths, large-scale displacement of people, billions of Euros of economic damage, mental stress and ecosystem impacts due to flooding. Global changes (climate change, population and economic growth, and urbanisation) are exacerbating the severity of flooding. The 2010 floods in Pakistan and the 2011 floods in Australia and Thailand demonstrate the need for concerted action in the face of global societal and environmental changes to strengthen resilience against flooding. Bangladesh is a country, which is frequently suffering from flooding. The current research is conducted in the framework of a project, which focuses on the flooding issues in the Haor region in the north-east of Bangladesh. A haor is a saucer-shaped depression, which is used during the dry period (December to mid-May) for agriculture and as a fishery during the wet period (June-November), and thereby presents a very interesting socio-economic perspective of flood risk management. Pre-monsoon flooding till mid-May causes agricultural loss and lot of distress whereas monsoon flooding brings benefits. The area is bordering India, thereby presenting trans-boundary issues as well, and is fed by some flashy Indian catchments. The area is drained mainly through the Surma-Kushiyara river system. The terrain generally is flat and the flashy characteristics die out within a short distance from the border. Limited studies on the region, particularly with the help of numerical models, have been carried out in the past. Therefore, an objective of the current research was to set up numerical models capable of reasonably emulating the physical system. Such models could, for example, associate different gauges to the spatio-temporal variation of hydrodynamic variables and help in carrying out a systemic study on the impact of climate changes. A 1D2D model, with one-dimensional model for the rivers (based on MIKE 11 modelling tool from Danish Hydraulic Institute) and a two-dimensional model (based on MIKE 21 modelling tool from Danish Hydraulic Institute) for the haors were developed. While the 1D model was calibrated well the calibration of 2D model was an issue due to the non-availability of measured data. The flood extent of the 2D model was calibrated to a limited extent with the remote sensing images. In order to keep the computing load within feasible limits the most-flood prone area of the region, often loosely defined as the deeply flooded area, consisting of about 15 haors was chosen as the model domain. Based on the simulation results corresponding to the 2004 pre-monsoon and monsoon floods the flood propagation within the model domain was studied and the characteristics of rivers (and areas) with fast and slow responses to flood waves were identified. The following three characteristics of a flood hydrograph were considered: i) rising curve gradient ii) flood magnitude ratio (in terms of the average discharge) and iii) time to peak. The parameters were normalised in a scale of 0 to 1 and summed up to compute the normalised flood index. The normalised flood index is an aggregated indicator based on the flood hydrograph characteristics. The spatial and temporal distribution of the index have been studied. Initial studies on climate change indicate substantial impact on the region. Future studies will evolve around making use of remotely sensed data in improving the understanding of the hydro-meteorological characterisation of the area. Keywords: flood characteristics, flood index, Haor, Bangladesh.
NASA Astrophysics Data System (ADS)
Costa, Veber; Fernandes, Wilson
2017-11-01
Extreme flood estimation has been a key research topic in hydrological sciences. Reliable estimates of such events are necessary as structures for flood conveyance are continuously evolving in size and complexity and, as a result, their failure-associated hazards become more and more pronounced. Due to this fact, several estimation techniques intended to improve flood frequency analysis and reducing uncertainty in extreme quantile estimation have been addressed in the literature in the last decades. In this paper, we develop a Bayesian framework for the indirect estimation of extreme flood quantiles from rainfall-runoff models. In the proposed approach, an ensemble of long daily rainfall series is simulated with a stochastic generator, which models extreme rainfall amounts with an upper-bounded distribution function, namely, the 4-parameter lognormal model. The rationale behind the generation model is that physical limits for rainfall amounts, and consequently for floods, exist and, by imposing an appropriate upper bound for the probabilistic model, more plausible estimates can be obtained for those rainfall quantiles with very low exceedance probabilities. Daily rainfall time series are converted into streamflows by routing each realization of the synthetic ensemble through a conceptual hydrologic model, the Rio Grande rainfall-runoff model. Calibration of parameters is performed through a nonlinear regression model, by means of the specification of a statistical model for the residuals that is able to accommodate autocorrelation, heteroscedasticity and nonnormality. By combining the outlined steps in a Bayesian structure of analysis, one is able to properly summarize the resulting uncertainty and estimating more accurate credible intervals for a set of flood quantiles of interest. The method for extreme flood indirect estimation was applied to the American river catchment, at the Folsom dam, in the state of California, USA. Results show that most floods, including exceptionally large non-systematic events, were reasonably estimated with the proposed approach. In addition, by accounting for uncertainties in each modeling step, one is able to obtain a better understanding of the influential factors in large flood formation dynamics.
Hilmes, M.M.; Vaill, J.E.
1997-01-01
A bridge-scour study by the U.S. Geological Survey, in cooperation with the Nevada Department of Transportation, began in April 1996 to evaluate the Mesquite, Nevada, and Riverside, Nevada, bridges on the lower Virgin River using a sediment-transport model and historical geomorphic data. The BRIdge Stream Tube model for Alluvial River Simulation (BRI-STARS) was used to estimate bridge scour. The model was first calibrated using data for the Virgin River flood of March 12, 1995. Surveyed channel-geometry data were available at 11 cross sections for dates before and after the March 1995 flood to allow for evaluation of the model results. The model estimated the thalweg altitude within plus or minus 1 meter at 10 of the 11 cross sections. The calibrated model then was used to estimate the contraction, channel, pier, and total scour for synthesized hydrographs for 100- and 500-year floods at the two bridge sites. The estimated maximum total scour at the Mesquite bridge was 1.30 meters for the 100-year flood and 1.32 meters for the 500-year flood. The maximum total scour at the Riverside bridge was 1.90 meters for the 100-year flood and 2.01 meters for the 500-year flood. General scour was evaluated using stage-discharge relations at nearby streamflow-gaging stations, 1993-95 channel-geometry data, and channel-geometry data for the 100- and 500-year floods. On the basis of stage and discharge at the Littlefield, Arizona, gaging station, no long-term trend in aggradation or degradation was found. However, several cycles of aggradation and degradation had occurred during the period of record; the difference between the highest and lowest stage was 0.87 meter for a chosen low-flow discharge of 5.66 cubic meters per second for 1929-95. The value of 0.87 meter is probably the best estimate of general scour. The cross sections had an average scour depth of 0.07 meter between 1993 and 1994 and 0.16 meter between 1994 and 1995. The model simulated little general scour for the 100- and 500-year floods at the cross sections and did not give a good estimate of general scour, probably because the duration (days) of the floods used in the model was relatively short when compared with the duration (months or years) of geomorphic processes that influence long-term aggradation or degradation. Historical geomorphic changes of the Virgin River at the bridge sites and the causes of those changes were documented using aerial photographs from 1938-95 and other historical information. The Virgin River has become narrower and more sinuous through time, the vegetation on the flood plain has increased, and the channel has shifted laterally many times. The processes associated with these channel changes were found to be long-term changes in precipitation and streamflow; the duration, magnitude, and timing of floods; sediment-transport characteristics; channel avulsion; changes in density of vegetation; and anthropogenic influences.
Morita, M
2011-01-01
Global climate change is expected to affect future rainfall patterns. These changes should be taken into account when assessing future flooding risks. This study presents a method for quantifying the increase in flood risk caused by global climate change for use in urban flood risk management. Flood risk in this context is defined as the product of flood damage potential and the probability of its occurrence. The study uses a geographic information system-based flood damage prediction model to calculate the flood damage caused by design storms with different return periods. Estimation of the monetary damages these storms produce and their return periods are precursors to flood risk calculations. The design storms are developed from modified intensity-duration-frequency relationships generated by simulations of global climate change scenarios (e.g. CGCM2A2). The risk assessment method is applied to the Kanda River basin in Tokyo, Japan. The assessment provides insights not only into the flood risk cost increase due to global warming, and the impact that increase may have on flood control infrastructure planning.
NASA Astrophysics Data System (ADS)
El Alaoui El Fels, Abdelhafid; Alaa, Noureddine; Bachnou, Ali; Rachidi, Said
2018-05-01
The development of the statistical models and flood risk modeling approaches have seen remarkable improvements in their productivities. Their application in arid and semi-arid regions, particularly in developing countries, can be extremely useful for better assessment and planning of flood risk in order to reduce the catastrophic impacts of this phenomenon. This study focuses on the Setti Fadma region (Ourika basin, Morocco) which is potentially threatened by floods and is subject to climatic and anthropogenic forcing. The study is based on two main axes: (i) the extreme flow frequency analysis, using 12 probability laws adjusted by Maximum Likelihood method and (ii) the generation of the flood risk indicator maps are based on the solution proposed by the Nays2DFlood solver of the Hydrodynamic model of two-dimensional Saint-Venant equations. The study is used as a spatial high-resolution digital model (Lidar) in order to get the nearest hydrological simulation of the reality. The results showed that the GEV is the most appropriate law of the extreme flows estimation for different return periods. Taking into consideration the mapping of 100-year flood area, the study revealed that the fluvial overflows extent towards the banks of Ourika and consequently, affects some living areas, cultivated fields and the roads that connects the valley to the city of Marrakech. The aim of this study is to propose new technics of the flood risk management allowing a better planning of the flooded areas.
Simulation of Rio Grande floodplain inundation Using FLO-2D
J. S. O' Brien; W. T. Fullerton
1999-01-01
Spring floodplain inundation is important to the natural functions of the Rio Grande bosque biological community including cottonwood tree germination and recruitment. To predict floodplain inundation, a two-dimensional flood routing model FLO-2D will be applied to various reaches of the Rio Grande. FLO-2D will assess overbank flooding in terms of the area of...
Evaluation of Probable Maximum Precipitation and Flood under Climate Change in the 21st Century
NASA Astrophysics Data System (ADS)
Gangrade, S.; Kao, S. C.; Rastogi, D.; Ashfaq, M.; Naz, B. S.; Kabela, E.; Anantharaj, V. G.; Singh, N.; Preston, B. L.; Mei, R.
2016-12-01
Critical infrastructures are potentially vulnerable to extreme hydro-climatic events. Under a warming environment, the magnitude and frequency of extreme precipitation and flood are likely to increase enhancing the needs to more accurately quantify the risks due to climate change. In this study, we utilized an integrated modeling framework that includes the Weather Research Forecasting (WRF) model and a high resolution distributed hydrology soil vegetation model (DHSVM) to simulate probable maximum precipitation (PMP) and flood (PMF) events over Alabama-Coosa-Tallapoosa River Basin. A total of 120 storms were selected to simulate moisture maximized PMP under different meteorological forcings, including historical storms driven by Climate Forecast System Reanalysis (CFSR) and baseline (1981-2010), near term future (2021-2050) and long term future (2071-2100) storms driven by Community Climate System Model version 4 (CCSM4) under Representative Concentrations Pathway 8.5 emission scenario. We also analyzed the sensitivity of PMF to various antecedent hydrologic conditions such as initial soil moisture conditions and tested different compulsive approaches. Overall, a statistical significant increase is projected for future PMP and PMF, mainly attributed to the increase of background air temperature. The ensemble of simulated PMP and PMF along with their sensitivity allows us to better quantify the potential risks associated with hydro-climatic extreme events on critical energy-water infrastructures such as major hydropower dams and nuclear power plants.
NASA Astrophysics Data System (ADS)
Saleh, F.; Ramaswamy, V.; Wang, Y.; Georgas, N.; Blumberg, A.; Pullen, J.
2017-12-01
Estuarine regions can experience compound impacts from coastal storm surge and riverine flooding. The challenges in forecasting flooding in such areas are multi-faceted due to uncertainties associated with meteorological drivers and interactions between hydrological and coastal processes. The objective of this work is to evaluate how uncertainties from meteorological predictions propagate through an ensemble-based flood prediction framework and translate into uncertainties in simulated inundation extents. A multi-scale framework, consisting of hydrologic, coastal and hydrodynamic models, was used to simulate two extreme flood events at the confluence of the Passaic and Hackensack rivers and Newark Bay. The events were Hurricane Irene (2011), a combination of inland flooding and coastal storm surge, and Hurricane Sandy (2012) where coastal storm surge was the dominant component. The hydrodynamic component of the framework was first forced with measured streamflow and ocean water level data to establish baseline inundation extents with the best available forcing data. The coastal and hydrologic models were then forced with meteorological predictions from 21 ensemble members of the Global Ensemble Forecast System (GEFS) to retrospectively represent potential future conditions up to 96 hours prior to the events. Inundation extents produced by the hydrodynamic model, forced with the 95th percentile of the ensemble-based coastal and hydrologic boundary conditions, were in good agreement with baseline conditions for both events. The USGS reanalysis of Hurricane Sandy inundation extents was encapsulated between the 50th and 95th percentile of the forecasted inundation extents, and that of Hurricane Irene was similar but with caveats associated with data availability and reliability. This work highlights the importance of accounting for meteorological uncertainty to represent a range of possible future inundation extents at high resolution (∼m).
NASA Astrophysics Data System (ADS)
Zarekarizi, M.; Moradkhani, H.
2015-12-01
Extreme events are proven to be affected by climate change, influencing hydrologic simulations for which stationarity is usually a main assumption. Studies have discussed that this assumption would lead to large bias in model estimations and higher flood hazard consequently. Getting inspired by the importance of non-stationarity, we determined how the exceedance probabilities have changed over time in Johnson Creek River, Oregon. This could help estimate the probability of failure of a structure that was primarily designed to resist less likely floods according to common practice. Therefore, we built a climate informed Bayesian hierarchical model and non-stationarity was considered in modeling framework. Principle component analysis shows that North Atlantic Oscillation (NAO), Western Pacific Index (WPI) and Eastern Asia (EA) are mostly affecting stream flow in this river. We modeled flood extremes using peaks over threshold (POT) method rather than conventional annual maximum flood (AMF) mainly because it is possible to base the model on more information. We used available threshold selection methods to select a suitable threshold for the study area. Accounting for non-stationarity, model parameters vary through time with climate indices. We developed a couple of model scenarios and chose one which could best explain the variation in data based on performance measures. We also estimated return periods under non-stationarity condition. Results show that ignoring stationarity could increase the flood hazard up to four times which could increase the probability of an in-stream structure being overtopped.
A back-fitting algorithm to improve real-time flood forecasting
NASA Astrophysics Data System (ADS)
Zhang, Xiaojing; Liu, Pan; Cheng, Lei; Liu, Zhangjun; Zhao, Yan
2018-07-01
Real-time flood forecasting is important for decision-making with regards to flood control and disaster reduction. The conventional approach involves a postprocessor calibration strategy that first calibrates the hydrological model and then estimates errors. This procedure can simulate streamflow consistent with observations, but obtained parameters are not optimal. Joint calibration strategies address this issue by refining hydrological model parameters jointly with the autoregressive (AR) model. In this study, five alternative schemes are used to forecast floods. Scheme I uses only the hydrological model, while scheme II includes an AR model for error correction. In scheme III, differencing is used to remove non-stationarity in the error series. A joint inference strategy employed in scheme IV calibrates the hydrological and AR models simultaneously. The back-fitting algorithm, a basic approach for training an additive model, is adopted in scheme V to alternately recalibrate hydrological and AR model parameters. The performance of the five schemes is compared with a case study of 15 recorded flood events from China's Baiyunshan reservoir basin. Our results show that (1) schemes IV and V outperform scheme III during the calibration and validation periods and (2) scheme V is inferior to scheme IV in the calibration period, but provides better results in the validation period. Joint calibration strategies can therefore improve the accuracy of flood forecasting. Additionally, the back-fitting recalibration strategy produces weaker overcorrection and a more robust performance compared with the joint inference strategy.
Humber-in-a-Box : Gamification to Communicate Coastal Flood Risk in the Face of Rising Seas
NASA Astrophysics Data System (ADS)
Skinner, C. J.; van Rij, J. D.
2015-12-01
Humber-in-a-Box is an immersive visualisation of the Humber Estuary (on the east coast of the UK), designed to communicate coastal flood risk in the face of rising seas. It is designed for use in a busy festival-like setting. The user views the environment via an Oculus Rift Virtual Reality (VR) headset and is able to explore using an XBOX controller. A live simulation of tidal flows on a modelled version of the estuary can be viewed on a box in the centre of a virtual room. Using the controller, the user is able to raise sea levels and see what happens as the tide levels adjust. Humber-in-a-Box uses a numerical model built with data used for published research. The hydraulic component of the CAESAR-Lisflood model code was incorporated into the UNITY-3D gaming engine, and the model uses recorded tidal stage data, bathymetry and elevations to build the virtual environment and drive the simulation. Present day flood defences are incorporated into the model, and in conjunction with modelling tidal flows, this provides a better representation of future flood risk than simpler linear models. The user is able to raise and lower sea levels between -10 m and 100 m, in 1m increments, and can reset the simulation to present day levels with one button click. Humber-in-a-Box has been showcased at several outreach events and has proven to be very popular and effective in an environment where time with each user is pressured, and information needs to exchange quickly. It has also been used in teaching at Undergraduate level, although the full potential of this is yet to be explored. A non-interactive version of the application is available on YouTube which is designed for use with Google Cardboard and similar kit.
Application of HEC-RAS for flood forecasting in perched river-A case study of hilly region, China
NASA Astrophysics Data System (ADS)
Sun, Pingping; Wang, Shuqian; Gan, Hong; Liu, Bin; Jia, Ling
2017-04-01
Flooding in small and medium rivers are seriously threatening the safety of human beings’ life and property. The simulation forecasting of the river flood and bank risk in hilly region has gradually become a hotspot. At present, there are few studies on the simulation of hilly perched river, especially in the case of lacking section flow data. And the method of how to determine the position of the levee breach along the river bank is not much enough. Based on the characteristics of the sections in hilly perched river, an attempt is applied in this paper which establishes the correlation between the flow profile computed by HEC-RAS model and the river bank. A hilly perched river in Lingshi County, Shanxi Province of China, is taken as the study object, the levee breach positions along the bank are simulated under four different design storm. The results show that the flood control standard of upper reach is high, which can withstand the design storm of 100 years. The current standard of lower reach is low, which is the flooding channel with high frequency. As the standard of current channel between the 2rd and the 11th section is low, levee along that channel of the river bank is considered to be heighten and reinforced. The study results can provide some technical support for flood proofing in hilly region and some reference for the reinforcement of river bank.
Computational hydraulics of a cascade of experimental-scale landside dam failures
NASA Astrophysics Data System (ADS)
Wright, N.; Guan, M.
2015-12-01
Abstract: Landslide dams typically comprise unconsolidated and poorly sorted material, and are vulnerable to rapid failure and breaching, particularly in mountainous areas during high intense rainfalls. A large flash flood with high-concentrated sediment can be formed in a short period, and the magnitude is likely to be amplified along the flow direction due to the inclusion of a large amount of sediment. This can result in significant and sudden flood risk downstream for human life and property. Numerous field evidence has indicated the various risks of landslide dam failures. In general, cascading landslide dams can be formed along the sloping channel due to the randomness and unpredictability of landslides, which complexes the hydraulics of landslide dam failures. The failure process of a single dam and subsequent floods has attracted attention in multidisciplinary studies. However, the dynamic failure process of cascading landslide dams has been poorly understood. From a viewpoint of simulation, this study evaluates the formation and development of rapid sediment-charged floods due to cascading failure of landslide dams through detailed hydro-morphodynamic modelling. The model used is based on shallow water theory and it has been successful in predicting the flow and morphological process during sudden dam-break, as well as full and partial dyke-breach. Various experimental-scale scenarios are modelled, including: (1) failure of a single full dam in a sloping channel, (2) failure of two dams in a sloping channel, (3) failure of multiple landslide dams (four) in a sloping channel. For each scenario, different failure modes (sudden/gradual) and bed boundary (fixed /mobile) are assumed and simulated. The study systematically explores the tempo-spatial evolution of landslide-induced floods (discharge, flow velocity, and flow concentration) and geomorphic properties along the sloping channel. The effects of in-channel erosion and flow-driven sediment from dams on the development of flood process are investigated. The results improve the understanding of the formation and development mechanism of flash floods due to cascading landslide dam failures. The findings are beneficial for downstream flood risk assessment and developing control strategies for landslide-induced floods.
NASA Astrophysics Data System (ADS)
Arnaud, Patrick; Cantet, Philippe; Odry, Jean
2017-11-01
Flood frequency analyses (FFAs) are needed for flood risk management. Many methods exist ranging from classical purely statistical approaches to more complex approaches based on process simulation. The results of these methods are associated with uncertainties that are sometimes difficult to estimate due to the complexity of the approaches or the number of parameters, especially for process simulation. This is the case of the simulation-based FFA approach called SHYREG presented in this paper, in which a rainfall generator is coupled with a simple rainfall-runoff model in an attempt to estimate the uncertainties due to the estimation of the seven parameters needed to estimate flood frequencies. The six parameters of the rainfall generator are mean values, so their theoretical distribution is known and can be used to estimate the generator uncertainties. In contrast, the theoretical distribution of the single hydrological model parameter is unknown; consequently, a bootstrap method is applied to estimate the calibration uncertainties. The propagation of uncertainty from the rainfall generator to the hydrological model is also taken into account. This method is applied to 1112 basins throughout France. Uncertainties coming from the SHYREG method and from purely statistical approaches are compared, and the results are discussed according to the length of the recorded observations, basin size and basin location. Uncertainties of the SHYREG method decrease as the basin size increases or as the length of the recorded flow increases. Moreover, the results show that the confidence intervals of the SHYREG method are relatively small despite the complexity of the method and the number of parameters (seven). This is due to the stability of the parameters and takes into account the dependence of uncertainties due to the rainfall model and the hydrological calibration. Indeed, the uncertainties on the flow quantiles are on the same order of magnitude as those associated with the use of a statistical law with two parameters (here generalised extreme value Type I distribution) and clearly lower than those associated with the use of a three-parameter law (here generalised extreme value Type II distribution). For extreme flood quantiles, the uncertainties are mostly due to the rainfall generator because of the progressive saturation of the hydrological model.
NASA Astrophysics Data System (ADS)
Jiao, Huiqing; Zhao, Chengyi; Sheng, Yu; Chen, Yan; Shi, Jianchu; Li, Baoguo
2017-04-01
Water shortage and soil salinization increasingly become the main constraints for sustainable development of agriculture in Southern Xinjiang, China. Mulched drip irrigation, as a high-efficient water-saving irrigation method, has been widely applied in Southern Xinjiang for cotton production. In order to analyze the reasonability of describing the three-dimensional soil water and salt transport processes under mulched drip irrigation with a relatively simple two-dimensional model, a field experiment was conducted from 2007 to 2015 at Aksu of Southern Xinjiang, and soil water and salt transport processes were simulated through the three-dimensional and two-dimensional models based on COMSOL. Obvious differences were found between three-dimensional and two-dimensional simulations for soil water flow within the early 12 h of irrigation event and for soil salt transport in the area within 15 cm away from drip tubes during the whole irrigation event. The soil water and salt contents simulated by the two-dimensional model, however, agreed well with the mean values between two adjacent emitters simulated by the three-dimensional model, and also coincided with the measurements as corresponding RMSE less than 0.037 cm3 cm-3 and 1.80 g kg-1, indicating that the two-dimensional model was reliable for field irrigation management. Subsequently, the two-dimensional model was applied to simulate the dynamics of soil salinity for five numerical situations and for a widely adopted irrigation pattern in Southern Xinjiang (about 350 mm through mulched drip irrigation during growing season of cotton and total 400 mm through flooding irrigations before sowing and after harvesting). The simulation results indicated that the contribution of transpiration to salt accumulation in root layer was about 75% under mulched drip irrigation. Moreover, flooding irrigations before sowing and after harvesting were of great importance for salt leaching of arable layer, especially in bare strip where drip irrigation water hardly reached, and thus providing suitable root zone environment for cotton. Nevertheless, flooding irrigation should be further optimized to enhance water use efficiency.
Stress testing hydrologic models using bottom-up climate change assessment
NASA Astrophysics Data System (ADS)
Stephens, C.; Johnson, F.; Marshall, L. A.
2017-12-01
Bottom-up climate change assessment is a promising approach for understanding the vulnerability of a system to potential future changes. The technique has been utilised successfully in risk-based assessments of future flood severity and infrastructure vulnerability. We find that it is also an ideal tool for assessing hydrologic model performance in a changing climate. In this study, we applied bottom-up climate change to compare the performance of two different hydrologic models (an event-based and a continuous model) under increasingly severe climate change scenarios. This allowed us to diagnose likely sources of future prediction error in the two models. The climate change scenarios were based on projections for southern Australia, which indicate drier average conditions with increased extreme rainfall intensities. We found that the key weakness in using the event-based model to simulate drier future scenarios was the model's inability to dynamically account for changing antecedent conditions. This led to increased variability in model performance relative to the continuous model, which automatically accounts for the wetness of a catchment through dynamic simulation of water storages. When considering more intense future rainfall events, representation of antecedent conditions became less important than assumptions around (non)linearity in catchment response. The linear continuous model we applied may underestimate flood risk in a future climate with greater extreme rainfall intensity. In contrast with the recommendations of previous studies, this indicates that continuous simulation is not necessarily the key to robust flood modelling under climate change. By applying bottom-up climate change assessment, we were able to understand systematic changes in relative model performance under changing conditions and deduce likely sources of prediction error in the two models.
NASA Astrophysics Data System (ADS)
Karapetsas, Nikolaos; Skoulikaris, Charalampos; Katsogiannos, Fotis; Zalidis, George; Alexandridis, Thomas
2013-04-01
The use of satellite remote sensing products, such as Digital Elevation Models (DEMs), under specific computational interfaces of Geographic Information Systems (GIS) has fostered and facilitated the acquisition of data on specific hydrologic features, such as slope, flow direction and flow accumulation, which are crucial inputs to hydrology or hydraulic models at the river basin scale. However, even though DEMs of different resolution varying from a few km up to 20m are freely available for the European continent, these remotely sensed elevation data are rather coarse in cases where large flat areas are dominant inside a watershed, resulting in an unsatisfactory representation of the terrain characteristics. This scientific work aims at implementing a combing interpolation technique for the amelioration of the analysis of a DEM in order to be used as the input ground model to a hydraulic model for the assessment of potential flood events propagation in plains. More specifically, the second version of the ASTER Global Digital Elevation Model (GDEM2), which has an overall accuracy of around 20 meters, was interpolated with a vast number of aerial control points available from the Hellenic Mapping and Cadastral Organization (HMCO). The uncertainty that was inherent in both the available datasets (ASTER & HMCO) and the appearance of uncorrelated errors and artifacts was minimized by incorporating geostatistical filtering. The resolution of the produced DEM was approximately 10 meters and its validation was conducted with the use of an external dataset of 220 geodetic survey points. The derived DEM was then used as an input to the hydraulic model InfoWorks RS, whose operation is based on the relief characteristics contained in the ground model, for defining, in an automated way, the cross section parameters and simulating the flood spatial distribution. The plain of Serres, which is located in the downstream part of the Struma/Strymon transboundary river basin shared by Bulgaria and Greece, was selected as the case study area, because of its importance to the regional and national economy of Greece and because of the numerous flood events recorded in the past. The results of the simulation processing demonstrated the importance of high resolution relief models for estimating the potential flood hazard zones in order to mitigate the catastrophe caused, both in economic and environmental terms, by this type of extreme event.
Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers.
Wang, Fang; Annable, Michael D; Jawitz, James W
2013-09-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E=0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution. © 2013.
Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers
NASA Astrophysics Data System (ADS)
Wang, Fang; Annable, Michael D.; Jawitz, James W.
2013-09-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E = 0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution.
Regional regression of flood characteristics employing historical information
Tasker, Gary D.; Stedinger, J.R.
1987-01-01
Streamflow gauging networks provide hydrologic information for use in estimating the parameters of regional regression models. The regional regression models can be used to estimate flood statistics, such as the 100 yr peak, at ungauged sites as functions of drainage basin characteristics. A recent innovation in regional regression is the use of a generalized least squares (GLS) estimator that accounts for unequal station record lengths and sample cross correlation among the flows. However, this technique does not account for historical flood information. A method is proposed here to adjust this generalized least squares estimator to account for possible information about historical floods available at some stations in a region. The historical information is assumed to be in the form of observations of all peaks above a threshold during a long period outside the systematic record period. A Monte Carlo simulation experiment was performed to compare the GLS estimator adjusted for historical floods with the unadjusted GLS estimator and the ordinary least squares estimator. Results indicate that using the GLS estimator adjusted for historical information significantly improves the regression model. ?? 1987.
NASA Astrophysics Data System (ADS)
Uysal, G.; Sensoy, A.; Yavuz, O.; Sorman, A. A.; Gezgin, T.
2012-04-01
Effective management of a controlled reservoir system where it involves multiple and sometimes conflicting objectives is a complex problem especially in real time operations. Yuvacık Dam Reservoir, located in the Marmara region of Turkey, is built to supply annual demand of 142 hm3 water for Kocaeli city requires such a complex management strategy since it has relatively small (51 hm3) effective capacity. On the other hand, the drainage basin is fed by both rainfall and snowmelt since the elevation ranges between 80 - 1548 m. Excessive water must be stored behind the radial gates between February and May in terms of sustainability especially for summer and autumn periods. Moreover, the downstream channel physical conditions constraint the spillway releases up to 100 m3/s although the spillway is large enough to handle major floods. Thus, this situation makes short term release decisions the challenging task. Long term water supply curves, based on historical inflows and annual water demand, are in conflict with flood regulation (control) levels, based on flood attenuation and routing curves, for this reservoir. A guide curve, that is generated using both water supply and flood control of downstream channel, generally corresponds to upper elevation of conservation pool for simulation of a reservoir. However, sometimes current operation necessitates exceeding this target elevation. Since guide curves can be developed as a function of external variables, the water potential of a basin can be an indicator to explain current conditions and decide on the further strategies. Besides, releases with respect to guide curve are managed and restricted by user-defined rules. Although the managers operate the reservoir due to several variable conditions and predictions, still the simulation model using variable guide curve is an urgent need to test alternatives quickly. To that end, using HEC-ResSim, the several variable guide curves are defined to meet the requirements by taking inflow, elevation, precipitation and snow water equivalent into consideration to propose alternative simulations as a decision support system. After that, the releases are subjected to user-defined rules. Thus, previous year reservoir simulations are compared with observed reservoir levels and releases. Hypothetical flood scenarios are tested in case of different storm event timing and sizing. Numerical weather prediction data of Mesoscale Model 5 (MM5) can be used for temperature and precipitation forecasts that will form the inputs for a hydrological model. The estimated flows can be used for real time short term decisions for reservoir simulation based on variable guide curve and user defined rules.
3D Simulation of External Flooding Events for the RISMC Pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prescott, Steven; Mandelli, Diego; Sampath, Ramprasad
2015-09-01
Incorporating 3D simulations as part of the Risk-Informed Safety Margins Characterization (RISMIC) Toolkit allows analysts to obtain a more complete picture of complex system behavior for events including external plant hazards. External events such as flooding have become more important recently – however these can be analyzed with existing and validated simulated physics toolkits. In this report, we describe these approaches specific to flooding-based analysis using an approach called Smoothed Particle Hydrodynamics. The theory, validation, and example applications of the 3D flooding simulation are described. Integrating these 3D simulation methods into computational risk analysis provides a spatial/visual aspect to themore » design, improves the realism of results, and can prove visual understanding to validate the analysis of flooding.« less
NASA Astrophysics Data System (ADS)
Torfs, P.; Brauer, C.; Teuling, R.; Kloosterman, P.; Willems, G.; Verkooijen, B.; Uijlenhoet, R.
2012-12-01
On 26 August 2010 the 6.5 km2 Hupsel Brook catchment in The Netherlands, which has been the experimental watershed employed by Wageningen University since the 1960s, was struck by an exceptionally heavy rainfall event (return period > 1000 years). We investigated the unprecedented flash flood triggered by this event and this study improved our understanding of the dynamics of such lowland flash floods (Brauer et al., 2011). During this extreme event some thresholds became apparent that do not play a role during average conditions and are not incorporated in most rainfall-runoff models. This may lead to errors when these models are used to forecast runoff responses to rainfall events that are extreme today, but likely to become less extreme when climate changes. The aim of this research project was to find out to what extent different types of rainfall-runoff models are able to simulate this extreme event, and, if not, which processes, thresholds or parameters are lacking to describe the event accurately. Five of the 7 employed models treat the catchment as a lumped system. This group includes the well-known HBV and Sacramento models. The Wageningen Model, which has been developed in our group, has a structure similar to HBV and the Sacramento Model. The SWAP (Soil, Water, Atmosphere, Plant) Model represents a physically-based model of a single soil column, but has been used here as a representation for the whole catchment. The LGSI (Lowland Groundwater Surface water Interaction) Model uses probability distributions to account for spatial variability in groundwater depth and resulting flow routes in the catchment. We did not only analyze how accurately each model simulated the discharge, but also whether groundwater and soil moisture dynamics and resulting flow processes were captured adequately. The 6th model is a spatially distributed model called SIMGRO. It is based on a MODFLOW groundwater model, extended with an unsaturated zone based on the previously mentioned SWAP model and a surface water network. This model has a very detailed groundwater-surface water interface and should therefore be particularly suitable to study the effect of backwater feedbacks we observed during the flood. In addition, the effect of spatially varying soil characteristics on the runoff response has been studied. The final model is SOBEK, which was originally developed as a hydraulic model consisting of a surface water network with nodes and links. To some of the nodes, upstream areas with associated rainfall-runoff models have been assigned. This model is especially useful to study the effect of hydraulic structures, such as culverts, and stream bed vegetation on dampening the flood peak. Brauer, C. C., Teuling, A.J., Overeem, A., van der Velde, Y., Hazenberg, P., Warmerdam, P. M. M. and Uijlenhoet, R.: Anatomy of extraordinary rainfall and flash flood in a Dutch lowland catchment, Hydrol. Earth Syst. Sci., 15, 1991-2005, 2011.
Simulating Catchment Scale Afforestation for Mitigating Flooding
NASA Astrophysics Data System (ADS)
Barnes, M. S.; Bathurst, J. C.; Quinn, P. F.; Birkinshaw, S.
2016-12-01
After the 2013-14, and the more recent 2015-16, winter floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. However, the role of forests as a natural flood management practice remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. This project aims to improve the understanding of the impacts of upland afforestation on flood risk at the sub-catchment and full catchment scales. This will be achieved through an integrated fieldwork and modelling approach, with the use of a series of process based hydrological models to scale up and examine the effects forestry can have on flooding. Furthermore, there is a need to analyse the extent to which land management practices, catchment system engineering and the installation of runoff attenuation features (RAFs), such as engineered log jams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. Additionally, the proportion of a catchment or riparian reach that would need to be forested in order to achieve a significant impact on reducing downstream flooding will be defined. The consequential impacts of a corresponding reduction in agriculturally productive farmland and the potential decline of water resource availability will also be considered in order to safeguard the UK's food security and satisfy the global demand on water resources.
NASA Astrophysics Data System (ADS)
Chen, Y.; Li, J.; Xu, H.
2016-01-01
Physically based distributed hydrological models (hereafter referred to as PBDHMs) divide the terrain of the whole catchment into a number of grid cells at fine resolution and assimilate different terrain data and precipitation to different cells. They are regarded to have the potential to improve the catchment hydrological process simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters. However, unfortunately the uncertainties associated with this model derivation are very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study: the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using particle swarm optimization (PSO) algorithm and to test its competence and to improve its performances; the second is to explore the possibility of improving physically based distributed hydrological model capability in catchment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with the Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improved PSO algorithm is developed for the parameter optimization of the Liuxihe model in catchment flood forecasting. The improvements include adoption of the linearly decreasing inertia weight strategy to change the inertia weight and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for the Liuxihe model parameter optimization effectively and could improve the model capability largely in catchment flood forecasting, thus proving that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological models. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for the Liuxihe model catchment flood forecasting are 20 and 30 respectively.
Modeling and simulation of surfactant-polymer flooding using a new hybrid method
NASA Astrophysics Data System (ADS)
Daripa, Prabir; Dutta, Sourav
2017-04-01
Chemical enhanced oil recovery by surfactant-polymer (SP) flooding has been studied in two space dimensions. A new global pressure for incompressible, immiscible, multicomponent two-phase porous media flow has been derived in the context of SP flooding. This has been used to formulate a system of flow equations that incorporates the effect of capillary pressure and also the effect of polymer and surfactant on viscosity, interfacial tension and relative permeabilities of the two phases. The coupled system of equations for pressure, water saturation, polymer concentration and surfactant concentration has been solved using a new hybrid method in which the elliptic global pressure equation is solved using a discontinuous finite element method and the transport equations for water saturation and concentrations of the components are solved by a Modified Method Of Characteristics (MMOC) in the multicomponent setting. Numerical simulations have been performed to validate the method, both qualitatively and quantitatively, and to evaluate the relative performance of the various flooding schemes for several different heterogeneous reservoirs.