Sample records for flood wave attenuation

  1. Impact of stream restoration on flood waves

    NASA Astrophysics Data System (ADS)

    Sholtes, J.; Doyle, M.

    2008-12-01

    Restoration of channelized or incised streams has the potential to reduce downstream flooding via storing and dissipating the energy of flood waves. Restoration design elements such as restoring meanders, reducing slope, restoring floodplain connectivity, re-introducing in-channel woody debris, and re-vegetating banks and the floodplain have the capacity to attenuate flood waves via energy dissipation and channel and floodplain storage. Flood discharge hydrographs measured up and downstream of several restored reaches of varying stream order and located in both urban and rural catchments are coupled with direct measurements of stream roughness at various stages to directly measure changes to peak discharge, flood wave celerity, and dispersion. A one-dimensional unsteady flow routing model, HEC-RAS, is calibrated and used to compare attenuation characteristics between pre and post restoration conditions. Modeled sensitivity results indicate that a restoration project placed on a smaller order stream demonstrates the highest relative reduction in peak discharge of routed flood waves compared to one of equal length on a higher order stream. Reductions in bed slope, extensions in channel length, and increases in channel and floodplain roughness follow restoration placement with the watershed in relative importance. By better understanding how design, scale, and location of restored reaches within a catchment hydraulically impact flood flows, this study contributes both to restoration design and site decision making. It also quantifies the effect of reach scale stream restoration on flood wave attenuation.

  2. Prediction of extreme flood in August 2002 along the Upper-Danube in Hungary

    NASA Astrophysics Data System (ADS)

    Sütheö, L.; Bálint, G.; Szlávik, L.

    2003-04-01

    Specific for summer conditions weather situation caused the flood. A cyclone reached the region of Alps, humid air and great instability of stratification produced high precipitation throughout the region in two vawes. The flood has reached historical maxima on the reach between Bratislava Budapest. This is the first flood of this magnitude, which has passed this section of the Danube without breaching the dikes, flood embankments. The peak flow rate attenuated along this section from 10 000 m3s-1 to 8600 m3s-1. Specifics of flood routing conditions are discussed. Barrages and training has changed flood routing patterns along the Austrian and joined Slovak Hungarian sections of the Danube. Increased velocity of wave propagation decreases the impact of superposition of consequent flood waves, but attenuation of flood waves is also less expressed. The most significant impact on the present flood was, that this was the first flood of this magnitude, which has passed this section of the Danube without breaching the flood embankments. Earlier extreme floods including the 1954 and 1965 floods resulted failure of the dikes and spill over of 1.5- 2 million m3 of water to the protected floodplain. This time the flood was contained within the floodberm.

  3. Modeling small-scale and large-scale flood wave processes as indicators of channel-floodplain connectivity

    NASA Astrophysics Data System (ADS)

    Byrne, C. F.; Stone, M. C.

    2016-12-01

    Anthropogenic alterations to rivers and floodplains, either in the context of river engineering or river restoration efforts, have no doubt impacted channel-floodplain connectivity in the majority of developed river systems. River management strategies now often strive to retain or improve ecological integrity of floodplains. Therefore, there is a need to quantify the hydrodynamic processes that have implications for river geomorphology and ecology within the channel-floodplain interface. Because field quantification of these processes is extremely difficult, new methods in hydrodynamic modeling can help to inform river science. This research focused on the assessment of channel-floodplain flow dynamics using two-dimensional hydrodynamic modeling and presents various methods of hydrodynamic process quantification in unsteady flow scenarios. The objectives of this research were to: (1) quantify the small-scale processes of mass and momentum transfer from the main channel to the floodplain; and (2) assess how these processes accrue to meaningful levels to affect the large-scale process of flood wave attenuation. This was achieved by modeling the heavily manipulated Albuquerque Reach of the Rio Grande in New Mexico. Results are presented as mass and momentum fluxes along the channel-floodplain boundaries with a focus on the application of these methods to unsteady flood wave modeling. In addition, quantification of downstream flood wave attenuation is presented as attenuation ratios of discharge and stage, as well as wave celerity. Mass and momentum fluxes during flood waves are shown to be highly variable over spatial and temporal scales and demonstrate the implications of lateral surface connectivity. Results from this research and further application of the methods presented here can help river scientists better understand the dynamics of flood processes especially in the context of process-based river restoration.

  4. Attenuating reaches and the regional flood response of an urbanizing drainage basin

    NASA Astrophysics Data System (ADS)

    Turner-Gillespie, Daniel F.; Smith, James A.; Bates, Paul D.

    The Charlotte, North Carolina metropolitan area has experienced extensive urban and suburban growth and sharply increasing trends in the magnitude and frequency of flooding. The hydraulics and hydrology of flood response in the region are examined through a combination of numerical modeling studies and diagnostic analyses of paired discharge observations from upstream-downstream gaging stations. The regional flood response is shown to strongly reflect urbanization effects, which increase flood peaks and decrease response times, and geologically controlled attenuating reaches, which decrease flood peaks and increase lag times. Attenuating reaches are characterized by systematic changes in valley bottom geometry and longitudinal profile. The morphology of the fluvial system is controlled by the bedrock geology, with pronounced changes occurring at or near contacts between intrusive igneous and metamorphic rocks. Analyses of wave celerity and flood peak attenuation over a range of discharge values for an 8.3 km valley bottom section of Little Sugar Creek are consistent with Knight and Shiono's characterization of the variation of flood wave velocity from in-channel conditions to valley bottom full conditions. The cumulative effect of variation in longitudinal profile, expansions and contractions of the valley bottom, floodplain roughness and sub-basin flood response is investigated using a two-dimensional, depth-averaged, finite element hydrodynamic model coupled with a distributed hydrologic model. For a 10.1 km stream reach of Briar Creek, with drainage area ranging from 13 km 2 at the upstream end of the reach to 49 km 2 at the downstream end, it is shown that flood response reflects a complex interplay of hydrologic and hydraulic processes on hillslopes and valley bottoms.

  5. Salt intrusion in tidal wetlands: European willow species tolerate oligohaline conditions

    NASA Astrophysics Data System (ADS)

    Markus-Michalczyk, Heike; Hanelt, Dieter; Ludewig, Kristin; Müller, David; Schröter, Brigitte; Jensen, Kai

    2014-01-01

    Tidal wetlands experience salt intrusion due to the effects of climate change. This study clarifies that the European flood plain willows species Salix alba and Salix viminalis tolerate oligohaline conditions. Salix alba L. and Salix viminalis L. are distributed on flood plains up to transitional waters of the oligohaline to the mesohaline estuarine stretch in temperate climates. They experience spatial and temporal variations in flooding and salinity. In the past, willows dominated the vegetation above the mean high water line, attenuated waves and contributed to sedimentation. In recent centuries, human utilization reduced willow stands. Today, the Elbe estuary - a model system for an estuary in temperate zones - exhibits increasing flooding and salinity due to man-induced effects and climatic changes. Willows were described as having no salinity tolerance. In contrast, our soil water salinity measurements at willows in tidal wetlands prove that mature Salix individuals tolerate oligohaline conditions. To assess immature plant salinity tolerance, we conducted a hydroponic greenhouse experiment. Vegetative propagules originating from a freshwater and an oligohaline site were treated in four salinities. Related to growth rates and biomass production, we found interspecific similarities and a salinity tolerance up to salinity 2. Vitality and chlorophyll fluorescence indicated an acclimation of Salix viminalis to oligohaline conditions. We conclude, that the survival of S. alba and S. viminalis and the restoration of willow stands in estuarine flood plains - with regard to wave attenuation and sedimentation - might be possible, despite increasing salinity in times of climate change.

  6. Modeling wave attenuation by salt marshes in Jamaica Bay, New York, using a new rapid wave model

    NASA Astrophysics Data System (ADS)

    Marsooli, Reza; Orton, Philip M.; Mellor, George

    2017-07-01

    Using a new rapid-computation wave model, improved and validated in the present study, we quantify the value of salt marshes in Jamaica Bay—a highly urbanized estuary located in New York City—as natural buffers against storm waves. We augment the MDO phase-averaged wave model by incorporating a vegetation-drag-induced energy dissipation term into its wave energy balance equation. We adopt an empirical formula from literature to determine the vegetation drag coefficient as a function of environmental conditions. Model evaluation using data from laboratory-scale experiments show that the improved MDO model accurately captures wave height attenuation due to submerged and emergent vegetation. We apply the validated model to Jamaica Bay to quantify the influence of coastal-scale salt marshes on storm waves. It is found that the impact of marsh islands is largest for storms with lower flood levels, due to wave breaking on the marsh island substrate. However, the role of the actual marsh plants, Spartina alterniflora, grows larger for storms with higher flood levels, when wave breaking does not occur and the vegetative drag becomes the main source of energy dissipation. For the latter case, seasonality of marsh height is important; at its maximum height in early fall, S. alterniflora causes twice the reduction as when it is at a shorter height in early summer. The model results also indicate that the vegetation drag coefficient varies 1 order of magnitude in the study area, and suggest exercising extra caution in using a constant drag coefficient in coastal wetlands.

  7. Simulating Catchment Scale Afforestation for Mitigating Flooding

    NASA Astrophysics Data System (ADS)

    Barnes, M. S.; Bathurst, J. C.; Quinn, P. F.; Birkinshaw, S.

    2016-12-01

    After the 2013-14, and the more recent 2015-16, winter floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. However, the role of forests as a natural flood management practice remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. This project aims to improve the understanding of the impacts of upland afforestation on flood risk at the sub-catchment and full catchment scales. This will be achieved through an integrated fieldwork and modelling approach, with the use of a series of process based hydrological models to scale up and examine the effects forestry can have on flooding. Furthermore, there is a need to analyse the extent to which land management practices, catchment system engineering and the installation of runoff attenuation features (RAFs), such as engineered log jams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. Additionally, the proportion of a catchment or riparian reach that would need to be forested in order to achieve a significant impact on reducing downstream flooding will be defined. The consequential impacts of a corresponding reduction in agriculturally productive farmland and the potential decline of water resource availability will also be considered in order to safeguard the UK's food security and satisfy the global demand on water resources.

  8. Attenuation of Storm Surge Flooding By Wetlands in the Chesapeake Bay: An Integrated Geospatial Framework Evaluating Impacts to Critical Infrastructure

    NASA Astrophysics Data System (ADS)

    Khalid, A.; Haddad, J.; Lawler, S.; Ferreira, C.

    2014-12-01

    Areas along the Chesapeake Bay and its tributaries are extremely vulnerable to hurricane flooding, as evidenced by the costly effects and severe impacts of recent storms along the Virginia coast, such as Hurricane Isabel in 2003 and Hurricane Sandy in 2012. Coastal wetlands, in addition to their ecological importance, are expected to mitigate the impact of storm surge by acting as a natural protection against hurricane flooding. Quantifying such interactions helps to provide a sound scientific basis to support planning and decision making. Using storm surge flooding from various historical hurricanes, simulated using a coupled hydrodynamic wave model (ADCIRC-SWAN), we propose an integrated framework yielding a geospatial identification of the capacity of Chesapeake Bay wetlands to protect critical infrastructure. Spatial identification of Chesapeake Bay wetlands is derived from the National Wetlands Inventory (NWI), National Land Cover Database (NLCD), and the Coastal Change Analysis Program (C-CAP). Inventories of population and critical infrastructure are extracted from US Census block data and FEMA's HAZUS-Multi Hazard geodatabase. Geospatial and statistical analyses are carried out to develop a relationship between wetland land cover, hurricane flooding, population and infrastructure vulnerability. These analyses result in the identification and quantification of populations and infrastructure in flooded areas that lie within a reasonable buffer surrounding the identified wetlands. Our analysis thus produces a spatial perspective on the potential for wetlands to attenuate hurricane flood impacts in critical areas. Statistical analysis will support hypothesis testing to evaluate the benefits of wetlands from a flooding and storm-surge attenuation perspective. Results from geospatial analysis are used to identify where interactions with critical infrastructure are relevant in the Chesapeake Bay.

  9. The Effect of Vegetation on Sea-Swell Waves, Infragravity Waves and Wave-Induced Setup

    NASA Astrophysics Data System (ADS)

    Roelvink, J. A.; van Rooijen, A.; McCall, R. T.; Van Dongeren, A.; Reniers, A.; van Thiel de Vries, J.

    2016-02-01

    Aquatic vegetation in the coastal zone (e.g. mangrove trees) attenuates wave energy and thereby reduces flood risk along many shorelines worldwide. However, in addition to the attenuation of incident-band (sea-swell) waves, vegetation may also affect infragravity-band (IG) waves and the wave-induced water level setup (in short: wave setup). Currently, knowledge on the effect of vegetation on IG waves and wave setup is lacking, while they are they are key parameters for coastal risk assessment. In this study, the process-based storm impact model XBeach was extended with formulations for attenuation of sea-swell and IG waves as well as the effect on the wave setup, in two modes: the sea-swell wave phase-resolving (non-hydrostatic) and the phase-averaged (surfbeat) mode. In surfbeat mode a wave shape model was implemented to estimate the wave phase and to capture the intra-wave scale effect of emergent vegetation and nonlinear waves on the wave setup. Both modeling modes were validated using data from two flume experiments and show good skill in computing the attenuation of both sea-swell and IG waves as well as the effect on the wave-induced water level setup. In surfbeat mode, the prediction of nearshore mean water levels greatly improved when using the wave shape model, while in non-hydrostatic mode this effect is directly accounted for. Subsequently, the model was used to study the influence of the bottom profile slope and the location of the vegetation field on the computed wave setup with and without vegetation. It was found that the reduction is wave setup is strongly related to the location of vegetation relative to the wave breaking point, and that the wave setup is lower for milder slopes. The extended version of XBeach developed within this study can be used to study the nearshore hydrodynamics on coasts fronted by vegetation such as mangroves. It can also serve as tool for storm impact studies on coasts with aquatic vegetation, and can help to quantify the coastal protection function of vegetation.

  10. Catchment scale afforestation for mitigating flooding

    NASA Astrophysics Data System (ADS)

    Barnes, Mhari; Quinn, Paul; Bathurst, James; Birkinshaw, Stephen

    2016-04-01

    After the 2013-14 floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. At present, 1 in 6 homes in Britain are at risk of flooding and current EU legislation demands a sustainable, 'nature-based solution'. However, the role of forests as a natural flood management technique remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. SHETRAN, physically-based spatially-distributed hydrological models of the Irthing catchment and Wark forest sub-catchments (northern England) have been developed in order to test the hypothesis of the effect trees have on flood magnitude. The advanced physically-based models have been designed to model scale-related responses from 1, through 10, to 100km2, a first study of the extent to which afforestation and woody debris runoff attenuation features (RAFs) may help to mitigate floods at the full catchment scale (100-1000 km2) and on a national basis. Furthermore, there is a need to analyse the extent to which land management practices, and the installation of nature-based RAFs, such as woody debris dams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. The impacts of riparian planting and the benefits of adding large woody debris of several designs and on differing sizes of channels has also been simulated using advanced hydrodynamic (HiPIMS) and hydrological modelling (SHETRAN). With the aim of determining the effect forestry may have on flood frequency, 1000 years of generated rainfall data representative of current conditions has been used to determine the difference between current land-cover, different distributions of forest cover and the defining scenarios - complete forest removal and complete afforestation of the catchment. The simulations show the percentage of forestry required to have a significant impact on mitigating downstream flood risk at sub-catchment and catchment scale. Key words: Flood peak, nature-based solutions, forest hydrology, hydrological modelling, SHETRAN, flood frequency, flood magnitude, land-cover change, upland afforestation.

  11. Understanding Nearshore Processes Of a Large Arctic Delta Using Combined Seabed Mapping, In Situ Observations, Remote Sensing and Modeling

    NASA Astrophysics Data System (ADS)

    Solomon, S. M.; Couture, N. J.; Forbes, D. L.; Hoque, A.; Jenner, K. A.; Lintern, G.; Mulligan, R. P.; Perrie, W. A.; Stevens, C. W.; Toulany, B.; Whalen, D.

    2009-12-01

    The Mackenzie River Delta and the adjacent continental shelf in the southeastern Beaufort Sea are known to host significant quantities of hydrocarbons. Recent environmental reviews of proposed hydrocarbon development have highlighted the need for a better understanding of the processes that control sediment transport and coastal stability. Over the past several years field surveys have been undertaken in winter, spring and summer to acquire data on seabed morphology, sediment properties, sea ice, river-ocean interaction and nearshore oceanography. These data are being used to improve conceptual models of nearshore processes and to develop and validate numerical models of waves, circulation and sediment transport. The timing and location of sediment erosion, transport and deposition is complex, driven by a combination of open water season storms and spring floods. Unlike temperate counterparts, the interaction between the Mackenzie River and the Beaufort Sea during spring freshet is mediated by the presence of ice cover. Increasing discharge exceeds the under-ice flow capacity leading to flooding of the ice surface, followed by vortex drainage through the ice and scour of the seabed below (“strudel” drainage and scour). During winter months, nearshore circulation slows beneath a thickening ice canopy. Recent surveys have shown that the low gradient inner shelf is composed of extensive shoals where ice freezes to the seabed and intervening zones which are slightly deeper than the ice is thick. The duration of ice contact with the bed determines the thermal characteristics of the seabed. Analysis of cores shows that the silts comprising the shoals are up to 6 m thick. The predominantly well sorted and cross-laminated nature of the silts at the top of the cores suggests an active delta front environment. Measurements of waves, currents, conductivity, temperature and sediment concentration during spring and late summer have been acquired. During moderate August storm events, waves attenuate rapidly inshore of the 3 m isobath. Entrainment of fine material and rapid flocculation due to the presence of brackish water may induce the transient formation of high density suspensions near the seabed which contributes to this rapid attenuation. The relatively poor performance of shallow water wave models (e.g. SWAN) in very shallow depths during storm simulations appears to be related to inaccurate formulations for wave attenuation in this environment.

  12. High-resolution seismic measurements at loamy dikes for monitoring high-water influences

    NASA Astrophysics Data System (ADS)

    Jaksch, Katrin; Giese, Rüdiger

    2010-05-01

    For the risk management of high-water events it is important to know how secure river dikes are. Even the structures of dikes are often unknown. Methods for the exploration of existing dikes and of their underground, for an evaluation of failure potential and strengthening requirements are needed. In the presented work, the potential of a high-resolution seismics to monitor the moisture penetration of dikes during flood periods was analyzed. To identify the extent of moisture penetration and to determine the structures of a loamy dike body would enable to determine the probability of a dike failure. Dikes made of loam show a different behavior of moisture penetration under high-water influence. The distribution and penetration of water is moderate compared to sandy dikes and resist longer high-water events. The water expands slowly in the dike body in all directions known as fingering. It should be analyzed how the moisture penetration from a dike can be displayed with seismic methods. The aim was to identify on the basis of seismic measurements the areas of moisture penetration within a dike during a flood and out of it to determine the probability of collapse of the dike. For that purpose the structures in the dike body should be determined in reference to the materials and his soil parameters like water content and porosity. A test facility was built for dikes including a regulation for the water level. This allowed the simulation of flood scenarios at dikes. Two dikes with different loam content were built in order to determine the failure mechanism of dikes. With a width of 8 meters at the basis they had nearly the dimension of river dikes. Seismic instrumentation was installed on both dike models. The seismic survey consists of three parallel receiver lines on the dike which recorded seismic signals emitted along the same lines, resulting in a 3D-seismic data set. The receivers were 3-component-geophones fixed in spikes, at the flooded side of the dike were taken water-proof geophones. In order to achieve a high resolution a magnetostricitve actuator was used as seismic source. The actuator generated sweeps within a frequency range from 100 up to 6100 Hz. The measurements show a complex wave field, which is dominated by direct P-waves, surface waves as well as refracted waves at the boundaries of the model. The frequencies of the direct P-waves are up to 3000 Hz at small offsets and beyond it declines to about 700 to 900 Hz. Close to the source the entire sweep energy for all frequencies is transmitted in the dike. Surface waves show frequencies from 300 to 400 Hz. A comparison of seismic data at not flooded conditions and at high flood mark shows clearly that the seismic waves were attenuated due to strong moisture penetration of the dike, surface waves were not observed after flooding the dike. Also, travel times and wave field differ in their characteristics. With increasing moisture content in the dike body the P-wave velocity decreases continuously over 30 percent from 290 m/s at not flooded conditions to 200 m/s at the highest flood. The first breaks at longer distances of the measured data stem from refractions at the dike underground which is made of concrete. Calculated travel time tomography's of different saturation states of the dike show the water content in the dike body on the basis of a correlation with the P-wave velocity. Structural heterogeneities in the dike were also visualized by the travel time tomography's.

  13. Estimating floodwater depths from flood inundation maps and topography

    USGS Publications Warehouse

    Cohen, Sagy; Brakenridge, G. Robert; Kettner, Albert; Bates, Bradford; Nelson, Jonathan M.; McDonald, Richard R.; Huang, Yu-Fen; Munasinghe, Dinuke; Zhang, Jiaqi

    2018-01-01

    Information on flood inundation extent is important for understanding societal exposure, water storage volumes, flood wave attenuation, future flood hazard, and other variables. A number of organizations now provide flood inundation maps based on satellite remote sensing. These data products can efficiently and accurately provide the areal extent of a flood event, but do not provide floodwater depth, an important attribute for first responders and damage assessment. Here we present a new methodology and a GIS-based tool, the Floodwater Depth Estimation Tool (FwDET), for estimating floodwater depth based solely on an inundation map and a digital elevation model (DEM). We compare the FwDET results against water depth maps derived from hydraulic simulation of two flood events, a large-scale event for which we use medium resolution input layer (10 m) and a small-scale event for which we use a high-resolution (LiDAR; 1 m) input. Further testing is performed for two inundation maps with a number of challenging features that include a narrow valley, a large reservoir, and an urban setting. The results show FwDET can accurately calculate floodwater depth for diverse flooding scenarios but also leads to considerable bias in locations where the inundation extent does not align well with the DEM. In these locations, manual adjustment or higher spatial resolution input is required.

  14. Urban Infrastructure, Channel-Floodplain Morphology and Flood Flow Patterns

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Smith, J. A.; Nelson, C. B.

    2006-12-01

    The relationship between the channel and the floodplain in urban settings is heavily influenced by (1) altered watershed hydrologic response and frequency distribution of flows, (2) channel enlargement resulting from altered hydrology under conditions of limited sediment supply, (3) direct modification of channels and floodplains for purposes of erosion mitigation, flood protection, commercial development and creation of public amenities, (4) valley constrictions and flow obstructions associated with bridges, culverts, road embankments and other types of floodplain encroachment causing fragmentation or longitudinal segmentation of the riparian corridor. Field observation of inundation patterns associated with recurring floods in the Baltimore metropolitan area is used in combination with 2-dimensional hydraulic modeling to simulate patterns of floodplain inundation and to explore the relationships between magnitude and shape of the flood hydrograph, morphology of the urban channel-floodplain system, and the frequency and extent of floodplain inundation. Case studies include a July 2004 flood associated with a 300-year 2-hour rainfall in a small (14.2 km2) urban watershed, as well as several other events caused by summer thunderstorms with shorter recurrence intervals that generated an extraordinary flood response. The influence of urban infrastructure on flood inundation and flow patterns is expressed in terms of altered (and hysteretic) stage-discharge relationships, stepped flood profiles, rapid longitudinal attenuation of flood waves, and transient flow reversals at confluences and constrictions. Given the current level of interest in restoration measures these patterns merit consideration in planning future development and mitigation efforts.

  15. Stem breakage of salt marsh vegetation under wave forcing: A field and model study

    NASA Astrophysics Data System (ADS)

    Vuik, Vincent; Suh Heo, Hannah Y.; Zhu, Zhenchang; Borsje, Bas W.; Jonkman, Sebastiaan N.

    2018-01-01

    One of the services provided by coastal ecosystems is wave attenuation by vegetation, and subsequent reduction of wave loads on flood defense structures. Therefore, stability of vegetation under wave forcing is an important factor to consider. This paper presents a model which determines the wave load that plant stems can withstand before they break or fold. This occurs when wave-induced bending stresses exceed the flexural strength of stems. Flexural strength was determined by means of three-point-bending tests, which were carried out for two common salt marsh species: Spartina anglica (common cord-grass) and Scirpus maritimus (sea club-rush), at different stages in the seasonal cycle. Plant stability is expressed in terms of a critical orbital velocity, which combines factors that contribute to stability: high flexural strength, large stem diameter, low vegetation height, high flexibility and a low drag coefficient. In order to include stem breakage in the computation of wave attenuation by vegetation, the stem breakage model was implemented in a wave energy balance. A model parameter was calibrated so that the predicted stem breakage corresponded with the wave-induced loss of biomass that occurred in the field. The stability of Spartina is significantly higher than that of Scirpus, because of its higher strength, shorter stems, and greater flexibility. The model is validated by applying wave flume tests of Elymus athericus (sea couch), which produced reasonable results with regards to the threshold of folding and overall stem breakage percentage, despite the high flexibility of this species. Application of the stem breakage model will lead to a more realistic assessment of the role of vegetation for coastal protection.

  16. Investigation of Hyporheic Thermal Flux and Downstream Attenuation Driven by Hydropeaking in the Colorado River, Austin, Texas

    NASA Astrophysics Data System (ADS)

    Watson, J. A.; Cardenas, M. B.; Neilson, B. T.; Bennett, P. C.

    2015-12-01

    Thermal flux related to regulated river hydropeaking has been extensively researched at the single-study site scale, but little work has been done quantifying the downstream attenuation of a single regulated flood pulse at multiple sites. In order to better understand this flood pulse attenuation we instrumented four sites with temperature probes along a 91 km stretch of the Colorado River downstream of longhorn dam, Austin, TX. Piezometer transects perpendicular to the river at each site were instrumented with HOBO thermistors over a 1.4m screened interval within the saturated zone at 20cm spacing. As flood pulses are attenuated downstream, temperature gradients and distance of lateral temperature pulse penetration into the bank are hypothesized to decrease. The data collected in this investigation will test this hypothesis by providing 2D temperature cross-sections along an attenuating flood pulse, providing detailed spatial data on temperature gradients adjacent to the river.

  17. Short-core acoustic resonant bar test and x-ray CT imaging on sandstone samples during super-critical CO2 flooding and dissolution

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Kneafsey, T. J.; Daley, T. M.; Freifeld, B. M.

    2010-12-01

    Geological sequestration of CO2 requires accurate monitoring of the spatial distribution and pore-level saturation of super-critical (sc-) CO2 for both optimizing reservoir performance and satisfying regulatory requirements. Fortunately, thanks to the high compliance of sc-CO2 compared to brine under in-situ temperatures and pressures, injection of sc-CO2 into initially brine-saturated rock will lead to significant reductions in seismic velocity and increased attenuation of seismic waves. Because of the frequency-dependent nature of this relationship, its determination requires testing at low frequencies (10 Hz-10 kHz) that are not usually employed in the laboratory. In this paper, we present the changes in seismic wave velocities and attenuation in sandstone cores during sc-CO2 core flooding and during subsequent brine re-injection and CO2 removal via convection and dissolution. The experiments were conducted at frequencies near 1 kHz using a variation of the acoustic resonant bar technique, called the Split Hopkinson Resonant Bar (SHRB) method, which allows measurements under elevated temperatures and pressures (up to 120°C, 35 MPa), using a short (several cm long) core. Concurrent x-ray CT scanning reveals sc-CO2 saturation and distribution within the cores. The injection experiments revealed different CO2 patch size distributions within the cores between the injection phase and the convection/dissolution phase of the tests. The difference was reflected particularly in the P-wave velocities and attenuation. Also, compared to seismic responses, which were separately measured during a gas CO2 injection/drainage test, the seismic responses from the sc-CO2 test showed measurable changes over a wider range of brine saturation. Considering the proximity of the frequency band employed by our measurement to the field seismic measurements, this result implies that seismic monitoring of sc-CO2, if constrained by laboratory data and interpreted using a proper petrophysical model, can be conducted with greater accuracy for determining the sc-CO2 saturation and distribution within reservoir rock, than typically predicted by the Gassmann model and/or by a natural gas reservoir analogue.

  18. A Bayesian-Based System to Assess Wave-Driven Flooding Hazards on Coral Reef-Lined Coasts

    NASA Astrophysics Data System (ADS)

    Pearson, S. G.; Storlazzi, C. D.; van Dongeren, A. R.; Tissier, M. F. S.; Reniers, A. J. H. M.

    2017-12-01

    Many low-elevation, coral reef-lined, tropical coasts are vulnerable to the effects of climate change, sea level rise, and wave-induced flooding. The considerable morphological diversity of these coasts and the variability of the hydrodynamic forcing that they are exposed to make predicting wave-induced flooding a challenge. A process-based wave-resolving hydrodynamic model (XBeach Non-Hydrostatic, "XBNH") was used to create a large synthetic database for use in a "Bayesian Estimator for Wave Attack in Reef Environments" (BEWARE), relating incident hydrodynamics and coral reef geomorphology to coastal flooding hazards on reef-lined coasts. Building on previous work, BEWARE improves system understanding of reef hydrodynamics by examining the intrinsic reef and extrinsic forcing factors controlling runup and flooding on reef-lined coasts. The Bayesian estimator has high predictive skill for the XBNH model outputs that are flooding indicators, and was validated for a number of available field cases. It was found that, in order to accurately predict flooding hazards, water depth over the reef flat, incident wave conditions, and reef flat width are the most essential factors, whereas other factors such as beach slope and bed friction due to the presence or absence of corals are less important. BEWARE is a potentially powerful tool for use in early warning systems or risk assessment studies, and can be used to make projections about how wave-induced flooding on coral reef-lined coasts may change due to climate change.Plain Language SummaryLow-lying tropical coasts fronted by coral reefs are threatened by the effects of climate change, sea level rise, and flooding caused by waves. However, the reefs on these coasts differ widely in their shape, size, and physical characteristics; the wave and water level conditions affecting these coastlines also vary in space and time. These factors make it difficult to predict flooding caused by waves along coral reef-lined coasts. We created a system ("BEWARE") that estimates how different wave, water level, and reef combinations can lead to flooding. This tool tells us what information is needed to make good predictions of flooding. We found that information on water levels and waves is most important, followed by the width of the reef. BEWARE can be used to make short-term predictions of flooding in early warning systems, or long-term predictions of how climate change will affect flooding caused by waves on coral reef-lined coasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ERL....11g4005S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ERL....11g4005S"><span>Uncertainty in the Himalayan energy-water nexus: estimating regional exposure to glacial lake outburst floods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schwanghart, Wolfgang; Worni, Raphael; Huggel, Christian; Stoffel, Markus; Korup, Oliver</p> <p>2016-07-01</p> <p>Himalayan water resources attract a rapidly growing number of hydroelectric power projects (HPP) to satisfy Asia’s soaring energy demands. Yet HPP operating or planned in steep, glacier-fed mountain rivers face hazards of glacial lake outburst floods (GLOFs) that can damage hydropower infrastructure, alter water and sediment yields, and compromise livelihoods downstream. Detailed appraisals of such GLOF hazards are limited to case studies, however, and a more comprehensive, systematic analysis remains elusive. To this end we estimate the regional exposure of 257 Himalayan HPP to GLOFs, using a flood-wave propagation model fed by Monte Carlo-derived outburst volumes of >2300 glacial lakes. We interpret the spread of thus modeled peak discharges as a predictive uncertainty that arises mainly from outburst volumes and dam-breach rates that are difficult to assess before dams fail. With 66% of sampled HPP are on potential GLOF tracks, up to one third of these HPP could experience GLOF discharges well above local design floods, as hydropower development continues to seek higher sites closer to glacial lakes. We compute that this systematic push of HPP into headwaters effectively doubles the uncertainty about GLOF peak discharge in these locations. Peak discharges farther downstream, in contrast, are easier to predict because GLOF waves attenuate rapidly. Considering this systematic pattern of regional GLOF exposure might aid the site selection of future Himalayan HPP. Our method can augment, and help to regularly update, current hazard assessments, given that global warming is likely changing the number and size of Himalayan meltwater lakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H43L..01K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H43L..01K"><span>Using Combined X-ray Computed Tomography and Acoustic Resonance to Understand Supercritical CO2 Behavior in Fractured Sandstone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kneafsey, T. J.; Nakagawa, S.</p> <p>2015-12-01</p> <p>Distribution of supercritical (sc) CO2 has a large impact on its flow behavior as well as on the properties of seismic waves used for monitoring. Simultaneous imaging of scCO2 distribution in a rock core using X-ray computed tomography (CT) and measurements of seismic waves in the laboratory can help understand how the distribution evolves as scCO2 invades through rock, and the resulting seismic signatures. To this end, we performed a series of laboratory scCO2 core-flood experiments in intact and fractured anisotropic Carbon Tan sandstone samples. In these experiments, we monitored changes in the CO2 saturation distribution and sonic-frequency acoustic resonances (yielding both seismic velocity and attenuation) over the course of the floods. A short-core resonant bar test system (Split-Hopkinson Resonant Bar Apparatus) custom fit into a long X-ray transparent pressure vessel was used for the seismic measurements, and a modified General Electric medical CT scanner was used to acquire X-ray CT data from which scCO2 saturation distributions were determined. The focus of the experiments was on the impact of single fractures on the scCO2 distribution and the seismic properties. For this reason, we examined several cases including 1. intact, 2. a closely mated fracture along the core axis, 3. a sheared fracture along the core axis (both vertical and horizontal for examining the buoyancy effect), and 4. a sheared fracture perpendicular to the core axis. For the intact and closely mated fractured cores, Young's modulus declined with increasing CO2 saturation, and attenuation increased up to about 15% CO2 saturation after which attenuation declined. For cores having wide axial fractures, the Young's modulus was lower than for the intact and closely mated cases, however did not change much with CO2 pore saturation. Much lower CO2 pore saturations were achieved in these cases. Attenuation increased more rapidly however than for the intact sample. For the core-perpendicular fracture, the Young's modulus decreased quickly with increasing CO2 saturation. Attenuation increased with increasing CO2 saturation until the CO2 front reached the fracture, after which it fell to below that for the brine-saturated case, increasing again as the CO2 invaded the downstream core region.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li class="active"><span>1</span></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_1 --> <div id="page_2" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="21"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033161','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033161"><span>The impact of floods and storms on the acoustic reflectivity of the inner continental shelf: A modeling assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pratson, Lincoln F.; Hutton, E.W.H.; Kettner, A.J.; Syvitski, J.P.M.; Hill, P.S.; George, D.A.; Milligan, T.G.</p> <p>2007-01-01</p> <p>Flood deposition and storm reworking of sediments on the inner shelf can change the mixture of grain sizes on the seabed and thus its porosity, bulk density, bulk compressional velocity and reflectivity. Whether these changes are significant enough to be detectable by repeat sub-bottom sonar surveys, however, is uncertain. Here the question is addressed through numerical modeling. Episodic flooding of a large versus small river over the course of a century are modeled with HYDROTREND using the drainage basin characteristics of the Po and Pescara Rivers (respectively). A similarly long stochastic record of storms offshore of both rivers is simulated from the statistics of a long-term mooring recording of waves in the western Adriatic Sea. These time series are then input to the stratigraphic model SEDFLUX2D, which simulates flood deposition and storm reworking on the inner shelf beyond the river mouths. Finally, annual changes in seabed reflectivity across these shelf regions are computed from bulk densities output by SEDFLUX2D and compressional sound speeds computed from mean seafloor grain size using the analytical model of Buckingham [1997. Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments. Journal of the Acoustical Society of America 102, 2579-2596; 1998. Theory of compressional and shear waves in fluidlike marine sediments. Journal of the Acoustical Society of America 103, 288-299; 2000. Wave propagation, stress relaxation, and grain-tograin shearing in saturated, unconsolidated marine sediments. Journal of the Acoustical Society of America 108, 2796-2815]. The modeling predicts reflectivities that change from 9 dB for muds farther offshore, values that agree with reflectivity measurements for these sediment types. On local scales of ???100 m, however, maximum changes in reflectivity are <0.5 dB. So are most annual changes in reflectivity over all water depths modeled (i.e., 0-35 m). Given that signal differences need to be ???2-3 dB to be resolved, the results suggest that grain-size induced changes in reflectivity caused by floods and storms will rarely be detectable by most current sub-bottom sonars. ?? 2006 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PApGe.tmp...54V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PApGe.tmp...54V"><span>Ultrasonic P- and S-Wave Attenuation and Petrophysical Properties of Deccan Flood Basalts, India, as Revealed by Borehole Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vedanti, Nimisha; Malkoti, Ajay; Pandey, O. P.; Shrivastava, J. P.</p> <p>2018-03-01</p> <p>Petrophysical properties and ultrasonic P- and S-wave attenuation measurements on 35 Deccan basalt core specimens, recovered from Killari borehole site in western India, provide unique reference data-sets for a lesser studied Deccan Volcanic Province. These samples represent 338-m-thick basaltic column, consisting four lava flows each of Ambenali and Poladpur Formations, belonging to Wai Subgroup of the Deccan volcanic sequence. These basalt samples are found to be iron-rich (average FeOT: 13.4 wt%), but relatively poor in silica content (average SiO2: 47.8 wt%). The saturated massive basalt cores are characterized by a mean density of 2.91 g/cm3 (range 2.80-3.01 g/cm3) and mean P- and S-wave velocities of 5.89 km/s (range 5.01-6.50 km/s) and 3.43 km/s (range 2.84-3.69 km/s), respectively. In comparison, saturated vesicular basalt cores show a wide range in density (2.40-2.79 g/cm3) as well as P-wave (3.28-4.78 km/s) and S-wave (1.70-2.95 km/s) velocities. Based on the present study, the Deccan volcanic sequence can be assigned a weighted mean density of 2.74 g/cm3 and a low V p and V s of 5.00 and 3.00 km/s, respectively. Such low velocities in Deccan basalts can be attributed mainly to the presence of fine-grained glassy material, high iron contents, and hydrothermally altered secondary mineral products, besides higher porosity in vesicular samples. The measured Q values in saturated massive basalt cores vary enormously (Q p: 33-1960 and Q s: 35-506), while saturated vesicular basalt samples exhibit somewhat lesser variation in Q p (6-46) as well as Q s (5-49). In general, high-porosity rocks exhibit high attenuation, but we observed the high value of attenuation in some of the massive basalt core samples also. In such cases, energy loss is mainly due to the presence of fine-grained glassy material as well as secondary alteration products like chlorophaeite, that could contribute to intrinsic attenuation. Dominance of weekly bound secondary minerals might also be responsible for the generation of microcracks, which may generate squirt flow in saturated samples. Hence, we argue that the Deccan basalts attenuate seismic energy significantly, where its composition plays a major role.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70195114','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70195114"><span>A Bayesian-based system to assess wave-driven flooding hazards on coral reef-lined coasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pearson, S. G.; Storlazzi, Curt; van Dongeren, A. R.; Tissier, M. F. S.; Reniers, A. J. H. M.</p> <p>2017-01-01</p> <p>Many low-elevation, coral reef-lined, tropical coasts are vulnerable to the effects of climate change, sea level rise, and wave-induced flooding. The considerable morphological diversity of these coasts and the variability of the hydrodynamic forcing that they are exposed to make predicting wave-induced flooding a challenge. A process-based wave-resolving hydrodynamic model (XBeach Non-Hydrostatic, “XBNH”) was used to create a large synthetic database for use in a “Bayesian Estimator for Wave Attack in Reef Environments” (BEWARE), relating incident hydrodynamics and coral reef geomorphology to coastal flooding hazards on reef-lined coasts. Building on previous work, BEWARE improves system understanding of reef hydrodynamics by examining the intrinsic reef and extrinsic forcing factors controlling runup and flooding on reef-lined coasts. The Bayesian estimator has high predictive skill for the XBNH model outputs that are flooding indicators, and was validated for a number of available field cases. It was found that, in order to accurately predict flooding hazards, water depth over the reef flat, incident wave conditions, and reef flat width are the most essential factors, whereas other factors such as beach slope and bed friction due to the presence or absence of corals are less important. BEWARE is a potentially powerful tool for use in early warning systems or risk assessment studies, and can be used to make projections about how wave-induced flooding on coral reef-lined coasts may change due to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7338E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7338E"><span>Calibration of commercial microwave link derived- rainfall and its relevance to flash flood occurrence in the Dead Sea area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eshel, Adam; Alpert, Pinhas; Raich, Roi; Laronne, Jonathan; Merz, Ralf; Geyer, Stefan; Corsmeier, Ulrich</p> <p>2016-04-01</p> <p>Flash floods are a common phenomenon in arid and semi-arid areas such as the Dead Sea. These floods are generated due to a combination of short lasting, yet intense rainfall and typical low infiltration rates. The rare flow events in ephemeral rivers have significant importance in the replenishment of groundwater via transmission losses and in sustaining the vivid ecology of drylands. In some cases, flash floods cause severe damage to infrastructure as well as to private property, constituting a threat to human life. The temporal variation of rainfall intensity is the main driver generating the majority of flash floods in the Judean Desert, hence its monitoring is crucial in this area as in other remote arid areas worldwide. Cellular communication towers are profusely located. Commercial Microwave Links (CML) attenuation data obtained by cellular companies can be used for environmental monitoring. Rain is one of the most effective meteorological phenomena to attenuate a CML signal which, unlike radar backscatter, relates to near-surface conditions and is, therefore, suitable for surface hydrology. A 16 km CML crosses the Wadi Ze'elim drainage basin (~250 square kilometers), at the outlet of which the discharge is calculated using the Manning formula. The hydrometric data include accurate longitudinal and cross sectional measurements, water level and importantly mean water surface velocity when present during a flash flood. The latter is first-ever obtained in desert flash floods by portable, radar-based surface velocimetry. Acquisition of water velocity data is essential to avoid assuming a constant roughness coefficient, thereby more accurately calculating water discharge. Calibrating the CML-rain intensity, derived from the International Telecommunication Union (ITU)'s power law, is necessary to correlate the surface hydrologic response to the link. Our calibration approach is as follows: all the Israel Meteorological Service C-band radar cells over the CML's path were extracted and rain intensities were derived and averaged to simulate the dependence of the CML rain intensity on path's length. The CML-derived rain intensity is then multiplied by a correlation factor, found by fitting the CML intensity to that of the radar's rain (instantaneous rather than cumulative values) using least squares. Relative humidity is taken into account from the beginning of storms because its low values can lead to the Virga phenomenon - rain drops evaporate before reaching the ground, particularly in arid regions. This is a significant disadvantage of using radar data in dry regions. Therefore, the CML contribution may be significant in this environment. Spatial assumptions including uniformity are used to allow the computed specific discharge to be compared to the corrected and the uncorrected rain intensity. The time difference between the runoff generating attenuation pattern and the arrival of the wave at the outlet is examined and can constitute the base of a future short term flood warning system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26742131','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26742131"><span>Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W</p> <p>2016-02-01</p> <p>Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9604D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9604D"><span>The Importance of Precise Digital Elevation Models (DEM) in Modelling Floods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Demir, Gokben; Akyurek, Zuhal</p> <p>2016-04-01</p> <p>Digital elevation Models (DEM) are important inputs for topography for the accurate modelling of floodplain hydrodynamics. Floodplains have a key role as natural retarding pools which attenuate flood waves and suppress flood peaks. GPS, LIDAR and bathymetric surveys are well known surveying methods to acquire topographic data. It is not only time consuming and expensive to obtain topographic data through surveying but also sometimes impossible for remote areas. In this study it is aimed to present the importance of accurate modelling of topography for flood modelling. The flood modelling for Samsun-Terme in Blacksea region of Turkey is done. One of the DEM is obtained from the point observations retrieved from 1/5000 scaled orthophotos and 1/1000 scaled point elevation data from field surveys at x-sections. The river banks are corrected by using the orthophotos and elevation values. This DEM is named as scaled DEM. The other DEM is obtained from bathymetric surveys. 296 538 number of points and the left/right bank slopes were used to construct the DEM having 1 m spatial resolution and this DEM is named as base DEM. Two DEMs were compared by using 27 x-sections. The maximum difference at thalweg of the river bed is 2m and the minimum difference is 20 cm between two DEMs. The channel conveyance capacity in base DEM is larger than the one in scaled DEM and floodplain is modelled in detail in base DEM. MIKE21 with flexible grid is used in 2- dimensional shallow water flow modelling. The model by using two DEMs were calibrated for a flood event (July 9, 2012). The roughness is considered as the calibration parameter. From comparison of input hydrograph at the upstream of the river and output hydrograph at the downstream of the river, the attenuation is obtained as 91% and 84% for the base DEM and scaled DEM, respectively. The time lag in hydrographs does not show any difference for two DEMs and it is obtained as 3 hours. Maximum flood extents differ for the two DEMs, larger flooded area is simulated from scaled DEM. The main difference is observed for the braided and meandering parts of the river. For the meandering part of the river, additional 1.82 106 m3 water (5% of the total volume) is calculated as the flooded volume simulated by using the scaled DEM. For the braided stream part 0.187 106 m3 more water is simulated as the flooded volume by the scaled DEM. The flood extent around the braided part of the river is 27.6 ha larger in the simulated flood map obtained from scaled DEM compared to the one obtained from base DEM. Around the meandering part of the river scaled DEM gave 59.8 ha more flooded area. The importance of correct topography of the braided and meandering part of the river in flood modelling and the uncertainty it brings to modelling are discussed in detail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29510367','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29510367"><span>Defining wet season water quality target concentrations for ecosystem conservation using empirical light attenuation models: A case study in the Great Barrier Reef (Australia).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Petus, Caroline; Devlin, Michelle; Teixera da Silva, Eduardo; Lewis, Stephen; Waterhouse, Jane; Wenger, Amelia; Bainbridge, Zoe; Tracey, Dieter</p> <p>2018-05-01</p> <p>Optically active water quality components (OAC) transported by flood plumes to nearshore marine environments affect light levels. The definition of minimum OAC concentrations that must be maintained to sustain sufficient light levels for conservation of light-dependant coastal ecosystems exposed to flood waters is necessary to guide management actions in adjacent catchments. In this study, a framework for defining OAC target concentrations using empirical light attenuation models is proposed and applied to the Wet Tropics region of the Great Barrier Reef (GBR) (Queensland, Australia). This framework comprises several steps: (i) light attenuation (Kd(PAR)) profiles and OAC measurements, including coloured dissolved organic matter (CDOM), chlorophyll-a (Chl-a) and suspended particulate matter (SPM) concentrations collected in flood waters; (ii) empirical light attenuation models used to define the contribution of CDOM, Chl-a and SPM to the light attenuation, and; (iii) translation of empirical models into manageable OAC target concentrations specific for wet season conditions. Results showed that (i) Kd(PAR) variability in the Wet Tropics flood waters is driven primarily by SPM and CDOM, with a lower contribution from Chl-a (r2 = 0.5, p < 0.01), (ii) the relative contributions of each OAC varies across the different water bodies existing along flood waters and strongest Kd(PAR) predictions were achieved when the in-situ data were clustered into water bodies with similar satellite-derived colour characteristics ('brownish flood waters', r2 = 0.8, p < 0.01, 'greenish flood waters', r2 = 0.5, p < 0.01), and (iii) that Kd(PAR) simulations are sensitive to the angular distribution of the light field in the clearest flood water bodies. Empirical models developed were used to translate regional light guidelines (established for the GBR) into manageable OAC target concentrations. Preliminary results suggested that a 90th percentile SPM concentration of 11.4 mg L -1 should be maintained during the wet season to sustain favourable light levels for Wet Tropics coral reefs and seagrass ecosystems exposed to 'brownish' flood waters. Additional data will be collected to validate the light attenuation models and the wet season target concentration which in future will be incorporated into wider catchment modelling efforts to improve coastal water quality in the Wet Tropics and the GBR. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H12C..01A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H12C..01A"><span>Characterizing Global Flood Wave Travel Times to Optimize the Utility of Near Real-Time Satellite Remote Sensing Products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allen, G. H.; David, C. H.; Andreadis, K. M.; Emery, C. M.; Famiglietti, J. S.</p> <p>2017-12-01</p> <p>Earth observing satellites provide valuable near real-time (NRT) information about flood occurrence and magnitude worldwide. This NRT information can be used in early flood warning systems and other flood management applications to save lives and mitigate flood damage. However, these NRT products are only useful to early flood warning systems if they are quickly made available, with sufficient time for flood mitigation actions to be implemented. More specifically, NRT data latency, or the time period between the satellite observation and when the user has access to the information, must be less than the time it takes a flood to travel from the flood observation location to a given downstream point of interest. Yet the paradigm that "lower latency is always better" may not necessarily hold true in river systems due to tradeoffs between data latency and data quality. Further, the existence of statistical breaks in the global distribution of flood wave travel time (i.e. a jagged statistical distribution) would represent preferable latencies for river-observation NRT remote sensing products. Here we present a global analysis of flood wave velocity (i.e. flow celerity) and travel time. We apply a simple kinematic wave model to a global hydrography dataset and calculate flow wave celerity and travel time during bankfull flow conditions. Bankfull flow corresponds to the condition of maximum celerity and thus we present the "worst-case scenario" minimum flow wave travel time. We conduct a similar analysis with respect to the time it takes flood waves to reach the next downstream city, as well as the next downstream reservoir. Finally, we conduct these same analyses, but with regards to the technical capabilities of the planned Surface Water and Ocean Topography (SWOT) satellite mission, which is anticipated to provide waterbody elevation and extent measurements at an unprecedented spatial and temporal resolution. We validate these results with discharge records from paired USGS gauge stations located along a diverse collection of river reaches. These results provide a scientific rationale for optimizing the utility of existing and future NRT river-observation products.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19..884F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19..884F"><span>Coupled hydrologic and hydraulic modeling of Upper Niger River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Gossett, Marielle; Pontes, Paulo; Calmant, Stephane; Biancamaria, Sylvain; Crétaux, Jean-François; Tanimoune, Bachir</p> <p>2017-04-01</p> <p>The Upper Niger Basin is located in Western Africa, flowing from Guinea Highlands towards the Sahel region. In this area lies the seasonally inundated Niger Inland Delta, which supports important environmental services such as habitats for wildlife, climate and flood regulation, as well as large fishery and agricultural areas. In this study, we present the application of MGB-IPH large scale hydrologic and hydrodynamic model for the Upper Niger Basin, totaling c.a. 650,000 km2 and set up until the city of Niamey in Niger. The model couples hydrological vertical balance and runoff generation with hydrodynamic flood wave propagation, by allowing infiltration from floodplains into soil column as well as representing backwater effects and floodplain storage throughout flat areas such as the Inland Delta. The model is forced with TRMM 3B42 daily precipitation and Climate Research Unit (CRU) climatology for the period 2000-2010, and was calibrated against in-situ discharge gauges and validated with in-situ water level, remotely sensed estimations of flooded areas (classification of MODIS imagery) and satellite altimetry (JASON-2 mission). Model results show good predictions for calibrated daily discharge and validated water level and altimetry at stations both upstream and downstream of the delta (Nash-Sutcliffe Efficiency>0.7 for all stations), as well as for flooded areas within the delta region (ENS=0.5; r2=0.8), allowing a good representation of flooding dynamics basinwide and simulation of flooding behavior of both perennial (e.g., Niger main stem) and ephemeral rivers (e.g., Niger Red Flood tributaries in Sahel). Coupling between hydrology and hydrodynamic processes indicates an important feedback between floodplain and soil water storage that allows high evapotranspiration rates even after the flood passage around the inner delta area. Also, representation of water retention in floodplain channels and distributaries in the inner delta (e.g., Diaka river distributary) is fundamental for the correct representation of the flood wave attenuation in Niger main stem. Improvements could be made in terms of floods propagation across the basin -through parameters such as Manning's roughness and section depth and width-using the comparison with satellite altimetry data, for instance. Finally, such coupled hydrologic and hydrodynamic models prove to be an important tool for integrated evaluation of hydrological processes in such ungauged, large scale floodplain areas. Possible uses of the model involve the assessment of different scenarios of anthropic alteration, e.g., the effects of reservoirs implementation and climate and land use changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA31C..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA31C..03K"><span>Stratospheric mountain wave attenuation in positive and negative ambient wind shear</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kruse, C. G.; Smith, R. B.</p> <p>2016-12-01</p> <p>Recently, much has been learned about the vertical propagation and attenuation of mountain waves launched by the Southern Alps of New Zealand (NZ) from the Deep Propagating Gravity Wave Experiment (DEEPWAVE) field campaign. Over NZ, approximately half of mountain wave events are strongly attenuated in a lower-stratospheric "valve layer," defined as a layer of reduced wind with no critical levels. Within a valve layer, negative wind shear causes mountain waves steepen and attenuate, with the amount of transmitted momentum flux controlled by the minimum wind speed within the layer. The other half of wave events are deep (propagating to 35+ km), usually with positive wind shear. Within these deep events, increasing amplitude with decreasing density causes mountain waves to attenuate gradually (after spatial/temporal averaging). Global reanalyses indicate that this valve layer is a climatological feature in the wintertime mid-latitudes above the subtropical jet, while deep events and gradual attenuation occur over higher latitudes below the polar stratospheric jet. The local physics of mountain wave attenuation in positive and negative ambient wind shear are investigated using realistic winter-long (JJA) 6-km resolution Weather Research and Forecasting (WRF) model simulations over the Andes. Attention is given to the spatiotemporal variability of wave attenuation and the various factors driving this variability (e.g. variability in wave generation, ambient conditions at attenuation level, inherent wave-induced instabilities). Mesoscale potential vorticity generation is used as an indicator of wave attenuation. Additionally, regionally integrated wave momentum flux and gravity wave drag (GWD) within WRF are quantified and compared with parameterized quantities in the MERRA1 and 2 reanalyses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS23B1393J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS23B1393J"><span>Maximizing effectiveness of adaptation action in Pacific Island communities using coastal wave attenuation models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jung, H.; Carruthers, T.; Allison, M. A.; Weathers, D.; Moss, L.; Timmermans, H.</p> <p>2017-12-01</p> <p>Pacific Island communities are highly vulnerable to the effects of climate change, specifically accelerating rates of sea level rise, changes to storm intensity and associated rainfall patterns resulting in flooding and shoreline erosion. Nature-based adaptation is being planned not only to reduce the risk from shoreline erosion, but also to support benefits of a healthy ecosystem (e.g., supporting fisheries or coral reefs). In order to assess potential effectiveness of the nature-based actions to dissipate wave energy, two-dimensional X-Beach models were developed to predict the wave attenuation effect of coastal adaptation actions at the pilot sites—the villages of Naselesele and Somosomo on Taveuni island, Fiji. Both sites are experiencing serious shoreline erosion due to sea level rise and storm wave. The water depth (single-beam bathymetry), land elevation (truck-based LiDAR), and vegetation data including stem density and height were collected in both locations in a June 2017 field experiment. Wave height and water velocity were also measured for the model setup and calibration using a series of bottom-mounted instruments deployed in the 0-15 m water depth portions of the study grid. The calibrated model will be used to evaluate a range of possible adaptation actions identified by the community members of Naselesele and Somosomo. Particularly, multiple storm scenario runs with management-relevant shoreline restoration/adaptation options will be implemented to evaluate efficiencies of each adaptation action (e.g., no action, with additional planted trees, with sand mining, with seawalls constructed with natural materials, etc.). These model results will help to better understand how proposed adaption actions may influence future shoreline change and maximize benefits to communities in island nations across the SW Pacific.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H31I1629L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H31I1629L"><span>Monitoring Urban Stream Restoration Efforts in Relation to Flood Behavior Along Minebank Run, Towson, MD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, G.; Miller, A. J.</p> <p>2017-12-01</p> <p>Urban stream restoration efforts are commonly undertaken to combat channel degradation and restore natural stream hydrology. We examine changes in flood patterns along an approximately 1.5-mile reach of Minebank Run, located in Towson, MD, by comparing pre-restoration morphology from surveys conducted in 2001, post-restoration morphology in 2007, and current conditions in 2017 following damage to the restoration project from persistent flooding. Hydraulic modeling was conducted in HEC-RAS 2D using three alternative scenarios: 1) topographic contours from a 2001 survey of pre-restoration topography combined with 2005 LiDAR, 2) 2007 survey combined with 2005 LiDAR data representing the post-restoration channel morphology, and 3) a March 2017 DEM of current channel conditions. The 2017 DEM was created using Structure from Motion (SfM) from high resolution 4K video collected via Unmanned Aerial Vehicle (UAV) flights at a resolution of 0.05 meters. Flood hydrographs from a USGS stream gage located within the study reach as well as a simulated hydrograph of the 100-year storm event were routed through the pre-restoration, post-restoration, and current modeled terrain and analyzed for changes in water-surface elevation and depth, inundation extent, 2-d velocity fields, and translation vs. attenuation of the flood wave to assess the net impact on potential flood hazards. In addition, our study demonstrates that SfM is a quick and inexpensive method for collecting topographic data for hydrologic modeling, assessing stream characteristics including channel bed roughness, and for examining short term changes of channel morphology at a very fine scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28024173','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28024173"><span>Prioritising the placement of riparian vegetation to reduce flood risk and end-of-catchment sediment yields: Important considerations in hydrologically-variable regions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Croke, Jacky; Thompson, Chris; Fryirs, Kirstie</p> <p>2017-04-01</p> <p>In perennial stream settings, there is abundant literature confirming that riparian vegetation affects flood hydrology by attenuating the flood wave, enhancing deposition and reducing bank erosion. In contrast, relatively little is known about the effectiveness of riparian vegetation during floods in hydrologically-variable regions. The dominant channel form in these settings is often referred to as a 'macrochannel' or compound channel-in-channel which displays multiple inundation surfaces where it is often difficult to identify the active channel bank and bank top. This study uses the inundation pattern of recent flood events in the Lockyer Valley of South East Queensland (SEQ), Australia to present a framework which specifically considers the interaction between inundation frequency and trapping potential on a range of inundation surfaces. Using hydrological modelling and a consistent definition of floodplains and within-channel features, it outlines five key priority areas for the placement of riparian vegetation to alleviate common flood problems within the catchment. The highest priority for the placement of riparian vegetation to ameliorate the effects of small-moderate floods is on within-channel benches. For out-of-macrochannel flows, riparian vegetation is most effective on genetic floodplains which occupy the largest spatial extent within the valley. In particular, it identifies the need for, and benefits of, revegetation in spill out zones (SOZ) which occur where upstream channel capacity is larger and flow is funnelled at high velocity onto the floodplain downstream. This study highlights the importance of understanding the key geomorphic processes occurring within a catchment and developing effective catchment management plans to suit these conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970003473','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970003473"><span>Microwave Backscatter and Attenuation Dependence of Leaf Area Index for Flooded Rice Fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Durden, Stephen L.; Morrissey, Leslie A.; Livingston, Gerald P.</p> <p>1995-01-01</p> <p>Wetlands are important for their role in global climate as a source of methane and other reduced trace gases. As part of an effort to determine whether radar is suitable for wetland vegetation monitoring, we have studied the dependence of microwave backscatter and attenuation on leaf area index (LAI) for flooded rice fields. We find that the radar return from a flooded rice field does show dependence on LAI. In particular, the C-band VV cross section per unit area decreases with increasing LAI. A simple model for scattering from rice fields is derived and fit to the observed HH and VV data. The model fit provides insight into the relation of backscatter to LAI and is also used to calculate the canopy path attenuation as a function of LAI.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4354160','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4354160"><span>The effectiveness of coral reefs for coastal hazard risk reduction and adaptation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ferrario, Filippo; Beck, Michael W.; Storlazzi, Curt D.; Micheli, Fiorenza; Shepard, Christine C.; Airoldi, Laura</p> <p>2014-01-01</p> <p>The world’s coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence. PMID:24825660</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24825660','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24825660"><span>The effectiveness of coral reefs for coastal hazard risk reduction and adaptation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ferrario, Filippo; Beck, Michael W; Storlazzi, Curt D; Micheli, Fiorenza; Shepard, Christine C; Airoldi, Laura</p> <p>2014-05-13</p> <p>The world's coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70121533','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70121533"><span>The effectiveness of coral reefs for coastal hazard risk reduction and adaptation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ferrario, Filippo; Beck, Michael W.; Storlazzi, Curt D.; Micheli, Fiorenza; Shepard, Christine C.; Airoldi, Laura</p> <p>2014-01-01</p> <p>The world’s coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/53052','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/53052"><span>Application of advection-diffusion routing model to flood wave propagation: A case study on Big Piney River, Missouri USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Yang Yang; Theodore A. Endreny; David J. Nowak</p> <p>2016-01-01</p> <p>Flood wave propagation modeling is of critical importance to advancing water resources management and protecting human life and property. In this study, we investigated how the advection-diffusion routing model performed in flood wave propagation on a 16 km long downstream section of the Big Piney River, MO. Model performance was based on gaging station data at the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.8557L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.8557L"><span>Rollover of Apparent Wave Attenuation in Ice Covered Seas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Jingkai; Kohout, Alison L.; Doble, Martin J.; Wadhams, Peter; Guan, Changlong; Shen, Hayley H.</p> <p>2017-11-01</p> <p>Wave attenuation from two field experiments in the ice-covered Southern Ocean is examined. Instead of monotonically increasing with shorter waves, the measured apparent attenuation rate peaks at an intermediate wave period. This "rollover" phenomenon has been postulated as the result of wind input and nonlinear energy transfer between wave frequencies. Using WAVEWATCH III®, we first validate the model results with available buoy data, then use the model data to analyze the apparent wave attenuation. With the choice of source parameterizations used in this study, it is shown that rollover of the apparent attenuation exists when wind input and nonlinear transfer are present, independent of the different wave attenuation models used. The period of rollover increases with increasing distance between buoys. Furthermore, the apparent attenuation for shorter waves drops with increasing separation between buoys or increasing wind input. These phenomena are direct consequences of the wind input and nonlinear energy transfer, which offset the damping caused by the intervening ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title44-vol1/pdf/CFR-2010-title44-vol1-sec65-11.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title44-vol1/pdf/CFR-2010-title44-vol1-sec65-11.pdf"><span>44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title44-vol1/pdf/CFR-2013-title44-vol1-sec65-11.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title44-vol1/pdf/CFR-2013-title44-vol1-sec65-11.pdf"><span>44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title44-vol1/pdf/CFR-2012-title44-vol1-sec65-11.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title44-vol1/pdf/CFR-2012-title44-vol1-sec65-11.pdf"><span>44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title44-vol1/pdf/CFR-2014-title44-vol1-sec65-11.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title44-vol1/pdf/CFR-2014-title44-vol1-sec65-11.pdf"><span>44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title44-vol1/pdf/CFR-2011-title44-vol1-sec65-11.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title44-vol1/pdf/CFR-2011-title44-vol1-sec65-11.pdf"><span>44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189899','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189899"><span>Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: State of knowledge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Peterson, Thomas C.; Heim, Richard R.; Hirsch, Robert M.; Kaiser, Dale P.; Brooks, Harold; Diffenbaugh, Noah S.; Dole, Randall M.; Giovannettone, Jason P.; Guirguis, Kristen; Karl, Thomas R.; Katz, Richard W.; Kunkel, Kenneth E.; Lettenmaier, Dennis P.; McCabe, Gregory J.; Paciorek, Christopher J.; Ryberg, Karen R.; K Wolter, BS Silva; Schubert, Siegfried; Silva, Viviane B. S.; Stewart, Brooke C.; Vecchia, Aldo V.; Villarini, Gabriele; Vose, Russell S.; Walsh, John; Wehner, Michael; Wolock, David; Wolter, Klaus; Woodhouse, Connie A.; Wuebbles, Donald</p> <p>2013-01-01</p> <p>Weather and climate extremes have been varying and changing on many different time scales. In recent decades, heat waves have generally become more frequent across the United States, while cold waves have been decreasing. While this is in keeping with expectations in a warming climate, it turns out that decadal variations in the number of U.S. heat and cold waves do not correlate well with the observed U.S. warming during the last century. Annual peak flow data reveal that river flooding trends on the century scale do not show uniform changes across the country. While flood magnitudes in the Southwest have been decreasing, flood magnitudes in the Northeast and north-central United States have been increasing. Confounding the analysis of trends in river flooding is multiyear and even multidecadal variability likely caused by both large-scale atmospheric circulation changes and basin-scale “memory” in the form of soil moisture. Droughts also have long-term trends as well as multiyear and decadal variability. Instrumental data indicate that the Dust Bowl of the 1930s and the drought in the 1950s were the most significant twentieth-century droughts in the United States, while tree ring data indicate that the megadroughts over the twelfth century exceeded anything in the twentieth century in both spatial extent and duration. The state of knowledge of the factors that cause heat waves, cold waves, floods, and drought to change is fairly good with heat waves being the best understood.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC51F..06O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC51F..06O"><span>What Controls the Hydrodynamics of the Central Congo River?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Loughlin, F.; Bates, P. D.</p> <p>2014-12-01</p> <p>Despite being the second largest river basin in the world, with a drainage area greater than 3.7 million square kilometres, little is known about the hydraulics of the Congo River. This lack of knowledge is mainly due to a mixture of conflicts and the difficulty of accessing existing data. We present results of studies which have focused primarily on the middle reach of the Congo River, located between Kisangani and Kinshasa, and its six main tributaries (Kasai, Ubangai, Sangha, Ruki, Lulonga and Lomami rivers). Through a combination of remotely sensed datasets and a hydrodynamic model we investigated what factors control the hydrodynamics of the middle reach. From the analysis of the remotely sensed datasets, we discover that variability in river width of the middle reach of the Congo is large and cannot be represented by empirical equations which relate channel geometry to basin area and discharge. Water surface slopes vary from 3.5 cm/km to 9 cm/km, which is far more than previous studies suggest. The remote datasets indicate that there exist 5 large constrictions in the river width which may result in backwater affecting between 11 and 33 percent of middle reach at low and high water respectively. These results were corroborated by the hydrodynamic model. In fact, when all constrictions caused by a narrowing in width of 1 km or more are considered, water levels along 43 percent of the middle reach change by at least 0.5 m. Using the hydrodynamic model we also investigated the importance of the wetlands to the attenuation of the flood wave through the system. Initial results suggest that for the Congo River, floodplains have far more impact on the peak magnitude than the timing of the flood wave. When the model was run with no floodplain interactions an increase in the magnitude of flood peak was observed, with the timing of the waves being consistent with observed measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036799','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036799"><span>Supply and dispersal of flood sediment from a steep, tropical watershed: Hanalei Bay, Kaua'i, Hawai'i, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Draut, A.E.; Bothner, Michael H.; Field, M.E.; Reynolds, R.L.; Cochran, S.A.; Logan, J.B.; Storlazzi, C.D.; Berg, C.J.</p> <p>2009-01-01</p> <p>In contrast to many small, mountainous watersheds in temperate coastal regions, where fluvial discharge and wave energy commonly coincide, deposition and reworking of tropical flood sediment can be seasonally decoupled, and this has important implications for coral-reef ecosystems. An understanding of the interaction between tropical flood sedimentation and wave climate is essential to identifying and mitigating effects of watershed changes on coral reefs as urbanization and climate change proceed. Sedimentary facies and isotopic properties of sediment in Hanalei Bay, on the island of Kaua'i, Hawai'i, USA, were used to assess deposition and reworking of flood deposits from the Hanalei River in a case study demonstrating the potential ecosystem effects of runoff from a steep, tropical watershed. In Hanalei Bay, the youngest and thickest terrigenous sediment was consistently present near the river mouth and in a bathymetric depression that acted as at least a temporary sediment sink. During this 2 yr study, the largest flood events occurred in late winter and spring 2006; substantial terrestrial sediment delivered by those floods still remained in the bay as of June 2006 because oceanic conditions were not sufficiently energetic to transport all of the sediment offshore. Additional sediment was deposited in the bay by a summer 2006 flood that coincided with seasonal low wave energy. In most years, flood sediment accumulating in the bay and on its fringing reefs would be remobilized and advected out of the bay during winter, when the wave climate is energetic. Turbidity and sedimentation on corals resulting from late spring and summer floods during low wave energy could have a greater impact on coral-reef ecosystems than floods in other seasons, an effect that could be exacerbated if the incidence and sediment load of tropical summer floods increase due to urbanization and climate change. ?? 2008 Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.G31B..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.G31B..05M"><span>Projections of extreme water level events for atolls in the western Tropical Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.</p> <p>2014-12-01</p> <p>Conditions that lead to extreme water levels and coastal flooding are examined for atolls in the Republic of the Marshall Islands based on a recent field study of wave transformations over fringing reefs, tide gauge observations, and wave model hindcasts. Wave-driven water level extremes pose the largest threat to atoll shorelines, with coastal levels scaling as approximately one-third of the incident breaking wave height. The wave-driven coastal water level is partitioned into a mean setup, low frequency oscillations associated with cross-reef quasi-standing modes, and wind waves that reach the shore after undergoing high dissipation due to breaking and bottom friction. All three components depend on the water level over the reef; however, the sum of the components is independent of water level due to cancelling effects. Wave hindcasts suggest that wave-driven water level extremes capable of coastal flooding are infrequent events that require a peak wave event to coincide with mid- to high-tide conditions. Interannual and decadal variations in sea level do not change the frequency of these events appreciably. Future sea-level rise scenarios significantly increase the flooding threat associated with wave events, with a nearly exponential increase in flooding days per year as sea level exceeds 0.3 to 1.0 m above current levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/26864','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/26864"><span>Probable hydrologic effects of a hypothetical failure of Mackay Dam on the Big Lost River Valley from Mackay, Idaho to the Idaho National Engineering Laboratory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Druffel, Leroy; Stiltner, Gloria J.; Keefer, Thomas N.</p> <p>1979-01-01</p> <p>Mackay Dam is an irrigation reservoir on the Big Lost River, Idaho, approximately 7.2 kilometers northwest of Mackay, Idaho. Consequences of possible rupture of the dam have long concerned the residents of the river valley. The presence of reactors and of a management complex for nuclear wastes on the reservation of the Idaho National Engineering Laboratory (INEL), near the river , give additional cause for concern over the consequences of a rupture of Mackay Dam. The objective of this report is to calculate and route the flood wave resulting from the hypothetical failure of Mackay Dam downstream to the INEL. Both a full and a 50 percent partial breach of this dam are investigated. Two techniques are used to develop the dam-break model. The method of characteristics is used to propagate the shock wave after the dam fails. The linear implicit finite-difference solution is used to route the flood wave after the shock wave has dissipated. The time of travel of the flood wave, duration of flooding, and magnitude of the flood are determined for eight selected sites from Mackay Dam, Idaho, through the INEL diversion. At 4.2 kilometers above the INEL diversion, peak discharges of 1,550.2 and 1,275 cubic meters per second and peak flood elevations of 1,550.3 and 1,550.2 meters were calculated for the full and partial breach, respectively. Flood discharges and flood peaks were not compared for the area downstream of the diversion because of the lack of detailed flood plain geometry. (Kosco-USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Geomo.272....1S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Geomo.272....1S"><span>Floods in mountain environments: A synthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stoffel, Markus; Wyżga, Bartłomiej; Marston, Richard A.</p> <p>2016-11-01</p> <p>Floods are a crucial agent of geomorphic change in the channels and valley floors of mountains watercourses. At the same time, they can be highly damaging to property, infrastructure, and life. Because of their high energy, mountain watercourses are highly vulnerable to environmental changes affecting their catchments and channels. Many factors have modified and frequently still tend to modify the environmental conditions in mountain areas, with impacts on geomorphic processes and the frequency, magnitude, and timing of floods in mountain watercourses. The ongoing climate changes vary between regions but may affect floods in mountain areas in many ways. In many mountain regions of Europe, widespread afforestation took place over the twentieth century, considerably increasing the amounts of large wood delivered to the channels and the likelihood of jamming bridges. At the same time, deforestation continues in other mountain areas, accelerating runoff and amplifying the magnitude and frequency of floods in foreland areas. In many countries, in-channel gravel mining has been a common practice during recent decades; the resultant deficit of bed material in the affected channels may suddenly manifest during flood events, resulting in the failure of scoured bridges or catastrophic channel widening. During the past century many rivers in mountain and foreland areas incised deeply; the resultant loss of floodplain water storage has decreased attenuation of flood waves, hence increasing flood hazard to downstream river reaches. On the other hand, a large amount of recent river restoration activities worldwide may provide examples of beneficial changes to flood risk, attained as a result of increased channel storage or reestablished floodplain water storage. Relations between geomorphic processes and floods operate in both directions, which means that changes in flood probability or the character of floods (e.g., increased wood load) may significantly modify the morphology of mountain rivers, but morphological changes of rivers can also affect hydrological properties of floods and the associated risk for societies. This paper provides a review of research in the field of floods in mountain environments and puts the papers of this special issue dedicated to the same topic into context. It also provides insight into innovative studies, methods, or emerging aspects of the relations between environmental changes, geomorphic processes, and the occurrence of floods in mountain rivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034812','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034812"><span>Coherence of river and ocean conditions along the US West Coast during storms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kniskern, T.A.; Warrick, J.A.; Farnsworth, K.L.; Wheatcroft, R.A.; Goni, M.A.</p> <p>2011-01-01</p> <p>The majority of water and sediment discharge from the small, mountainous watersheds of the US West Coast occurs during and immediately following winter storms. The physical conditions (waves, currents, and winds) within and acting upon the proximal coastal ocean during these winter storms strongly influence dispersal patterns. We examined this river-ocean temporal coherence for four coastal river-shelf systems of the US West Coast (Umpqua, Eel, Salinas, and Santa Clara) to evaluate whether specific ocean conditions occur during floods that may influence coastal dispersal of sediment. Eleven years of corresponding river discharge, wind, and wave data were obtained for each river-shelf system from USGS and NOAA historical records, and each record was evaluated for seasonal and event-based patterns. Because near-bed shear stresses due to waves influence sediment resuspension and transport, we used spectral wave data to compute and evaluate wave-generated bottom-orbital velocities. The highest values of wave energy and discharge for all four systems were consistently observed between October 15 and March 15, and there were strong latitudinal patterns observed in these data with lower discharge and wave energies in the southernmost systems. During floods we observed patterns of river-ocean coherence that differed from the overall seasonal patterns. For example, downwelling winds generally prevailed during floods in the northern two systems (Umpqua and Eel), whereas winds in the southern systems (Salinas and Santa Clara) were generally downwelling before peak discharge and upwelling after peak discharge. Winds not associated with floods were generally upwelling on all four river-shelf systems. Although there are seasonal variations in river-ocean coherence, waves generally led floods in the three northern systems, while they lagged floods in the Santa Clara. Combined, these observations suggest that there are consistent river-ocean coherence patterns along the US West Coast during winter storms and that these patterns vary substantially with latitude. These results should assist with future evaluations of flood plume formation and sediment fate along this coast. ?? 2011 Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70148393','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70148393"><span>Changes in erosion and flooding risk due to long-term and cyclic oceanographic trends</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wahl, Thomas; Plant, Nathaniel G.</p> <p>2015-01-01</p> <p>We assess temporal variations in waves and sea level, which are driving factors for beach 23 erosion and coastal flooding in the northern Gulf of Mexico. We find that long-term trends in 24 the relevant variables have caused an increase of ~30% in the erosion/flooding risk since the 25 1980s. Changes in the wave climate-which have often been ignored in earlier assessments-26 were at least as important as sea-level rise (SLR). In the next decades, SLR will likely become 27 the dominating driver and may in combination with ongoing changes in the wave climate (and 28 depending on the emission scenario) escalate the erosion/flooding risk by up to 300% over the 29 next 30 years. We also find significant changes in the seasonal cycles of sea level and 30 significant wave height, which have in combination caused a considerable increase of the 31 erosion/flooding risk in summer and decrease in winter (superimposed onto the long-term 32 trends)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JOUC...16.1009Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JOUC...16.1009Y"><span>Experimental wave attenuation study over flexible plants on a submerged slope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yin, Zegao; Yang, Xiaoyu; Xu, Yuanzhao; Ding, Meiling; Lu, Haixiang</p> <p>2017-12-01</p> <p>Using plants is a kind of environmentally-friendly coastal protection to attenuate wave energy. In this paper, a set of experiments were conducted to investigate the wave attenuation performance using flexible grasses on a submerged slope, and the wave attenuation coefficient for these experiments was calculated for different still water depths, slope and grass configurations. It was found that the slope plays a significant role in wave attenuation. The wave attenuation coefficient increases with increasing relative row number and relative density. For a small relative row number, the two configurations from the slope top to its toe and from the slope toe to its top performed equally to a large extent. For a medium relative row number, the configuration from the slope toe to its top performed more poorly than that from the slope top to its toe; however, it performed better than that from the slope top to its toe for a high relative row number. With a single row of grasses close to the slope top from the slope toe, the wave attenuation coefficient shows double peaks. With increasing grass rows or still water depth, the grass location corresponding to the maximum wave attenuation coefficient is close to the slope top. The dimensional analysis and the least square method were used to derive an empirical equation of the wave attenuation coefficient considering the effect of relative density, the slope, the relative row number and the relative location of the middle row, and the equation was validated to experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1979/1483/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1979/1483/report.pdf"><span>Field verification of reconstructed dam-break flood, Laurel Run, Pennsylvania</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chen, Cheng-lung; Armbruster, Jeffrey T.</p> <p>1979-01-01</p> <p>A one-dimensional dam-break flood routing model is verified by using observed data on the flash flood resulting from the failure of Laurel Run Reservoir Dam near Johnstown, Pennsylvania. The model has been developed on the basis of an explicit scheme of the characteristics method with specified time intervals. The model combines one of the characteristic equations with the Rankine-Hugoniot shock equations to trace the corresponding characteristic backward to the known state for solving the depth and velocity of flow at the wave front. The previous version of the model has called for a modification of the method of solution to overcome the computational difficulty at the narrow breach and at any geomorphological constraints where channel geometry changes rapidly. The large reduction in the computational inaccuracies and oscillations was achieved by introducing the actual "storage width" in the equation of continuity and the imaginary "conveyance width" in the equation of motion. Close agreement between observed and computed peak stages at several stations downstream of the dam strongly suggests the validity and applicability of the model. However, small numerical noise appearing in the computed stage and discharge hydrographs at the dam site as well as discrepancy of attenuated peaks in the discharge hydrographs indicate the need for further model improvement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27152340','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27152340"><span>Record Balkan floods of 2014 linked to planetary wave resonance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stadtherr, Lisa; Coumou, Dim; Petoukhov, Vladimir; Petri, Stefan; Rahmstorf, Stefan</p> <p>2016-04-01</p> <p>In May 2014, the Balkans were hit by a Vb-type cyclone that brought disastrous flooding and severe damage to Bosnia and Herzegovina, Serbia, and Croatia. Vb cyclones migrate from the Mediterranean, where they absorb warm and moist air, to the north, often causing flooding in central/eastern Europe. Extreme rainfall events are increasing on a global scale, and both thermodynamic and dynamical mechanisms play a role. Where thermodynamic aspects are generally well understood, there is large uncertainty associated with current and future changes in dynamics. We study the climatic and meteorological factors that influenced the catastrophic flooding in the Balkans, where we focus on large-scale circulation. We show that the Vb cyclone was unusually stationary, bringing extreme rainfall for several consecutive days, and that this situation was likely linked to a quasi-stationary circumglobal Rossby wave train. We provide evidence that this quasi-stationary wave was amplified by wave resonance. Statistical analysis of daily spring rainfall over the Balkan region reveals significant upward trends over 1950-2014, especially in the high quantiles relevant for flooding events. These changes cannot be explained by simple thermodynamic arguments, and we thus argue that dynamical processes likely played a role in increasing flood risks over the Balkans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMOS33A1632G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMOS33A1632G"><span>Parcel-scale urban coastal flood mapping: Leveraging the multi-scale CoSMoS model for coastal flood forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gallien, T.; Barnard, P. L.; Sanders, B. F.</p> <p>2011-12-01</p> <p>California coastal sea levels are projected to rise 1-1.4 meters in the next century and evidence suggests mean tidal range, and consequently, mean high water (MHW) is increasing along portions of Southern California Bight. Furthermore, emerging research indicates wind stress patterns associated with the Pacific Decadal Oscillation (PDO) have suppressed sea level rise rates along the West Coast since 1980, and a reversal in this pattern would result in the resumption of regional sea level rise rates equivalent to or exceeding global mean sea level rise rates, thereby enhancing coastal flooding. Newport Beach is a highly developed, densely populated lowland along the Southern California coast currently subject to episodic flooding from coincident high tides and waves, and the frequency and intensity of flooding is expected to increase with projected future sea levels. Adaptation to elevated sea levels will require flood mapping and forecasting tools that are sensitive to the dominant factors affecting flooding including extreme high tides, waves and flood control infrastructure. Considerable effort has been focused on the development of nowcast and forecast systems including Scripps Institute of Oceanography's Coastal Data Information Program (CDIP) and the USGS Multi-hazard model, the Southern California Coastal Storm Modeling System (CoSMoS). However, fine scale local embayment dynamics and overtopping flows are needed to map unsteady flooding effects in coastal lowlands protected by dunes, levees and seawalls. Here, a recently developed two dimensional Godunov non-linear shallow water solver is coupled to water level and wave forecasts from the CoSMoS model to investigate the roles of tides, waves, sea level changes and flood control infrastructure in accurate flood mapping and forecasting. The results of this study highlight the important roles of topographic data, embayment hydrodynamics, water level uncertainties and critical flood processes required for meaningful prediction of sea level rise impacts and coastal flood forecasting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRB..115.7204W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRB..115.7204W"><span>Anisotropic dispersion and attenuation due to wave-induced fluid flow: Quasi-static finite element modeling in poroelastic solids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wenzlau, F.; Altmann, J. B.; Müller, T. M.</p> <p>2010-07-01</p> <p>Heterogeneous porous media such as hydrocarbon reservoir rocks are effectively described as anisotropic viscoelastic solids. They show characteristic velocity dispersion and attenuation of seismic waves within a broad frequency band, and an explanation for this observation is the mechanism of wave-induced pore fluid flow. Various theoretical models quantify dispersion and attenuation of normal incident compressional waves in finely layered porous media. Similar models of shear wave attenuation are not known, nor do general theories exist to predict wave-induced fluid flow effects in media with a more complex distribution of medium heterogeneities. By using finite element simulations of poroelastic relaxation, the total frequency-dependent complex stiffness tensor can be computed for a porous medium with arbitrary internal heterogeneity. From the stiffness tensor, velocity dispersion and frequency-dependent attenuation are derived for compressional and shear waves as a function of the angle of incidence. We apply our approach to the case of layered media and to that of an ellipsoidal poroelastic inclusion. In the case of the ellipsoidal inclusion, compressional and shear wave modes show significant attenuation, and the characteristic frequency dependence of the effect is governed by the spatiotemporal scale of the pore fluid pressure relaxation. In our anisotropic examples, the angle dependence of the attenuation is stronger than that of the velocity dispersion. It becomes clear that the spatial attenuation patterns show specific characteristics of wave-induced fluid flow, implying that anisotropic attenuation measurements may contribute to the inversion of fluid transport properties in heterogeneous porous media.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29422328','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29422328"><span>Impact of Acoustic Radiation Force Excitation Geometry on Shear Wave Dispersion and Attenuation Estimates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lipman, Samantha L; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R</p> <p>2018-04-01</p> <p>Shear wave elasticity imaging (SWEI) characterizes the mechanical properties of human tissues to differentiate healthy from diseased tissue. Commercial scanners tend to reconstruct shear wave speeds for a region of interest using time-of-flight methods reporting a single shear wave speed (or elastic modulus) to the end user under the assumptions that tissue is elastic and shear wave speeds are not dependent on the frequency content of the shear waves. Human tissues, however, are known to be viscoelastic, resulting in dispersion and attenuation. Shear wave spectroscopy and spectral methods have been previously reported in the literature to quantify shear wave dispersion and attenuation, commonly making an assumption that the acoustic radiation force excitation acts as a cylindrical source with a known geometric shear wave amplitude decay. This work quantifies the bias in shear dispersion and attenuation estimates associated with making this cylindrical wave assumption when applied to shear wave sources with finite depth extents, as commonly occurs with realistic focal geometries, in elastic and viscoelastic media. Bias is quantified using analytically derived shear wave data and shear wave data generated using finite-element method models. Shear wave dispersion and attenuation bias (up to 15% for dispersion and 41% for attenuation) is greater for more tightly focused acoustic radiation force sources with smaller depths of field relative to their lateral extent (height-to-width ratios <16). Dispersion and attenuation errors associated with assuming a cylindrical geometric shear wave decay in SWEI can be appreciable and should be considered when analyzing the viscoelastic properties of tissues with acoustic radiation force source distributions with limited depths of field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914466G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914466G"><span>Using seismic arrays to quantify the physics of a glacial outburst flood and its legacy on upland river dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gimbert, Florent; Cook, Kristen; Andermann, Christoff; Hovius, Niels; Turowski, Jens</p> <p>2017-04-01</p> <p>In the Himalayas fluvial erosion is thought to be controlled by the intense annual Indian Summer Monsoon precipitation. However, this region is also exposed to catastrophic floods generated by the sudden failure of landslides or moraine dams. These floods are rare and particularly devastating. Thus they have a strong impact on rivers and adjacent hillslopes, and they represent a hazard for local populations. Due to the difficulties to observe these floods and quantify their physics using traditional methods, their importance for the long-term evolution of Himalayan Rivers remains largely unknown, and no consistent early warning system exists to anticipate these events, especially in trans-boundary regions. Here we show that seismic arrays can be used to (i) reliably anticipate outburst floods and to (ii) quantify multiple and key fluvial processes associated with their propagation and their lasting impacts on upland river dynamics. We report unique seismic observations of a glacial lake outburst flood event that occurred the 5th of July 2016 in the Bhote Koshi River (Central Nepal). Precursory seismic signals are identified from the onset of the lake drainage event such that an early warning alarm may be turned on about an hour before the outburst flood wave reaches areas with an exposed population. Using our network of stations we observe for the first time that the outburst flood wave is in fact made of two distinct waves, namely a water flow wave and a bedload sediment wave. As expected these two waves travel at different speeds. We find that the ratio between the two wave speeds matches with that previously found at much smaller scales in flume laboratory experiments. Based on the physical modelling of both water-flow- and bedload- induced seismic noise we provide estimates of flow depth and bedload transport characteristics (flux, moving grains sizes) prior, during and after the flood. In particular we show that bedload sediment flux is enhanced by up to a factor 30 right after the flood before it goes back to normal about 2 weeks later. This behavior is not only observed for bedload using seismic observations but also for the suspended load from direct sampling measurements. We suggest that this enhanced sediment transport phenomenon reflects the profound and lasting impact of the outburst flood event on the destabilization of river beds and banks. We estimate that the total bedload sediment mass evacuated only due to the destabilization of the river bed and banks by the floods is of similar order of magnitude or larger than that due to the entire monsoon precipitation. Thus the outburst flood definitely has an impact on sediment budget that is at least as large as that due to the Indian Summer Monsoon. This finding underlines the necessity to explicitly account for outburst floods and their impacts on landscapes in landscape evolution models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016211','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016211"><span>Seismic-wave attenuation associated with crustal faults in the New Madrid seismic zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hamilton, R.M.; Mooney, W.D.</p> <p>1990-01-01</p> <p>The attenuation of upper crustal seismic waves that are refracted with a velocity of about 6 kilometers per second varies greatly among profiles in the area of the New Madrid seismic zone in the central Mississippi Valley. The waves that have the strongest attenuation pass through the seismic trend along the axis of the Reelfoot rift in the area of the Blytheville arch. Defocusing of the waves in a low-velocity zone and/ or seismic scattering and absorption could cause the attenuation; these effects are most likely associated with the highly deformed rocks along the arch. Consequently, strong seismic-wave attenuation may be a useful criterion for identifying seismogenic fault zones.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914172L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914172L"><span>Predicting location-specific extreme coastal floods in the future climate by introducing a probabilistic method to calculate maximum elevation of the continuous water mass caused by a combination of water level variations and wind waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leijala, Ulpu; Björkqvist, Jan-Victor; Johansson, Milla M.; Pellikka, Havu</p> <p>2017-04-01</p> <p>Future coastal management continuously strives for more location-exact and precise methods to investigate possible extreme sea level events and to face flooding hazards in the most appropriate way. Evaluating future flooding risks by understanding the behaviour of the joint effect of sea level variations and wind waves is one of the means to make more comprehensive flooding hazard analysis, and may at first seem like a straightforward task to solve. Nevertheless, challenges and limitations such as availability of time series of the sea level and wave height components, the quality of data, significant locational variability of coastal wave height, as well as assumptions to be made depending on the study location, make the task more complicated. In this study, we present a statistical method for combining location-specific probability distributions of water level variations (including local sea level observations and global mean sea level rise) and wave run-up (based on wave buoy measurements). The goal of our method is to obtain a more accurate way to account for the waves when making flooding hazard analysis on the coast compared to the approach of adding a separate fixed wave action height on top of sea level -based flood risk estimates. As a result of our new method, we gain maximum elevation heights with different return periods of the continuous water mass caused by a combination of both phenomena, "the green water". We also introduce a sensitivity analysis to evaluate the properties and functioning of our method. The sensitivity test is based on using theoretical wave distributions representing different alternatives of wave behaviour in relation to sea level variations. As these wave distributions are merged with the sea level distribution, we get information on how the different wave height conditions and shape of the wave height distribution influence the joint results. Our method presented here can be used as an advanced tool to minimize over- and underestimation of the combined effect of sea level variations and wind waves, and to help coastal infrastructure planning and support smooth and safe operation of coastal cities in a changing climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005ASAJ..117.2732M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005ASAJ..117.2732M"><span>Wave-induced fluid flow in random porous media: Attenuation and dispersion of elastic waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Müller, Tobias M.; Gurevich, Boris</p> <p>2005-05-01</p> <p>A detailed analysis of the relationship between elastic waves in inhomogeneous, porous media and the effect of wave-induced fluid flow is presented. Based on the results of the poroelastic first-order statistical smoothing approximation applied to Biot's equations of poroelasticity, a model for elastic wave attenuation and dispersion due to wave-induced fluid flow in 3-D randomly inhomogeneous poroelastic media is developed. Attenuation and dispersion depend on linear combinations of the spatial correlations of the fluctuating poroelastic parameters. The observed frequency dependence is typical for a relaxation phenomenon. Further, the analytic properties of attenuation and dispersion are analyzed. It is shown that the low-frequency asymptote of the attenuation coefficient of a plane compressional wave is proportional to the square of frequency. At high frequencies the attenuation coefficient becomes proportional to the square root of frequency. A comparison with the 1-D theory shows that attenuation is of the same order but slightly larger in 3-D random media. Several modeling choices of the approach including the effect of cross correlations between fluid and solid phase properties are demonstrated. The potential application of the results to real porous materials is discussed. .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SMaS...26j5030T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SMaS...26j5030T"><span>Modeling of the attenuation of stress waves in concrete based on the Rayleigh damping model using time-reversal and PZT transducers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tian, Zhen; Huo, Linsheng; Gao, Weihang; Li, Hongnan; Song, Gangbing</p> <p>2017-10-01</p> <p>Wave-based concrete structural health monitoring has attracted much attention. A stress wave experiences significant attenuation in concrete, however there is a lack of a unified method for predicting the attenuation coefficient of the stress wave. In this paper, a simple and effective absorption attenuation model of stress waves in concrete is developed based on the Rayleigh damping model, which indicates that the absorption attenuation coefficient of stress waves in concrete is directly proportional to the square of the stress wave frequency when the damping ratio is small. In order to verify the theoretical model, related experiments were carried out. During the experiments, a concrete beam was designed in which the d33-model piezoelectric smart aggregates were embedded to detect the propagation of stress waves. It is difficult to distinguish direct stress waves due to the complex propagation paths and the reflection and scattering of stress waves in concrete. Hence, as another innovation of this paper, a new method for computing the absorption attenuation coefficient based on the time-reversal method is developed. Due to the self-adaptive focusing properties of the time-reversal method, the time-reversed stress wave focuses and generates a peak value. The time-reversal method eliminates the adverse effects of multipaths, reflection, and scattering. The absorption attenuation coefficient is computed by analyzing the peak value changes of the time-reversal focused signal. Finally, the experimental results are found to be in good agreement with the theoretical model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title7-vol13/pdf/CFR-2011-title7-vol13-sec1945-6.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title7-vol13/pdf/CFR-2011-title7-vol13-sec1945-6.pdf"><span>7 CFR 1945.6 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>..., tornado, storm, flood, high water, wind-driven water, tidal wave, tsunami, earthquake, volcanic eruption... hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave, tsunami, earthquake, volcanic..., earthquake, hurricane or tornado. (B) A single storm, or series of storms, accompanied by severe hail...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title7-vol13/pdf/CFR-2012-title7-vol13-sec1945-6.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title7-vol13/pdf/CFR-2012-title7-vol13-sec1945-6.pdf"><span>7 CFR 1945.6 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>..., tornado, storm, flood, high water, wind-driven water, tidal wave, tsunami, earthquake, volcanic eruption... hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave, tsunami, earthquake, volcanic..., earthquake, hurricane or tornado. (B) A single storm, or series of storms, accompanied by severe hail...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title7-vol13/pdf/CFR-2010-title7-vol13-sec1945-6.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title7-vol13/pdf/CFR-2010-title7-vol13-sec1945-6.pdf"><span>7 CFR 1945.6 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>..., tornado, storm, flood, high water, wind-driven water, tidal wave, tsunami, earthquake, volcanic eruption... hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave, tsunami, earthquake, volcanic..., earthquake, hurricane or tornado. (B) A single storm, or series of storms, accompanied by severe hail...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1867b0020S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1867b0020S"><span>Investigation of flood routing by a dynamic wave model in trapezoidal channels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sulistyono, B. A.; Wiryanto, L. H.</p> <p>2017-08-01</p> <p>The problems of flood wave propagation, in bodies of waters, cause by intense rains or breaking of control structures, represent a great challenge in the mathematical modeling processes. This research concerns about the development and application of a mathematical model based on the Saint Venant's equations, to study the behavior of the propagation of a flood wave in trapezoidal channels. In these equations, the momentum equation transforms to partial differential equation which has two parameters related to cross-sectional area and discharge of the channel. These new formulas have been solved by using an explicit finite difference scheme. In computation procedure, after computing the discharge from the momentum equation, the cross-sectional area will be obtained from the continuity equation for a given point of channel. To evaluate the behavior of the control variables, several scenarios for the main channel as well as for flood waves are considered and different simulations are performed. The simulations demonstrate that for the same bed width, the peak discharge in trapezoidal channel smaller than in rectangular one at a specific distance along the channel length and so, that roughness coefficient and bed slope of the channel play a strong game on the behavior of the flood wave propagation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1761P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1761P"><span>Role of beach morphology in wave overtopping hazard assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Phillips, Benjamin; Brown, Jennifer; Bidlot, Jean-Raymond; Plater, Andrew</p> <p>2017-04-01</p> <p>Understanding the role of beach morphology in controlling wave overtopping volume will further minimise uncertainties in flood risk assessments at coastal locations defended by engineered structures worldwide. XBeach is used to model wave overtopping volume for a 1:200 yr joint probability distribution of waves and water levels with measured, pre- and post-storm beach profiles. The simulation with measured bathymetry is repeated with and without morphological evolution enabled during the modelled storm event. This research assesses the role of morphology in controlling wave overtopping volumes for hazardous events that meet the typical design level of coastal defence structures. Results show disabling storm-driven morphology under-represents modelled wave overtopping volumes by up to 39% under high Hs conditions, and has a greater impact on the wave overtopping rate than the variability applied within the boundary conditions due to the range of wave-water level combinations that meet the 1:200 yr joint probability criterion. Accounting for morphology in flood modelling is therefore critical for accurately predicting wave overtopping volumes and the resulting flood hazard and to assess economic losses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1214084W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1214084W"><span>Managing runoff and flow pathways in a small rural catchment to reduce flood risk with other multi-purpose benefits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilkinson, Mark; Welton, Phil; Kerr, Peter; Quinn, Paul; Jonczyk, Jennine</p> <p>2010-05-01</p> <p>From 2000 to 2009 there have been a high number of flood events throughout Northern Europe. Meanwhile, there is a demand for land in which to construct homes and businesses on, which is encroaching on land which is prone to flooding. Nevertheless, flood defences usually protect us from this hazard. However, the severity of floods and this demand for land has increased the number of homes which have been flooded in the past ten years. Public spending on flood defences can only go so far which targets the large populations first. Small villages and communities, where in many cases normal flood defences are not cost effective, tend to wait longer for flood mitigation strategies. The Belford Burn (Northumberland, UK) catchment is a small rural catchment that drains an area of 6 km2. It flows through the village of Belford. There is a history of flooding in Belford, with records of flood events dating back to 1877. Normal flood defences are not suitable for this catchment as it failed the Environment Agency (EA) cost benefit criteria for support. There was a desire by the local EA Flood Levy Team and the Northumbria Regional Flood Defence Committee at the Environment Agency to deliver an alternative catchment-based solution to the problem. The EA North East Flood Levy team and Newcastle University have created a partnership to address the flood problem using soft engineered runoff management features. Farm Integrated Runoff Management (FIRM) plans manage flow paths directly by storing slowing and filtering runoff at source on farms. The features are multipurpose addressing water quality, trapping sediment, creating new habitats and storing and attenuating flood flow. Background rainfall and stream stage data have been collected since November 2007. Work on the first mitigation features commenced in July 2008. Since that date five flood events have occurred in the catchment. Two of these flood events caused widespread damage in other areas of the county. However, in Belford only two houses were flooded. Data from the catchment and mitigation features showed that the defence measures resulted in an increase in travel time of the peak and attenuated high flows which would have usually travelled quickly down the channel to the village. For example, the pilot feature appears to have increased the travel time of a flood peak at the top of the catchment from 20 minutes to 35 minutes over a 1 km stretch of channel. There are currently ten active mitigation features present in the catchment. More features are planned for construction this year. Early data from the catchment indicates that the runoff attenuation features are having an impact on reducing flood flows in the channel and also slowing down the flood peak. At the same time the multi-purpose aspects of the features are apparent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21973378','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21973378"><span>Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nelson, Amber M; Hoffman, Joseph J; Anderson, Christian C; Holland, Mark R; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami; Miller, James G</p> <p>2011-10-01</p> <p>Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone. © 2011 Acoustical Society of America</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3206914','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3206914"><span>Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nelson, Amber M.; Hoffman, Joseph J.; Anderson, Christian C.; Holland, Mark R.; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami; Miller, James G.</p> <p>2011-01-01</p> <p>Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone. PMID:21973378</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920067728&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920067728&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal"><span>Wave attenuation in the marginal ice zone during LIMEX</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Antony K.; Vachon, Paris W.; Peng, Chih Y.; Bhogal, A. S.</p> <p>1992-01-01</p> <p>The effect of ice cover on ocean-wave attenuation is investigated for waves under flexure in the marginal ice zone (MIZ) with SAR image spectra and the results of models. Directional wavenumber spectra are taken from the SAR image data, and the wave-attenuation rate is evaluated with SAR image spectra and by means of the model by Liu and Mollo-Christensen (1988). Eddy viscosity is described by means of dimensional analysis as a function of ice roughness and wave-induced velocity, and comparisons are made with the remotely sensed data. The model corrects the open-water model by introducing the effects of a continuous ice sheet, and turbulent eddy viscosity is shown to depend on ice thickness, floe sizes, significant wave height, and wave period. SAR and wave-buoy data support the trends described in the model results, and a characteristic rollover is noted in the model and experimental wave-attenuation rates at high wavenumbers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018WRCM...28..570S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018WRCM...28..570S"><span>Reflection-refraction of attenuated waves at the interface between a thermo-poroelastic medium and a thermoelastic medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharma, M. D.</p> <p>2018-07-01</p> <p>Phenomenon of reflection and refraction is considered at the plane interface between a thermoelastic medium and thermo-poroelastic medium. Both the media are isotropic and behave dissipative to wave propagation. Incident wave in thermo-poroelastic medium is considered inhomogeneous with deviation allowed between the directions of propagation and maximum attenuation. For this incidence, four attenuated waves reflect back in thermo-poroelastic medium and three waves refract to the continuing thermoelastic medium. Each of these reflected/refracted waves is inhomogeneous and propagates with a phase shift. The propagation characteristics (velocity, attenuation, inhomogeneity, phase shift, amplitude, energy) of reflected and refracted waves are calculated as functions of propagation direction and inhomogeneity of the incident wave. Variations in these propagation characteristics with the incident direction are illustrated through a numerical example.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024833','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024833"><span>In situ acoustic and laboratory ultrasonic sound speed and attenuation measured in heterogeneous soft seabed sediments: Eel River shelf, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gorgas, T.J.; Wilkens, R.H.; Fu, S.S.; Neil, Frazer L.; Richardson, M.D.; Briggs, K.B.; Lee, H.</p> <p>2002-01-01</p> <p>We compared in situ and laboratory velocity and attenuation values measured in seafloor sediments from the shallow water delta of the Eel River, California. This region receives a substantial volume of fluvial sediment that is discharged annually onto the shelf. Additionally, a high input of fluvial sediments during storms generates flood deposits that are characterized by thin beds of variable grain-sizes between the 40- and 90-m isobaths. The main objectives of this study were (1) to investigate signatures of seafloor processes on geoacoustic and physical properties, and (2) to evaluate differences between geoacoustic parameters measured in situ at acoustic (7.5 kHz) and in the laboratory at ultrasonic (400 kHz) frequencies. The in situ acoustic measurements were conducted between 60 and 100 m of water depth. Wet-bulk density and porosity profiles were obtained to 1.15 m below seafloor (m bsf) using gravity cores of the mostly cohesive fine-grained sediments across- and along-shelf. Physical and geoacoustic properties from six selected sites obtained on the Eel margin revealed the following. (1) Sound speed and wet-bulk density strongly correlated in most cases. (2) Sediment compaction with depth generally led to increased sound speed and density, while porosity and in situ attenuation values decreased. (3) Sound speed was higher in coarser- than in finer-grained sediments, on a maximum average by 80 m s-1. (4) In coarse-grained sediments sound speed was higher in the laboratory (1560 m s-1) than in situ (1520 m s-1). In contrast, average ultrasonic and in situ sound speed in fine-grained sediments showed only little differences (both approximately 1480 m s-1). (5) Greater attenuation was commonly measured in the laboratory (0.4 and 0.8 dB m-1 kHz-1) than in situ (0.02 and 0.65 dB m-1 kHz-1), and remained almost constant below 0.4 m bsf. We attributed discrepancies between laboratory ultrasonic and in situ acoustic measurements to a frequency dependence of velocity and attenuation. In addition, laboratory attenuation was most likely enhanced due to scattering of sound waves at heterogeneities that were on the scale of ultrasonic wavelengths. In contrast, high in situ attenuation values were linked to stratigraphic scattering at thin-bed layers that form along with flood deposits. ?? 2002 Published by Elsevier Science B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/983927','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/983927"><span>Wall pressure measurements of flooding in vertical countercurrent annular air–water flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Choutapalli, I., Vierow, K.</p> <p>2010-01-01</p> <p>An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet andmore » is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187987','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187987"><span>Doubling of coastal flooding frequency within decades due to sea-level rise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Vitousek, Sean; Barnard, Patrick L.; Fletcher, Charles H.; Frazer, Neil; Erikson, Li; Storlazzi, Curt D.</p> <p>2017-01-01</p> <p>Global climate change drives sea-level rise, increasing the frequency of coastal flooding. In most coastal regions, the amount of sea-level rise occurring over years to decades is significantly smaller than normal ocean-level fluctuations caused by tides, waves, and storm surge. However, even gradual sea-level rise can rapidly increase the frequency and severity of coastal flooding. So far, global-scale estimates of increased coastal flooding due to sea-level rise have not considered elevated water levels due to waves, and thus underestimate the potential impact. Here we use extreme value theory to combine sea-level projections with wave, tide, and storm surge models to estimate increases in coastal flooding on a continuous global scale. We find that regions with limited water-level variability, i.e., short-tailed flood-level distributions, located mainly in the Tropics, will experience the largest increases in flooding frequency. The 10 to 20 cm of sea-level rise expected no later than 2050 will more than double the frequency of extreme water-level events in the Tropics, impairing the developing economies of equatorial coastal cities and the habitability of low-lying Pacific island nations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4427103','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4427103"><span>Pore-Scale Modeling of Pore Structure Effects on P-Wave Scattering Attenuation in Dry Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Tianyang; Qiu, Hao; Wang, Feifei</p> <p>2015-01-01</p> <p>Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks. PMID:25961729</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApCM...24...23N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApCM...24...23N"><span>A New Approach for Quantitative Evaluation of Ultrasonic Wave Attenuation in Composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ni, Qing-Qing; Li, Ran; Xia, Hong</p> <p>2017-02-01</p> <p>When ultrasonic waves propagate in composite materials, the propagation behaviors result from the combination effects of various factors, such as material anisotropy and viscoelastic property, internal microstructure and defects, incident wave characteristics and interface condition between composite components. It is essential to make it clear how these factors affect the ultrasonic wave propagation and attenuation characteristics, and how they mutually interact on each other. In the present paper, based on a newly developed time-domain finite element analysis code, PZflex, a unique approach for clarifying the detailed influence mechanism of aforementioned factors is proposed, in which each attenuation component can be extracted from the overall attenuation and analyzed respectively. By taking into consideration the interrelation between each individual attenuation component, the variation behaviors of each component and internal dynamic stress distribution against material anisotropy and matrix viscosity are separately and quantitatively evaluated. From the detailed analysis results of each attenuation component, the energy dissipation at interface is a major component in ultrasonic wave attenuation characteristics, which can provide a maximum contribution rate of 68.2 % to the overall attenuation, and each attenuation component is closely related to the material anisotropy and viscoelasticity. The results clarify the correlation between ultrasonic wave propagation characteristics and material viscoelastic properties, which will be useful in the further development of ultrasonic technology in defect detection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70196072','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70196072"><span>Wave attenuation across a tidal marsh in San Francisco Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Foster-Martinez, Madeline R.; Lacy, Jessica; Ferner, Matthew C.; Variano, Evan A.</p> <p>2018-01-01</p> <p>Wave attenuation is a central process in the mechanics of a healthy salt marsh. Understanding how wave attenuation varies with vegetation and hydrodynamic conditions informs models of other marsh processes that are a function of wave energy (e.g. sediment transport) and allows for the incorporation of marshes into coastal protection plans. Here, we examine the evolution of wave height across a tidal salt marsh in San Francisco Bay. Instruments were deployed along a cross-shore transect, starting on the mudflat and crossing through zones dominated by Spartina foliosa and Salicornia pacifica. This dataset is the first to quantify wave attenuation for these vegetation species, which are abundant in the intertidal zone of California estuaries. Measurements were collected in the summer and winter to assess seasonal variation in wave attenuation. Calculated drag coefficients of S. foliosa and S. pacifica were similar, indicating equal amounts of vegetation would lead to similar energy dissipation; however, S. pacifica has much greater biomass close to the bed (<20 cm) and retains biomass throughout the year, and therefore, it causes more total attenuation. S. foliosa dies back in the winter, and waves often grow across this section of the marsh. For both vegetation types, attenuation was greatest for low water depths, when the vegetation was emergent. For both seasons, attenuation rates across S. pacifica were the highest and were greater than published attenuation rates across similar (Spartina alterniflora) salt marshes for the comparable depths. These results can inform designs for marsh restorations and management plans in San Francisco Bay and other estuaries containing these species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA569575','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA569575"><span>Wave Height and Water Level Variability on Lakes Michigan and St Clair</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-10-01</p> <p>Observations: http://www.ssec.wisc.edu/sose/glwx_activity.html 4. NASA Atlas of Extratropical Storm Tracks: http://data.giss.nasa.gov/stormtracks...term meteorological, ice, wave, and water level measurements. 15. SUBJECT TERMS Base flood elevation Coastal flood Extratropical storms Great...Box 1027 Detroit, MI 48231-1027 ERDC/CHL TR-12-23 ii Abstract The Great Lakes are subject to coastal flooding as a result of severe storms</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPA....8e6616L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPA....8e6616L"><span>Influence of the electromagnetic parameters on the surface wave attenuation in thin absorbing layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Yinrui; Li, Dongmeng; Wang, Xian; Nie, Yan; Gong, Rongzhou</p> <p>2018-05-01</p> <p>This paper describes the relationships between the surface wave attenuation properties and the electromagnetic parameters of radar absorbing materials (RAMs). In order to conveniently obtain the attenuation constant of TM surface waves over a wide frequency range, the simplified dispersion equations in thin absorbing materials were firstly deduced. The validity of the proposed method was proved by comparing with the classical dispersion equations. Subsequently, the attenuation constants were calculated separately for the absorbing layers with hypothetical relative permittivity and permeability. It is found that the surface wave attenuation properties can be strongly tuned by the permeability of RAM. Meanwhile, the permittivity should be appropriate so as to maintain high cutoff frequency. The present work provides specific methods and designs to improve the attenuation performances of radar absorbing materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4339835','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4339835"><span>Physical and Economic Impacts of Sea-Level Rise and Low Probability Flooding Events on Coastal Communities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Prime, Thomas; Brown, Jennifer M.; Plater, Andrew J.</p> <p>2015-01-01</p> <p>Conventionally flood mapping typically includes only a static water level (e.g. peak of a storm tide) in coastal flood inundation events. Additional factors become increasingly important when increased water-level thresholds are met during the combination of a storm tide and increased mean sea level. This research incorporates factors such as wave overtopping and river flow in a range of flood inundation scenarios of future sea-level projections for a UK case study of Fleetwood, northwest England. With increasing mean sea level it is shown that wave overtopping and river forcing have an important bearing on the cost of coastal flood events. The method presented converts inundation maps into monetary cost. This research demonstrates that under scenarios of joint extreme surge-wave-river events the cost of flooding can be increased by up to a factor of 8 compared with an increase in extent of up to a factor of 3 relative to “surge alone” event. This is due to different areas being exposed to different flood hazards and areas with common hazard where flood waters combine non-linearly. This shows that relying simply on flood extent and volume can under-predict the actual economic impact felt by a coastal community. Additionally, the scenario inundation depths have been presented as “brick course” maps, which represent a new way of interpreting flood maps. This is primarily aimed at stakeholders to increase levels of engagement within the coastal community. PMID:25710497</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25710497','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25710497"><span>Physical and economic impacts of sea-level rise and low probability flooding events on coastal communities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Prime, Thomas; Brown, Jennifer M; Plater, Andrew J</p> <p>2015-01-01</p> <p>Conventionally flood mapping typically includes only a static water level (e.g. peak of a storm tide) in coastal flood inundation events. Additional factors become increasingly important when increased water-level thresholds are met during the combination of a storm tide and increased mean sea level. This research incorporates factors such as wave overtopping and river flow in a range of flood inundation scenarios of future sea-level projections for a UK case study of Fleetwood, northwest England. With increasing mean sea level it is shown that wave overtopping and river forcing have an important bearing on the cost of coastal flood events. The method presented converts inundation maps into monetary cost. This research demonstrates that under scenarios of joint extreme surge-wave-river events the cost of flooding can be increased by up to a factor of 8 compared with an increase in extent of up to a factor of 3 relative to "surge alone" event. This is due to different areas being exposed to different flood hazards and areas with common hazard where flood waters combine non-linearly. This shows that relying simply on flood extent and volume can under-predict the actual economic impact felt by a coastal community. Additionally, the scenario inundation depths have been presented as "brick course" maps, which represent a new way of interpreting flood maps. This is primarily aimed at stakeholders to increase levels of engagement within the coastal community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20058999','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20058999"><span>A unifying fractional wave equation for compressional and shear waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Holm, Sverre; Sinkus, Ralph</p> <p>2010-01-01</p> <p>This study has been motivated by the observed difference in the range of the power-law attenuation exponent for compressional and shear waves. Usually compressional attenuation increases with frequency to a power between 1 and 2, while shear wave attenuation often is described with powers less than 1. Another motivation is the apparent lack of partial differential equations with desirable properties such as causality that describe such wave propagation. Starting with a constitutive equation which is a generalized Hooke's law with a loss term containing a fractional derivative, one can derive a causal fractional wave equation previously given by Caputo [Geophys J. R. Astron. Soc. 13, 529-539 (1967)] and Wismer [J. Acoust. Soc. Am. 120, 3493-3502 (2006)]. In the low omegatau (low-frequency) case, this equation has an attenuation with a power-law in the range from 1 to 2. This is consistent with, e.g., attenuation in tissue. In the often neglected high omegatau (high-frequency) case, it describes attenuation with a power-law between 0 and 1, consistent with what is observed in, e.g., dynamic elastography. Thus a unifying wave equation derived properly from constitutive equations can describe both cases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034360','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034360"><span>Analysis of dispersion and attenuation of surface waves in poroelastic media in the exploration-seismic frequency band</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zhang, Y.; Xu, Y.; Xia, J.</p> <p>2011-01-01</p> <p>We analyse dispersion and attenuation of surface waves at free surfaces of possible vacuum/poroelastic media: permeable-'open pore', impermeable-'closed pore' and partially permeable boundaries, which have not been previously reported in detail by researchers, under different surface-permeable, viscous-damping, elastic and fluid-flowing conditions. Our discussion is focused on their characteristics in the exploration-seismic frequency band (a few through 200 Hz) for near-surface applications. We find two surface-wave modes exist, R1 waves for all conditions, and R2 waves for closed-pore and partially permeable conditions. For R1 waves, velocities disperse most under partially permeable conditions and least under the open-pore condition. High-coupling damping coefficients move the main dispersion frequency range to high frequencies. There is an f1 frequency dependence as a constant-Q model for attenuation at high frequencies. R1 waves for the open pore are most sensitive to elastic modulus variation, but least sensitive to tortuosities variation. R1 waves for partially permeable surface radiate as non-physical waves (Im(k) < 0) at low frequencies. For R2 waves, velocities are slightly lower than the bulk slow P2 waves. At low frequencies, both velocity and attenuation are diffusive of f1/2 frequency dependence, as P2 waves. It is found that for partially permeable surfaces, the attenuation displays -f1 frequency dependence as frequency increasing. High surface permeability, low-coupling damping coefficients, low Poisson's ratios, and low tortuosities increase the slope of the -f1 dependence. When the attenuation coefficients reach 0, R2 waves for partially permeable surface begin to radiate as non-physical waves. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SoSyR..50..508K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SoSyR..50..508K"><span>Laws of attenuation of axially symmetrical shock waves in shells of detonating extended charges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuzin, E. N.; Zagarskih, V. I.; Efanov, V. V.</p> <p>2016-12-01</p> <p>The procedure and algorithms are proposed for an experimental and computational estimate of attenuation of radial shock waves occurring in shells of detonating extended charges during glancing detonation of their ammunition (explosives). Based on results of experimental, the semiempirical dependence characterizing the attenuation law for such waves is obtained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910000103&hterms=sensors+pressure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsensors%2Bpressure','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910000103&hterms=sensors+pressure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsensors%2Bpressure"><span>Calculation Of Pneumatic Attenuation In Pressure Sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Whitmore, Stephen A.</p> <p>1991-01-01</p> <p>Errors caused by attenuation of air-pressure waves in narrow tubes calculated by method based on fundamental equations of flow. Changes in ambient pressure transmitted along narrow tube to sensor. Attenuation of high-frequency components of pressure wave calculated from wave equation derived from Navier-Stokes equations of viscous flow in tube. Developed to understand and compensate for frictional attenuation in narrow tubes used to connect aircraft pressure sensors with pressure taps on affected surfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA568876','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA568876"><span>Seismic Attenuation, Event Discrimination, Magnitude and Yield Estimation, and Capability Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-09-01</p> <p>waves are subject to path-dependent variations in amplitudes. We see geographic similarities between the crustal shear-wave attenuation and the...either Sn or Lg depending on tectonic region, distance, and frequency. Over the past year, we have made great progress on the calibration of surface...between the crustal shear-wave attenuation and the results from the coda attenuation. Calibration of coda in the Middle East and other areas is</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29339333','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29339333"><span>Coral reefs for coastal protection: A new methodological approach and engineering case study in Grenada.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reguero, Borja G; Beck, Michael W; Agostini, Vera N; Kramer, Philip; Hancock, Boze</p> <p>2018-03-15</p> <p>Coastal communities in tropical environments are at increasing risk from both environmental degradation and climate change and require urgent local adaptation action. Evidences show coral reefs play a critical role in wave attenuation but relatively little direct connection has been drawn between these effects and impacts on shorelines. Reefs are rarely assessed for their coastal protection service and thus not managed for their infrastructure benefits, while widespread damage and degradation continues. This paper presents a systematic approach to assess the protective role of coral reefs and to examine solutions based on the reef's influence on wave propagation patterns. Portions of the shoreline of Grenville Bay, Grenada, have seen acute shoreline erosion and coastal flooding. This paper (i) analyzes the historical changes in the shoreline and the local marine, (ii) assess the role of coral reefs in shoreline positioning through a shoreline equilibrium model first applied to coral reef environments, and (iii) design and begin implementation of a reef-based solution to reduce erosion and flooding. Coastline changes in the bay over the past 6 decades are analyzed from bathymetry and benthic surveys, historical imagery, historical wave and sea level data and modeling of wave dynamics. The analysis shows that, at present, the healthy and well-developed coral reefs system in the southern bay keeps the shoreline in equilibrium and stable, whereas reef degradation in the northern bay is linked with severe coastal erosion. A comparison of wave energy modeling for past bathymetry indicates that degradation of the coral reefs better explains erosion than changes in climate and historical sea level rise. Using this knowledge on how reefs affect the hydrodynamics, a reef restoration solution is designed and studied to ameliorate the coastal erosion and flooding. A characteristic design provides a modular design that can meet specific engineering, ecological and implementation criteria. Four pilot units were implemented in 2015 and are currently being field-tested. This paper presents one of the few existing examples available to date of a reef restoration project designed and engineered to deliver risk reduction benefits. The case study shows how engineering and ecology can work together in community-based adaptation. Our findings are particularly important for Small Island States on the front lines of climate change, who have the most to gain from protecting and managing coral reefs as coastal infrastructure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP33A1054C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP33A1054C"><span>Experimental study on unsteady open channel flow and bedload transport based on a physical model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cao, W.</p> <p>2015-12-01</p> <p>Flow in a nature river are usually unsteady, while nearly all the theories about bedload transport are on the basis of steady, uniform flow, and also with supposed equilibrium state of sediment transport. This is may be one of the main reasons why the bedload transport formulas are notoriously poor accuracy to predict the bedload. The aim of this research is to shed light on the effect of unsteadiness on the bedload transport based on experimental studies. The novel of this study is that the experiments were not carried out in a conventional flume but in a physical model, which are more similar to the actual river. On the other hand, in our experiments, multiple consecutive flood wave were reproduced in the physical model, and all the flow and sediment parameters are based on a large number of data obtained from many of identical flood waves. This method allow us to get more data for one flood, efficiently avoids the uncertainty of bedload rate only for one single flood wave, due to the stochastic fluctuation of the bedload transport. Three different flood waves were selected in the experiments. During each run of experiment, the water level of five different positions along the model were measured by ultrasonic water level gauge, flow velocity at the middle of the channel were measured by two dimensional electromagnetic current meter. Moreover, the bedload transport rate was measured by a unique automatic trap collecting and weighing system at the end of the physical model. The results shows that the celerity of flood wave propagate varies for different flow conditions. The velocity distribution was approximately accord with log-law profile during the entire rising and falling limb of flood. The bedload transport rate show intensity fluctuation in all the experiments, moreover, for different flood waves, the moment when the shear stress reaches its maximum value is not the exact moment when the sediment transport rate reaches its maximum value, which indicates that the movement of flow and the sediment are not always synchronous during the flood processes. Comparing the bedload transport rate with the existing results of steady flows shows that the bedload transport capacity in unsteady flow is greater than that of the steady flow with same bed shear stresses. (Supported by KPNST(2013BAB12B01; 2012BAB04B01) and NSFC(11472310))</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcDyn..67..973Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcDyn..67..973Z"><span>Evolution of wave and tide over vegetation region in nearshore waters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Mingliang; Zhang, Hongxing; Zhao, Kaibin; Tang, Jun; Qin, Huifa</p> <p>2017-08-01</p> <p>Coastal wetlands are an important ecosystem in nearshore regions, where complex flow characteristics occur because of the interactions among tides, waves, and plants, especially in the discontinuous flow of the intertidal zone. In order to simulate the wave and wave-induced current in coastal waters, in this study, an explicit depth-averaged hydrodynamic (HD) model has been dynamically coupled with a wave spectral model (CMS-Wave) by sharing the tide and wave data. The hydrodynamic model is based on the finite volume method; the intercell flux is computed using the Harten-Lax-van Leer (HLL) approximate Riemann solver for computing the dry-to-wet interface; the drag force of vegetation is modeled as the sink terms in the momentum equations. An empirical wave energy dissipation term with plant effect has been derived from the wave action balance equation to account for the resistance induced by aquatic vegetation in the CMS-Wave model. The results of the coupling model have been verified using the measured data for the case with wave-tide-vegetation interactions. The results show that the wave height decreases significantly along the wave propagation direction in the presence of vegetation. In the rip channel system, the oblique waves drive a meandering longshore current; it moves from left to right past the cusps with oscillations. In the vegetated region, the wave height is greatly attenuated due to the presence of vegetation, and the radiation stresses are noticeably changed as compared to the region without vegetation. Further, vegetation can affect the spatial distribution of mean velocity in a rip channel system. In the co-exiting environment of tides, waves, and vegetation, the locations of wave breaking and wave-induced radiation stress also vary with the water level of flooding or ebb tide in wetland water, which can also affect the development and evolution of wave-induced current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27714324','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27714324"><span>Blast wave attenuation in liquid foams: role of gas and evidence of an optimal bubble size.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Monloubou, Martin; Bruning, Myrthe A; Saint-Jalmes, Arnaud; Dollet, Benjamin; Cantat, Isabelle</p> <p>2016-09-28</p> <p>Liquid foams are excellent systems to mitigate pressure waves such as acoustic or blast waves. The understanding of the underlying dissipation mechanisms however still remains an active matter of debate. In this paper, we investigate the attenuation of a weak blast wave by a liquid foam. The wave is produced with a shock tube and impacts a foam, with a cylindrical geometry. We measure the wave attenuation and velocity in the foam as a function of bubble size, liquid fraction, and the nature of the gas. We show that the attenuation depends on the nature of the gas and we experimentally evidence a maximum of dissipation for a given bubble size. All features are qualitatively captured by a model based on thermal dissipation in the gas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036820','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036820"><span>Sedimentation processes in a coral reef embayment: Hanalei Bay, Kauai</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Storlazzi, C.D.; Field, M.E.; Bothner, Michael H.; Presto, M.K.; Draut, A.E.</p> <p>2009-01-01</p> <p>Oceanographic measurements and sediment samples were collected during the summer of 2006 as part of a multi-year study of coastal circulation and the fate of terrigenous sediment on coral reefs in Hanalei Bay, Kauai. The goal of this study was to better understand sediment dynamics in a coral reef-lined embayment where winds, ocean surface waves, and river floods are important processes. During a summer period that was marked by two wave events and one river flood, we documented significant differences in sediment trap collection rates and the composition, grain size, and magnitude of sediment transported in the bay. Sediment trap collection rates were well correlated with combined wave-current near-bed shear stresses during the non-flood periods but were not correlated during the flood. The flood's delivery of fine-grained sediment to the bay initially caused high turbidity and sediment collection rates off the river mouth but the plume dispersed relatively quickly. Over the next month, the flood deposit was reworked by mild waves and currents and the fine-grained terrestrial sediment was advected around the bay and collected in sediment traps away from the river mouth, long after the turbid surface plume was gone. The reworked flood deposits, due to their longer duration of influence and proximity to the seabed, appear to pose a greater long-term impact to benthic coral reef communities than the flood plumes themselves. The results presented here display how spatial and temporal differences in hydrodynamic processes, which result from variations in reef morphology and orientation, cause substantial variations in the deposition, residence time, resuspension, and advection of both reef-derived and fluvial sediment over relatively short spatial scales in a coral reef embayment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025413','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025413"><span>Anisotropic changes in P-wave velocity and attenuation during deformation and fluid infiltration of granite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stanchits, S.A.; Lockner, D.A.; Ponomarev, A.V.</p> <p>2003-01-01</p> <p>Fluid infiltration and pore fluid pressure changes are known to have a significant effect on the occurrence of earthquakes. Yet, for most damaging earthquakes, with nucleation zones below a few kilometers depth, direct measurements of fluid pressure variations are not available. Instead, pore fluid pressures are inferred primarily from seismic-wave propagation characteristics such as Vp/Vs ratio, attenuation, and reflectivity contacts. We present laboratory measurements of changes in P-wave velocity and attenuation during the injection of water into a granite sample as it was loaded to failure. A cylindrical sample of Westerly granite was deformed at constant confining and pore pressures of 50 and 1 MPa, respectively. Axial load was increased in discrete steps by controlling axial displacement. Anisotropic P-wave velocity and attenuation fields were determined during the experiment using an array of 13 piezoelectric transducers. At the final loading steps (86% and 95% of peak stress), both spatial and temporal changes in P-wave velocity and peak-to-peak amplitudes of P and S waves were observed. P-wave velocity anisotropy reached a maximum of 26%. Transient increases in attenuation of up to 483 dB/m were also observed and were associated with diffusion of water into the sample. We show that velocity and attenuation of P waves are sensitive to the process of opening of microcracks and the subsequent resaturation of these cracks as water diffuses in from the surrounding region. Symmetry of the orientation of newly formed microcracks results in anisotropic velocity and attenuation fields that systematically evolve in response to changes in stress and influx of water. With proper scaling, these measurements provide constraints on the magnitude and duration of velocity and attenuation transients that can be expected to accompany the nucleation of earthquakes in the Earth's crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.S41C..03L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.S41C..03L"><span>Attenuation in the Upper Mantle Beneath the Northern Apennines (Italy) from Teleseismic P- and S-Wave Spectra</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lucente, F. P.; Piccinini, D.; Dibona, M.; Levin, V.; Park, J.</p> <p>2007-12-01</p> <p>We present preliminary results for seismic attenuation in the mantle beneath the Italian region. We estimate P- and S-wave spectral ratios from teleseisms recorded at the temporary broadband seismic network deployed during the RETREAT (Retreating-TRrench, Extension, and Accretion Tectonics) project. We examine body-wave attenuation variation across the northern part of the Apennines mountain belt, which represents the accretionary wedge exposed during recent episodes of the subduction process in Italy. The data recorded during the three-year seismic campaign were analyzed using an ad hoc semi-automated procedure based on the cross-correlation analysis of a single phase across all the stations for each event. The seismic phases analyzed (P, S, SKS) display different patterns of seismic attenuation. Furthermore, we observe systematic variations in the distribution of the attenuation values as function of both the azimuth and the incidence angle of the seismic rays. Relatively high attenuation values are found on the Tyrrhenian side by seismic rays coming from the SW for both P- and S-phases. For NE-approaching rays the pattern of high attenuation values varies considerably, depending on the seismic phases: for P-waves it grossly corresponds to the mountain belt, while for S-waves it extends over almost the whole study area. By correlating attenuation estimates and the velocity structure from the existing tomographic models, we can make some inferences on the thermal state of the sublithospheric mantle, and on the physical properties of the tectonic elements which constitute the subduction system in the region. From the analysis of the P-phases we can clearly distinguish three main areas with different attenuation values, corresponding to the back-arc mantle (high attenuation), to the slab (low attenuation) and to the retro-slab mantle (high attenuation). The correspondence between the identified elements of the subduction system and the S- waves attenuation is not straightforward, and need to be further investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4701249','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4701249"><span>Time-Efficient High-Rate Data Flooding in One-Dimensional Acoustic Underwater Sensor Networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kwon, Jae Kyun; Seo, Bo-Min; Yun, Kyungsu; Cho, Ho-Shin</p> <p>2015-01-01</p> <p>Because underwater communication environments have poor characteristics, such as severe attenuation, large propagation delays and narrow bandwidths, data is normally transmitted at low rates through acoustic waves. On the other hand, as high traffic has recently been required in diverse areas, high rate transmission has become necessary. In this paper, transmission/reception timing schemes that maximize the time axis use efficiency to improve the resource efficiency for high rate transmission are proposed. The excellence of the proposed scheme is identified by examining the power distributions by node, rate bounds, power levels depending on the rates and number of nodes, and network split gains through mathematical analysis and numerical results. In addition, the simulation results show that the proposed scheme outperforms the existing packet train method. PMID:26528983</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70150452','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70150452"><span>The role of floodplain restoration in mitigating flood risk, Lower Missouri River, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jacobson, Robert B.; Lindner, Garth; Bitner, Chance; Hudson, Paul F.; Middelkoop, Hans</p> <p>2015-01-01</p> <p>Recent extreme floods on the Lower Missouri River have reinvigorated public policy debate about the potential role of floodplain restoration in decreasing costs of floods and possibly increasing other ecosystem service benefits. The first step to addressing the benefits of floodplain restoration is to understand the interactions of flow, floodplain morphology, and land cover that together determine the biophysical capacity of the floodplain. In this article we address interactions between ecological restoration of floodplains and flood-risk reduction at 3 scales. At the scale of the Lower Missouri River corridor (1300 km) floodplain elevation datasets and flow models provide first-order calculations of the potential for Missouri River floodplains to store floods of varying magnitude and duration. At this same scale assessment of floodplain sand deposition from the 2011 Missouri River flood indicates the magnitude of flood damage that could potentially be limited by floodplain restoration. At the segment scale (85 km), 1-dimensional hydraulic modeling predicts substantial stage reductions with increasing area of floodplain restoration; mean stage reductions range from 0.12 to 0.66 m. This analysis also indicates that channel widening may contribute substantially to stage reductions as part of a comprehensive strategy to restore floodplain and channel habitats. Unsteady 1-dimensional flow modeling of restoration scenarios at this scale indicates that attenuation of peak discharges of an observed hydrograph from May 2007, of similar magnitude to a 10 % annual exceedance probability flood, would be minimal, ranging from 0.04 % (with 16 % floodplain restoration) to 0.13 % (with 100 % restoration). At the reach scale (15–20 km) 2-dimensional hydraulic models of alternative levee setbacks and floodplain roughness indicate complex processes and patterns of flooding including substantial variation in stage reductions across floodplains depending on topographic complexity and hydraulic roughness. Detailed flow patterns captured in the 2-dimensional model indicate that most floodplain storage occurs on the rising limb of the flood as water flows into floodplain bottoms from downstream; at a later time during the rising limb this pattern is reversed and the entire bottom conveys discharge down the valley. These results indicate that flood-risk reduction by attenuation is likely to be small on a large river like the Missouri and design strategies to optimize attenuation and ecological restoration should focus on frequent floods (20–50 % annual exceedance probability). Local stage reductions are a more certain benefit of floodplain restoration but local effects are highly dependent on magnitude of flood discharge and how floodplain vegetation communities contribute to hydraulic roughness. The most certain flood risk reduction benefit of floodplain restoration is avoidance of flood damages to crops and infrastructure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1612361B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1612361B"><span>Attenuation of seismic waves obtained by coda waves analysis in the West Bohemia earthquake swarm region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bachura, Martin; Fischer, Tomas</p> <p>2014-05-01</p> <p>Seismic waves are attenuated by number of factors, including geometrical spreading, scattering on heterogeneities and intrinsic loss due the anelasticity of medium. Contribution of the latter two processes can be derived from the tail part of the seismogram - coda (strictly speaking S-wave coda), as these factors influence the shape and amplitudes of coda. Numerous methods have been developed for estimation of attenuation properties from the decay rate of coda amplitudes. Most of them work with the S-wave coda, some are designed for the P-wave coda (only on teleseismic distances) or for the whole waveforms. We used methods to estimate the 1/Qc - attenuation of coda waves, methods to separate scattering and intrinsic loss - 1/Qsc, Qi and methods to estimate attenuation of direct P and S wave - 1/Qp, 1/Qs. In this study, we analyzed the S-wave coda of local earthquake data recorded in the West Bohemia/Vogtland area. This region is well known thanks to the repeated occurrence of earthquake swarms. We worked with data from the 2011 earthquake swarm, which started late August and lasted with decreasing intensity for another 4 months. During the first week of swarm thousands of events were detected with maximum magnitudes ML = 3.6. Amount of high quality data (including continuous datasets and catalogues with an abundance of well-located events) is available due to installation of WEBNET seismic network (13 permanent and 9 temporary stations) monitoring seismic activity in the area. Results of the single-scattering model show seismic attenuations decreasing with frequency, what is in agreement with observations worldwide. We also found decrease of attenuation with increasing hypocentral distance and increasing lapse time, which was interpreted as a decrease of attenuation with depth (coda waves on later lapse times are generated in bigger depths - in our case in upper lithosphere, where attenuations are small). We also noticed a decrease of frequency dependence of 1/Qc with depth, where 1/Qc seems to be frequency independent in depth range of upper lithosphere. Lateral changes of 1/Qc were also reported - it decreases in the south-west direction from the Novy Kostel focal zone, where the attenuation is the highest. Results from more advanced methods that allow for separation of scattering and intrinsic loss show that intrinsic loss is a dominant factor for attenuating of seismic waves in the region. Determination of attenuation due to scattering appears ambiguous due to small hypocentral distances available for the analysis, where the effects of scattering in frequency range from 1 to 24 Hz are not significant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ShWav.tmp...43G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ShWav.tmp...43G"><span>Shock wave attenuation in a micro-channel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giordano, J.; Perrier, P.; Meister, L.; Brouillette, M.</p> <p>2018-05-01</p> <p>This work presents optical measurements of shock wave attenuation in a glass micro-channel. This transparent facility, with a cross section ranging from 1 mm× 150 μm to 1 mm× 500 μm, allowed for the use of high-speed schlieren videography to visualize the propagation of a shock wave within the entire micro-channel and to quantify velocity attenuation of the wave due to wall effects. In this paper, we present the experimental technique and the relevant data treatment we have used to increase the sensitivity of shock wave detection. Then, we compared our experimental results for different channel widths, lengths, and shock wave velocities with the analytical model for shock attenuation proposed by Russell (J Fluid Mech 27(2):305-314, 1967), which assumes laminar flow, and by Mirels (Attenuation in a shock tube due to unsteady-boundary-layer action, NACA Report 1333, 1957) for turbulent flow. We found that these models are inadequate to predict the observed data, owing to the presence of fully developed flow which violates the basic assumption of these models. The data are also compared with the empirical shock attenuation models proposed by Zeitoun (Phys Fluids 27(1):011701, 2015) and Deshpande and Puranik (Shock Waves 26(4):465-475, 2016), where better agreement is observed. Finally, we presented experimental data for the flow field behind the shock wave from measurements of the Mach wave angle which shows globally decreasing flow Mach numbers due to viscous wall effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H33N..06J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H33N..06J"><span>A Parallel, Multi-Scale Watershed-Hydrologic-Inundation Model with Adaptively Switching Mesh for Capturing Flooding and Lake Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ji, X.; Shen, C.</p> <p>2017-12-01</p> <p>Flood inundation presents substantial societal hazards and also changes biogeochemistry for systems like the Amazon. It is often expensive to simulate high-resolution flood inundation and propagation in a long-term watershed-scale model. Due to the Courant-Friedrichs-Lewy (CFL) restriction, high resolution and large local flow velocity both demand prohibitively small time steps even for parallel codes. Here we develop a parallel surface-subsurface process-based model enhanced by multi-resolution meshes that are adaptively switched on or off. The high-resolution overland flow meshes are enabled only when the flood wave invades to floodplains. This model applies semi-implicit, semi-Lagrangian (SISL) scheme in solving dynamic wave equations, and with the assistant of the multi-mesh method, it also adaptively chooses the dynamic wave equation only in the area of deep inundation. Therefore, the model achieves a balance between accuracy and computational cost.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP33A1049W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP33A1049W"><span>Effects of Hydrologic Restoration on Flood Resilience and Sediment Dynamics of Urban Creeks in the UK and USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wright, N.</p> <p>2015-12-01</p> <p>Hydrologic restoration in urban creeks is increasingly regarded as a more sustainable option than traditional grey infrastructures in many countries including the UK and USA. Hydrologic restoration aims to recreate naturally oriented hydro-morphodynamic processes while adding ecological and amenity value to a river corridor. Nevertheless, the long-term hydraulic performance of river restorations is incompletely understood. The aim of this research was to investigate the long-term effects of river restoration on the water storage, flood attenuation and sediment dynamics of two urban creeks through detailed hydro-morphodynamic modelling. The first case study is based on Johnson Creek located at Portland, Oregon, USA, and the second case based on Ouseburn River in Newcastle upon Tyne, N.E. England. This study focuses on the downstream of the Johnson Creek, where creek is reconnected to a restored East Lents floodplain of 0.28 km2. In order to offset the increased urban runoff in the Ouseburn catchment, a number of attenuation ponds were implemented along the river. In this study, an integrated 1D and 2D flood model (ISIS - TUFLOW) and the recently updated layer-based hydro-morphodynamic model have been used to understand the long-term impacts of these restorations on the flood and sediment dynamics. The event-based simulations (500 year, 100 year, 50 year, 10 year and 5 year), as well as the continuous simulations based on the historical flow datasets were systematically undertaken. Simulation results showed that the flood storage as a result of river restoration attenuate the flood peak by up to 25% at the downstream. Results also indicated that about 30% of the sediments generated from the upstream deposited in the resorted regions. The spatial distribution and amount of short and long-term sediment deposition on the floodplain and pond are demonstrated, and the resulting potential loss of the flood storage capacity are analysed and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3835722','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3835722"><span>The Inhomogeneous Waves in a Rotating Piezoelectric Body</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chen, Si</p> <p>2013-01-01</p> <p>This paper presents the analysis and numerical results of rotation, propagation angle, and attenuation angle upon the waves propagating in the piezoelectric body. Via considering the centripetal and Coriolis accelerations in the piezoelectric equations with respect to a rotating frame of reference, wave velocities and attenuations are derived and plotted graphically. It is demonstrated that rotation speed vector can affect wave velocities and make the piezoelectric body behaves as if it was damping. Besides, the effects of propagation angle and attenuation angle are presented. Critical point is found when rotation speed is equal to wave frequency, around which wave characteristics change drastically. PMID:24298219</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/27331','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/27331"><span>Hydrologic effects of hypothetical earthquake-caused floods below Jackson Lake, northwestern Wyoming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Glass, W.R.; Keefer, T.N.; Rankl, J.G.</p> <p>1976-01-01</p> <p>Jackson Lake, located in Grand Teton National Park, Wyoming, is in an area of seismic instability. There is a possibility of flooding in the Snake River downstream from Jackson Lake Dam in the event of a severe earthquake. Hypothetical floods were routed 38 miles (61 kilometers) downstream from the dam for three cases: (1) Instantaneous destruction of the dam outlet structure, (2) instantaneous destruction of the entire dam, and (3) for waves overtopping the dam without failure of the dam. In each case, a full reservoir was assumed. Hydrographs for outflow from the reservoir for the two cases of dam failure were developed utilizing an accelerated discharge due to the travel of a negative wave through the reservoir, and Muskingum storage routing. For the case of waves overtopping the dam, a 10-foot (3-meter) wave was assumed to be propagated from the upstream end of the reservori. A multiple-linearization technique was used to route the flow through the reach. The model was calibrated from U.S. Geological Survey streamflow records. Most extensive flooding and largest water velocities would occur if the entire dam were destroyed; floods for the other two cases were smaller. An inundation map was prepared from channel conveyance curves and profiles of the water surface. (Woodard-USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.T13B1960Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.T13B1960Y"><span>Developing a Short-Period, Fundamental-Mode Rayleigh-Wave Attenuation Model for Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, X.; Levshin, A. L.; Barmin, M. P.; Ritzwoller, M. H.</p> <p>2008-12-01</p> <p>We are developing a 2D, short-period (12 - 22 s), fundamental-mode Rayleigh-wave attenuation model for Asia. This model can be used to invert for a 3D attenuation model of the Earth's crust and upper mantle as well as to implement more accurate path corrections in regional surface-wave magnitude calculations. The prerequisite for developing a reliable Rayleigh-wave attenuation model is the availability of accurate fundamental-mode Rayleigh-wave amplitude measurements. Fundamental-mode Rayleigh-wave amplitudes could be contaminated by a variety of sources such as multipathing, focusing and defocusing, body wave, higher-mode surface wave, and other noise sources. These contaminations must be reduced to the largest extent possible. To achieve this, we designed a procedure by taking advantage of certain Rayleigh-wave characteristics, such as dispersion and elliptical particle motion, for accurate amplitude measurements. We first analyze the dispersion of the surface-wave data using a spectrogram. Based on the characteristics of the data dispersion, we design a phase-matched filter by using either a manually picked dispersion curve, or a group-velocity-model predicted dispersion curve, or the dispersion of the data, and apply the filter to the seismogram. Intelligent filtering of the seismogram and windowing of the resulting cross-correlation based on the spectrogram analysis and the comparison between the phase-match filtered data spectrum, the raw-data spectrum and the theoretical source spectrum effectively reduces amplitude contaminations and results in reliable amplitude measurements in many cases. We implemented these measuring techniques in a graphic-user-interface tool called Surface Wave Amplitude Measurement Tool (SWAMTOOL). Using the tool, we collected and processed waveform data for 200 earthquakes occurring throughout 2003-2006 inside and around Eurasia. The records from 135 broadband stations were used. After obtaining the Rayleigh-wave amplitude measurements, we analyzed the attenuation behavior of the amplitudes using source- and receiver-specific terms calculated from a 3D velocity model of the region. Based on the results, we removed amplitudes that yielded negative average attenuation coefficients, and included an additional parameter in the inversion to account for the possible bias of the CMT moments. Using the high-quality amplitude measurements in a tomographic inversion, we obtained a fundamental-mode Rayleigh-wave attenuation- coefficient model for periods between 12 and 22 s for Asia and surrounding regions. The inverted attenuation model is consistent with the geological features of Asia. We observe low attenuation in stable regions such as eastern Europe, the Siberian platforms, the Indian shield, the Arabian platform, the Yangtze craton, and others. High attenuation is observed in tectonically active regions such as the Himalayas, the Tian Shan, Pamir and Zagros mountains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RMRE...51.1347N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RMRE...51.1347N"><span>Determining the Viscosity Coefficient for Viscoelastic Wave Propagation in Rock Bars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niu, Leilei; Zhu, Wancheng; Li, Shaohua; Guan, Kai</p> <p>2018-05-01</p> <p>Rocks with microdefects exhibit viscoelastic behavior during stress wave propagation. The viscosity coefficient of the wave can be used to characterize the attenuation as the wave propagates in rock. In this study, a long artificial bar with a readily adjustable viscosity coefficient was fabricated to investigate stress wave attenuation. The viscoelastic behavior of the artificial bar under dynamic loading was investigated, and the initial viscoelastic coefficient was obtained based on the amplitude attenuation of the incident harmonic wave. A one-dimensional wave propagation program was compiled to reproduce the time history of the stress wave measured during the experiments, and the program was well fitted to the Kelvin-Voigt model. The attenuation and dispersion of the stress wave in long artificial viscoelastic bars were quantified to accurately determine the viscoelastic coefficient. Finally, the method used to determine the viscoelastic coefficient of a long artificial bar based on the experiments and numerical simulations was extended to determine the viscoelastic coefficient of a short rock bar. This study provides a new method of determining the viscosity coefficient of rock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H23D1705S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H23D1705S"><span>Hydrological controls on transient aquifer storage in a karst watershed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spellman, P.; Martin, J.; Gulley, J. D.</p> <p>2017-12-01</p> <p>While surface storage of floodwaters is well-known to attenuate flood peaks, transient storage of floodwaters in aquifers is a less recognized mechanism of flood peak attenuation. The hydraulic gradient from aquifer to river controls the magnitude of transient aquifer storage and is ultimately a function of aquifer hydraulic conductivity, and effective porosity. Because bedrock and granular aquifers tend to have lower hydraulic conductivities and porosities, their ability to attenuate flood peaks is generally small. In karst aquifers, however, extensive cave systems create high hydraulic conductivities and porosities that create low antecedent hydraulic gradients between aquifers and rivers. Cave springs can reverse flow during high discharges in rivers, temporarily storing floodwaters in the aquifer thus reducing the magnitude of flood discharge downstream. To date however, very few studies have quantified the magnitude or controls of transient aquifer storage in karst watersheds. We therefore investigate controls on transient aquifer storage by using 10 years of river and groundwater data from the Suwannee River Basin, which flows over the karstic upper Floridan aquifer in north-central Florida. We use multiple linear regression to compare the effects of three hydrological controls on the magnitude of transient aquifer storage: antecedent stage, recharge and slope of hydrograph rise. We show the dominant control on transient aquifer storage is antecedent stage, whereby lower stages result in greater magnitudes of transient aquifer storage. Our results suggest that measures of groundwater levels prior to an event can be useful in determining whether transient aquifer storage will occur and may provide a useful metric for improving predictions of flood magnitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7408L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7408L"><span>The role of alpine rockfall aquifer systems in baseflow maintenance and flood attenuation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lauber, Ute; Kotyla, Patrick; Morche, David; Goldscheider, Nico</p> <p>2015-04-01</p> <p>Rockfall masses are frequent in alpine valleys. Huge rockfalls (millions to billions m³) precipitated after the end of the last glaciation, but many large events (thousand to millions m³) have occurred in historical time, and increasingly during the past decades, as a result of glacier retreat and thawing of permafrost. Most hydrological research focuses on water as a cause or trigger of rockfalls, while much less research has been done on the hydrogeological properties and functions of rockfall masses in alpine valleys. We have studied a series of rockfall and alluvial aquifer systems in the Reintal valley, German Alps, where all surface water infiltrates underground and reemerges downgradient from the rockfall masses. The goal of the study was to characterize the role of this rockfall aquifer in baseflow maintenance and flood attenuation. Employed methods include geomorphological and hydrogeological mapping, tracer tests, and continuous flow measurements. Field observations have revealed that both the infiltration and exfiltration locations vary as a function of the hydrologic conditions. Underground flow path length range from 500 m during high flows to 2 km during low flows; measured groundwater flow velocities range between 13 and 30 m/h; lag times between upstream and downstream flood peaks are 5 to 101 hours. Flood peaks were dampened by a factor of 1.5 and the maximum discharge ratio (22) and peak recession coefficient (0.2/d) downstream are very low compared with other alpine catchments. These results indicate that rockfall aquifers can play an important role in the flow regime and flood attenuation in alpine regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22486415-propagation-characteristics-electromagnetic-waves-through-plasma-near-field-region-low-frequency-loop-antenna','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22486415-propagation-characteristics-electromagnetic-waves-through-plasma-near-field-region-low-frequency-loop-antenna"><span>The propagation characteristics of electromagnetic waves through plasma in the near-field region of low-frequency loop antenna</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, DongLin, E-mail: donglinliu@stu.xidian.edu.cn; Li, XiaoPing; Xie, Kai</p> <p>2015-10-15</p> <p>A high-speed vehicle flying through the atmosphere between 100 and 20 km may suffer from a “communication blackout.” In this paper, a low frequency system with an on-board loop antenna to receive signals is presented as a potential blackout mitigation method. Because the plasma sheath is in the near-field region of the loop antenna, the traditional scattering matrix method that is developed for the far-field region may overestimate the electromagnetic (EM) wave's attenuation. To estimate the EM wave's attenuation in the near-field region, EM interference (EMI) shielding theory is introduced. Experiments are conducted, and the results verify the EMI shielding theory'smore » effectiveness. Simulations are also conducted with different plasma parameters, and the results obtained show that the EM wave's attenuation in the near-field region is far below than that in the far-field region. The EM wave's attenuation increases with the increase in electron density and decreases with the increase in collision frequency. The higher the frequency, the larger is the EM wave's attenuation. During the entire re-entry phase of a RAM-C module, the EM wave's attenuations are below 10 dB for EM waves with a frequency of 1 MHz and below 1 dB for EM waves with a frequency of 100 kHz. Therefore, the low frequency systems (e.g., Loran-C) may provide a way to transmit some key information to high-speed vehicles even during the communication “blackout” period.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMOS22B..02C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMOS22B..02C"><span>Mapping Coastal Flood Zones for the National Flood Insurance Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carlton, D.; Cook, C. L.; Weber, J.</p> <p>2004-12-01</p> <p>The National Flood Insurance Program (NFIP) was created by Congress in 1968, and significantly amended in 1973 to reduce loss of life and property caused by flooding, reduce disaster relief costs caused by flooding and make Federally backed flood insurance available to property owners. These goals were to be achieved by requiring building to be built to resist flood damages, guide construction away from flood hazards, and transferring the cost of flood losses from taxpayers to policyholders. Areas subject to flood hazards were defined as those areas that have a probability greater than 1 percent of being inundated in any given year. Currently over 19,000 communities participate in the NFIP, many of them coastal communities subject to flooding from tides, storm surge, waves, or tsunamis. The mapping of coastal hazard areas began in the early 1970's and has been evolving ever since. At first only high tides and storm surge were considered in determining the hazardous areas. Then, after significant wave caused storm damage to structures outside of the mapped hazard areas wave hazards were also considered. For many years FEMA has had Guidelines and Specifications for mapping coastal hazards for the East Coast and the Gulf Coast. In September of 2003 a study was begun to develop similar Guidelines and Specifications for the Pacific Coast. Draft Guidelines and Specifications will be delivered to FEMA by September 30, 2004. During the study tsunamis were identified as a potential source of a 1 percent flood event on the West Coast. To better understand the analytical results, and develop adequate techniques to estimate the magnitude of a tsunami with a 1 percent probability of being equaled or exceeded in any year, a pilot study has begun at Seaside Oregon. Both the onshore velocity and the resulting wave runup are critical functions for FEMA to understand and potentially map. The pilot study is a cooperative venture between NOAA and USGS that is partially funded by both agencies and by FEMA. The results of the pilot study will help FEMA determine when tsunamis should be considered in mapping coastal hazards, how to predict their impact, how they should be mapped and possibly the construction standards for zones mapped as having a 1 percent or greater chance of suffering a tsunami.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMNH51C1908O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMNH51C1908O"><span>Validating high-resolution California coastal flood modeling with Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Neill, A.</p> <p>2015-12-01</p> <p>The Coastal Storm Modeling System (CoSMoS) is a numerical modeling scheme used to predict coastal flooding due to sea level rise and storms influenced by climate change, currently in use in central California and in development for Southern California (Pt. Conception to the Mexican border). Using a framework of circulation, wave, analytical, and Bayesian models at different geographic scales, high-resolution results are translated as relevant hazards projections at the local scale that include flooding, wave heights, coastal erosion, shoreline change, and cliff failures. Ready access to accurate, high-resolution coastal flooding data is critical for further validation and refinement of CoSMoS and improved coastal hazard projections. High-resolution Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) provides an exceptional data source as appropriately-timed flights during extreme tides or storms provide a geographically-extensive method for determining areas of inundation and flooding extent along expanses of complex and varying coastline. Landward flood extents are numerically identified via edge-detection in imagery from single flights, and can also be ascertained via change detection using additional flights and imagery collected during average wave/tide conditions. The extracted flooding positions are compared against CoSMoS results for similar tide, water level, and storm-intensity conditions, allowing for robust testing and validation of CoSMoS and providing essential feedback for supporting regional and local model improvement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA616445','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA616445"><span>Observation-Based Dissipation and Input Terms for Spectral Wave Models, with End-User Testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-30</p> <p>scale influence of the Great barrier reef matrix on wave attenuation, Coral Reefs [published, refereed] Ghantous, M., and A.V. Babanin, 2014: One...Observation-Based Dissipation and Input Terms for Spectral Wave Models...functions, based on advanced understanding of physics of air-sea interactions, wave breaking and swell attenuation, in wave - forecast models. OBJECTIVES The</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6354268','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/6354268"><span>Surface acoustic wave dust deposition monitor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Fasching, G.E.; Smith, N.S. Jr.</p> <p>1988-02-12</p> <p>A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JSV...347...96L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JSV...347...96L"><span>Investigation of guided wave propagation and attenuation in pipe buried in sand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter</p> <p>2015-07-01</p> <p>Long-range guided wave testing is a well-established method for detection of corrosion defects in pipelines. The method is currently used routinely for above ground pipelines in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised and unpredictable due to attenuation of the guided wave resulting from energy leakage into the embedding soil. The attenuation characteristics of guided wave propagation in an 8 in. pipe buried in sand are investigated using a laboratory full-scale experimental rig and model predictions. We report measurements of attenuation of the T(0,1) and L(0,2) guided wave modes over a range of sand conditions, including loose, compacted, mechanically compacted, water saturated and drained. Attenuation values are found to be in the range of 1.65-5.5 dB/m and 0.98-3.2 dB/m for the torsional and longitudinal modes, respectively, over the frequency of 11-34 kHz. The application of overburden pressure modifies the compaction of the sand and increases the attenuation. Mechanical compaction of the sand yields similar attenuation values to those obtained with applied overburden pressure. The attenuation decreases in the fully water-saturated sand, and increases in drained sand to values comparable with those obtained for compacted sand. Attenuation measurements are compared with Disperse software model predictions and confirm that the attenuation phenomenon in buried pipes is essentially governed by the bulk shear velocity in the sand. The attenuation behaviour of the torsional guided wave mode is found not to be captured by a uniform soil model; comparison with predictions obtained with the Disperse software suggest that this is likely to be due to a layer of sand adhering to the surface of the pipe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22611683-development-attenuation-diffraction-corrections-linear-nonlinear-rayleigh-surface-waves-radiating-from-uniform-line-source','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22611683-development-attenuation-diffraction-corrections-linear-nonlinear-rayleigh-surface-waves-radiating-from-uniform-line-source"><span>Development of attenuation and diffraction corrections for linear and nonlinear Rayleigh surface waves radiating from a uniform line source</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jeong, Hyunjo, E-mail: hjjeong@wku.ac.kr; Cho, Sungjong; Zhang, Shuzeng</p> <p>2016-04-15</p> <p>In recent studies with nonlinear Rayleigh surface waves, harmonic generation measurements have been successfully employed to characterize material damage and microstructural changes, and found to be sensitive to early stages of damage process. A nonlinearity parameter of Rayleigh surface waves was derived and frequently measured to quantify the level of damage. The accurate measurement of the nonlinearity parameter generally requires making corrections for beam diffraction and medium attenuation. These effects are not generally known for nonlinear Rayleigh waves, and therefore not properly considered in most of previous studies. In this paper, the nonlinearity parameter for a Rayleigh surface wave ismore » defined from the plane wave displacement solutions. We explicitly define the attenuation and diffraction corrections for fundamental and second harmonic Rayleigh wave beams radiated from a uniform line source. Attenuation corrections are obtained from the quasilinear theory of plane Rayleigh wave equations. To obtain closed-form expressions for diffraction corrections, multi-Gaussian beam (MGB) models are employed to represent the integral solutions derived from the quasilinear theory of the full two-dimensional wave equation without parabolic approximation. Diffraction corrections are presented for a couple of transmitter-receiver geometries, and the effects of making attenuation and diffraction corrections are examined through the simulation of nonlinearity parameter determination in a solid sample.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770018764','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770018764"><span>The distribution of seismic velocities and attenuation in the earth. Ph.D. Thesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hart, R. S.</p> <p>1977-01-01</p> <p>Estimates of the radial distribution of seismic velocities and density and of seismic attenuation within the earth are obtained through inversion of body wave, surface wave, and normal mode data. The effect of attenuation related dispersion on gross earth structure, and on the reliability of eigenperiod identifications is discussed. The travel time baseline discrepancies between body waves and free oscillation models are examined and largely resolved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JVGR..173...69S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JVGR..173...69S"><span>The rain-triggered Atenquique volcaniclastic debris flow of October 16, 1955 at Nevado de Colima Volcano, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saucedo, R.; Macías, J. L.; Sarocchi, D.; Bursik, M.; Rupp, B.</p> <p>2008-06-01</p> <p>On October 16, 1955, at 10:45 a.m. (local time), after three days of intense rain (140 mm) that was twice the monthly average precipitation, a devastating flood surge formed a volcaniclastic debris flow on the eastern slopes of Nevado de Colima Volcano. Nearly simultaneous flood surges formed in the Arroyo Seco, Los Platanos, and Dos Volcanes ravines that coalesced with the larger flow in the Atenquique ravine. At each confluence with a tributary, the flow was diluted. The texture and structure of the preserved 1955 deposits near high water marks indicate that the downstream flow was mainly in the lower range of debris flow concentration (60% sediment concentration by weight). Downstream the tributaries, the flood encountered a ˜ 0.06 × 10 6 m 3 water reservoir that failed, significantly increasing the surge volume. Additional entrained sediment also increased the flow volume. Downstream, the flood wave reached the town of Atenquique as an 8-9 m catastrophic wave causing the death of more than 23 people, the partial destruction of the town, and losses of ˜ 13,000,000 pesos (˜ 1 million US dollars today) to a paper mill and company facilities. According to eyewitness accounts the flood wave had a peak discharge that lasted ca. 10 to 15 minutes at Atenquique. Deposits at the site and the high-water marks observed from photographs of the town's church indicate that sediment concentration was ca. 60 wt.%. The flood continued for about 1 km to its junction with the Tuxpan River where it was diluted by mixing with normal flood flow. The deposits covered an area of ˜ 1.2 km 2 and had a minimum volume of ˜ 3.2 × 10 6 m 3. The main deposit consists of a single unit, averaging 4 m in thickness, with weak textural variations that suggest surging within the flood wave. The deposit is heterolithologic and consists of boulders set in a matrix of sand-size sediment, with polymodal or bimodal distributions and normal grading varying with distance from source. The town of Atenquique has been reconstructed largely within the area inundated by the 1955 flood wave, thus creating the conditions for a future disaster. A rainfall-intensity warning system and an educational program for inhabitants are strategies to mitigate this risk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.489...37S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.489...37S"><span>P-wave attenuation in the Pacific slab beneath northeastern Japan revealed by the spectral ratio of intraslab earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shiina, Takahiro; Nakajima, Junichi; Matsuzawa, Toru</p> <p>2018-05-01</p> <p>We investigate P-wave attenuation, Qp-1, in the Pacific slab beneath northeastern (NE) Japan, adopting for the first time the spectral ratio technique for intraslab earthquakes. When seismograms of two earthquakes are recorded at a station and their ray paths to the station are largely overlapped, station-dependent amplification and structural effects on the overlapped rays can be canceled out from the ratio of the spectral amplitudes of the seismograms. Therefore, adopting the spectral ratio technique for intraslab earthquakes has a great advantage for the precise evaluation of Qp-1 in the slab because the structural effects above the slab, including the high-attenuation mantle wedge, are removed. For estimating the intraslab Qp-1, we determined corner frequency of the intraslab earthquakes using the S-coda wave spectral ratio as the first step. Then, we evaluated the inter-event path attenuation, Δt*, from the ratio of the spectral amplitudes of P waves. The obtained result shows that P-wave attenuation in the Pacific slab marks Qp-1 of 0.0015 (Qp of ∼670) at depths of 50-250 km. This indicates that the P-wave attenuation in the Pacific slab is weaker than that in the mantle wedge. The relatively high-Qp-1 is correlated with the distributions of intraslab earthquakes, suggesting that the P-wave amplitude is more attenuated around active seismicity zones in the slab. Therefore, our observations likely indicate the presence of fractures, hydrous minerals, and dehydrated fluid around seismogenic zones in the slab at intermediate depths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=325550','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=325550"><span>Laboratory and field investigations of wave attenuation by live marsh vegetation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Wave attenuation by live marsh vegetation was investigated experimentally in this study. Laboratory experiments were conducted in a 20.6 m long, 0.69 m wide and 1.22 m deep wave flume under regular and random waves. The vegetation species used are Spartina alterniflora and Juncus roemerianus, which ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22410057-damping-factor-estimation-using-spin-wave-attenuation-permalloy-film','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22410057-damping-factor-estimation-using-spin-wave-attenuation-permalloy-film"><span>Damping factor estimation using spin wave attenuation in permalloy film</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Manago, Takashi, E-mail: manago@fukuoka-u.ac.jp; Yamanoi, Kazuto; Kasai, Shinya</p> <p>2015-05-07</p> <p>Damping factor of a Permalloy (Py) thin film is estimated by using the magnetostatic spin wave propagation. The attenuation lengths are obtained by the dependence of the transmission intensity on the antenna distance, and decrease with increasing magnetic fields. The relationship between the attenuation length, damping factor, and external magnetic field is derived theoretically, and the damping factor was determined to be 0.0063 by fitting the magnetic field dependence of the attenuation length, using the derived equation. The obtained value is in good agreement with the general value of Py. Thus, this estimation method of the damping factor using spinmore » waves attenuation can be useful tool for ferromagnetic thin films.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EaFut...5.1002B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EaFut...5.1002B"><span>Future Reef Growth Can Mitigate Physical Impacts of Sea-Level Rise on Atoll Islands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beetham, Edward; Kench, Paul S.; Popinet, Stéphane</p> <p>2017-10-01</p> <p>We present new detail on how future sea-level rise (SLR) will modify nonlinear wave transformation processes, shoreline wave energy, and wave driven flooding on atoll islands. Frequent and destructive wave inundation is a primary climate-change hazard that may render atoll islands uninhabitable in the near future. However, limited research has examined the physical vulnerability of atoll islands to future SLR and sparse information are available to implement process-based coastal management on coral reef environments. We utilize a field-verified numerical model capable of resolving all nonlinear wave transformation processes to simulate how future SLR will modify wave dissipation and overtopping on Funafuti Atoll, Tuvalu, accounting for static and accretionary reef adjustment morphologies. Results show that future SLR coupled with a static reef morphology will not only increase shoreline wave energy and overtopping but will fundamentally alter the spectral composition of shoreline energy by decreasing the contemporary influence of low-frequency infragravity waves. "<fi>Business-as-usual</fi>" emissions (RCP 8.5) will result in annual wave overtopping on Funafuti Atoll by 2030, with overtopping at high tide under mean wave conditions occurring from 2090. Comparatively, vertical reef accretion in response to SLR will prevent any significant increase in shoreline wave energy and mitigate wave driven flooding volume by 72%. Our results provide the first quantitative assessment of how effective future reef accretion can be at mitigating SLR-associated flooding on atoll islands and endorse active reef conservation and restoration for future coastal protection.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJST.226.1229D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJST.226.1229D"><span>Dispersion and viscous attenuation of capillary waves with finite amplitude</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Denner, Fabian; Paré, Gounséti; Zaleski, Stéphane</p> <p>2017-04-01</p> <p>We present a comprehensive study of the dispersion of capillary waves with finite amplitude, based on direct numerical simulations. The presented results show an increase of viscous attenuation and, consequently, a smaller frequency of capillary waves with increasing initial wave amplitude. Interestingly, however, the critical wavenumber as well as the wavenumber at which the maximum frequency is observed remain the same for a given two-phase system, irrespective of the wave amplitude. By devising an empirical correlation that describes the effect of the wave amplitude on the viscous attenuation, the dispersion of capillary waves with finite initial amplitude is shown to be, in very good approximation, self-similar throughout the entire underdamped regime and independent of the fluid properties. The results also shown that analytical solutions for capillary waves with infinitesimal amplitude are applicable with reasonable accuracy for capillary waves with moderate amplitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800046081&hterms=fashion+models&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfashion%2Bmodels','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800046081&hterms=fashion+models&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfashion%2Bmodels"><span>Millimeter wave attenuation prediction using a piecewise uniform rain rate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Persinger, R. R.; Stutzman, W. L.; Bostian, C. W.; Castle, R. E., Jr.</p> <p>1980-01-01</p> <p>A piecewise uniform rain rate distribution model is introduced as a quasi-physical model of real rain along earth-space millimeter wave propagation paths. It permits calculation of the total attenuation from specific attenuation in a simple fashion. The model predications are verified by comparison with direct attenuation measurements for several frequencies, elevation angles, and locations. Also, coupled with the Rice-Holmberg rain rate model, attenuation statistics are predicated from rainfall accumulation data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/289/ds289.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/289/ds289.pdf"><span>Sedimentary properties of shallow marine cores collected in June and September 2006, Hanalei Bay, Kaua‘i, Hawai‘i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Draut, Amy E.; Bothner, Michael H.; Reynolds, Richard L.; Buchan, Olivia C.; Cochran, Susan A.; Casso, Michael A.; Baldwin, Sandra M.; Goldstein, Harland L.; Xiao, Jiang; Field, Michael E.; Logan, Joshua B.</p> <p>2007-01-01</p> <p>Sedimentary facies, short-lived isotopes 7Be, 137Cs, and 210Pb, and magnetic properties of sediment cores in Hanalei Bay, Kaua‘i, Hawai‘i, were used to assess sediment sources and patterns of deposition associated with seasonal flooding of the Hanalei River. Sediment cores were collected from the seafloor in June and September of 2006 to supplement similar data collected during the summer of 2005. The youngest and thickest terrigenous sediment was observed on the east side of the bay: near the Hanalei River mouth and in a bathymetric depression, known locally as the Black Hole, that acts as a temporary sediment sink. Deposits from floods that occurred between February and April 2006 left flood deposits in the eastern bay that, by June of 2006, were on the order of 10 cm thick. A flood occurred on August 7, 2006, that was smaller than floods that occurred the previous winter but was a substantial discharge event for the summer season. Deposits from the winter 2006 floods continued to dominate the sedimentary record in the eastern bay through early fall, even after the addition of newer sediment during the August 7 flood; this is consistent with the much higher sediment input of the winter floods compared with the August 7 flood. Broad variations in magnetic grain size and relative magnetite-hematite abundance in several sediment cores indicate many sources of upland terrigenous sediment. As a group, recent flood deposits show much less variation in these properties compared with older deposits, implying either that the 2006 winter–spring flood sediment originated from one or more distinct upland settings, or that substantial mixing of sediment from multiple sources occurred during transport. Sediment is most readily remobilized and advected out of the bay during winter, when oceanic conditions are energetic. In summer, wave and current measurements made concurrently with this study showed weak currents and little wave energy, indicating that sediment delivered during summer floods most likely remains in the bay until winter storms can remove it. Increased turbidity and sedimentation on corals resulting from floods of the Hanalei River could affect the sustainability of coral reefs and their many associated species. This possibility is of particular concern during summer months when wave energy is low and sediment is not readily remobilized and transported out of the bay. The timing (seasonality) and magnitude of sediment input to the coastal ocean relative to seasonal variations in wave and current energy could have significant ecological consequences for coral-reef communities in the Hawaiian Islands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC41A1078M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC41A1078M"><span>The Role of Secondary Frontal Waves in Causing Missed or False Alarm Flood Forecasts During Landfalling Atmospheric Rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, A.; Ralph, F. M.; Lavers, D. A.; Kalansky, J.; Kawzenuk, B.</p> <p>2015-12-01</p> <p>The previous ten years has seen an explosion in research devoted to the Atmospheric River (AR) phenomena, features of the midlatitude circulation responsible for large horizontal water vapor transport. Upon landfall, ARs can be associated with 30-50% of annual precipitation in some regions, while also causing the largest flooding events in places such as coastal California. Little discussed is the role secondary frontal waves play in modulating precipitation during a landfalling AR. Secondary frontal waves develop along an existing cold front in response to baroclinic frontogenesis, often coinciding with a strong upper-tropospheric jet. If the secondary wave develops along a front associated with a landfalling AR, the resulting precipitation may be much greater or much less than originally forecasted - especially in regions where orographic uplift of horizontally transported water vapor is responsible for a large portion of precipitation. In this study, we present several cases of secondary frontal waves that have occurred in conjunction with a landfalling AR on the US West Coast. We put the impact of these cases in historical perspective using quantitative precipitation forecasts, satellite data, reanalyses, and estimates of damage related to flooding. We also discuss the dynamical mechanisms behind secondary frontal wave development and relate these mechanisms to the high spatiotemporal variability in precipitation observed during ARs with secondary frontal waves. Finally, we demonstrate that even at lead times less than 24 hours, current quantitative precipitation forecasting methods have difficulty accurately predicting the rainfall in the area near the secondary wave landfall, in some cases leading to missed or false alarm flood warnings, and suggest methods which may improve quantitative precipitation forecasts for this type of system in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23231101','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23231101"><span>Shear wave velocity and attenuation in the upper layer of ocean bottoms from long-range acoustic field measurements.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Ji-Xun; Zhang, Xue-Zhen</p> <p>2012-12-01</p> <p>Several physics-based seabed geoacoustic models (including the Biot theory) predict that compressional wave attenuation α(2) in sandy marine sediments approximately follows quadratic frequency dependence at low frequencies, i.e., α(2)≈kf(n) (dB/m), n=2. A recent paper on broadband geoacoustic inversions from low frequency (LF) field measurements, made at 20 locations around the world, has indicated that the frequency exponent of the effective sound attenuation n≈1.80 in a frequency band of 50-1000 Hz [Zhou et al., J. Acoust. Soc. Am. 125, 2847-2866 (2009)]. Carey and Pierce hypothesize that the discrepancy is due to the inversion models' neglect of shear wave effects [J. Acoust. Soc. Am. 124, EL271-EL277 (2008)]. The broadband geoacoustic inversions assume that the seabottom is an equivalent fluid and sound waves interact with the bottom at small grazing angles. The shear wave velocity and attenuation in the upper layer of ocean bottoms are estimated from the LF field-inverted effective bottom attenuations using a near-grazing bottom reflection expression for the equivalent fluid model, derived by Zhang and Tindle [J. Acoust. Soc. Am. 98, 3391-3396 (1995)]. The resultant shear wave velocity and attenuation are consistent with the SAX99 measurement at 25 Hz and 1000 Hz. The results are helpful for the analysis of shear wave effects on long-range sound propagation in shallow water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoJI.193..475D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoJI.193..475D"><span>Shear wave anisotropy from aligned inclusions: ultrasonic frequency dependence of velocity and attenuation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Figueiredo, J. J. S.; Schleicher, J.; Stewart, R. R.; Dayur, N.; Omoboya, B.; Wiley, R.; William, A.</p> <p>2013-04-01</p> <p>To understand their influence on elastic wave propagation, anisotropic cracked media have been widely investigated in many theoretical and experimental studies. In this work, we report on laboratory ultrasound measurements carried out to investigate the effect of source frequency on the elastic parameters (wave velocities and the Thomsen parameter γ) and shear wave attenuation) of fractured anisotropic media. Under controlled conditions, we prepared anisotropic model samples containing penny-shaped rubber inclusions in a solid epoxy resin matrix with crack densities ranging from 0 to 6.2 per cent. Two of the three cracked samples have 10 layers and one has 17 layers. The number of uniform rubber inclusions per layer ranges from 0 to 100. S-wave splitting measurements have shown that scattering effects are more prominent in samples where the seismic wavelength to crack aperture ratio ranges from 1.6 to 1.64 than in others where the ratio varied from 2.72 to 2.85. The sample with the largest cracks showed a magnitude of scattering attenuation three times higher compared with another sample that had small inclusions. Our S-wave ultrasound results demonstrate that elastic scattering, scattering and anelastic attenuation, velocity dispersion and crack size interfere directly in shear wave splitting in a source-frequency dependent manner, resulting in an increase of scattering attenuation and a reduction of shear wave anisotropy with increasing frequency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JaJAP..57gLC02N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JaJAP..57gLC02N"><span>Attenuation characteristics of the leaky \\text{T}(0,1) mode guided wave propagating in piping coated with anticorrosion grease</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nishino, Hideo; Tateishi, Kohei; Ishikawa, Masashi; Furukawa, Takashi; Goka, Motoki</p> <p>2018-07-01</p> <p>Guided wave inspection is expected especially for buried piping because it can be applied easily to such piping requiring only its partial digging from the ground. However, in buried piping, the attenuation coefficient is extremely large compared with that in above-ground piping because the leaky \\text{T}(0,1) mode guided wave (LTGW) propagates in buried piping and its energy leaks into the adjacent surrounding material as a bulk shear wave. Petrolatum anticorrosion grease (PAG) is the most widely used as the coating material on the pipe surface before burying piping in sand or soil, which is a viscous material with a temperature-dependent shear wave velocity. In this paper, attenuation characteristics of the LTGW are shown theoretically and experimentally. The theoretical calculations explain very well the experimental results measured. The temperature dependence of the attenuation coefficient is discussed with the theoretical outcomes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title44-vol1/pdf/CFR-2013-title44-vol1-sec9-7.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title44-vol1/pdf/CFR-2013-title44-vol1-sec9-7.pdf"><span>44 CFR 9.7 - Determination of proposed action's location.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... comply with these regulations, especially § 9.11. The following additional flooding characteristics shall... rise of floodwater; (iii) Duration of flooding; (iv) Available warning and evacuation time and routes...) Debris load; (G) Pollutants; (H) Wave heights; (I) Groundwater flooding; (J) Mudflow. (c) Floodplain...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title44-vol1/pdf/CFR-2012-title44-vol1-sec9-7.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title44-vol1/pdf/CFR-2012-title44-vol1-sec9-7.pdf"><span>44 CFR 9.7 - Determination of proposed action's location.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... comply with these regulations, especially § 9.11. The following additional flooding characteristics shall... rise of floodwater; (iii) Duration of flooding; (iv) Available warning and evacuation time and routes...) Debris load; (G) Pollutants; (H) Wave heights; (I) Groundwater flooding; (J) Mudflow. (c) Floodplain...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title44-vol1/pdf/CFR-2014-title44-vol1-sec9-7.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title44-vol1/pdf/CFR-2014-title44-vol1-sec9-7.pdf"><span>44 CFR 9.7 - Determination of proposed action's location.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... comply with these regulations, especially § 9.11. The following additional flooding characteristics shall... rise of floodwater; (iii) Duration of flooding; (iv) Available warning and evacuation time and routes...) Debris load; (G) Pollutants; (H) Wave heights; (I) Groundwater flooding; (J) Mudflow. (c) Floodplain...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PlST...17..847L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PlST...17..847L"><span>Numerical and Experimental Investigation on the Attenuation of Electromagnetic Waves in Unmagnetized Plasmas Using Inductively Coupled Plasma Actuator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, Min; Xu, Haojun; Wei, Xiaolong; Liang, Hua; Song, Huimin; Sun, Quan; Zhang, Yanhua</p> <p>2015-10-01</p> <p>The attenuation of electromagnetic (EM) waves in unmagnetized plasma generated by an inductively coupled plasma (ICP) actuator has been investigated both theoretically and experimentally. A numerical study is conducted to investigate the propagation of EM waves in multilayer plasma structures which cover a square flat plate. Experimentally, an ICP actuator with dimensions of 20 cm×20 cm×4 cm is designed to produce a steady plasma slab. The attenuation of EM waves in the plasma generated by the ICP actuator is measured by a reflectivity arch test method at incident waves of 2.3 GHz and 10.1 GHz, respectively. A contrastive analysis of calculated and measured results of these incident wave frequencies is presented, which suggests that the experiment accords well with our theory. As expected, the plasma slab generated by the ICP actuator can effectively attenuate the EM waves, which may have great potential application prospects in aircraft stealth. supported by National Natural Science Foundation of China (Nos. 51276197, 11472306 and 11402301)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920052557&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920052557&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal"><span>Wave attenuation in the marginal ice zone during LIMEX</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Antony K.; Peng, Chih Y.; Vachon, Paris W.</p> <p>1991-01-01</p> <p>During LIMEX'87 and '89, the CCRS CV-580 aircraft collected SAR (synthetic aperture radar) data over the marginal ice zone off the coast of Newfoundland. Based upon the wavenumber spectra from SAR data, the wave attenuation rate is estimated and compared with a model. The model-data comparisons are reasonably good for the ice conditions during LIMEX (Labrador Ice Margin Experiment). Both model and SAR-derived wave attenuation rates show a roll-over at high wavenumbers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21081120-experimental-study-transmission-overdriven-detonation-wave-from-propane-oxygen-propane-air','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21081120-experimental-study-transmission-overdriven-detonation-wave-from-propane-oxygen-propane-air"><span>Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li, J.; Lai, W.H.; Chung, K.</p> <p>2008-08-15</p> <p>Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The resultsmore » showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015271','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015271"><span>The 2010 Pakistan Flood and the Russia Heat Wave: Teleconnection of Extremes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lau, William K.; Kim, K. M.</p> <p>2010-01-01</p> <p>The Pakistan flood and the Russia heat wave/Vvild fires of the summer of2010 were two of the most extreme, and catastrophic events in the histories of the two countries occurring at about the same time. To a casual observer, the timing may just be a random coincidence of nature, because the two events were separated by long distances, and represented opposite forces of nature, i.e., flood vs. drought, and water vs. fire. In this paper, using NASA satellite and NOAA reanalysis data, we presented observation evidences that that the two events were indeed physically connected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA527497','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA527497"><span>Flood-Side Wave Erosion of Earthen Levees: Present State of Knowledge and Assessment of Armoring Necessity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-08-01</p> <p>levee crown and flood-side slope toe would have to be greater than 20 ft to maintain a suitable freeboard and still have waves break directly on...dike slope is smooth, and the toe of the flood-side slope is usually dry except during storm events (on average 20 per year). The presence of the...sides to complete the 5-m (16.4 ft) flume width. There was an asphalt covered surface from the toe of the slope up to the +2 m (+6.6 ft) elevation. The</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H43J..04H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H43J..04H"><span>Improved Large-Scale Inundation Modelling by 1D-2D Coupling and Consideration of Hydrologic and Hydrodynamic Processes - a Case Study in the Amazon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoch, J. M.; Bierkens, M. F.; Van Beek, R.; Winsemius, H.; Haag, A.</p> <p>2015-12-01</p> <p>Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World's population and the associated implications, sound knowledge of flood hazard and related risk is crucial. Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation. Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory. The present research constitutes a first step into a globally applicable approach to fully couple hydrologic with hydrodynamic computations while discriminating between 1D-channels and 2D-floodplains. Such a fully-fledged set-up would be able to provide higher-order flood hazard information, e.g. time to flooding and flood duration, ultimately leading to improved flood risk assessment and management at the large scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.3701J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.3701J"><span>Hydraulic shock waves in an inclined chute contraction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jan, C.-D.; Chang, C.-J.</p> <p>2009-04-01</p> <p>A chute contraction is a common structure used in hydraulic engineering for typical reasons such as increase of bottom slope, transition from side channel intakes to tunnel spillways, reduction of chute width due to bridges, transition structures in flood diversion works, among others. One of the significant chute contractions in Taiwan is that used in the Yuanshantzu Flood Diversion Project of Keelung River. The diversion project is designed to divert flood water from upper Keelung River into East Sea with a capasity of 1,310 cubic meters per second for mitigating the flood damage of lower part of Keelung River basin in Northern Taiwan. An inclined chute contraction is used to connect Keelung River and a diversion turnel. The inlet and outlet works of the diversion project is located at Ruifang in the Taipei County of north Taiwan. The diameter of diversion tunnel is 12 meters and the total length of tunnel is 2,484 meters. The diversion project has been completed and successfully executed many times since 2004 to lower the water level of Keelung River in typhoon seasons for avioding flooding problems in the lower part of Keelung River basin. Flow in a chute contraction has complicated flow pattern due to the existence of shock waves in it. A simple and useful calculation procedure for the maximum height and its position of shock waves is essentially needed for the preliminary design stage of a chute contraction. Hydraulic shock waves in an inclined chute contraction were experimentally and numerically investigated in this study with the consideration of the effects of sidewall deflection angle, bottom inclination angle and Froude number of approaching flow. The flow pattern of hydraulic shock waves in a chute contraction was observed. The main issue of designing chute contraction is to estimate the height and position of maximum shock wave for the consideration of freeboards. Achieving this aim, the experimental data are adopted and analyzed for the shock angle, the height of maximum shock wave and the corresponding position of maximum shock wave. The dimensionless relations for the shock angle, the height of maximum shock wave and the corresponding position of maximum shock wave are obtained by regression analysis. These empirical regression relations, basically relating to the sidewall deflection angle, bottom angle and approach Froude number, are very useful for further practical engineering applications in chute contraction design for avoiding flow overtopping.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....11398D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....11398D"><span>Two dimensional modelling of flood flows and suspended sediment transport: the case of Brenta River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>D'Alpaos, L.; Martini, P.; Carniello, L.</p> <p>2003-04-01</p> <p>The paper deals with numerical modelling of flood waves and suspended sediment in plain river basins. The two dimensional depth integrated momentum and continuity equations, modified to take into account of the bottom irregularities that strongly affect the hydrodynamic and the continuity in partially dry areas (for example, during the first stages of a plain flooding and in tidal flows), are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme and considering the role both of the small channel network and the regulation dispositive on the flooding wave propagation. Transport of suspended sediment and bed evolution are coupled with the flood propagation through the convection-dispersion equation and the Exner's equation. Results of a real case study are presented in which the effects of extreme flood of Brenta River (Italy) are examinated. The flooded areas (urban and rural areas) are identified and a mitigation solution based on a diversion channel flowing into Venice Lagoon is proposed. We show that this solution strongly reduces the flood risk in the downstream areas and can provide an important sediment source to the Venice Lagoon. Finally, preliminary results of the sediment dispersion in the Venice Lagoon are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA264577','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA264577"><span>The Seismic Attenuation Structure of the East Pacific Rise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-02-27</p> <p>Kanamori, R. W. Clayton, Three- dimensional attenuation structure of Kilauea -East rift zone, Hawaii , J. Geophys. Res., submitted, 1990. Holt, M., Underwater...and J. J. Zucca, Active high-resolution seismic tomography of compressional wave velocity and attenuation at Medicine Lake volcano , northern California...zones of anomalously high S-wave attenuation in the upper crust near Ruapehu and Ngauruhoe volcanoes , New Zealand, J. Volcanol. Geotherm. Res., 10, 125</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1411935','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1411935"><span>PVT Degradation Studies: Acoustic Diagnostics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dib, Gerges; Tucker, Brian J.; Kouzes, Richard T.</p> <p></p> <p>Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. This document reports on a study of acoustic techniques to determine whether they can provide a diagnostic for the fogging of PVT. Different ultrasound techniques were employed for detecting the level of internal fogging in PVT, including wave velocity measurements, attenuation, nonlinear acoustics, and acoustic microscopy. The results indicate that there are linear relations between the wave velocity and wave attenuation with the level of internal fogging. The effects of fogging on ultrasound wave attenuation is further verified by acoustic microscopy imaging, where regionsmore » with fog in the specimen demonstration higher levels of attenuation compared to clear regions. Results from the nonlinear ultrasound measurements were inconclusive due to high sensitivities to transducer coupling and fixture variabilities.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26391614','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26391614"><span>Predictive value of low tube voltage and dual-energy CT for successful shock wave lithotripsy: an in vitro study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Largo, Remo; Stolzmann, Paul; Fankhauser, Christian D; Poyet, Cédric; Wolfsgruber, Pirmin; Sulser, Tullio; Alkadhi, Hatem; Winklhofer, Sebastian</p> <p>2016-06-01</p> <p>This study investigates the capabilities of low tube voltage computed tomography (CT) and dual-energy CT (DECT) for predicting successful shock wave lithotripsy (SWL) of urinary stones in vitro. A total of 33 urinary calculi (six different chemical compositions; mean size 6 ± 3 mm) were scanned using a dual-source CT machine with single- (120 kVp) and dual-energy settings (80/150, 100/150 Sn kVp) resulting in six different datasets. The attenuation (Hounsfield Units) of calculi was measured on single-energy CT images and the dual-energy indices (DEIs) were calculated from DECT acquisitions. Calculi underwent SWL and the number of shock waves for successful disintegration was recorded. The prediction of required shock waves regarding stone attenuation/DEI was calculated using regression analysis (adjusted for stone size and composition) and the correlation between CT attenuation/DEI and the number of shock waves was assessed for all datasets. The median number of shock waves for successful stone disintegration was 72 (interquartile range 30-361). CT attenuation/DEI of stones was a significant, independent predictor (P < 0.01) for the number of required shock waves with the best prediction at 80 kVp (β estimate 0.576) (P < 0.05). Correlation coefficients between attenuation/DEI and the number of required shock waves ranged between ρ = 0.31 and 0.68 showing the best correlation at 80 kVp (P < 0.001). The attenuation of urinary stones at low tube voltage CT is the best predictor for successful stone disintegration, being independent of stone composition and size. DECT shows no added value for predicting the success of SWL.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5666273','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5666273"><span>Assessment of dynamic material properties of intact rocks using seismic wave attenuation: an experimental study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wanniarachchi, W. A. M.; Perera, M. S. A.; Rathnaweera, T. D.; Lyu, Q.; Mahanta, B.</p> <p>2017-01-01</p> <p>The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1–1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient (α) and quality factor (Q) values for the five selected rock types for both primary (P) and secondary (S) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus (E), bulk modulus (K), shear modulus (µ) and Poisson's ratio (ν). The P and S wave velocities for the selected rock types varied in the ranges of 2.43–4.61 km s−1 and 1.43–2.41 km h−1, respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests. PMID:29134090</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29134090','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29134090"><span>Assessment of dynamic material properties of intact rocks using seismic wave attenuation: an experimental study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wanniarachchi, W A M; Ranjith, P G; Perera, M S A; Rathnaweera, T D; Lyu, Q; Mahanta, B</p> <p>2017-10-01</p> <p>The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1-1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient ( α ) and quality factor ( Q ) values for the five selected rock types for both primary ( P ) and secondary ( S ) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus ( E ), bulk modulus ( K ), shear modulus ( µ ) and Poisson's ratio ( ν ). The P and S wave velocities for the selected rock types varied in the ranges of 2.43-4.61 km s -1 and 1.43-2.41 km h -1 , respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RSOS....470896W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RSOS....470896W"><span>Assessment of dynamic material properties of intact rocks using seismic wave attenuation: an experimental study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wanniarachchi, W. A. M.; Ranjith, P. G.; Perera, M. S. A.; Rathnaweera, T. D.; Lyu, Q.; Mahanta, B.</p> <p>2017-10-01</p> <p>The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1-1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient (α) and quality factor (Q) values for the five selected rock types for both primary (P) and secondary (S) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus (E), bulk modulus (K), shear modulus (µ) and Poisson's ratio (ν). The P and S wave velocities for the selected rock types varied in the ranges of 2.43-4.61 km s-1 and 1.43-2.41 km h-1, respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004NHESS...4..165M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004NHESS...4..165M"><span>Two dimensional modelling of flood flows and suspended sedimenttransport: the case of the Brenta River, Veneto (Italy)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martini, P.; Carniello, L.; Avanzi, C.</p> <p>2004-03-01</p> <p>The paper presents a numerical model for the simulation of flood waves and suspended sediment transport in a lowland river basin of North Eastern Italy. The two dimensional depth integrated momentum and continuity equations are modified to take into account the bottom irregularities that strongly affect the hydrodynamics in partially dry areas, as for example, in the first stages of an inundation process or in tidal flow. The set of equations are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme where the effects of both the small channel network and the regulation devices on the flood wave propagation are accounted for. Transport of suspended sediment and bed evolution are coupled with the hydrodynamics using an appropriate form of the advection-dispersion equation and Exner's equation. Applications to a case study are presented in which the effects of extreme flooding on the Brenta River (Italy) are examined. Urban and rural flood risk areas are identified and the effects of a alleviating action based on a diversion channel flowing into Venice Lagoon are simulated. The results show that this solution strongly reduces the flood risk in the downstream areas and can provide an important source of sediment for the Venice Lagoon. Finally, preliminary results of the sediment dispersion due to currents and waves in the Venice Lagoon are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1510052T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1510052T"><span>Moving towards a new paradigm for global flood risk estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Troy, Tara J.; Devineni, Naresh; Lima, Carlos; Lall, Upmanu</p> <p>2013-04-01</p> <p>Traditional approaches to flood risk assessment are typically indexed to an instantaneous peak flow event at a specific recording gage on a river, and then extrapolated through hydraulic modeling of that peak flow to the potential area that is likely to be inundated. Recent research shows that property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. The existing notion of a flood return period based on just the instantaneous peak flow rate at a stream gauge consequently needs to be revisited, especially for floods due to persistent rainfall as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Depending on the flood event type considered, different rainfall inducing mechanisms (tropical storm, local convection, frontal system, recurrent tropical waves) may be involved. Each of these will have a characteristic spatial scale, expression and orientation and temporal characteristics. We develop stochastic models that can reproduce these attributes with appropriate intensity-duration-frequency and spatial expression, and hence provide a basis for conditioning basin hydrologic attributes for flood risk assessment. Past work on Non-homogeneous Hidden Markov Models (NHMM) is used as a basis to develop this capability at regional scales. In addition, a dynamic hierarchical Bayesian network model that is continuous and not based on discretization to states is tested and compared against NHMM. The exogenous variables in these models comes from the analysis of key synoptic circulation patterns which will be used as predictors for the regional spatio-temporal models. The stochastic simulations of rainfall are then used as input to a flood modeling system, which consists of a series of physically based models. Rainfall-runoff generation is produced by the Variable Infiltration Capacity (VIC) model. When the modeled streamflow crosses a threshold, a full kinematic wave routing model is implemented at a finer resolution (<=1km) in order to more accurately model streamflow under flood conditions and estimate inundation. This approach allows for efficient computational simulation of the hydrology when not under potential for flooding with high-resolution flood wave modeling when there is flooding potential. We demonstrate the results of this flood risk estimation system for the Ohio River basin in the United States, a large river basin that is historically prone to flooding, with the intention of using it to do global flood risk assessment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Geomo.304..141S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Geomo.304..141S"><span>A life-cycle model for wave-dominated tidal inlets along passive margin coasts of North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seminack, Christopher T.; McBride, Randolph A.</p> <p>2018-03-01</p> <p>A regional overview of 107 wave-dominated tidal inlets along the U.S. Atlantic coast, U.S. Gulf of Mexico coast, and Canadian Gulf of St. Lawrence coast yielded a generalized wave-dominated tidal inlet life-cycle model that recognized the rotational nature of tidal inlets. Tidal inlets are influenced by concurrently acting processes transpiring over two timescales: short-term, event-driven processes and long-term, evolutionary processes. Wave-dominated tidal inlets are classified into three rotational categories based on net longshore sediment transport direction and rotation direction along the landward (back-barrier) portion of the inlet channel: downdrift channel rotation, updrift channel rotation, or little-to-no channel rotation. Lateral shifting of the flood-tidal delta depocenter in response to available estuarine accommodation space appears to control inlet channel rotation. Flood-tidal delta deposits fill accommodation space locally within the estuary (i.e., creating bathymetric highs), causing the tidal-inlet channel to rotate. External influences, such as fluvial discharge, pre-existing back-barrier channels, and impeding salt marsh will also influence inlet-channel rotation. Storm events may rejuvenate the tidal inlet by scouring sediment within the flood-tidal delta, increasing local accommodation space. Wave-dominated tidal inlets are generally unstable and tend to open, concurrently migrate laterally and rotate, infill, and close. Channel rotation is a primary reason for wave-dominated tidal inlet closure. During rotation, the inlet channel lengthens and hydraulic efficiency decreases, thus causing tidal prism to decrease. Tidal prism, estuarine accommodation space, and sediment supply to the flood-tidal delta are the primary variables responsible for tidal inlet rotation. Stability of wave-dominated tidal inlets is further explained by: stability (S) = tidal prism (Ω) + estuarine accommodation space (V) - volume of annual sediment supply (Mt). Rotating wave-dominated tidal inlets follow a six-stage evolutionary model; whereas wave-dominated tidal inlets that exhibit little-to-no rotation follow a five-stage evolutionary model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PEPI..270...73M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PEPI..270...73M"><span>Intrinsic and scattering attenuation of high-frequency S-waves in the central part of the External Dinarides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Majstorović, Josipa; Belinić, Tena; Namjesnik, Dalija; Dasović, Iva; Herak, Davorka; Herak, Marijan</p> <p>2017-09-01</p> <p>The central part of the External Dinarides (CED) is a geologically and tectonically complex region formed in the collision between the Adriatic microplate and the European plate. In this study, the contributions of intrinsic and scattering attenuation (<mml:msubsup> Q i - 1 and <mml:msubsup> Q sc - 1 , respectively) to the total S-wave attenuation were calculated for the first time. The multiple lapse-time window analysis (MLTWA method), based on the assumptions of multiple isotropic scattering in a homogeneous medium with uniformly distributed scatterers, was applied to seismograms of 450 earthquakes recorded at six seismic stations. Selected events have hypocentral distances between 40 and 90 km with local magnitudes between 1.5 and 4.7. The analysis was performed over 11 frequency bands with central frequencies between 1.5 and 16 Hz. Results show that the seismic albedo of the studied area is less than 0.5 and <mml:msubsup> Q i - 1 ><mml:msubsup> Q sc - 1 at all central frequencies and for all stations. These imply that the intrinsic attenuation dominates over scattering attenuation in the whole study area. Calculated total S-wave and expected coda wave attenuation for CED are in a very good agreement with the ones measured in previous studies using the coda normalization and the coda-Q methods. All estimated attenuation factors decrease with increasing frequency. The intrinsic attenuation for CED is among the highest observed elsewhere, which could be due to the highly fractured and fluid-filled carbonates in the upper crust. The scattering and the total S-wave attenuation for CED are close to the average values obtained in other studies performed worldwide. In particular, good agreement of frequency dependence of total attenuation in CED and in the regions that contributed most strong-motion records for ground motion prediction equations used in PSHA in Croatia indicates that those were well chosen and applicable to this area as far as their attenuation properties are concerned.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27973354','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27973354"><span>A diffraction correction for storage and loss moduli imaging using radiation force based elastography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc</p> <p>2017-01-07</p> <p>Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G') and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G' and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green's function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G' and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was carried out in the human liver.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PMB....62...91B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PMB....62...91B"><span>A diffraction correction for storage and loss moduli imaging using radiation force based elastography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc</p> <p>2017-01-01</p> <p>Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G‧) and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G‧ and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green’s function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G‧ and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was carried out in the human liver.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.3121C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.3121C"><span>Observations of wave transformation over a fringing coral reef and the importance of low-frequency waves and offshore water levels to runup, overwash, and coastal flooding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheriton, Olivia M.; Storlazzi, Curt D.; Rosenberger, Kurt J.</p> <p>2016-05-01</p> <p>Many low-lying tropical islands are susceptible to sea level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, a 5 month deployment of wave gauges and a current meter was conducted across two shore-normal transects on Roi-Namur Island in the Republic of the Marshall Islands. These observations captured two large wave events that had waves with maximum heights greater than 6 m with peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly skewed infragravity (0.04-0.004 Hz) and very low frequency (0.004-0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, reached 3.7 m above the reef bed at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3 h time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results (1) demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along fringing reef-lined shorelines, such as island overwash, and (2) lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of these extreme events, negatively impacting coastal resources and infrastructure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70171124','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70171124"><span>Observations of wave transformation over a fringing coral reef and the importance of low-frequency waves and offshore water levels to runup, overwash, and coastal flooding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cheriton, Olivia; Storlazzi, Curt; Rosenberger, Kurt</p> <p>2016-01-01</p> <p>Many low-lying tropical islands are susceptible to sea level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, a 5 month deployment of wave gauges and a current meter was conducted across two shore-normal transects on Roi-Namur Island in the Republic of the Marshall Islands. These observations captured two large wave events that had waves with maximum heights greater than 6 m with peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly skewed infragravity (0.04–0.004 Hz) and very low frequency (0.004–0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, reached 3.7 m above the reef bed at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3 h time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results (1) demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along fringing reef-lined shorelines, such as island overwash, and (2) lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of these extreme events, negatively impacting coastal resources and infrastructure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26245839','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26245839"><span>Destructive tsunami-like wave generated by surf beat over a coral reef during Typhoon Haiyan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Roeber, Volker; Bricker, Jeremy D</p> <p>2015-08-06</p> <p>Storm surges cause coastal inundation due to setup of the water surface resulting from atmospheric pressure, surface winds and breaking waves. Here we show that during Typhoon Haiyan, the setup generated by breaking waves near the fringing-reef-protected town of Hernani, the Philippines, oscillated with the incidence of large and small wave groups, and steepened into a tsunami-like wave that caused extensive damage and casualties. Though fringing reefs usually protect coastal communities from moderate storms, they can exacerbate flooding during strong events with energetic waves. Typical for reef-type bathymetries, a very short wave-breaking zone over the steep reef face facilitates the freeing of infragravity-period fluctuations (surf beat) with little energy loss. Since coastal flood planning relies on phase-averaged wave modelling, infragravity surges are not being accounted for. This highlights the necessity for a policy change and the adoption of phase-resolving wave models for hazard assessment in regions with fringing reefs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4918328','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4918328"><span>Destructive tsunami-like wave generated by surf beat over a coral reef during Typhoon Haiyan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Roeber, Volker; Bricker, Jeremy D.</p> <p>2015-01-01</p> <p>Storm surges cause coastal inundation due to setup of the water surface resulting from atmospheric pressure, surface winds and breaking waves. Here we show that during Typhoon Haiyan, the setup generated by breaking waves near the fringing-reef-protected town of Hernani, the Philippines, oscillated with the incidence of large and small wave groups, and steepened into a tsunami-like wave that caused extensive damage and casualties. Though fringing reefs usually protect coastal communities from moderate storms, they can exacerbate flooding during strong events with energetic waves. Typical for reef-type bathymetries, a very short wave-breaking zone over the steep reef face facilitates the freeing of infragravity-period fluctuations (surf beat) with little energy loss. Since coastal flood planning relies on phase-averaged wave modelling, infragravity surges are not being accounted for. This highlights the necessity for a policy change and the adoption of phase-resolving wave models for hazard assessment in regions with fringing reefs. PMID:26245839</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011Tectp.508...22E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011Tectp.508...22E"><span>The composition and structure of volcanic rifted continental margins in the North Atlantic: Further insight from shear waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eccles, Jennifer D.; White, Robert S.; Christie, Philip A. F.</p> <p>2011-07-01</p> <p>Imaging challenges caused by highly attenuative flood basalt sequences have resulted in the understanding of volcanic rifted continental margins lagging behind that of non-volcanic rifted and convergent margins. Massive volcanism occurred during break-up at 70% of the passive margins bordering the Atlantic Ocean, the causes and dynamics of which are still debated. This paper shows results from traveltime tomography of compressional and converted shear wave arrivals recorded on 170 four-component ocean bottom seismometers along two North Atlantic continental margin profiles. This traveltime tomography was performed using two different approaches. The first, a flexible layer-based parameterisation, enables the quality control of traveltime picks and investigation of the crustal structure. The second, with a regularised grid-based parameterisation, requires correction of converted shear wave traveltimes to effective symmetric raypaths and allows exploration of the model space via Monte Carlo analyses. The velocity models indicate high lower-crustal velocities and sharp transitions in both velocity and Vp/Vs ratios across the continent-ocean transition. The velocities are consistent with established mixing trends between felsic continental crust and high magnesium mafic rock on both margins. Interpretation of the high quality seismic reflection profile on the Faroes margin confirms that this mixing is through crustal intrusion. Converted shear wave data also provide constraints on the sub-basalt lithology on the Faroes margin, which is interpreted as a pre-break-up Mesozoic to Paleocene sedimentary system intruded by sills.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014HESSD..11.6805L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014HESSD..11.6805L"><span>Hydrogeology of an alpine rockfall aquifer system and its role in flood attenuation and maintaining baseflow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lauber, U.; Kotyla, P.; Morche, D.; Goldscheider, N.</p> <p>2014-06-01</p> <p>The frequency and intensity of extreme hydrological events in alpine regions is projected to increase with climate change. The goal of this study was to better understand the functioning of aquifers composed of complex alluvial and rockfall deposits in alpine valleys and to quantify the role of these natural storage spaces in flood attenuation and baseflow maintenance. Geomorphological and hydrogeological mapping, tracer tests, and continuous flow measurements were conducted in the Reintal valley (German Alps), where runoff from a karst spring infiltrates into a series of postglacial alluvial/rockfall aquifers. During high-flow conditions, groundwater velocities of 30 m h-1 were determined along 500 m; hydrograph analyses revealed short lag times (5 h) between discharge peaks upstream and downstream from the aquifer series; the maximum discharge ratio downstream (22) and the peak recession coefficient (0.196 d-1) are low compared with other alpine catchments. During low-flow conditions, the underground flow path length increased to 2 km and groundwater velocities decreased to 13 m h-1. Downstream hydrographs revealed a delayed discharge response after 101 h and peaks dampened by a factor of 1.5. These results indicate that alluvial/rockfall aquifers might play an important role in the flow regime and attenuation of floods in alpine regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014HESS...18.4437L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014HESS...18.4437L"><span>Hydrogeology of an Alpine rockfall aquifer system and its role in flood attenuation and maintaining baseflow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lauber, U.; Kotyla, P.; Morche, D.; Goldscheider, N.</p> <p>2014-11-01</p> <p>The frequency and intensity of extreme hydrological events in Alpine regions is projected to increase with climate change. The goal of this study is to better understand the functioning of aquifers composed of complex alluvial and rockfall deposits in Alpine valleys and to quantify the role of these natural storage spaces in flood attenuation and baseflow maintenance. Geomorphological and hydrogeological mapping, tracer tests, and continuous flow measurements were conducted in the Reintal (German Alps), where runoff from a karst spring infiltrates a series of postglacial alluvial/rockfall aquifers. During high-flow conditions, groundwater velocities of 30 m h-1 were determined along 500 m; hydrograph analyses revealed short lag times (5 h) between discharge peaks upstream and downstream from the aquifer series; the maximum discharge ratio downstream (22) and the peak recession coefficient (0.196 d-1) are low compared with other Alpine catchments. During low-flow conditions, the underground flow path length increased to 2 km and groundwater velocities decreased to 13 m h-1. Downstream hydrographs revealed a delayed discharge response after 101 h and peaks damped by a factor of 1.5. These results indicate that alluvial/rockfall aquifers might play an important role in the flow regime and attenuation of floods in Alpine regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70191273','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70191273"><span>Projected atoll shoreline and run-up changes in response to sea-level rise and varying large wave conditions at Wake and Midway Atolls, Northwestern Hawaiian Islands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shope, James B.; Storlazzi, Curt; Hoeke, Ron</p> <p>2017-01-01</p> <p>Atoll islands are dynamic features that respond to seasonal alterations in wave conditions and sea level. It is unclear how shoreline wave run-up and erosion patterns along these low elevation islands will respond to projected sea-level rise (SLR) and changes in wave climate over the next century, hindering communities' preparation for the future. To elucidate how these processes may respond to climate change, extreme boreal winter and summer wave conditions under future sea-level rise (SLR) and wave climate scenarios were simulated at two atolls, Wake and Midway, using a shallow-water hydrodynamic model. Nearshore wave conditions were used to compute the potential longshore sediment flux along island shorelines via the CERC empirical formula and wave-driven erosion was calculated as the divergence of the longshore drift; run-up and the locations where the run-up exceed the berm elevation were also determined. SLR is projected to predominantly drive future island morphological change and flooding. Seaward shorelines (i.e., ocean fronted shorelines directly facing incident wave energy) were projected to experience greater erosion and flooding with SLR and in hypothetical scenarios where changes to deep water wave directions were altered, as informed by previous climate change forced Pacific wave modeling efforts. These changes caused nearshore waves to become more shore-normal, increasing wave attack along previously protected shorelines. With SLR, leeward shorelines (i.e., an ocean facing shoreline but sheltered from incident wave energy) became more accretive on windward islands and marginally more erosive along leeward islands. These shorelines became more accretionary and subject to more flooding with nearshore waves becoming more shore-normal. Lagoon shorelines demonstrated the greatest SLR-driven increase in erosion and run-up. They exhibited the greatest relative change with increasing wave heights where both erosion and run-up magnitudes increased. Wider reef flat-fronted seaward shorelines became more accretive as all oceanographic forcing parameters increased in magnitude and exhibited large run-up increases following increasing wave heights. Island end shorelines became subject to increased flooding, erosion at Wake, and accretion at Midway with SLR. Under future conditions, windward and leeward islands are projected to become thinner as ocean facing and lagoonal shorelines erode, with leeward islands becoming more elongate. Island shorelines will change dramatically over the next century as SLR and altered wave climates drive new erosional regimes. It is vital to the sustainability of island communities that the relative magnitudes of these effects are addressed when planning for projected future climates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Geomo.295..537S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Geomo.295..537S"><span>Projected atoll shoreline and run-up changes in response to sea-level rise and varying large wave conditions at Wake and Midway Atolls, Northwestern Hawaiian Islands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shope, James B.; Storlazzi, Curt D.; Hoeke, Ron K.</p> <p>2017-10-01</p> <p>Atoll islands are dynamic features that respond to seasonal alterations in wave conditions and sea level. It is unclear how shoreline wave run-up and erosion patterns along these low elevation islands will respond to projected sea-level rise (SLR) and changes in wave climate over the next century, hindering communities' preparation for the future. To elucidate how these processes may respond to climate change, extreme boreal winter and summer wave conditions under future sea-level rise (SLR) and wave climate scenarios were simulated at two atolls, Wake and Midway, using a shallow-water hydrodynamic model. Nearshore wave conditions were used to compute the potential longshore sediment flux along island shorelines via the CERC empirical formula and wave-driven erosion was calculated as the divergence of the longshore drift; run-up and the locations where the run-up exceed the berm elevation were also determined. SLR is projected to predominantly drive future island morphological change and flooding. Seaward shorelines (i.e., ocean fronted shorelines directly facing incident wave energy) were projected to experience greater erosion and flooding with SLR and in hypothetical scenarios where changes to deep water wave directions were altered, as informed by previous climate change forced Pacific wave modeling efforts. These changes caused nearshore waves to become more shore-normal, increasing wave attack along previously protected shorelines. With SLR, leeward shorelines (i.e., an ocean facing shoreline but sheltered from incident wave energy) became more accretive on windward islands and marginally more erosive along leeward islands. These shorelines became more accretionary and subject to more flooding with nearshore waves becoming more shore-normal. Lagoon shorelines demonstrated the greatest SLR-driven increase in erosion and run-up. They exhibited the greatest relative change with increasing wave heights where both erosion and run-up magnitudes increased. Wider reef flat-fronted seaward shorelines became more accretive as all oceanographic forcing parameters increased in magnitude and exhibited large run-up increases following increasing wave heights. Island end shorelines became subject to increased flooding, erosion at Wake, and accretion at Midway with SLR. Under future conditions, windward and leeward islands are projected to become thinner as ocean facing and lagoonal shorelines erode, with leeward islands becoming more elongate. Island shorelines will change dramatically over the next century as SLR and altered wave climates drive new erosional regimes. It is vital to the sustainability of island communities that the relative magnitudes of these effects are addressed when planning for projected future climates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title32-vol3/pdf/CFR-2010-title32-vol3-part623-appA.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title32-vol3/pdf/CFR-2010-title32-vol3-part623-appA.pdf"><span>32 CFR Appendix A to Part 623 - Explanation of Terms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>..., or other political subdivision of any State. Major disaster. Any hurricane, tornado, storm, flood.... Threatened major disaster. Any hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title32-vol3/pdf/CFR-2011-title32-vol3-part623-appA.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title32-vol3/pdf/CFR-2011-title32-vol3-part623-appA.pdf"><span>32 CFR Appendix A to Part 623 - Explanation of Terms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>..., or other political subdivision of any State. Major disaster. Any hurricane, tornado, storm, flood.... Threatened major disaster. Any hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title32-vol3/pdf/CFR-2013-title32-vol3-part623-appA.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title32-vol3/pdf/CFR-2013-title32-vol3-part623-appA.pdf"><span>32 CFR Appendix A to Part 623 - Explanation of Terms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>..., or other political subdivision of any State. Major disaster. Any hurricane, tornado, storm, flood.... Threatened major disaster. Any hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title32-vol3/pdf/CFR-2012-title32-vol3-part623-appA.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title32-vol3/pdf/CFR-2012-title32-vol3-part623-appA.pdf"><span>32 CFR Appendix A to Part 623 - Explanation of Terms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>..., or other political subdivision of any State. Major disaster. Any hurricane, tornado, storm, flood.... Threatened major disaster. Any hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title32-vol3/pdf/CFR-2014-title32-vol3-part623-appA.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title32-vol3/pdf/CFR-2014-title32-vol3-part623-appA.pdf"><span>32 CFR Appendix A to Part 623 - Explanation of Terms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>..., or other political subdivision of any State. Major disaster. Any hurricane, tornado, storm, flood.... Threatened major disaster. Any hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22263795-investigation-guided-waves-propagation-pipe-buried-sand','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22263795-investigation-guided-waves-propagation-pipe-buried-sand"><span>Investigation of guided waves propagation in pipe buried in sand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Leinov, Eli; Cawley, Peter; Lowe, Michael J.S.</p> <p></p> <p>The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand usingmore » a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23137783','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23137783"><span>Effects of sonication radiation on oil recovery by ultrasonic waves stimulated water-flooding.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mohammadian, Erfan; Junin, Radzuan; Rahmani, Omeid; Idris, Ahmad Kamal</p> <p>2013-02-01</p> <p>Due to partial understanding of mechanisms involved in application of ultrasonic waves as enhanced oil recovery method, series of straight (normal), and ultrasonic stimulated water-flooding experiments were conducted on a long unconsolidated sand pack using ultrasonic transducers. Kerosene, vaseline, and SAE-10 (engine oil) were used as non-wet phase in the system. In addition, a series of fluid flow and temperature rise experiments were conducted using ultrasonic bath in order to enhance the understanding about contributing mechanisms. 3-16% increase in the recovery of water-flooding was observed. Emulsification, viscosity reduction, and cavitation were identified as contributing mechanisms. The findings of this study are expected to increase the insight to involving mechanisms which lead to improving the recovery of oil as a result of application of ultrasound waves. Copyright © 2012 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.noaanews.noaa.gov/broll/shotsheets/severe-weather.htm','SCIGOVWS'); return false;" href="http://www.noaanews.noaa.gov/broll/shotsheets/severe-weather.htm"><span>NOAA B-Roll</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Hurricane Landfall: High winds and flooding, boats at dock in churning water, boat on <em>pavement</em>, sunken aircraft). 1:11:57:00 Storm Surge: Rough surf, waves crashing during storm, flooding over <em>pavement</em>, boats</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911463O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911463O"><span>Coastal hazards in a changing world: projecting and communicating future coastal flood risk at the local-scale using the Coastal Storm Modeling System (CoSMoS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Neill, Andrea; Barnard, Patrick; Erikson, Li; Foxgrover, Amy; Limber, Patrick; Vitousek, Sean; Fitzgibbon, Michael; Wood, Nathan</p> <p>2017-04-01</p> <p>The risk of coastal flooding will increase for many low-lying coastal regions as predominant contributions to flooding, including sea level, storm surge, wave setup, and storm-related fluvial discharge, are altered with climate change. Community leaders and local governments therefore look to science to provide insight into how climate change may affect their areas. Many studies of future coastal flooding vulnerability consider sea level and tides, but ignore other important factors that elevate flood levels during storm events, such as waves, surge, and discharge. Here we present a modelling approach that considers a broad range of relevant processes contributing to elevated storm water levels for open coast and embayment settings along the U.S. West Coast. Additionally, we present online tools for communicating community-relevant projected vulnerabilities. The Coastal Storm Modeling System (CoSMoS) is a numerical modeling system developed to predict coastal flooding due to both sea-level rise (SLR) and plausible 21st century storms for active-margin settings like the U.S. West Coast. CoSMoS applies a predominantly deterministic framework of multi-scale models encompassing large geographic scales (100s to 1000s of kilometers) to small-scale features (10s to 1000s of meters), resulting in flood extents that can be projected at a local resolution (2 meters). In the latest iteration of CoSMoS applied to Southern California, U.S., efforts were made to incorporate water level fluctuations in response to regional storm impacts, locally wind-generated waves, coastal river discharge, and decadal-scale shoreline and cliff changes. Coastal hazard projections are available in a user-friendly web-based tool (www.prbo.org/ocof), where users can view variations in flood extent, maximum flood depth, current speeds, and wave heights in response to a range of potential SLR and storm combinations, providing direct support to adaptation and management decisions. In order to capture the societal aspect of the hazard, projections are combined with socioeconomic exposure to produce clear, actionable information (https://www.usgs.gov/apps/hera/); this integrated approach to hazard displays provides an example of how to effectively translate complex climate impacts projections into simple, societally-relevant information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S41B0750L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S41B0750L"><span>Using Tectonic Tremor to Constrain Seismic-wave Attenuation in Cascadia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Littel, G.; Thomas, A.; Baltay, A.</p> <p>2017-12-01</p> <p>In addition to fast, seismic slip, many subduction zones also host slow, largely aseismic slip, accompanied by a weak seismic signal known as tectonic tremor. Tremor is a small amplitude, low-frequency seismic signal that originates at the plate interface, down-dip of where large earthquakes typically occur. The Cascadia subduction zone has not seen a large megathrust earthquake since 1700, yet its recurrence interval of 350-500 years motivates heightened interest in understanding the seismic hazard of the region. Of great importance is to understand the degree to which waves are attenuated as they leave the plate interface and travel towards populated regions of interest. Ground motion prediction equations (GMPEs) relate ground motion to a number of parameters, including earthquake magnitude, depth, style of faulting, and anelastic attenuation, and are typically determined empirically from earthquake ground motion recordings. In Cascadia, however, earthquakes of the moderate size typically used to constrain GMPEs occur relatively infrequently compared to tectonic tremor events, which, in contrast, occur periodically approximately every 10-19 months. Studies have shown that the abundant tectonic tremor in Cascadia, despite its small amplitudes, can be used to constrain seismic wave attenuation in GMPEs. Here we quantify seismic wave attenuation and determine its spatial variations in Cascadia by performing an inversion using tremor ground motion amplitudes, taken as peak ground acceleration (PGA) and peak ground velocity (PGV) from 1 min window waveforms of each individual tremor event. We estimate the anelastic attenuation parameter for varying regional sections along the Cascadia margin. Changes in seismic-wave attenuation along the Cascadia Subduction Zone could result in significantly different ground motions in the event of a very large earthquake, hence quantifying attenuation may help to better estimate the severity of shaking in densely populated metropolitan areas such as Vancouver, Seattle and Portland.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860013504','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860013504"><span>Effect of stress on ultrasonic pulses in fiber reinforced composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hemann, J. H.; Baaklini, G. Y.</p> <p>1986-01-01</p> <p>An acoustical-ultrasonic technique was used to demonstrate relationships existing between changes in attenuation of stress waves and tensile stress on an eight ply 0 degree graphite-epoxy fiber reinforced composite. All tests were conducted in the linear range of the material for which no mechanical or macroscopic damage was evident. Changes in attenuation were measured as a function of tensile stress in the frequency domain and in the time domain. Stress wave propagation in these specimens was dispersive, i.e., the wave speed depends on frequency. Wave speeds varied from 267,400 cm/sec to 680,000 cm/sec as the frequency of the signal was varied from 150 kHz to 1.9 MHz which strongly suggests that flexural/lamb wave modes of propagation exist. The magnitude of the attenuation changes depended strongly on tensile stress. It was further observed that the wave speeds increased slightly for all tested frequencies as the stress was increased.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23556613','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23556613"><span>Estimation of fast and slow wave properties in cancellous bone using Prony's method and curve fitting.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wear, Keith A</p> <p>2013-04-01</p> <p>The presence of two longitudinal waves in poroelastic media is predicted by Biot's theory and has been confirmed experimentally in through-transmission measurements in cancellous bone. Estimation of attenuation coefficients and velocities of the two waves is challenging when the two waves overlap in time. The modified least squares Prony's (MLSP) method in conjuction with curve-fitting (MLSP + CF) is tested using simulations based on published values for fast and slow wave attenuation coefficients and velocities in cancellous bone from several studies in bovine femur, human femur, and human calcaneus. The search algorithm is accelerated by exploiting correlations among search parameters. The performance of the algorithm is evaluated as a function of signal-to-noise ratio (SNR). For a typical experimental SNR (40 dB), the root-mean-square errors (RMSEs) for one example (human femur) with fast and slow waves separated by approximately half of a pulse duration were 1 m/s (slow wave velocity), 4 m/s (fast wave velocity), 0.4 dB/cm MHz (slow wave attenuation slope), and 1.7 dB/cm MHz (fast wave attenuation slope). The MLSP + CF method is fast (requiring less than 2 s at SNR = 40 dB on a consumer-grade notebook computer) and is flexible with respect to the functional form of the parametric model for the transmission coefficient. The MLSP + CF method provides sufficient accuracy and precision for many applications such that experimental error is a greater limiting factor than estimation error.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PMB....62..484N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PMB....62..484N"><span>Attenuation measuring ultrasound shearwave elastography and in vivo application in post-transplant liver patients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nenadic, Ivan Z.; Qiang, Bo; Urban, Matthew W.; Zhao, Heng; Sanchez, William; Greenleaf, James F.; Chen, Shigao</p> <p>2017-01-01</p> <p>Ultrasound and magnetic resonance elastography techniques are used to assess mechanical properties of soft tissues. Tissue stiffness is related to various pathologies such as fibrosis, loss of compliance, and cancer. One way to perform elastography is measuring shear wave velocity of propagating waves in tissue induced by intrinsic motion or an external source of vibration, and relating the shear wave velocity to tissue elasticity. All tissues are inherently viscoelastic and ignoring viscosity biases the velocity-based estimates of elasticity and ignores a potentially important parameter of tissue health. We present attenuation measuring ultrasound shearwave elastography (AMUSE), a technique that independently measures both shear wave velocity and attenuation in tissue and therefore allows characterization of viscoelasticity without using a rheological model. The theoretical basis for AMUSE is first derived and validated in finite element simulations. AMUSE is validated against the traditional methods for assessing shear wave velocity (phase gradient) and attenuation (amplitude decay) in tissue mimicking phantoms and excised tissue. The results agreed within one standard deviation. AMUSE was used to measure shear wave velocity and attenuation in 15 transplanted livers in patients with potential acute rejection, and the results were compared with the biopsy findings in a preliminary study. The comparison showed excellent agreement and suggests that AMUSE can be used to separate transplanted livers with acute rejection from livers with no rejection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoJI.209.1718F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoJI.209.1718F"><span>Time domain viscoelastic full waveform inversion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fabien-Ouellet, Gabriel; Gloaguen, Erwan; Giroux, Bernard</p> <p>2017-06-01</p> <p>Viscous attenuation can have a strong impact on seismic wave propagation, but it is rarely taken into account in full waveform inversion (FWI). When viscoelasticity is considered in time domain FWI, the displacement formulation of the wave equation is usually used instead of the popular velocity-stress formulation. However, inversion schemes rely on the adjoint equations, which are quite different for the velocity-stress formulation than for the displacement formulation. In this paper, we apply the adjoint state method to the isotropic viscoelastic wave equation in the velocity-stress formulation based on the generalized standard linear solid rheology. By applying linear transformations to the wave equation before deriving the adjoint state equations, we obtain two symmetric sets of partial differential equations for the forward and adjoint variables. The resulting sets of equations only differ by a sign change and can be solved by the same numerical implementation. We also investigate the crosstalk between parameter classes (velocity and attenuation) of the viscoelastic equation. More specifically, we show that the attenuation levels can be used to recover the quality factors of P and S waves, but that they are very sensitive to velocity errors. Finally, we present a synthetic example of viscoelastic FWI in the context of monitoring CO2 geological sequestration. We show that FWI based on our formulation can indeed recover P- and S-wave velocities and their attenuation levels when attenuation is high enough. Both changes in velocity and attenuation levels recovered with FWI can be used to track the CO2 plume during and after injection. Further studies are required to evaluate the performance of viscoelastic FWI on real data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA122993','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA122993"><span>Assessment of the Flood Problems of the Taunton River Basin Massachusetts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1978-12-01</p> <p>essential for fish and provides a habitat for numerous varieties of aquatic oriented wildlife species. Of the com- bined forested wetland and open forest...Detailed flood elevation data essential for operation of regula- tions. Flood velocities, flood duration, wave action, erosion pr,,- blems and other...along with the preservation of as much trees and shrubs are essential . Where possible fast growing annual grass seed should be used, intermixed with</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24182108','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24182108"><span>Study of transmission line attenuation in broad band millimeter wave frequency range.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pandya, Hitesh Kumar B; Austin, M E; Ellis, R F</p> <p>2013-10-01</p> <p>Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Sci...358.1593T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Sci...358.1593T"><span>Determination of intrinsic attenuation in the oceanic lithosphere-asthenosphere system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takeuchi, Nozomu; Kawakatsu, Hitoshi; Shiobara, Hajime; Isse, Takehi; Sugioka, Hiroko; Ito, Aki; Utada, Hisashi</p> <p>2017-12-01</p> <p>We recorded P and S waves traveling through the oceanic lithosphere-asthenosphere system (LAS) using broadband ocean-bottom seismometers in the northwest Pacific, and we quantitatively separated the intrinsic (anelastic) and extrinsic (scattering) attenuation effects on seismic wave propagation to directly infer the thermomechanical properties of the oceanic LAS. The strong intrinsic attenuation in the asthenosphere obtained at higher frequency (~3 hertz) is comparable to that constrained at lower frequency (~100 seconds) by surface waves and suggests frequency-independent anelasticity, whereas the intrinsic attenuation in the lithosphere is frequency dependent. This difference in frequency dependence indicates that the strong and broad peak dissipation recently observed in the laboratory exists only in the asthenosphere and provides new insight into what distinguishes the asthenosphere from the lithosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JSV...301..979S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JSV...301..979S"><span>Generalized thermoelastic diffusive waves in heat conducting materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharma, J. N.</p> <p>2007-04-01</p> <p>Keeping in view the applications of diffusion processes in geophysics and electronics industry, the aim of the present paper is to give a detail account of the plane harmonic generalized thermoelastic diffusive waves in heat conducting solids. According to the characteristic equation, three longitudinal waves namely, elastodiffusive (ED), mass diffusion (MD-mode) and thermodiffusive (TD-mode), can propagate in such solids in addition to transverse waves. The transverse waves get decoupled from rest of the fields and hence remain unaffected due to temperature change and mass diffusion effects. These waves travel without attenuation and dispersion. The other generalized thermoelastic diffusive waves are significantly influenced by the interacting fields and hence suffer both attenuation and dispersion. At low frequency mass diffusion and thermal waves do not exist but at high-frequency limits these waves propagate with infinite velocity being diffusive in character. Moreover, in the low-frequency regions, the disturbance is mainly dominant by mechanical process of transportation of energy and at high-frequency regions it is significantly dominated by a close to diffusive process (heat conduction or mass diffusion). Therefore, at low-frequency limits the waves like modes are identifiable with small amplitude waves in elastic materials that do not conduct heat. The general complex characteristic equation is solved by using irreducible case of Cardano's method with the help of DeMoivre's theorem in order to obtain phase speeds, attenuation coefficients and specific loss factor of energy dissipation of various modes. The propagation of waves in case of non-heat conducting solids is also discussed. Finally, the numerical solution is carried out for copper (solvent) and zinc (solute) materials and the obtained phase velocities, attenuation coefficients and specific loss factor of various thermoelastic diffusive waves are presented graphically.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730019124','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730019124"><span>ATS-5 millimeter wave propagation measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ippolito, L. J.</p> <p>1973-01-01</p> <p>Long term experimental measurements to determine the propagation characteristics of 15 and 32 GHz earth-space links and to evaluate performance characteristics of operational millimeter wave systems are reported. The ATS 5 millimeter wave experimental link experienced attenuation and fading characteristics as a function of rainfall rate and other meteorological parameters. A method of site selection for the lowest attenuation rainfall rate improved reception tremendously.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003670','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003670"><span>Teleconnection, Regime Shift, and Predictability of Climate Extremes: A Case Study for the Russian Heat Wave and Pakistan Flood in Summer 2010</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lau, W. K.; Reale, O.; Kim, K.</p> <p>2011-01-01</p> <p>In this talk, we present observational evidence showing that the two major extremes events of the summer of 2010, i.e., the Russian heat wave and the Pakistan flood were physically connected. We find that the Pakistan flood was contributed by a series of unusually heavy rain events over the upper Indus River Basin in July-August. The rainfall regimes shifted from an episodic heavy rain regime in mid-to-late July to a steady heavy rain regime in August. An atmospheric Rossby wave associated with the development of the Russian heat wave was instrumental in spurring the episodic rain events , drawing moisture from the Bay of Bengal and the northern Arabian Sea. The steady rain regime was maintained primarily by monsoon moisture surges from the deep tropics. From experiments with the GEOS-5 forecast system, we assess the predictability of the heavy rain events associated with the Pakistan flood. Preliminary results indicate that there are significantly higher skills in the rainfall forecasts during the episodic heavy rain events in July, compared to the steady rain period in early to mid-August. The change in rainfall predictability may be related to scale interactions between the extratropics and the tropics resulting in a modulation of rainfall predictability by the circulation regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA394357','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA394357"><span>Attenuation and Refraction of an Electromagnetic Wave in an Electron Beam Generated Plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2001-02-01</p> <p>100 keV and 1 MeV respectively. Plasma chemistry plays a critical role in determining the electron plasma density and dictates the beam format required to achieve a desired level of EM wave attenuation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....3427F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....3427F"><span>Management of a Complex Open Channel Network During Flood Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Franchini, M.; Valiani, A.; Schippa, L.; Mascellani, G.</p> <p>2003-04-01</p> <p>Most part of the area around Ferrara (Italy) is below the mean sea level and an extensive drainage system combined with several pump stations allows the use of this area for both urban development and industrial and agricultural activities. The three main channels of this hydraulic system constitute the Ferrara Inland Waterway (total length approximately 70 km), which connects the Po river near Ferrara to the sea. Because of the level difference between the upstream and dowstream ends of the waterway, three locks are located along it, each of them combined with a set of gates to control the water levels. During rainfall events, most of the water of the basin flows into the waterway and heavy precipitations sometimes cause flooding in several areas. This is due to the insufficiency of the channel network dimensions and an inadequate manual operation of the gates. This study presents a hydrological-hydraulic model for the entire Ferrara basin and a system of rules in order to operate the gates. In particular, their opening is designed to be regulated in real time by monitoring the water level in several sections along the channels. Besides flood peak attenuation, this operation strategy contributes also to the maintenance of a constant water level for irrigation and fluvial navigation during the dry periods. With reference to the flood event of May 1996, it is shown that this floodgate operation policy, unlike that which was actually adopted during that event, would lead to a significant flood peak attenuation, avoiding flooding in the area upstream of Ferrara.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24727599','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24727599"><span>Front gardens to car parks: changes in garden permeability and effects on flood regulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Warhurst, Jennifer R; Parks, Katherine E; McCulloch, Lindsay; Hudson, Malcolm D</p> <p>2014-07-01</p> <p>This study addresses the consequences of widespread conversion of permeable front gardens to hard standing car parking surfaces, and the potential consequences in high-risk urban flooding hotspots, in the city of Southampton. The last two decades has seen a trend for domestic front gardens in urban areas to be converted for parking, driven by the lack of space and increased car ownership. Despite media and political attention, the effects of this change are unknown, but increased and more intense rainfall, potentially linked to climate change, could generate negative consequences as runoff from impermeable surfaces increases. Information is limited on garden permeability change, despite the consequences for ecosystem services, especially flood regulation. We focused on eight flooding hotspots identified by the local council as part of a wider urban flooding policy response. Aerial photographs from 1991, 2004 and 2011 were used to estimate changes in surface cover and to analyse permeability change within a digital surface model in a GIS environment. The 1, 30 and 100 year required attenuation storage volumes were estimated, which are the temporary storage required to reduce the peak flow rate given surface permeability. Within our study areas, impermeable cover in domestic front gardens increased by 22.47% over the 20-year study period (1991-2011) and required attenuation storage volumes increased by 26.23% on average. These increases suggest that a consequence of the conversion of gardens to parking areas will be a potential increase in flooding frequency and severity - a situation which is likely to occur in urban locations worldwide. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www-public.jcu.edu.au/public/groups/everyone/documents/journal_article/jcuprd1_069922.pdf','USGSPUBS'); return false;" href="http://www-public.jcu.edu.au/public/groups/everyone/documents/journal_article/jcuprd1_069922.pdf"><span>The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gedan, Keryn B.; Kirwan, Matthew L.; Wolanski, Eric; Barbier, Edward B.; Silliman, Brian R.</p> <p>2011-01-01</p> <p>For more than a century, coastal wetlands have been recognized for their ability to stabilize shorelines and protect coastal communities. However, this paradigm has recently been called into question by small-scale experimental evidence. Here, we conduct a literature review and a small meta-analysis of wave attenuation data, and we find overwhelming evidence in support of established theory. Our review suggests that mangrove and salt marsh vegetation afford context-dependent protection from erosion, storm surge, and potentially small tsunami waves. In biophysical models, field tests, and natural experiments, the presence of wetlands reduces wave heights, property damage, and human deaths. Meta-analysis of wave attenuation by vegetated and unvegetated wetland sites highlights the critical role of vegetation in attenuating waves. Although we find coastal wetland vegetation to be an effective shoreline buffer, wetlands cannot protect shorelines in all locations or scenarios; indeed large-scale regional erosion, river meandering, and large tsunami waves and storm surges can overwhelm the attenuation effect of vegetation. However, due to a nonlinear relationship between wave attenuation and wetland size, even small wetlands afford substantial protection from waves. Combining man-made structures with wetlands in ways that mimic nature is likely to increase coastal protection. Oyster domes, for example, can be used in combination with natural wetlands to protect shorelines and restore critical fishery habitat. Finally, coastal wetland vegetation modifies shorelines in ways (e.g. peat accretion) that increase shoreline integrity over long timescales and thus provides a lasting coastal adaptation measure that can protect shorelines against accelerated sea level rise and more frequent storm inundation. We conclude that the shoreline protection paradigm still stands, but that gaps remain in our knowledge about the mechanistic and context-dependent aspects of shoreline protection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H11G0984L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H11G0984L"><span>Predicting Flood Hazards in Systems with Multiple Flooding Mechanisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luke, A.; Schubert, J.; Cheng, L.; AghaKouchak, A.; Sanders, B. F.</p> <p>2014-12-01</p> <p>Delineating flood zones in systems that are susceptible to flooding from a single mechanism (riverine flooding) is a relatively well defined procedure with specific guidance from agencies such as FEMA and USACE. However, there is little guidance in delineating flood zones in systems that are susceptible to flooding from multiple mechanisms such as storm surge, waves, tidal influence, and riverine flooding. In this study, a new flood mapping method which accounts for multiple extremes occurring simultaneously is developed and exemplified. The study site in which the method is employed is the Tijuana River Estuary (TRE) located in Southern California adjacent to the U.S./Mexico border. TRE is an intertidal coastal estuary that receives freshwater flows from the Tijuana River. Extreme discharge from the Tijuana River is the primary driver of flooding within TRE, however tide level and storm surge also play a significant role in flooding extent and depth. A comparison between measured flows at the Tijuana River and ocean levels revealed a correlation between extreme discharge and ocean height. Using a novel statistical method based upon extreme value theory, ocean heights were predicted conditioned up extreme discharge occurring within the Tijuana River. This statistical technique could also be applied to other systems in which different factors are identified as the primary drivers of flooding, such as significant wave height conditioned upon tide level, for example. Using the predicted ocean levels conditioned upon varying return levels of discharge as forcing parameters for the 2D hydraulic model BreZo, the 100, 50, 20, and 10 year floodplains were delineated. The results will then be compared to floodplains delineated using the standard methods recommended by FEMA for riverine zones with a downstream ocean boundary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJAEO..69...27O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJAEO..69...27O"><span>Multi-temporal flood mapping and satellite altimetry used to evaluate the flood dynamics of the Bolivian Amazon wetlands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ovando, A.; Martinez, J. M.; Tomasella, J.; Rodriguez, D. A.; von Randow, C.</p> <p>2018-07-01</p> <p>The Bolivian Amazon wetlands are extensive floodplains distributed over the Mamore, Beni, Madre de Dios and Guapore Rivers. Located within the upper Madeira River Basin, the wetlands play important roles in regulating the biogeochemical processes and hydrological cycle of the region. In addition, they have major ecological and hydrological relevance for the entire Amazon Basin. These wetlands are characterized by the occurrence of episodic floods that result from contrasting hydro-meteorological processes in the Andean Mountain region, the piedmont area and the Amazon lowlands. In this study, we characterized the flood dynamics of the region using multi-temporal flood mapping based on optical altimetry (MODIS - Moderate Resolution Imaging Spectroradiometer - M*D09A1) and satellite altimetry (ENVISAT RA-2 and SARAL AltiKa altimeters). This study provides new insights regarding the frequency, magnitude and spatial distribution of exogenous floods, which are created by flood waves from the Andes; and endogenous floods, which result from runoff originating in the lowlands. The maximum extent of flooding during 2001-2014 was 43144 km2 in the Mamore Basin and 34852 km2 in the Guapore Basin, and the total surface water storage in these floodplains reached 94 km3. The regionalization of flood regimes based on water stage time series signatures allowed those regions that are exposed to frequent floods, which are generally located along rivers without a direct connection with the Andes, to be distinguished from floodplains that are more dependent on flood waves originating in the Andes and its piedmonts. This information is of great importance for understanding the roles of these wetlands in the provision of ecosystem services.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800005234','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800005234"><span>Ultrasonic attenuation and velocity in AS/3501-6 graphite/epoxy fiber composite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Williams, J. H., Jr.; Nayebhashemi, H.; Lee, S. S.</p> <p>1979-01-01</p> <p>The ultrasonic group velocity and attenuation were measured as a function of frequency for longitudinal and shear waves in the epoxy matrix (3501-6) and in the principal directions of the unidirectional graphite/epoxy composite (AS/3501-6). Tests were conducted in the frequency ranges 0.25 Mz to 14 MHz and 0.5 Mz to 3 MHz for longitudinal and shear wave modes, respectively. The attenuation increased with frequency for all wave modes, but the group velocity was independent of frequency for all wave modes. The effects of pressure and couplant at the transducer-specimen interface were studied and it was found that for each transducer type there exists a frequency dependent 'saturation pressure' corresponding to the maximum output signal amplitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO24E3000O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO24E3000O"><span>Estimates of the Attenuation Rates of Baroclinic Tidal Energy Caused by Resonant Interactions Among Internal Waves based on the Weak Turbulence Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Onuki, Y.; Hibiya, T.</p> <p>2016-02-01</p> <p>The baroclinic tides are thought to be the dominant energy source for turbulent mixing in the ocean interior. In contrast to the geography of the energy conversion rates from the barotropic to baroclinic tides, which has been clarified in recent numerical studies, the global distribution of the energy sink for the resulting low-mode baroclinic tides remains obscure. A key to resolve this issue is the resonant wave-wave interactions, which transfer part of the baroclinic tidal energy to the background internal wave field enhancing the local energy dissipation rates. Recent field observations and numerical studies have pointed out that parametric subharmonic instability (PSI), one of the resonant interactions, causes significant energy sink of baroclinic tidal energy at mid-latitudes. The purpose of this study is to analyze the quantitative aspect of PSI to demonstrate the global distribution of the intensity of resonant wave interactions, namely, the attenuation rate of low-mode baroclinic tidal energy. Our approach is basically following the weak turbulence theory, which is the standard theory for resonant wave-wave interactions, where techniques of singular perturbation and statistical physics are employed. This study is, however, different from the classical theory in some points; we have reformulated the weak turbulence theory to be applicable to low-mode internal waves and also developed its numerical calculation method so that the effects of stratification profile and oceanic total depth can be taken into account. We have calculated the attenuation rate of low-mode baroclinic tidal waves interacting with the background Garrett-Munk internal wave field. The calculated results clearly show the rapid attenuation of baroclinic tidal energy at mid-latitudes, in agreement with the results from field observations and also show the zonal inhomogeneity of the attenuation rate caused by the density structures associated with the subtropical gyre. This study is expected to contribute to clarify the global distribution of the dissipation rates of baroclinic tidal energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1706c0003H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1706c0003H"><span>Guided wave propagation in metallic and resin plates loaded with water on single surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayashi, Takahiro; Inoue, Daisuke</p> <p>2016-02-01</p> <p>Our previous papers reported dispersion curves for leaky Lamb waves in a water-loaded plate and wave structures for several typical modes including quasi-Scholte waves [1,2]. The calculations were carried out with a semi-analytical finite element (SAFE) method developed for leaky Lamb waves. This study presents SAFE calculations for transient guided waves including time-domain waveforms and animations of wave propagation in metallic and resin water-loaded plates. The results show that non-dispersive and non-attenuated waves propagating along the interface between the fluid and the plate are expected for effective non-destructive evaluation of such fluid-loaded plates as storage tanks and transportation pipes. We calculated transient waves in both steel and polyvinyl chloride (PVC) plates loaded with water on a single side and input dynamic loading from a point source on the other water-free surface as typical examples of metallic and resin plates. For a steel plate, there exists a non-dispersive and non-attenuated mode, called the quasi-Scholte wave, having an almost identical phase velocity to that of water. The quasi-Scholte wave has superior generation efficiency in the low frequency range due to its broad energy distribution across the plate, whereas it is localized near the plate-water interface at higher frequencies. This means that it has superior detectability of inner defects. For a PVC plate, plural non-attenuated modes exist. One of the non-attenuated modes similar to the A0 mode of the Lamb wave in the form of a group velocity dispersion curve is promising for the non-destructive evaluation of the PVC plate because it provides prominent characteristics of generation efficiency and low dispersion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800003031','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800003031"><span>Concepts for 18/30 GHz satellite communication system, volume 1A: Appendix</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jorasch, R.; Baker, M.; Davies, R.; Cuccia, L.; Mitchell, C.</p> <p>1979-01-01</p> <p>The following are appended: (1) Propagation phenomena and attenuation models; (2) Models and measurements of rainfall patterns in the U.S.; (3) Millimeter wave propagation experiments; (4) Comparison of the theory and Millimeter wave propagation experiments; (4) Comparison of theory and experiment; (5) A practical rain attenuation model for CONUS; (6) Space diversity; (7) Values of attenuation for selected U.S. cities; and (8) Additional considerations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21428485','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21428485"><span>A contrast source method for nonlinear acoustic wave fields in media with spatially inhomogeneous attenuation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Demi, L; van Dongen, K W A; Verweij, M D</p> <p>2011-03-01</p> <p>Experimental data reveals that attenuation is an important phenomenon in medical ultrasound. Attenuation is particularly important for medical applications based on nonlinear acoustics, since higher harmonics experience higher attenuation than the fundamental. Here, a method is presented to accurately solve the wave equation for nonlinear acoustic media with spatially inhomogeneous attenuation. Losses are modeled by a spatially dependent compliance relaxation function, which is included in the Westervelt equation. Introduction of absorption in the form of a causal relaxation function automatically results in the appearance of dispersion. The appearance of inhomogeneities implies the presence of a spatially inhomogeneous contrast source in the presented full-wave method leading to inclusion of forward and backward scattering. The contrast source problem is solved iteratively using a Neumann scheme, similar to the iterative nonlinear contrast source (INCS) method. The presented method is directionally independent and capable of dealing with weakly to moderately nonlinear, large scale, three-dimensional wave fields occurring in diagnostic ultrasound. Convergence of the method has been investigated and results for homogeneous, lossy, linear media show full agreement with the exact results. Moreover, the performance of the method is demonstrated through simulations involving steered and unsteered beams in nonlinear media with spatially homogeneous and inhomogeneous attenuation. © 2011 Acoustical Society of America</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSV...400..227G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSV...400..227G"><span>Flexural wave attenuation in a sandwich beam with viscoelastic periodic cores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Zhiwei; Sheng, Meiping; Pan, Jie</p> <p>2017-07-01</p> <p>The flexural-wave attenuation performance of traditional constraint-layer damping in a sandwich beam is improved by using periodic constrained-layer damping (PCLD), where the monolithic viscoelastic core is replaced with two periodically alternating viscoelastic cores. Closed-form solutions of the wave propagation constants of the infinite periodic sandwich beam and the forced response of the corresponding finite sandwich structure are theoretically derived, providing computational support on the analysis of attenuation characteristics. In a sandwich beam with PCLD, the flexural waves can be attenuated by both Bragg scattering effect and damping effect, where the attenuation level is mainly dominated by Bragg scattering in the band-gaps and by damping in the pass-bands. Affected by these two effects, when the parameters of periodic cores are properly selected, a sandwich beam with PCLD can effectively reduce vibrations of much lower frequencies than that with traditional constrained-layer damping. The effects of the parameters of viscoelastic periodic cores on band-gap properties are also discussed, showing that the average attenuation in the desired frequency band can be maximized by tuning the length ratio and core thickness to proper values. The research in this paper could possibly provide useful information for the researches and engineers to design damping structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840022076','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840022076"><span>Wave attenuation and mode dispersion in a waveguide coated with lossy dielectric material</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, C. S.; Chuang, S. L.; Lee, S. W.; Lo, Y. T.</p> <p>1984-01-01</p> <p>The modal attenuation constants in a cylindrical waveguide coated with a lossy dielectric material are studied as functions of frequency, dielectric constant, and thickness of the dielectric layer. A dielectric material best suited for a large attenuation is suggested. Using Kirchhoff's approximation, the field attenuation in a coated waveguide which is illuminated by a normally incident plane wave is also studied. For a circular guide which has a diameter of two wavelengths and is coated with a thin lossy dielectric layer (omega sub r = 9.1 - j2.3, thickness = 3% of the radius), a 3 dB attenuation is achieved within 16 diameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GGG....15.1419S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GGG....15.1419S"><span>Nonlinear attenuation of S-waves and Love waves within ambient rock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sleep, Norman H.; Erickson, Brittany A.</p> <p>2014-04-01</p> <p>obtain scaling relationships for nonlinear attenuation of S-waves and Love waves within sedimentary basins to assist numerical modeling. These relationships constrain the past peak ground velocity (PGV) of strong 3-4 s Love waves from San Andreas events within Greater Los Angeles, as well as the maximum PGV of future waves that can propagate without strong nonlinear attenuation. During each event, the shaking episode cracks the stiff, shallow rock. Over multiple events, this repeated damage in the upper few hundred meters leads to self-organization of the shear modulus. Dynamic strain is PGV divided by phase velocity, and dynamic stress is strain times the shear modulus. The frictional yield stress is proportional to depth times the effective coefficient of friction. At the eventual quasi-steady self-organized state, the shear modulus increases linearly with depth allowing inference of past typical PGV where rock over the damaged depth range barely reaches frictional failure. Still greater future PGV would cause frictional failure throughout the damaged zone, nonlinearly attenuating the wave. Assuming self-organization has taken place, estimated maximum past PGV within Greater Los Angeles Basins is 0.4-2.6 m s-1. The upper part of this range includes regions of accumulating sediments with low S-wave velocity that may have not yet compacted, rather than having been damaged by strong shaking. Published numerical models indicate that strong Love waves from the San Andreas Fault pass through Whittier Narrows. Within this corridor, deep drawdown of the water table from its currently shallow and preindustrial levels would nearly double PGV of Love waves reaching Downtown Los Angeles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740008472','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740008472"><span>Attenuation of stress waves in single and multi-layered structures. [mitigation of elastic and plastic stress waves during spacecraft landing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yang, J. C. S.; Tsui, C. Y.</p> <p>1972-01-01</p> <p>Analytical and experimental studies were made of the attenuation of the stress waves during passage through single and multilayer structures. The investigation included studies on elastic and plastic stress wave propagation in the composites and those on shock mitigating material characteristics such as dynamic stress-strain relations and energy absorbing properties. The results of the studies are applied to methods for reducing the stresses imposed on a spacecraft during planetary or ocean landings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23742331','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23742331"><span>The attenuation of sound by turbulence in internal flows.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weng, Chenyang; Boij, Susann; Hanifi, Ardeshir</p> <p>2013-06-01</p> <p>The attenuation of sound waves due to interaction with low Mach number turbulent boundary layers in internal flows (channel or pipe flow) is examined. Dynamic equations for the turbulent Reynolds stress on the sound wave are derived, and the analytical solution to the equation provides a frequency dependent eddy viscosity model. This model is used to predict the attenuation of sound propagating in fully developed turbulent pipe flow. The predictions are shown to compare well with the experimental data. The proposed dynamic equation shows that the turbulence behaves like a viscoelastic fluid in the interaction process, and that the ratio of turbulent relaxation time near the wall and the sound wave period is the parameter that controls the characteristics of the attenuation induced by the turbulent flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.5104D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.5104D"><span>The effects of floodplain forest restoration and logjams on flood risk and flood hydrology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dixon, Simon; Sear, David A.; Sykes, Tim; Odoni, Nicholas</p> <p>2015-04-01</p> <p>Flooding is the most common natural catastrophe, accounting for around half of all natural disaster related deaths and causing economic losses in Europe estimated at over € 2bn per year. In addition flooding is expected to increase in magnitude and frequency with climate change, effectively shortening the return period for a given magnitude flood. Increasing the height and extent of hard engineered defences in response to increased risk is both unsustainable and undesirable. Thus alternative approaches to flood mitigation are needed such as harnessing vegetation processes to slow the passage of flood waves and increase local flood storage. However, our understanding of these effects at the catchment scale is limited. In this presentation we demonstrate the effects of two river restoration approaches upon catchment scale flood hydrology. The addition of large wood to river channels during river restoration projects is a popular method of attempting to improve physical and biological conditions in degraded river systems. Projects utilising large wood can involve the installation of engineered logjams (ELJs), the planting and enhancement of riparian forests, or a combination of both. Altering the wood loading of a channel through installation of ELJs and increasing floodplain surface complexity through encouraging mature woodland could be expected to increase the local hydraulic resistance, increasing the timing and duration of overbank events locally and therefore increasing the travel time of a flood wave through a reach. This reach-scale effect has been documented in models and the field; however the impacts of these local changes at a catchment scale remains to be illustrated. Furthermore there is limited knowledge of how changing successional stages of a restored riparian forest through time may affect its influence on hydromorphic processes. We present results of a novel paired numerical modelling study. We model changes in flood hydrology based on a 98km² catchment using OVERFLOW; a simplified hydrological model using a spatially distributed unit hydrograph approach. Restoration scenarios for the hydrological modelling are informed by the development of a new conceptual model of riparian forest succession, including quantitative estimates of deadwood inputs to the system, using a numerical forest growth model. We explore scenarios using ELJs alone as well as managed and unmanaged riparian forest restoration at scales from reach to sub-catchment. We demonstrate that changes to catchment flood hydrology with restoration are highly location dependant and downstream flood peaks can in some cases increase through synchronisation of sub-catchment flood waves. We constrain magnitude estimates for increases and decreases in flood peaks for modelled restoration scenarios and scales. Finally we analyse the potential for using riparian forest restoration as part of an integrated flood risk management strategy, including specific examples of type and extent of restoration which may prove most beneficial.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUSM.H23D..16M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUSM.H23D..16M"><span>Basin-Scale Reconstruction of Flood Characteristics in a Small Urban Waterhsed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller, A. J.; Smith, J. A.; Baeck, M. L.</p> <p>2006-05-01</p> <p>Intense short-duration summer thunderstorms are primarily responsible for the occurrence of extreme floods in small, highly urban watersheds. In these systems hydrologic response is rapid and the role of urban infrastructure (impervious cover, storm drain networks, stormwater retention facilities, engineered channels, road embankments, bridges and culverts, and floodplain fill and regrading) has potentially important consequences for runoff generation and for flood-wave propagation. The occurrence of even a single well- documented extreme event provides an opportunity to improve our understanding of the relationships between temporal and spatial patterns of precipitation, natural and anthropogenic landscape features, and the dynamics of flood behavior. We report on combined field and modeling studies of a record flood (Qpk ~ 250 m3s-1) that occurred on 7 July 2004 in the 14.3 km2 Dead Run watershed in suburban Baltimore, Maryland. Flood peaks were reconstructed for nine locations in the watershed and streamflow hydrographs were derived for four locations where complete or partial stage records were recovered; these were compared with precipitation mass-balance estimates using bias-corrected radar rainfall data in order to examine the spatial pattern of runoff ratios, lag times, and cumulative properties of the flood wave as it advanced downstream. Flood behavior in part reflects the role of capacity constraints in the storm drain network and of ponding and storage of overbank flow by physical barriers such as road embankments and culverts. The results can be used to improve predictions of flood response to other hydrometeorological events and provide insight on sensitivity of flood behavior to patterns of urban development and infrastructure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11..156C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11..156C"><span>Experimental modelling of outburst flood - bed interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carrivick, J. L.; Xie, Z.; Sleigh, A.; Hubbard, M.</p> <p>2009-04-01</p> <p>Outburst floods are a sudden release and advancing wave of water and sediment, with a peak discharge that is often several orders of magnitude greater than perennial flows. Common outburst floods from natural sources include those from glacial and moraine-impounded lakes, freshwater dyke and levee bursts, volcanic debris dams, landslides, avalanches, coastal bay-bars, and those from tree or vegetation dams. Outburst flood hazards are regularly incorporated into risk assessments for urban, coastal and mountainous areas, for example. Outburst flood hazards are primarily due to direct impacts, caused by a frontal surge wave, from debris within a flow body, and from the mass and consistency of the flows. A number of secondary impacts also pose hazards, including widespread deposition of sediment and blocked tributary streams. It is rapid landscape change, which is achieved the mobilization and redistribution of sediment that causes one of the greatest hazards due to outburst floods. The aim of this project is therefore to parameterise hydrodynamic - sedimentary interactions in experimental outburst floods. Specifically, this project applies laboratory flume modelling, which offers a hitherto untapped opportunity for examining complex interactions between water and sediment within outburst floods. The experimental set-up is of a tradition lock-gate design with a straight 4 m long tank. Hydraulics are scaled at 1:20 froude scale and the following controls on frontal wave flow-bed interactions and hence on rapid landscape change are being investigated: 1. Pre-existing mobile sediment effects, fixed bed roughness effects, sediment concentration effects, mobile bed effects. An emphasis is being maintained on examining the downstream temporal and spatial change in physical character of the water / sediment frontal wave. Facilities are state-of-the-art with a fully-automated laser bed-profiler to measure bed elevation after a run, Seatek arrays to measure transient flow depths, 0.5 Hz Ultrasonic Velocimeter Profiling to measure within-flow velocities, and Ultrasonic High-Concentration Meter (UHCM) to measure sediment concentrations, for example, all at increments of space and time. These instruments can only be used without a mobile sediment bed and some could be rendered as a source of error because they are intrusive to the flow. Digital video and automated still photography is therefore also important for recording hydraulic and bedform changes through time in flows with freely-moving sediment. This paper will report initial results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70158674','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70158674"><span>Many atolls may be uninhabitable within decades due to climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Storlazzi, Curt; Elias, Edwin P.L.; Berkowitz, Paul</p> <p>2015-01-01</p> <p>Observations show global sea level is rising due to climate change, with the highest rates in the tropical Pacific Ocean where many of the world’s low-lying atolls are located. Sea-level rise is particularly critical for low-lying carbonate reef-lined atoll islands; these islands have limited land and water available for human habitation, water and food sources, and ecosystems that are vulnerable to inundation from sea-level rise. Here we demonstrate that sea-level rise will result in larger waves and higher wave-driven water levels along atoll islands’ shorelines than at present. Numerical model results reveal waves will synergistically interact with sea-level rise, causing twice as much land forecast to be flooded for a given value of sea-level rise than currently predicted by current models that do not take wave-driven water levels into account. Atolls with islands close to the shallow reef crest are more likely to be subjected to greater wave-induced run-up and flooding due to sea-level rise than those with deeper reef crests farther from the islands’ shorelines. It appears that many atoll islands will be flooded annually, salinizing the limited freshwater resources and thus likely forcing inhabitants to abandon their islands in decades, not centuries, as previously thought.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70196699','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70196699"><span>Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Storlazzi, Curt; Gingerich, Stephen B.; van Dongeren, Ap; Cheriton, Olivia; Swarzenski, Peter W.; Quataert, Ellen; Voss, Clifford I.; Field, Donald W.; Annamalai, Hariharasubramanian; Piniak, Greg A.; McCall, Robert T.</p> <p>2018-01-01</p> <p>Sea levels are rising, with the highest rates in the tropics, where thousands of low-lying coral atoll islands are located. Most studies on the resilience of these islands to sea-level rise have projected that they will experience minimal inundation impacts until at least the end of the 21st century. However, these have not taken into account the additional hazard of wave-driven overwash or its impact on freshwater availability. We project the impact of sea-level rise and wave-driven flooding on atoll infrastructure and freshwater availability under a variety of climate change scenarios. We show that, on the basis of current greenhouse gas emission rates, the nonlinear interactions between sea-level rise and wave dynamics over reefs will lead to the annual wave-driven overwash of most atoll islands by the mid-21st century. This annual flooding will result in the islands becoming uninhabitable because of frequent damage to infrastructure and the inability of their freshwater aquifers to recover between overwash events. This study provides critical information for understanding the timing and magnitude of climate change impacts on atoll islands that will result in significant, unavoidable geopolitical issues if it becomes necessary to abandon and relocate low-lying island states.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29707635','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29707635"><span>Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Storlazzi, Curt D; Gingerich, Stephen B; van Dongeren, Ap; Cheriton, Olivia M; Swarzenski, Peter W; Quataert, Ellen; Voss, Clifford I; Field, Donald W; Annamalai, Hariharasubramanian; Piniak, Greg A; McCall, Robert</p> <p>2018-04-01</p> <p>Sea levels are rising, with the highest rates in the tropics, where thousands of low-lying coral atoll islands are located. Most studies on the resilience of these islands to sea-level rise have projected that they will experience minimal inundation impacts until at least the end of the 21st century. However, these have not taken into account the additional hazard of wave-driven overwash or its impact on freshwater availability. We project the impact of sea-level rise and wave-driven flooding on atoll infrastructure and freshwater availability under a variety of climate change scenarios. We show that, on the basis of current greenhouse gas emission rates, the nonlinear interactions between sea-level rise and wave dynamics over reefs will lead to the annual wave-driven overwash of most atoll islands by the mid-21st century. This annual flooding will result in the islands becoming uninhabitable because of frequent damage to infrastructure and the inability of their freshwater aquifers to recover between overwash events. This study provides critical information for understanding the timing and magnitude of climate change impacts on atoll islands that will result in significant, unavoidable geopolitical issues if it becomes necessary to abandon and relocate low-lying island states.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5916506','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5916506"><span>Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2018-01-01</p> <p>Sea levels are rising, with the highest rates in the tropics, where thousands of low-lying coral atoll islands are located. Most studies on the resilience of these islands to sea-level rise have projected that they will experience minimal inundation impacts until at least the end of the 21st century. However, these have not taken into account the additional hazard of wave-driven overwash or its impact on freshwater availability. We project the impact of sea-level rise and wave-driven flooding on atoll infrastructure and freshwater availability under a variety of climate change scenarios. We show that, on the basis of current greenhouse gas emission rates, the nonlinear interactions between sea-level rise and wave dynamics over reefs will lead to the annual wave-driven overwash of most atoll islands by the mid-21st century. This annual flooding will result in the islands becoming uninhabitable because of frequent damage to infrastructure and the inability of their freshwater aquifers to recover between overwash events. This study provides critical information for understanding the timing and magnitude of climate change impacts on atoll islands that will result in significant, unavoidable geopolitical issues if it becomes necessary to abandon and relocate low-lying island states. PMID:29707635</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.751a2020K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.751a2020K"><span>Rigid polyurethane foam as an efficient material for shock wave attenuation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Komissarov, P. V.; Borisov, A. A.; Sokolov, G. N.; Lavrov, V. V.</p> <p>2016-09-01</p> <p>A new method for reducing parameters of blast waves generated by explosions of HE charges on ground is presented. Most of the traditional techniques reduce the wave parameters at a certain distance from the charge, i.e. as a matter of fact the damping device interacts with a completely formed shock wave. The proposed approach is to use rigid polyurethane foam coating immediately the explosive charge. A distributed structure of such a foam block that provides most efficient shock wave attenuation is suggested. Results of experimental shock wave investigations recorded in tests in which HE charges have been exploded with damping devices and without it are compared.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMNG41A0144G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMNG41A0144G"><span>Instant Variations in Velocity and Attenuation of Seismic Waves in a Friable Medium Under a Vibrational Dynamic Loading</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Geza, N.; Yushin, V.</p> <p>2007-12-01</p> <p>Instant variations of the velocities and attenuation of seismic waves in a friable medium subjected to dynamic loading have been studied by new experimental techniques using a powerful seismic vibrator. The half-space below the operating vibrator baseplate was scanned by high-frequency elastic waves, and the recorded fluctuations were exposed to a stroboscopic analysis. It was found that the variations of seismic velocities and attenuation are synchronous with the external vibrational load but have phase shift from it. Instant variations of the seismic waves parameters depend on the magnitude and absolute value of deformation, which generally result in decreasing of the elastic-wave velocities. New experimental techniques have a high sensitivity to the dynamic disturbance in the medium and allow one to detect a weak seismic boundaries. The relaxation process after dynamic vibrational loading were investigated and the results of research are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1333912-wave-speed-propagation-measurements-highly-attenuative-heated-materials','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1333912-wave-speed-propagation-measurements-highly-attenuative-heated-materials"><span>Wave speed propagation measurements on highly attenuative heated materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Moore, David G.; Ober, Curtis C.; Rodacy, Phil J.; ...</p> <p>2015-09-19</p> <p>Ultrasonic wave propagation decreases as a material is heated. Two factors that can characterize material properties are changes in wave speed and energy loss from interactions within the media. Relatively small variations in velocity and attenuation can detect significant differences in microstructures. This paper discusses an overview of experimental techniques that document the changes within a highly attenuative material as it is either being heated or cooled from 25°C to 90°C. The experimental set-up utilizes ultrasonic probes in a through-transmission configuration. The waveforms are recorded and analyzed during thermal experiments. To complement the ultrasonic data, a Discontinuous-Galerkin Model (DGM) wasmore » also created which uses unstructured meshes and documents how waves travel in these anisotropic media. This numerical method solves particle motion travel using partial differential equations and outputs a wave trace per unit time. As a result, both experimental and analytical data are compared and presented.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2181E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2181E"><span>Insights from analyzing and modelling cascading multi-lake outburst flood events in the Santa Cruz Valley (Cordillera Blanca, Perú)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Emmer, Adam; Mergili, Martin; Juřicová, Anna; Cochachin, Alejo; Huggel, Christian</p> <p>2016-04-01</p> <p>Since the end of Little Ice Age, the Cordillera Blanca of Perú has experienced tens of lake outburst floods (LOFs), resulting in the loss of thousands of lives and significant material damages. Most commonly involving glacial lakes, such events are often directly or indirectly related to glacier retreat. Here we analyze an event on 8th February 2012 involving four lakes and affecting two valleys (Santa Cruz and Artizón) in the northern part of the Cordillera Blanca. Using the combination of field data, satellite images, digital elevation model (DEM) and GIS-based modelling approaches, the main objectives are: (i) to better understand complex multi-lake outburst flood and related foregoing and induced geomorphological processes; and (ii) to evaluate and discuss the suitability, potentials and limitations of the r.avaflow model for modelling such complex process chains. Analyzing field geomorphological evidence and remotely-sensed images, we reconstruct the event as follows: a landslide from the recently deglaciated left lateral moraine of Lake Artizón Alto (4 639 m a.s.l.), characterized by steep slopes and a height of more than 200 m produced a displacement wave which overtopped the bedrock dam of the lake. The resulting flood wave breached the dam of the downstream moraine-/landslide-dammed Lake Artizón Bajo (4 477 m a.s.l.), decreasing the lake level by 10 m and releasing 3 x 105 m3 of water. Significant amounts of material were eroded from the steeper parts of the Artizón Valley (mean slope >15°) and deposited further downstream in the flatter part of the Santa Cruz Valley (mean slope <2°; confluence of the two valleys at 3 985 m a.s.l.). The flood affected two debris cone-dammed lakes (Jatuncocha and Ichiccocha) in the Santa Cruz Valley. Some minor damages to the dam of Lake Jatuncocha were documented. Geomprohological evidence of the event was observed more than 20 km downstream from Lake Artizón Alto. The described multi-LOF event was employed as a particularly challenging test case for the currently developed, GIS-based two-phase dynamic mass flow model r.avaflow. Whilst the test results are very promising, lessons learned for r.avaflow model are the need for (i) an improved concept to determine the flow boundaries; and (ii) thorough parameter tests. High demands on the resolution and quality of the DEM are revealed. From our event and modelling analysis we conclude the following: mass movements in the headwaters of hydrologically connected lake and river systems may affect the catchment in complex and cascading ways. Flood and mass flow magnitudes can be both intensified or attenuated along the pathway. Geomorphological analysis and related modelling efforts may elucidate the related hazards as a basis to reduce the associated risks to downstream communities and infrastructures. Keywords: cascading processes, dam failure, glacial lake outburst flood (GLOF), high-mountain lakes, r.avaflow</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830024909','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830024909"><span>The effect of stress on ultrasonic pulses in fiber reinforced composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hemann, J. H.; Baaklini, G. Y.</p> <p>1983-01-01</p> <p>An acoustical-ultrasonic technique was used to demonstrate relationships existing between changes in attenuation of stress waves and tensile stress for an eight ply 0 degree graphite-epoxy fiber reinforced composite. All tests were conducted in the linear range of the material for which no mechanical or macroscopic damage was evident. Changes in attenuation were measured as a function of tensile stress in the frequency domain and in the time domain. Stress wave propagation in these specimens was dispersive, i.e., the wave speed depends on frequency. Wave speeds varied from 267 400 cm/sec to 680 000 cm/sec as the frequency of the signal was varied from 150 kHz to 1.9 MHz which strongly suggests that flexural/lamb wave modes of propagation exist. The magnitude of the attenuation changes depended strongly on tensile stress. It was further observed that the wave speeds increased slightly for all tested frequencies as the stress was increased.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.6407Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.6407Q"><span>The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Quataert, Ellen; Storlazzi, Curt; Rooijen, Arnold; Cheriton, Olivia; Dongeren, Ap</p> <p>2015-08-01</p> <p>A numerical model, XBeach, calibrated and validated on field data collected at Roi-Namur Island on Kwajalein Atoll in the Republic of Marshall Islands, was used to examine the effects of different coral reef characteristics on potential coastal hazards caused by wave-driven flooding and how these effects may be altered by projected climate change. The results presented herein suggest that coasts fronted by relatively narrow reefs with steep fore reef slopes (~1:10 and steeper) and deeper, smoother reef flats are expected to experience the highest wave runup. Wave runup increases for higher water levels (sea level rise), higher waves, and lower bed roughness (coral degradation), which are all expected effects of climate change. Rising sea levels and climate change will therefore have a significant negative impact on the ability of coral reefs to mitigate the effects of coastal hazards in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70158670','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70158670"><span>The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Quataert, Ellen; Storlazzi, Curt; van Rooijen, Arnold; van Dongeren, Ap; Cheriton, Olivia</p> <p>2015-01-01</p> <p>A numerical model, XBeach, calibrated and validated on field data collected at Roi-Namur Island on Kwajalein Atoll in the Republic of Marshall Islands, was used to examine the effects of different coral reef characteristics on potential coastal hazards caused by wave-driven flooding and how these effects may be altered by projected climate change. The results presented herein suggest that coasts fronted by relatively narrow reefs with steep fore reef slopes (~1:10 and steeper) and deeper, smoother reef flats are expected to experience the highest wave runup. Wave runup increases for higher water levels (sea level rise), higher waves, and lower bed roughness (coral degradation), which are all expected effects of climate change. Rising sea levels and climate change will therefore have a significant negative impact on the ability of coral reefs to mitigate the effects of coastal hazards in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BVol...80...24G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BVol...80...24G"><span>Scattering images from autocorrelation functions of P-wave seismic velocity images: the case of Tenerife Island (Canary Islands, Spain)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>García-Yeguas, A.; Sánchez-Alzola, A.; De Siena, L.; Prudencio, J.; Díaz-Moreno, A.; Ibáñez, J. M.</p> <p>2018-03-01</p> <p>We present a P-wave scattering image of the volcanic structures under Tenerife Island using the autocorrelation functions of P-wave vertical velocity fluctuations. We have applied a cluster analysis to total quality factor attenuation ( {Q}_t^{-1} ) and scattering quality factor attenuation ( {Q}_{PSc}^{-1} ) images to interpret the structures in terms of intrinsic and scattering attenuation variations on a 2D plane, corresponding to a depth of 2000 m, and check the robustness of the scattering imaging. The results show that scattering patterns are similar to total attenuation patterns in the south of the island. There are two main areas where patterns differ: at Cañadas-Teide-Pico Viejo Complex, high total attenuation and average-to-low scattering values are observed. We interpret the difference as induced by intrinsic attenuation. In the Santiago Ridge Zone (SRZ) region, high scattering values correspond to average total attenuation. In our interpretation, the anomaly is induced by an extended scatterer, geometrically related to the surficial traces of Garachico and El Chinyero historical eruptions and the area of highest seismic activity during the 2004-2008 seismic crises.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22220382-study-transmission-line-attenuation-broad-band-millimeter-wave-frequency-range','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22220382-study-transmission-line-attenuation-broad-band-millimeter-wave-frequency-range"><span>Study of transmission line attenuation in broad band millimeter wave frequency range</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pandya, Hitesh Kumar B.; Austin, M. E.; Ellis, R. F.</p> <p>2013-10-15</p> <p>Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmosphericmore » water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.6350K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.6350K"><span>Flood Frequency Analysis using different flood descriptors - the Warsaw reach of the river Vistula case study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karamuz, Emilia; Kochanek, Krzysztof; Romanowicz, Renata</p> <p>2014-05-01</p> <p>Flood frequency analysis (FFA) is customarily performed using annual maximum flows. However, there is a number of different flood descriptors that could be used. Among them are water levels, peaks over the threshold, flood-wave duration, flood volume, etc. In this study we compare different approaches to FFA for their suitability for flood risk assessment. The main goal is to obtain the FFA curve with the smallest possible uncertainty limits, in particular for the distribution tail. The extrapolation of FFA curves is crucial in future flood risk assessment in a changing climate. We compare the FFA curves together with their uncertainty limits obtained using flows, water levels, flood inundation area and volumes for the Warsaw reach of the river Vistula. Moreover, we derive the FFA curves obtained using simulated flows. The results are used to derive the error distribution for the maximum simulated and observed values under different modelling techniques and assess its influence on flood risk predictions for ungauged catchments. MIKE11, HEC-RAS and transfer function model are applied in average and extreme conditions to model flow propagation in the Warsaw Vistula reach. The additional questions we want to answer are what is the range of application of different modelling tools under various flow conditions and how can the uncertainty of flood risk assessment be decreased. This work was partly supported by the projects "Stochastic flood forecasting system (The River Vistula reach from Zawichost to Warsaw)" and "Modern statistical models for analysis of flood frequency and features of flood waves", carried by the Institute of Geophysics, Polish Academy of Sciences on the order of the National Science Centre (contracts Nos. 2011/01/B/ST10/06866 and 2012/05/B/ST10/00482, respectively). The water level and flow data were provided by the Institute of Meteorology and Water Management (IMGW), Poland.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C31A1156D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C31A1156D"><span>Wave Runup on a Frozen Beach Under High Energy Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Didier, D.; Bernatchez, P.; Dumont, D.; Corriveau, M.</p> <p>2017-12-01</p> <p>High and mid-latitude beaches have typical morphological characteristics influenced by nearshore processes prevailing under ice conditions during cold season. Nearshore ice complexes (NIC) offer a natural coastal protection by covering beach sediments, while offshore ice-infested waters dissipate incoming waves. Climate change contributes to sea ice shrinking therefore reducing its protection against erosion and flooding. In the Estuary and Gulf of the St. Lawrence (ESL, GSL) (eastern Canada), sea ice cover undergoes an overall shrinking and simulated future projections tend toward a negligible effect on wave climate by 2100. Quantifying the effect of nearshore dynamics on frozen beaches is therefore imperative for coastal management as more wave energy at the coast is expected in the future. To measure the effect of a frozen beach on wave runup elevations, this study employs a continuous video recording of the swash motion at 4Hz. Video-derived wave runup statistics have been extracted during a tidal cycle on a frozen beach, using the Pointe-Lebel beach (ESL) as a test case. Timestack analysis was combined with offshore water levels and wave measurements. A comparison of runup under icy conditions (Dec. 30 2016) with a runup distribution during summer was made under similar high energy wave conditions. Results indicate high runup excursions potentially caused by lowered sediment permeability due to high pore-ice saturation in the swash zone, accentuating the overwash of the eroding coastline and thus the risk of flooding. With projected reduction in coastal sea ice cover and thus higher wave energy, this study suggests that episodes of degradation and weakening could influence the coastal flood risk in mid- and high-latitude cold environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SPIE.8174E..07H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SPIE.8174E..07H"><span>Tracking, sensing and predicting flood wave propagation using nomadic satellite communication systems and hydrodynamic models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hostache, R.; Matgen, P.; Giustarini, L.; Tailliez, C.; Iffly, J.-F.</p> <p>2011-11-01</p> <p>The main objective of this study is to contribute to the development and the improvement of flood forecasting systems. Since hydrometric stations are often poorly distributed for monitoring the propagation of extreme flood waves, the study aims at evaluating the hydrometric value of the Global Navigation Satellite System (GNSS). Integrated with satellite telecommunication systems, drifting or anchored floaters equipped with navigation systems such as GPS and Galileo, enable the quasi-continuous measurement and near real-time transmission of water level and flow velocity data, from virtually any point in the world. The presented study investigates the effect of assimilating GNSS-derived water level and flow velocity measurements into hydraulic models in order to reduce the associated predictive uncertainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGRB..113.6102R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGRB..113.6102R"><span>Biot-type scattering effects in gas hydrate-bearing sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rubino, J. GermáN.; Ravazzoli, Claudia L.; Santos, Juan E.</p> <p>2008-06-01</p> <p>This paper studies the energy conversions that take place at discontinuities within gas hydrate-bearing sediments and their influence on the attenuation of waves traveling through these media. The analysis is based on a theory recently developed by some of the authors, to describe wave propagation in multiphasic porous media composed of two solids saturated by a single-phase fluid. Real data from the Mallik 5L-38 Gas Hydrate Research well are used to calibrate the physical model, allowing to obtain information about the characteristics of the cementation between the mineral grains and gas hydrates for this well. Numerical experiments show that, besides energy conversions to reflected and transmitted classical waves, significant fractions of the energy of propagating waves may be converted into slow-waves energy at plane heterogeneities within hydrated sediments. Moreover, numerical simulations of wave propagation show that very high levels of attenuation can take place in the presence of heterogeneous media composed of zones with low and high gas hydrate saturations with sizes smaller or on the order of the wavelengths of the fast waves at sonic frequencies. These attenuation levels are in very good agreement with those measured at the Mallik 5L-38 Gas Hydrate Research Well, suggesting that these scattering-type effects may be a key-parameter to understand the high sonic attenuation observed at gas hydrate-bearing sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21895055','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21895055"><span>Nonlinear acoustic wave equations with fractional loss operators.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Prieur, Fabrice; Holm, Sverre</p> <p>2011-09-01</p> <p>Fractional derivatives are well suited to describe wave propagation in complex media. When introduced in classical wave equations, they allow a modeling of attenuation and dispersion that better describes sound propagation in biological tissues. Traditional constitutive equations from solid mechanics and heat conduction are modified using fractional derivatives. They are used to derive a nonlinear wave equation which describes attenuation and dispersion laws that match observations. This wave equation is a generalization of the Westervelt equation, and also leads to a fractional version of the Khokhlov-Zabolotskaya-Kuznetsov and Burgers' equations. © 2011 Acoustical Society of America</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750025081','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750025081"><span>Twenty and thirty GHz millimeter wave experiments with the ATS-6 satellite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ippolito, L. J. (Compiler)</p> <p>1975-01-01</p> <p>The ATS-6 millimeter wave experiment, provided the first direct measurements of 20 and 30 GHz earth-space links from an orbiting satellite. Studies at eleven locations in the continental United States were directed at an evaluation of rain attenuation effects, scintillations, depolarization, site diversity, coherence bandwidth, and analog and digital communications techniques. In addition to direct measurements on the 20 and 30 GHz links, methods of attenuation prediction with radars, rain gages, and radiometers were developed and compared with the directly measured attenuation. Initial data results of the ATS-6 millimeter wave experiment from the major participating organizations are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ams.confex.com/ams/92Annual/webprogram/Paper196615.html','USGSPUBS'); return false;" href="https://ams.confex.com/ams/92Annual/webprogram/Paper196615.html"><span>On the use of wave parameterizations and a storm impact scaling model in National Weather Service Coastal Flood and decision support operations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mignone, Anthony; Stockdon, H.; Willis, M.; Cannon, J.W.; Thompson, R.</p> <p>2012-01-01</p> <p>National Weather Service (NWS) Weather Forecast Offices (WFO) are responsible for issuing coastal flood watches, warnings, advisories, and local statements to alert decision makers and the general public when rising water levels may lead to coastal impacts such as inundation, erosion, and wave battery. Both extratropical and tropical cyclones can generate the prerequisite rise in water level to set the stage for a coastal impact event. Forecasters use a variety of tools including computer model guidance and local studies to help predict the potential severity of coastal flooding. However, a key missing component has been the incorporation of the effects of waves in the prediction of total water level and the associated coastal impacts. Several recent studies have demonstrated the importance of incorporating wave action into the NWS coastal flood program. To follow up on these studies, this paper looks at the potential of applying recently developed empirical parameterizations of wave setup, swash, and runup to the NWS forecast process. Additionally, the wave parameterizations are incorporated into a storm impact scaling model that compares extreme water levels to beach elevation data to determine the mode of coastal change at predetermined “hotspots” of interest. Specifically, the storm impact model compares the approximate storm-induced still water level, which includes contributions from tides, storm surge, and wave setup, to dune crest elevation to determine inundation potential. The model also compares the combined effects of tides, storm surge, and the 2 % exceedance level for vertical wave runup (including both wave setup and swash) to dune toe and crest elevations to determine if erosion and/or ocean overwash may occur. The wave parameterizations and storm impact model are applied to two cases in 2009 that led to significant coastal impacts and unique forecast challenges in North Carolina: the extratropical “Nor'Ida” event during 11-14 November and the large swell event from distant Hurricane Bill on 22 August. The coastal impacts associated with Nor'Ida were due to the combined effects of surge, tide, and wave processes and led to an estimated 5.8 million dollars in damage. While the impacts from Hurricane Bill were not as severe as Nor'Ida, they were mainly associated with wave processes. Thus, this event exemplifies the importance of incorporating waves into the total water level and coastal impact prediction process. These examples set the stage for potential future applications including adaption to the more complex topography along the New England coast.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2550S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2550S"><span>An innovative early warning system for floods and operational risks in harbours</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smets, Steven; Bolle, Annelies; Mollaert, Justine; Buitrago, Saul; Gruwez, Vincent</p> <p>2016-04-01</p> <p>Early Warning Systems (EWS) are nowadays becoming fairly standard in river flood forecasting or in large scale hydrometeorological predictions. For complex coastal morphodynamic problems or in the vicinity of complex coastal structures, such as harbours, EWS are much less used because they are both technically and computationally still very challenging. To advance beyond the state-of-the-art, the EU FP7 project Risc-KIT (www.risc-kit.eu) is developing prototype EWS which address specifically these topics. This paper describes the prototype EWS which IMDC has developed for the case study site of the harbour of Zeebrugge. The harbour of Zeebrugge is the largest industrial seaport on the coast of Belgium, extending more than 3 km into the sea. Two long breakwaters provide shelter for the inner quays and docks for regular conditions and frequent storms. Extreme storms surges and waves can however still enter the harbour and create risks for the harbour operations and infrastructure. The prediction of the effects of storm surges and waves inside harbours are typically very complex and challenging, due to the need of different types of numerical models for representing all different physical processes. In general, waves inside harbours are a combination of locally wind generated waves and offshore wave penetration at the port entrance. During extreme conditions, the waves could overtop the quays and breakwaters and flood the port facilities. Outside a prediction environment, the conditions inside the harbour could be assessed by superimposing processes. The assessment can be carried out by using a combination of a spectral wave model (i.e. SWAN) for the wind generated waves and a Boussinesq type wave model (i.e. Mike 21 BW) for the wave penetration from offshore. Finally, a 2D hydrodynamic model (i.e. TELEMAC) can be used to simulate the overland flooding inside the port facilities. To reproduce these processes in an EWS environment, an additional challenge is to cope with the limitations of the calculation engines. This is especially true with the Boussinesq model. A model train is proposed that integrates processed based modelling, for wind generated waves, with an intelligent simplification of the Boussinesq model for the wave penetration effects. These wave conditions together with the extreme water levels (including storm surge) can then be used to simulate the overtopping/overflow behaviour for the quays. Finally, the hydrodynamic model TELEMAC is run for the inundation forecast inside the port facilities. The complete model train was integrated into the Deltares Delft FEWS software to showcase the potential for real time operations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2015/5074/pdf/sir20155074.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2015/5074/pdf/sir20155074.pdf"><span>Nutrient attenuation in rivers and streams, Puget Sound Basin, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sheibley, Rich W.; Konrad, Christopher P.; Black, Robert W.</p> <p>2015-01-01</p> <p>From a management perspective, preservation and improvement of instream nutrient attenuation should focus on increasing the travel time through a reach and contact time of water sediment (reactive) surfaces and lowering nutrient concentrations (and loads) to avoid saturation of instream attenuation and increase attenuation efficiency. These goals can be reached by maintaining and restoring channel-flood plain connectivity, maintaining and restoring healthy riparian zones along streams, managing point and nonpoint nutrient loads to streams and rivers, and restoring channel features that promote attenuation such as the addition of woody debris and maintaining pool-riffle morphologies. Many of these management approaches are already being undertaken during projects aimed to restore quality salmon habitat. Therefore, there is a dual benefit to these projects that also may lead to enhanced potential for nitrogen and phosphorus attenuation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22391501-multiple-attenuation-reflection-seismic-data-using-radon-filter-wave-equation-multiple-rejection-wemr-method','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22391501-multiple-attenuation-reflection-seismic-data-using-radon-filter-wave-equation-multiple-rejection-wemr-method"><span>Multiple attenuation to reflection seismic data using Radon filter and Wave Equation Multiple Rejection (WEMR) method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Erlangga, Mokhammad Puput</p> <p></p> <p>Separation between signal and noise, incoherent or coherent, is important in seismic data processing. Although we have processed the seismic data, the coherent noise is still mixing with the primary signal. Multiple reflections are a kind of coherent noise. In this research, we processed seismic data to attenuate multiple reflections in the both synthetic and real seismic data of Mentawai. There are several methods to attenuate multiple reflection, one of them is Radon filter method that discriminates between primary reflection and multiple reflection in the τ-p domain based on move out difference between primary reflection and multiple reflection. However, inmore » case where the move out difference is too small, the Radon filter method is not enough to attenuate the multiple reflections. The Radon filter also produces the artifacts on the gathers data. Except the Radon filter method, we also use the Wave Equation Multiple Elimination (WEMR) method to attenuate the long period multiple reflection. The WEMR method can attenuate the long period multiple reflection based on wave equation inversion. Refer to the inversion of wave equation and the magnitude of the seismic wave amplitude that observed on the free surface, we get the water bottom reflectivity which is used to eliminate the multiple reflections. The WEMR method does not depend on the move out difference to attenuate the long period multiple reflection. Therefore, the WEMR method can be applied to the seismic data which has small move out difference as the Mentawai seismic data. The small move out difference on the Mentawai seismic data is caused by the restrictiveness of far offset, which is only 705 meter. We compared the real free multiple stacking data after processing with Radon filter and WEMR process. The conclusion is the WEMR method can more attenuate the long period multiple reflection than the Radon filter method on the real (Mentawai) seismic data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10170E..0CC','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10170E..0CC"><span>An adaptive metamaterial beam with hybrid shunting circuits for extremely broadband control of flexural wave (Conference Presentation)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Yangyang; Huang, Guoliang</p> <p>2017-04-01</p> <p>A great deal of research has been devoted to controlling the dynamic behaviors of phononic crystals and metamaterials by directly tuning the frequency regions and/or widths of their inherent band gaps. Here, we present a novel approach to achieve extremely broadband flexural wave/vibration attenuation based on tunable local resonators made of piezoelectric stacks shunted by hybrid negative capacitance and negative inductance circuits with proof masses attached on a host beam. First, wave dispersion relations of the adaptive metamaterial beam are calculated analytically by using the transfer matrix method. The unique modulus tuning properties induced by the hybrid shunting circuits are then characterized conceptually, from which the frequency dependent modulus tuning curves of the piezoelectric stack located within wave attenuation frequency regions are quantitatively identified. As an example, a flexural wave high-pass band filter with a wave attenuation region from 0 to 23.0 kHz is demonstrated analytically and numerically by using the hybrid shunting circuit, in which the two electric components are connected in series. By changing the connection pattern to be parallel, another super wide wave attenuation region from 13.5 to 73.0 kHz is demonstrated to function as a low-pass filter at a subwavelength scale. The proposed adaptive metamaterial possesses a super wide band gap created both naturally and artificially. Therefore, it can be used for the transient wave mitigation at extremely broadband frequencies such as blast or impact loadings. We envision that the proposed design and approach can open many possibilities in broadband vibration and wave control.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS21B1758S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS21B1758S"><span>Towards improved prediction and mitigation of beach overwash: Terrestrial LiDAR observation of dynamic beach berm erosion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schubert, J. E.; Gallien, T.; Shakeri Majd, M.; Sanders, B. F.</p> <p>2012-12-01</p> <p>Globally, over 20 million people currently reside below high tide levels and 200 million are below storm tide levels. Future climate change along with the pressures of urbanization will exacerbate flooding in low lying coastal communities. In Southern California, coastal flooding is triggered by a combination of high tides, storm surge, and waves and recent research suggests that a current 100 year flood event may be experienced on a yearly basis by 2050 due to sea level rise adding a positive offset to return levels. Currently, Southern California coastal communities mitigate the threat of beach overwash, and consequent backshore flooding, with a combination of planning and operational activities such as protective beach berm construction. Theses berms consist of temporary alongshore sand dunes constructed days or hours before an extreme tide or wave event. Hydraulic modeling in urbanized embayments has shown that coastal flooding predictions are extremely sensitive to the presence of coastal protective infrastructure, requiring parameterization of the hard infrastructure elevations at centimetric accuracy. Beach berms are an example of temporary dynamic structures which undergo severe erosion during extreme events and are typically not included in flood risk assessment. Currently, little is known about the erosion process and performance of these structures, which adds uncertainty to flood hazard delineation and flood forecasts. To develop a deeper understanding of beach berm erosion dynamics, three trapezoidal shaped berms, approximately 35 m long and 1.5 m high, were constructed and failure during rising tide conditions was observed using terrestrial laser scanning. Concurrently, real-time kinematic GPS, high-definition time lapse photography, a local tide gauge and wave climate data were collected. The result is a rich and unique observational dataset capturing berm erosion dynamics. This poster highlights the data collected and presents methods for processing and leveraging multi-sensor field observation data. The data obtained from this study will be used to support the development and validation of a numerical beach berm overtopping and overwash model that will allow for improved predictions of coastal flood damage during winter storms and large swells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhPl...24i3703D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhPl...24i3703D"><span>Attenuation characteristics of electromagnetic waves in a weak collisional and fully ionized dusty plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dan, Li; Guo, Li-Xin; Li, Jiang-Ting; Chen, Wei; Yan, Xu; Huang, Qing-Qing</p> <p>2017-09-01</p> <p>The expression of complex dielectric permittivity for non-magnetized fully ionized dusty plasma is obtained based on the kinetic equation in the Fokker-Planck-Landau collision model and the charging equation of the statistical theory. The influences of density, average size of dust grains, and balanced charging of the charge number of dust particles on the attenuation properties of electromagnetic waves in fully ionized dusty plasma are investigated by calculating the attenuation constant. In addition, the attenuation characteristics of weakly ionized and fully ionized dusty plasmas are compared. Results enriched the physical mechanisms of microwave attenuation for fully ionized dusty plasma and provide a theoretical basis for future studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21764348','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21764348"><span>A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Louisnard, O</p> <p>2012-01-01</p> <p>The bubbles involved in sonochemistry and other applications of cavitation oscillate inertially. A correct estimation of the wave attenuation in such bubbly media requires a realistic estimation of the power dissipated by the oscillation of each bubble, by thermal diffusion in the gas and viscous friction in the liquid. Both quantities and calculated numerically for a single inertial bubble driven at 20 kHz, and are found to be several orders of magnitude larger than the linear prediction. Viscous dissipation is found to be the predominant cause of energy loss for bubbles small enough. Then, the classical nonlinear Caflish equations describing the propagation of acoustic waves in a bubbly liquid are recast and simplified conveniently. The main harmonic part of the sound field is found to fulfill a nonlinear Helmholtz equation, where the imaginary part of the squared wave number is directly correlated with the energy lost by a single bubble. For low acoustic driving, linear theory is recovered, but for larger drivings, namely above the Blake threshold, the attenuation coefficient is found to be more than 3 orders of magnitude larger then the linear prediction. A huge attenuation of the wave is thus expected in regions where inertial bubbles are present, which is confirmed by numerical simulations of the nonlinear Helmholtz equation in a 1D standing wave configuration. The expected strong attenuation is not only observed but furthermore, the examination of the phase between the pressure field and its gradient clearly demonstrates that a traveling wave appears in the medium. Copyright © 2011 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S53B0677J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S53B0677J"><span>Three Dimensional Modeling of the Attenuation Structure in the Part of the Kumaon Himalaya, India Using Strong Motion Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Joshi, A.; LAL, S.</p> <p>2017-12-01</p> <p>Attenuation property of the medium determines the amplitude of seismic waves at different locations during an earthquake. Attenuation can be defined by the inverse of the parameter known as quality factor `Q' (Knopoff, 1964). It has been observed that the peak ground acceleration in the strong motion accelerogram is associated with arrival of S-waves which is controlled mainly by the shear wave attenuation characteristics of the medium. In the present work attenuation structure is obtained using the modified inversion algorithm given by Joshi et al. (2010). The modified inversion algorithm is designed to provide three dimensional attenuation structure of the region at different frequencies. A strong motion network is installed in the Kumaon Himalaya by the Department of Earth Sciences, Indian Institute of Technology Roorkee under a major research project sponsored by the Ministry of Earth Sciences, Government of India. In this work the detailed three dimensional shear wave quality factor has been determined for the Kumaon Himalaya using strong motion data obtained from this network. In the present work 164 records from 26 events recorded at 15 stations located in an area of 129 km x 62 km has been used. The shear wave attenuation structure for the Kumaon Himalaya has been calculated by dividing the study region into 108 three dimensional rectangular blocks of size 22 km x 11 km x 5 km. The input to the inversion algorithm is the acceleration spectra of S wave identified from each record. A total of 164 spectra from equal number of accelerograms with sampling frequency of .024 Hz is used as an input to the algorithms. A total of 2048 three dimensional attenuation structure is obtained upto frequency of 50 Hz. The obtained structure at various frequencies is compared with the existing geological models in the region and it is seen that the obtained model correlated well with the geological model of the region. References: Joshi, A., Mohanty, M., Bansal, A. R., Dimri, V. P. and Chadha, R. K., 2010, Use of spectral acceleration data for determination of three dimensional attenuation structure in the Pithoragarh region of Kumaon Himalaya, J Seismol., 14, 247-272. Knopoff, L., 1964, Q, Reviews of Geophysics, 2, 625-660.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/913548','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/913548"><span>Regional Body-Wave Attenuation Using a Coda Source Normalization Method: Application to MEDNET Records of Earthquakes in Italy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Walter, W R; Mayeda, K; Malagnini, L</p> <p>2007-02-01</p> <p>We develop a new methodology to determine apparent attenuation for the regional seismic phases Pn, Pg, Sn, and Lg using coda-derived source spectra. The local-to-regional coda methodology (Mayeda, 1993; Mayeda and Walter, 1996; Mayeda et al., 2003) is a very stable way to obtain source spectra from sparse networks using as few as one station, even if direct waves are clipped. We develop a two-step process to isolate the frequency-dependent Q. First, we correct the observed direct wave amplitudes for an assumed geometrical spreading. Next, an apparent Q, combining path and site attenuation, is determined from the difference between themore » spreading-corrected amplitude and the independently determined source spectra derived from the coda methodology. We apply the technique to 50 earthquakes with magnitudes greater than 4.0 in central Italy as recorded by MEDNET broadband stations around the Mediterranean at local-to-regional distances. This is an ideal test region due to its high attenuation, complex propagation, and availability of many moderate sized earthquakes. We find that a power law attenuation of the form Q(f) = Q{sub 0}f{sup Y} fit all the phases quite well over the 0.5 to 8 Hz band. At most stations, the measured apparent Q values are quite repeatable from event to event. Finding the attenuation function in this manner guarantees a close match between inferred source spectra from direct waves and coda techniques. This is important if coda and direct wave amplitudes are to produce consistent seismic results.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T11A0433D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T11A0433D"><span>Seismic High Attenuation Beneath Southern New England Indicates High Asthenospheric Temperature and No Melt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dong, M. T.; Menke, W. H.</p> <p>2017-12-01</p> <p>Seismic attenuation exhibits strong geographic variability in northeastern North America, with the highest values associated with the previously-recognized Northern Appalachian Anomaly (NAA) in southern New England. The shear wave quality factor at 100 km depth is 14s<25, the ratio of P-wave and S-wave quality factors is QP/Qs=1.2±0.03, and the frequency dependence parameter is α=0.39±0.025. The high values of Qp/Qs and α are compatible with laboratory measurements of unmelted rock and incompatible with widespread melting. The low Qs (high shear attenuation) implies high mantle temperatures ( 1550-1650°C) at 100 km depth (assuming no melt). Small-scale variations in attenuation suggests structural heterogeneity within the NAA, possibly due to lithospheric delamination caused by directional asthenospheric flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SPIE.7983E..0UM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SPIE.7983E..0UM"><span>Coupled attenuation and multiscale damage model for composite structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moncada, Albert M.; Chattopadhyay, Aditi; Bednarcyk, Brett; Arnold, Steven M.</p> <p>2011-04-01</p> <p>Composite materials are widely used in many applications for their high strength, low weight, and tailorability for specific applications. However, the development of robust and reliable methodologies to detect micro level damage in composite structures has been challenging. For composite materials, attenuation of ultrasonic waves propagating through the media can be used to determine damage within the material. Currently available numerical solutions for attenuation induce arbitrary damage, such as fiber-matrix debonding or inclusions, to show variations between healthy and damaged states. This paper addresses this issue by integrating a micromechanics analysis to simulate damage in the form of a fiber-matrix crack and an analytical model for calculating the attenuation of the waves when they pass through the damaged region. The hybrid analysis is validated by comparison with experimental stress-strain curves and piezoelectric sensing results for attenuation measurement. The results showed good agreement between the experimental stress-strain curves and the results from the micromechanics analysis. Wave propagation analysis also showed good correlation between simulation and experiment for the tested frequency range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAG...129...79B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAG...129...79B"><span>Estimation of seismic attenuation in carbonate rocks using three different methods: Application on VSP data from Abu Dhabi oilfield</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bouchaala, F.; Ali, M. Y.; Matsushima, J.</p> <p>2016-06-01</p> <p>In this study a relationship between the seismic wavelength and the scale of heterogeneity in the propagating medium has been examined. The relationship estimates the size of heterogeneity that significantly affects the wave propagation at a specific frequency, and enables a decrease in the calculation time of wave scattering estimation. The relationship was applied in analyzing synthetic and Vertical Seismic Profiling (VSP) data obtained from an onshore oilfield in the Emirate of Abu Dhabi, United Arab Emirates. Prior to estimation of the attenuation, a robust processing workflow was applied to both synthetic and recorded data to increase the Signal-to-Noise Ratio (SNR). Two conventional methods of spectral ratio and centroid frequency shift methods were applied to estimate the attenuation from the extracted seismic waveforms in addition to a new method based on seismic interferometry. The attenuation profiles derived from the three approaches demonstrated similar variation, however the interferometry method resulted in greater depth resolution, differences in attenuation magnitude. Furthermore, the attenuation profiles revealed significant contribution of scattering on seismic wave attenuation. The results obtained from the seismic interferometry method revealed estimated scattering attenuation ranges from 0 to 0.1 and estimated intrinsic attenuation can reach 0.2. The subsurface of the studied zones is known to be highly porous and permeable, which suggest that the mechanism of the intrinsic attenuation is probably the interactions between pore fluids and solids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19700000258','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19700000258"><span>Magnesium oxide doping reduces acoustic wave attenuation in lithium metatantalate and lithium metaniobate crystals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Croft, W.; Damon, R.; Kedzie, R.; Kestigian, M.; Smith, A.; Worley, J.</p> <p>1970-01-01</p> <p>Single crystals of lithium metatantalate and lithium metaniobate, grown from melts having different stoichiometries and different amounts of magnesium oxide, show that doping lowers temperature-independent portion of attenuation of acoustic waves. Doped crystals possess optical properties well suited for electro-optical and photoelastic applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1048840','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1048840"><span>Improved Modeling and Prediction of Surface Wave Amplitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-05-31</p> <p>structures and derived attenuation coefficients from the Eurasian Q inversion study. 15. SUBJECT TERMS nuclear explosion monitoring, surface waves, membrane...24 4.6 Inversion of Eurasian Attenuation Data for Q Structure ........................................ 31 4.6.1 Data used in the Q Inversion ...33 4.6.2 Q Inversion Results</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006ShWav..16....1B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006ShWav..16....1B"><span>Shock wave attenuation by grids and orifice plates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Britan, A.; Igra, O.; Ben-Dor, G.; Shapiro, H.</p> <p>2006-11-01</p> <p>The interaction of weak shock waves with porous barriers of different geometries and porosities is examined. Installing a barrier inside the shock tube test section will cause the development of the following wave pattern upon a head-on collision between the incident shock wave and the barrier: a reflected shock from the barrier and a transmitted shock propagating towards the shock tube end wall. Once the transmitted shock wave reaches the end wall it is reflected back towards the barrier. This is the beginning of multiple reflections between the barrier and the end wall. This full cycle of shock reflections/interactions resulting from the incident shock wave collision with the barrier can be studied in a single shock tube test. A one-dimensional (1D), inviscid flow model was proposed for simulating the flow resulting from the initial collision of the incident shock wave with the barrier. Fairly good agreement is found between experimental findings and simulations based on a 1D flow model. Based on obtained numerical and experimental findings an optimal design procedure for shock wave attenuator is suggested. The suggested attenuator may ensure the safety of the shelter’s ventilation systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ChOE...29..253Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ChOE...29..253Y"><span>Characteristics of vibrational wave propagation and attenuation in submarine fluid-filled pipelines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan, Jin; Zhang, Juan</p> <p>2015-04-01</p> <p>As an important part of lifeline engineering in the development and utilization of marine resources, the submarine fluid-filled pipeline is a complex coupling system which is subjected to both internal and external flow fields. By utilizing Kennard's shell equations and combining with Helmholtz equations of flow field, the coupling equations of submarine fluid-filled pipeline for n=0 axisymmetrical wave motion are set up. Analytical expressions of wave speed are obtained for both s=1 and s=2 waves, which correspond to a fluid-dominated wave and an axial shell wave, respectively. The numerical results for wave speed and wave attenuation are obtained and discussed subsequently. It shows that the frequency depends on phase velocity, and the attenuation of this mode depends strongly on material parameters of the pipe and the internal and the external fluid fields. The characteristics of PVC pipe are studied for a comparison. The effects of shell thickness/radius ratio and density of the contained fluid on the model are also discussed. The study provides a theoretical basis and helps to accurately predict the situation of submarine pipelines, which also has practical application prospect in the field of pipeline leakage detection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000074081&hterms=xie&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26Nf%3DPublication-Date%257CLT%2B20031231%26N%3D0%26No%3D30%26Ntt%3Dxie','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000074081&hterms=xie&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26Nf%3DPublication-Date%257CLT%2B20031231%26N%3D0%26No%3D30%26Ntt%3Dxie"><span>Polarization Reversal Over Flooded Regions and Applications to Large-Scale Flood Mapping with Spaceborne Scatterometers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nghiem, Son V.; Liu, W. Timothy; Xie, Xiao-Su</p> <p>1999-01-01</p> <p>We present the polarization reversal in backscatter over flooded land regions, and demonstrate for the first time the utility of spaceborne Ku-band scatterometer for large-scale flood mapping. Scatterometer data were collected over the globe by the NASA Scatterometer (NSCAT) operated at 14 GHz on the Japanese ADEOS spacecraft from September 1996 to June 1997. During this time span, several severe floods occurred. Over most land surface, vertical polarization backscatter (Sigma(sub upsilon(upsilon)) is larger than horizontal polarization backscatter (sigma(sub hh)). Such polarization characteristics is reversed and sigma(sub upsilon(upsilon)) is smaller than sigma(sub hh) over flooded regions, except under a dense forest canopy. The total backscatter from the flooded landscape consists of direct backscatter and boundary-interaction backscatter. The direct term is contributed by direct backscattering from objects protruding above the water surface, and by backscattering from waves on the water surface. The boundary-interaction term is contributed by the forward scattering from the protruding objects and then reflected from the water surface, and also by the forward scattering from these objects after the water-surface reflection. Over flooded regions, the boundary-interaction term is dominant at large incidence angles and the strong water-surface reflection is much larger for horizontal polarization than the vertical one due to the Brewster effect in transverse-magnetic waves. These scattering mechanisms cause the polarization reversal over flooded regions. An example obtained with the Analytic Wave Theory is used to illustrate the scattering mechanisms leading to the polarization reversal. We then demonstrate the utility of spaceborne Ku-band scatterometer for large-scale flood mapping. We process NSCAT data to obtain the polarization ratio sigma(sub hh)/sigma(sub upsilon(upsilon)) with colocated data at incidence angles larger than 40 deg. The results over Asian summer monsoon regions in September-October 1996 indicate flooded areas in many countries such as Bangladesh, India, Lao, Vietnam, Cambodia, and China. Reports documented by the United Nation Department of Humanitarian Affairs (now called UN Office for the Coordination of Humanitarian Affairs) show loss of many lives and severe flood related damages which affected many million people in the corresponding flooded areas. We also map the NSCAT polarization ratio over the same regions in the "dry season" in January 1997 as a reference to confirm our results. Furthermore, we obtain concurrent ocean wind fields also derived from NSCAT data, and Asia topographic data (USGS GTOPO30) to investigate the flooded area. The results show that winds during summer monsoon season blowing inland, which perplex flood problems. Overlaying the topographic map over NSCAT results reveals an excellent correspondence between the confinement of flooded area within the relevant topographic features, which very well illustrates the value of topographic wetness index. Finally, we discuss the applications of future spaceborne scatterometers, including QuikSCAT and Seawinds, for flood mapping over the globe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMED53F..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMED53F..01G"><span>Emotional engagement with participatory simulations as a tool for learning and decision-support for coupled human-natural systems: Flood hazards and urban development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gilligan, J. M.; Corey, B.; Camp, J. V.; John, N. J.; Sengupta, P.</p> <p>2015-12-01</p> <p>The complex interactions between land use and natural hazards pose serious challenges in education, research, and public policy. Where complex nonlinear interactions produce unintuitive results, interactive computer simulations can be useful tools for education and decision support. Emotions play important roles in cognition and learning, especially where risks are concerned. Interactive simulations have the potential to harness emotional engagement to enhance learning and understanding of risks in coupled human-natural systems. We developed a participatory agent-based simulation of cities at risk of river flooding. Participants play the role of managers of neighboring cities along a flood-prone river and make choices about building flood walls to protect their inhabitants. Simulated agents participate in dynamic real estate markets in which demand for property, and thus values and decisions to build, respond to experience with flooding over time. By reducing high-frequency low-magnitude flooding, flood walls may stimulate development, thus increasing tax revenues but also increasing vulnerability to uncommon floods that overtop the walls. Flood waves are launched stochastically and propagate downstream. Flood walls that restrict overbank flow at one city can increase the amplitude of a flood wave at neighboring cities, both up and downstream. We conducted a pilot experiment with a group of three pre-service teachers. The subjects successfully learned key concepts of risk tradeoffs and unintended consequences that can accompany flood-control measures. We also observed strong emotional responses, including hope, fear, and sense of loss. This emotional engagement with a model of coupled human-natural systems was very different from previous experiments on participatory simulations of purely natural systems for physics pedagogy. We conducted a second session in which the participants were expert engineers. We will present the results of these experiments and the prospects for using such models for middle-school, high-school, and post-secondary environmental science pedagogy, for improving public understanding of flood risks, and as decision support tools for planners.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoJI.209.1677A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoJI.209.1677A"><span>Seismic evidence for broad attenuation anomalies in the asthenosphere beneath the Pacific Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adenis, Alice; Debayle, Eric; Ricard, Yanick</p> <p>2017-06-01</p> <p>We present QADR17, a global model of Rayleigh-wave attenuation based on a massive surface wave data set (372 629 frequency-dependent attenuation curves in the period range 50-260 s). We correct for focusing-defocusing effects and geometrical spreading, and perform a stringent selection to only keep robust observations. Then, data with close epicentres recorded at the same station are clustered, as they sample the same Earth's structure. After this pre-selection, our data set consists of about 35 000 curves that constrain the Rayleigh-wave intrinsic attenuation in the upper mantle. The logarithms of the attenuation along the individual rays are then inverted to obtain global maps of the logarithm of the local attenuation. After a first inversion, outliers are rejected and a second inversion yields a variance reduction of about 45 per cent. Our attenuation maps present strong agreement with surface tectonics at periods lower than 200 s, with low attenuation under continents and high attenuation under oceans. Over oceans, attenuation decreases with increasing crustal ages, but at periods sensitive to the uppermost 150 km, mid-ocean ridges are not characterized by a very localized anomaly, in contrast to what is commonly observed for seismic velocity models. Attenuation is rather well correlated with hotspots, especially in the Pacific ocean, where a strong attenuating anomaly is observed in the long wavelength component of our signal at periods sampling the oceanic asthenosphere. We suggest that this anomaly results from the horizontal spreading of several thermal plumes within the asthenosphere. Strong velocity reductions associated with high attenuation anomalies of moderate amplitudes beneath the East Pacific Rise, the Red Sea and the eastern part of Asia may require additional mechanisms, such as partial melting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910070861&hterms=propagation+layering&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpropagation%2Blayering','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910070861&hterms=propagation+layering&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpropagation%2Blayering"><span>Wave propagation in composite media and material characterization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Datta, Subhendu K.; Shah, A. H.; Karunasena, W.</p> <p>1990-01-01</p> <p>Characteristics of wave propagation in an undamaged composite medium are influenced by many factors, the most important of which are: microstructure, constituent properties, interfaces, residual stress fields, and ply lay-ups. Measurements of wave velocities, attenuation, and dispersion provide a powerful tool for nondestructive evaluation of these properties. Recent developments are reviewed for modeling ultrasonic wave propagation in fiber and particle-reinforced composite media. Additionally, some modeling studies are reviewed for the effects of interfaces and layering on attenuation and dispersion. These studies indicate possible ways of characterizing material properties by ultrasonic means.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/23281','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/23281"><span>Flooded bus barns and buckled rails: public transportation and climate change adaptation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2011-08-01</p> <p>The objective of this project is to provide transit professionals with information and analysis relevant to adapting U.S. public transportation assets and services to climate change impacts. Climate impacts such as heat waves and flooding will hinder...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27717024','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27717024"><span>Plants are less negatively affected by flooding when growing in species-rich plant communities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wright, Alexandra J; de Kroon, Hans; Visser, Eric J W; Buchmann, Tina; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Hildebrandt, Anke; Ravenek, Janneke; Roscher, Christiane; Weigelt, Alexandra; Weisser, Wolfgang; Voesenek, Laurentius A C J; Mommer, Liesje</p> <p>2017-01-01</p> <p>Flooding is expected to increase in frequency and severity in the future. The ecological consequences of flooding are the combined result of species-specific plant traits and ecological context. However, the majority of past flooding research has focused on individual model species under highly controlled conditions. An early summer flooding event in a grassland biodiversity experiment in Jena, Germany, provided the opportunity to assess flooding responses of 60 grassland species in monocultures and 16-species mixtures. We examined plant biomass, species-specific traits (plant height, specific leaf area (SLA), root aerenchyma, starch content) and soil porosity. We found that, on average, plant species were less negatively affected by the flood when grown in higher-diversity plots in July 2013. By September 2013, grasses were unaffected by the flood regardless of plant diversity, and legumes were severely negatively affected regardless of plant diversity. Plants with greater SLA and more root aerenchyma performed better in September. Soil porosity was higher in higher-diversity plots and had a positive effect on plant performance. As floods become more frequent and severe in the future, growing flood-sensitive plants in higher-diversity communities and in soil with greater soil aeration may attenuate the most negative effects of flooding. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890018552','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890018552"><span>Parametric study of electromagnetic waves propagating in absorbing curved S ducts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baumeister, Kenneth J.</p> <p>1989-01-01</p> <p>A finite-element Galerkin formulation has been developed to study attenuation of transverse magnetic (TM) waves propagating in two-dimensional S-curved ducts with absorbing walls. In the frequency range where the duct diameter and electromagnetic wave length are nearly equal, the effect of duct length, curvature (duct offset), and absorber wall thickness was examined. For a given offset in the curved duct, the length of the S-duct was found to significantly affect both the absorptive and reflective characteristics of the duct. For a straight and a curved duct with perfect electric conductor terminations, power attenuation contours were examined to determine electromagnetic wall properties associated with maximum input signal absorption. Offset of the S-duct was found to significantly affect the value of the wall permittivity associated with the optimal attenuation of the incident electromagnetic wave.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033506','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033506"><span>Dynamic aspects of apparent attenuation and wave localization in layered media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Haney, M.M.; Van Wijk, K.</p> <p>2008-01-01</p> <p>We present a theory for multiply-scattered waves in layered media which takes into account wave interference. The inclusion of interference in the theory leads to a new description of the phenomenon of wave localization and its impact on the apparent attenuation of seismic waves. We use the theory to estimate the localization length at a CO2 sequestration site in New Mexico at sonic frequencies (2 kHz) by performing numerical simulations with a model taken from well logs. Near this frequency, we find a localization length of roughly 180 m, leading to a localization-induced quality factor Q of 360.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28149161','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28149161"><span>Study on distribution of reservoir endogenous microbe and oil displacement mechanism.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yue, Ming; Zhu, Weiyao; Song, Zhiyong; Long, Yunqian; Song, Hongqing</p> <p>2017-02-01</p> <p>In order to research oil displacement mechanism by indigenous microbial communities under reservoir conditions, indigenous microbial flooding experiments using the endogenous mixed bacterium from Shengli Oilfield were carried out. Through microscopic simulation visual model, observation and analysis of distribution and flow of the remaining oil in the process of water flooding and microbial oil displacement were conducted under high temperature and high pressure conditions. Research has shown that compared with atmospheric conditions, the growth of the microorganism metabolism and attenuation is slowly under high pressure conditions, and the existence of the porous medium for microbial provides good adhesion, also makes its growth cycle extension. The microbial activities can effectively launch all kinds of residual oil, and can together with metabolites, enter the blind holes off which water flooding, polymer flooding and gas flooding can't sweep, then swap out remaining oil, increase liquidity of the crude oil and remarkably improve oil displacement effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060026191','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060026191"><span>Benchmarking the Integration of WAVEWATCH III Results into HAZUS-MH: Preliminary Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Berglund, Judith; Holland, Donald; McKellip, Rodney; Sciaudone, Jeff; Vickery, Peter; Wang, Zhanxian; Ying, Ken</p> <p>2005-01-01</p> <p>The report summarizes the results from the preliminary benchmarking activities associated with the use of WAVEWATCH III (WW3) results in the HAZUS-MH MR1 flood module. Project partner Applied Research Associates (ARA) is integrating the WW3 model into HAZUS. The current version of HAZUS-MH predicts loss estimates from hurricane-related coastal flooding by using values of surge only. Using WW3, wave setup can be included with surge. Loss estimates resulting from the use of surge-only and surge-plus-wave-setup were compared. This benchmarking study is preliminary because the HAZUS-MH MR1 flood module was under development at the time of the study. In addition, WW3 is not scheduled to be fully integrated with HAZUS-MH and available for public release until 2008.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H43F1519T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H43F1519T"><span>Attenuation of seismic waves in rocks saturated with multiphase fluids: theory and experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tisato, N.; Quintal, B.; Chapman, S.; Podladchikov, Y.; Burg, J. P.</p> <p>2016-12-01</p> <p>Albeit seismic tomography could provide a detailed image of subsurface fluid distribution, the interpretation of the tomographic signals is often controversial and fails in providing a conclusive map of the subsurface saturation. However, tomographic information is important because the upward migration of multiphase fluids through the crust of the Earth can cause hazardous events such as eruptions, explosions, soil-pollution and earthquakes. In addition, multiphase fluids, such as hydrocarbons, represent important resources for economy. Seismic tomography can be improved considering complex elastic moduli and the attenuation of seismic waves (1/Q) that quantifies the energy lost by propagating elastic waves. In particular, a significant portion of the energy carried by the propagating wave is dissipated in saturated media by the wave-induced-fluid-flow (WIFF) and the wave-induced-gas-exsolution-dissolution (WIGED) mechanism. The latter describes how a propagating wave modifies the thermodynamic equilibrium between different fluid phases causing exsolution and dissolution of gas bubbles in the liquid, which in turn causes a significant frequency-dependent 1/Q and moduli dispersion. The WIGED theory was initially postulated for bubbly magmas but was only recently demonstrated and extended to bubbly water. We report the theory and laboratory experiments that have been performed to confirm the WIGED theory. In particular, we present i) attenuation measurements performed by means of the Broad Band Attenuation Vessel on porous media saturated with water and different gases, and ii) numerical experiments validating the laboratory observations. Then, we extend the theory to fluids and pressure-temperature conditions which are typical of phreatomagmatic and hydrocarbon domains and we compare the propagation of seismic waves in bubble-free and bubble-bearing subsurface domains. This work etends the knowledge of attenuation in rocks saturated with multiphase fluid and emphasizes that the WIGED mechanism is very important to image subsurface gas plumes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol3/pdf/CFR-2014-title33-vol3-sec203-15.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title33-vol3/pdf/CFR-2014-title33-vol3-sec203-15.pdf"><span>33 CFR 203.15 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>..., after the structure has been damaged by a flood, hurricane, or coastal storm, to the level of protection... Washington, D.C. Hurricane/Shore Protection Project (HSPP). A flood control project designed and constructed... of hurricanes, tsunamis, and coastal storms. These effects are primarily to protect against wave...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1364470','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1364470"><span>Status of the Flooding Fragility Testing Development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pope, C. L.; Savage, B.; Bhandari, B.</p> <p>2016-06-01</p> <p>This report provides an update on research addressing nuclear power plant component reliability under flooding conditions. The research includes use of the Component Flooding Evaluation Laboratory (CFEL) where individual components and component subassemblies will be tested to failure under various flooding conditions. The resulting component reliability data can then be incorporated with risk simulation strategies to provide a more thorough representation of overall plant risk. The CFEL development strategy consists of four interleaved phases. Phase 1 addresses design and application of CFEL with water rise and water spray capabilities allowing testing of passive and active components including fully electrified components.more » Phase 2 addresses research into wave generation techniques followed by the design and addition of the wave generation capability to CFEL. Phase 3 addresses methodology development activities including small scale component testing, development of full scale component testing protocol, and simulation techniques including Smoothed Particle Hydrodynamic (SPH) based computer codes. Phase 4 involves full scale component testing including work on full scale component testing in a surrogate CFEL testing apparatus.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9835V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9835V"><span>The role of interactions along the flood process chain and implications for risk assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vorogushyn, Sergiy; Apel, Heiko; Viet Nguyen, Dung; Guse, Björn; Kreibich, Heidi; Lüdtke, Stefan; Schröter, Kai; Merz, Bruno</p> <p>2017-04-01</p> <p>Floods with their manifold characteristics are shaped by various processes along the flood process chain - from triggering meteorological extremes through catchment and river network process down to impacts on societies. In flood risk systems numerous interactions and feedbacks along the process chain may occur which finally shape spatio-temporal flood patterns and determine the ultimate risk. In this talk, we review some important interactions in the atmosphere-catchment, river-dike-floodplain and vulnerability compartments of the flood risk system. We highlight the importance of spatial interactions for flood hazard and risk assessment. For instance, the role of spatial rainfall structure or wave superposition in river networks is elucidated with selected case studies. In conclusion, we show the limits of current methods in assessment of large-scale flooding and outline the approach to more comprehensive risk assessment based on our regional flood risk model (RFM) for Germany.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ECSS..198..568B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ECSS..198..568B"><span>Modelling of sediment transport pattern in the mouth of the Rhone delta: Role of storm and flood events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boudet, L.; Sabatier, F.; Radakovitch, O.</p> <p>2017-11-01</p> <p>The delta of the Rhone River is one of the most important in the Mediterranean Sea. Beach erosion problems along its coasts have developed in recent decades, raising the need for a better understanding of the sediment transport processes at the Rhone mouth and the adjacent beaches. Because field data are very difficult to obtain in such an energetic environment, a high-resolution numerical model (Delft3D) is applied to this area. This model is calibrated by taking into account hydrodynamical and morphological observations. Special attention is given to storm and flood events, which are the major morphological drivers. Therefore, scenarios with different wave and flow conditions are run to estimate the influence of these events on the sediment transport. The analysis of historical hydrological data shows that storms from the southeast represent 70% of the events between 1979 to 2010 and that 20% of them were followed by a flood within a few days. Consequently, specific simulations for such conditions are performed using Delft3D. The model simulates trends in the bedload sediment transport that are consistent with the bedforms observed in the bathymetry data. The total sediment transport at the outlet is only influenced by the river flow, but sediment transport at the mouth-bar depends on an equilibrium between the influence of floods and storms and the succession of these events. A period of 2 or 3 days separating the storm and flood peaks is sufficient to differentiate wave and river flow-induced sediment transport. The waves constrain the total transport on the mouth-bar and shallow mouth-lobe and induce a longshore transfer towards the adjacent beaches. The riverine sediments can be exported seaward only if a flood is energetic enough compared to the storm intensity. Regardless, when a flood is greater than the decadal return period (7800 m3 s-1), the sediment is transported from the outlet across the mouth-bar and is directed offshore.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22624335-su-protocol-hardware-improved-flood-field-calibration-truebeam-fff-cine-imaging','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22624335-su-protocol-hardware-improved-flood-field-calibration-truebeam-fff-cine-imaging"><span>SU-C-202-07: Protocol and Hardware for Improved Flood Field Calibration of TrueBeam FFF Cine Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Adamson, J; Faught, A; Yin, F</p> <p>2016-06-15</p> <p>Purpose: Flattening filter free photon energies are commonly used for high dose treatments such as SBRT, where localization accuracy is essential. Often, MV cine imaging may be employed to verify correct localization. TrueBeam Electronic Portal Imaging Devices (EPIDs) equipped with the 40×30cm{sup 2} Image Detection Unit (IDU) are prone to image saturation at the image center especially for higher dose rates. While saturation often does not occur for cine imaging during treatment because the beam is attenuated by the patient, the flood field calibration is affected when the standard calibration procedure is followed. Here we describe the hardware and protocolmore » to achieve improved image quality for this model of TrueBeam EPID. Methods: A stainless steel filter of uniform thickness was designed to have sufficient attenuation to avoid panel saturation for both 6XFFF and 10XFFF at the maximum dose rates (1400 MU/min & 2400 MU/min, respectively). The cine imaging flood field calibration was then acquired with the filter in place for the FFF energies under the standard calibration geometry (SDD=150cm). Image quality during MV cine was assessed with & without the modified flood field calibration using a low contrast resolution phantom and an anthropomorphic phantom. Results: When the flood field is acquired using the standard procedure (no filter in place), a pixel gain artifact is clearly present in the image center (r=3cm for 10XFFF at 2400 MU/min) which appears similar to and may be mis-attributed to panel saturation in the subject image. The artifact obscured all low contrast inserts at the image center and was also visible on the anthropomorphic phantom. Using the filter for flood field calibration eliminated the artifact. Conclusion: Use of a modified flood field calibration procedure improves image quality for cine MV imaging with TrueBeams equipped with the 40×30cm{sup 2} IDU.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25574058','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25574058"><span>Modeling of Pixelated Detector in SPECT Pinhole Reconstruction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Feng, Bing; Zeng, Gengsheng L</p> <p>2014-04-10</p> <p>A challenge for the pixelated detector is that the detector response of a gamma-ray photon varies with the incident angle and the incident location within a crystal. The normalization map obtained by measuring the flood of a point-source at a large distance can lead to artifacts in reconstructed images. In this work, we investigated a method of generating normalization maps by ray-tracing through the pixelated detector based on the imaging geometry and the photo-peak energy for the specific isotope. The normalization is defined for each pinhole as the normalized detector response for a point-source placed at the focal point of the pinhole. Ray-tracing is used to generate the ideal flood image for a point-source. Each crystal pitch area on the back of the detector is divided into 60 × 60 sub-pixels. Lines are obtained by connecting between a point-source and the centers of sub-pixels inside each crystal pitch area. For each line ray-tracing starts from the entrance point at the detector face and ends at the center of a sub-pixel on the back of the detector. Only the attenuation by NaI(Tl) crystals along each ray is assumed to contribute directly to the flood image. The attenuation by the silica (SiO 2 ) reflector is also included in the ray-tracing. To calculate the normalization for a pinhole, we need to calculate the ideal flood for a point-source at 360 mm distance (where the point-source was placed for the regular flood measurement) and the ideal flood image for the point-source at the pinhole focal point, together with the flood measurement at 360 mm distance. The normalizations are incorporated in the iterative OSEM reconstruction as a component of the projection matrix. Applications to single-pinhole and multi-pinhole imaging showed that this method greatly reduced the reconstruction artifacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeoJI.197..943A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeoJI.197..943A"><span>Water saturation effects on elastic wave attenuation in porous rocks with aligned fractures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amalokwu, Kelvin; Best, Angus I.; Sothcott, Jeremy; Chapman, Mark; Minshull, Tim; Li, Xiang-Yang</p> <p>2014-05-01</p> <p>Elastic wave attenuation anisotropy in porous rocks with aligned fractures is of interest to seismic remote sensing of the Earth's structure and to hydrocarbon reservoir characterization in particular. We investigated the effect of partial water saturation on attenuation in fractured rocks in the laboratory by conducting ultrasonic pulse-echo measurements on synthetic, silica-cemented, sandstones with aligned penny-shaped voids (fracture density of 0.0298 ± 0.0077), chosen to simulate the effect of natural fractures in the Earth according to theoretical models. Our results show, for the first time, contrasting variations in the attenuation (Q-1) of P and S waves with water saturation in samples with and without fractures. The observed Qs/Qp ratios are indicative of saturation state and the presence or absence of fractures, offering an important new possibility for remote fluid detection and characterization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SMaS...25h5017C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SMaS...25h5017C"><span>Manipulating waves by distilling frequencies: a tunable shunt-enabled rainbow trap</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cardella, Davide; Celli, Paolo; Gonella, Stefano</p> <p>2016-08-01</p> <p>In this work, we propose and test a strategy for tunable, broadband wave attenuation in electromechanical waveguides with shunted piezoelectric inclusions. Our strategy is built upon the vast pre-existing literature on vibration attenuation and bandgap generation in structures featuring periodic arrays of piezo patches, but distinguishes itself for several key features. First, we demystify the idea that periodicity is a requirement for wave attenuation and bandgap formation. We further embrace the idea of ‘organized disorder’ by tuning the circuits as to resonate at distinct neighboring frequencies. In doing so, we create a tunable ‘rainbow trap’ (Tsakmakidis et al 2007 Nature 450 397-401) capable of attenuating waves with broadband characteristics, by distilling (sequentially) seven frequencies from a traveling wavepacket. Finally, we devote considerable attention to the implications in terms of packet distortion of the spectral manipulation introduced by shunting. This work is also meant to serve as a didactic tool for those approaching the field of shunted piezoelectrics, and attempts to provide a different perspective, with abundant details, on how to successfully design an experimental setup involving resistive-inductive shunts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017R%26QE...60....1D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017R%26QE...60....1D"><span>Features of HF Radio Wave Attenuation in the Midlatitude Ionosphere Near the Skip Zone Boundary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Denisenko, P. F.; Skazik, A. I.</p> <p>2017-06-01</p> <p>We briefly describe the history of studying the decameter radio wave attenuation by different methods in the midlatitude ionosphere. A new method of estimating the attenuation of HF radio waves in the ionospheric F region near the skip zone boundary is presented. This method is based on an analysis of the time structure of the interference field generated by highly stable monochromatic X-mode radio waves at the observation point. The main parameter is the effective electron collision frequency νeff, which allows for all energy losses in the form of equivalent heat loss. The frequency νeff is estimated by matching the assumed (model) and the experimentally observed structures. Model calculations are performed using the geometrical-optics approximation. The spatial attenuation caused by the influence of the medium-scale traveling ionospheric disturbances is taken into account. Spherical shape of the ionosphere and the Earth's magnetic field are roughly allowed for. The results of recording of the level of signals from the RWM (Moscow) station at a frequency of 9.996 MHz at point Rostov are used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPA....7b5113O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPA....7b5113O"><span>Coupling behaviors of graphene/SiO2/Si structure with external electric field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Onishi, Koichi; Kirimoto, Kenta; Sun, Yong</p> <p>2017-02-01</p> <p>A traveling electric field in surface acoustic wave was introduced into the graphene/SiO2/Si sample in the temperature range of 15 K to 300 K. The coupling behaviors between the sample and the electric field were analyzed using two parameters, the intensity attenuation and time delay of the traveling-wave. The attenuation originates from Joule heat of the moving carriers, and the delay of the traveling-wave was due to electrical resistances of the fixed charge and the moving carriers with low mobility in the sample. The attenuation of the external electric field was observed in both Si crystal and graphene films in the temperature range. A large attenuation around 190 K, which depends on the strength of external electric field, was confirmed for the Si crystal. But, no significant temperature and field dependences of the attenuation in the graphene films were detected. On the other hand, the delay of the traveling-wave due to ionic scattering at low temperature side was observed in the Si crystal, but cannot be detected in the films of the mono-, bi- and penta-layer graphene with high conductivities. Also, it was indicated in this study that skin depth of the graphene film was less than thickness of two graphene atomic layers in the temperature range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.tmp..221W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.tmp..221W"><span>S-wave attenuation of the shallow sediments in the North China basin based on borehole seismograms of local earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Sheng; Li, Zhiwei</p> <p>2018-06-01</p> <p>S-wave velocity and attenuation structures of shallow sediments play important roles in accurate prediction of strong ground motion. However, it is more difficult to investigate the attenuation than velocity structures. In this study, we developed a new approach for estimating frequency-dependent S-wave attenuation (Q_S^{ - 1}) structures of shallow sediments based on multiple time window analysis of borehole seismograms from local earthquakes. Multiple time windows for separating direct and surface-reflected S-waves in local earthquake waveforms at borehole stations are selected with a global optimization scheme. With respect to different time windows, the transfer functions between direct and surface-reflected S-waves are achieved with a weighted averaging scheme, based on which frequency dependent Q_S^{ - 1} values are obtained. Synthetic tests suggest that the proposed method can restore robust and reliableQ_S^{ - 1} values, especially when the dataset of local earthquakes is not abundant. We utilize this method for local earthquake waveforms at 14 borehole seismic stations in the North China basin, and obtain Q_S^{ - 1} values in 2 ˜ 10 Hz frequency band, as well as average {V_P}, {V_S} and {V_P}/{{}}{V_S} ratio for shallow sediments deep to a few hundred meters. Results suggest that Q_S^{ - 1} values are to 0.01˜0.06, and generally decrease with frequency. The average attenuation structure of shallow sediments within the depth of a few hundred meters beneath 14 borehole stations in the North China basin can be modeled as Q_S^{ - 1} = 0.056{f^{ - 0.61}}. It is generally consistent with the attenuation structure of sedimentary basins in other areas, such as Mississippi Embayment sediments in the United States and Sendai basin in Japan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoJI.201..276Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoJI.201..276Z"><span>An observation related to directional attenuation of SKS waves propagating in anisotropic media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Liang; Xue, Mei</p> <p>2015-04-01</p> <p>Azimuthal anisotropy of attenuation is a physical phenomenon related to the directional change of attenuation. This study examines the frequency properties and directional attenuation of SKS waves. The directional frequency-dependent characteristics of SKS waves are investigated in the frequency band of 0.02-0.5 Hz using data from 53 permanent seismic stations located throughout the northern Yangtze Craton, the southern North China Craton and adjacent areas. In addition to normal splitting behavior, the analysis reveals that many SKS splitting measurements exhibit a lemniscate shape, reflecting frequency differences along fast and slow polarization directions. Frequency analysis shows that spectral ratios between fast/slow components of the lemniscate-type splitting results fluctuate strongly in a higher frequency band of 0.2-0.5 Hz, and fluctuate less within the main frequency band of 0.02-0.2 Hz. For each station, the ratio of the peak amplitude of the fast/slow components can be represented as a cotangential function of event backazimuth multiplying with a constant = 0.42 ± 0.10. This transformation shows that the regional average angles consistently fall within the relatively narrow range of -46.5 ± 3° with respect to the north, suggesting that a regional tectonic controlling factor dictates the relatively uniform directional attenuation of SKS waves within the frequency band of 0.02-0.2 Hz. Further analysis is performed by projecting the SKS waves onto the components along and perpendicular to the regional average angles. The calculation also shows that, in the 0.02-0.2 Hz band, the relationship between amplitude ratio and event backazimuth matches a cotangential functions with the same best matching angles and constant a < 1. Synthetic calculations demonstrate that although different filters influence the splitting parameters, attenuation anisotropy cannot be explained by elastic anisotropic media, including multilayer anisotropy and anisotropy with a tilting symmetrical axis. This observed behavior of the SKS wave may arise from the combined effects of frequency-dependent attenuation anisotropy and small-scale heterogeneities in the crust and the upper mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007Chaos..17a5109D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007Chaos..17a5109D"><span>Patterns of spiral wave attenuation by low-frequency periodic planar fronts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de la Casa, Miguel A.; de la Rubia, F. Javier; Ivanov, Plamen Ch.</p> <p>2007-03-01</p> <p>There is evidence that spiral waves and their breakup underlie mechanisms related to a wide spectrum of phenomena ranging from spatially extended chemical reactions to fatal cardiac arrhythmias [A. T. Winfree, The Geometry of Biological Time (Springer-Verlag, New York, 2001); J. Schutze, O. Steinbock, and S. C. Muller, Nature 356, 45 (1992); S. Sawai, P. A. Thomason, and E. C. Cox, Nature 433, 323 (2005); L. Glass and M. C. Mackey, From Clocks to Chaos: The Rhythms of Life (Princeton University Press, Princeton, 1988); R. A. Gray et al., Science 270, 1222 (1995); F. X. Witkowski et al., Nature 392, 78 (1998)]. Once initiated, spiral waves cannot be suppressed by periodic planar fronts, since the domains of the spiral waves grow at the expense of the fronts [A. N. Zaikin and A. M. Zhabotinsky, Nature 225, 535 (1970); A. T. Stamp, G. V. Osipov, and J. J. Collins, Chaos 12, 931 (2002); I. Aranson, H. Levine, and L. Tsimring, Phys. Rev. Lett. 76, 1170 (1996); K. J. Lee, Phys. Rev. Lett. 79, 2907 (1997); F. Xie, Z. Qu, J. N. Weiss, and A. Garfinkel, Phys. Rev. E 59, 2203 (1999)]. Here, we show that introducing periodic planar waves with long excitation duration and a period longer than the rotational period of the spiral can lead to spiral attenuation. The attenuation is not due to spiral drift and occurs periodically over cycles of several fronts, forming a variety of complex spatiotemporal patterns, which fall into two distinct general classes. Further, we find that these attenuation patterns only occur at specific phases of the descending fronts relative to the rotational phase of the spiral. We demonstrate these dynamics of phase-dependent spiral attenuation by performing numerical simulations of wave propagation in the excitable medium of myocardial cells. The effect of phase-dependent spiral attenuation we observe can lead to a general approach to spiral control in physical and biological systems with relevance for medical applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.H23C1205B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.H23C1205B"><span>Relationship between P-wave attenuation and water saturation in an homogeneous unconsolidated and partially saturated porous media : An experimental study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barrière, J.; Sénéchal, P.; Bordes, C.; Perroud, H.</p> <p>2010-12-01</p> <p>Nowadays, it is well known that hydrogeological properties of the porous media (porosity, fluid saturation and permeability) can influence seismic properties. The major theory which links hydrogeological and seismic parameters is poroelasticity proposed by Biot (1956) for saturated porous media in a wetting phase fluid. However the Biot relaxation process can't explain the level of attenuation of seismic waves generally measured on field from seismic to sonic frequency range in the case of partially saturated media. Laboratory experiments are necessary to better understand the effects of fluids on the attenuation of waves but few ones are done in the low frequency range (1Hz to 10 kHz) where the wavelength is greater than heterogeneities size. We propose an experimental study to determine the attenuation of propagative P-wave in the sonic frequency range on unconsolidated and partially saturated porous media, typical of near surface hydrogeological media. 10 accelerometers (0.0001-17kHz) and 6 capacitance probes (soil moisture sensors) are placed in a container (107 cm x 34 cm x 35cm) full of homogeneous sand (99% silica). An acoustic source (0 - 20 kHz) generate seismic waves which are recorded by the accelerometers during three cycles of imbibition-drainage (corresponding to a water saturation range from 0% to 95%). Values of attenuation (quality factor Q) versus water saturation and frequency are calculated with the well-known spectral ratio method. The spectrum of each recorded P-wave is obtained by a continuous wavelet transform, more adapted than Fourier transform for a non-stationary signal, such as seismic signal, whose frequency content varies with time. The first analyses show a strong dependence of the quality factor with frequency and water saturation, notably at high water saturation (above 60 %) where the attenuation is maximum. Knowing some important parameters of the studied media such as porosity and permeability, we interpret physically our results in accordance with some recent poroelastic models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ApPhL..98h4101M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ApPhL..98h4101M"><span>Porous medium acoustics of wave-induced vorticity diffusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Müller, T. M.; Sahay, P. N.</p> <p>2011-02-01</p> <p>A theory for attenuation and dispersion of elastic waves due to wave-induced generation of vorticity at pore-scale heterogeneities in a macroscopically homogeneous porous medium is developed. The diffusive part of the vorticity field associated with a viscous wave in the pore space—the so-called slow shear wave—is linked to the porous medium acoustics through incorporation of the fluid strain rate tensor of a Newtonian fluid in the poroelastic constitutive relations. The method of statistical smoothing is then used to derive dynamic-equivalent elastic wave velocities accounting for the conversion scattering process into the diffusive slow shear wave in the presence of randomly distributed pore-scale heterogeneities. The result is a simple model for wave attenuation and dispersion associated with the transition from viscosity- to inertia-dominated flow regime.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2006/5284/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2006/5284/"><span>Peak Discharge, Flood Profile, Flood Inundation, and Debris Movement Accompanying the Failure of the Upper Reservoir at the Taum Sauk Pump Storage Facility near Lesterville, Missouri</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rydlund, Jr., Paul H.</p> <p>2006-01-01</p> <p>The Taum Sauk pump-storage hydroelectric power plant located in Reynolds County, Missouri, uses turbines that operate as pumps and hydraulic head generated by discharging water from an upper to a lower reservoir to produce electricity. A 55-acre upper reservoir with a 1.5- billion gallon capacity was built on top of Proffit Mountain, approximately 760 feet above the floodplain of the East Fork Black River. At approximately 5:16 am on December 14, 2005, a 680-foot wide section of the upper reservoir embankment failed suddenly, sending water rushing down the western side of Proffit Mountain and emptying into the floodplain of East Fork Black River. Flood waters from the upper reservoir flowed downstream through Johnson's Shut-Ins State Park and into the lower reservoir of the East Fork Black River. Floods such as this present unique challenges and opportunities to analyze and document peak-flow characteristics, flood profiles, inundation extents, and debris movement. On December 16, 2005, Light Detection and Ranging (LiDAR) data were collected and used to support hydraulic analyses, forensic failure analyses, damage extent, and mitigation of future disasters. To evaluate the impact of sedimentation in the lower reservoir, a bathymetric survey conducted on December 22 and 23, 2005, was compared to a previous bathymetric survey conducted in April, 2005. Survey results indicated the maximum reservoir capacity difference of 147 acre-feet existed at a pool elevation of 730 feet. Peak discharge estimates of 289,000 cubic feet per second along Proffit Mountain and 95,000 cubic feet per second along the East Fork Black River were determined through indirect measurement techniques. The magnitude of the embankment failure flood along the East Fork Black River was approximately 4 times greater than the 100-year flood frequency estimate of 21,900 cubic feet per second, and approximately 3 times greater than the 500-year flood frequency estimate of 30,500 cubic feet per second. Dynamic wave unsteady flow models Dam Break (DAMBRK) and Unsteady NETwork (UNET) were used to route the flood wave from the embankment failure breach of the upper reservoir to the spillway of the lower reservoir. Simulated velocities ranged from 20 to 51 feet per second along Proffit Mountain and 12 to 32 feet per second along the East Fork Black River. Simulated arrival time of the flood wave took approximately 5.5 to 6.0 minutes to enter into the floodplain of the East Fork Black River, and roughly 29 minutes to begin filling the lower reservoir. Simulated shear stress values reached as high as 232 pounds per square foot along the slope of Proffit Mountain and 144 pounds per square foot within the Shut-Ins. Flood depths from the embankment failure may have reached greater than 50 feet along Proffit Mountain and as much as 30 to 40 feet along the East Fork Black River. A steady-state model was used to develop 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood frequency profiles along the East Fork Black River. A similar flood event, hypothetically resulting from a breach of the east embankment above Taum Sauk Creek, was simulated along with the 100- and 500-year flood profiles on Taum Sauk Creek. Estimated extents of flood inundation were developed for each profile. Debris movement was extensive as a result of the flood wave moving down Proffit Mountain and through Johnson's Shut-Ins State Park. A quantitative assessment of debris movement was conducted to benefit rehabilitation efforts within the park. Approximately 180 acres of timber were affected as a result of the embankment failure flood.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22581502-preparation-characterization-millimetre-wave-attenuation-performance-carbon-fibers-coated-nickel-wolfram-phosphorus-nickel-cobalt-wolfram-phosphorus','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22581502-preparation-characterization-millimetre-wave-attenuation-performance-carbon-fibers-coated-nickel-wolfram-phosphorus-nickel-cobalt-wolfram-phosphorus"><span>Preparation, characterization and millimetre wave attenuation performance of carbon fibers coated with nickel-wolfram-phosphorus and nickel-cobalt-wolfram- phosphorus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ye, Mingquan; Li, Zhitao; Wang, Chen</p> <p>2016-04-15</p> <p>Highlights: • SEM, XRD, EDS and MMW attenuation performances of alloys coated CFs were studied. • Resistivity and P content in alloys were main factors on MMW attenuation property. • The weight gain of coated CFs has effects on the MMW attenuation performance. - Abstract: Carbon fibers (CFs) coated with Ni–X–P (X = W, Co–W or none) alloys were prepared by electroless plating. The morphology, crystal structure, and element composition of alloy-coated CFs were characterized by scanning electron microscopy, X-ray diffractometry, energy-dispersive spectrometry and microwave attenuation. The results showed that CFs were coated with a layer of alloy particles. Pmore » content in Ni–Co–W–P or Ni–W–P alloys was lower than that in Ni–P alloy, and coating alloy Ni–P was amorphous. After W or Co introduction, coating alloys exhibited crystal characteristics. MMW-attenuation performance analysis showed that the 3 mm wave attenuation performance of CFs/Ni–Co–W–P, CFs/Ni–W–P and CFs/Ni–P increased by 7.27 dBm, 4.88 dBm and 3.55 dBm, and the 8 mm wave attenuation effects increased by 11.61 dBm, 6.11 dBm, and 4.06 dBm respectively, compared with those of CFs. MMW-attenuation performance is attributable to the sample bulk resistivity and P content in the alloy. Moreover, an optimal weight gain value existed for the MMW-attenuation performance of alloy-coated CFs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PApGe.171..485I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PApGe.171..485I"><span>Mantle Attenuation Estimated from Regional and Teleseismic P-waves of Deep Earthquakes and Surface Explosions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ichinose, G.; Woods, M.; Dwyer, J.</p> <p>2014-03-01</p> <p>We estimated the network-averaged mantle attenuation t*(total) of 0.5 s beneath the North Korea test site (NKTS) by use of P-wave spectra and normalized spectral stacks from the 25 May 2009 declared nuclear test (mb 4.5; IDC). This value was checked using P-waves from seven deep (580-600 km) earthquakes (4.8 < M w < 5.5) in the Jilin-Heilongjiang, China region that borders with Russia and North Korea. These earthquakes are 200-300 km from the NKTS, within 200 km of the Global Seismic Network seismic station in Mudanjiang, China (MDJ) and the International Monitoring System primary arrays at Ussuriysk, Russia (USRK) and Wonju, Republic of Korea (KSRS). With the deep earthquakes, we split the t*(total) ray path into two segments: a t*(u), that represents the attenuation of the up-going ray from the deep hypocenters to the local-regional receivers, and t*(d), that represents the attenuation along the down-going ray to teleseismic receivers. The sum of t*(u) and t*(d) should be equal to t*(total), because they both share coincident ray paths. We estimated the upper-mantle attenuation t*(u) of 0.1 s at stations MDJ, USRK, and KSRS from individual and stacks of normalized P-wave spectra. We then estimated the average lower-mantle attenuation t*(d) of 0.4 s using stacked teleseismic P-wave spectra. We finally estimated a network average t*(total) of 0.5 s from the stacked teleseismic P-wave spectra from the 2009 nuclear test, which confirms the equality with the sum of t*(u) and t*(d). We included constraints on seismic moment, depth, and radiation pattern by using results from a moment tensor analysis and corner frequencies from modeling of P-wave spectra recorded at local distances. We also avoided finite-faulting effects by excluding earthquakes with complex source time functions. We assumed ω2 source models for earthquakes and explosions. The mantle attenuation beneath the NKTS is clearly different when compared with the network-averaged t* of 0.75 s for the western US and is similar to values of approximately 0.5 s for the Semipalatinsk test site within the 0.5-2 Hz range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26878221','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26878221"><span>Modeling flood reduction effects of low impact development at a watershed scale.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ahiablame, Laurent; Shakya, Ranish</p> <p>2016-04-15</p> <p>Low impact development (LID) is a land development approach that seeks to mimic a site's pre-development hydrology. This study is a case study that assessed flood reduction capabilities of large-scale adoption of LID practices in an urban watershed in central Illinois using the Personal Computer Storm Water Management Model (PCSWMM). Two flood metrics based on runoff discharge were developed to determine action flood (43 m(3)/s) and major flood (95 m(3)/s). Four land use scenarios for urban growth were evaluated to determine the impacts of urbanization on runoff and flooding. Flood attenuation effects of porous pavement, rain barrel, and rain garden at various application levels were also evaluated as retrofitting technologies in the study watershed over a period of 30 years. Simulation results indicated that increase in urban land use from 50 to 94% between 1992 and 2030 increased average annual runoff and flood events by more than 30%, suggesting that urbanization without sound management would increase flood risks. The various implementation levels of the three LID practices resulted in 3-47% runoff reduction in the study watershed. Flood flow events that include action floods and major floods were also reduced by 0-40%, indicating that LID practices can be used to mitigate flood risk in urban watersheds. The study provides an insight into flood management with LID practices in existing urban areas. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSMG14A1931R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSMG14A1931R"><span>Towards a Multi-scale Montecarlo Climate Emulator for Coastal Flooding and Long-Term Coastal Change Modeling: The Beautiful Problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rueda, A.; Alvarez Antolinez, J. A.; Hegermiller, C.; Serafin, K.; Anderson, D. L.; Ruggiero, P.; Barnard, P.; Erikson, L. H.; Vitousek, S.; Camus, P.; Tomas, A.; Gonzalez, M.; Mendez, F. J.</p> <p>2016-02-01</p> <p>Long-term coastal evolution and coastal flooding hazards are the result of the non-linear interaction of multiple oceanographic, hydrological, geological and meteorological forcings (e.g., astronomical tide, monthly mean sea level, large-scale storm surge, dynamic wave set-up, shoreline evolution, backshore erosion). Additionally, interannual variability and trends in storminess and sea level rise are climate drivers that must be considered. Moreover, the chronology of the hydraulic boundary conditions plays an important role since a collection of consecutive minor storm events can have more impact than the 100-yr return level event. Therefore, proper modeling of shoreline erosion, beach recovery and coastal flooding should consider the sequence of storms, the multivariate nature of the hydrodynamic forcings, and the different time scales of interest (seasonality, interannual and decadal variability). To address this `beautiful problem', we propose a hybrid approach that combines: (a) numerical hydrodynamic and morphodynamic models (SWAN for wave transformation, a shoreline change model, X-Beach for modeling infragravity waves and erosion of the backshore during extreme events and RFSM-EDA (Jamieson et al, 2012) for high resolution flooding of the coastal hinterland); (b) long-term data bases (observational and hindcast) of sea state parameters, astronomical tides and non-tidal residuals; and (c) statistical downscaling techniques, non-linear data mining, and extreme value models. The statistical downscaling approaches for multivariate variables are based on circulation patterns (Espejo et al., 2014), the chronology of the circulation patterns (Guanche et al, 2013) and the event hydrographs of multivariate extremes, resulting in a time-dependent climate emulator of hydraulic boundary conditions for coupled simulations of the coastal change and flooding models. ReferencesEspejo et al (2014) Spectral ocean wave climate variability based on circulation patterns, J Phys Oc, doi: 10.1175/JPO-D-13-0276.1 Guanche et al (2013) Autoregressive logistic regression applied to atmospheric circulation patterns, Clim Dyn, doi: 10.1007/s00382-013-1690-3 Jamieson et al (2012) A highly efficient 2D flood model with sub-element topography, Proc. Of the Inst Civil Eng., 165(10), 581-595</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S34A..03N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S34A..03N"><span>Laboratory Mid-frequency (Kilohertz) Range Seismic Property Measurements and X-ray CT Imaging of Fractured Sandstone Cores During Supercritical CO2 Injection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakagawa, S.; Kneafsey, T. J.; Chang, C.; Harper, E.</p> <p>2014-12-01</p> <p>During geological sequestration of CO2, fractures are expected to play a critical role in controlling the migration of the injected fluid in reservoir rock. To detect the invasion of supercritical (sc-) CO2 and to determine its saturation, velocity and attenuation of seismic waves can be monitored. When both fractures and matrix porosity connected to the fractures are present, wave-induced dynamic poroelastic interactions between these two different types of rock porosity—high-permeability, high-compliance fractures and low-permeability, low-compliance matrix porosity—result in complex velocity and attenuation changes of compressional waves as scCO2 invades the rock. We conducted core-scale laboratory scCO2 injection experiments on small (diameter 1.5 inches, length 3.5-4 inches), medium-porosity/permeability (porosity 15%, matrix permeability 35 md) sandstone cores. During the injection, the compressional and shear (torsion) wave velocities and attenuations of the entire core were determined using our Split Hopkinson Resonant Bar (short-core resonant bar) technique in the frequency range of 1-2 kHz, and the distribution and saturation of the scCO2 determined via X-ray CT imaging using a medical CT scanner. A series of tests were conducted on (1) intact rock cores, (2) a core containing a mated, core-parallel fracture, (3) a core containing a sheared core-parallel fracture, and (4) a core containing a sheared, core-normal fracture. For intact cores and a core containing a mated sheared fracture, injections of scCO2 into an initially water-saturated sample resulted in large and continuous decreases in the compressional velocity as well as temporary increases in the attenuation. For a sheared core-parallel fracture, large attenuation was also observed, but almost no changes in the velocity occurred. In contrast, a sample containing a core-normal fracture exhibited complex behavior of compressional wave attenuation: the attenuation peaked as the leading edge of the scCO2 approached the fracture; followed by an immediate drop as scCO2 invaded the fracture; and by another, gradual increase as the scCO2 infiltrated into the other side of the fracture. The compressional wave velocity declined monotonically, but the rate of velocity decrease changed with the changes in attenuation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1706c0004L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1706c0004L"><span>Guided wave attenuation in coated pipes buried in sand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leinov, Eli; Cawley, Peter; Lowe, Michael J. S.</p> <p>2016-02-01</p> <p>Long-range guided wave testing (GWT) is routinely used for the monitoring and detection of corrosion defects in above ground pipelines in various industries. The GWT test range in buried, coated pipelines is greatly reduced compared to aboveground pipelines due to energy leakage into the embedding soil. In this study, we aim to increase test ranges for buried pipelines. The effect of pipe coatings on the T(0,1) and L(0,2) guided wave attenuation is investigated using a full-scale experimental apparatus and model predictions. Tests are performed on a fusion-bonded epoxy (FBE)-coated 8" pipe, buried in loose and compacted sand over a frequency range of 10-35 kHz. The application of a low impedance coating is shown to effectively decouple the influence of the sand on the ultrasound leakage from the buried pipe. We demonstrate ultrasonic isolation of a buried pipe by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both pipe and sand and the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is substantially reduced, in the range of 0.3-1.2 dBm-1 for loose and compacted sand conditions, compared to buried FBE-coated pipe without the PE-foam, where the measured attenuation is in the range of 1.7-4.7 dBm-1. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry technique and used in model predictions of guided wave propagation in a buried coated pipe. Good agreement is found between the attenuation measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges, so such coatings would be attractive for new pipeline installations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994JGR....9917863A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994JGR....9917863A"><span>Measurements of acoustic surface waves on fluid-filled porous rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adler, Laszlo; Nagy, Peter B.</p> <p>1994-09-01</p> <p>Novel experimental techniques to measure ultrasonic velocity and attenuation of surface waves on fluid-filled porous natural rocks are presented. Our experimental results are consistent with the theoretical predictions of Feng and Johnson (1983). Depending on the interface conditions, i.e., whether the surface pores are open or closed, pseudo-Rayleigh, pseudo-Stoneley, and/or Stoneley surface waves may exist on fluid-saturated rocks with closed 'slow' surface wave (true Stoneley mode) on fluid-filled porous rocks with closed surface pores. The velocity and attenuation of the 'slow' surface mode may be used to assess the dynamic permeabilty of porous formations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22600064-propagation-electromagnetic-wave-dusty-plasma-influence-dust-size-distribution','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22600064-propagation-electromagnetic-wave-dusty-plasma-influence-dust-size-distribution"><span>Propagation of electromagnetic wave in dusty plasma and the influence of dust size distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li, Hui; China Research Institute of Radio Wave Propagation; Wu, Jian</p> <p></p> <p>The effect of charged dust particle and their size distribution on the propagation of electromagnetic wave in a dusty plasma is investigated. It is shown that the additional collision mechanism provided by charged dust particles can significantly alter the electromagnetic properties of a plasma, leading to the appearance of attenuation of electromagnetic wave through dusty plasma. The attenuation coefficient mainly depends on the dust density, radius, and the charge numbers on the dust surface. The results described here will be used to enhance understanding of electromagnetic wave propagation processed in space and laboratory dusty plasma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ems..confE.162A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ems..confE.162A"><span>Past analogs of recent climate anomalies and impacts in Portugal. Droughts, storms and heat waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alcoforado, M. J.; Nunes, M. F.</p> <p>2009-09-01</p> <p>An indexed reconstruction of precipitation variability, based on documentary and instrumental data, has been done for southern Portugal starting in 1675. The descriptions of the extreme events in the documentary sources have also supplied information about their impacts. We will compare past and recent extreme weather events in Portugal, their causes and their impacts on society. We have selected periods of winter droughts, of storms that triggered great floods and of heat waves. There are a number of documentary sources dating from 1693-94 indicating that that there was no rainfall from December 1693 to at least November 1694 with the exception of light showers in June. Several pro-pluvia rogations ceremonies took place all over the country, even in the Northwest that is generally rainy. There are numerous descriptions of the impact of droughts on agriculture, of shortage of cereals, of escalating prices and the subsequent generalised famine. An analogy will be made for the 20th century using the 1980-81 winter drought that lasted roughly the same time and which also had severe social and economic impacts. The decrease in production of hydroelectric energy (50% below average) between January and July 1981 is also pointed out. In both cases, the lack of rainfall was partly due to a ridge that stayed over the Eastern Atlantic and kept Iberia in aerologic shelter. Apart from urban flash floods there are two types of floods in Portugal: (i) floods from the big river basins (Tagus, Mondego and Douro) that are due to the frequent passage of westerly frontal depressions during days or weeks; and (ii) floods of the small river basins due to convective depressions that affect small areas. The December 1739 flood, caused by the overflow of the great rivers, will be compared with the ones that occurred in February 1978. Both were caused by intensive precipitation all over the country at a time when the soil was already saturated with water from previous rainfall. The damages were vast in both occasions including loss of life. Two poems and other documentary sources supply detailed and credible information on the 1739 flood that hit Portugal from North to South. A heat wave in June-July 1842 has been selected. There are already instrumental data available for the former (Franzini station), retrieved from medical journals as well as descriptions of impacts on several regions in the country. The 1842 heat wave will be compared with more recent heat waves like the June 1981 that had very serious impact on public health and on the country's economy. We will also analyse the heat waves of July 1991 and August 2003. The latter was particularly long-lasting with serious consequences ranging from extensive forest fires to losses in agriculture and impact on the population health, although the registered mortality was lower than in 1981 probably due to improved alert systems and Public Health Welfare State.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25674476','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25674476"><span>S-wave attenuation in northeastern Sonora, Mexico, near the faults that ruptured during the earthquake of 3 May 1887 Mw 7.5.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Villalobos-Escobar, Gina P; Castro, Raúl R</p> <p>2014-01-01</p> <p>We used a new data set of relocated earthquakes recorded by the Seismic Network of Northeastern Sonora, Mexico (RESNES) to characterize the attenuation of S-waves in the fault zone of the 1887 Sonora earthquake (M w 7.5). We determined spectral attenuation functions for hypocentral distances (r) between 10 and 140 km using a nonparametric approach and found that in this fault zone the spectral amplitudes decay slower with distance at low frequencies (f < 4 Hz) compared to those reported in previous studies in the region using more distant recordings. The attenuation functions obtained for 23 frequencies (0.4 ≤ f ≤ 63.1 Hz) permit us estimating the average quality factor Q S  = (141 ± 1.1 )f ((0.74 ± 0.04)) and a geometrical spreading term G(r) = 1/r (0.21). The values of Q estimated for S-wave paths traveling along the fault system that rupture during the 1887 event, in the north-south direction, are considerably lower than the average Q estimated using source-station paths from multiple stations and directions. These results indicate that near the fault zone S waves attenuate considerably more than at regional scale, particularly at low frequencies. This may be the result of strong scattering near the faults due to the fractured upper crust and higher intrinsic attenuation due to stress concentration near the faults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28773500','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28773500"><span>Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lang, Liu; Song, Ki-Il; Zhai, Yue; Lao, Dezheng; Lee, Hang-Lo</p> <p>2016-05-17</p> <p>Rock-like materials are composites that can be regarded as a mixture composed of elastic, plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate loading according to element model theory. This paper presents an analytical solution for stress wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic rock-like materials was first established, and then kinematic and kinetic equations were then solved to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials. An experimental test using the SHPB (Split Hopkinson Pressure Bar) for a concrete specimen was conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on differential evolution was conducted to estimate undetermined variables for constitutive equations. Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic rock-like materials was investigated. According to the results, the frequency of the stress wave, viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly strain-dependent attenuation in viscoelastic-plastic rock-like materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/6460773','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/6460773"><span>An in vivo study of low back pain and shock absorption in the human locomotor system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Voloshin, A; Wosk, J</p> <p>1982-01-01</p> <p>In this second of three papers, the principles of a non-invasive in vivo method to quantitatively evaluate the shock absorbing capacity of the human musculoskeletal system and the correlation of this shock absorbing capacity with low back pain (LPB) symptoms are presented. The experiments involved patients suffering from low back pain (as well as other degenerative joint diseases) and healthy patients. The obtained results reveal that low back pain correlates with the reduced capacity of the human musculoskeletal system between the femoral condyle and the forehead to attenuate incoming shock waves. Examination of the absolute values of the amplitude of the propagated waves leads to the conclusion that the human locomotor system, which possesses reduced attenuation capacity, tries to prevent overloading of the head from insufficiently attenuated shock waves. Results of the present investigation support the idea that the repetitive loading resulting from gait generates intermittent waves that propagate through the entire human musculoskeletal system from the heel up to the head. These waves are gradually attenuated along this course by the natural shock absorbers (bone and soft tissues). Contemporary methods for examination of the human musculoskeletal system may by improved by using the proposed non-invasive in vivo technique for quantitative characterization of the locomotor system's shock absorbing capacity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.S51C2222E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.S51C2222E"><span>Coda Wave Analysis in Central-Western North America Using Earthscope Transportable Array Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Escudero, C. R.; Doser, D. I.</p> <p>2011-12-01</p> <p>We determined seismic wave attenuation in the western and central United States (e.g. Washington, Oregon, California, Idaho, Nevada, Montana, Wyoming, Colorado, New Mexico, North Dakota, South Dakota, Nebraska, Kansas, Oklahoma, and Texas) using coda waves. We selected approximately twenty moderate earthquakes (magnitude between 5.5 and 6.5) located along the Mexican subduction zone, Gulf of California, southern and northern California, and off the coast of Oregon for the analysis. These events were recorded by the EarthScope transportable array (TA) network from 2008 to 2011. In this study we implemented a method based on the assumption that coda waves are single backscattered waves from randomly distributed heterogeneities to calculate the coda Q. The frequencies studied lie between 1 and 15 Hz. The scattering attenuation is calculated for frequency bands centered at 1.5, 3, 5, 7.5, 10.5, and 13.5 Hz. In this work, we present coda Q resolution maps along with a correlation analysis between coda Q and seismicity, tectonic and geology setting. We observed higher attenuation (low coda Q values) in regions of sedimentary cover, and lower attenuation (high coda Q values) in hard rock regions. Using the 4-6 Hz frequency band, we found the best general correlation between coda Q and central-western North America bedrock geology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5503082','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5503082"><span>Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lang, Liu; Song, KI-IL; Zhai, Yue; Lao, Dezheng; Lee, Hang-Lo</p> <p>2016-01-01</p> <p>Rock-like materials are composites that can be regarded as a mixture composed of elastic, plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate loading according to element model theory. This paper presents an analytical solution for stress wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic rock-like materials was first established, and then kinematic and kinetic equations were then solved to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials. An experimental test using the SHPB (Split Hopkinson Pressure Bar) for a concrete specimen was conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on differential evolution was conducted to estimate undetermined variables for constitutive equations. Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic rock-like materials was investigated. According to the results, the frequency of the stress wave, viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly strain-dependent attenuation in viscoelastic-plastic rock-like materials. PMID:28773500</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10170E..0FZ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10170E..0FZ"><span>A disorder-based strategy for tunable, broadband wave attenuation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Weiting; Celli, Paolo; Cardella, Davide; Gonella, Stefano</p> <p>2017-04-01</p> <p>One of the most daunting limitations of phononic crystals and acoustic/elastic metamaterials is their passivity: a given configuration is bound to display its phononic properties only around its design point, i.e., working at some pre-determined operating conditions. In the past decade, this shortcoming has inspired the design of phononic media with tunable wave characteristics; noteworthy results have been obtained through a family of methodologies involving shunted piezoelectric elements. Shunting a piezoelectric element means connecting it to a passive electric circuit; tunability stems from the ability to modify the effective mechanical properties of the piezoelectric medium by modifying the circuit characteristics. One of the most popular shunting circuits is the resistor-inductor, which allows the patch-and-shunt system to behave as an electromechanical resonator. A common motif among the works employing shunted piezos for phononic control is periodicity: the patches are typically periodically placed in the domain and the circuits are identically tuned. The objective of this work is to demonstrate that the wave attenuation performance of structures with shunted piezoelectric patches can be improved by leveraging notions of organized disorder. Based on the idea of rainbow trapping broadband wave attenuation obtained by tuning an array of resonators at distinct neighboring frequencies we design and test an electromechanical waveguide structure capable of attenuating waves over broad frequency ranges. In order to emphasize the fact that periodicity is not a binding requirement when working with RL shunts (which induce locally resonant bandgaps), we report on the performance of random arrangements of patches. In an attempt to demonstrate the tunability attribute of our strategy, we take advantage of the reconfigurability of the circuits to show how a single waveguide can attenuate both waves and vibrations over different frequency ranges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......402C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......402C"><span>Seismic studies in the southern Puna plateau and the Peruvian Andes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calixto Mory, Frank Jimmy</p> <p></p> <p>I present three studies in two regions, both within the Central Andes. In both regions it is clear that there are significant variations in the subduction geometry. I have used surface wave tomography to investigate the shear wave velocity structure beneath the southern Puna plateau and found evidence of widespread melting of the crust beneath the high elevations which correlates with a gap in intermediate depth seismicity and the recent eruptions of ignimbrite complexes. All of these observations can be explained by the delamination of the lithospheric mantle beneath it. I measured Rayleigh wave phase velocities as a function of frequency and inverted then to obtain shear wave velocities as a function of depth. The results show a high velocity body sitting above the subducting Nazca plate beneath the northern edge of the Cerro Galan ignimbrite. This high velocity body is interpreted to be the delaminated piece of lithosphere that detached and sank leading to a localized upwelling of asthenosphere that, in turn, caused widespread crustal melting leading to the eruption of the most recent ignimbrite complexes. Furthermore it is possible that this upwelling also thermally eroded the slab in this region. It is apparent that there is a significant slab gap or hole where there are very few intermediate depth earthquakes. In addition, I have used shear wave splitting analysis and shear wave splitting tomography in the southern Puna plateau to investigate the patterns of seismic anisotropy and mantle flow. The results show very complex shear wave splitting and seismic anisotropy patterns throughout the southern Puna plateau. The observations suggest that different mechanisms are driving the mantle flow from region to region. The subslab mantle outside the region where delamination took place is mostly driven by slab roll back and small degree of coupling between the subducting slab and the mantle below it. In the region apparently dominated by delamination, the subslab mantle outlines a rotation pattern of a-axis and small strength of anisotropy, suggesting that a slab gap or heated slab is regionally driving the mantle flow. In the mantle wedge, there is evidence for vertical a-axis suggesting vertical flow. This is observed beneath the main ignimbrite complexes and above the delaminated block imaged in the first study. Anisotropy in the western edge of the region above the slab is driven by compression of the South American lithosphere, which leads to trench parallel a-axis orientation. Finally, I have studied the attenuation of high frequency seismic waves in Southern Peru using the two-station and reverse two station methods. I have focused on the largest regional phase Lg which is a wave that is entirely guided in the crust and travels mostly as an S-wave. This study allowed me to investigate the correlation of attenuation measurements with topography and regions of high heat flow. Furthermore, this study is important as it can be used to distinguish regions with higher seismic hazard from distance earthquakes. Low attenuation, or high quality factor (Q), usually leads to high stronger ground shaking even at larger distances from the epicenter. Our attenuation model should determine whether the attenuation is intrinsic or cause by scattering. The western cordillera in northern Peru is characterized by high attenuation. I have also found that most regions with high attenuation (low LgQ) in southern Peru correlated very well with location of volcanoes. However, we have also found regions with high attenuation where there is very little active volcanism. We believe the high level of attenuation is associated with scattering attenuation caused by a thick crustal root. The Altiplano plateau, where Lake Titicaca is located, shows intermediate values of attenuation. The city of Pisco shows the highest values of Q in Peru (˜1500) associated with a high degree of site effect which makes this region potentially more susceptible to strong ground motion from regional earthquakes. Most of southern Peru tends to exhibit high intrinsic attenuation but scattering attenuation is also observed to dominate in regions where the topography changes drastically over small distances such as the northern edge of the Altiplano plateau.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4410958D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4410958D"><span>Seismic High Attenuation Region Observed Beneath Southern New England From Teleseismic Body Wave Spectra: Evidence for High Asthenospheric Temperature Without Melt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dong, Mingduo T.; Menke, William H.</p> <p>2017-11-01</p> <p>Seismic attenuation exhibits strong geographic variability in northeastern North America, with the highest values associated with the previously recognized Northern Appalachian Anomaly (NAA) in southern New England. The shear wave quality factor at 100 km depth is 14 < QS < 25, the ratio of P wave and S wave quality factors is QP/QS = 1.2 ± 0.03 (95%), and the frequency dependence parameter is α = 0.39 ± 0.025 (95%). The high values of QP/QS and α are compatible with laboratory measurements of unmelted rock and, in the case of α, incompatible with widespread melting. The low QS implies high mantle temperatures ( 1,550-1,650°C) at 100 km depth (assuming no melt). Small-scale variations in attenuation suggest structural heterogeneity within the NAA, possibly due to lithospheric delamination caused by asthenospheric flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911368B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911368B"><span>Hydrodynamic modeling of urban flooding taking into account detailed data about city infrastructure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Belikov, Vitaly; Norin, Sergey; Aleksyuk, Andrey; Krylenko, Inna; Borisova, Natalya; Rumyantsev, Alexey</p> <p>2017-04-01</p> <p>Flood waves moving across urban areas have specific features. Thus, the linear objects of infrastructure (such as embankments, roads, dams) can change the direction of flow or block the water movement. On the contrary, paved avenues and wide streets in the cities contribute to the concentration of flood waters. Buildings create an additional resistance to the movement of water, which depends on the urban density and the type of constructions; this effect cannot be completely described by Manning's resistance law. In addition, part of the earth surface, occupied by buildings, is excluded from the flooded area, which results in a substantial (relative to undeveloped areas) increase of the depth of flooding, especially for unsteady flow conditions. An approach to numerical simulation of urban areas flooding that consists in direct allocating of all buildings and structures on the computational grid are proposed. This can be done in almost full automatic way with usage of modern software. Real geometry of all objects of infrastructure can be taken into account on the base of highly detailed digital maps and satellite images. The calculations based on two-dimensional Saint-Venant equations on irregular adaptive computational meshes, which can contain millions of cells and take into account tens of thousands of buildings and other objects of infrastructure. Flood maps, received as result of modeling, are the basis for the damage and risk assessment for urban areas. The main advantage of the developed method is high-precision calculations, realistic modeling results and appropriate graphical display of the flood dynamics and dam-break wave's propagation on urban areas. Verification of this method has been done on the experimental data and real events simulations, including catastrophic flooding of the Krymsk city in 2012 year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1213496T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1213496T"><span>Analysis of the high water wave volume for the Sava River near Zagreb</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trninic, Dusan</p> <p>2010-05-01</p> <p>The paper analyses volumes of the Sava River high water waves near Zagreb during the period: 1926-2008 (N = 83 years), which is needed for more efficient control of high and flood waters. The primary Sava flood control structures in the City of Zagreb are dikes built on both riverbanks, and the Odra Relief Canal with lateral spillway upstream from the City of Zagreb. Intensive morphological changes in the greater Sava area near Zagreb, and anthropological and climate variations and changes at the Sava catchment up to the Zagreb area require detailed analysis of the water wave characteristics. In one analysis, maximum annual volumes are calculated for high water waves with constant duration of: 10, 20, 30, 40, 50 and 60 days. Such calculations encompass total quantity of water (basic and surface runoff). The log Pearson III distribution is adapted for this series of maximum annual volumes. Based on the results obtained, the interrelations are established between the wave volume as function of duration and occurrence probability. In addition to the analysis of maximum volumes of constant duration, it is interesting to carry out the analyses of maximum volume in excess of the reference discharge since it is very important for the flood control. To determine the reference discharges, a discharge of specific duration is used from an average discharge duration curve. The adopted reference discharges have durations of 50, 40, 30, 20 and 10%. Like in the previous case, log Pearson III distribution is adapted to the maximum wave data series. For reference discharge Q = 604 m3/s (duration 10%), a linear trend is calculated of maximum annual volumes exceeding the reference discharge for the Sava near Zagreb during the analyzed period. The analysis results show a significant decrease trend. A similar analysis is carried out for the following three reference discharges: regular flood control measures at the Sava near Zagreb, which are proclaimed when the water level is 350 cm (Q = 2114 m3/s), extraordinary flood control measures taken when the water level is 450 cm (Q = 2648 m3/s), and the discharge at the deterministic inlet into the Odra Canal of approximately Q = 2300 m3/s. The results of these analyses have shown that water wave volumes higher than the reference discharges occurred in a comparatively small number of years, and that their duration was one to two days.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-10-26/pdf/2012-26375.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-10-26/pdf/2012-26375.pdf"><span>77 FR 65417 - Compliance With Information Request, Flooding Hazard Reevaluation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-10-26</p> <p>... operating units, however, the first large tsunami wave inundated the site, followed by additional waves. The... units. Unit 6 retained the function of one air-cooled EDG; Despite their actions, the operators lost the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994CSR....14.1191W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994CSR....14.1191W"><span>Sediment resuspension and bed armoring during high bottom stress events on the northern California inner continental shelf: measurements and predictions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wiberg, Patricia L.; Drake, David E.; Cacchione, David A.</p> <p>1994-08-01</p> <p>Geoprobe bottom tripods were deployed during the winter of 1990-1991 on the northern California inner continental shelf as part of the STRESS field experiment. Transmissometer measurements of light beam attenuation were made at two levels and current velocity was measured at four levels in the bottom 1.2 m of water. Intervals of high measured bottom wave velocity were generally correlated with times of both high attenuation and high attenuation gradient in the bottom meter of the water column. Measured time series of light attenuation and attenuation gradient are compared to values computed using a modified version of the SMITH [(1977) The sea, Vol. 6, Wiley-Interscience, New York, pp. 539-577] steady wave-current bottom-boundary-layer model. Size-dependent transmissometer calibrations, which show significantly enhanced attenuation with decreasing grain size, are used to convert calculated suspended sediment concentration to light attenuation. The finest fractions of the bed, which are the most easily suspended and attenuate the most light, dominate the computed attenuation signal although they comprise only about 5-7% of the bed sediment. The calculations indicate that adjusting the value of the coefficient γ 0 in the expression for near-bed sediment concentration cannot in itself give both the correct magnitudes of light attenuation and attenuation gradient. To supply the volumes of fine sediment computed to be in suspension during peak events, even with values of γ 0 as low as 5 × 10 -5, requires suspension of particles from unreasonably large depths in the bed. A limit on the depth of sediment availability is proposed as a correction to suspended sediment calculations. With such a limit, reasonable attenuation values are computed with γ 0 ≈ 0.002. The effects of limiting availability and employing a higher γ 0 are to reduce the volume of the finest sediment in suspension and to increase the suspended volumes of the coarser fractions. As a consequence, the average size and settling velocity of suspended sediment increases as bottom shear stress increases, with accompanying increases in near-bed concentration gradients. Higher concentration gradients produce larger stratification effects, particularly near the top of the wave boundary layer at times when wave shear velocities are high and current shear velocities are low. These are the conditions under which maximum attenuation gradients are observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017575','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017575"><span>Sediment resuspension and bed armoring during high bottom stress events on the northern California inner continental shelf: measurements and predictions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wiberg, P.L.; Drake, D.E.; Cacchione, D.A.</p> <p>1994-01-01</p> <p>Geoprobe bottom tripods were deployed during the winter of 1990-1991 on the northern California inner continental shelf as part of the STRESS field experiment. Transmissometer measurements of light beam attenuation were made at two levels and current velocity was measured at four levels in the bottom 1.2 m of water. Intervals of high measured bottom wave velocity were generally correlated with times of both high attenuation and high attenuation gradient in the bottom meter of the water column. Measured time series of light attenuation and attenuation gradient are compared to values computed using a modified version of the Smith [(1977) The sea, Vol. 6, Wiley-Interscience, New York, pp. 539-577] steady wave-current bottom-boundary-layer model. Size-dependent transmissometer calibrations, which show significantly enhanced attenuation with decreasing grain size, are used to convert calculated suspended sediment concentration to light attenuation. The finest fractions of the bed, which are the most easily suspended and attenuate the most light, dominate the computed attenuation signal although they comprise only about 5-7% of the bed sediment. The calculations indicate that adjusting the value of the coefficient ??0 in the expression for near-bed sediment concentration cannot in itself give both the correct magnitudes of light attenuation and attenuation gradient. To supply the volumes of fine sediment computed to be in suspension during peak events, even with values of ??0 as low as 5 ?? 10-5, requires suspension of particles from unreasonably large depths in the bed. A limit on the depth of sediment availability is proposed as a correction to suspended sediment calculations. With such a limit, reasonable attenuation values are computed with ??0 ??? 0.002. The effects of limiting availability and employing a higher ??0 are to reduce the volume of the finest sediment in suspension and to increase the suspended volumes of the coarser fractions. As a consequence, the average size and settling velocity of suspended sediment increases as bottom shear stress increases, with accompanying increases in near-bed concentration gradients. Higher concentration gradients produce larger stratification effects, particularly near the top of the wave boundary layer at times when wave shear velocities are high and current shear velocities are low. These are the conditions under which maximum attenuation gradients are observed. ?? 1994.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910044116&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910044116&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal"><span>Wave propagation in the marginal ice zone - Model predictions and comparisons with buoy and synthetic aperture radar data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Antony K.; Holt, Benjamin; Vachon, Paris W.</p> <p>1991-01-01</p> <p>Ocean wave dispersion relation and viscous attenuation by a sea ice cover are studied for waves propagating into the marginal ice zone (MIZ). The Labrador ice margin experiment (LIMEX), conducted on the MIZ off the east coast of Newfoundland, Canada in March 1987, provided aircraft SAR imagery, ice property and wave buoy data. Wave energy attenuation rates are estimated from SAR data and the ice motion package data that were deployed at the ice edge and into the ice pack, and compared with a model. It is shown that the model data comparisons are quite good for the ice conditions observed during LIMEX 1987.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70177880','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70177880"><span>Identification and classification of very low frequency waves on a coral reef flat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gawehn, Matthijs; van Dongeran, Ap; van Rooijen, Arnold; Storlazzi, Curt; Cheriton, Olivia; Reniers, Ad</p> <p>2016-01-01</p> <p>Very low frequency (VLF, 0.001–0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on Roi-Namur Island in the Republic of the Marshall Islands, the observed VLF motions were categorized into four different classes: (1) resonant, (2) (nonresonant) standing, (3) progressive-growing, and (4) progressive-dissipative waves. Each VLF class is set by the reef flat water depth and, in the case of resonance, the incident-band offshore wave period. Using an improved method to identify VLF wave resonance, we find that VLF wave resonance caused prolonged (∼0.5–6.0 h), large-amplitude water surface oscillations at the inner reef flat ranging in wave height from 0.14 to 0.83 m. It was induced by relatively long-period, grouped, incident-band waves, and occurred under both storm and nonstorm conditions. Moreover, observed resonant VLF waves had nonlinear, bore-like wave shapes, which likely have a larger impact on the shoreline than regular, sinusoidal waveforms. As an alternative technique to the commonly used Fast Fourier Transformation, we propose the Hilbert-Huang Transformation that is more computationally expensive but can capture the wave shape more accurately. This research demonstrates that understanding VLF waves on reef flats is important for evaluating coastal flooding hazards.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.7560G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.7560G"><span>Identification and classification of very low frequency waves on a coral reef flat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gawehn, Matthijs; van Dongeren, Ap; van Rooijen, Arnold; Storlazzi, Curt D.; Cheriton, Olivia M.; Reniers, Ad</p> <p>2016-10-01</p> <p>Very low frequency (VLF, 0.001-0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on Roi-Namur Island in the Republic of the Marshall Islands, the observed VLF motions were categorized into four different classes: (1) resonant, (2) (nonresonant) standing, (3) progressive-growing, and (4) progressive-dissipative waves. Each VLF class is set by the reef flat water depth and, in the case of resonance, the incident-band offshore wave period. Using an improved method to identify VLF wave resonance, we find that VLF wave resonance caused prolonged (˜0.5-6.0 h), large-amplitude water surface oscillations at the inner reef flat ranging in wave height from 0.14 to 0.83 m. It was induced by relatively long-period, grouped, incident-band waves, and occurred under both storm and nonstorm conditions. Moreover, observed resonant VLF waves had nonlinear, bore-like wave shapes, which likely have a larger impact on the shoreline than regular, sinusoidal waveforms. As an alternative technique to the commonly used Fast Fourier Transformation, we propose the Hilbert-Huang Transformation that is more computationally expensive but can capture the wave shape more accurately. This research demonstrates that understanding VLF waves on reef flats is important for evaluating coastal flooding hazards.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMNH51B1702G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMNH51B1702G"><span>A simple methodology to produce flood risk maps consistent with FEMA's base flood elevation maps: Implementation and validation over the entire contiguous United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goteti, G.; Kaheil, Y. H.; Katz, B. G.; Li, S.; Lohmann, D.</p> <p>2011-12-01</p> <p>In the United States, government agencies as well as the National Flood Insurance Program (NFIP) use flood inundation maps associated with the 100-year return period (base flood elevation, BFE), produced by the Federal Emergency Management Agency (FEMA), as the basis for flood insurance. A credibility check of the flood risk hydraulic models, often employed by insurance companies, is their ability to reasonably reproduce FEMA's BFE maps. We present results from the implementation of a flood modeling methodology aimed towards reproducing FEMA's BFE maps at a very fine spatial resolution using a computationally parsimonious, yet robust, hydraulic model. The hydraulic model used in this study has two components: one for simulating flooding of the river channel and adjacent floodplain, and the other for simulating flooding in the remainder of the catchment. The first component is based on a 1-D wave propagation model, while the second component is based on a 2-D diffusive wave model. The 1-D component captures the flooding from large-scale river transport (including upstream effects), while the 2-D component captures the flooding from local rainfall. The study domain consists of the contiguous United States, hydrologically subdivided into catchments averaging about 500 km2 in area, at a spatial resolution of 30 meters. Using historical daily precipitation data from the Climate Prediction Center (CPC), the precipitation associated with the 100-year return period event was computed for each catchment and was input to the hydraulic model. Flood extent from the FEMA BFE maps is reasonably replicated by the 1-D component of the model (riverine flooding). FEMA's BFE maps only represent the riverine flooding component and are unavailable for many regions of the USA. However, this modeling methodology (1-D and 2-D components together) covers the entire contiguous USA. This study is part of a larger modeling effort from Risk Management Solutions° (RMS) to estimate flood risk associated with extreme precipitation events in the USA. Towards this greater objective, state-of-the-art models of flood hazard and stochastic precipitation are being implemented over the contiguous United States. Results from the successful implementation of the modeling methodology will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140000910','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140000910"><span>The 2010 Pakistan Flood and Russian Heat Wave: Teleconnection of Hydrometeorological Extremes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lau, William K. M.; Kim, Kyu-Myong</p> <p>2012-01-01</p> <p>In this paper, preliminary results are presented showing that the two record-setting extreme events during 2010 summer (i.e., the Russian heat wave-wildfires and Pakistan flood) were physically connected. It is found that the Russian heat wave was associated with the development of an extraordinarily strong and prolonged extratropical atmospheric blocking event in association with the excitation of a large-scale atmospheric Rossby wave train spanning western Russia, Kazakhstan, and the northwestern China-Tibetan Plateau region. The southward penetration of upper-level vorticity perturbations in the leading trough of the Rossby wave was instrumental in triggering anomalously heavy rain events over northern Pakistan and vicinity in mid- to late July. Also shown are evidences that the Russian heat wave was amplified by a positive feedback through changes in surface energy fluxes between the atmospheric blocking pattern and an underlying extensive land region with below-normal soil moisture. The Pakistan heavy rain events were amplified and sustained by strong anomalous southeasterly flow along the Himalayan foothills and abundant moisture transport from the Bay of Bengal in connection with the northward propagation of the monsoonal intraseasonal oscillation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9809D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9809D"><span>Adaptation to floods in future climate: a practical approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doroszkiewicz, Joanna; Romanowicz, Renata; Radon, Radoslaw; Hisdal, Hege</p> <p>2016-04-01</p> <p>In this study some aspects of the application of the 1D hydraulic model are discussed with a focus on its suitability for flood adaptation under future climate conditions. The Biała Tarnowska catchment is used as a case study. A 1D hydraulic model is developed for the evaluation of inundation extent and risk maps in future climatic conditions. We analyse the following flood indices: (i) extent of inundation area; (ii) depth of water on flooded land; (iii) the flood wave duration; (iv) the volume of a flood wave over the threshold value. In this study we derive a model cross-section geometry following the results of primary research based on a 500-year flood inundation extent. We compare two methods of localisation of cross-sections from the point of view of their suitability to the derivation of the most precise inundation outlines. The aim is to specify embankment heights along the river channel that would protect the river valley in the most vulnerable locations under future climatic conditions. We present an experimental design for scenario analysis studies and uncertainty reduction options for future climate projections obtained from the EUROCORDEX project. Acknowledgements: This work was supported by the project CHIHE (Climate Change Impact on Hydrological Extremes), carried out in the Institute of Geophysics Polish Academy of Sciences, funded by Norway Grants (contract No. Pol-Nor/196243/80/2013). The hydro-meteorological observations were provided by the Institute of Meteorology and Water Management (IMGW), Poland.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSMNH51A..04T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSMNH51A..04T"><span>Preliminary vulnerability evaluation by local tsunami and flood by Puerto Vallarta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trejo-Gómez, E.; Nunez-Cornu, F. J.; Ortiz, M.; Escudero, C. R.; CA-UdG-276 Sisvoc</p> <p>2013-05-01</p> <p>Jalisco coast is susceptible to local tsunami due to the occurrence of large earthquakes. In 1932 occurred three by largest earthquakes. Evidence suggests that one of them caused by offshore subsidence of sediments deposited by Armeria River. For the tsunamis 1932 have not been studied the seismic source. On October 9, 1995, occurred a large earthquake (Mw= 8.0) producing a tsunami with run up height up ≤ 5 m. This event affected Tenacatita Bay and many small villages along the coast of Jalisco and Colima. Using seismic source parameters, we simulated 1995 tsunami and estimated the maximum wave height. We compared the our results with 20 field measures 20 taked during 1995 along the south cost of Jalisco State, from Chalacatepec to Barra de Navidad. Similar seismic source parameters used for tsunami 1995 simulation was used as reference for simulating a hypothetical seismic source front Puerto Vallarta. We assumed that the fracture occurs in the gap for the north cost of Jalisco. Ten sites were distributed to cover the Banderas Bay, as theoretical pressure sensors, were estimated the maximum wave height and time to arrived at cost. After we delimited zones hazard zones by floods on digital model terrain, a graphic scale 1:20,000. At the moment, we have already included information by hazard caused by hypothetical tsunami in Puerto Vallarta. The hazard zones by flood were the north of Puerto Vallarta, as Ameca, El Salado, El Pitillal and Camarones. The initial wave height could be ≤ 1 m, 15 minutes after earthquake, in Pitillal zone. We estimated for Puerto Vallarta the maximum flood area was in El Salado zone, ≤ 2 km, with the maximum wave height > 3 m to ≤ 4.8 m at 25 and 75 minutes. We estimated a previous vulnerability evaluation by local tsunami and flood; it was based on the spatial distribution of socio-economic data from INEGI. We estimated a low vulnerability in El Salado and height vulnerability for El Pitillal and Ameca.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009CSR....29.1454L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009CSR....29.1454L"><span>A numerical study on the effects of wave-current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Huiqing; Xie, Lian</p> <p>2009-06-01</p> <p>The effects of wave-current interactions on ocean surface waves induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal waters are examined by using a three-dimensional (3D) wave-current coupled modeling system. The 3D storm surge modeling component of the coupled system is based on the Princeton Ocean Model (POM), the wave modeling component is based on the third generation wave model, Simulating WAves Nearshore (SWAN), and the inundation model is adopted from [Xie, L., Pietrafesa, L. J., Peng, M., 2004. Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J. Coastal Res., 20, 1209-1223]. The results indicate that the change of water level associated with the storm surge is the primary cause for wave height changes due to wave-surge interaction. Meanwhile, waves propagating on top of surge cause a feedback effect on the surge height by modulating the surface wind stress and bottom stress. This effect is significant in shallow coastal waters, but relatively small in offshore deep waters. The influence of wave-current interaction on wave propagation is relatively insignificant, since waves generally propagate in the direction of the surface currents driven by winds. Wave-current interactions also affect the surface waves as a result of inundation and drying induced by the storm. Waves break as waters retreat in regions of drying, whereas waves are generated in flooded regions where no waves would have occurred without the flood water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MSSP..104...19J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MSSP..104...19J"><span>Investigations on flexural wave propagation and attenuation in a modified one-dimensional acoustic black hole using a laser excitation technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ji, Hongli; Luo, Jing; Qiu, Jinhao; Cheng, Li</p> <p>2018-05-01</p> <p>Acoustic Black Holes (ABHs), as a new type of passive structure for vibration damping enhancement and noise attenuation, have been drawing increasing attentions of many researchers. Due to the difficulty in manufacturing the sharp edges required by the ABH structures, it is important to understand the wave propagation and attenuation process in the presence of damping layers in non-ideal ABHs with a truncated edge. In this paper, an analytical expression of the wave reflection coefficient in a modified one-dimensional ABH is derived and a time-domain experimental method based on a laser excitation technique is used to visualize the wave propagation. In the experimental studies, the flexural waves in the ABH were excited by a scanning pulse laser and measured by a Laser Doppler Vibrometer (LDV). The incident wave and reflected wave were separated from the measured original wave field and the decrease of the wave velocity in the ABH was exhibited. The reflection coefficient was calculated from the ratio of the amplitude of the reflected wave to that of the incident wave for different ABH parameters and different thicknesses of the damping layer. The measured reflection coefficients were used to identify the unknown coefficients in the theoretical formula. The results confirm that there exists an optimal thickness for the damping layer, which leads to the minimum wave reflection. Based on the laser-induced visualization technique and various signal processing and feature extraction methods, the entire process of the wave propagation in a non-ideal one-dimensional ABH structure can be visualized and scrutinized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.H43G1460L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.H43G1460L"><span>Wave Velocity Attenuation and Sediment Retention among Different Vegetation Types in a Pacific Northwest Estuary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lemein, T.; Cox, D. T.; Albert, D.; Blackmar, P.</p> <p>2012-12-01</p> <p>Feedbacks between vegetation, wave climate, and sedimentation create stable ecosystem states within estuaries that provide ecosystem services such as wildlife habitat, erosion control, and pollution filtration. Flume and field studies conducted with cordgrass (Spartina spp.) and sea grasses (Zostera spp., Halodule spp.) have demonstrated that the presence of vegetation reduces wave energy and increases sediment retention. Since the spatial distribution of plant species and the presence of unique plant species differ between estuaries, there is a need to understand how individual plant species, or groups of species with similar morphology, influence wave characteristics and sedimentation. Within Tillamook Bay, Oregon, three species of emergent vascular vegetation species (Carex lyngbyei, Eleocharis sp., Schoenoplectus pungens) and one species of submergent vascular vegetation species (Zostera marina) are present in the high wave energy portion of the estuary at the border of open water and the start of vegetation. These species represent three distinct growth forms (emergent reeds, emergent grasses, submergent grasses) and occur at varying densities relative to each other, as well as within the estuary. Using paired acoustic Doppler velocimeters (ADVs), we quantify the relative attenuation of wave velocity between vegetation types and densities within the estuary and compare these results with published attenuation rates from flume and field studies in different environments. The effect of decreased wave velocity on sediment retention is measured using permanent sediment markers within and outside of vegetation stands and paired with ADV data. Sediment retention is predicted to vary seasonally with seasonal vegetation composition changes and remain constant in unvegetated areas. From this experiment we expect to identify like groups of plant species whose attenuation characteristics are the same, allowing for models of wave-vegetation-sediment interaction to be created with multiple vegetation types.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoJI.203..146M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoJI.203..146M"><span>Attenuation of sonic waves in water-saturated alluvial sediments due to wave-induced fluid flow at microscopic, mesoscopic and macroscopic scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Milani, Marco; Rubino, J. Germán; Baron, Ludovic; Sidler, Rolf; Holliger, Klaus</p> <p>2015-10-01</p> <p>The attenuation and velocity dispersion of sonic waves contain valuable information on the mechanical and hydraulic properties of the probed medium. An inherent complication arising in the interpretation of corresponding measurements is, however, that there are multiple physical mechanisms contributing to the energy dissipation and that the relative importance of the various contributions is difficult to unravel. To address this problem for the practically relevant case of terrestrial alluvial sediments, we analyse the attenuation and velocity dispersion characteristics of broad-band multifrequency sonic logs with dominant source frequencies ranging between 1 and 30 kHz. To adequately compensate for the effects of geometrical spreading, which is critical for reliable attenuation estimates, we simulate our experimental setup using a correspondingly targeted numerical solution of the poroelastic equations. After having applied the thus inferred corrections, the broad-band sonic log data set, in conjunction with a comprehensive suite of complementary logging data, allows for assessing the relative importance of a range of pertinent attenuation mechanisms. In doing so, we focus on the effects of wave-induced fluid flow over a wide range of scales. Our results indicate that the levels of attenuation due to the presence of mesoscopic heterogeneities in unconsolidated clastic sediments fully saturated with water are expected to be largely negligible. Conversely, Monte-Carlo-type inversions indicate that Biot's classical model permits to explain most of the considered data. Refinements with regard to the fitting of the observed attenuation and velocity dispersion characteristics are locally provided by accounting for energy dissipation at the microscopic scale, although the nature of the underlying physical mechanism remains speculative.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016WRR....52.7615F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016WRR....52.7615F"><span>On river-floodplain interaction and hydrograph skewness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fleischmann, Ayan S.; Paiva, Rodrigo C. D.; Collischonn, Walter; Sorribas, Mino V.; Pontes, Paulo R. M.</p> <p>2016-10-01</p> <p>Understanding hydrological processes occurring within a basin by looking at its outlet hydrograph can improve and foster comprehension of ungauged regions. In this context, we present an extensive examination of the roles that floodplains play on driving hydrograph shapes. Observations of many river hydrographs with large floodplain influence are carried out and indicate that a negative skewness of the hydrographs is present among many of them. Through a series of numerical experiments and analytical reasoning, we show how the relationship between flood wave celerity and discharge in such systems is responsible for determining the hydrograph shapes. The more water inundates the floodplains upstream of the observed point, the more negatively skewed is the observed hydrograph. A case study is performed in the Amazon River Basin, where major rivers with large floodplain attenuation (e.g., Purus, Madeira, and Juruá) are identified with higher negative skewness in the respective hydrographs. Finally, different wetland types could be distinguished by using this feature, e.g., wetlands maintained by endogenous processes, from wetlands governed by overbank flow (along river floodplains). A metric of hydrograph skewness was developed to quantify this effect, based on the time derivative of discharge. Together with the skewness concept, it may be used in other studies concerning the relevance of floodplain attenuation in large, ungauged rivers, where remote sensing data (e.g., satellite altimetry) can be very useful.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A24B2586M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A24B2586M"><span>Challenges of Modeling Swell Propagation and Sea Waves over a Complex Bathymetry: Implication for Coastal Flood Mapping in Sitka, AK</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marjani, A.; Allahdadi, M.</p> <p>2016-02-01</p> <p>Sitka, AK is included in Region X of FEMA Flood Hazard Mapping. The scoped shoreline is located east of the Sitka Sound connecting Sitka to the Pacific waters through a semi-narrow continental shelf. Wave hindcast is a fundamental component of Coastal Flood Risk Study Process. SWAN model on an unstructured mesh was used to determine the characteristics of waves along the Sitka shoreline. This area is substantially affected by a combination of both offshore waves (swells) and waves generated by severe local winds. The bathymetry inside the Sitka Sound and the nearshore areas along the Sitka coastline is very complex and includes many abrupt deepening as a result of geological characteristics or large tidal currents. The present study provides a brief review of the steps and challenges for a reliable wave modeling over this area. The requirement for running the model in non-stationary mode in combination with the mentioned complexities initiated instabilities regarding intense refractions that cause unrealistic large values for the peak period and the wave height. Refining the computational mesh over the areas with great depth gradients as well as increasing the spectral grid resolution and decreasing time steps did not satisfactorily resolve the above issue. Choosing an appropriate CFL Limiters on Spectral Propagation Velocities in SWAN setup (which is not considered in the default settings) could properly treat this instability (See attached Figure). The model offshore boundary was prescribed using wave data obtained from the WIS buoys, while wind forcing was resulted as a combination of Sitka airport and offshore Buoy wind data. Model performance in transformation of swells from the open boundary was evaluated using two more offshore WIS buoy data. A 1D model transferred the extracted wave data from SWAN to the surfzone along each selected transect for each storm event. The the final production was runup with different recurrence periods along the shoreline.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720039135&hterms=love&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dlove','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720039135&hterms=love&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dlove"><span>The attenuation of Love waves and toroidal oscillations of the earth.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jackson, D. D.</p> <p>1971-01-01</p> <p>An attempt has been made to invert a large set of attenuation data for Love waves and toroidal oscillations in the earth, using a recent method by Backus and Gilbert. The difficulty in finding an acceptable model of internal friction which explains the data, under the assumption that the internal friction is independent of frequency, casts doubt on the validity of this assumption. A frequency-dependent model of internal friction is presented which is in good agreement with the seismic data and with recent experimental measurements of attenuation in rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.2205R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.2205R"><span>Current-induced dissipation in spectral wave models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rapizo, H.; Babanin, A. V.; Provis, D.; Rogers, W. E.</p> <p>2017-03-01</p> <p>Despite many recent developments of the parameterization for wave dissipation in spectral models, it is evident that when waves propagate onto strong adverse currents the rate of energy dissipation is not properly estimated. The issue of current-induced dissipation is studied through a comprehensive data set in the tidal inlet of Port Phillip Heads, Australia. The wave parameters analyzed are significantly modulated by the tidal currents. Wave height in conditions of opposing currents (ebb tide) can reach twice the offshore value, whereas during coflowing currents (flood), it can be reduced to half. The wind-wave model SWAN is able to reproduce the tide-induced modulation of waves and the results show that the variation of currents is the dominant factor in modifying the wave field. In stationary simulations, the model provides an accurate representation of wave height for slack and flood tides. During ebb tides, wave energy is highly overestimated over the opposing current jet. None of the four parameterizations for wave dissipation tested performs satisfactorily. A modification to enhance dissipation as a function of the local currents is proposed. It consists of the addition of a factor that represents current-induced wave steepening and it is scaled by the ratio of spectral energy to the threshold breaking level. The new term asymptotes to the original form as the current in the wave direction tends to zero. The proposed modification considerably improves wave height and mean period in conditions of adverse currents, whereas the good model performance in coflowing currents is unaltered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP43B1887Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP43B1887Z"><span>Physiological and Biochemical Responses of Saltmarsh Plant Spartina alterniflora to Long-term Wave Exposure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, W.</p> <p>2017-12-01</p> <p>In recent years, ecosystem-based flood defence, i.e., eco-shoreline or living shoreline, that is more sustainable and cost-effective than conventional coastal engineering structures has been brought into large-scale practice. Numerous laboratory experiments have been performed to explore the wave-attenuation effects of saltmarsh plants that are widely used in eco-shoreline, and yet no study has ever been conducted on the physiological and biochemical responses of saltmarsh plants to long-term wave exposure, presumably due to the constraint that traditional wave generator fails to provide long-term stable wave conditions necessary for physiological experiments. In this study, a long-term shallow water wave environment simulator using crank-yoke mechanism was built in the laboratory to address this gap. Experiments using the wave simulator were conducted for 8 weeks in a greenhouse and the temperature was maintained at 24-30°C. 5‰ artificial sea water was filled in the test tank, and the water was changed every week. After being acclimatized, nine S. alterniflora individual plants (initial height 30 cm) were planted in each of the three streamlined cuboid containers (12cm×12cm×20cm), which were partially submerged in a test tank, and undertook horizontal sinusoidal motion imposed by the crank-yoke mechanism to mimic plants exposed to shallow water waves. The substrate filled in the containers were soils collected from the Yellow River Delta, so were the S. alterniflora plants. A realistic stem density of 400 stems/m2 was tested, which corresponded to a grid spacing of 5.0 cm. Shallow water waves with six wave heights (H: 0.041, 0.055, 0.069, 0.033, 0.044 and 0.056m), one plants submerged depth (0.1m) and two wave periods (2s and 3s) were simulated in the experiments. A no wave condition was also tested as control. Key physiological and biochemical parameters, such as stem length, peroxidase activity, catalase, superoxide dismutase, ascorbate peroxidase, etc. were measured on a weekly basis to monitor the plant response. Differences among the various groups were analyzed using repeated measures ANOVA to check for significance (P < 0.05). The results can help inform eco-shoreline projects in terms of plant selection and transplantation timing optimization, etc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911598S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911598S"><span>Simulation of coastal floodings during a typhoon event with the consideration of future sea-level rises.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shu-Huei, Jhang; Chih-Chung, Wen; Dong-Jiing, Doong; Cheng-Han, Tsai</p> <p>2017-04-01</p> <p>Taiwan is an Island in the western Pacific Ocean and experienced more than 3 typhoons in a year. Typhoons bring intense rainfall, high waves, and storm surges, which often resulted in coastal flooding. The flooding can be aggravated by the sea level rise due to the global warming, which may subject Taiwan's coastal areas to more serious damage in the future than present. The objectives of this study are to investigate the flooding caused by typhoons in the Annan District, Tainan, a city on the southwest coast of Taiwan by numerical simulations, considering the effects of sea-level rises according to the level suggested by the 5th Assessment Report of IPCC (Intergovernmental Panel on Climate Change) for 2050 and 2100, respectively. The simulations were carried out by using MIKE21 HD (a hydrodynamic model) and MIKE21 SW (a spectral wave model). In our simulation, we used an intense typhoon, named Soudelor, as our base typhoon, which made its landfall on the east coast of Taiwan in the summer of 2015, traveled through the width of the island, and exited the island to the north of Tainan. The reasons we pick this typhoon are that it passed near our objective area, wind field data for this typhoon are available, and we have well documented coastal wave and water level measurements during the passage of Typhoon Soudelor. We firstly used ECMWF (European Centre for Medium-Range Weather Forecasts) wind field data to reconstruct typhoon waves and storm surges for this typhoon by using coupled MIKE21 SW and MIKE21 HD in a regional model. The resultant simulated wave height and sea-level height matched satisfactorily with the measured data. The wave height and storm surge calculated by the regional model provided the boundary conditions for our fine-grid domain. Then different sea-level rises suggested by the IPCC were incorporated into the fine-grid model. Since river discharge due to intense rainfall has also to be considered for coastal flooding, our fine-grid models encompass the estuary of River Yanshui, and measured upstream river discharges were used to simulate the interactions among tide, current, and wave near the estuary of Yanshui River. Our preliminary results showed that with only the effect of rainwater discharge, the maximum surface level of the river during the storm near the estuary was 1.4 m, which is not higher than the river embankments. With the storm surge, the river level at the same location was 2.2 m. With the storm surge and sea-level rise, the maximum river levels near the estuary were 3.6 m and 3.9 m for 2050 and 2100 scenarios, respective. These levels were higher than the embankment height of 3 m. This showed that due to higher sea-level, the area near the estuary will be flooded.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910031156&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910031156&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmarginal"><span>Wave evolution in the marginal ice zone - Model predictions and comparisons with on-site and remote data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, A. K.; Holt, B.; Vachon, P. W.</p> <p>1989-01-01</p> <p>The ocean-wave dispersion relation and viscous attenuation by a sea ice cover were studied for waves in the marginal ice zone (MIZ). The Labrador ice margin experiment (Limex), conducted off the east coast of Newfoundland, Canada in March 1987, provided aircraft SAR, wave buoy, and ice property data. Based on the wave number spectrum from SAR data, the concurrent wave frequency spectrum from ocean buoy data, and accelerometer data on the ice during Limex '87, the dispersion relation has been derived and compared with the model. Accelerometers were deployed at the ice edge and into the ice pack. Data from the accelerometers were used to estimate wave energy attenuation rates and compared with the model. The model-data comparisons are reasonably good for the ice conditions observed during Limex' 87.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EaSci..27..421Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EaSci..27..421Z"><span>Viscoelastic representation of surface waves in patchy saturated poroelastic media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yu; Xu, Yixian; Xia, Jianghai; Ping, Ping; Zhang, Shuangxi</p> <p>2014-08-01</p> <p>Wave-induced flow is observed as the dominated factor for P wave propagation at seismic frequencies. This mechanism has a mesoscopic scale nature. The inhomogeneous unsaturated patches are regarded larger than the pore size, but smaller than the wavelength. Surface wave, e.g., Rayleigh wave, which propagates along the free surface, generated by the interfering of body waves is also affected by the mesoscopic loss mechanisms. Recent studies have reported that the effect of the wave-induced flow in wave propagation shows a relaxation behavior. Viscoelastic equivalent relaxation function associated with the wave mode can describe the kinetic nature of the attenuation. In this paper, the equivalent viscoelastic relaxation functions are extended to take into account the free surface for the Rayleigh surface wave propagation in patchy saturated poroelastic media. Numerical results for the frequency-dependent velocity and attenuation and the time-dependent dynamical responses for the equivalent Rayleigh surface wave propagation along an interface between vacuum and patchy saturated porous media are reported in the low-frequency range (0.1-1,000 Hz). The results show that the dispersion and attenuation and kinetic characteristics of the mesoscopic loss effect for the surface wave can be effectively represented in the equivalent viscoelastic media. The simulation of surface wave propagation within mesoscopic patches requires solving Biot's differential equations in very small grid spaces, involving the conversion of the fast P wave energy diffusion into the Biot slow wave. This procedure requires a very large amount of computer consumption. An efficient equivalent approach for this patchy saturated poroelastic media shows a more convenient way to solve the single phase viscoelastic differential equations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AIPC.1211.1697M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AIPC.1211.1697M"><span>a Continuous Health Monitoring Guided Wave Fmd System for Retrofit to Existing Offshore Oilrigs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mijarez, R.; Solis, L.; Martinez, F.</p> <p>2010-02-01</p> <p>An automatic health monitoring guided wave flood member detection (FMD) system, for retrofit to existing offshore oilrigs is presented. The system employs a microcontroller piezoelectric (PZT) based transmitter and a receiver instrumentation package composed of a PZT 40 kHz ultrasound transducer and a digital signal processor (DSP) module connected to a PC via USB for monitoring purposes. The transmitter and receiver were attached, non-intrusively, to the external wall of a steel tube; 1 m×27 cm×2 mm. Experiments performed in the laboratory have successfully identified automatically flooded tubes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NHESS..16.1239O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NHESS..16.1239O"><span>Tsunami hazard potential for the equatorial southwestern Pacific atolls of Tokelau from scenario-based simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orpin, Alan R.; Rickard, Graham J.; Gerring, Peter K.; Lamarche, Geoffroy</p> <p>2016-05-01</p> <p>Devastating tsunami over the last decade have significantly heightened awareness of the potential consequences and vulnerability of low-lying Pacific islands and coastal regions. Our appraisal of the potential tsunami hazard for the atolls of the Tokelau Islands is based on a tsunami source-propagation-inundation model using Gerris Flow Solver, adapted from the companion study by Lamarche et al. (2015) for the islands of Wallis and Futuna. We assess whether there is potential for tsunami flooding on any of the village islets from a selection of 14 earthquake-source experiments. These earthquake sources are primarily based on the largest Pacific earthquakes of Mw ≥ 8.1 since 1950 and other large credible sources of tsunami that may impact Tokelau. Earthquake-source location and moment magnitude are related to tsunami-wave amplitudes and tsunami flood depths simulated for each of the three atolls of Tokelau. This approach yields instructive results for a community advisory but is not intended to be fully deterministic. Rather, the underlying aim is to identify credible sources that present the greatest potential to trigger an emergency response. Results from our modelling show that wave fields are channelled by the bathymetry of the Pacific basin in such a way that the swathes of the highest waves sweep immediately northeast of the Tokelau Islands. Our limited simulations suggest that trans-Pacific tsunami from distant earthquake sources to the north of Tokelau pose the most significant inundation threat. In particular, our assumed worst-case scenario for the Kuril Trench generated maximum modelled-wave amplitudes in excess of 1 m, which may last a few hours and include several wave trains. Other sources can impact specific sectors of the atolls, particularly distant earthquakes from Chile and Peru, and regional earthquake sources to the south. Flooding is dependent on the wave orientation and direct alignment to the incoming tsunami. Our "worst-case" tsunami simulations of the Tokelau Islands suggest that dry areas remain around the villages, which are typically built on a high islet. Consistent with the oral history of little or no perceived tsunami threat, simulations from the recent Tohoku and Chile earthquake sources suggest only limited flooding around low-lying islets of the atoll. Where potential tsunami flooding is inferred from the modelling, recommended minimum evacuation heights above local sea level are compiled, with particular attention paid to variations in tsunami flood depth around the atolls, subdivided into directional quadrants around each atoll. However, complex wave behaviours around the atolls, islets, tidal channels and within the lagoons are also observed in our simulations. Wave amplitudes within the lagoons may exceed 50 cm, increasing any inundation and potential hazards on the inner shoreline of the atolls, which in turn may influence evacuation strategies. Our study shows that indicative simulation studies can be achieved even with only basic field information. In part, this is due to the spatially and vertically limited topography of the atoll, short reef flat and steep seaward bathymetry, and the simple depth profile of the lagoon bathymetry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMNH53A3874O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMNH53A3874O"><span>Assessing coastal flood risk and sea level rise impacts at New York City area airports</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ohman, K. A.; Kimball, N.; Osler, M.; Eberbach, S.</p> <p>2014-12-01</p> <p>Flood risk and sea level rise impacts were assessed for the Port Authority of New York and New Jersey (PANYNJ) at four airports in the New York City area. These airports included John F. Kennedy International, LaGuardia, Newark International, and Teterboro Airports. Quantifying both present day and future flood risk due to climate change and developing flood mitigation alternatives is crucial for the continued operation of these airports. During Hurricane Sandy in October 2012 all four airports were forced to shut down, in part due to coastal flooding. Future climate change and sea level rise effects may result in more frequent shutdowns and disruptions in travel to and from these busy airports. The study examined the effects of the 1%-annual-chance coastal flooding event for present day existing conditions and six different sea level rise scenarios at each airport. Storm surge model outputs from the Federal Emergency Management Agency (FEMA) provided the present day storm surge conditions. 50th and 90thpercentile sea level rise projections from the New York Panel on Climate Change (NPCC) 2013 report were incorporated into storm surge results using linear superposition methods. These projections were evaluated for future years 2025, 2035, and 2055. In addition to the linear superposition approach for storm surge at airports where waves are a potential hazard, one dimensional wave modeling was performed to get the total water level results. Flood hazard and flood depth maps were created based on these results. In addition to assessing overall flooding at each airport, major at-risk infrastructure critical to the continued operation of the airport was identified and a detailed flood vulnerability assessment was performed. This assessment quantified flood impacts in terms of potential critical infrastructure inundation and developed mitigation alternatives to adapt to coastal flooding and future sea level changes. Results from this project are advancing the PANYNJ's understanding of the effects of sea level rise on coastal flooding at the airports and guiding decision-making in the selection of effective adaptation actions. Given the importance of these airports to transportation, this project is advancing security and continuity of national and international commerce well into the 21st century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JGRB..114.8201B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JGRB..114.8201B"><span>Measurement of the speed and attenuation of the Biot slow wave using a large ultrasonic transmitter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bouzidi, Youcef; Schmitt, Douglas R.</p> <p>2009-08-01</p> <p>Two compressional wave modes, a fast P1 and a slow P2, propagate through fluid-saturated porous and permeable media. This contribution focuses on new experimental tests of existing theories describing wave propagation in such media. Updated observations of this P2 mode are obtained through a water-loaded, porous sintered glass bead plate with a novel pair of ultrasonic transducers consisting of a large transmitter and a near-point receiver. The properties of the porous plate are measured in independent laboratory experiments. Waveforms are acquired as a function of the angle of incidence over the range from -50° to +50° with respect to the normal. The porous plate is fully characterized, and the physical properties are used to calculate the wave speeds and attenuations of the P1, the P2, and the shear S waves. Comparisons of theory and observation are further facilitated by numerically modeling the observed waveforms. This modeling method incorporates the frequency and angle of incidence-dependent reflectivity, transmissivity, and transducer edge effects; the modeled waveforms match well those observed. Taken together, this study provides further support for existing poroelastic bulk wave propagation and boundary condition theory. However, observed transmitted P1 and S mode amplitudes could not be adequately described unless the attenuation of the medium's frame was also included. The observed P2 amplitudes could be explained without any knowledge of the solid frame attenuation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PApGe.173.2899C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PApGe.173.2899C"><span>Phase-Shifted Based Numerical Method for Modeling Frequency-Dependent Effects on Seismic Reflections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Xuehua; Qi, Yingkai; He, Xilei; He, Zhenhua; Chen, Hui</p> <p>2016-08-01</p> <p>The significant velocity dispersion and attenuation has often been observed when seismic waves propagate in fluid-saturated porous rocks. Both the magnitude and variation features of the velocity dispersion and attenuation are frequency-dependent and related closely to the physical properties of the fluid-saturated porous rocks. To explore the effects of frequency-dependent dispersion and attenuation on the seismic responses, in this work, we present a numerical method for seismic data modeling based on the diffusive and viscous wave equation (DVWE), which introduces the poroelastic theory and takes into account diffusive and viscous attenuation in diffusive-viscous-theory. We derive a phase-shift wave extrapolation algorithm in frequencywavenumber domain for implementing the DVWE-based simulation method that can handle the simultaneous lateral variations in velocity, diffusive coefficient and viscosity. Then, we design a distributary channels model in which a hydrocarbon-saturated sand reservoir is embedded in one of the channels. Next, we calculated the synthetic seismic data to analytically and comparatively illustrate the seismic frequency-dependent behaviors related to the hydrocarbon-saturated reservoir, by employing DVWE-based and conventional acoustic wave equation (AWE) based method, respectively. The results of the synthetic seismic data delineate the intrinsic energy loss, phase delay, lower instantaneous dominant frequency and narrower bandwidth due to the frequency-dependent dispersion and attenuation when seismic wave travels through the hydrocarbon-saturated reservoir. The numerical modeling method is expected to contribute to improve the understanding of the features and mechanism of the seismic frequency-dependent effects resulted from the hydrocarbon-saturated porous rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMNS41A1507C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMNS41A1507C"><span>A new impulsive seismic shear wave source for near-surface (0-30 m) seismic studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crane, J. M.; Lorenzo, J. M.</p> <p>2010-12-01</p> <p>Estimates of elastic moduli and fluid content in shallow (0-30 m) natural soils below artificial flood containment structures can be particularly useful in levee monitoring as well as seismic hazard studies. Shear wave moduli may be estimated from horizontally polarized, shear wave experiments. However, long profiles (>10 km) with dense receiver and shot spacings (<1m) cannot be collected efficiently using currently available shear wave sources. We develop a new, inexpensive, shear wave source for collecting fast, shot gathers over large acquisition sites. In particular, gas-charged, organic-rich sediments comprising most lower-delta sedimentary facies, greatly attenuate compressional body-waves. On the other hand, SH waves are relatively insensitive to pore-fluid moduli and can improve resolution. We develop a recoil device (Jolly, 1956) into a single-user, light-weight (<20 kg), impulsive, ground-surface-coupled SH wave generator, which is capable of working at rates of several hundred shotpoints per day. Older impulsive methods rely on hammer blows to ground-planted stationary targets. Our source is coupled to the ground with steel spikes and the powder charge can be detonated mechanically or electronically. Electrical fuses show repeatability in start times of < 50 microseconds. The barrel and shell-holder exceed required thicknesses to ensure complete safety during use. The breach confines a black-powder, 12-gauge shotgun shell, loaded with inert, environmentally safe ballast. In urban settings, produced heat and sound are confined by a detached, exterior cover. A moderate 2.5 g black-powder charge generates seismic amplitudes equivalent to three 4-kg sledge-hammer blows. We test this device to elucidate near subsurface sediment properties at former levee breach sites in New Orleans, Louisiana, USA. Our radio-telemetric seismic acquisition system uses an in-house landstreamer, consisting of 14-Hz horizontal component geophones, coupled to steel plates. Reflected, refracted and surface arrivals resulting from a single shot of this seismic source are comparable in signal, noise, and frequency composition to three stacked hammer blows to a ground-planted stationary target.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S11A2438W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S11A2438W"><span>Using seismic coda waves to resolve intrinsic and scattering attenuation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, W.; Shearer, P. M.</p> <p>2016-12-01</p> <p>Seismic attenuation is caused by two factors, scattering and intrinsic absorption. Characterizing scattering and absorbing properties and the power spectrum of crustal heterogeneity is a fundamental problem for informing strong ground motion estimates at high frequencies, where scattering and attenuation effects are critical. Determining the relative amount of attenuation caused by scattering and intrinsic absorption has been a long-standing problem in seismology. The wavetrain following the direct body wave phases is called the coda, which is caused by scattered energy. Many studies have analyzed the coda of local events to constrain crustal and upper-mantle scattering strength and intrinsic attenuation. Here we examine two popular attenuation inversion methods, the Multiple Lapse Time Window Method (MLTWM) and the Coda Qc Method. First, based on our previous work on California attenuation structure, we apply an efficient and accurate method, the Monte Carlo Approach, to synthesize seismic envelope functions. We use this code to generate a series of synthetic data based on several complex and realistic forward models. Although the MLTWM assumes a uniform whole space, we use the MLTWM to invert for both scattering and intrinsic attenuation from the synthetic data to test how accurately it can recover the attenuation models. Results for the coda Qc method depend on choices for the length and starting time of the coda-wave time window. Here we explore the relation between the inversion results for Qc, the windowing parameters, and the intrinsic and scattering Q structure of our synthetic model. These results should help assess the practicality and accuracy of the Multiple Lapse Time Window Method and Coda Qc Method when applied to realistic crustal velocity and attenuation models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28698633','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28698633"><span>A global classification of coastal flood hazard climates associated with large-scale oceanographic forcing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rueda, Ana; Vitousek, Sean; Camus, Paula; Tomás, Antonio; Espejo, Antonio; Losada, Inigo J; Barnard, Patrick L; Erikson, Li H; Ruggiero, Peter; Reguero, Borja G; Mendez, Fernando J</p> <p>2017-07-11</p> <p>Coastal communities throughout the world are exposed to numerous and increasing threats, such as coastal flooding and erosion, saltwater intrusion and wetland degradation. Here, we present the first global-scale analysis of the main drivers of coastal flooding due to large-scale oceanographic factors. Given the large dimensionality of the problem (e.g. spatiotemporal variability in flood magnitude and the relative influence of waves, tides and surge levels), we have performed a computer-based classification to identify geographical areas with homogeneous climates. Results show that 75% of coastal regions around the globe have the potential for very large flooding events with low probabilities (unbounded tails), 82% are tide-dominated, and almost 49% are highly susceptible to increases in flooding frequency due to sea-level rise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5041R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5041R"><span>Instrumental research of lithodynamic processes in estuaries of the White Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rimsky-Korsakov, Nikolai; Korotaev, Vladislav; Ivanov, Vadim</p> <p>2017-04-01</p> <p>The report provides a comparative analysis of morphological lithodynamic processes in estuaries and river deltas on the basis of 2013-2015 field geophysical and hydrographic surveys held by IO RAS and MSU. Studies performed using side scan sonar (Imagenex YellowFin SSS), bathymetric (FortXXI Scat Echo sounder) and navigation (DGPS/GLONASS Sigma Ashtek receiver) equipment. North Dvina modern delta can be classified as multi-arm delta estuary lagoon performance. Areas of modern river waters occupy a large accumulation of deltaic arms. It formed a young island with elevations of about 1 m. The islands are composed of river alluvium and annually flooded during the flood period. Onega river mouth area is unique due to the specific geological conditions. Short, wellhead site is the cause of the anomalous attenuation of the tidal wave and the limited range of penetration of salt water seashore only to Kokorinskogo threshold. Morphological lithodynamic processes in high tide Mezen estuaries (syzygy - 8.5 m) are caused by tidal currents, river runoff, wind waves and sediment longshore drift. Due to the movement of huge masses of sediment in the Mezen estuary occur intense deformation silty-sand banks, reshaping of the bottom channel trenches and displacement of navigable waterways. Thus, the specificity of the morphological lithodynamic processes in high tidal estuaries is a lack of modern delta, the development of mobile local sediment structures inside the estuary and the formation of a broad mouth bar on the open wellhead coast. In multi-arm deltas an intense process of increasing marine edge of the delta is observed due to wellhead delta arms elongation and the formation of small estuarine bars at the mouths of the underwater channel trenches coming out into the open coast. Simultaneously, the process of filling the river sediments of residual waters within the subaerial delta and the formation of marine coastal bars on the outer perimeter edge of the sea ground delta.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060043876&hterms=FLOODS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DFLOODS','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060043876&hterms=FLOODS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DFLOODS"><span>Cooperative satellite-based flood detection, mapping, and river monitoring in near real time</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brakenridge, Robert G.; Nghiem, Son V.</p> <p>2004-01-01</p> <p>The North Atlantic Oscillation (NAO), the Pacific-North American (PNA) teleconnection pattern, and the El Nino-Southern Oscillation (ENSO) combine to influence the planetary wave structure over the northern hemisphere. Floods and droughts are associated around the world with ENSO through such teleconnections, and improved flood prediction relies on understanding them better. The scientific study of floods, and consistent measurements thereof, are needed in order to allow 'Greenhouse warming' predictions about flooding to be tested, and the hydrologic effects of other phenomena such as ENSO to be evaluated. The needed tasks are: 1) detection/warning of flooding, 2) flood magnitude assessment, 3) flood inundation mapping, and 4) preservation of the record of flooding. Accomplishing these same tasks provides direct local societal benefits as well: they can save lives and reduce economic loss. We emphasize that the basic science observations need not be divorced from the immediate practical applications: both can occur together, and just as is the case for meteorological remote sensing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JGRB..11210311B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JGRB..11210311B"><span>Implication of seismic attenuation for gas hydrate resource characterization, Mallik, Mackenzie Delta, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bellefleur, G.; Riedel, M.; Brent, T.; Wright, F.; Dallimore, S. R.</p> <p>2007-10-01</p> <p>Wave attenuation is an important physical property of hydrate-bearing sediments that is rarely taken into account in site characterization with seismic data. We present a field example showing improved images of hydrate-bearing sediments on seismic data after compensation of attenuation effects. Compressional quality factors estimated from zero-offset Vertical Seismic Profiling data acquired at Mallik, Northwest Territories, Canada, demonstrate significant wave attenuation for hydrate-bearing sediments. These results are in agreement with previous attenuation estimates obtained from sonic logs and crosshole data at different frequency intervals. The application of an inverse Q-filter to compensate attenuation effects of permafrost and hydrate-bearing sediments improved the resolution of surface 3D seismic data and its correlation with log data, particularly for the shallowest gas hydrate interval. Compensation of the attenuation effects of the permafrost likely explains most of the improvements for the shallow gas hydrate zone. Our results show that characterization of the Mallik gas hydrates with seismic data not corrected for attenuation would tend to overestimate thicknesses and lateral extent of hydrate-bearing strata and hence, the volume of hydrates in place.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSMNH33A..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSMNH33A..08S"><span>Coastal Hazard due to Tropical Cyclones in Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silva-Casarin, R.; Mendoza-Baldwin, E.; Marino-Tapia, I.; Enriquez, C.; Ruiz, G.; Escalante-MAncera, E.; Ruíz-Rentería, F.</p> <p>2013-05-01</p> <p>The Mexican coast is hit every year by at least 3 cyclones and it is affected for nearly 59 hours a year on average; this induces undesirable consequences, such as coastal erosion and flooding. To evaluate the hazard to which the coastal zone is exposes, a historical characterization of atmospheric conditions (surface winds and pressure conditions of the storms), waves (wave heights and their associated wave periods) and flooding levels due to tropical storms for more than 60 years is presented. The atmospheric and wave conditions were evaluated using a modification of the original parametric Hydromet-Rankin Vortex Model by Bretschneider (1990) and Holland (1980) as presented by Silva, et al. (2002). The flooding levels caused by hurricanes were estimated using a two-dimensional, vertically averaged finite volume model to evaluate the storm surge, Posada et al. (2008). The cyclone model was compared to the data series of 29 cyclones recorded by buoys of the National Data Buoy Center-NOAA and some data recorded in shallow waters near Cancun, Mexico and the flooding model was compared with observed data from Cancun, Mexico; both models gave good results. For the extreme analyses of wind, wave heights and maximum flooding levels on the Mexican coasts, maps of the scale and location parameters used in the Weibull cumulative distribution function and numerical results for different return periods are provided. The historical occurrence of tropical storms is also revised as some studies indicate that the average intensity of tropical cyclones is increasing; no definite trends pointing to an increase in storm frequency or intensity were found. What was in fact found is that although there are more cyclones in the Pacific Ocean and these persist longer, the intensity of the cyclones in the Atlantic Ocean is greater affecting. In any case, the strong necessity of avoiding storm induced coastal damage (erosion and flooding) is reflected in numerous works, such as this one, which aim to better manage the coastal area and reduce its vulnerability to hurricanes. References Bretschneider, C.L., 1990. Tropical Cyclones. Handbook of Coastal and Ocean Engineering, Gulf Publishing Co., Vol. 1, 249-370. Holland, G.L., 1980. An analytical model of wind and pressure profiles in hurricanes. Monthly Weather Review, 108, 1212-1218. Posada, G., Silva, R. & de Brye, S. 2008. Three dimensional hydrodynamic model with multiquadtree meshes. American Journal of Environmental Sciences. 4(3): 209-222. Silva, R., Govaere, G., Salles, P., Bautista, G. & Díaz, G. 2002. Oceanographic vulnerability to hurricanes on the Mexican coast. International Conference on Coastal Engineering, pp. 39-51.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29867205','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29867205"><span>Application of confocal surface wave microscope to self-calibrated attenuation coefficient measurement by Goos-Hänchen phase shift modulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pechprasarn, Suejit; Chow, Terry W K; Somekh, Michael G</p> <p>2018-06-04</p> <p>In this paper, we present a direct method to measure surface wave attenuation arising from both ohmic and coupling losses using our recently developed phase spatial light modulator (phase-SLM) based confocal surface plasmon microscope. The measurement is carried out in the far-field using a phase-SLM to impose an artificial surface wave phase profile in the back focal plane (BFP) of a microscope objective. In other words, we effectively provide an artificially engineered backward surface wave by modulating the Goos Hänchen (GH) phase shift of the surface wave. Such waves with opposing phase and group velocities are well known in acoustics and electromagnetic metamaterials but usually require structured or layered surfaces, here the effective wave is produced externally in the microscope illumination path. Key features of the technique developed here are that it (i) is self-calibrating and (ii) can distinguish between attenuation arising from ohmic loss (k″ Ω ) and coupling (reradiation) loss (k″ c ). This latter feature has not been achieved with existing methods. In addition to providing a unique measurement the measurement occurs of over a localized region of a few microns. The results were then validated against the surface plasmons (SP) dip measurement in the BFP and a theoretical model based on a simplified Green's function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24607758','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24607758"><span>Viscoelastic shock wave in ballistic gelatin behind soft body armor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Li; Fan, Yurun; Li, Wei</p> <p>2014-06-01</p> <p>Ballistic gelatins are widely used as a surrogate of biological tissue in blunt trauma tests. Non-penetration impact tests of handgun bullets on the 10wt% ballistic gelatin block behind soft armor were carried out in which a high-speed camera recorded the crater׳s movement and pressure sensors imbedded in the gelatin block recorded the pressure waves at different locations. The observed shock wave attenuation indicates the necessity of considering the gelatin׳s viscoelasticity. A three-element viscoelastic constitutive model was adopted, in which the relevant parameters were obtained via fitting the damping free oscillations at the beginning of the creep-mode of rheological measurement, and by examining the data of published split Hopkinson pressure bar (SHPB) experiments. The viscoelastic model is determined by a retardation time of 5.5×10(-5)s for high oscillation frequencies and a stress relaxation time of 2.0-4.5×10(-7)s for shock wave attenuation. Using the characteristic-line method and the spherical wave assumption, the propagation of impact pressure wave front and the subsequent unloading profile can be simulated using the experimental velocity boundary condition. The established viscoelastic model considerably improves the prediction of shock wave attenuation in the ballistic gelatin. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP11A0992S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP11A0992S"><span>Modeled atoll shoreline and run-up changes in response to sea-level rise and varying large wave conditions at Wake and Midway Atolls, Northwestern Hawaiian Islands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shope, J. B.; Storlazzi, C. D.; Hoeke, R. K.</p> <p>2016-12-01</p> <p>Atoll islands are dynamic features that respond to seasonal alterations in wave conditions and sea level. With sea level and wave climates projected to change over the next century, it is unclear how shoreline wave runup and erosion patterns along these low elevation islands will respond, making it difficult for communities to prepare for the future. To investigate this, extreme boreal winter and summer wave conditions under a variety of future sea-level rise (SLR) scenarios were modeled at two atolls, Wake and Midway, using Delft3D. Nearshore wave conditions were used to find the potential longshore sediment flux, and wave-driven shoreline erosion was calculated as the divergence of the longshore drift; runup and the locations where runup exceed the berm elevation were also found. Of the aforementioned parameters, SLR is projected to be the dominant force driving future island morphological change and flooding. Increased sea level reduces depth-limited breaking by the atoll reef, allowing larger waves to reach the shoreline, increasing runup height and driving greater inland flooding along most coastlines. Previously protected shorelines, such as lagoon shorelines or shorelines with comparably wide reef flats, are projected see the greatest relative increases in runup. Increases in inland flooding extent were greatest along seaward shorelines due to increases in runup. Changes in incident wave directions had a smaller effect on runup, and the projected changes to incident wave heights had a negligible effect. SLR also drove the greatest changes to island shoreline morphology. Windward islands are projected to become thinner as seaward and lagoonal shorelines erode, accreting toward more leeward shorelines and shorelines with comparably wider reef flats. Similarly, leeward islands are anticipated to become thinner and longer, accreting towards their longitudinal ends. The shorelines of these islands will likely change dramatically over the next century as SLR and altered wave climates drive new erosional regimes. It is vital to the sustainability of island communities that the relative magnitudes of these effects are addressed when planning for projected future climates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE23A..06A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE23A..06A"><span>Observation and parametrization of wave attenuation through the MIZ</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ardhuin, F.; Stopa, J.; Dumont, D.; Sévigny, C.; Collard, F.; Boutin, G.</p> <p>2016-02-01</p> <p>Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1 wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. Since deviations from a straight line should be proportional to the orbital velocity towards the satellite, swell height can be estimated. The intensity of the backscatter modulation with a single swell can also be used to retrieve swell height as it is found that the constructive velocity bunching is very sensitive to wave height. Using a novel algorithm to invert the wave directional spectrum, we investigate several cases of attenuation in the Arctic and southern ocean. On this basis we have adjusted an empirical wave-ice dissipation source term in the WAVEWATCH III model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1818376T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1818376T"><span>Viscoelasticity of multiphase fluids: future directions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tisato, Nicola; Spikes, Kyle; Javadpour, Farzam</p> <p>2016-04-01</p> <p>Recently, it has been demonstrated that rocks saturated with bubbly fluids attenuate seismic waves as the propagating elastic wave causes a thermodynamic disequilibrium between the liquid and the gas phases. The new attenuation mechanism, which is called wave-induced-gas-exsolution-dissolution (WIGED) and previously, was only postulated, opens up new perspectives for exploration geophysics as it could potentially improve the imaging of the subsurface. In particular, accounting for WIGED during seismic inversion could allow to better decipher seismic waves to disclose information about saturating phases. This will improve, for instance, the mapping of subsurface gas-plumes that might form during anthropogenic activities or natural phenomena such as those prior to volcanic eruptions. In the present contribution we will report the theory and the numerical method utilized to calculate the seismic-wave-attenuation related to WIGED and we will underline the assumptions and the limitations related to the theory. Then, we will present the experimental and the numerical strategy that we will employ to improve WIGED theory in order to incorporate additional effects, such as the role of interfacial tensions, or to extend it to fluid-fluid interaction</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AmJPh..75..407B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AmJPh..75..407B"><span>The calming effect of oil on water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Behroozi, Peter; Cordray, Kimberly; Griffin, William; Behroozi, Feredoon</p> <p>2007-05-01</p> <p>The calming effect of oil on water has been known since ancient times. Benjamin Franklin was the first to investigate the effect, but the underlying mechanism for this striking phenomenon remains elusive. We used a miniature laser interferometer to measure the amplitude of surface waves to a resolution of ±5nm, making it possible to determine the effect of an oil monolayer on the attenuation of capillary waves and the surface dilational modulus of the monolayer. We present attenuation data on pure water, water covered by olive oil, water covered by a fatty acid, and a water-acetone mixture for comparison. From the attenuation data at frequencies between 251 and 551Hz, we conclude that the calming effect of oil on surface waves is principally due to the dissipation of wave energy caused by the Gibbs surface elasticity of the monolayer, with only a secondary contribution from the reduction in surface tension. Our data also indicate that the surface-dilational viscosity of the oil monolayer is negligible and plays an insignificant role in calming the waves.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1101425.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1101425.pdf"><span>Impacts of Natural Disasters on Children</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Kousky, Carolyn</p> <p>2016-01-01</p> <p>We can expect climate change to alter the frequency, magnitude, timing, and location of many natural hazards. For example, heat waves are likely to become more frequent, and heavy downpours and flooding more common and more intense. Hurricanes will likely grow more dangerous, rising sea levels will mean more coastal flooding, and more-frequent and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22590676-spin-wave-amplification-using-spin-hall-effect-permalloy-platinum-bilayers','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22590676-spin-wave-amplification-using-spin-hall-effect-permalloy-platinum-bilayers"><span>Spin wave amplification using the spin Hall effect in permalloy/platinum bilayers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gladii, O.; Henry, Y.; Bailleul, M.</p> <p>2016-05-16</p> <p>We investigate the effect of an electrical current on the attenuation length of a 900 nm wavelength spin-wave in a permalloy/Pt bilayer using propagating spin-wave spectroscopy. The modification of the spin-wave relaxation rate is linear in current density, reaching up to 14% for a current density of 2.3 × 10{sup 11} A/m{sup 2} in Pt. This change is attributed to the spin transfer torque induced by the spin Hall effect and corresponds to an effective spin Hall angle of 0.13, which is among the highest values reported so far. The spin Hall effect thus appears as an efficient way of amplifying/attenuating propagating spin waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S41C0815G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S41C0815G"><span>Examining P-Wave Arrivals of Low-Frequency Earthquakes for Evidence of Attenuation and its Effects on Moment-Duration Scaling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gerzina, J.; Rubin, A. M.</p> <p>2017-12-01</p> <p>Bostock et. al. (2015) found that low-frequency earthquake (LFE) duration is nearly independent of moment, a result that is surprising enough to warrant investigating whether it might be an artifact of attenuation. Bostock et. al. (2017) found that bulk crustal attenuation could not be the culprit, but suggested that near-source attenuation might cause pronounced depletion of high frequency S-waves. Despite their lower signal-to noise ratio, looking at the P-waves might be enlightening because they aren't expected to attenuate as much as S-waves in the high Vp/Vs region near the tremor source. We have examined P-wave arrivals of LFEs that occurred during episodic tremor in the Cascadia subduction zone with the goal of refining the relationship between LFE magnitude and duration.Bostock et. al's duration measurements were made on stacked templates rather than individual arrivals. Because members of Bostock's LFE families vary in location, and therefore in P-S delay time, aligning the stacks primarily on the S arrival may artificially widen the P pulse. To circumvent this, we used cross-station cross correlations on Bostock's detections to identify and stack events with similar locations and therefore similar P-S delay times, until P arrivals became visible. We then stacked these stacks based on cross-correlating the optimal P component in a small window surrounding the P arrival. Although this procedure narrowed both the P and S pulse widths, it did not dramatically narrow P in relation to S, nor did we observe different P pulse widths for small and large events.We also compared the frequency spectra of small windows around the expected P and S arrivals for each amplitude bin. Although there is more high-frequency content in P-waves than S-waves, we have not yet been able to resolve a difference in P-wave corner frequency for different event sizes. Thus our preliminary results support the notion that LFEs are intrinsically low frequency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR41A0398C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR41A0398C"><span>Study of CT Scan Flooding System at High Temperature and Pressure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, X. Y.</p> <p>2017-12-01</p> <p>CT scan flooding experiment can scan micro-pore in different flooding stages by the use of CT scan technology, without changing the external morphology and internal structure of the core, and observe the distribution characterization in pore medium of different flooding fluid under different pressure.thus,it can rebuilt the distribution images of oil-water distribution in different flooding stages. However,under extreme high pressure and temperature conditions,the CT scan system can not meet the requirements. Container of low density materials or thin shell can not resist high pressure,while high density materials or thick shell will cause attenuation and scattering of X-ray. The experiment uses a simple Ct scanning systems.X ray from a point light source passing trough a micro beryllium shell on High pressure stainless steal container,continuously irradiates the core holder that can continuously 360° rotate along the core axis. A rare earth intensifying screen behind the core holder emitting light when irradiated with X ray can show the core X ray section image. An optical camera record the core X ray images through a transparency high pressure glazing that placed on the High pressure stainless steal container.Thus,multiple core X ray section images can reconstruct the 3D core reconstruction after a series of data processing.The experiment shows that both the micro beryllium shell and rare earth intensifying screen can work in high temperature and high pressure environment in the stainless steal container. This way that X-ray passes through a thin layer of micro beryllium shell , not high pressure stainless steal shell,avoid the attenuation and scattering of X-ray from the container shell,while improving the high-pressure experiment requirements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029817','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029817"><span>Sap flow characteristics of neotropical mangroves in flooded and drained soils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Krauss, Ken W.; Young, P. Joy; Chambers, Jim L.; Doyle, Thomas W.; Twilley, Robert R.</p> <p>2007-01-01</p> <p>Effects of flooding on water transport in mangroves have previously been investigated in a few studies, most of which were conducted on seedlings in controlled settings. In this study, we used heat-dissipation sap probes to determine if sap flow (Js) attenuates with radial depth into the xylem of mature trees of three south Florida mangrove species growing in Rookery Bay. This was accomplished by inserting sap probes at multiple depths and monitoring diurnal flow. For most species and diameter size class combinations tested, Js decreased dramatically beyond a radial depth of 2 or 4 cm, with little sap flow beyond a depth of 6 cm. Mean Js was reduced on average by 20% in Avicennia germinans (L.) Stearn, Laguncularia racemosa (L.) Gaertn. f. and Rhizophora mangle L. trees when soils were flooded. Species differences were highly significant, with L. racemosahaving the greatest midday Js of about 26g H2O H2O m−2s−1 at a radial depth of 2 cm compared with a mean for the other two species of about 15 g H2O m−2s−1. Sap flow at a depth of 2 cm in mangroves was commensurate with rates reported for other forested wetland tree species. We conclude that: (1) early spring flooding of basin mangrove forests causes reductions in sap flow in mature mangrove trees; (2) the sharp attenuations in Js along the radial profile have implications for understanding whole-tree water use strategies by mangrove forests; and (3) regardless of flood state, individual mangrove tree water use follows leaf-level mechanisms in being conservative.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/ofr02258/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/ofr02258/"><span>Fifty-Year Flood-Inundation Maps for Santa Rosa de Aguan, Honduras</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mastin, Mark C.; Olsen, T.D.</p> <p>2002-01-01</p> <p>After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the coastal municipality of Santa Rosa de Aguan that are prone to oceanic storm-surge flooding and wave action. The 50-year flood on the Rio Aguan (4,270 cubic meters per second), would inundate most of the area surveyed for this municipality and beyond. Therefore a detailed numerical hydraulic model was not developed for this municipality as it was for the others. The 50-year storm surge would likely produce higher water levels than the 50-year flood on the river during normal astronomical tides. The elevation of the 50-year storm surge was estimated to be 4.35 meters above normal sea level, based on hurricane probabilities and published storm-surge elevations associated with various hurricane categories. Flood-inundation maps, including areas of wave-action hazard and a color-shaded elevation map, were created from the available data and the estimated 50-year storm tide. Geographic Information System (GIS) coverages of the hazard areas are available on a computer in the municipality of Santa Rosa de Aguan as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Data Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the maps in much more detail than is possible using the maps in this report.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2015/5052/pdf/sir2015-5052.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2015/5052/pdf/sir2015-5052.pdf"><span>Dam-breach analysis and flood-inundation mapping for selected dams in Oklahoma City, Oklahoma, and near Atoka, Oklahoma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shivers, Molly J.; Smith, S. Jerrod; Grout, Trevor S.; Lewis, Jason M.</p> <p>2015-01-01</p> <p>Digital-elevation models, field survey measurements, hydraulic data, and hydrologic data (U.S. Geological Survey streamflow-gaging stations North Canadian River below Lake Overholser near Oklahoma City, Okla. [07241000], and North Canadian River at Britton Road at Oklahoma City, Okla. [07241520]), were used as inputs for the one-dimensional dynamic (unsteady-flow) models using Hydrologic Engineering Centers River Analysis System (HEC–RAS) software. The modeled flood elevations were exported to a geographic information system to produce flood-inundation maps. Water-surface profiles were developed for a 75-percent probable maximum flood dam-breach scenario and a sunny-day dam-breach scenario, as well as for maximum flood-inundation elevations and flood-wave arrival times at selected bridge crossings. Points of interest such as community-services offices, recreational areas, water-treatment plants, and wastewater-treatment plants were identified on the flood-inundation maps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940020129','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940020129"><span>The acoustic and instability waves of jets confined inside an acoustically lined rectangular duct</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hu, Fang Q.</p> <p>1993-01-01</p> <p>An analysis of linear wave modes associated with supersonic jets confined inside an acoustically lined rectangular duct is presented. Mathematical formulations are given for the vortex-sheet model and continuous mean flow model of the jet flow profiles. Detailed dispersion relations of these waves in a two-dimensional confined jet as well as an unconfined free jet are computed. Effects of the confining duct and the liners on the jet instability and acoustic waves are studied numerically. It is found that the effect of the liners is to attenuate waves that have supersonic phase velocities relative to the ambient flow. Numerical results also show that the growth rates of the instability waves could be reduced significantly by the use of liners. In addition, it is found that the upstream propagating neutral waves of an unconfined jet could become attenuated when the jet is confined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1612235O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1612235O"><span>Extreme precipitation event over North China in August 2010: observations, monthly forecasting, and link to intra-seasonal variability of the Silk-Road wave-train across Eurasia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orsolini, Yvan; Zhang, Ling; Peters, Dieter; Fraedrich, Klaus</p> <p>2014-05-01</p> <p>Forecast of regional precipitation events at the sub-seasonal timescale remains a big challenge for operational global prediction systems. Over the Far East in summer, climate and precipitation are strongly influenced by the fluctuating western Pacific subtropical high (WPSH) and strong precipitation is often associated with southeasterly low-level wind that brings moist-laden air from the southern China seas. The WPSH variability is partly influenced by quasi-stationary wave-trains propagating eastwards from Europe across Asia along the two westerly jets: the Silk-Road wave-train along the Asian jet at mid-latitudes and, on a more northern route, the polar wave-train along the sub-polar jet. While the Silk-Road wave-train appears as a robust, internal mode of variability in seasonal predictions models, its predictability is very low on the sub-seasonal to seasonal time scale. A case in point is the unusual summer of 2010, when China experienced its worst seasonal flooding for a decade, triggered by unusually prolonged and severe monsoonal rains. In addition that summer was also characterized by record-breaking heat wave over Eastern Europe and Russia as well as catastrophic monsoonal floods in Pakistan 2010. The impact of the latter circulation anomalies on the precipitation further east over China, has been little explored. Here, we examine the role and the actual predictability of the Silk-Road wave-train, and its impact on precipitation over Northeastern China throughout August 2010, using the high-resolution IFS forecast model of ECMWF, realistic initialized and run in an ensemble mode. We demonstrate that the forecast failure with regard to flooding and extreme precipitation over Northeastern China in August 2010 is linked to the failure to represent intra-seasonal variations of the Silk-Road wave-train and the associated intensification of the WPSH.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.213..408V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.213..408V"><span>A continuous map of near-surface S-wave attenuation in New Zealand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Houtte, Chris; Ktenidou, Olga-Joan; Larkin, Tam; Holden, Caroline</p> <p>2018-04-01</p> <p>Quantifying the near-surface attenuation of seismic waves at a given location can be important for seismic hazard analysis of high-frequency ground motion. This study calculates the site attenuation parameter, κ0, at 41 seismograph locations in New Zealand. Combined with results of a previous study, a total of 46 κ0 values are available across New Zealand. The results compare well with previous t* studies, revealing high attenuation in the volcanic arc and forearc ranges, and low attenuation in the South Island. However, for site-specific seismic hazard analyses, there is a need to calculate κ0 at locations away from a seismograph location. For these situations, it is common to infer κ0 from weak correlations with the shear wave velocity in the top 30 m, VS30, or to adopt an indicative regional value. This study attempts to improve on this practice. Geostatistical models of the station-specific κ0 data are developed, and continuous maps are derived using ordinary kriging. The obtained κ0 maps can provide a median κ0 and its uncertainty for any location in New Zealand, which may be useful for future site-specific seismic hazard analyses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26436672','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26436672"><span>Attenuation of reflected waves in man during retrograde propagation from femoral artery to proximal aorta.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baksi, A John; Davies, Justin E; Hadjiloizou, Nearchos; Baruah, Resham; Unsworth, Beth; Foale, Rodney A; Korolkova, Olga; Siggers, Jennifer H; Francis, Darrel P; Mayet, Jamil; Parker, Kim H; Hughes, Alun D</p> <p>2016-01-01</p> <p>Wave reflection may be an important influence on blood pressure, but the extent to which reflections undergo attenuation during retrograde propagation has not been studied. We quantified retrograde transmission of a reflected wave created by occlusion of the left femoral artery in man. 20 subjects (age 31-83 years; 14 male) underwent invasive measurement of pressure and flow velocity with a sensor-tipped intra-arterial wire at multiple locations distal to the proximal aorta before, during and following occlusion of the left femoral artery by thigh cuff inflation. A numerical model of the circulation was also used to predict reflected wave transmission. Wave reflection was measured as the ratio of backward to forward wave energy (WRI) and the ratio of peak backward to forward pressure (Pb/Pf). Cuff inflation caused a marked reflection which was largest at 5-10 cm from the cuff (change (Δ) in WRI=0.50 (95% CI 0.38, 0.62); p<0.001, ΔPb/Pf=0.23 (0.18-0.29); p<0.001). The magnitude of the cuff-induced reflection decreased progressively at more proximal locations and was barely discernible at sites>40 cm from the cuff including in the proximal aorta. Numerical modelling gave similar predictions to those observed experimentally. Reflections due to femoral artery occlusion are markedly attenuated by the time they reach the proximal aorta. This is due to impedance mismatches of bifurcations traversed in the backward direction. This degree of attenuation is inconsistent with the idea of a large discrete reflected wave arising from the lower limb and propagating back into the aorta. Copyright © 2015. Published by Elsevier Ireland Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.489....8L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.489....8L"><span>Seismic attenuation in the African LLSVP estimated from PcS phases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Chujie; Grand, Stephen P.</p> <p>2018-05-01</p> <p>Seismic tomography models have revealed two broad regions in the lowermost mantle marked by ∼3% slower shear velocity than normal beneath the south central Pacific and southern Africa. These two regions are known as large-low-shear-velocity provinces (LLSVP). There is debate over whether the LLSVPs can be explained by purely thermal variations or whether they must be chemically distinct from normal mantle. Elastic properties alone, have been unable to distinguish the thermal from chemical interpretations. Anelastic structure, however, can help discriminate among models of the LLSVPs since intrinsic attenuation is more sensitive to temperature than to chemical variations. Here we estimate Qμ (the shear wave quality factor) in the African LLSVP using PcS waves generated from a Scotia Arc earthquake, recorded by broadband seismometers deployed in Southern Africa during the Kaapvaal experiment. The upward leg of the PcS waves sweeps from normal mantle into the African LLSVP across the array. We use the spectral ratio (SR) and instantaneous frequency matching (IFM) techniques to measure the differential attenuation (Δt*) between waves sampling the African LLSVP and the waves that sample normal lower mantle. Using both methods for estimating Δt* we find that PcS waves sampling the LLSVP are more attenuated than the waves that miss the LLSVP yielding a Δt* difference of more than 1 s. Using the Δt* measurements we estimate the average Qμ in the LLSVP to be about 110. Using a range of activation enthalpy (H*) estimates, we find an average temperature anomaly within the LLSVP ranging from +250 to +800 K. Our estimated temperature anomaly range overlaps previous isochemical geodynamic studies that explain the LLSVP as a purely thermal structure although the large uncertainties cannot rule out chemical variations as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Freq...71..575Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Freq...71..575Z"><span>A Practical Millimeter-Wave Holographic Imaging System with Tunable IF Attenuator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Yu-Kun; Yang, Ming-Hui; Wu, Liang; Sun, Yun; Sun, Xiao-Wei</p> <p>2017-10-01</p> <p>A practical millimeter-wave (mmw) holographic imaging system with tunable intermediate frequency (IF) attenuator has been developed. It can be used for the detection of concealed weapons at security checkpoints, especially the airport. The system is utilized to scan the passenger and detect the weapons hidden in the clothes. To reconstruct the three dimensions (3-D) image, a holographic mmw imaging algorithm based on aperture synthesis and back scattering is presented. The system is active and works at 28-33 GHz. Tunable IF attenuator is applied to compensate the intensity and phase differences between multi-channels and multi-frequencies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDA30002E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDA30002E"><span>Shock wave attenuation by water droplets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eliasson, Veronica; Wan, Qian; Deiterding, Ralf</p> <p>2017-11-01</p> <p>The ongoing research on shock wave attenuation is fueled by the desire to predict and avoid damage caused by shock and blast waves. For example, during an explosion in an underground mine or subway tunnel, the shock front is forced to propagate in the direction of the channel. In this work, numerical simulations using water droplets in a 2D channel are conducted to study shock wave attenuation. Four different droplet configurations (1x1, 2x2, 3x3, and 4x4) are considered, where the total volume of water is kept constant throughout all the cases. Meanwhile, the incident shock Mach number was varied from 1.1 to 1.4 with increments of 0.1. The physical motion of the water droplets, such as the center-of-mass drift and velocity, and the energy exchange between air and water are quantitatively studied. Results for center-of-mass velocity, maximum peak pressure and impulse will be presented for all different cases that were studied. NSF CBET-1437412.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.S33A2393H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.S33A2393H"><span>Surface-wave amplitude analysis for array data with non-linear waveform fitting: Toward high-resolution attenuation models of the upper mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamada, K.; Yoshizawa, K.</p> <p>2013-12-01</p> <p>Anelastic attenuation of seismic waves provides us with valuable information on temperature and water content in the Earth's mantle. While seismic velocity models have been investigated by many researchers, anelastic attenuation (or Q) models have yet to be investigated in detail mainly due to the intrinsic difficulties and uncertainties in the amplitude analysis of observed seismic waveforms. To increase the horizontal resolution of surface wave attenuation models on a regional scale, we have developed a new method of fully non-linear waveform fitting to measure inter-station phase velocities and amplitude ratios simultaneously, using the Neighborhood Algorithm (NA) as a global optimizer. Model parameter space (perturbations of phase speed and amplitude ratio) is explored to fit two observed waveforms on a common great-circle path by perturbing both phase and amplitude of the fundamental-mode surface waves. This method has been applied to observed waveform data of the USArray from 2007 to 2008, and a large-number of inter-station amplitude and phase speed data are corrected in a period range from 20 to 200 seconds. We have constructed preliminary phase speed and attenuation models using the observed phase and amplitude data, with careful considerations of the effects of elastic focusing and station correction factors for amplitude data. The phase velocity models indicate good correlation with the conventional tomographic results in North America on a large-scale; e.g., significant slow velocity anomaly in volcanic regions in the western United States. The preliminary results of surface-wave attenuation achieved a better variance reduction when the amplitude data are inverted for attenuation models in conjunction with corrections for receiver factors. We have also taken into account the amplitude correction for elastic focusing based on a geometrical ray theory, but its effects on the final model is somewhat limited and our attenuation model show anti-correlation with the phase velocity models; i.e., lower attenuation is found in slower velocity areas that cannot readily be explained by the temperature effects alone. Some former global scale studies (e.g., Dalton et al., JGR, 2006) indicated that the ray-theoretical focusing corrections on amplitude data tend to eliminate such anti-correlation of phase speed and attenuation, but this seems not to work sufficiently well for our regional scale model, which is affected by stronger velocity gradient relative to global-scale models. Thus, the estimated elastic focusing effects based on ray theory may be underestimated in our regional-scale studies. More rigorous ways to estimate the focusing corrections as well as data selection criteria for amplitude measurements are required to achieve a high-resolution attenuation models on regional scales in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18589470','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18589470"><span>Numerical and experimental study on the wave attenuation in bone--FDTD simulation of ultrasound propagation in cancellous bone.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nagatani, Yoshiki; Mizuno, Katsunori; Saeki, Takashi; Matsukawa, Mami; Sakaguchi, Takefumi; Hosoi, Hiroshi</p> <p>2008-11-01</p> <p>In cancellous bone, longitudinal waves often separate into fast and slow waves depending on the alignment of bone trabeculae in the propagation path. This interesting phenomenon becomes an effective tool for the diagnosis of osteoporosis because wave propagation behavior depends on the bone structure. Since the fast wave mainly propagates in trabeculae, this wave is considered to reflect the structure of trabeculae. For a new diagnosis method using the information of this fast wave, therefore, it is necessary to understand the generation mechanism and propagation behavior precisely. In this study, the generation process of fast wave was examined by numerical simulations using elastic finite-difference time-domain (FDTD) method and experimental measurements. As simulation models, three-dimensional X-ray computer tomography (CT) data of actual bone samples were used. Simulation and experimental results showed that the attenuation of fast wave was always higher in the early state of propagation, and they gradually decreased as the wave propagated in bone. This phenomenon is supposed to come from the complicated propagating paths of fast waves in cancellous bone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Ocgy...53..145K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Ocgy...53..145K"><span>Variability of the Baltic Sea level and floods in the Gulf of Finland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kulikov, E. A.; Medvedev, I. P.</p> <p>2013-03-01</p> <p>The statistical analysis of the long-term data on the variability of the Baltic Sea level has revealed the complicated character of the wave field structure. The wave field formed by the variable winds and the disturbances of the atmospheric pressure in the Baltic Sea is a superposition of standing oscillations with random phases. The cross spectral analysis of the synchronous observation series of the level in the Gulf of Finland has shown that the nodal lines of the standing dilatational waves are clearly traced with frequencies corresponding to the distance from the nodal line to the top of the gulf (a quarter of the wave length). Several areas of the water basin with clearly expressed resonant properties may be distinguished: the Gulfs of Finland, Riga, and Bothnia, Neva Bay, etc. The estimations of the statistical correlation of the sea level oscillations with the variation of the wind and atmospheric pressure indicate the dominant role of the zonal wind component during the formation of the floods in the Gulf of Finland. The probable reason for the extreme floods in St. Petersburg may be the resonance rocking of the eigenmode oscillations corresponding to the basic fundamental seiche mode of the Gulf of Finland with a period of 27 h when the repeated atmospheric disturbances in the Baltic Sea occur with a period of 1-2 days.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189327','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189327"><span>Downscaling wind and wavefields for 21st century coastal flood hazard projections in a region of complex terrain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>O'Neill, Andrea; Erikson, Li; Barnard, Patrick</p> <p>2017-01-01</p> <p>While global climate models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave modeling. Statistically downscaled GCM projections from Multivariate Adaptive Constructed Analogues provide daily averaged near-surface winds at an appropriate spatial resolution for wave modeling within the orographically complex region of San Francisco Bay, but greater resolution in time is needed to capture the peak of storm events. Short-duration high wind speeds, on the order of hours, are usually excluded in statistically downscaled climate models and are of key importance in wave and subsequent coastal flood modeling. Here we present a temporal downscaling approach, similar to constructed analogues, for near-surface winds suitable for use in local wave models and evaluate changes in wind and wave conditions for the 21st century. Reconstructed hindcast winds (1975–2004) recreate important extreme wind values within San Francisco Bay. A computationally efficient method for simulating wave heights over long time periods was used to screen for extreme events. Wave hindcasts show resultant maximum wave heights of 2.2 m possible within the Bay. Changes in extreme over-water wind speeds suggest contrasting trends within the different regions of San Francisco Bay, but 21th century projections show little change in the overall magnitude of extreme winds and locally generated waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24158293','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24158293"><span>Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ikenaga, Yuki; Nishi, Shohei; Komagata, Yuka; Saito, Masashi; Lagrée, Pierre-Yves; Asada, Takaaki; Matsukawa, Mami</p> <p>2013-11-01</p> <p>A pulse wave is the displacement wave which arises because of ejection of blood from the heart and reflection at vascular bed and distal point. The investigation of pressure waves leads to understanding the propagation characteristics of a pulse wave. To investigate the pulse wave behavior, an experimental study was performed using an artificial polymer tube and viscous liquid. A polyurethane tube and glycerin solution were used to simulate a blood vessel and blood, respectively. In the case of the 40 wt% glycerin solution, which corresponds to the viscosity of ordinary blood, the attenuation coefficient of a pressure wave in the tube decreased from 4.3 to 1.6 dB/m because of the tube stiffness (Young's modulus: 60 to 200 kPa). When the viscosity of liquid increased from approximately 4 to 10 mPa·s (the range of human blood viscosity) in the stiff tube, the attenuation coefficient of the pressure wave changed from 1.6 to 3.2 dB/m. The hardening of the blood vessel caused by aging and the increase of blood viscosity caused by illness possibly have opposite effects on the intravascular pressure wave. The effect of the viscosity of a liquid on the amplitude of a pressure wave was then considered using a phantom simulating human blood vessels. As a result, in the typical range of blood viscosity, the amplitude ratio of the waves obtained by the experiments with water and glycerin solution became 1:0.83. In comparison with clinical data, this value is much smaller than that seen from blood vessel hardening. Thus, it can be concluded that the blood viscosity seldom affects the attenuation of a pulse wave.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70196709','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70196709"><span>Mechanisms of wave‐driven water level variability on reef‐fringed coastlines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Buckley, Mark L.; Lowe, Ryan J.; Hansen, Jeff E; van Dongeren, Ap R.; Storlazzi, Curt</p> <p>2018-01-01</p> <p>Wave‐driven water level variability (and runup at the shoreline) is a significant cause of coastal flooding induced by storms. Wave runup is challenging to predict, particularly along tropical coral reef‐fringed coastlines due to the steep bathymetric profiles and large bottom roughness generated by reef organisms, which can violate assumptions in conventional models applied to open sandy coastlines. To investigate the mechanisms of wave‐driven water level variability on a reef‐fringed coastline, we performed a set of laboratory flume experiments on an along‐shore uniform bathymetric profile with and without bottom roughness. Wave setup and waves at frequencies lower than the incident sea‐swell forcing (infragravity waves) were found to be the dominant components of runup. These infragravity waves were positively correlated with offshore wave groups, signifying they were generated in the surf zone by the oscillation of the breakpoint. On the reef flat and at the shoreline, the low‐frequency waves formed a standing wave pattern with energy concentrated at the natural frequencies of the reef flat, indicating resonant amplification. Roughness elements used in the flume to mimic large reef bottom roughness reduced low frequency motions on the reef flat and reduced wave run up by 30% on average, compared to the runs over a smooth bed. These results provide insight into sea‐swell and infragravity wave transformation and wave setup dynamics on steep‐sloped coastlines, and the effect that future losses of reef bottom roughness may have on coastal flooding along reef‐fringed coasts.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoJI.210..240W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoJI.210..240W"><span>Ground roll attenuation using polarization analysis in the t-f-k domain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, C.; Wang, Y.</p> <p>2017-07-01</p> <p>S waves travel slower than P waves and have a lower dominant frequency. Therefore, applying common techniques such as time-frequency filtering and f-k filtering to separate S waves from ground roll is difficult because ground roll is also characterized by slow velocity and low frequency. In this study, we present a method for attenuating ground roll using a polarization filtering method based on the t-f-k transform. We describe the particle motion of the waves by complex vector signals. Each pair of frequency components, whose frequencies have the same absolute value but different signs, of the complex signal indicate an elliptical or linear motion. The polarization parameters of the elliptical or linear motion are explicitly related to the two Fourier coefficients. We then extend these concepts to the t-f-k domain and propose a polarization filtering method for ground roll attenuation based on the t-f-k transform. The proposed approach can define automatically the time-varying reject zones on the f-k panel at different times as a function of the reciprocal ellipticity. Four attributes, time, frequency, apparent velocity and polarization are used to identify and extract the ground roll simultaneously. Thus, the ground roll and body waves can be separated as long as they are dissimilar in one of these attributes. We compare our method with commonly used filtering techniques by applying the methods to synthetic and real seismic data. The results indicate that our method can attenuate ground roll while preserving body waves more effectively than the other methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C41D1260B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C41D1260B"><span>Seismic Monitoring and Characterization of the 2012 Outburst Flood of the Ice-Dammed Lake A.P.Olsen (NE Greenland)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Behm, M.; Walter, J. I.; Binder, D.; Mertl, S.</p> <p>2017-12-01</p> <p>Since the Zackenberg Research Station (ZRS) in NE-Greenland was established in 1995, regular floods of the adjacent Zackenberg River have been observed. The floods result from the sudden discharge of a marginal, ice-dammed lake at the pre-dominantly cold-based A.P. Olsen Ice Cap about 35 km inland. The lake filling usually starts with the melting season in May/June and ends with the flood sometime after early July. The run-off water from the lake discharges through the subsurface of the adjacent Argo glacier. The actual migration paths and depth of the water within the glacier are unknown until it re-appears at the glacier terminus at a distance of 4 km to the ice-dam. In spring 2012 a surface seismic monitoring network was installed on Argo glacier in 2-3 m boreholes near the lake to acquire continuous data for the whole fill- and drain cycle from start of May to end of November. The network comprises 3 stations with three-component sensors and 2 stations designed as tripartite arrays with vertically oriented sensors. The maximum interstation distance is 1.2 km. Microseismic event detection and localization is facilitated by the homogenous seismic structure of the ice and the extremely high S/N ratio of the borehole installations. An initial detection based on an STA/LTA algorithm and event assocator results in order-of-magnitude 100,000 seismic events. These events are generally attributed to the opening of surface crevasses due to the presence of weak body waves and strong surface wave energy, interpreted to be Rayleigh waves with dominant frequencies around 1-4 Hz. Time-lapse cross-correlations of the ambient seismic noise field reconstruct the surface waves travelling between the stations. Weekly stacks of the cross-correlations are stable, and show a distinct change correlated with the outburst flood. Apparent surface wave velocities increase slightly several weeks prior to the outburst event, which itself is characterized by a decrease in the correlation amplitude. After the outburst event, the velocities decrease abruptly and take several weeks to rebound to the pre-outburst value. We explore the change of the apparent velocities, which can stem from both real in-situ medium changes and from the spatio-temporal variation of the ambient noise source distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2778054','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2778054"><span>Kramers-Kronig based quality factor for shear wave propagation in soft tissue</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Urban, M W; Greenleaf, J F</p> <p>2009-01-01</p> <p>Shear wave propagation techniques have been introduced for measuring the viscoelastic material properties of tissue, but assessing the accuracy of these measurements is difficult for in vivo measurements in tissue. We propose using the Kramers-Kronig relationships to assess the consistency and quality of the measurements of shear wave attenuation and phase velocity. In ex vivo skeletal muscle we measured the wave attenuation at different frequencies, and then applied finite bandwidth Kramers-Kronig equations to predict the phase velocities. We compared these predictions with the measured phase velocities and assessed the mean square error (MSE) as a quality factor. An algorithm was derived for computing a quality factor using the Kramers-Kronig relationships. PMID:19759409</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008CPL...465...36K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008CPL...465...36K"><span>Elastic properties of aspirin in its crystalline and glassy phases studied by micro-Brillouin scattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ko, Jae-Hyeon; Lee, Kwang-Sei; Ike, Yuji; Kojima, Seiji</p> <p>2008-11-01</p> <p>The acoustic waves propagating along the direction perpendicular to the (1 0 0) cleavage plane of aspirin crystal were investigated using micro-Brillouin spectroscopy from which C11, C55 and C66 were obtained. The temperature dependence of the longitudinal acoustic waves could be explained by normal anharmonic lattice models, while the transverse acoustic waves showed an abnormal increase in the hypersonic attenuation at low temperatures indicating their coupling to local remnant dynamics. The sound velocity as well as the attenuation of the longitudinal acoustic waves of glassy aspirin showed a substantial change at ˜235 K confirming a transition from glassy to supercooled liquid state in vitreous aspirin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Geomo.280...76H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Geomo.280...76H"><span>The effect of wind waves on spring-neap variations in sediment transport in two meso-tidal estuarine basins with contrasting fetch</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hunt, Stephen; Bryan, Karin R.; Mullarney, Julia C.</p> <p>2017-03-01</p> <p>Higher-energy episodic wind-waves can substantially modify estuarine morphology over short timescales which are superimposed on lower-energy but long-term tidal asymmetry effects. Theoretically, wind waves and tidal currents change the morphology through their combined influence on the asymmetry between bed shear stress, τmax, on the flood and ebb tide, although the relative contribution of such wind-wave events in shaping the long-term morphological evolution in real estuaries is not well known. If the rising tide reaches sufficiently high water depths, τmax decreases as water depth increases because of the depth attenuation of wave orbital velocities. However, this effect is opposed by the increase in τmax associated with the longer fetch occurring at high tide, which allows the generation of larger waves. Additionally, these effects are superimposed on the spring-neap variations in current associated with changes to tidal range. By comparing two mesotidal basins in the same dendritic estuary, one with a large fetch aligned with the prevailing wind direction and one with only a small fetch, we show that for a sufficiently large fetch even the small and frequently occurring wind events are able to create waves that are capable of changing the morphology ('morphologically significant'). Conversely, in the basin with reduced fetch, these waves are generated less frequently and therefore are of reduced morphological significance. Here, we find that although tidal current should be stronger during spring tides and alter morphology more, on average the reduced fetch and increased water depth during spring tides mean that the basin-averaged intertidal τmax is similar during both spring and neap tides. Moreover, in the presence of wind waves, the duration of slack water is reduced during neap tides relative to spring tides, resulting in a reduced chance for accretion during neap tides. Finally, τmax is lower in the subtidal channels during neaps than springs but of a similar magnitude over the intertidal areas, and so sediment is more likely to be advected from the intertidal regions during neap tides rather than springs. This spring-neap cycle in sediment transport potential is in sharp contrast to that found previously in microtidal wave-dominated environments, where spring tides are expected to enhance erosion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoJI.207..655H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoJI.207..655H"><span>Extracting near-surface QL between 1-4 Hz from higher-order noise correlations in the Euroseistest area, Greece</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haendel, A.; Ohrnberger, M.; Krüger, F.</p> <p>2016-11-01</p> <p>Knowledge of the quality factor of near-surface materials is of fundamental interest in various applications. Attenuation can be very strong close to the surface and thus needs to be properly assessed. In recent years, several researchers have studied the retrieval of attenuation coefficients from the cross correlation of ambient seismic noise. Yet, the determination of exact amplitude information from noise-correlation functions is, in contrast to the extraction of traveltimes, not trivial. Most of the studies estimated attenuation coefficients on the regional scale and within the microseism band. In this paper, we investigate the possibility to derive attenuation coefficients from seismic noise at much shallower depths and higher frequencies (>1 Hz). The Euroseistest area in northern Greece offers ideal conditions to study quality factor retrieval from ambient noise for different rock types. Correlations are computed between the stations of a small scale array experiment (station spacings <2 km) that was carried out in the Euroseistest area in 2011. We employ the correlation of the coda of the correlation (C3) method instead of simple cross correlations to mitigate the effect of uneven noise source distributions on the correlation amplitude. Transient removal and temporal flattening are applied instead of 1-bit normalization in order to retain relative amplitudes. The C3 method leads to improved correlation results (higher signal-to-noise ratio and improved time symmetry) compared to simple cross correlations. The C3 functions are rotated from the ZNE to the ZRT system and we focus on Love wave arrivals on the transverse component and on Love wave quality factors QL. The analysis is performed for selected stations being either situated on soft soil or on weathered rock. Phase slowness is extracted using a slant-stack method. Attenuation parameters are inferred by inspecting the relative amplitude decay of Love waves with increasing interstation distance. We observe that the attenuation coefficient γ and QL can be reliably extracted for stations situated on soft soil whereas the derivation of attenuation parameters is more problematic for stations that are located on weathered rock. The results are in acceptable conformance with theoretical Love wave attenuation curves that were computed using 1-D shear wave velocity and quality factor profiles from the Euroseistest area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAP...123i1706T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAP...123i1706T"><span>Optical evaluation of the wave filtering properties of graded undulated lattices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trainiti, G.; Rimoli, J. J.; Ruzzene, M.</p> <p>2018-03-01</p> <p>We investigate and experimentally demonstrate the elastic wave filtering properties of graded undulated lattices. Square reticulates composed of curved beams are characterized by graded mechanical properties which result from the spatial modulation of the curvature parameter. Among such properties, the progressive formation of frequency bandgaps leads to strong wave attenuation over a broad frequency range. The experimental investigation of wave transmission and the detection of full wavefields effectively illustrate this behavior. Transmission measurements are conducted using a scanning laser Doppler vibrometer, while a dedicated digital image correlation procedure is implemented to capture in-plane wave motion at selected frequencies. The presented results illustrate the broadband attenuation characteristics resulting from spatial grading of the lattice curvature, whose in-depth investigation is enabled by the presented experimental procedures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031198','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031198"><span>Site response and attenuation in the Puget Lowland, Washington State</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pratt, T.L.; Brocher, T.M.</p> <p>2006-01-01</p> <p>Simple spectral ratio (SSR) and horizontal-to-vertical (HN) site-response estimates at 47 sites in the Puget Lowland of Washington State document significant attenuation of 1.5- to 20-Hz shear waves within sedimentary basins there. Amplitudes of the horizontal components of shear-wave arrivals from three local earthquakes were used to compute SSRs with respect to the average of two bedrock sites and H/V spectral ratios with respect to the vertical component of the shear-wave arrivals at each site. SSR site-response curves at thick basin sites show peak amplifications of 2 to 6 at frequencies of 3 to 6 Hz, and decreasing spectra amplification with increasing frequency above 6 Hz. SSRs at nonbasin sites show a variety of shapes and larger resonance peaks. We attribute the spectral decay at frequencies above the amplification peak at basin sites to attenuation within the basin strata. Computing the frequency-independent, depth-dependent attenuation factor (Qs,int) from the SSR spectral decay between 2 and 20 Hz gives values of 5 to 40 for shallow sedimentary deposits and about 250 for the deepest sedimentary strata (7 km depth). H/V site responses show less spectral decay than the SSR responses but contain many of the same resonance peaks. We hypothesize that the H/V method yields a flatter response across the frequency spectrum than SSRs because the H/V reference signal (vertical component of the shear-wave arrivals) has undergone a degree of attenuation similar to the horizontal component recordings. Correcting the SSR site responses for attenuation within the basins by removing the spectral decay improves agreement between SSR and H/V estimates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2011/1183/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2011/1183/"><span>Wave exposure of Corte Madera Marsh, Marin County, California-a field investigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lacy, Jessica R.; Hoover, Daniel J.</p> <p>2011-01-01</p> <p>Tidal wetlands provide valuable habitat, are an important source of primary productivity, and can help to protect the shoreline from erosion by attenuating approaching waves. These functions are threatened by the loss of tidal marshes, whether due to erosion, sea-level rise, or land-use practices. Erosion protection by wetlands is expected to vary geographically, because wave attenuation in marshes depends on vegetation type, density, and height and wave attenuation over mudflats depends on slope and sediment properties. In macrotidal northern European marshes, a 50 percent reduction in wave height within tens of meters of vegetated salt marsh has been observed. This study was designed to evaluate the role of mudflats and marshes in attenuating waves at a site in San Francisco Bay. In prehistoric times, the shoreline of San Francisco Bay was ringed with tidal wetlands, with mudflats at lower elevations and marshes above. Most of the marshes around the Bay emerged 2,000-4,000 years ago, after the rate of sea-level rise slowed to approximately 1 mm/year. Approximately 80 percent of the acreage of tidal marsh and 40 percent of the acreage of tidal mudflats in San Francisco Bay have been lost to filling and draining since 1800. Tidal wetlands are particularly susceptible to impacts from sea-level rise because the vegetation at each elevation is adapted to a specific tidal-inundation regime. The maintenance of suitable marsh-plain elevations depends on a supply of sediment that can keep up with the rate of sea-level rise. Sea-level rise, which according to recent projections may reach 75 to 190 cm by the year 2100, poses a significant threat to wetlands in San Francisco Bay, where landward migration is frequently impossible due to urbanization of the adjacent landscape. In this study, we collected data in Corte Madera Bay and Marsh to determine whether, and to what degree, waves are attenuated as they transit the Bay and, during high tides, the marsh. Corte Madera Bay was selected as a study site because of its exposure to wind waves, as well as its history of shoreline erosion and marsh restoration and monitoring. Data were collected in the winter of 2010, along a cross-shore transect extending from offshore of the subtidal mudflats into the tidal marsh. This study forms part of the Innovative Wetland Adaptation in the Lower Corte Madera Creek Watershed Project initiated by the Bay Conservation and Development Commission (BCDC) (http://www.bcdc.ca.gov/planning/climate_change/WetlandAdapt.shtml). Objectives- This study was designed to address the following questions: * What are the characteristics of waves and currents in the study area, and how do they vary over time? * Do wave heights or orbital velocities decrease, or wave periods change, as waves pass over the mudflats? * Do wave heights decrease, or wave periods change, as waves pass over the marsh?</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940008583','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940008583"><span>Quantitative Mapping of Pore Fraction Variations in Silicon Nitride Using an Ultrasonic Contact Scan Technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roth, Don J.; Kiser, James D.; Swickard, Suzanne M.; Szatmary, Steven A.; Kerwin, David P.</p> <p>1993-01-01</p> <p>An ultrasonic scan procedure using the pulse-echo contact configuration was employed to obtain maps of pore fraction variations in sintered silicon nitride samples in terms of ultrasonic material properties. Ultrasonic velocity, attenuation coefficient, and reflection coefficient images were obtained simultaneously over a broad band of frequencies (e.g., 30 to 110 MHz) by using spectroscopic analysis. Liquid and membrane (dry) coupling techniques and longitudinal and shear-wave energies were used. The major results include the following: Ultrasonic velocity (longitudinal and shear wave) images revealed and correlated with the extent of average through-thickness pore fraction variations in the silicon nitride disks. Attenuation coefficient images revealed pore fraction nonuniformity due to the scattering that occurred at boundaries between regions of high and low pore fraction. Velocity and attenuation coefficient images were each nearly identical for machined and polished disks, making the method readily applicable to machined materials. Velocity images were similar for wet and membrane coupling. Maps of apparent Poisson's ratio constructed from longitudinal and shear-wave velocities quantified Poisson's ratio variations across a silicon nitride disk. Thermal wave images of a disk indicated transient thermal behavior variations that correlated with observed variations in pore fraction and velocity and attenuation coefficients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/869629','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/869629"><span>Active doublet method for measuring small changes in physical properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Roberts, Peter M.; Fehler, Michael C.; Johnson, Paul A.; Phillips, W. Scott</p> <p>1994-01-01</p> <p>Small changes in material properties of a work piece are detected by measuring small changes in elastic wave velocity and attenuation within a work piece. Active, repeatable source generate coda wave responses from a work piece, where the coda wave responses are temporally displaced. By analyzing progressive relative phase and amplitude changes between the coda wave responses as a function of elapsed time, accurate determinations of velocity and attenuation changes are made. Thus, a small change in velocity occurring within a sample region during the time periods between excitation origin times (herein called "doublets") will produce a relative delay that changes with elapsed time over some portion of the scattered waves. This trend of changing delay is easier to detect than an isolated delay based on a single arrival and provides a direct measure of elastic wave velocity changes arising from changed material properties of the work piece.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015TePhL..41.1167B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015TePhL..41.1167B"><span>Propagation of detonation wave in hydrogen-air mixture in channels with sound-absorbing surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bivol, G. Yu.; Golovastov, S. V.; Golub, V. V.</p> <p>2015-12-01</p> <p>The possibility of using sound-absorbing surfaces for attenuating the intensity of detonation waves propagating in hydrogen-air mixtures has been experimentally studied in a cylindrical detonation tube open at one end, with an explosive initiated by spark discharge at the closed end. Sound-absorbing elements were made of an acoustic-grade foamed rubber with density of 0.035 g/cm3 containing open pores with an average diameter of 0.5 mm. The degree of attenuation of the detonation wave front velocity was determined as dependent on the volume fraction of hydrogen in the gas mixture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002SedG..150..123C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002SedG..150..123C"><span>The role of extreme floods in estuary-coastal behaviour: contrasts between river- and tide-dominated microtidal estuaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cooper, J. A. G.</p> <p>2002-06-01</p> <p>Contrasting modes of sedimentation and facies arrangement in tide- and river-dominated microtidal estuaries arise from the degree to which river or tidal discharge and sediment supply influences an estuary. A distinct facies gradation exists in tide-dominated systems from sandy, barrier/tidal delta-associated environments at the coast through deep mud-dominated middle reaches to fluvial sediment in the upper reaches. In river-dominated systems, fluvial sediment extends to the barrier and flood-tidal deltas are poorly developed or absent from the estuary. A number of independent observations during extreme floods on the South African coast indicate that these types of estuary respond differently to extreme river floods and that the mode of response corresponds to estuary type. Tide-dominated systems exhibit preferential erosion of noncohesive barrier and tidal delta sediments during river floods while the middle reaches remain little modified. River-dominated systems experience consistent erosion throughout their channel length during extreme floods. The increased cohesion of riverine sediments and stabilisation of bars by vegetation in river-dominated channels means that higher magnitude floods are necessary to effect significant morphological change. Barrier erosion, including the tidal delta, results in deposition of an ephemeral delta composed almost entirely of sands from these deposits in tide-dominated estuaries. In river-dominated systems, eroded channel sediments and material from the river catchment may augment barrier sediments in the ephemeral delta deposit. Post-flood, wave-reworking of ephemeral delta sediments acts to restore barriers to pre-flood morphology within a few years; however, in river-dominated systems, the additional sediment volume may produce significant coastal progradation that requires several years or decades to redistribute. These different modes of flood response mediated by the nature of the estuary have implications for coastal behaviour at the time scale of months to several decades. Estuary-coastal behaviour at river-dominated estuaries may be influenced for several decades by post-flood morphological adjustment. Tide-dominated estuaries, however, respond more rapidly in reworking flood-eroded sediment and are typically fully adjusted to modal wave and tidal conditions within a few months to a few years. In addition, the facies arrangement within the two estuary types renders tide-dominated estuaries more responsive to minor floods, while river-dominated estuaries, by virtue of more cohesive channel sediments, require greater discharges to effect significant morphological change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JAP....99i4904C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JAP....99i4904C"><span>Measurements of shock-induced guided and surface acoustic waves along boreholes in poroelastic materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chao, Gabriel; Smeulders, D. M. J.; van Dongen, M. E. H.</p> <p>2006-05-01</p> <p>Acoustic experiments on the propagation of guided waves along water-filled boreholes in water-saturated porous materials are reported. The experiments were conducted using a shock tube technique. An acoustic funnel structure was placed inside the tube just above the sample in order to enhance the excitation of the surface modes. A fast Fourier transform-Prony-spectral ratio method is implemented to transform the data from the time-space domain to the frequency-wave-number domain. Frequency-dependent phase velocities and attenuation coefficients were measured using this technique. The results for a Berea sandstone material show a clear excitation of the fundamental surface mode, the pseudo-Stoneley wave. The comparison of the experimental results with numerical predictions based on Biot's theory of poromechanics [J. Acoust. Soc. Am. 28, 168 (1956)], shows that the oscillating fluid flow at the borehole wall is the dominant loss mechanism governing the pseudo-Stoneley wave and it is properly described by the Biot's model at frequencies below 40 kHz. At higher frequencies, a systematic underestimation of the theoretical predictions is found, which can be attributed to the existence of other losses mechanisms neglected in the Biot formulation. Higher-order guided modes associated with the compressional wave in the porous formation and the cylindrical geometry of the shock tube were excited, and detailed information was obtained on the frequency-dependent phase velocity and attenuation in highly porous and permeable materials. The measured attenuation of the guided wave associated with the compressional wave reveals the presence of regular oscillatory patterns that can be attributed to radial resonances. This oscillatory behavior is also numerically predicted, although the measured attenuation values are one order of magnitude higher than the corresponding theoretical values. The phase velocities of the higher-order modes are generally well predicted by theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.S31A2040R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.S31A2040R"><span>Investigation of surface wave amplitudes in 3-D velocity and 3-D Q models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruan, Y.; Zhou, Y.</p> <p>2010-12-01</p> <p>It has been long recognized that seismic amplitudes depend on both wave speed structures and anelasticity (Q) structures. However, the effects of lateral heterogeneities in wave speed and Q structures on seismic amplitudes has not been well understood. We investigate the effects of 3-D wave speed and 3-D anelasticity (Q) structures on surface-wave amplitudes based upon wave propagation simulations of twelve globally-distributed earthquakes and 801 stations in Earth models with and without lateral heterogeneities in wave speed and anelasticity using a Spectral Element Method (SEM). Our tomographic-like 3-D Q models are converted from a velocity model S20RTS using a set of reasonable mineralogical parameters, assuming lateral perturbations in both velocity and Q are due to temperature perturbations. Surface-wave amplitude variations of SEM seismograms are measured in the period range of 50--200 s using boxcar taper, cosine taper and Slepian multi-tapers. We calculate ray-theoretical predictions of surface-wave amplitude perturbations due to elastic focusing, attenuation, and anelastic focusing which respectively depend upon the second spatial derivative (''roughness'') of perturbations in phase velocity, 1/Q, and the roughness of perturbations in 1/Q. Both numerical experiments and theoretical calculations show that (1) for short-period (~ 50 s) surface waves, the effects of amplitude attenuation due to 3-D Q structures are comparable with elastic focusing effects due to 3-D wave speed structures; and (2) for long-period (> 100 s) surface waves, the effects of attenuation become much weaker than elastic focusing; and (3) elastic focusing effects are correlated with anelastic focusing at all periods due to the correlation between velocity and Q models; and (4) amplitude perturbations are depend on measurement techniques and therefore cannot be directly compared with ray-theoretical predictions because ray theory does not account for the effects of measurement techniques. We calculate 3-D finite-frequency sensitivity of surface-wave amplitude to perturbations in wave speed and anelasticity (Q) which fully account for the effects of elastic focusing, attenuation, anelastic focusing as well as measurement techniques. We show that amplitude perturbations calculated using wave speed and Q sensitivity kernels agree reasonably well with SEM measurements and therefore the sensitivity kernels can be used in a joint inversion of seismic phase delays and amplitudes to simultaneously image high resolution 3-D wave speed and 3-D Q structures in the upper mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA220795','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA220795"><span>Criteria for Evaluating Coastal Flood-Protection Structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1989-12-01</p> <p>Hotta, S., and Marui , N. 1976. "Local Scour and Current Around a Porous Breakwater," Chapter 93, Proceedings, 15th Coastal Engineering Conference, 11- 17...breaking waves consistent with FEMA depth-limited breaking wave approach to design. 7. Hotta and Marui (1976) testing permeable and impermeable shore</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SMaS...27d5015L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SMaS...27d5015L"><span>A self-adaptive metamaterial beam with digitally controlled resonators for subwavelength broadband flexural wave attenuation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Xiaopeng; Chen, Yangyang; Hu, Gengkai; Huang, Guoliang</p> <p>2018-04-01</p> <p>Designing lightweight materials and/or structures for broadband low-frequency noise/vibration mitigation is an issue of fundamental importance both practically and theoretically. In this paper, by leveraging the concept of frequency-dependent effective stiffness control, we numerically and experimentally demonstrate, for the first time, a self-adaptive metamaterial beam with digital circuit controlled mechanical resonators for strong and broadband flexural wave attenuation at subwavelength scales. The digital controllers that are capable of feedback control of piezoelectric shunts are integrated into mechanical resonators in the metamaterial, and the transfer function is semi-analytically determined to realize an effective bending stiffness in a quadratic function of the wave frequency for adaptive band gaps. The digital as well as analog control circuits as the backbone of the system are experimentally realized with the guarantee stability of the whole electromechanical system in whole frequency regions, which is the most challenging problem so far. Our experimental results are in good agreement with numerical predictions and demonstrate the strong wave attenuation in almost a three times larger frequency region over the bandwidth of a passive metamaterial. The proposed metamaterial could be applied in a range of applications in the design of elastic wave control devices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S21C..06R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S21C..06R"><span>The influence of shear-velocity heterogeneity on ScS2/ScS amplitude ratios and estimates of Q in the mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ritsema, J.; Chaves, C. A. M.</p> <p>2016-12-01</p> <p>Regional waveforms of deep-focus Tonga-Fiji earthquakes indicate anomalous traveltime differences (ScS2-ScS) and amplitude ratios (ScS2/ScS) of the phases ScS and ScS2. The correlation between the ScS2-ScS delay time and the ScS2/ScS amplitude ratio suggests that shear-wave apparent Q in the mantle below the Tonga-Fiji region is highest when shear-wave velocities are lowest. This observation is unexpected if temperature variations were responsible for the seismic anomalies. Using spectral-element-method waveform simulations for four tomographic models we demonstrate that focusing and scattering of shear waves by long-wavelength 3D heterogeneity in the mantle may overwhelm the signal from intrinsic attenuation in long-period ScS2/ScS amplitude ratios. The tomographic models reproduce the variability in recorded ScS2-ScS difference times and ScS2/ScS amplitude ratios. Variations in shear-wave attenuation (i.e., the quality factor Q) are not necessary to explain the data. An explanation for slow shear wave propagation without intrinsic attenuation does not require a creative solution from mineral physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAP...123i5111A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAP...123i5111A"><span>Dynamic load mitigation using dissipative elastic metamaterials with multiple Maxwell-type oscillators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alamri, Sagr; Li, Bing; Tan, K. T.</p> <p>2018-03-01</p> <p>Dissipative elastic metamaterials have attracted increased attention in recent times. This paper presents the development of a dissipative elastic metamaterial with multiple Maxwell-type resonators for stress wave attenuation. The mechanism of the dissipation effect on the vibration characteristics is systematically investigated by mass-spring-damper models with single and dual resonators. Based on the parameter optimization, it is revealed that a broadband wave attenuation region (stopping band) can be obtained by properly utilizing interactions from resonant motions and viscoelastic effects of the Maxwell-type oscillators. The relevant numerical verifications are conducted for various cases, and excellent agreement between the numerical and theoretical frequency response functions is shown. The design of this dissipative metamaterial system is further applied for dynamic load mitigation and blast wave attenuation. Moreover, the transient response in the continuum model is designed and analyzed for more robust design. By virtue of the bandgap merging effect induced by the Maxwell-type damper, the transient blast wave can be almost completely suppressed in the low frequency range. A significantly improved performance of the proposed dissipative metamaterials for stress wave mitigation is verified in both time and frequency domains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10494E..1VB','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10494E..1VB"><span>Chirped or time modulated excitation compared to short pulses for photoacoustic imaging in acoustic attenuating media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burgholzer, P.; Motz, C.; Lang, O.; Berer, T.; Huemer, M.</p> <p>2018-02-01</p> <p>In photoacoustic imaging, optically generated acoustic waves transport the information about embedded structures to the sample surface. Usually, short laser pulses are used for the acoustic excitation. Acoustic attenuation increases for higher frequencies, which reduces the bandwidth and limits the spatial resolution. One could think of more efficient waveforms than single short pulses, such as pseudo noise codes, chirped, or harmonic excitation, which could enable a higher information-transfer from the samples interior to its surface by acoustic waves. We used a linear state space model to discretize the wave equation, such as the Stoke's equation, but this method could be used for any other linear wave equation. Linear estimators and a non-linear function inversion were applied to the measured surface data, for onedimensional image reconstruction. The proposed estimation method allows optimizing the temporal modulation of the excitation laser such that the accuracy and spatial resolution of the reconstructed image is maximized. We have restricted ourselves to one-dimensional models, as for higher dimensions the one-dimensional reconstruction, which corresponds to the acoustic wave without attenuation, can be used as input for any ultrasound imaging method, such as back-projection or time-reversal method.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title7-vol6/pdf/CFR-2010-title7-vol6-sec633-2.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title7-vol6/pdf/CFR-2010-title7-vol6-sec633-2.pdf"><span>7 CFR 633.2 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... organized pursuant to applicable State law to promote and undertake actions for the conservation of soil... the United States Department of Agriculture, formerly called the Soil Conservation Service. Operator... and improvement of water quality; (3) Attenuation of water flows due to flooding; (4) The recharge of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title7-vol6/pdf/CFR-2011-title7-vol6-sec633-2.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title7-vol6/pdf/CFR-2011-title7-vol6-sec633-2.pdf"><span>7 CFR 633.2 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... organized pursuant to applicable State law to promote and undertake actions for the conservation of soil... the United States Department of Agriculture, formerly called the Soil Conservation Service. Operator... and improvement of water quality; (3) Attenuation of water flows due to flooding; (4) The recharge of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917988S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917988S"><span>Energy Content & Spectral Energy Representation of Wave Propagation in a Granular Chain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shrivastava, Rohit; Luding, Stefan</p> <p>2017-04-01</p> <p>A mechanical wave is propagation of vibration with transfer of energy and momentum. Studying the energy as well as spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing for the study of internal structure of solids. Wave propagation through granular materials is often accompanied by energy attenuation which is quantified by Quality factor and this parameter has often been used to characterize material properties, hence, determining the Quality factor (energy attenuation parameter) can also help in determining the properties of the material [3], studied experimentally in [2]. The study of Energy content (Kinetic, Potential and Total Energy) of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain can assist in understanding the energy attenuation due to disorder as a function of propagation distance. The spectral analysis of the energy signal can assist in understanding dispersion as well as attenuation due to scattering in different frequencies (scattering attenuation). The selection of one-dimensional granular chain also helps in studying only the P-wave attributes of the wave and removing the influence of shear or rotational waves. Granular chains with different mass distributions have been studied, by randomly selecting masses from normal, binary and uniform distributions and the standard deviation of the distribution is considered as the disorder parameter, higher standard deviation means higher disorder and lower standard deviation means lower disorder [1]. For obtaining macroscopic/continuum properties, ensemble averaging has been invoked. Instead of analyzing deformation-, velocity- or stress-signals, interpreting information from a Total Energy signal turned out to be much easier in comparison to displacement, velocity or acceleration signals of the wave, hence, indicating a better analysis method for wave propagation through granular materials. Increasing disorder decreases the Energy of higher frequency signals transmitted, but at the same time the energy of spatially localized high frequencies increases. Brian P. Lawney and Stefan Luding. Mass-disorder effects on the frequency filtering in one-dimensional discrete particle systems. AIP Conference Proceedings, 1542(1), 2013. Ibrahim Guven. Hydraulical and acoustical properties of porous sintered glass bead systems: experiments, theory and simulations (Doctoral dissertation). Rainer Tonn. Comparison of seven methods for the computation of Q. Physics of the Earth and Planetary Interiors, 55(3):259 - 268, 1989. Rohit Kumar Shrivastava and Stefan Luding.: Effect of Disorder on Bulk Sound Wave Speed : A Multiscale Spectral Analysis, Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-83, in review, 2017.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.S44A..01R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.S44A..01R"><span>Progress and challenges in global mantle attenuation tomography (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Romanowicz, B. A.</p> <p>2009-12-01</p> <p>Global anelastic tomography has lagged behind elastic tomography, because of the difficulty to separate elastic and anelastic effects accumulated in the amplitudes of seismic waves as they propagate long distances through the heterogeneous mantle. Specifically, amplitudes are very sensitive to scattering and lateral gradients in elastic structure. Until now, these gradients - or the short wavelength features of elastic models - have not been tightly enough constrained due to a combination of (1) use of approximate wave propagation theories; (2) necessary damping due to incomplete coverage and bandwidth. Different schemes have been designed to circumvent these shortcomings in attenuation tomography, which limit resolution to long wavelengths and introduce large uncertainties in the estimation of the strength of lateral variations in attenuation. We review the robust information on anelastic structure available so far from first and second generation global upper mantle models. We discuss improvements that can be expected with, in particular, the availability of accurate numerical schemes for wave propagation in a 3D elastic earth, as well as the associated challenges, and prospects for unraveling the 3D attenuation structure of the lower mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1706f0011Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1706f0011Z"><span>Measurement of attenuation coefficients of the fundamental and second harmonic waves in water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Shuzeng; Jeong, Hyunjo; Cho, Sungjong; Li, Xiongbing</p> <p>2016-02-01</p> <p>Attenuation corrections in nonlinear acoustics play an important role in the study of nonlinear fluids, biomedical imaging, or solid material characterization. The measurement of attenuation coefficients in a nonlinear regime is not easy because they depend on the source pressure and requires accurate diffraction corrections. In this work, the attenuation coefficients of the fundamental and second harmonic waves which come from the absorption of water are measured in nonlinear ultrasonic experiments. Based on the quasilinear theory of the KZK equation, the nonlinear sound field equations are derived and the diffraction correction terms are extracted. The measured sound pressure amplitudes are adjusted first for diffraction corrections in order to reduce the impact on the measurement of attenuation coefficients from diffractions. The attenuation coefficients of the fundamental and second harmonics are calculated precisely from a nonlinear least squares curve-fitting process of the experiment data. The results show that attenuation coefficients in a nonlinear condition depend on both frequency and source pressure, which are much different from a linear regime. In a relatively lower drive pressure, the attenuation coefficients increase linearly with frequency. However, they present the characteristic of nonlinear growth in a high drive pressure. As the diffraction corrections are obtained based on the quasilinear theory, it is important to use an appropriate source pressure for accurate attenuation measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ApPhL.103f3110W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ApPhL.103f3110W"><span>Gas loading of graphene-quartz surface acoustic wave devices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Whitehead, E. F.; Chick, E. M.; Bandhu, L.; Lawton, L. M.; Nash, G. R.</p> <p>2013-08-01</p> <p>Graphene was transferred to the propagation path of quartz surface acoustic wave devices and the attenuation due to gas loading of air and argon measured at 70 MHz and 210 MHz and compared to devices with no graphene. Under argon loading, there was no significant difference between the graphene and non-graphene device and the values of measured attenuation agree well with those calculated theoretically. Under air loading, at 210 MHz, there was a significant difference between the non-graphene and graphene devices, with the average value of attenuation obtained with the graphene devices being approximately twice that obtained from the bare quartz devices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..245b2078G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..245b2078G"><span>Numerical Model of Transitory Flood Flow in 2005 on River Timis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghitescu, Marie-Alice; Lazar, Gheorghe; Titus Constantin, Albert; Nicoara, Serban-Vlad</p> <p>2017-10-01</p> <p>The paper presents numerical modelling of fluid flow transiting on the Timis River, downstream Lugoj section - N.H. COSTEIU, the occurrence of accidental flood waves from 4 April to 11 April 2005. Numerical simulation aims to estimate water levels on the route pattern on some areas and areas associated respectively floodplain adjacent construction site on the right bank of Timis river, on existing conditions in 2005. The model simulation from 2005 flood event shows that the model can be used for future inundation studies in this locality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=302461','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=302461"><span>Laboratory measurements of wave attenuation through model and live vegetation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Surge and waves generated by hurricanes and tropical storms often cause severe damage and loss of life in coastal areas. It is widely recognized that wetlands along coastal fringes reduce storm surge and waves. Yet, the potential role and primary mechanisms of wave mitigation by wetland vegetation a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19062835','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19062835"><span>Observation of low-frequency acoustic surface waves in the nocturnal boundary layer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Talmadge, Carrick L; Waxler, Roger; Di, Xiao; Gilbert, Kenneth E; Kulichkov, Sergey</p> <p>2008-10-01</p> <p>A natural terrain surface, because of its porosity, can support an acoustic surface wave that is a mechanical analog of the familiar vertically polarized surface wave in AM radio transmission. At frequencies of several hundred hertz, the acoustic surface wave is attenuated over distances of a few hundred meters. At lower frequencies (e.g., below approximately 200 Hz) the attenuation is much less, allowing surface waves to propagate thousands of meters. At night, a low-frequency surface wave is generally present at long ranges even when downward refraction is weak. Thus, surface waves represent a ubiquitous nighttime transmission mode that exists even when other transmission modes are weak or absent. Data from recent nighttime field experiments and theoretical calculations are presented, demonstrating the persistence of the surface wave under different meteorological conditions. The low-frequency surface wave described here is the "quasiharmonical" tail observed previously in nighttime measurements but not identified by S. Kulichkov and his colleagues (Chunchuzov, I. P. et al. 1990. "On acoustical impulse propagation in a moving inhomogeneous atmospheric layer," J. Acoust. Soc. Am. 88, 455-461).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRB..12210086B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRB..12210086B"><span>Amplification and Attenuation Across USArray Using Ambient Noise Wavefront Tracking</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bowden, Daniel C.; Tsai, Victor C.; Lin, Fan-Chi</p> <p>2017-12-01</p> <p>As seismic traveltime tomography continues to be refined using data from the vast USArray data set, it is advantageous to also exploit the amplitude information carried by seismic waves. We use ambient noise cross correlation to make observations of surface wave amplification and attenuation at shorter periods (8-32 s) than can be observed with only traditional teleseismic earthquake sources. We show that the wavefront tracking approach can be successfully applied to ambient noise correlations, yielding results quite similar to those from earthquake observations at periods of overlap. This consistency indicates that the wavefront tracking approach is viable for use with ambient noise correlations, despite concerns of the inhomogeneous and unknown distribution of noise sources. The resulting amplification and attenuation maps correlate well with known tectonic and crustal structure; at the shortest periods, our amplification and attenuation maps correlate well with surface geology and known sedimentary basins, while our longest period amplitudes are controlled by crustal thickness and begin to probe upper mantle materials. These amplification and attenuation observations are sensitive to crustal materials in different ways than traveltime observations and may be used to better constrain temperature or density variations. We also value them as an independent means of describing the lateral variability of observed Rayleigh wave amplitudes without the need for 3-D tomographic inversions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AIPC..615.1735M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AIPC..615.1735M"><span>Monitoring and modeling of ultrasonic wave propagation in crystallizing mixtures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marshall, T.; Challis, R. E.; Tebbutt, J. S.</p> <p>2002-05-01</p> <p>The utility of ultrasonic compression wave techniques for monitoring crystallization processes is investigated in a study of the seeded crystallization of copper II sulfate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution and the changing nature of the continuous phase. A scattering model is used to predict the ultrasonic attenuation as crystallization proceeds. Experiments confirm that modeled attenuation is in agreement with measured results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.2317A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.2317A"><span>Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ardhuin, Fabrice; Collard, Fabrice; Chapron, Bertrand; Girard-Ardhuin, Fanny; Guitton, Gilles; Mouche, Alexis; Stopa, Justin E.</p> <p>2015-04-01</p> <p>Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1A wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. Since deviations from a straight line should be proportional to the orbital velocity toward the satellite, swell height can be estimated, from 1.5 to 5 m in the present case. The evolution of this 13 s period swell across the ice pack is consistent with an exponential attenuation on a length scale of 200 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1714245A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1714245A"><span>Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ardhuin, Fabrice; Collard, Fabrice; Chapron, Bertrand; Girard-Ardhuin, Fanny; Guitton, Gilles; Mouche, Alexis; Stopa, Justin</p> <p>2015-04-01</p> <p>Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1 wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. As deviations from a straight line should be proportional to the orbital velocity towards the satellite, swell height can be estimated, from 1.5 to 5 m in the present case. This evolution of this 13 s period swell across the ice pack is consistent with an exponential attenuation on a length scale of 200 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH12A..03L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH12A..03L"><span>Tsunami vs Infragravity Surge: Statistics and Physical Character of Extreme Runup</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lynett, P. J.; Montoya, L. H.</p> <p>2017-12-01</p> <p>Motivated by recent observations of energetic and impulsive infragravity (IG) flooding events - also known as sneaker waves - we will present recent work on the relative probabilities and dynamics of extreme flooding events from tsunamis and long period wind wave events. The discussion will be founded on videos and records of coastal flooding by both recent tsunamis and IG, such as those in the Philippines during Typhoon Haiyan. From these observations, it is evident that IG surges may approach the coast as breaking bores with periods of minutes; a very tsunami-like character. Numerical simulations will be used to estimate flow elevations and speeds from potential IG surges, and these will be compared with similar values from tsunamis, over a range of different beach profiles. We will examine the relative rareness of each type of flooding event, which for large values of IG runup is a particularly challenging topic. For example, for a given runup elevation or flooding speed, the related tsunami return period may be longer than that associated with IG, implying that deposit information associated with such elevations or speeds are more likely to be caused by IG. Our purpose is to provide a statistical and physical discriminant between tsunami and IG, such that in areas exposed to both, a proper interpretation of overland transport, deposition, and damage is possible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000060826','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000060826"><span>Teleconnection Linking Asian/Pacific Monsoon Variability and Summertime Droughts and Floods Over the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lau, K. M.; Weng, Hengyi</p> <p>2000-01-01</p> <p>Major droughts and floods over the U.S. continent may be related to a far field energy source in the Asian Pacific. This is illustrated by two climate patterns associated with summertime rainfall over the U.S. and large-scale circulation on interannual timescale. The first shows an opposite variation between the drought/flood over the Midwest and that over eastern and southeastern U.S., coupled to a coherent wave pattern spanning the entire East Asia-North Pacific-North America region related to the East Asian jetstream. The second shows a continental-scale drought/flood in the central U.S., coupled to a wavetrain linking Asian/Pacific monsoon region to North America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T51D2903E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T51D2903E"><span>Seismic Attenuation of Teleseismic Body Waves in Cascadia, Measured on the Amphibious Array</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eilon, Z.; Abers, G. A.</p> <p>2015-12-01</p> <p>Fundamental questions remain about the nature of the asthenosphere, including its dynamical relationship to overlying lithosphere, melt content, and entrainment in subduction zones. We examine the evolution of this low-velocity, highly attenuating layer using data from the Cascadia Initiative's Amphibious Array, which provides unprecedented coverage of an oceanic plate from ridge crest to trench to sub-arc. Our study extends the suite of measurements achievable with OBS data, augmenting traditional travel time analysis with integrated attenuation data that are a powerful tool for imaging melt/fluids and the variation of asthenospheric character with age. Cooling models, coupled with experimentally-derived anelastic scaling relationships, indicate that thermal gradients should cause appreciable decrease in attenuation of teleseismic body waves with increasing age. This long-wavelength cooling trend may be perturbed by highly attenuating melt or volatiles concentrated at the ridge axis or beneath the Cascades arc, depending on melt fraction and pore geometry. Attenuation beyond the trench should be a strong function of the fate of asthenospheric entrainment beneath subducted plates, with implications for mass transfer to the deep mantle as well as recent models of sub-slab anisotropy. The Amphibious Array, with <70 km spacing of OBS and on-land broadband seismometers deployed between 2011 and 2015, provides a dataset of ~1 x 105 arrivals from ~700 Mw>6.0 teleseismic earthquakes. We use a spectral ratio method to compute differential attenuation (Δt*) from body wave teleseisms recorded at OBS and land stations, allowing us to estimate path-integrated quality factor in the upper mantle. Preliminary results reveal variations of ~3 s in differential travel time and >0.5 s in ΔtS* across the 0-10 Ma oceanic plate, demonstrating the strong thermal control on anelasticity. Large values of Δt* observed east of the trench may indicate entrainment of highly attenuating asthenosphere during subduction, although more work is required to categorize and remove the signal of the overriding plate. This work complements previous studies using surface waves and contributes to our developing understanding of anelastic controls on seismic parameters by probing the Earth in a different frequency range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70110746','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70110746"><span>Seismic‐wave attenuation determined from tectonic tremor in multiple subduction zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Yabe, Suguru; Baltay, Annemarie S.; Ide, Satoshi; Beroza, Gregory C.</p> <p>2014-01-01</p> <p>Tectonic tremor provides a new source of observations that can be used to constrain the seismic attenuation parameter for ground‐motion prediction and hazard mapping. Traditionally, recorded earthquakes of magnitude ∼3–8 are used to develop ground‐motion prediction equations; however, typical earthquake records may be sparse in areas of high hazard. In this study, we constrain the distance decay of seismic waves using measurements of the amplitude decay of tectonic tremor, which is plentiful in some regions. Tectonic tremor occurs in the frequency band of interest for ground‐motion prediction (i.e., ∼2–8  Hz) and is located on the subducting plate interface, at the lower boundary of where future large earthquakes are expected. We empirically fit the distance decay of peak ground velocity from tremor to determine the attenuation parameter in four subduction zones: Nankai, Japan; Cascadia, United States–Canada; Jalisco, Mexico; and southern Chile. With the large amount of data available from tremor, we show that in the upper plate, the lower crust is less attenuating than the upper crust. We apply the same analysis to intraslab events in Nankai and show the possibility that waves traveling from deeper intraslab events experience more attenuation than those from the shallower tremor due to ray paths that pass through the subducting and highly attenuating oceanic crust. This suggests that high pore‐fluid pressure is present in the tremor source region. These differences imply that the attenuation parameter determined from intraslab earthquakes may underestimate ground motion for future large earthquakes on the plate interface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGC22A..07B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGC22A..07B"><span>Observations of infragravity motions for reef fringed islands and atolls</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Becker, J. M.; Merrifield, M. A.; Ford, M.</p> <p>2012-12-01</p> <p>The frequency of flooding events that affect low lying islands and atolls in the Pacific is expected to increase under current sea level rise projections. Infragravity (IG) motions, with periods ranging from approximately 25 to 400 seconds, are an important component of wave driven flooding events for reef fringed islands and atolls. The IG variability during wave events is analyzed and interpreted dynamically from pressure and current observations at four cross-reef transects in the North Pacific Ocean that include sites in the Republic of the Marshall Islands and Guam. The IG motions are shown to depend upon the spectral properties of the incident wave forcing and reef flat characteristics that include reef flat length (ranging from 100m to 450m at the four sites) and total water level due to setup and tides. A small inundation event at one of the sites is shown to occur due to large shoreline infragravity energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoJI.205...22S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoJI.205...22S"><span>Theory of wave propagation in partially saturated double-porosity rocks: a triple-layer patchy model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Weitao; Ba, Jing; Carcione, José M.</p> <p>2016-04-01</p> <p>Wave-induced local fluid flow is known as a key mechanism to explain the intrinsic wave dissipation in fluid-saturated rocks. Understanding the relationship between the acoustic properties of rocks and fluid patch distributions is important to interpret the observed seismic wave phenomena. A triple-layer patchy (TLP) model is proposed to describe the P-wave dissipation process in a double-porosity media saturated with two immiscible fluids. The double-porosity rock consists of a solid matrix with unique host porosity and inclusions which contain the second type of pores. Two immiscible fluids are considered in concentric spherical patches, where the inner pocket and the outer sphere are saturated with different fluids. The kinetic and dissipation energy functions of local fluid flow (LFF) in the inner pocket are formulated through oscillations in spherical coordinates. The wave propagation equations of the TLP model are based on Biot's theory and the corresponding Lagrangian equations. The P-wave dispersion and attenuation caused by the Biot friction mechanism and the local fluid flow (related to the pore structure and the fluid distribution) are obtained by a plane-wave analysis from the Christoffel equations. Numerical examples and laboratory measurements indicate that P-wave dispersion and attenuation are significantly influenced by the spatial distributions of both, the solid heterogeneity and the fluid saturation distribution. The TLP model is in reasonably good agreement with White's and Johnson's models. However, differences in phase velocity suggest that the heterogeneities associated with double-porosity and dual-fluid distribution should be taken into account when describing the P-wave dispersion and attenuation in partially saturated rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16..545F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16..545F"><span>Sedimentary structures formed under water surface waves: examples from a sediment-laden flash flood observed by remote camer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Froude, Melanie; Alexander, Jan; Cole, Paul; Barclay, Jenni</p> <p>2014-05-01</p> <p>On 13-14 October 2012, Tropical Storm Rafael triggered sediment-laden flash floods in the Belham Valley on Montserrat, West Indies. Rainfall was continuous for ~38 hours and intensity peaked at 48 mm/hr. Flow was strongly unsteady, turbulent with sediment concentrations varying up to hyperconcentrated. Time-lapse images captured at >1 frame per second by remote camera overlooking a surveyed valley section show the development of trains of water surface waves at multiple channel locations during different flow stages. Waves grew and diminished in height and remained stationary or migrated upstream. Trains of waves persisted for <5 minutes, until a single wave broke, sometimes initiating the breaking of adjacent waves within the train. Channel-wide surges (bores) propagating downstream with distinct turbulent flow fronts, were observed at irregular intervals during and up to 7 hours after peak stage. These bores are mechanically similar to breaking front tidal bores and arid flood bores, and resulted in a sudden increase in flow depth and velocity. When a bore front came into close proximity (within ~10 m) upstream of a train of water surface waves, the waves appeared to break simultaneously generating a localised surge of water upstream, that was covered by the bore travelling downstream. Those trains in which waves did not break during the passage of a bore temporarily reduced in height. In both cases, water surface waves reformed immediately after the surge in the same location. Deposits from the event, were examined in <4 m deep trenches ~0.5 km downstream of the remote camera. These contained laterally extensive lenticular and sheet-like units comprised of varying admixtures of sand and gravel that are attributed to antidunes, and associated transitions from upper-stage-plane-beds. Some of the structures are organised within concave upward sequences which contain downflow shifts between foreset and backset laminae; interpreted as trough fills from chute-and-pools or water surface wave breaking. At least 90% of the deposit is interpreted upper flow regime origin. The sequence, geometry and lamina-scale texture of the sedimentary structures will be discussed with reference to remote camera images of rapidly varying, unsteady and pulsatory flow behaviour.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.4688R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.4688R"><span>Influence of model reduction on uncertainty of flood inundation predictions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Romanowicz, R. J.; Kiczko, A.; Osuch, M.</p> <p>2012-04-01</p> <p>Derivation of flood risk maps requires an estimation of the maximum inundation extent for a flood with an assumed probability of exceedence, e.g. a 100 or 500 year flood. The results of numerical simulations of flood wave propagation are used to overcome the lack of relevant observations. In practice, deterministic 1-D models are used for flow routing, giving a simplified image of a flood wave propagation process. The solution of a 1-D model depends on the simplifications to the model structure, the initial and boundary conditions and the estimates of model parameters which are usually identified using the inverse problem based on the available noisy observations. Therefore, there is a large uncertainty involved in the derivation of flood risk maps. In this study we examine the influence of model structure simplifications on estimates of flood extent for the urban river reach. As the study area we chose the Warsaw reach of the River Vistula, where nine bridges and several dikes are located. The aim of the study is to examine the influence of water structures on the derived model roughness parameters, with all the bridges and dikes taken into account, with a reduced number and without any water infrastructure. The results indicate that roughness parameter values of a 1-D HEC-RAS model can be adjusted for the reduction in model structure. However, the price we pay is the model robustness. Apart from a relatively simple question regarding reducing model structure, we also try to answer more fundamental questions regarding the relative importance of input, model structure simplification, parametric and rating curve uncertainty to the uncertainty of flood extent estimates. We apply pseudo-Bayesian methods of uncertainty estimation and Global Sensitivity Analysis as the main methodological tools. The results indicate that the uncertainties have a substantial influence on flood risk assessment. In the paper we present a simplified methodology allowing the influence of that uncertainty to be assessed. This work was supported by National Science Centre of Poland (grant 2011/01/B/ST10/06866).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014HESS...18.3461E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014HESS...18.3461E"><span>New method for assessing the susceptibility of glacial lakes to outburst floods in the Cordillera Blanca, Peru</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Emmer, A.; Vilímek, V.</p> <p>2014-09-01</p> <p>This paper presents a new and easily repeatable method for assessing the susceptibility of glacial lakes to outburst floods (GLOFs) within the Peruvian region of the Cordillera Blanca. The presented method was designed to: (a) be repeatable (from the point of view of the demands on input data), (b) be reproducible (to provide an instructive guide for different assessors), (c) provide multiple results for different GLOF scenarios and (d) be regionally focused on the lakes of the Cordillera Blanca. Based on the input data gained from remotely sensed images and digital terrain models/topographical maps, the susceptibility of glacial lakes to outburst floods is assessed using a combination of decision trees for clarity and numerical calculation for repeatability and reproducibility. A total of seventeen assessed characteristics are used, of which seven have not been used in this context before. Also, several ratios and calculations are defined for the first time. We assume that it is not relevant to represent the overall susceptibility of a particular lake to outburst floods by one result (number), thus it is described in the presented method by five separate results (representing five different GLOF scenarios). These are potentials for (a) dam overtopping resulting from a fast slope movement into the lake, (b) dam overtopping following the flood wave originating in a lake situated upstream, (c) dam failure resulting from a fast slope movement into the lake, (d) dam failure following the flood wave originating in a lake situated upstream and (e) dam failure following a strong earthquake. All of these potentials include two or three components and theoretically range from 0 to 1. The presented method was verified on the basis of assessing the pre-flood conditions of seven lakes which have produced ten glacial lake outburst floods in the past and ten lakes which have not. A comparison of these results showed that the presented method successfully identified lakes susceptible to outburst floods (pre-flood conditions of lakes which have already produced GLOFs).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.9002V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.9002V"><span>Consequences of an unusual flood event: case study of a drainage canal breach on a fluvial plain in NE Slovenia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vidmar, Ines; Ambrožič, Bojan; Debeljak, Barbara; Dolžan, Erazem; Gregorin, Špela; Grom, Nina; Herman, Polona; Keršmanc, Teja; Mencin, Eva; Mernik, Natalija; Švara, Astrid; Trobec, Ana; Turnšek, Anita; Vodeb, Petra; Torkar, Anja; Brenčič, Mihael</p> <p>2013-04-01</p> <p>On November 4-6 2012 heavy precipitation resulted in floods in the middle and lower course of Drava River in NE Slovenia causing damage to many properties in the flooded area. The meteorological situation that led to consequent floods was characterized by high precipitation, fast snowmelt, SW wind and relatively high air temperature. The weather event was part of a cyclone which was spreading over the area of North, West and Central Europe in the direction of Central Europe and carried with it the passing of a cold front through Slovenia on November 4 and 5. The flood wave travelled on the Drava River from Austria to Slovenia past the 11 hydroelectric power plants after eventually moving over the Slovenian-Croatian border. The river discharge increased in the early morning of November 5 reaching 3165 m3/s. This work focuses on a single event in the Ptujsko polje where among other damage caused by the flooding, the river broke through the drainage canal of the Formin hydroelectric power plant and changed its course. The Ptujsko polje contains two fluvial terraces. In the area of Formin HPP, the lower terrace is 1.5 km wide and the surface as well as the groundwater gradient shift from west to east with the groundwater flowing parallel to the river. These characteristics contributed to the flooding and consequential breach in the embankment of the drainage canal. Several aspects of the recent floods are discussed including a critical reflection of data accessibility, possible causes and mechanisms behind it as well as the possibility of its forecasting. Synthesis of accessible data from open domain sources is performed with emphasis on geological conditions. Discharge and precipitation data from the data base of Slovenian Environment Agency are collected, reviewed and analyzed. The flood event itself is analyzed and described in detail. It is determined that the flood wave was different from the ones regulated by natural processes which points to an anthropogenic influence. In the paper we are focusing not only on the characteristics of a single event but try to interpret it in the context of a broader time scale using sources of similar past events of high precipitation and discharge, recorded flood events in the past and general flood characteristics of a river environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1444091-verification-experimental-dynamic-strength-methods-atomistic-ramp-release-simulations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1444091-verification-experimental-dynamic-strength-methods-atomistic-ramp-release-simulations"><span>Verification of experimental dynamic strength methods with atomistic ramp-release simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Moore, Alexander P.; Brown, Justin L.; Lim, Hojun</p> <p></p> <p>Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressuremore » gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. Furthermore, these simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvM...2e3601M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvM...2e3601M"><span>Verification of experimental dynamic strength methods with atomistic ramp-release simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, Alexander P.; Brown, Justin L.; Lim, Hojun; Lane, J. Matthew D.</p> <p>2018-05-01</p> <p>Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressure gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. These simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMEP...27..677P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMEP...27..677P"><span>Stress Wave Attenuation in Aluminum Alloy and Mild Steel Specimens Under SHPB Tensile Testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pothnis, J. R.; Ravikumar, G.; Arya, H.; Yerramalli, Chandra S.; Naik, N. K.</p> <p>2018-02-01</p> <p>Investigations on the effect of intensity of incident pressure wave applied through the striker bar on the specimen force histories and stress wave attenuation during split Hopkinson pressure bar (SHPB) tensile testing are presented. Details of the tensile SHPB along with Lagrangian x- t diagram of the setup are included. Studies were carried out on aluminum alloy 7075 T651 and IS 2062 mild steel. While testing specimens using the tensile SHPB setup, it was observed that the force calculated from the transmitter bar strain gauge was smaller than the force obtained from the incident bar strain gauge. This mismatch between the forces in the incident bar and the transmitter bar is explained on the basis of stress wave attenuation in the specimens. A methodology to obtain force histories using the strain gauges on the specimen during SHPB tensile testing is also presented. Further, scanning electron microscope images and photomicrographs are given. Correlation between the microstructure and mechanical properties is explained. Further, uncertainty analysis was conducted to ascertain the accuracy of the results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1444091-verification-experimental-dynamic-strength-methods-atomistic-ramp-release-simulations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1444091-verification-experimental-dynamic-strength-methods-atomistic-ramp-release-simulations"><span>Verification of experimental dynamic strength methods with atomistic ramp-release simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Moore, Alexander P.; Brown, Justin L.; Lim, Hojun; ...</p> <p>2018-05-04</p> <p>Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressuremore » gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. Furthermore, these simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20329818','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20329818"><span>High frequency poroelastic waves in hydrogels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chiarelli, Piero; Lanatà, Antonio; Carbone, Marina; Domenici, Claudio</p> <p>2010-03-01</p> <p>In this work a continuum model for high frequency poroelastic longitudinal waves in hydrogels is presented. A viscoelastic force describing the interaction between the polymer network and the bounded water present in such materials is introduced. The model is tested by means of ultrasound wave speed and attenuation measurements in polyvinylalcohol hydrogel samples. The theory and experiments show that ultrasound attenuation decreases linearly with the increase in the water volume fraction beta of the hydrogel. The introduction of the viscoelastic force between the bounded water and the polymer network leads to a bi-phasic theory, showing an ultrasonic fast wave attenuation that can vary as a function of the frequency with a non-integer exponent in agreement with the experimental data in literature. When beta tends to 1 (100% of interstitial water) due to the presence of bounded water in the hydrogel, the ultrasound phase velocity acquires higher value than that of pure water. The ultrasound speed gap at beta=1 is confirmed by the experimental results, showing that it increases in less cross-linked gel samples which own a higher concentration of bounded water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30f6101A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30f6101A"><span>Molecular dynamics simulations of acoustic absorption by a carbon nanotube</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ayub, M.; Zander, A. C.; Huang, D. M.; Howard, C. Q.; Cazzolato, B. S.</p> <p>2018-06-01</p> <p>Acoustic absorption by a carbon nanotube (CNT) was studied using molecular dynamics (MD) simulations in a molecular domain containing a monatomic gas driven by a time-varying periodic force to simulate acoustic wave propagation. Attenuation of the sound wave and the characteristics of the sound field due to interactions with the CNT were studied by evaluating the behavior of various acoustic parameters and comparing the behavior with that of the domain without the CNT present. A standing wave model was developed for the CNT-containing system to predict sound attenuation by the CNT and the results were verified against estimates of attenuation using the thermodynamic concept of exergy. This study demonstrates acoustic absorption effects of a CNT in a thermostatted MD simulation, quantifies the acoustic losses induced by the CNT, and illustrates their effects on the CNT. Overall, a platform was developed for MD simulations that can model acoustic damping induced by nanostructured materials such as CNTs, which can be used for further understanding of nanoscale acoustic loss mechanisms associated with molecular interactions between acoustic waves and nanomaterials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGE....15..751Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGE....15..751Y"><span>Bayesian linearized amplitude-versus-frequency inversion for quality factor and its application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Xinchao; Teng, Long; Li, Jingnan; Cheng, Jiubing</p> <p>2018-06-01</p> <p>We propose a straightforward attenuation inversion method by utilizing the amplitude-versus-frequency (AVF) characteristics of seismic data. A new linearized approximation equation of the angle and frequency dependent reflectivity in viscoelastic media is derived. We then use the presented equation to implement the Bayesian linear AVF inversion. The inversion result includes not only P-wave and S-wave velocities, and densities, but also P-wave and S-wave quality factors. Synthetic tests show that the AVF inversion surpasses the AVA inversion for quality factor estimation. However, a higher signal noise ratio (SNR) of data is necessary for the AVF inversion. To show its feasibility, we apply both the new Bayesian AVF inversion and conventional AVA inversion to a tight gas reservoir data in Sichuan Basin in China. Considering the SNR of the field data, a combination of AVF inversion for attenuation parameters and AVA inversion for elastic parameters is recommended. The result reveals that attenuation estimations could serve as a useful complement in combination with the AVA inversion results for the detection of tight gas reservoirs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMOS53D..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMOS53D..08M"><span>Laboratory study of spectral waves over a muddy bottom</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maxeiner, E.; Dalrymple, R. A.</p> <p>2010-12-01</p> <p>The attenuation of water waves propagating over a muddy ocean floor has been studied extensively both analytically and experimentally over the past 30 years. Possible mechanisms for this include surface wave interactions with the bottom, surface wave interactions with waves formed at the water/mud interface (lutocline) and shear instability at the water/mud interface. Typically these studies have focused on monochromatic waves. Observations of wave attenuation in the field, however, are subject to a spectrum of wave frequencies and sizes. A few field studies (Sheremet and Stone, 2003; Elgar and Raubenheimer, 2008) have explored the possible effects that a wide spectrum of wave frequencies may have on wave damping mechanisms. In this study, the wave attenuation exhibited by a sea spectrum over a muddy bottom is studied experimentally in a laboratory for the first time. Using an 18 m-long wave tank at the Coastal Engineering Laboratory at Johns Hopkins University, a piston-style wave maker is used to create both monochromatic and spectral waves. A 10 m-long section of the tank floor incorporates a recessed layer of kaolinite clay which subsequently mixes with the overlying water in the presence of waves. Testing consists of three phases. First, a series of monochromatic wave trains are produced over a range of wave frequencies and in a range of water depths to assess the damping behavior with respect to a variety of parameters such as wave frequency, wave height and water depth. Damping is assessed by comparing wave height at various longitudinal locations in the tank. Second, “wave beats” are created by superimposing waves of two frequencies to create a longer envelope. Third, the wave maker is used to generate a representative random sea condition, based on the Pierson-Moskowitz sea spectrum. For this type of testing, damping is assessed by measuring wave energy flux over a period of time at various longitudinal locations in the tank. Spectral analysis is also performed at these locations to track changing spectral energy, as previous studies have hypothesized mechanisms of energy transfer between waves of different frequencies. This study is part of a Multidisciplinary University Research Initiative (MURI), which includes on computational, laboratory and field studies of wave damping in nearshore areas of the Gulf of Mexico along the coast of Louisiana.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020028708','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020028708"><span>The Velocity and Attenuation of Acoustic Emission Waves in SiC/SiC Composites Loaded in Tension</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Morscher, Gregory N.; Gyekenyesi, Andrew L.; Gray, Hugh R. (Technical Monitor)</p> <p>2002-01-01</p> <p>The behavior of acoustic waves produced by microfracture events and from pencil lead breaks was studied for two different silicon carbide fiber-reinforced silicon carbide matrix composites. The two composite systems both consisted of Hi-Nicalon (trademark) fibers and carbon interfaces but had different matrix compositions that led to considerable differences in damage accumulation and acoustic response. This behavior was primarily due to an order of magnitude difference in the interfacial shear stress for the two composite systems. Load/unload/reload tensile tests were performed and measurements were made over the entire stress range in order to determine the stress-dependence of acoustic activity for increasing damage states. It was found that using the extensional wave velocities from acoustic emission (AE) events produced from pencil lead breaks performed outside of the transducers enabled accurate measurements of the stiffness of the composite. The extensional wave velocities changed as a function of the damage state and the stress where the measurement was taken. Attenuation for AE waveforms from the pencil lead breaks occurred only for the composite possessing the lower interfacial shear stress and only at significantly high stresses. At zero stress after unloading from a peak stress, no attenuation occurred for this composite because of crack closure. For the high interfacial stress composite no attenuation was discernable at peak or zero stress over the entire stress-range of the composite. From these observations, it is believed that attenuation of AE waveforms is dependent on the magnitude of matrix crack opening.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC23A..02C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC23A..02C"><span>Wave Transformation over a Fringing Coral Reef and the Importance of Low-Frequency Waves and Offshore Water Levels to Runup and Island Overtopping</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheriton, O. M.; Storlazzi, C. D.; Rosenberger, K. J.</p> <p>2016-02-01</p> <p>Low-lying, reef-fringed islands are susceptible to sea-level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, wave gauges and a current meter were deployed for 5 months across two shore-normal transects on Roi-Namur, an atoll island in the Republic of the Marshall Islands. These observations captured two large wave events that had maximum wave heights greater than 6 m and peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly-skewed infragravity (0.04-0.004 Hz) and very low frequency (0.004-0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, exceeded 3.7 m at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3-hr time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along atoll and fringing reef-lined shorelines, such as island overwash. These observations lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of both extreme shoreline runup and island overwash, threatening the sustainability of these islands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMNH11C..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMNH11C..04S"><span>Communicating Flood Risk with Street-Level Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanders, B. F.; Matthew, R.; Houston, D.; Cheung, W. H.; Karlin, B.; Schubert, J.; Gallien, T.; Luke, A.; Contreras, S.; Goodrich, K.; Feldman, D.; Basolo, V.; Serrano, K.; Reyes, A.</p> <p>2015-12-01</p> <p>Coastal communities around the world face significant and growing flood risks that require an accelerating adaptation response, and fine-resolution urban flood models could serve a pivotal role in enabling communities to meet this need. Such models depict impacts at the level of individual buildings and land parcels or "street level" - the same spatial scale at which individuals are best able to process flood risk information - constituting a powerful tool to help communities build better understandings of flood vulnerabilities and identify cost-effective interventions. To measure understanding of flood risk within a community and the potential impact of street-level models, we carried out a household survey of flood risk awareness in Newport Beach, California, a highly urbanized coastal lowland that presently experiences nuisance flooding from high tides, waves and rainfall and is expected to experience a significant increase in flood frequency and intensity with climate change. Interviews were completed with the aid of a wireless-enabled tablet device that respondents could use to identify areas they understood to be at risk of flooding and to view either a Federal Emergency Management Agency (FEMA) flood map or a more detailed map prepared with a hydrodynamic urban coastal flood model (UCI map) built with grid cells as fine as 3 m resolution and validated with historical flood data. Results indicate differences in the effectiveness of the UCI and FEMA maps at communicating the spatial distribution of flood risk, gender differences in how the maps affect flood understanding, and spatial biases in the perception of flood vulnerabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUSM.T32A..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUSM.T32A..02H"><span>Attenuation of Slab determined from T-wave generation by deep earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, J.; Ni, S.</p> <p>2006-05-01</p> <p>T-wave are seismically generated acoustic waves that propagate over great distance in the ocean sound channel (SOFAR). Because of the high attenuation in both the upper mantle and the ocean crust, T wave is rarely observed for earthquakes deeper than 80 km. However some deep earthquakes deeper than 80km indeed generate apparent T-waves if the subducted slab is continuous Okal et al. (1997) . We studied the deep earthquakes in the Fiji/Tonga region, where the subducted lithosphere is old and thus with small attenuation. After analyzing 33 earthquakes with the depth from 10 Km to 650 Km in Fiji/Tonga, we observed and modeled obvious T-phases from these earthquakes observed at station RAR. We used the T-wave generated by deep earthquakes to compute the quality factor of the Fiji/Tonga slab. The method used in this study is followed the equation (1) by [Groot-Hedlin et al,2001][1]. A=A0/(1+(Ω0/Ω)2)×exp(-LΩ/Qv)×Ωn where the A is the amplitude computed by the practicable data, amplitude depending on the earthquakes, and A0 is the inherent frequency related with the earthquake's half duration, L is the length of ray path that P wave or S travel in the slab, and the V is the velocity of P-wave. In this study, we fix the n=2, by assuming the T- wave scattering points in the Fiji/Tonga island arc having the same attribution as the continental shelf. After some computing and careful analysis, we determined the quality factor of the Fiji/Tonga to be around 1000, Such result is consistent with results from the traditional P,S-wave data[Roth & Wiens,1999][2] . Okal et al. (1997) pointed out that the slab in the part of central South America was also a continuous slab, by modeling apparent T-waves from the great 1994 Bolivian deep earthquake in relation to channeling of S wave energy propagating upward through the slab[3]. [1]Catherine D. de Groot-Hedlin, John A. Orcutt, excitation of T-phases by seafloor scattering, J. Acoust. Soc, 109,1944-1954,2001. [2]Erich G.Roth and Douglas A.Wiens, Leroy M.Dorman, Seismic attenuation tomography of the Tonga-Fiji region using phase pair methods, Geophys. Res.,104,4795-4809,1999. [3]Emile A.Okal and Jacques Talandier, T waves from the great 1994 Bolivian deep earthquake in relation to channeling of S wave energy up the slab, J.Geophys. Res.,102(12):27421-27437,1997.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900003657','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900003657"><span>Improvement and extension of a radar forest backscattering model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Simonett, David S.; Wang, Yong</p> <p>1989-01-01</p> <p>Radar modeling of mangal forest stands, in the Sundarbans area of Southern Bangladesh, was developed. The modeling employs radar system parameters such as wavelength, polarization, and incidence angle, with forest data on tree height, spacing, biomass, species combinations, and water content (including slightly conductive water) both in leaves and trunks of the mangal. For Sundri and Gewa tropical mangal forests, five model components are proposed, which are required to explain the contributions of various forest species combinations in the attenuation and scattering of mangal vegetated nonflooded or flooded surfaces. Statistical data of simulated images (HH components only) were compared with those of SIR-B images both to refine the modeling procedures and to appropriately characterize the model output. The possibility of delineation of flooded or non-flooded boundaries is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6836T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6836T"><span>Hydrological Predictability for the Peruvian Amazon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Towner, Jamie; Stephens, Elizabeth; Cloke, Hannah; Bazo, Juan; Coughlan, Erin; Zsoter, Ervin</p> <p>2017-04-01</p> <p>Population growth in the Peruvian Amazon has prompted the expansion of livelihoods further into the floodplain and thus increasing vulnerability to the annual rise and fall of the river. This growth has coincided with a period of increasing hydrological extremes with more frequent severe flood events. The anticipation and forecasting of these events is crucial for mitigating vulnerability. Forecast-based Financing (FbF) an initiative of the German Red Cross implements risk reducing actions based on threshold exceedance within hydrometeorological forecasts using the Global Flood Awareness System (GloFAS). However, the lead times required to complete certain actions can be long (e.g. several weeks to months ahead to purchase materials and reinforce houses) and are beyond the current capabilities of GloFAS. Therefore, further calibration of the model is required in addition to understanding the climatic drivers and associated hydrological response for specific flood events, such as those observed in 2009, 2012 and 2015. This review sets out to determine the current capabilities of the GloFAS model while exploring the limits of predictability for the Amazon basin. More specifically, how the temporal patterns of flow within the main coinciding tributaries correspond to the overall Amazonian flood wave under various climatic and meteorological influences. Linking the source areas of flow to predictability within the seasonal forecasting system will develop the ability to expand the limit of predictability of the flood wave. This presentation will focus on the Iquitos region of Peru, while providing an overview of the new techniques and current challenges faced within seasonal flood prediction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800010330','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800010330"><span>Internal friction and modulus in rocks at depth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tittmann, B. R.; Clark, V. A.; Anlberg, L.</p> <p>1980-01-01</p> <p>Experimental results relevant to the seismic wave attenuation observed for the lunar crust are presented along with some results bearing on the mechanism by which the presence of volatiles increases the attenuation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1036382','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1036382"><span>An Optimized Combined Wave and Current Bottom Boundary Layer Model for Arbitrary Bed Roughness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-06-30</p> <p>Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL), Flood and Storm Protection Division (HF), Coastal ...ER D C/ CH L TR -1 7- 11 Coastal Inlets Research Program An Optimized Combined Wave and Current Bottom Boundary Layer Model for...client/default. Coastal Inlets Research Program ERDC/CHL TR-17-11 June 2017 An Optimized Combined Wave and Current Bottom Boundary Layer Model</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSV...421..319A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSV...421..319A"><span>Molecular dynamics simulations of classical sound absorption in a monatomic gas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ayub, M.; Zander, A. C.; Huang, D. M.; Cazzolato, B. S.; Howard, C. Q.</p> <p>2018-05-01</p> <p>Sound wave propagation in argon gas is simulated using molecular dynamics (MD) in order to determine the attenuation of acoustic energy due to classical (viscous and thermal) losses at high frequencies. In addition, a method is described to estimate attenuation of acoustic energy using the thermodynamic concept of exergy. The results are compared against standing wave theory and the predictions of the theory of continuum mechanics. Acoustic energy losses are studied by evaluating various attenuation parameters and by comparing the changes in behavior at three different frequencies. This study demonstrates acoustic absorption effects in a gas simulated in a thermostatted molecular simulation and quantifies the classical losses in terms of the sound attenuation constant. The approach can be extended to further understanding of acoustic loss mechanisms in the presence of nanoscale porous materials in the simulation domain.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030112439&hterms=coefficient+determination&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcoefficient%2Bdetermination','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030112439&hterms=coefficient+determination&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcoefficient%2Bdetermination"><span>Determination of Dimensionless Attenuation Coefficient in Shaped Resonators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.</p> <p>2003-01-01</p> <p>The value of dimensionless attenuation coefficient is an important factor when numerically predicting high-amplitude acoustic waves in shaped resonators. Both the magnitude of the pressure waveform and the quality factor rely heavily on this dimensionless parameter. Previous authors have stated the values used, but have not completely explained their methods. This work fully describes the methodology used to determine this important parameter. Over a range of frequencies encompassing the fundamental resonance, the pressure waves were experimentally measured at each end of the shaped resonators. At the corresponding dimensionless acceleration, the numerical code modeled the acoustic waveforms generated in the resonator using various dimensionless attenuation coefficients. The dimensionless attenuation coefficient that most closely matched the pressure amplitudes and quality factors of the experimental and numerical results was determined to be the value to be used in subsequent studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Tectp.674..135Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Tectp.674..135Z"><span>Strong Lg-wave attenuation in the Middle East continental collision orogenic belt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Lian-Feng; Xie, Xiao-Bi</p> <p>2016-04-01</p> <p>Using Lg-wave Q tomography, we construct a broadband crustal attenuation model for the Middle East. The QLg images reveal a relationship between attenuation and geological structures. Strong attenuation is found in the continental collision orogenic belt that extends from the Turkish and Iranian plateau to the Pamir plateau. We investigate the frequency dependence of QLg in different geologic formations. The results illustrate that QLg values generally increase with increasing frequency but exhibit complex relationships both with frequency and between regions. An average QLg value between 0.2 and 2.0 Hz, QLg (0.2-2.0 Hz), may be a critical index for crustal attenuation and is used to infer the regional geology. Low-QLg anomalies are present in the eastern Turkish plateau and correlate well with low Pn-velocities and Cenozoic volcanic activity, thus indicating possible partial melting within the crust in this region. Very strong attenuation is also observed in central Iran, the Afghanistan block, and the southern Caspian Sea. This in line with the previously observed high crustal temperature, high-conductivity layers, and thick marine sediments in these areas, suggests the high Lg attenuation is caused by abnormally high tectonic and thermal activities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70129159','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70129159"><span>Formation of fine sediment deposit from a flash flood river in the Mediterranean Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Grifoll, Manel; Gracia, Vicenç; Aretxabaleta, Alfredo L.; Guillén, Jorge; Espino, Manuel; Warner, John C.</p> <p>2014-01-01</p> <p>We identify the mechanisms controlling fine deposits on the inner-shelf in front of the Besòs River, in the northwestern Mediterranean Sea. This river is characterized by a flash flood regime discharging large amounts of water (more than 20 times the mean water discharge) and sediment in very short periods lasting from hours to few days. Numerical model output was compared with bottom sediment observations and used to characterize the multiple spatial and temporal scales involved in offshore sediment deposit formation. A high-resolution (50 m grid size) coupled hydrodynamic-wave-sediment transport model was applied to the initial stages of the sediment dispersal after a storm-related flood event. After the flood, sediment accumulation was predominantly confined to an area near the coastline as a result of preferential deposition during the final stage of the storm. Subsequent reworking occurred due to wave-induced bottom shear stress that resuspended fine materials, with seaward flow exporting them toward the midshelf. Wave characteristics, sediment availability, and shelf circulation determined the transport after the reworking and the final sediment deposition location. One year simulations of the regional area revealed a prevalent southwestward average flow with increased intensity downstream. The circulation pattern was consistent with the observed fine deposit depocenter being shifted southward from the river mouth. At the southern edge, bathymetry controlled the fine deposition by inducing near-bottom flow convergence enhancing bottom shear stress. According to the short-term and long-term analyses, a seasonal pattern in the fine deposit formation is expected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29716297','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29716297"><span>Defect imaging for plate-like structures using diffuse field.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hayashi, Takahiro</p> <p>2018-04-01</p> <p>Defect imaging utilizing a scanning laser source (SLS) technique produces images of defects in a plate-like structure, as well as spurious images occurring because of resonances and reverberations within the specimen. This study developed defect imaging by the SLS using diffuse field concepts to reduce the intensity of spurious images, by which the energy of flexural waves excited by laser can be estimated. The experimental results in the different frequency bandwidths of excitation waves and in specimens with different attenuation proved that clearer images of defects are obtained in broadband excitation using a chirp wave and in specimens with low attenuation, which produce diffuse fields easily.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720031801&hterms=fair+value&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dfair%2Bvalue','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720031801&hterms=fair+value&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dfair%2Bvalue"><span>Effects of viscosity and constraints on the dispersion and dissipation of waves in large blood vessels. II.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jones, E.; Anliker, M.; Chang, I.</p> <p>1971-01-01</p> <p>Comparison of previously described theoretical predictions with in vivo data from anesthetized dogs. It is shown that the observed attenuation of the pressure and axial waves cannot be accounted for by fluid viscosity alone. For large values of the frequency parameter alpha, the previous analysis is extended to include the effects of viscoelasticity of the vessel wall. The results indicate that the speeds of both types of waves are essentially unaffected by a realistic viscoelasticity model while the attenuation per wavelength is significantly increased and becomes frequency independent. There is fair agreement between theory and experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29041136','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29041136"><span>Switching terahertz wave with grating-coupled Kretschmann configuration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiu-Sheng, Li</p> <p>2017-08-07</p> <p>We present a terahertz wave switch utilizing Kretschmann configuration which consists of high-refractive-index prism-liquid crystal-periodically grooved metal grating. The switching mechanism of the terahertz switch is based on spoof surface plasmon polariton (SSPP) excitation in the attenuated total reflection regime by changing the liquid crystal refractive index. The results highlighted the fact that the feasibility to "tune" the attenuated total reflection terahertz wave intensity by using the external applied bias voltage. The extinction ratio of the terahertz switch reaches 31.48dB. The terahertz switch has good control ability and flexibility, and can be used in potential terahertz free space device systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH41A0152K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH41A0152K"><span>Coastal and Riverine Flood Forecast Model powered by ADCIRC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khalid, A.; Ferreira, C.</p> <p>2017-12-01</p> <p>Coastal flooding is becoming a major threat to increased population in the coastal areas. To protect coastal communities from tropical storms & hurricane damages, early warning systems are being developed. These systems have the capability of real time flood forecasting to identify hazardous coastal areas and aid coastal communities in rescue operations. State of the art hydrodynamic models forced by atmospheric forcing have given modelers the ability to forecast storm surge, water levels and currents. This helps to identify the areas threatened by intense storms. Study on Chesapeake Bay area has gained national importance because of its combined riverine and coastal phenomenon, which leads to greater uncertainty in flood predictions. This study presents an automated flood forecast system developed by following Advanced Circulation (ADCIRC) Surge Guidance System (ASGS) guidelines and tailored to take in riverine and coastal boundary forcing, thus includes all the hydrodynamic processes to forecast total water in the Potomac River. As studies on tidal and riverine flow interaction are very scarce in number, our forecast system would be a scientific tool to examine such area and fill the gaps with precise prediction for Potomac River. Real-time observations from National Oceanic and Atmospheric Administration (NOAA) and field measurements have been used as model boundary feeding. The model performance has been validated by using major historical riverine and coastal flooding events. Hydrodynamic model ADCIRC produced promising predictions for flood inundation areas. As better forecasts can be achieved by using coupled models, this system is developed to take boundary conditions from Global WaveWatchIII for the research purposes. Wave and swell propagation will be fed through Global WavewatchIII model to take into account the effects of swells and currents. This automated forecast system is currently undergoing rigorous testing to include any missing parameters which might provide better and more reliable forecast for the flood affected communities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28159449','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28159449"><span>A surface wave elastography technique for measuring tissue viscoelastic properties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Xiaoming</p> <p>2017-04-01</p> <p>A surface wave elastography method is proposed to study the viscoelastic properties of skin by measuring the surface wave speed and attenuation on the skin. Experiments were carried out on porcine skin tissues. The surface wave speed is measured by the change of phase with distance. The wave attenuation is measured by the decay of wave amplitude with distance. The change of viscoelastic properties with temperature was studied at room and body temperatures. The wave speed was 1.83m/s at 22°C but reduced to 1.52m/s at 33°C. The viscoelastic ratio was almost constant from 22°C to 33°C. Fresh and decayed tissues were studied. The wave speed of the decayed tissue increased from 1.83m/s of fresh state to 2.73m/s. The viscoelastic ratio was 0.412/mm at the decayed state compared to 0.215/mm at the fresh state. More tissue samples are needed to study these viscoelastic parameters according to specific applications. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012DokES.442..292K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012DokES.442..292K"><span>Heterogeneities of the shear wave attenuation field in the lithosphere of East Tien Shan and their relationship with seismicity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kopnichev, Yu. F.; Sokolova, I. N.</p> <p>2012-02-01</p> <p>The shear wave attenuation field in the lithosphere of Eastern Tien Shan has been mapped. The method based on analysis of the ratio between amplitudes of Sn and Pn waves was used. On aggregate, about 120 seismograms made at the Makanchi station (MKAR), mainly in the period of 2003-2009, at epicentral distances of about 350-1200 km were analyzed. It was found that shear wave attenuation in the lithosphere of Eastern Tien Shan is weaker than that in the region of Central Tien Shan. This agrees with the fact that the rate of deformation of the Earth's crust in Eastern Tien Shan is lower (based on GPS data), as is the seismicity level, in comparison to Central Tien Shan. The zones of high attenuation, where strong earthquakes with M > 7.0 have not occurred for the last 200 years, have been identified: first of all, these are the area west of Urumqi and that of the Lop Nur test site. It is suggested that in the first zone, where an annular seismicity structure has formed over the last 30 years, a strong earthquake may be being prepared. The second zone is most probably related to the uplift of mantle fluids resulting from a long-term intensive technogenic effect, analogous to what has occurred in areas of other nuclear test sites (Nevada and Semipalatinsk).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27177099','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27177099"><span>Effect of the secondary process on mass point vibration velocity propagation in magneto-acoustic tomography and magneto-acousto-electrical tomography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Zhishen; Liu, Guoqiang; Guo, Liang; Xia, Hui; Wang, Xinli</p> <p>2016-04-29</p> <p>As two of the new biological electrical impedance tomography (EIT), magneto-acoustic tomography (MAT) and magneto-acousto-electrical tomography (MAET) achieve both the high contrast property of EIT and the high spatial resolution property of sonography through combining EIT and sonography. As both MAT and MAET contain a uniform magnetic field, vibration and electrical current density, there is a secondary process both in MAT and in MAET, which is MAET and MAT respectively. To analyze the effect of the secondary process on mass point vibration velocity (MPVV) propagation in MAT and MAET. By analyzing the total force to the sample, the wave equations of MPVV in MAT and MAET - when the secondary processes were considered - were derived. The expression of the attenuation constant in the wave number was derived in the case that the mass point vibration velocity propagates in the form of cylindrical wave and plane wave. Attenuations of propagation of the MPVV in several samples were quantified. Attenuations of the MPVV after propagating for 1 mm in copper or aluminum foil, and for 5 cm in gel phantom or biological soft tissue were less than 1%. Attenuations of the MPVV in MAT and MAET due to the secondary processes are relatively minor, and effects of the secondary processes on MPVV propagation in MAT and MAET can be ignored.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADB012103','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADB012103"><span>Millimeter Wave Radar Applications to Weapons Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1976-06-01</p> <p>meter wave region compared with the high attenuation in the optical region. It is this unique characteristic of millimeter waves to penetrate fog...miiliaeter wave radars in graund-to-- air , ground-to-ground, and air -to-ground weapons systems aye presented. The advantages and limitation~s¶ of operating...MILLIMETER WAVE RADAR CHARACTERISTICS ..... ............ .. 27 A, General ................ ......................... ... 27 B. Ground-to- Air Millimeter</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAG...152..167T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAG...152..167T"><span>Wave equation datuming applied to S-wave reflection seismic data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tinivella, U.; Giustiniani, M.; Nicolich, R.</p> <p>2018-05-01</p> <p>S-wave high-resolution reflection seismic data was processed using Wave Equation Datuming technique in order to improve signal/noise ratio, attenuating coherent noise, and seismic resolution and to solve static corrections problems. The application of this algorithm allowed obtaining a good image of the shallow subsurface geological features. Wave Equation Datuming moves shots and receivers from a surface to another datum (the datum plane), removing time shifts originated by elevation variation and/or velocity changes in the shallow subsoil. This algorithm has been developed and currently applied to P wave, but it reveals the capacity to highlight S-waves images when used to resolve thin layers in high-resolution prospecting. A good S-wave image facilitates correlation with well stratigraphies, optimizing cost/benefit ratio of any drilling. The application of Wave Equation Datuming requires a reliable velocity field, so refraction tomography was adopted. The new seismic image highlights the details of the subsoil reflectors and allows an easier integration with borehole information and geological surveys than the seismic section obtained by conventional CMP reflection processing. In conclusion, the analysis of S-wave let to characterize the shallow subsurface recognizing levels with limited thickness once we have clearly attenuated ground roll, wind and environmental noise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998PApGe.153..239K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998PApGe.153..239K"><span>A Dislocation Model of Seismic Wave Attenuation and Micro-creep in the Earth: Harold Jeffreys and the Rheology of the Solid Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karato, S.</p> <p></p> <p>A microphysical model of seismic wave attenuation is developed to provide a physical basis to interpret temperature and frequency dependence of seismic wave attenuation. The model is based on the dynamics of dislocation motion in minerals with a high Peierls stress. It is proposed that most of seismic wave attenuation occurs through the migration of geometrical kinks (micro-glide) and/or nucleation/migration of an isolated pair of kinks (Bordoni peak), whereas the long-term plastic deformation involves the continuing nucleation and migration of kinks (macro-glide). Kink migration is much easier than kink nucleation, and this provides a natural explanation for the vast difference in dislocation mobility between seismic and geological time scales. The frequency and temperature dependences of attenuation depend on the geometry and dynamics of dislocation motion both of which affect the distribution of relaxation times. The distribution of relaxation times is largely controlled by the distribution in distance between pinning points of dislocations, L, and the observed frequency dependence of Q, Q, Q ωα is shown to require a distribution function of P(L) L-m with m=4-2α The activation energy of Q-1 in minerals with a high Peierls stress corresponds to that for kink nucleation and is similar to that of long-term creep. The observed large lateral variation in Q-1 strongly suggests that the Q-1 in the mantle is frequency dependent. Micro-deformation with high dislocation mobility will (temporarily) cease when all the geometrical kinks are exhausted. For a typical dislocation density of 108 m-2, transient creep with small viscosity related to seismic wave attenuation will persist up to the strain of 10-6, thus even a small strain ( 10-6-10-4) process such as post-glacial rebound is only marginally affected by this type of anelastic relaxation. At longer time scales continuing nucleation of kinks becomes important and enables indefinitely large strain, steady-state creep, causing viscous behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JSV...363..225L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JSV...363..225L"><span>Ultrasonic isolation of buried pipes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter</p> <p>2016-02-01</p> <p>Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10-35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3-1.2 dB m-1 for loose and compacted sand conditions, compared to measured attenuation of 1.7-4.7 dB m-1 in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges; such coatings would be attractive for new pipeline installations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PEPI..271...19S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PEPI..271...19S"><span>Relative role of intrinsic and scattering attenuation beneath the Andaman Islands, India and tectonic implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, Chandrani; Biswas, Rahul; Srijayanthi, G.; Ravi Kumar, M.</p> <p>2017-10-01</p> <p>The attenuation characteristics of seismic waves traversing the Andaman Nicobar subduction zone (ANSZ) are investigated using high quality data from a network of broadband stations operational since 2009. We initially studied the Coda wave attenuation (Qc-1) under the assumption of a single isotropic scattering model. Subsequently, following the multiple isotropic scattering hypothesis, we isolated the relative contributions of intrinsic (Qi-1) and scattering (Qsc-1) attenuation employing the Multiple Lapse Time Window Analysis (MLTWA) method within a frequency range 1.5-18 Hz. Results reveal a highly attenuative nature of the crust, with the values of Qc being frequency dependent. The intrinsic absorption is mostly found to be predominant compared to scattering attenuation. The dominance of Qi-1 in the crust may be attributed to the presence of fluids associated with the subducted slab. Our results are consistent with the low velocity zone reported for the region. A comparison of our results with those from other regions of the globe shows that the ANSZ falls under the category of high intrinsic attenuation zone. Interestingly, the character of ANSZ is identical to that of eastern Himalaya and southern Tibet, but entirely different from the Garhwal-Kumaun Himalaya and the source zone of Chamoli earthquake, due to the underlying mechanisms causing high attenuation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1039242','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1039242"><span>Impact of errors in short wave radiation and its attenuation on modeled upper ocean heat content</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p></p> <p>Photosynthetically available radiation (PAR) and its attenuation with the depth represent a forcing (source) term in the governing equation for the...and vertical attenuation of PAR have on the upper ocean model heat content. In the Monterey Bay area, we show that with a decrease in water clarity...attenuation coefficient. For Jerlov’s type IA water (attenuation coefficient is 0.049 m1), the relative error in surface PAR introduces an error</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OSJ...tmp...28L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OSJ...tmp...28L"><span>Wave-induced Maintenance of Suspended Sediment Concentration during Slack in a Tidal Channel on a Sheltered Macro-tidal Flat, Gangwha Island, Korea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Guan-hong; Kang, KiRyong</p> <p>2018-05-01</p> <p>A field campaign was conducted to better understand the influence of wave action, in terms of turbulence and bed shear stress, on sediment resuspension and transport processes on a protected tidal flat. An H-frame was deployed in a tidal channel south of Gangwha Island for 6 tidal cycles during November 2006 with instrumentation including an Acoustic Doppler Velocimeter, an Acoustic Backscatter System, and an Optical Backscatter Sensor. During calm conditions, the current-induced shear was dominant and responsible for suspending sediments during the accelerating phases of flood and ebb. During the high-tide slack, both bed shear stress and suspended sediment concentration were reduced. The sediment flux was directed landward due to the scour-lag effect over a tidal cycle. On the other hand, when waves were stronger, the wave-induced turbulence appeared to keep sediments in suspension even during the high-tide slack, while the current-induced shear remained dominant during the accelerating phases of flood and ebb. The sediment flux under strong waves was directed offshore due to the sustained high suspended sediment concentration during the high-tide slack. Although strong waves can induce offshore sediment flux, infrequent events with strong waves are unlikely to alter the long-term accretion of the protected southern Gangwha tidal flats.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020328','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020328"><span>Estimation of the intrinsic absorption and scattering attenuation in Northeastern Venezuela (Southeastern Caribbean) using coda waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ugalde, A.; Pujades, L.G.; Canas, J.A.; Villasenor, A.</p> <p>1998-01-01</p> <p>Northeastern Venezuela has been studied in terms of coda wave attenuation using seismograms from local earthquakes recorded by a temporary short-period seismic network. The studied area has been separated into two subregions in order to investigate lateral variations in the attenuation parameters. Coda-Q-1 (Q(c)-1) has been obtained using the single-scattering theory. The contribution of the intrinsic absorption (Q(i)-1) and scattering (Q(s)-1) to total attenuation (Q(t)-1) has been estimated by means of a multiple lapse time window method, based on the hypothesis of multiple isotropic scattering with uniform distribution of scatterers. Results show significant spatial variations of attenuation: the estimates for intermediate depth events and for shallow events present major differences. This fact may be related to different tectonic characteristics that may be due to the presence of the Lesser Antilles subduction zone, because the intermediate depth seismic zone may be coincident with the southern continuation of the subducting slab under the arc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.2179D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.2179D"><span>Attenuation tomography of the main volcanic regions of the Campanian Plain.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Siena, Luca; Del Pezzo, Edoardo; Bianco, Francesca</p> <p>2010-05-01</p> <p>Passive, high resolution attenuation tomography is used to image the geological structure in the first upper 4 km of shallow crust beneath the Campanian Plain. Images were produced by two separate attenuation tomography studies of the main volcanic regions of the Campanian Plain, Southern Italy, Mt. Vesuvius volcano and Campi Flegrei caldera. The three-dimensional S wave attenuation tomography of Mt. Vesuvius has been obtained with multiple measurements of coda-normalized S-wave spectra of local small magnitude earthquakes. P-wave attenuation tomography was performed using classical spectral methods. The images were obtained inverting the spectral data with a multiple resolution approach expressively designed for attenuation tomography. This allowed to obtain a robust attenuation image of the volumes under the central cone at a maximum resolution of 300 m. The same approach was applied to a data set recorded in the Campi Flegrei area during the 1982-1984 seismic crisis. Inversion ensures a minimum cell size resolution of 500 meters in the zones with sufficient ray coverage, and 1000 meters outside these zones. The study of the resolution matrix as well as the synthetic tests guarantee an optimal reproduction of the input anomalies in the center of the caldera, between 0 and 3.5 km in depth. Results allowed an unprecedented view of several features of the medium, like the residual part of solidified magma from the last eruption, under the central cone of Mt. Vesuvius, and the feeding systems and top of the carbonate basement, 3 km depth below both volcanic areas. Vertical Q contrast image important fault zones, such as the La Starza fault, as well as high attenuation structures that correspond to gas or fluid reservoirs, and reveal the upper part of gas bearing conduits connecting these high attenuation volumes with the magma sill revealed at about 7 km in depth by passive travel-time tomography under the whole Campanian Plain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA601190','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA601190"><span>An Arctic Ice/Ocean Coupled Model with Wave Interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-30</p> <p>motion in the presence of currents and waves. In the wave attenuation experiments, between 35 and 80 ‘ice floes’ (0.99 m diameter wooden disks) were...moored with springs to the tank floor and plane waves were sent down, with an array of wave probes to measure the reflected and transmitted waves...waves propagating in the MIZ as opposed to the acoustic wave solution shown. This outcome offers significant new capabilities for tracking fully</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7116R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7116R"><span>Origins of anisotropic seismic attenuation of the inner core - intrinsic anelasticity of hcp iron alloy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Redfern, Simon</p> <p>2015-04-01</p> <p>Earth's inner core is elastically anisotropic, with seismology showing faster wave propagation along the polar axis compared to the equatorial plane. Some inner core studies report anisotropic seismic attenuation. Attenuation of body-waves has, previously, been postulated to be due to scattering by anisotropic microstructure, but recent normal mode studies also show strong anisotropic attenuation (Mäkinen et al. 2014). This suggests that the anisotropic attenuation is a result of the intrinsic (and anisotropic) anelastic properties of the solid iron alloy forming Earth's inner core. Here, I consider the origins of inner core anisotropic attenuation. Possibilities include grain boundary relaxation, dislocation bowing/glide, or point defect (alloying element) relaxations. The inner core is an almost perfect environment for near-equilibrium crystallisation, with very low temperature gradients across the inner core, low gravity, and slow crystallisation rates. It is assumed that grain sizes may be of the order of hundreds of metres. This implies vanishingly small volumes of grain boundary, and insignificant grain boundary relaxation. The very high homologous temperature and the absence of obvious deviatoric stress, also leads one to conclude that dislocation densities are low. On the other hand, estimates for light element concentrations are of the order of a few % with O, S, Si, C and H at various times being suggested as candidate elements. Light element solutes in hcp metals contribute to intrinsic anelastic attenuation if they occur in sufficient concentrations to pair and form elastic dipoles. Switching of dipoles under the stress of a passing seismic wave will result in anelastic mechanical loss. Such attenuation has been measured in hcp metals in the lab, and is anisotropic due to the intrinsic elastic anisotropy of the host lattice. Such solute pair relaxations result in a "Zener effect", which is suggested here to be responsible for observed anisotropic seismic attenuation. Zener relaxation magnitude scales with solute concentration and is consistent with around 5% light element. Variations in attenuation are expected in a core with spatially varying concentrations of light element, and attenuation tomography of the inner core could, therefore, be employed to map chemical heterogeneity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EaFut...5..918C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EaFut...5..918C"><span>Statistical wave climate projections for coastal impact assessments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Camus, P.; Losada, I. J.; Izaguirre, C.; Espejo, A.; Menéndez, M.; Pérez, J.</p> <p>2017-09-01</p> <p>Global multimodel wave climate projections are obtained at 1.0° × 1.0° scale from 30 Coupled Model Intercomparison Project Phase 5 (CMIP5) global circulation model (GCM) realizations. A semi-supervised weather-typing approach based on a characterization of the ocean wave generation areas and the historical wave information from the recent GOW2 database are used to train the statistical model. This framework is also applied to obtain high resolution projections of coastal wave climate and coastal impacts as port operability and coastal flooding. Regional projections are estimated using the collection of weather types at spacing of 1.0°. This assumption is feasible because the predictor is defined based on the wave generation area and the classification is guided by the local wave climate. The assessment of future changes in coastal impacts is based on direct downscaling of indicators defined by empirical formulations (total water level for coastal flooding and number of hours per year with overtopping for port operability). Global multimodel projections of the significant wave height and peak period are consistent with changes obtained in previous studies. Statistical confidence of expected changes is obtained due to the large number of GCMs to construct the ensemble. The proposed methodology is proved to be flexible to project wave climate at different spatial scales. Regional changes of additional variables as wave direction or other statistics can be estimated from the future empirical distribution with extreme values restricted to high percentiles (i.e., 95th, 99th percentiles). The statistical framework can also be applied to evaluate regional coastal impacts integrating changes in storminess and sea level rise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006CSR....26.1061B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006CSR....26.1061B"><span>Coastal flooding hazard related to storms and coastal evolution in Valdelagrana spit (Cadiz Bay Natural Park, SW Spain)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benavente, J.; Del Río, L.; Gracia, F. J.; Martínez-del-Pozo, J. A.</p> <p>2006-06-01</p> <p>Mapping of coastal inundation hazard related to storms requires the combination of multiple sources of information regarding meteorological, morphological and dynamic characteristics of both the area at risk and the studied phenomena. Variables such as beach slope, storm wave height or wind speed have traditionally been used, but detailed geomorphological features of the area as well as long-term shoreline evolution trends must also be taken into account in order to achieve more realistic results. This work presents an evaluation of storm flooding hazard in Valdelagrana spit and marshes (SW Spain), considering two types of storm that are characteristic of the area: a modal storm with 1 year of recurrence interval (maximum wave height of 3.3 m), and an extreme storm with 6-10 years of recurrence interval (maximum wave height of 10.6 m), both approaching the coast perpendicularly. After calculating theoretical storm surge elevation, a digital terrain model was made by adjusting topographic data to field work and detailed geomorphological analysis. A model of flooding extent was subsequently developed for each storm type, and then corrected according to the rates of shoreline change in the last decades, which were assessed by means of aerial photographs taking the dune toe as shoreline indicator. Results show that long-term coastline trend represents an important factor in the prediction of flooding extent, since shoreline retreat causes the deterioration of natural coastal defences as dune ridges, thus increasing coastal exposure to high-energy waves. This way, it has been stated that the lack of sedimentary supply plays an important role in spatial variability of inundation extent in Valdelagrana spit. Finally, a hazard map is presented, where calculated coastal retreat rates are employed in order to predict the areas that could be affected by future inundation events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wsp/2030/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wsp/2030/report.pdf"><span>Summary of floods in the United States during 1969</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reid, J.K.</p> <p>1975-01-01</p> <p>The most outstanding floods in the United States during 1969 are described in chronological order. The areas most seriously affected by flooding were: Central and southern California (January and February); the upper Midwestern States of North Dakota, South Dakota, Minnesota, Iowa, Wisconsin, and Illinois (April); north-central Ohio (July); Mississippi, Alabama, and Virginia (Hurricane Camille in August); and Florida and Georgia (September). Severe floods in central and southern California were caused by three storms during January and February. At least 60 lives were lost. Homes and property were destroyed or damaged, by rainstorms, floods, and mudflows. Many floods approached or exceeded the maximum known. The severe flood damage was due partly to recent home construction in floodprone areas. The April floods in the upper Midwestern States of North Dakota, South Dakota, Minnesota, Iowa, Wisconsin, and Illinois were expected because of a large accumulation of snow containing as much as 8 inches of water. Flood-protection procedures, together with cool temperatures, had a mitigating effect on the flood. The floods were the largest since the late 1800's, and their recurrence intervals exceeded 50 years at many of the gaged sites. Estimates of flood damage were about $147 million. More than a million acres of rich agricultural land were inundated, thousands of culverts and bridges were washed out, 23,000 people were forced from their homes and 11 lives were lost in the six-State flood area. Intense rainstorms and wind with gusts as much as 100 miles per hour, July 4-5, caused record floods in north-central Ohio, July 4-8. The storm and floods left trees uprooted, more than $66 million in damage, and 41 deaths. In many places the floods were the largest of record. Together with the wind and rainstorm, the hydrologic conditions were among the most significant experienced in the area. Hurricane Camille was the most intense hurricane on record to enter the United States mainland. It struck the Mississippi-Alabama coast on August 18, with tidal waves as high as 25 feet above mean sea level and wind velocities more than 190 miles per hour. Tidal wave and flood damage was about $1.3 billion. In Mississippi the known dead totaled 139 and 76 other persons were missing. The hurricane intensity decreased as it moved inland until it merged with severe rainstorms over the Appalachian mountains. The intensified hurricane then caused record-breaking floods of streams in a 50-mile-wide area as it moved eastward from Sulphur Springs, W. Va., to Fredericksburg, Va. Total flood damage in Virginia exceeded $116 million. There were 113 known deaths, 102 injuries, and 39 people missing. A tropical storm that was nearly stationary over northwest Florida for about 48 hours, September 20-23 produced record rains and floods. Near Quincy, Fla., the total rainfall for the period exceeded 20 inches. On Little River near Quincy, the peak discharge was nearly twice the previous maximum of record and was three times that of a 50-year flood. Flood damage to agricultural lands, bridges, culverts, and roads was about $1.7 million.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAP...122g5101B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAP...122g5101B"><span>Frequency graded 1D metamaterials: A study on the attenuation bands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Banerjee, Arnab; Das, Raj; Calius, Emilio P.</p> <p>2017-08-01</p> <p>Depending on the frequency, waves can either propagate (transmission band) or be attenuated (attenuation band) while travelling through a one-dimensional spring-mass chain with internal resonators. The literature on wave propagation through a 1D mass-in-mass chain is vast and continues to proliferate because of its versatile applicability in condensed matter physics, optics, chemistry, acoustics, and mechanics. However, in all these areas, a uniformly periodic arrangement of identical linear resonating units is normally used which limits the attenuation band to a narrow frequency range. To counter this limitation of linear uniformly periodic metamaterials, the attenuation bandwidth in a one-dimensional finite chain with frequency graded linear internal resonators are investigated in this paper. The result shows that a properly tuned frequency graded arrangement of resonating units can extend the upper part of the attenuation band of 1D metamaterial theoretically up to infinity and also increases the lower part of the attenuation bandwidth by around 40% of an equivalent uniformly periodic metamaterial without increasing the mass. Therefore, the frequency graded metamaterials can be a potential solution towards low frequency and wideband acoustic or vibration insulation. In addition, this paper provides analytical expressions for the attenuation and transmission frequency limits for a periodic mass-in-mass metamaterial and demonstrates the attenuation band is generated by the high absolute value of the effective mass not only due to the negative effective mass.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004GeoRL..3115611V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004GeoRL..3115611V"><span>Upper mantle Q and thermal structure beneath Tanzania, East Africa from teleseismic P wave spectra</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Venkataraman, Anupama; Nyblade, Andrew A.; Ritsema, Jeroen</p> <p>2004-08-01</p> <p>We measure P wave spectral amplitude ratios from deep-focus earthquakes recorded at broadband seismic stations of the Tanzania network to estimate regional variation of sublithospheric mantle attenuation beneath the Tanzania craton and the eastern branch of the East African Rift. One-dimensional profiles of QP adequately explain the systematic variation of P wave attenuation in the sublithospheric upper mantle: QP ~ 175 beneath the cratonic lithosphere, while it is ~ 80 beneath the rifted lithosphere. By combining the QP values and a model of P wave velocity perturbations, we estimate that the temperature beneath the rifted lithosphere (100-400 km depth) is 140-280 K higher than ambient mantle temperatures, consistent with the observation that the 410 km discontinuity in this region is depressed by 30-40 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28720056','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28720056"><span>Influence of Tissue Microstructure on Shear Wave Speed Measurements in Plane Shear Wave Elastography: A Computational Study in Lossless Fibrotic Liver Media.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Yu; Jiang, Jingfeng</p> <p>2018-01-01</p> <p>Shear wave elastography (SWE) has been used to measure viscoelastic properties for characterization of fibrotic livers. In this technique, external mechanical vibrations or acoustic radiation forces are first transmitted to the tissue being imaged to induce shear waves. Ultrasonically measured displacement/velocity is then utilized to obtain elastographic measurements related to shear wave propagation. Using an open-source wave simulator, k-Wave, we conducted a case study of the relationship between plane shear wave measurements and the microstructure of fibrotic liver tissues. Particularly, three different virtual tissue models (i.e., a histology-based model, a statistics-based model, and a simple inclusion model) were used to represent underlying microstructures of fibrotic liver tissues. We found underlying microstructures affected the estimated mean group shear wave speed (SWS) under the plane shear wave assumption by as much as 56%. Also, the elastic shear wave scattering resulted in frequency-dependent attenuation coefficients and introduced changes in the estimated group SWS. Similarly, the slope of group SWS changes with respect to the excitation frequency differed as much as 78% among three models investigated. This new finding may motivate further studies examining how elastic scattering may contribute to frequency-dependent shear wave dispersion and attenuation in biological tissues.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T13C2724B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T13C2724B"><span>Upper mantle anisotropic attenuation of the Sierra Nevada and surroundings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bernardino, M. J.; Jones, C. H.; Monsalve, G.</p> <p>2016-12-01</p> <p>We investigate the contribution of anelasticity in the generation of seismic velocity variations within the upper mantle of the Sierra Nevada and surrounding regions through teleseismic shear-wave attenuation. Given that anelastic effects are most sensitive to temperature and hydration and less to composition and small degrees of partial melt, we aim constrain the thermal structure beneath this region and identify locations where elevated upper mantle temperatures dominate. We also investigate the dependence of shear-wave attenuation on direction by accounting for seismic anisotropy in our measurements. S-wave t* values are determined from teleseismic S- and SKS- phases recorded on permanent and temporary deployments within the California region with particular focus on the Sierra Nevada Earthscope Project (SNEP) and the Sierran Paradox Experiment (SPE) stations. S-waveforms are rotated into the Sierran SFast, N75°E, and SSlow, N15°W, components. Following the method of Stachnik et al., (2004), S-wave spectra for each event are jointly inverted for a single seismic moment, M0k, and corner frequency, fck, for each event, and separate t* for each ray path. The resulting t*Fast and t*Slow measurements are then inverted for three-dimensional variations in (1/QFast) and (1/QSlow). Results are compared with previous magnetotelluric, surface heat flow, and body-wave velocity inversion studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26627777','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26627777"><span>A parametric analysis of waves propagating in a porous solid saturated by a three-phase fluid.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Santos, Juan E; Savioli, Gabriela B</p> <p>2015-11-01</p> <p>This paper presents an analysis of a model for the propagation of waves in a poroelastic solid saturated by a three-phase viscous, compressible fluid. The constitutive relations and the equations of motion are stated first. Then a plane wave analysis determines the phase velocities and attenuation coefficients of the four compressional waves and one shear wave that propagate in this type of medium. A procedure to compute the elastic constants in the constitutive relations is defined next. Assuming the knowledge of the shear modulus of the dry matrix, the other elastic constants in the stress-strain relations are determined by employing ideal gedanken experiments generalizing those of Biot's theory for single-phase fluids. These experiments yield expressions for the elastic constants in terms of the properties of the individual solid and fluids phases. Finally the phase velocities and attenuation coefficients of all waves are computed for a sample of Berea sandstone saturated by oil, gas, and water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27657478','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27657478"><span>Fourier Transform Ultrasound Spectroscopy for the determination of wave propagation parameters.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pal, Barnana</p> <p>2017-01-01</p> <p>The reported results for ultrasonic wave attenuation constant (α) in pure water show noticeable inconsistency in magnitude. A "Propagating-Wave" model analysis of the most popular pulse-echo technique indicates that this is a consequence of the inherent wave propagation characteristics in a bounded medium. In the present work Fourier Transform Ultrasound Spectroscopy (FTUS) is adopted to determine ultrasonic wave propagation parameters, the wave number (k) and attenuation constant (α) at 1MHz frequency in tri-distilled water at room temperature (25°C). Pulse-echo signals obtained under same experimental conditions regarding the exciting input signal and reflecting boundary wall of the water container for various lengths of water columns are captured. The Fast Fourier Transform (FFT) components of the echo signals are taken to compute k, α and r, the reflection constant at the boundary, using Oak Ridge and Oxford method. The results are compared with existing literature values. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.T41C0896S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.T41C0896S"><span>Anelastic Mantle Structure beneath the Northern Philippine Sea from Phase Pair Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shito, A.; Shibutani, T.</p> <p>2001-12-01</p> <p>Anelasticity of the mantle provides important constraints on its dynamics, in complement to elasticity, however, studies of lateral variation in attenuation are few, especially at short periods. In this study, we determine the body wave attenuation structure of the mantle beneath the northern part of the Philippine Sea. Elastic tomography studies [e.g. van der Hilst et al., 1991; Fukao et al., 1992] show a stagnant Pacific lithosphere just above the 660 km discontinuity in this region. This stagnation was caused by the trench retreat due to the back arc spreading during the past 17 - 30 Ma [Seno et al., 1993; van der Hilst, 1995; Shito and Shibutani, 2001]. Anelastic properties of the mantle and lithosphere may play important roles in the interaction of the slab and mantle of this area. To study the attenuation structure, we examine the difference of the observed attenuation between P and S waves. The S-P phase pair method measures δ t* using the differential spectral decay between S and P waves arriving at the same station, assuming a constant Qα }/Q{β over the frequency band of 0.5 to 1.25 Hz. We use 20 earthquakes in the Izu-Bonin slab which were recorded at 43 broad-band stations of the J-array and FREESIA networks in Japan. About 700 phase pairs are used to invert for the 2-D attenuation structure. The resultant preliminary Q model shows the local variations of attenuation in the subduction zone. The slab is imaged as a low attenuation area (Qα > 1000), while Qα values in the range of 100 - 350 are found in the mantle wedge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H11K..01J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H11K..01J"><span>Flood inundation mapping in the Logone floodplain from multi temporal Landsat ETM+ imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jung, H.; Alsdorf, D. E.; Moritz, M.; Lee, H.; Vassolo, S.</p> <p>2011-12-01</p> <p>Yearly flooding in the Logone floodplain makes an impact on agricultural, pastoral, and fishery systems in the Lake Chad Basin. Since the flooding extent and depth are highly variable, flood inundation mapping helps us make better use of water resources and prevent flood hazards in the Logone floodplain. The flood maps are generated from 33 multi temporal Landsat Enhanced Thematic Mapper Plus (ETM+) during three years 2006 to 2008. Flooded area is classified using a short-wave infrared band whereas open water is classified by Iterative Self-organizing Data Analysis (ISODATA) clustering. The maximum flooding extent in the study area increases up to ~5.8K km2 in late October 2008. The study also provides strong correlation of the flooding extents with water height variations in both the floodplain and the river based on a second polynomial regression model. The water heights are from ENIVSAT altimetry in the floodplain and gauge measurements in the river. Coefficients of determination between flooding extents and water height variations are greater than 0.91 with 4 to 36 days in phase lag. Floodwater drains back to the river and to the northeast during the recession period in December and January. The study supports understanding of the Logone floodplain dynamics in detail of spatial pattern and size of the flooding extent and assists the flood monitoring and prediction systems in the catchment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023353','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023353"><span>Flood Inundation Mapping in the Logone Floodplain from Multi Temporal Landsat ETM+Imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jung, Hahn Chul; Alsdorf, Douglas E.; Moritz, Mark; Lee, Hyongki; Vassolo, Sara</p> <p>2011-01-01</p> <p>Yearly flooding in the Logone floodplain makes an impact on agricultural, pastoral, and fishery systems in the Lake Chad Basin. Since the flooding extent and depth are highly variable, flood inundation mapping helps us make better use of water resources and prevent flood hazards in the Logone floodplain. The flood maps are generated from 33 multi temporal Landsat Enhanced Thematic Mapper Plus (ETM+) during three years 2006 to 2008. Flooded area is classified using a short-wave infrared band whereas open water is classified by Iterative Self-organizing Data Analysis (ISODATA) clustering. The maximum flooding extent in the study area increases up to approximately 5.8K km2 in late October 2008. The study also provides strong correlation of the flooding extents with water height variations in both the floodplain and the river based on a second polynomial regression model. The water heights are from ENIVSAT altimetry in the floodplain and gauge measurements in the river. Coefficients of determination between flooding extents and water height variations are greater than 0.91 with 4 to 36 days in phase lag. Floodwater drains back to the river and to the northeast during the recession period in December and January. The study supports understanding of the Logone floodplain dynamics in detail of spatial pattern and size of the flooding extent and assists the flood monitoring and prediction systems in the catchment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E3SWC..3503003S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E3SWC..3503003S"><span>Seismic Linear Noise Attenuation with Use of Radial Transform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szymańska-Małysa, Żaneta</p> <p>2018-03-01</p> <p>One of the goals of seismic data processing is to attenuate the recorded noise in order to enable correct interpretation of the image. Radial transform has been used as a very effective tool in the attenuation of various types of linear noise, both numerical and real (such as ground roll, direct waves, head waves, guided waves etc). The result of transformation from offset - time (X - T) domain into apparent velocity - time (R - T) domain is frequency separation between reflections and linear events. In this article synthetic and real seismic shot gathers were examined. One example was targeted at far offset area of dataset where reflections and noise had similar apparent velocities and frequency bands. Another example was a result of elastic modelling where linear artefacts were produced. Bandpass filtering and scaling operation executed in radial domain attenuated all discussed types of linear noise very effectively. After noise reduction all further processing steps reveal better results, especially velocity analysis, migration and stacking. In all presented cases signal-to-noise ratio was significantly increased and reflections covered previously by noise were revealed. Power spectra of filtered seismic records preserved real dynamics of reflections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28765535','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28765535"><span>A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ash, B J; Worsfold, S R; Vukusic, P; Nash, G R</p> <p>2017-08-02</p> <p>Surface acoustic wave (SAW) devices are widely used for signal processing, sensing and increasingly for lab-on-a-chip applications. Phononic crystals can control the propagation of SAW, analogous to photonic crystals, enabling components such as waveguides and cavities. Here we present an approach for the realisation of robust, tailorable SAW phononic crystals, based on annular holes patterned in a SAW substrate. Using simulations and experiments, we show that this geometry supports local resonances which create highly attenuating phononic bandgaps at frequencies with negligible coupling of SAWs into other modes, even for relatively shallow features. The enormous bandgap attenuation is up to an order-of-magnitude larger than that achieved with a pillar phononic crystal of the same size, enabling effective phononic crystals to be made up of smaller numbers of elements. This work transforms the ability to exploit phononic crystals for developing novel SAW device concepts, mirroring contemporary progress in photonic crystals.The control and manipulation of propagating sound waves on a surface has applications in on-chip signal processing and sensing. Here, Ash et al. deviate from standard designs and fabricate frequency tailorable phononic crystals with an order-of-magnitude increase in attenuation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26398209','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26398209"><span>Will the Effects of Sea-Level Rise Create Ecological Traps for Pacific Island Seabirds?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reynolds, Michelle H; Courtot, Karen N; Berkowitz, Paul; Storlazzi, Curt D; Moore, Janet; Flint, Elizabeth</p> <p>2015-01-01</p> <p>More than 18 million seabirds nest on 58 Pacific islands protected within vast U.S. Marine National Monuments (1.9 million km2). However, most of these seabird colonies are on low-elevation islands and sea-level rise (SLR) and accompanying high-water perturbations are predicted to escalate with climate change. To understand how SLR may impact protected islands and insular biodiversity, we modeled inundation and wave-driven flooding of a globally important seabird rookery in the subtropical Pacific. We acquired new high-resolution Digital Elevation Models (DEMs) and used the Delft3D wave model and ArcGIS to model wave heights and inundation for a range of SLR scenarios (+0.5, +1.0, +1.5, and +2.0 m) at Midway Atoll. Next, we classified vegetation to delineate habitat exposure to inundation and identified how breeding phenology, colony synchrony, and life history traits affect species-specific sensitivity. We identified 3 of 13 species as highly vulnerable to SLR in the Hawaiian Islands and quantified their atoll-wide distribution (Laysan albatross, Phoebastria immutabilis; black-footed albatross, P. nigripes; and Bonin petrel, Pterodroma hypoleuca). Our models of wave-driven flooding forecast nest losses up to 10% greater than passive inundation models at +1.0 m SLR. At projections of + 2.0 m SLR, approximately 60% of albatross and 44% of Bonin petrel nests were overwashed displacing more than 616,400 breeding albatrosses and petrels. Habitat loss due to passive SLR may decrease the carrying capacity of some islands to support seabird colonies, while sudden high-water events directly reduce survival and reproduction. This is the first study to simulate wave-driven flooding and the combined impacts of SLR, groundwater rise, and storm waves on seabird colonies. Our results highlight the need for early climate change planning and restoration of higher elevation seabird refugia to prevent low-lying protected islands from becoming ecological traps in the face of rising sea levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70157510','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70157510"><span>Will the effects of sea-level rise create ecological traps for Pacific Island seabirds?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reynolds, Michelle H.; Courtot, Karen; Berkowitz, Paul; Storlazzi, Curt; Moore, Janet; Flint, Elizabeth</p> <p>2015-01-01</p> <p>More than 18 million seabirds nest on 58 Pacific islands protected within vast U.S. Marine National Monuments (1.9 million km2). However, most of these seabird colonies are on low-elevation islands and sea-level rise (SLR) and accompanying high-water perturbations are predicted to escalate with climate change. To understand how SLR may impact protected islands and insular biodiversity, we modeled inundation and wave-driven flooding of a globally important seabird rookery in the subtropical Pacific. We acquired new high-resolution Digital Elevation Models (DEMs) and used the Delft3D wave model and ArcGIS to model wave heights and inundation for a range of SLR scenarios (+0.5, +1.0, +1.5, and +2.0 m) at Midway Atoll. Next, we classified vegetation to delineate habitat exposure to inundation and identified how breeding phenology, colony synchrony, and life history traits affect species-specific sensitivity. We identified 3 of 13 species as highly vulnerable to SLR in the Hawaiian Islands and quantified their atoll-wide distribution (Laysan albatross, Phoebastria immutabilis; black-footed albatross, P. nigripes; and Bonin petrel, Pterodroma hypoleuca). Our models of wave-driven flooding forecast nest losses up to 10% greater than passive inundation models at +1.0 m SLR. At projections of + 2.0 m SLR, approximately 60% of albatross and 44% of Bonin petrel nests were overwashed displacing more than 616,400 breeding albatrosses and petrels. Habitat loss due to passive SLR may decrease the carrying capacity of some islands to support seabird colonies, while sudden high-water events directly reduce survival and reproduction. This is the first study to simulate wave-driven flooding and the combined impacts of SLR, groundwater rise, and storm waves on seabird colonies. Our results highlight the need for early climate change planning and restoration of higher elevation seabird refugia to prevent low-lying protected islands from becoming ecological traps in the face of rising sea levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4580421','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4580421"><span>Will the Effects of Sea-Level Rise Create Ecological Traps for Pacific Island Seabirds?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Reynolds, Michelle H.; Courtot, Karen N.; Berkowitz, Paul; Storlazzi, Curt D.; Moore, Janet; Flint, Elizabeth</p> <p>2015-01-01</p> <p>More than 18 million seabirds nest on 58 Pacific islands protected within vast U.S. Marine National Monuments (1.9 million km2). However, most of these seabird colonies are on low-elevation islands and sea-level rise (SLR) and accompanying high-water perturbations are predicted to escalate with climate change. To understand how SLR may impact protected islands and insular biodiversity, we modeled inundation and wave-driven flooding of a globally important seabird rookery in the subtropical Pacific. We acquired new high-resolution Digital Elevation Models (DEMs) and used the Delft3D wave model and ArcGIS to model wave heights and inundation for a range of SLR scenarios (+0.5, +1.0, +1.5, and +2.0 m) at Midway Atoll. Next, we classified vegetation to delineate habitat exposure to inundation and identified how breeding phenology, colony synchrony, and life history traits affect species-specific sensitivity. We identified 3 of 13 species as highly vulnerable to SLR in the Hawaiian Islands and quantified their atoll-wide distribution (Laysan albatross, Phoebastria immutabilis; black-footed albatross, P. nigripes; and Bonin petrel, Pterodroma hypoleuca). Our models of wave-driven flooding forecast nest losses up to 10% greater than passive inundation models at +1.0 m SLR. At projections of + 2.0 m SLR, approximately 60% of albatross and 44% of Bonin petrel nests were overwashed displacing more than 616,400 breeding albatrosses and petrels. Habitat loss due to passive SLR may decrease the carrying capacity of some islands to support seabird colonies, while sudden high-water events directly reduce survival and reproduction. This is the first study to simulate wave-driven flooding and the combined impacts of SLR, groundwater rise, and storm waves on seabird colonies. Our results highlight the need for early climate change planning and restoration of higher elevation seabird refugia to prevent low-lying protected islands from becoming ecological traps in the face of rising sea levels. PMID:26398209</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1039286','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1039286"><span>A Source Term for Wave Attenuation by Sea Ice in WAVEWATCH III(registered trademark): IC4</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-06-07</p> <p>energy in the high frequency face of the spectrum, which highlights the fact that frequency dependent attenuation in necessary to replicate the low-pass... frequency space ; M6) and an expanded version of M5 with up to 10 steps. The remainder of this report is structured as follows: a note about the...function period, T = 1/f. Measurements have shown that ice preferentially damps high frequency waves and in this way ice acts as a low pass filter</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740002029','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740002029"><span>The influence of polarization on millimeter wave propagation through rain. [radio signals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bostian, C. W.; Stutzman, W. L.; Wiley, P. H.; Marshall, R. E.</p> <p>1973-01-01</p> <p>The measurement and analysis of the depolarization and attenuation that occur when millimeter wave radio signals propagate through rain are described. Progress was made in three major areas: the processing of recorded 1972 data, acquisition and processing of a large amount of 1973 data, and the development of a new theoretical model to predict rain cross polarization and attenuation. Each of these topics is described in detail along with radio frequency system design for cross polarization measurements.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..309a2015S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..309a2015S"><span>Hydraulic modeling of flow impact on bridge structures: a case study on Citarum bridge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siregar, R. I.</p> <p>2018-02-01</p> <p>Flood waves because of the rapid catchment response to high intense rainfall, breaches of flood defenses may induce huge impact forces on structures, causing structural damage or even failures. Overflowing stream that passes over the bridge, it means to discharge flood water level is smaller than the capacity of the river flow. In this study, the researches present the methodological approach of flood modeling on bridge structures. The amount of force that obtained because of the hydrostatic pressure received by the bridge at the time of the flood caused the bridge structure disrupted. This paper presents simulation of flow impact on bridge structures with some event flood conditions. Estimating the hydrostatic pressure developed new model components, to quantify the flow impact on structures. Flow parameters applied the model for analyzing, such as discharge, velocity, and water level or head that effect of bridge structures. The simulation will illustrate the capability of bridge structures with some event flood river and observe the behavior of the flow that occurred during the flood. Hydraulic flood modeling use HEC-RAS for simulation. This modeling will describe the impact on bridge structures. Based on the above modelling resulted, in 2008 has flood effect more than other years on the Citarum Bridge, because its flow overflow on the bridge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170005568&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170005568&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsea"><span>Coping with Higher Sea Levels and Increased Coastal Flooding in New York City. Chapter 13</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gornitz, Vivien; Horton, Radley; Bader, Daniel A.; Orton, Philip; Rosenzweig, Cynthia</p> <p>2017-01-01</p> <p>The 837 km New York City shoreline is lined by significant economic assets and dense population vulnerable to sea level rise and coastal flooding. After Hurricane Sandy in 2012, New York City developed a comprehensive plan to mitigate future climate risks, drawing upon the scientific expertise of the New York City Panel on Climate Change (NPCC), a special advisory group comprised of university and private-sector experts. This paper highlights current NPCC findings regarding sea level rise and coastal flooding, with some of the City's ongoing and planned responses. Twentieth century sea level rise in New York City (2.8 cm/decade) exceeded the global average (1.7 cm/decade), underscoring the enhanced regional risk to coastal hazards. NPCC (2015) projects future sea level rise at the Battery of 28 - 53 cm by the 2050s and 46 - 99 cm by the 2080s, relative to 2000 - 2004 (mid-range, 25th - 75th percentile). High-end SLR estimates (90th percentile) reach 76 cm by the 2050s, and 1.9 m by 2100. Combining these projections with updated FEMA flood return period curves, assuming static flood dynamics and storm behavior, flood heights for the 100-year storm (excluding waves) attain 3.9-4.5 m (mid-range), relative to the NAVD88 tidal datum, and 4.9 m (high end) by the 2080s, up from 3.4 m in the 2000s. Flood heights with a 1% annual chance of occurrence in the 2000s increase to 2.0 - 5.4% (mid-range) and 12.7% per year (high-end), by the 2080s. Guided by NPCC (2013, 2015) findings, New York City has embarked on a suite of initiatives to strengthen coastal defenses, employing various approaches tailored to specific neighborhood needs. NPCC continues its collaboration with the city to investigate vulnerability to extreme climate events, including heat waves, inland floods and coastal storms. Current research entails higher-resolution neighborhood-level coastal flood mapping, changes in storm characteristics, surge height interactions with sea level rise, and stronger engagement with stakeholders and community-based organizations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022190','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022190"><span>Frequency dependent Lg attenuation in south-central Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McNamara, D.E.</p> <p>2000-01-01</p> <p>The characteristics of seismic energy attenuation are determined using high frequency Lg waves from 27 crustal earthquakes, in south-central Alaska. Lg time-domain amplitudes are measured in five pass-bands and inverted to determine a frequency-dependent quality factor, Q(f), model for south-central Alaska. The inversion in this study yields the frequency-dependent quality factor, in the form of a power law: Q(f) = Q0fη = 220(±30) f0.66(±0.09) (0.75≤f≤12Hz). The results from this study are remarkably consistent with frequency dependent quality factor estimates, using local S-wave coda, in south-central Alaska. The consistency between S-coda Q(f) and Lg Q(f) enables constraints to be placed on the mechanism of crustal attenuation in south-central Alaska. For the range of frequencies considered in this study both scattering and intrinsic attenuation mechanisms likely play an equal role.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004PhDT.........6X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004PhDT.........6X"><span>Interaction of grid generated turbulence with expansion waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xanthos, Savvas Steliou</p> <p>2004-11-01</p> <p>The interaction of traveling expansion waves with grid-generated turbulence was investigated in a large-scale shock tube research facility. The incident shock and the induced flow behind it passed through a rectangular grid, which generated a nearly homogeneous and nearly isotropic turbulent flow. As the shock wave exited the open end of the shock tube, a system of expansion waves was generated which traveled upstream and interacted with the grid-generated turbulence. The Mach number of the incoming flows investigated was about 0.3 hence interactions are considered as interactions with an almost incompressible flow. Mild interactions with expansion waves, which generated expansion ratios of the order of 1.8, were achieved in the present investigations. In that respect the compressibility effects started to become important during the interaction. A custom designed vorticity probe was used to measure for the first time the rate-of-strain, the rate-of-rotation and the velocity-gradient tensors in several of the present flows. Custom made x-hotwire probes were initially used to measure the flow quantities simultaneously at different locations inside the flow field. Although the strength of the generated expansion waves was mild, S = 6U6x EW = 50 to 100 s-1, the effect on damping fluctuations of turbulence was clear. Vorticity fluctuations were reduced dramatically more than velocity or pressure fluctuations. Attenuation of longitudinal velocity fluctuations has been observed in all experiments. It appears that the attenuation increases in interactions with higher Reynolds number. The data of velocity fluctuations in the lateral directions show no consistent behavior change or some minor attenuation through the interaction. The present results clearly show that in most of the cases, attenuation occurs at large xM distances where length scales of the incoming flow are high and turbulence intensities are low. Thus large in size eddies with low velocity fluctuations are affected the most by the interaction with the expansion waves. Spectral analysis indicated that spectral energy is shifted after the interaction to lower wave numbers suggesting that the typical length scales of turbulence are increased after the interaction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.tmp..204S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.tmp..204S"><span>Modeling the blockage of Lg waves from 3-D variations in crustal structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanborn, Christopher J.; Cormier, Vernon F.</p> <p>2018-05-01</p> <p>Comprised of S waves trapped in Earth's crust, the high frequency (2-10 Hz) Lg wave is important to discriminating earthquakes from explosions by comparing its amplitude and waveform to those of Pg and Pn waves. Lateral variations in crustal structure, including variations in crustal thickness, intrinsic attenuation, and scattering, affect the efficiency of Lg propagation and its consistency as a source discriminant at regional (200-1500 km) distances. To investigate the effects of laterally varying Earth structure on the efficiency of propagation of Lg and Pg, we apply a radiative transport algorithm to model complete, high-frequency (2-4 Hz), regional coda envelopes. The algorithm propagates packets of energy with ray theory through large-scale 3-D structure, and includes stochastic effects of multiple-scattering by small-scale heterogeneities within the large-scale structure. Source-radiation patterns are described by moment tensors. Seismograms of explosion and earthquake sources are synthesized in canonical models to predict effects on waveforms of paths crossing regions of crustal thinning (pull-apart basins and ocean/continent transitions) and thickening (collisional mountain belts), For paths crossing crustal thinning regions, Lg is amplified at receivers within the thinned region but strongly disrupted and attenuated at receivers beyond the thinned region. For paths crossing regions of crustal thickening, Lg amplitude is attenuated at receivers within the thickened region, but experiences little or no reduction in amplitude at receivers beyond the thickened region. The length of the Lg propagation within a thickened region and the complexity of over- and under-thrust crustal layers, can produce localized zones of Lg amplification or attenuation. Regions of intense scattering within laterally homogeneous models of the crust increase Lg attenuation but do not disrupt its coda shape.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22132099','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22132099"><span>The protective role of coastal marshes: a systematic review and meta-analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shepard, Christine C; Crain, Caitlin M; Beck, Michael W</p> <p>2011-01-01</p> <p>Salt marshes lie between many human communities and the coast and have been presumed to protect these communities from coastal hazards by providing important ecosystem services. However, previous characterizations of these ecosystem services have typically been based on a small number of historical studies, and the consistency and extent to which marshes provide these services has not been investigated. Here, we review the current evidence for the specific processes of wave attenuation, shoreline stabilization and floodwater attenuation to determine if and under what conditions salt marshes offer these coastal protection services. We conducted a thorough search and synthesis of the literature with reference to these processes. Seventy-five publications met our selection criteria, and we conducted meta-analyses for publications with sufficient data available for quantitative analysis. We found that combined across all studies (n = 7), salt marsh vegetation had a significant positive effect on wave attenuation as measured by reductions in wave height per unit distance across marsh vegetation. Salt marsh vegetation also had a significant positive effect on shoreline stabilization as measured by accretion, lateral erosion reduction, and marsh surface elevation change (n = 30). Salt marsh characteristics that were positively correlated to both wave attenuation and shoreline stabilization were vegetation density, biomass production, and marsh size. Although we could not find studies quantitatively evaluating floodwater attenuation within salt marshes, there are several studies noting the negative effects of wetland alteration on water quantity regulation within coastal areas. Our results show that salt marshes have value for coastal hazard mitigation and climate change adaptation. Because we do not yet fully understand the magnitude of this value, we propose that decision makers employ natural systems to maximize the benefits and ecosystem services provided by salt marshes and exercise caution when making decisions that erode these services.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015WRR....51.4782G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015WRR....51.4782G"><span>Debates—Perspectives on socio-hydrology: Modeling flood risk as a public policy problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gober, Patricia; Wheater, Howard S.</p> <p>2015-06-01</p> <p>Socio-hydrology views human activities as endogenous to water system dynamics; it is the interaction between human and biophysical processes that threatens the viability of current water systems through positive feedbacks and unintended consequences. Di Baldassarre et al. implement socio-hydrology as a flood risk problem using the concept of social memory as a vehicle to link human perceptions to flood damage. Their mathematical model has heuristic value in comparing potential flood damages in green versus technological societies. It can also support communities in exploring the potential consequences of policy decisions and evaluating critical policy tradeoffs, for example, between flood protection and economic development. The concept of social memory does not, however, adequately capture the social processes whereby public perceptions are translated into policy action, including the pivotal role played by the media in intensifying or attenuating perceived flood risk, the success of policy entrepreneurs in keeping flood hazard on the public agenda during short windows of opportunity for policy action, and different societal approaches to managing flood risk that derive from cultural values and economic interests. We endorse the value of seeking to capture these dynamics in a simplified conceptual framework, but favor a broader conceptualization of socio-hydrology that includes a knowledge exchange component, including the way modeling insights and scientific results are communicated to floodplain managers. The social processes used to disseminate the products of socio-hydrological research are as important as the research results themselves in determining whether modeling is used for real-world decision making.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25978237','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25978237"><span>Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gurrutxaga-Lerma, Beñat; Balint, Daniel S; Dini, Daniele; Eakins, Daniel E; Sutton, Adrian P</p> <p>2015-05-01</p> <p>When a metal is subjected to extremely rapid compression, a shock wave is launched that generates dislocations as it propagates. The shock wave evolves into a characteristic two-wave structure, with an elastic wave preceding a plastic front. It has been known for more than six decades that the amplitude of the elastic wave decays the farther it travels into the metal: this is known as "the decay of the elastic precursor." The amplitude of the elastic precursor is a dynamic yield point because it marks the transition from elastic to plastic behavior. In this Letter we provide a full explanation of this attenuation using the first method of dislocation dynamics to treat the time dependence of the elastic fields of dislocations explicitly. We show that the decay of the elastic precursor is a result of the interference of the elastic shock wave with elastic waves emanating from dislocations nucleated in the shock front. Our simulations reproduce quantitatively recent experiments on the decay of the elastic precursor in aluminum and its dependence on strain rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S33C0880S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S33C0880S"><span>Teleseismic P and S wave attenuation constraints on temperature and melt of the upper mantle in the Alaska Subduction Zone.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soto Castaneda, R. A.; Abers, G. A.; Eilon, Z.; Christensen, D. H.</p> <p>2017-12-01</p> <p>Recent broadband deployments in Alaska provide an excellent opportunity to advance our understanding of the Alaska-Aleutians subduction system, with implications for subduction processes worldwide. Seismic attenuation, measured from teleseismic body waves, provides a strong constraint on thermal structure as well as an indirect indication of ground shaking expected from large intermediate-depth earthquakes. We measure P and S wave attenuation from pairwise amplitude and phase spectral ratios for teleseisms recorded at 204 Transportable Array, Alaska Regional, and Alaska Volcano Observatory, SALMON (Southern Alaska Lithosphere & Mantle Observation Network) and WVLF (Wrangell Volcanics & subducting Lithosphere Fate) stations in central Alaska. The spectral ratios are inverted in a least squares sense for differential t* (path-averaged attenuation operator) and travel time anomalies at every station. Our preliminary results indicate a zone of low attenuation across the forearc and strong attenuation beneath arc and backarc in the Cook Inlet-Kenai region where the Aleutian-Yakutat slab subducts, similar to other subduction zones. This attenuation differential is observed in both the volcanic Cook Inlet segment and amagmatic Denali segments of the Aleutian subduction zone. By comparison, preliminary results for the Wrangell-St. Elias region past the eastern edge of the Aleutian slab show strong attenuation beneath the Wrangell Volcanic Field, as well as much further south than in the Cook Inlet-Kenai region. This pattern of attenuation seems to indicate a short slab fragment in the east of the subduction zone, though the picture is complex. Results also suggest the slab may focus or transmit energy with minimal attenuation, adding to the complexity. To image the critical transition between the Alaska-Aleutian slab and the region to its east, we plan to incorporate new broadband data from the WVLF array, an ongoing deployment of 37 PASSCAL instruments installed in 2016. These stations have 10-20 km spacing, spanning the edge of the subducting slab, and so will provide a zone of increased resolution in the region where slab behavior is poorly understood. We will discuss these data in the context of enigmatic Wrangell volcanism and its relationship to the eastern end of the Alaska-Aleutian Wadati-Benioff zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMMR12A..02R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMMR12A..02R"><span>Intrinsic Aniostropic Anelasticity of Hcp Iron Due to Light Element Solute Atoms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Redfern, S. A. T.</p> <p>2014-12-01</p> <p>Earth's inner core is elastically anisotropic, with seismology showing faster wave propagation along the polar axis compared to the equatorial plane. Some inner core studies report anisotropic seismic attenuation. Attenuation of body-waves has, previously, been postulated to be due to scattering by anisotropic microstructure, but recent normal mode studies also show strong anisotropic attenuation (Mäkinen et al. 2014). This suggests that the anisotropic attenuation is a result of the intrinsic (and anisotropic) anelastic properties of the solid iron alloy forming Earth's inner core. Here, I consider the origins of inner core anisotropic attenuation. Possibilities include grain boundary relaxation, dislocation bowing/glide, or point defect (alloying element) relaxations. The inner core is an almost perfect environment for near-equilibrium crystallisation, with very low temperature gradients across the inner core, low gravity, and slow crystallisation rates. It is assumed that grain sizes may be of the order of hundreds of metres. This implies vanishingly small volumes of grain boundary, and insignificant grain boundary relaxation. The very high homologous temperature and the absence of obvious deviatoric stress, also leads one to conclude that dislocation densities are low. On the other hand, estimates for light element concentrations are of the order of a few % with O, S, Si, C and H at various times being suggested as candidate elements. Light element solutes in hcp metals contribute to intrinsic anelastic attenuation if they occur in sufficient concentrations to pair and form elastic dipoles. Switching of dipoles under the stress of a passing seismic wave will result in anelastic mechanical loss. Such attenuation has been measured in hcp metals in the lab, and is anisotropic due to the intrinsic elastic anisotropy of the host lattice. Such solute pair relaxations result in a "Zener effect", which is suggested here to be responsible for observed anisotropic seismic attenuation. Zener relaxation magnitude scales with solute concentrationand is consistent with around 5% loght element. Variations in attenuation are expected in a core with spatially varying concentrations of light element, and attenuation tomography of the inner core could, therefore, be employed to map chemical heterogeneity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4165131','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4165131"><span>ULTRASONIC NEUTRON DOSIMETER</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Truell, R.; de Klerk, J.; Levy, P.W.</p> <p>1960-02-23</p> <p>A neutron dosimeter is described which utilizes ultrasonic waves in the megacycle region for determination of the extent of neutron damage in a borosilicate glass through ultrasonic wave velocity and attenuation measurements before and after damage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1042354','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1042354"><span>Experimental Study on 340GHz Wave Material Penetration Attenuation Properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-07-01</p> <p>wave penetrate materials, detailed are foam with dimension 52.6cm×61.6cm×0.4cm, paper dimension 52.6cm×61.6cm×0.4cm, wood board 52.6cm×66.0cm×0.42cm...paper box 52.6cm×61.6cm×0.01cm, and 8cm thickness sofa chair, 14cm human body chest, 21cm cement wall, are shown in Fig. 5. As the 0.34THz wave...insertion) comparison shown in Tab. 2, we get the foam has minimum penetration attenuation about 0.3dB, due to its low dielectric constant and tangent</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770052052&hterms=infrasound&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dinfrasound','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770052052&hterms=infrasound&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dinfrasound"><span>Heating of the lower thermosphere by the dissipation of acoustic waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rind, D.</p> <p>1977-01-01</p> <p>Infrasound of 0.2 Hz known as microbaroms, generated by interfering ocean waves, propagates into the lower thermosphere where it is dissipated between 110 and 140 km. It is shown here that under average conditions in winter the energy input into this region is of the order of 0.33 W/kg, the same as that estimated for gravity wave dissipation, and capable of producing a heating of at least 30 K/day. To arrive at this result different dissipation mechanisms are discussed, with the calculated attenuation compared to previously published observations and observations of natural infrasound at Palisades, N.Y. Increased acoustic attenuation due to the presence of turbulence is not, in general, in evidence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title36-vol1/pdf/CFR-2010-title36-vol1-sec78-2.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title36-vol1/pdf/CFR-2010-title36-vol1-sec78-2.pdf"><span>36 CFR 78.2 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... hurricane, tornado, storm, flood, high water, tidal wave, earthquake, volcanic eruption, landslide... determination of a Federal Agency Head, causes damage of sufficient severity and magnitude such that an...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol1/pdf/CFR-2014-title36-vol1-sec78-2.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol1/pdf/CFR-2014-title36-vol1-sec78-2.pdf"><span>36 CFR 78.2 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... hurricane, tornado, storm, flood, high water, tidal wave, earthquake, volcanic eruption, landslide... determination of a Federal Agency Head, causes damage of sufficient severity and magnitude such that an...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol1/pdf/CFR-2012-title36-vol1-sec78-2.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol1/pdf/CFR-2012-title36-vol1-sec78-2.pdf"><span>36 CFR 78.2 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... hurricane, tornado, storm, flood, high water, tidal wave, earthquake, volcanic eruption, landslide... determination of a Federal Agency Head, causes damage of sufficient severity and magnitude such that an...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3128385','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3128385"><span>Effect of Graphite Concentration on Shear-Wave Speed in Gelatin-Based Tissue-Mimicking Phantoms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Anderson, Pamela G.; Rouze, Ned C.; Palmeri, Mark L.</p> <p>2011-01-01</p> <p>Elasticity-based imaging modalities are becoming popular diagnostic tools in clinical practice. Gelatin-based, tissue mimicking phantoms that contain graphite as the acoustic scattering material are commonly used in testing and validating elasticity-imaging methods to quantify tissue stiffness. The gelatin bloom strength and concentration are used to control phantom stiffness. While it is known that graphite concentration can be modulated to control acoustic attenuation, the impact of graphite concentrationon phantom elasticity has not been characterized in these gelatin phantoms. This work investigates the impact of graphite concentration on phantom shear stiffness as characterized by shear-wave speed measurements using impulsive acoustic-radiation-force excitations. Phantom shear-wave speed increased by 0.83 (m/s)/(dB/(cm MHz)) when increasing the attenuation coefficient slope of the phantom material through increasing graphite concentration. Therefore, gelatin-phantom stiffness can be affected by the conventional ways that attenuation is modulated through graphite concentration in these phantoms. PMID:21710828</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRB..120.1080L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRB..120.1080L"><span>Vibrational modes of hydraulic fractures: Inference of fracture geometry from resonant frequencies and attenuation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lipovsky, Bradley P.; Dunham, Eric M.</p> <p>2015-02-01</p> <p>Oscillatory seismic signals arising from resonant vibrations of hydraulic fractures are observed in many geologic systems, including volcanoes, glaciers and ice sheets, and hydrocarbon and geothermal reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluids within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis, valid at wavelengths greater than the fracture aperture, that accounts for quasi-static elastic deformation of the fracture walls, as well as fluid viscosity, inertia, and compressibility. In the long-wavelength limit, anomalously dispersed guided waves known as crack or Krauklis waves propagate with restoring force from fracture wall elasticity. At shorter wavelengths, the waves become sound waves within the fluid channel. Wave attenuation in our model is due to fluid viscosity, rather than seismic radiation from crack tips or fracture wall roughness. We characterize viscous damping at both low frequencies, where the flow is always fully developed, and at high frequencies, where the flow has a nearly constant velocity profile away from viscous boundary layers near the fracture walls. Most observable seismic signals from resonating fractures likely arise in the boundary layer crack wave limit, where fluid-solid coupling is pronounced and attenuation is minimal. We present a method to estimate the aperture and length of a resonating hydraulic fracture using both the seismically observed quality factor and characteristic frequency. Finally, we develop scaling relations between seismic moment and characteristic frequency that might be useful when interpreting the statistics of hydraulic fracture events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhDT........97G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhDT........97G"><span>Sound attenuations of axial fan blade tones using flow-driven tunable resonator arrays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gorny, Lee James</p> <p></p> <p>Flow-excited, tunable quarter-wavelength resonators can be integrated into the shrouds of ducted subsonic axial fans. This study explores their effectiveness in reducing propagations of tonal noise by means of acoustic wave cancellation. Resonators are a non-intrusive method of generating a secondary sound field near the plane of a rotor. As they can be strategically tuned to reduce radiated noise at the blade passage frequency (BPF) and its harmonics, resonators can be useful for a variety of applications to quiet existing and future turbomachinery. Experiments have demonstrated that a single quarter wave resonator is effective in reducing unidirectional plane wave propagations for long wavelength ducted applications while an array is effective for shorter wavelength or un-ducted facilities where shrouded fans are used. Testing conducted at Center for Acoustics and Vibrations (CAV) at the Pennsylvania State University the Deutsches Zentrum fur Luft und Raumfahrt (DLR) in Berlin, Germany demonstrated that resonator arrays were effective in attenuating shorter wavelength plane-wave and higher order modal propagations of blade tone noise. A chiller fan enclosure, constructed in the CAV laboratory emulated an industrial chiller in its operation. Using this facility, resonators were observed to attenuate blade tone noise from a non-ideal ducted geometry. The approaches used in this study evolved from Helmholtz resonators to conventional quarter wave tubes, to mouth tunable resonators, and finally to back-wall tunable resonators. These developments in tuning allowed for independent control of a resonator's magnitude and phase of the secondary sound field produced by the resonators. It was demonstrated that the use of two tunable resonator chambers oriented axially on either side of the blade region enables a dipole-like secondary sound field to be passively generated and bi-directional attenuations of plane wave noise to be achieved. Tonal attenuations of 28 dB were attained and BPF tones were reduced to less than 5 dB from the broadband noise floor for each case discussed above. In parallel with experimental work, analytical models were developed to effectively model and predict optimal resonator configurations for a given fan in operation. Interactions between resonators and the driving pressure field from the rotor blades are modeled using transmission line (TL) theory. Blade tone acoustic pressure is obtained using a finite element method (FEM) propagation code. By combining of these two methods, a resonator configuration that achieves optimal attenuation can be numerically obtained. The use of resonators has been shown to significantly attenuate fan noise in the conditions explored in the considered experiments. Numerical modeling has shown consistency in the response of flow driven resonators and their. These results indicate a strong potential for active control of fan noise using resonators and an approach to applying this control is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70112515','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70112515"><span>Understanding processes controlling sediment transports at the mouth of a highly energetic inlet system (San Francisco Bay, CA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Elias, Edwin P.L.; Hansen, Jeff E.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.</p> <p>2013-01-01</p> <p>San Francisco Bay is one of the largest estuaries along the U.S. West Coast and is linked to the Pacific Ocean through the Golden Gate, a 100 m deep bedrock inlet. A coupled wave, flow and sediment transport model is used to quantify the sediment linkages between San Francisco Bay, the Golden Gate, and the adjacent open coast. Flow and sediment transport processes are investigated using an ensemble average of 24 climatologically derived wave cases and a 24.8 h representative tidal cycle. The model simulations show that within the inlet, flow and sediment transport is tidally dominated and driven by asymmetry of the ebb and flood tides. Peak ebb velocities exceed the peak flood velocities in the narrow Golden Gate channel as a result of flow convergence and acceleration. Persistent flow and sediment gyres at the headland tips are formed that limit sediment transfer from the ebb-tidal delta to the inlet and into the bay. The residual transport pattern in the inlet is dominated by a lateral segregation with a large ebb-dominant sediment transport (and flow) prevailing along the deeper north side of the Golden Gate channel, and smaller flood dominant transports along the shallow southern margin. The seaward edge of the ebb-tidal delta largely corresponds to the seaward extent of strong tidal flows. On the ebb-tidal delta, both waves and tidal forcing govern flow and sediment transport. Wave focusing by the ebb-tidal delta leads to strong patterns of sediment convergence and divergence along the adjacent Ocean Beach.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS22A..02L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS22A..02L"><span>Combining Probability Distributions of Wind Waves and Sea Level Variations to Assess Return Periods of Coastal Floods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leijala, U.; Bjorkqvist, J. V.; Pellikka, H.; Johansson, M. M.; Kahma, K. K.</p> <p>2017-12-01</p> <p>Predicting the behaviour of the joint effect of sea level and wind waves is of great significance due to the major impact of flooding events in densely populated coastal regions. As mean sea level rises, the effect of sea level variations accompanied by the waves will be even more harmful in the future. The main challenge when evaluating the effect of waves and sea level variations is that long time series of both variables rarely exist. Wave statistics are also highly location-dependent, thus requiring wave buoy measurements and/or high-resolution wave modelling. As an initial approximation of the joint effect, the variables may be treated as independent random variables, to achieve the probability distribution of their sum. We present results of a case study based on three probability distributions: 1) wave run-up constructed from individual wave buoy measurements, 2) short-term sea level variability based on tide gauge data, and 3) mean sea level projections based on up-to-date regional scenarios. The wave measurements were conducted during 2012-2014 on the coast of city of Helsinki located in the Gulf of Finland in the Baltic Sea. The short-term sea level distribution contains the last 30 years (1986-2015) of hourly data from Helsinki tide gauge, and the mean sea level projections are scenarios adjusted for the Gulf of Finland. Additionally, we present a sensitivity test based on six different theoretical wave height distributions representing different wave behaviour in relation to sea level variations. As these wave distributions are merged with one common sea level distribution, we can study how the different shapes of the wave height distribution affect the distribution of the sum, and which one of the components is dominating under different wave conditions. As an outcome of the method, we obtain a probability distribution of the maximum elevation of the continuous water mass, which enables a flexible tool for evaluating different risk levels in the current and future climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850024116','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850024116"><span>Laser-assisted solar-cell metallization processing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dutta, S.</p> <p>1984-01-01</p> <p>A photolytic metal deposition system using a focused continuous wave ultraviolet laser, a photolytic metal deposition system using a mask and ultraviolet flood illumination, and a pyrolytic metal deposition system using a focused continuous wave laser were studied. Fabrication of solar cells, as well as characterization to determine the effects of transient heat on solar cell junctions were investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/15016232','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/15016232"><span>Full Wave Analysis of RF Signal Attenuation in a Lossy Cave using a High Order Time Domain Vector Finite Element Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pingenot, J; Rieben, R; White, D</p> <p>2004-12-06</p> <p>We present a computational study of signal propagation and attenuation of a 200 MHz dipole antenna in a cave environment. The cave is modeled as a straight and lossy random rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved directly in the time domain via a high order vector finite element discretization using the massively parallel CEM code EMSolve. The simulation is performed for a series of random meshes in order to generate statistical data for the propagation and attenuation properties of the cave environment. Results for the power spectral density and phase ofmore » the electric field vector components are presented and discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994CSR....14.1257T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994CSR....14.1257T"><span>Characteristics of the near-bottom suspended sediment field over the continental shelf off northern California based on optical attenuation measurements during STRESS and SMILE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trowbridge, J. H.; Butman, B.; Limeburner, R.</p> <p>1994-08-01</p> <p>Time-series measurements of current velocity, optical attenuation and surface wave intensity obtained during the Sediment Transport Events on Shelves and Slopes (STRESS) experiments, combined with shipboard measurements of conductivity, temperature and optical attenuation obtained during the Shelf Mixed Layer Experiment (SMILE), provide a description of the sediment concentration field over the central and outer shelf off northern California. The questions addressed are: (1) existence and characteristics of bottom nepheloid layers and their relationship to bottom mixed layers; (2) characteristics of temporal fluctuations in sediment concentration and their relationship to waves and currents; (3) spatial scales over which suspended sediment concentrations vary horizontally; and (4) vertical distribution of suspended sediment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800008578','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800008578"><span>Stress wave attenuation in thin structures by ultrasonic through-transmission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, S. S.; Williams, J. H., Jr.</p> <p>1980-01-01</p> <p>The steady state amplitude of the output of an ultrasonic through transmission measurement is analyzed and the result is given in closed form. Provided that the product of the input and output transduction ratios; the specimen-transducer reflection coefficient; the specimen-transducer phase shift parameter; and the material phase velocity are known, this analysis gives a means for determining the through-thickness attenuation of an individual thin sample. Multiple stress wave reflections are taken into account and so signal echoes do not represent a difficulty. An example is presented for a graphite fiber epoxy composite (Hercules AS/3501-6). A direct method for continuous or intermittent monitoring of through thickness attenuation of plate structures which may be subject to service structural degradation is provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=273857','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=273857"><span>Experimental investigation of wave attenuation through model and live vegetation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Hurricanes and tropical storms often cause severe damage and loss of life in coastal areas. It is widely recognized that wetlands along coastal fringes reduce storm surge and waves. Yet, the potential role and primary mechanisms of wave mitigation by wetland vegetation are not fully understood. K...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.H11F0368S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.H11F0368S"><span>Anatomy of a Flash Flood in the Amargosa Desert, U.S.A.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stonestrom, D. A.; Prudic, D. E.; Glancy, P. A.; Beck, D. A.</p> <p>2004-12-01</p> <p>In August 2004, intense convective rainstorms caused flash flooding throughout the Amargosa River drainage network, temporarily closing Death Valley National Park and causing two fatalities when runoff from Furnace Creek and other channels overtopped roadways in the Park. In 1998, we began installing streambed temperature loggers, pressure transducers, and scour chains in the normally dry channel and selected tributaries of the river in the Amargosa Desert and Oasis Valley. The primary objective of this work is to improve understanding of ground-water recharge from ephemeral streamflows under current climatic conditions. Two weeks after the flash flooding, we visited instrumented sites and estimated peak flows by surveying high-water marks and corresponding channel geometries. Time series of temperatures and stages, together with peak-flow estimates, reveal the routing and evolution of distinct flood pulses in the upper Amargosa River basin. The data also reveal previously undocumented details of individual flash-flood hydrographs, including initial and subsequent flood pulses at two sites. Arid environments are prone to flash flooding not only because vegetation is sparse, but also because the surface-water network is decoupled from underlying ground water by a thick unsaturated zone. Nonlinear interactions between runoff (with energy potentials on the order of a meter of head) and the unsaturated zone (with energy potentials on the order of negative hundreds of meters of head) keep advancing fronts of flood pulses sharp. Profiles of water content beneath the main channel before and after the passage of a flood pulse, together with down-channel attenuation of flow volume within individual pulses, show the leaky nature of dry alluvial channels and the efficiency at which flash floods become potential recharge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP51A0892P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP51A0892P"><span>Hydrological Signature From River-Floodplain Interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paiva, R. C. D.; Fleischmann, A. S.; Collischonn, W.; Sorribas, M.; Pontes, P. R.</p> <p>2015-12-01</p> <p>Understanding river-floodplain hydraulic processes is fundamental to promote comprehension of related water paths, biogeochemicalcyclesand ecosystems. Large river basins around the globe present enormous developed floodplains, which strongly affect flood waves and water dynamics. Since most of these river-floodplain interactions are not monitored, it is interesting to develop strategies to understand such processes through characteristic hydrological signatures, e.g. hydrographs. We studied observed hydrographs from large South American rivers and found that in several cases rivers with extensive wetlands present a particular hydrograph shape, with slower rising limb in relation to the receding one, due to storage effects and the associated decrease of wave celerity with stage. A negative asymmetry in the hydrograph is generated, which is higher when more water flows through floodplains upstream of the observed point. Finally, we studied the Amazon basin using gauged information and simulation results from the MGB-IPH regional hydrological model. Major rivers with larger wetland areas (e.g. Purus, Madeira and Juruá) were identified with higher negative asymmetry in their hydrographs. The hydrodynamic model was run in scenarios with and without floodplains, and results supported that floodplain storage affects hydrographs in creating a negative asymmetry, besides attenuating peaks, increasing hydrograph smoothness and increasing minimum flows. Finally, different wetland types could be distinguished with hydrograph shape, e.g. differing wetlands fed by local rainfall from wetlands due to overbank flow (floodplains). These metrics and concepts on hydrograph features have great potential to infer about river-floodplain processes from large rivers and wetland systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186677','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186677"><span>The relative contribution of waves, tides, and nontidal residuals to extreme total water levels on U.S. West Coast sandy beaches</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Serafin, Katherine A.; Ruggiero, Peter; Stockdon, Hilary F.</p> <p>2017-01-01</p> <p>To better understand how individual processes combine to cause flooding and erosion events, we investigate the relative contribution of tides, waves, and nontidal residuals to extreme total water levels (TWLs) at the shoreline of U.S. West Coast sandy beaches. Extreme TWLs, defined as the observed annual maximum event and the simulated 100 year return level event, peak in Washington, and are on average larger in Washington and Oregon than in California. The relative contribution of wave-induced and still water levels (SWL) to the 100 year TWL event is similar to that of the annual maximum event; however, the contribution of storm surge to the SWL doubles across events. Understanding the regional variability of TWLs will lead to a better understanding of how sea level rise, changes in storminess, and possible changes in the frequency of major El Niños may impact future coastal flooding and erosion along the U.S. West Coast and elsewhere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028480','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028480"><span>Quantity, composition, and source of sediment collected in sediment traps along the fringing coral reef off Molokai, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bothner, Michael H.; Reynolds, R.L.; Casso, M.A.; Storlazzi, C.D.; Field, M.E.</p> <p>2006-01-01</p> <p>Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000–May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates > 1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves.The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16545399','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16545399"><span>Quantity, composition, and source of sediment collected in sediment traps along the fringing coral reef off Molokai, Hawaii.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bothner, Michael H; Reynolds, Richard L; Casso, Michael A; Storlazzi, Curt D; Field, Michael E</p> <p>2006-09-01</p> <p>Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000-May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates>1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves. The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009GeoJI.176..938L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009GeoJI.176..938L"><span>Scattering of plane transverse waves by spherical inclusions in a poroelastic medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Xu; Greenhalgh, Stewart; Zhou, Bing</p> <p>2009-03-01</p> <p>The scattering of plane transverse waves by a spherical inclusion embedded in an infinite poroelastic medium is treated for the first time in this paper. The vector displacement wave equations of Biot's theory are solved as an infinite series of vector spherical harmonics for the case of a plane S-wave impinging from a porous medium onto a spherical inclusion which itself is assumed to be another porous medium. Based on the single spherical scattering theory and dynamic composite elastic medium theory, the non-self-consistent shear wavenumber is derived for a porous rock having numerous spherical inclusions of another medium. The frequency dependences of the shear wave velocity and the shear wave attenuation have been calculated for both the patchy saturation model (inclusions having the same solid frame as the host but with a different pore fluid from the host medium) and the double porosity model (inclusions having a different solid frame than the host but the same pore fluid as the host medium) with dilute concentrations of identical inclusions. Unlike the case of incident P-wave scattering, we show that although the fluid and the heterogeneity of the rock determine the shear wave velocity of the composite, the attenuation of the shear wave caused by scattering is actually contributed by the heterogeneity of the rock for spherical inclusions. The scattering of incident shear waves in the patchy saturation model is quite different from that of the double porosity model. For the patchy saturation model, the gas inclusions do not significantly affect the shear wave dispersion characteristic of the water-filled host medium. However, the softer inclusion with higher porosity in the double porosity model can cause significant shear wave scattering attenuation which occurs at a frequency at which the wavelength of the shear wave is approximately equal to the characteristic size of the inclusion and depends on the volume fraction. Compared with analytic formulae for the low frequency limit of the shear velocity, our scattering model yields discrepancies within 4.0 per cent. All calculated shear velocities of the composite medium with dilute inclusion concentrations approach the high frequency limit of the host material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020291','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020291"><span>Radar attenuation tomography using the centroid frequency downshift method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Liu, L.; Lane, J.W.; Quan, Y.</p> <p>1998-01-01</p> <p>A method for tomographically estimating electromagnetic (EM) wave attenuation based on analysis of centroid frequency downshift (CFDS) of impulse radar signals is described and applied to cross-hole radar data. The method is based on a constant-Q model, which assumes a linear frequency dependence of attenuation for EM wave propagation above the transition frequency. The method uses the CFDS to construct the projection function. In comparison with other methods for estimating attenuation, the CFDS method is relatively insensitive to the effects of geometric spreading, instrument response, and antenna coupling and radiation pattern, but requires the data to be broadband so that the frequency shift and variance can be easily measured. The method is well-suited for difference tomography experiments using electrically conductive tracers. The CFDS method was tested using cross-hole radar data collected at the U.S. Geological Survey Fractured Rock Research Site at Mirror Lake, New Hampshire (NH) during a saline-tracer injection experiment. The attenuation-difference tomogram created with the CFDS method outlines the spatial distribution of saline tracer within the tomography plane. ?? 1998 Elsevier Science B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1376902','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1376902"><span>Nuclear Power Plant Mechanical Component Flooding Fragility Experiments Status</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pope, C. L.; Savage, B.; Johnson, B.</p> <p></p> <p>This report describes progress on Nuclear Power Plant mechanical component flooding fragility experiments and supporting research. The progress includes execution of full scale fragility experiments using hollow-core doors, design of improvements to the Portal Evaluation Tank, equipment procurement and initial installation of PET improvements, designation of experiments exploiting the improved PET capabilities, fragility mathematical model development, Smoothed Particle Hydrodynamic simulations, wave impact simulation device research, and pipe rupture mechanics research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA175159','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA175159"><span>Military Hydrology. Report 12. Case Study Evaluation of Alternative Dam-Breach Flood Wave Methods. Volume 1. Main Report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1986-11-01</p> <p>Report Organization. .................... 7 *PART 11: CASE STUDIES .......................... 9 Teton Dam Failure Flood. ...................... 9...channel, (3) Laurel Run Dam , and (4) Stillhouse Hollow Dam . The Laurel Run and Teton case studies involved field data sets from actual dam failures. The...hypothetical prismatic channel case study used the Teton reservoir and dam data but replaced the complex Teton Valley geometry with a prismatic channel</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20692682-salt-neutrino-detector-ultrahigh-energy-neutrinos','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20692682-salt-neutrino-detector-ultrahigh-energy-neutrinos"><span>Salt Neutrino Detector for Ultrahigh-Energy Neutrinos</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chiba, M.; Yasuda, O.; Kamijo, T.</p> <p>2004-11-01</p> <p>Rock salt and limestone are studied to determine their suitability for use as a radio-wave transmission medium in an ultrahigh energy (UHE) cosmic neutrino detector. A sensible radio wave would be emitted by the coherent Cherenkov radiation from negative excess charges inside an electromagnetic shower upon interaction of a UHE neutrino in a high-density medium (Askar'yan effect). If the attenuation length for the radio wave in the material is large, a relatively small number of radio-wave sensors could detect the interaction occurring in the massive material. We measured the complex permittivity of the rock salt and limestone by the perturbedmore » cavity resonator method at 9.4 and 1 GHz to good precision. We obtained new results of measurements at the frequency at 1.0 GHz. The measured value of the radio-wave attenuation length of synthetic rock salt samples is 1080 m. The samples from the Hockley salt mine in the United States show attenuation length of 180 m at 1 GHz, and then we estimate it by extrapolation to be as long as 900 m at 200 MHz. The results show that there is a possibility of utilizing natural massive deposits of rock salt for a UHE neutrino detector. A salt neutrino detector with a size of 2 x 2 x 2 km would detect 10 UHE neutrino/yr generated through the GZK process.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRB..122.7156Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRB..122.7156Z"><span>Spatiotemporal changes of seismic attenuation caused by injected CO2 at the Frio-II pilot site, Dayton, TX, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Tieyuan; Ajo-Franklin, Jonathan B.; Daley, Thomas M.</p> <p>2017-09-01</p> <p>A continuous active source seismic monitoring data set was collected with crosswell geometry during CO2 injection at the Frio-II brine pilot, near Liberty, TX. Previous studies have shown that spatiotemporal changes in the P wave first arrival time reveal the movement of the injected CO2 plume in the storage zone. To further constrain the CO2 saturation, particularly at higher saturation levels, we investigate spatial-temporal changes in the seismic attenuation of the first arrivals. The attenuation changes over the injection period are estimated by the amount of the centroid frequency shift computed by local time-frequency analysis. We observe that (1) at receivers above the injection zone seismic attenuation does not change in a physical trend; (2) at receivers in the injection zone attenuation sharply increases following injection and peaks at specific points varying with distributed receivers, which is consistent with observations from time delays of first arrivals; then, (3) attenuation decreases over the injection time. The attenuation change exhibits a bell-shaped pattern during CO2 injection. Under Frio-II field reservoir conditions, White's patchy saturation model can quantitatively explain both the P wave velocity and attenuation response observed. We have combined the velocity and attenuation change data in a crossplot format that is useful for model-data comparison and determining patch size. Our analysis suggests that spatial-temporal attenuation change is not only an indicator of the movement and saturation of CO2 plumes, even at large saturations, but also can quantitatively constrain CO2 plume saturation when used jointly with seismic velocity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=161756&keyword=cambridge+AND+level+AND+biology&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=161756&keyword=cambridge+AND+level+AND+biology&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>MICROBIAL SULFATE REDUCTION AND METAL ATTENUATION IN PH 4 ACID MINE WATER</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70171114','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70171114"><span>Wave attenuation in the shallows of San Francisco Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lacy, Jessica R.; MacVean, Lissa J.</p> <p>2016-01-01</p> <p>Waves propagating over broad, gently-sloped shallows decrease in height due to frictional dissipation at the bed. We quantified wave-height evolution across 7 km of mudflat in San Pablo Bay (northern San Francisco Bay), an environment where tidal mixing prevents the formation of fluid mud. Wave height was measured along a cross shore transect (elevation range−2mto+0.45mMLLW) in winter 2011 and summer 2012. Wave height decreased more than 50% across the transect. The exponential decay coefficient λ was inversely related to depth squared (λ=6×10−4h−2). The physical roughness length scale kb, estimated from near-bed turbulence measurements, was 3.5×10−3 m in winter and 1.1×10−2 m in summer. Estimated wave friction factor fw determined from wave-height data suggests that bottom friction dominates dissipation at high Rew but not at low Rew. Predictions of near-shore wave height based on offshore wave height and a rough formulation for fw were quite accurate, with errors about half as great as those based on the smooth formulation for fw. Researchers often assume that the wave boundary layer is smooth for settings with fine-grained sediments. At this site, use of a smooth fw results in an underestimate of wave shear stress by a factor of 2 for typical waves and as much as 5 for more energetic waves. It also inadequately captures the effectiveness of the mudflats in protecting the shoreline through wave attenuation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA118343','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA118343"><span>An Initial Critical Summary of Models for Predicting the Attenuation of Radio Waves by Trees</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1982-07-01</p> <p>International Telecommunication Union, Geneva, Switzerland, 1978. 1 1Krevsky, S., "HF and VHF Radio Wave Attenuation Through Jungle and Woods ," IEEE...see Reference 7) summarized groups of measurements taken by Saxton, Trevor,𔃻 3 and IHoPetrie 1 4 in nontropical deciduous woods . In TABLE 1, the subset...a 0. 26 F0.77 (5) I ŕ 3Trevor, B., "Ultra-High-Frequency Propagation Through Woods and Underbrush," RCA Review, July 1940. 14%cPstrie, J.S. and</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21538208-influence-viscoelastic-property-laser-generated-surface-acoustic-waves-coating-substrate-systems','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21538208-influence-viscoelastic-property-laser-generated-surface-acoustic-waves-coating-substrate-systems"><span>Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sun Hongxiang; Faculty of Science, Jiangsu University, Zhenjiang 212013; Zhang Shuyi</p> <p>2011-04-01</p> <p>Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coatingmore » on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810024233','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810024233"><span>The damping of seismic waves and its determination from reflection seismograms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Engelhard, L.</p> <p>1979-01-01</p> <p>The damping in theoretical waveforms is described phenomenologically and a classification is proposed. A method for studying the Earth's crust was developed which includes this damping as derived from reflection seismograms. Seismic wave propagation by absorption, attenuation of seismic waves by scattering, and dispersion relations are considered. Absorption of seismic waves within the Earth as well as reflection and transmission of elastic waves seen through boundary layer absorption are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4940B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4940B"><span>Sele coastal plain flood risk due to wave storm and river flow interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benassai, Guido; Aucelli, Pietro; Di Paola, Gianluigi; Della Morte, Renata; Cozzolino, Luca; Rizzo, Angela</p> <p>2016-04-01</p> <p>Wind waves, elevated water levels and river discharge can cause flooding in low-lying coastal areas, where the water level is the interaction between wave storm elevated water levels and river flow interaction. The factors driving the potential flood risk include weather conditions, river water stage and storm surge. These data are required to obtain inputs to run the hydrological model used to evaluate the water surface level during ordinary and extreme events regarding both the fluvial overflow and storm surge at the river mouth. In this paper we studied the interaction between the sea level variation and the river hydraulics in order to assess the location of the river floods in the Sele coastal plain. The wave data were acquired from the wave buoy of Ponza, while the water level data needed to assess the sea level variation were recorded by the tide gauge of Salerno. The water stages, river discharges and rating curves for Sele river were provided by Italian Hydrographic Service (Servizio Idrografico e Mareografico Nazionale, SIMN).We used the dataset of Albanella station (40°29'34.30"N, 15°00'44.30"E), located around 7 km from the river mouth. The extreme river discharges were evaluated through the Weibull equation, which were associated with their return period (TR). The steady state river water levels were evaluated through HEC-RAS 4.0 model, developed by Hydrologic Engineering Center (HEC) of the United States Army Corps of Engineers Hydrologic Engineering Center (USACE,2006). It is a well-known 1D model that computes water surface elevation (WSE) and velocity at discrete cross-sections by solving continuity, energy and flow resistance (e.g., Manning) equation. Data requirements for HEC-RAS include topographic information in the form of a series of cross-sections, friction parameter in the form of Manning's n values across each cross-section, and flow data including flow rates, flow change locations, and boundary conditions. For a steady state sub-critical simulation, the boundary condition is a known downstream WSE, in this case the elevated water level due to wave setup, wind setup and inverted barometer, while the upstream boundary condition consisted in WSE corresponding to river discharges associated to different return periods. The results of the simulations evidence, for the last 10 kilometers of the river, the burst of critical inundation scenarios even with moderate flow discharge, if associated with concurrent storm surge which increase the water level at the river mouth, obstructing normal flow discharge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20968389','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20968389"><span>Cancellous bone analysis with modified least squares Prony's method and chirp filter: phantom experiments and simulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wear, Keith A</p> <p>2010-10-01</p> <p>The presence of two longitudinal waves in porous media is predicted by Biot's theory and has been confirmed experimentally in cancellous bone. When cancellous bone samples are interrogated in through-transmission, these two waves can overlap in time. Previously, the Modified Least-Squares Prony's (MLSP) method was validated for estimation of amplitudes, attenuation coefficients, and phase velocities of fast and slow waves, but tended to overestimate phase velocities by up to about 5%. In the present paper, a pre-processing chirp filter to mitigate the phase velocity bias is derived. The MLSP/chirp filter (MLSPCF) method was tested for decomposition of a 500 kHz-center-frequency signal containing two overlapping components: one passing through a low-density-polyethylene plate (fast wave) and another passing through a cancellous-bone-mimicking phantom material (slow wave). The chirp filter reduced phase velocity bias from 100 m/s (5.1%) to 69 m/s (3.5%) (fast wave) and from 29 m/s (1.9%) to 10 m/s (0.7%) (slow wave). Similar improvements were found for 1) measurements in polycarbonate (fast wave) and a cancellous-bone-mimicking phantom (slow wave), and 2) a simulation based on parameters mimicking bovine cancellous bone. The MLSPCF method did not offer consistent improvement in estimates of attenuation coefficient or amplitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.S31E..04D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.S31E..04D"><span>Global Attenuation Tomography and Implications for Upper-Mantle Thermal Structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dalton, C. A.; Ekström, G.; Dziewonski, A. M.</p> <p>2007-12-01</p> <p>Observation of seismic-wave attenuation provides a direct measure of the Earth's anelasticity. The sensitivity of attenuation to temperature, composition, partial melt, and water content is different from that of seismic velocity, and joint interpretation of elastic and anelastic models may be used to improve constraints on these properties throughout the Earth. Historically, the development of attenuation models has lagged behind velocity models. However, the availability of large seismic datasets and improved techniques to treat these data have recently led to better and higher-resolution attenuation models. We have developed a new 3-D global model of shear attenuation in the upper mantle. This new model, QRFSI12, is derived from > 30,000 fundamental-mode Rayleigh wave amplitude measurements at each period (period range 50-250 s). The amplitudes are inverted simultaneously for the coefficients of the 3-D model as well as frequency-dependent amplitude correction factors for each source and receiver. We have found that focusing by elastic heterogeneity can significantly influence surface-wave amplitudes and that this effect can be modeled at long periods using ray-theoretical approximations. We therefore subtract focusing effects from the data prior to inversion by using phase-velocity maps determined from jointly inverting amplitude and phase-delay datasets. In the shallow mantle, QRFSI12 exhibits a strong correlation with tectonic features, and different tectonic provinces are characterized by distinct attenuative properties. At depths > 250 km, the model is dominated by high attenuation beneath the southeastern Pacific and eastern Africa and low attenuation associated with subduction zones in the western Pacific. Comparison of QRFSI12 with global shear-velocity models shows a strong anti-correlation throughout the upper mantle. At 100-km depth, a clear trend of increasing velocity and decreasing attenuation with increasing age of the seafloor is apparent, and tectonically active continental areas are associated with slower velocities and higher attenuation than stable continental interiors. At depths of 150 and 200 km, oceanic regions exhibit a larger decrease in attenuation per fractional increase in velocity than stable continental regions do, suggesting differences in the mechanisms that influence the seismic properties within these two regions. Comparison with recent laboratory measurements (Faul and Jackson, 2005) of attenuation and velocity for olivine helps to quantify the extent to which temperature alone can explain the observed variability. We find that the mineral-physics predictions agree well with the global seismic models for the oceanic regions between 150- and 250-km depth, but that the cratonic areas cannot be fit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PApGe.174.3557S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PApGe.174.3557S"><span>High Attenuation Rate for Shallow, Small Earthquakes in Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Si, Hongjun; Koketsu, Kazuki; Miyake, Hiroe</p> <p>2017-09-01</p> <p>We compared the attenuation characteristics of peak ground accelerations (PGAs) and velocities (PGVs) of strong motion from shallow, small earthquakes that occurred in Japan with those predicted by the equations of Si and Midorikawa (J Struct Constr Eng 523:63-70, 1999). The observed PGAs and PGVs at stations far from the seismic source decayed more rapidly than the predicted ones. The same tendencies have been reported for deep, moderate, and large earthquakes, but not for shallow, moderate, and large earthquakes. This indicates that the peak values of ground motion from shallow, small earthquakes attenuate more steeply than those from shallow, moderate or large earthquakes. To investigate the reason for this difference, we numerically simulated strong ground motion for point sources of M w 4 and 6 earthquakes using a 2D finite difference method. The analyses of the synthetic waveforms suggested that the above differences are caused by surface waves, which are predominant at stations far from the seismic source for shallow, moderate earthquakes but not for shallow, small earthquakes. Thus, although loss due to reflection at the boundaries of the discontinuous Earth structure occurs in all shallow earthquakes, the apparent attenuation rate for a moderate or large earthquake is essentially the same as that of body waves propagating in a homogeneous medium due to the dominance of surface waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005GGG.....6.7010G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005GGG.....6.7010G"><span>Modeling of acoustic wave dissipation in gas hydrate-bearing sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guerin, Gilles; Goldberg, David</p> <p>2005-07-01</p> <p>Recent sonic and seismic data in gas hydrate-bearing sediments have indicated strong waveform attenuation associated with a velocity increase, in apparent contradiction with conventional wave propagation theory. Understanding the reasons for such energy dissipation could help constrain the distribution and the amounts of gas hydrate worldwide from the identification of low amplitudes in seismic surveys. A review of existing models for wave propagation in frozen porous media, all based on Biot's theory, shows that previous formulations fail to predict any significant attenuation with increasing hydrate content. By adding physically based components to these models, such as cementation by elastic shear coupling, friction between the solid phases, and squirt flow, we are able to predict an attenuation increase associated with gas hydrate formation. The results of the model agree well with the sonic logging data recorded in the Mallik 5L-38 Gas Hydrate Research Well. Cementation between gas hydrate and the sediment grains is responsible for the increase in shear velocity. The primary mode of energy dissipation is found to be friction between gas hydrate and the sediment matrix, combined with an absence of inertial coupling between gas hydrate and the pore fluid. These results predict similar attenuation increase in hydrate-bearing formations over most of the sonic and seismic frequency range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvF...3e3903V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvF...3e3903V"><span>Real-time feedback control of three-dimensional Tollmien-Schlichting waves using a dual-slot actuator geometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vemuri, SH. S.; Bosworth, R.; Morrison, J. F.; Kerrigan, E. C.</p> <p>2018-05-01</p> <p>The growth of Tollmien-Schlichting (TS) waves is experimentally attenuated using a single-input and single-output (SISO) feedback system, where the TS wave packet is generated by a surface point source in a flat-plate boundary layer. The SISO system consists of a single wall-mounted hot wire as the sensor and a miniature speaker as the actuator. The actuation is achieved through a dual-slot geometry to minimize the cavity near-field effects on the sensor. The experimental setup to generate TS waves or wave packets is very similar to that used by Li and Gaster [J. Fluid Mech. 550, 185 (2006), 10.1017/S0022112005008219]. The aim is to investigate the performance of the SISO control system in attenuating single-frequency, two-dimensional disturbances generated by these configurations. The necessary plant models are obtained using system identification, and the controllers are then designed based on the models and implemented in real-time to test their performance. Cancellation of the rms streamwise velocity fluctuation of TS waves is evident over a significant domain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP23F..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP23F..04M"><span>Why Do Some Estuaries Close: A Model of Estuary Entrance Morphodynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McSweeney, S. L.; Kennedy, D. M.; Rutherfurd, I.</p> <p>2014-12-01</p> <p>Intermittently Closed/Open Coastal Lakes/Lagoons (ICOLLs) are a form of wave-dominated, microtidal estuary that experience periodic closure in times of low river flow. ICOLL entrance morphodynamics are complex due to the interaction between wave, tidal and fluvial processes. Managers invest substantial funds to artificially open ICOLLs as they flood surrounding property and infrastructure, and have poor water quality. Existing studies examine broad scale processes but do not identify the main drivers of entrance condition. In this research, the changes in entrance geomorphology were surveyed before and after artificial entrance openings in three ICOLLs in Victoria, Australia. Changes in morphology were related to continuous measures of sediment volume, water level, tide and wave energy. A six-stage quantitative phase model of entrance geomorphology and hydrodynamics is presented to illustrate the spatio-temporal variability in ICOLL entrance morphodynamics. Phases include: breakout; channel expansion with rapid outflow; open with tidal exchange; initial berm rebuilding with tidal attenuation; partial berm recovery with rising water levels; closed with perched water levels. Entrance breakout initiates incision of a pilot channel to the ocean, whereby basin water levels then decline and channel expansion as the headcut migrates landwards. Peak outflow velocities of 5 m/s-3 were recorded and channel dimensions increased over 6 hrs to 3.5 m deep and 140 m wide. When tidal, a clear semi-diurnal signal is superimposed upon an otherwise stable water level. Deep-water wave energy was transferred 1.8 km upstream of the rivermouth with bores present in the basin. Berm rebuilding occurred by littoral drift and cross-shore transport once outflow ceased and microscale bedform features, particularly antidunes, contributed to sediment progradation. Phase duration is dependant on how high the estuary was perched above mean sea level, tidal prism extent, and onshore sediment supply. High offshore wave height and frequency, in addition to littoral drift magnitude, were main drivers of closure. This study presents a predictive model of entrance morphodynamics whereby managers can determine proximity to natural closure or opening, and as a result identify whether implementing an artificial opening is worthwhile.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=boo&pg=4&id=EJ772956','ERIC'); return false;" href="https://eric.ed.gov/?q=boo&pg=4&id=EJ772956"><span>Feels Like the Third Wave: The Rise of Fundraising in the Community College</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Milliron, Mark David; de los Santos, Gerardo E.; Browning, Boo</p> <p>2003-01-01</p> <p>Not so long ago, the word "fundraising" scarcely made an appearance in the community college lexicon. Now, as our society moves from the industrial age to the information age, it can be considered part of a wave of change flooding across the community college movement, with clear implications for how community colleges teach, reach, and lead. In…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188145','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188145"><span>Modelling multi-hazard hurricane damages on an urbanized coast with a Bayesian Network approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>van Verseveld, H.C.W.; Van Dongeren, A. R.; Plant, Nathaniel G.; Jäger, W.S.; den Heijer, C.</p> <p>2015-01-01</p> <p>Hurricane flood impacts to residential buildings in coastal zones are caused by a number of hazards, such as inundation, overflow currents, erosion, and wave attack. However, traditional hurricane damage models typically make use of stage-damage functions, where the stage is related to flooding depth only. Moreover, these models are deterministic and do not consider the large amount of uncertainty associated with both the processes themselves and with the predictions. This uncertainty becomes increasingly important when multiple hazards (flooding, wave attack, erosion, etc.) are considered simultaneously. This paper focusses on establishing relationships between observed damage and multiple hazard indicators in order to make better probabilistic predictions. The concept consists of (1) determining Local Hazard Indicators (LHIs) from a hindcasted storm with use of a nearshore morphodynamic model, XBeach, and (2) coupling these LHIs and building characteristics to the observed damages. We chose a Bayesian Network approach in order to make this coupling and used the LHIs ‘Inundation depth’, ‘Flow velocity’, ‘Wave attack’, and ‘Scour depth’ to represent flooding, current, wave impacts, and erosion related hazards.The coupled hazard model was tested against four thousand damage observations from a case site at the Rockaway Peninsula, NY, that was impacted by Hurricane Sandy in late October, 2012. The model was able to accurately distinguish ‘Minor damage’ from all other outcomes 95% of the time and could distinguish areas that were affected by the storm, but not severely damaged, 68% of the time. For the most heavily damaged buildings (‘Major Damage’ and ‘Destroyed’), projections of the expected damage underestimated the observed damage. The model demonstrated that including multiple hazards doubled the prediction skill, with Log-Likelihood Ratio test (a measure of improved accuracy and reduction in uncertainty) scores between 0.02 and 0.17 when only one hazard is considered and a score of 0.37 when multiple hazards are considered simultaneously. The LHIs with the most predictive skill were ‘Inundation depth’ and ‘Wave attack’. The Bayesian Network approach has several advantages over the market-standard stage-damage functions: the predictive capacity of multiple indicators can be combined; probabilistic predictions can be obtained, which include uncertainty; and quantitative as well as descriptive information can be used simultaneously.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070030190','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070030190"><span>Comparing the Robustness of High-Frequency Traveling-Wave Tube Slow-Wave Circuits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chevalier, Christine T.; Wilson, Jeffrey D.; Kory, Carol L.</p> <p>2007-01-01</p> <p>A three-dimensional electromagnetic field simulation software package was used to compute the cold-test parameters, phase velocity, on-axis interaction impedance, and attenuation, for several high-frequency traveling-wave tube slow-wave circuit geometries. This research effort determined the effects of variations in circuit dimensions on cold-test performance. The parameter variations were based on the tolerances of conventional micromachining techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1174853','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1174853"><span>Wireless, relative-motion computer input device</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Holzrichter, John F.; Rosenbury, Erwin T.</p> <p>2004-05-18</p> <p>The present invention provides a system for controlling a computer display in a workspace using an input unit/output unit. A train of EM waves are sent out to flood the workspace. EM waves are reflected from the input unit/output unit. A relative distance moved information signal is created using the EM waves that are reflected from the input unit/output unit. Algorithms are used to convert the relative distance moved information signal to a display signal. The computer display is controlled in response to the display signal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830046806&hterms=displacement+reaction&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddisplacement%2Breaction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830046806&hterms=displacement+reaction&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddisplacement%2Breaction"><span>Effect of flow on the acoustic performance of extended reaction lined ducts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hersh, A. S.; Walker, B.</p> <p>1983-01-01</p> <p>A model is developed for the effects of uniform and boundary-layer mean flow on the attenuation and propagation of harmonically excited sound waves in an extended reaction lined cylindrical duct. A duct geometry consisting of an annular outer region of bulk material surrounding an inner cylinder of air is utilized. A numerical solution is obtained for the coupled wave equations governing the motion of the sound in both the inner and annular regions. It is found that the numerically predicted attenuation and propagations constants are in excellent agreement with measured values using Kevlar as the liner material for plane-wave mode (O,O) excitation over a wide range of mean flows and sound frequency. The boundary-layer effects are determined to be unimportant, at least for plane-wave sound. In addition, numerical studies indicate small differences between the use of either the radial velocity or the radial displacement boundary conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAG...151..103Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAG...151..103Y"><span>Visco-acoustic wave-equation traveltime inversion and its sensitivity to attenuation errors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Han; Chen, Yuqing; Hanafy, Sherif M.; Huang, Jiangping</p> <p>2018-04-01</p> <p>A visco-acoustic wave-equation traveltime inversion method is presented that inverts for the shallow subsurface velocity distribution. Similar to the classical wave equation traveltime inversion, this method finds the velocity model that minimizes the squared sum of the traveltime residuals. Even though, wave-equation traveltime inversion can partly avoid the cycle skipping problem, a good initial velocity model is required for the inversion to converge to a reasonable tomogram with different attenuation profiles. When Q model is far away from the real model, the final tomogram is very sensitive to the starting velocity model. Nevertheless, a minor or moderate perturbation of the Q model from the true one does not strongly affect the inversion if the low wavenumber information of the initial velocity model is mostly correct. These claims are validated with numerical tests on both the synthetic and field data sets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008SPIE.6932E..1FE','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008SPIE.6932E..1FE"><span>Monitoring uniform and localized corrosion in reinforced mortar using high-frequency guided longitudinal wages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ervin, Benjamin L.; Reis, Henrique; Bernhard, Jennifer T.; Kuchma, Daniel A.</p> <p>2008-03-01</p> <p>High-frequency guided longitudinal waves have been used in a through-transmission arrangement to monitor reinforced mortar specimens undergoing both accelerated uniform and localized corrosion. High-frequency guided longitudinal waves were chosen because they have the fastest propagation velocity and lowest theoretical attenuation for the rebar/mortar system. This makes the modes easily discernible and gives them the ability to travel over long distances. The energy of the high-frequency longitudinal waves is located primarily in the center of the rebar, leading to less leakage into the surrounding mortar. The results indicate that the guided mechanical waves are sensitive to both forms of corrosion attack in the form of attenuation, with less sensitivity at higher frequencies. Also promising is the ability to discern uniform corrosion from localized corrosion in a through-transmission arrangement by examination of the frequency domain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/445561-three-dimensional-simulation-helix-traveling-wave-tube-cold-test-characteristics-using-mafia','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/445561-three-dimensional-simulation-helix-traveling-wave-tube-cold-test-characteristics-using-mafia"><span>Three-dimensional simulation of helix traveling-wave tube cold-test characteristics using MAFIA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kory, C.L.</p> <p>1996-12-31</p> <p>A critically important step in the traveling-wave tube (TWT) design process is the cold-testing of the slow-wave circuit for dispersion, beam interaction impedance and RF losses. Experimental cold-tests can be very time-consuming and expensive, thus limiting the freedom to examine numerous variations to the test circuit. This makes the need for computational methods crucial as they can lower cost, reduce tube development time and allow the freedom to introduce novel and improved designs. The cold-test parameters have been calculated for a C-Band Northrop-Grumman helix TWT slow-wave circuit using MAFIA, the three-dimensional electromagnetic finite-integration computer code. Measured and simulated cold-test datamore » for the Northrop-Grumman helix TWT including dispersion, impedance and attenuation will be presented. Close agreement between simulated and measured values of the dispersion, impedance and attenuation has been obtained.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006GeoJI.166..543C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006GeoJI.166..543C"><span>An effective medium inversion algorithm for gas hydrate quantification and its application to laboratory and borehole measurements of gas hydrate-bearing sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chand, Shyam; Minshull, Tim A.; Priest, Jeff A.; Best, Angus I.; Clayton, Christopher R. I.; Waite, William F.</p> <p>2006-08-01</p> <p>The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L-38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JGRB..114.7306H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JGRB..114.7306H"><span>Seismic modeling of multidimensional heterogeneity scales of Mallik gas hydrate reservoirs, Northwest Territories of Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Jun-Wei; Bellefleur, Gilles; Milkereit, Bernd</p> <p>2009-07-01</p> <p>In hydrate-bearing sediments, the velocity and attenuation of compressional and shear waves depend primarily on the spatial distribution of hydrates in the pore space of the subsurface lithologies. Recent characterizations of gas hydrate accumulations based on seismic velocity and attenuation generally assume homogeneous sedimentary layers and neglect effects from large- and small-scale heterogeneities of hydrate-bearing sediments. We present an algorithm, based on stochastic medium theory, to construct heterogeneous multivariable models that mimic heterogeneities of hydrate-bearing sediments at the level of detail provided by borehole logging data. Using this algorithm, we model some key petrophysical properties of gas hydrates within heterogeneous sediments near the Mallik well site, Northwest Territories, Canada. The modeled density, and P and S wave velocities used in combination with a modified Biot-Gassmann theory provide a first-order estimate of the in situ volume of gas hydrate near the Mallik 5L-38 borehole. Our results suggest a range of 528 to 768 × 106 m3/km2 of natural gas trapped within hydrates, nearly an order of magnitude lower than earlier estimates which did not include effects of small-scale heterogeneities. Further, the petrophysical models are combined with a 3-D finite difference modeling algorithm to study seismic attenuation due to scattering and leaky mode propagation. Simulations of a near-offset vertical seismic profile and cross-borehole numerical surveys demonstrate that attenuation of seismic energy may not be directly related to the intrinsic attenuation of hydrate-bearing sediments but, instead, may be largely attributed to scattering from small-scale heterogeneities and highly attenuate leaky mode propagation of seismic waves through larger-scale heterogeneities in sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028157','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028157"><span>An effective medium inversion algorithm for gas hydrate quantification and its application to laboratory and borehole measurements of gas hydrate-bearing sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chand, S.; Minshull, T.A.; Priest, J.A.; Best, A.I.; Clayton, C.R.I.; Waite, W.F.</p> <p>2006-01-01</p> <p>The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L–38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>