Sample records for flooded area mapping

  1. The development of flood map in Malaysia

    NASA Astrophysics Data System (ADS)

    Zakaria, Siti Fairus; Zin, Rosli Mohamad; Mohamad, Ismail; Balubaid, Saeed; Mydin, Shaik Hussein; MDR, E. M. Roodienyanto

    2017-11-01

    In Malaysia, flash floods are common occurrences throughout the year in flood prone areas. In terms of flood extent, flash floods affect smaller areas but because of its tendency to occur in densely urbanized areas, the value of damaged property is high and disruption to traffic flow and businesses are substantial. However, in river floods especially the river floods of Kelantan and Pahang, the flood extent is widespread and can extend over 1,000 square kilometers. Although the value of property and density of affected population is lower, the damage inflicted by these floods can also be high because the area affected is large. In order to combat these floods, various flood mitigation measures have been carried out. Structural flood mitigation alone can only provide protection levels from 10 to 100 years Average Recurrence Intervals (ARI). One of the economically effective non-structural approaches in flood mitigation and flood management is using a geospatial technology which involves flood forecasting and warning services to the flood prone areas. This approach which involves the use of Geographical Information Flood Forecasting system also includes the generation of a series of flood maps. There are three types of flood maps namely Flood Hazard Map, Flood Risk Map and Flood Evacuation Map. Flood Hazard Map is used to determine areas susceptible to flooding when discharge from a stream exceeds the bank-full stage. Early warnings of incoming flood events will enable the flood victims to prepare themselves before flooding occurs. Properties and life's can be saved by keeping their movable properties above the flood levels and if necessary, an early evacuation from the area. With respect to flood fighting, an early warning with reference through a series of flood maps including flood hazard map, flood risk map and flood evacuation map of the approaching flood should be able to alert the organization in charge of the flood fighting actions and the authority to undertake the necessary decisions, and the general public to be aware of the impending danger. However this paper will only discuss on the generations of Flood Hazard Maps and the use of Flood Risk Map and Flood Evacuation Map by using geospatial data.

  2. Estimation of flood environmental effects using flood zone mapping techniques in Halilrood Kerman, Iran.

    PubMed

    Boudaghpour, Siamak; Bagheri, Majid; Bagheri, Zahra

    2014-01-01

    High flood occurrences with large environmental damages have a growing trend in Iran. Dynamic movements of water during a flood cause different environmental damages in geographical areas with different characteristics such as topographic conditions. In general, environmental effects and damages caused by a flood in an area can be investigated from different points of view. The current essay is aiming at detecting environmental effects of flood occurrences in Halilrood catchment area of Kerman province in Iran using flood zone mapping techniques. The intended flood zone map was introduced in four steps. Steps 1 to 3 pave the way to calculate and estimate flood zone map in the understudy area while step 4 determines the estimation of environmental effects of flood occurrence. Based on our studies, wide range of accuracy for estimating the environmental effects of flood occurrence was introduced by using of flood zone mapping techniques. Moreover, it was identified that the existence of Jiroft dam in the study area can decrease flood zone from 260 hectares to 225 hectares and also it can decrease 20% of flood peak intensity. As a result, 14% of flood zone in the study area can be saved environmentally.

  3. Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania)

    NASA Astrophysics Data System (ADS)

    Zaharia, Liliana; Costache, Romulus; Prăvălie, Remus; Ioana-Toroimac, Gabriela

    2017-04-01

    Given that floods continue to cause yearly significant worldwide human and material damages, flood risk mitigation is a key issue and a permanent challenge in developing policies and strategies at various spatial scales. Therefore, a basic phase is elaborating hazard and flood risk maps, documents which are an essential support for flood risk management. The aim of this paper is to develop an approach that allows for the identification of flash-flood and flood-prone susceptible areas based on computing and mapping of two indices: FFPI (Flash-Flood Potential Index) and FPI (Flooding Potential Index). These indices are obtained by integrating in a GIS environment several geographical variables which control runoff (in the case of the FFPI) and favour flooding (in the case of the FPI). The methodology was applied in the upper (mountainous) and middle (hilly) catchment of the Prahova River, a densely populated and socioeconomically well-developed area which has been affected repeatedly by water-related hazards over the past decades. The resulting maps showing the spatialization of the FFPI and FPI allow for the identification of areas with high susceptibility to flashfloods and flooding. This approach can provide useful mapped information, especially for areas (generally large) where there are no flood/hazard risk maps. Moreover, the FFPI and FPI maps can constitute a preliminary step for flood risk and vulnerability assessment.

  4. Assessment of Three Flood Hazard Mapping Methods: A Case Study of Perlis

    NASA Astrophysics Data System (ADS)

    Azizat, Nazirah; Omar, Wan Mohd Sabki Wan

    2018-03-01

    Flood is a common natural disaster and also affect the all state in Malaysia. Regarding to Drainage and Irrigation Department (DID) in 2007, about 29, 270 km2 or 9 percent of region of the country is prone to flooding. Flood can be such devastating catastrophic which can effected to people, economy and environment. Flood hazard mapping can be used is an important part in flood assessment to define those high risk area prone to flooding. The purposes of this study are to prepare a flood hazard mapping in Perlis and to evaluate flood hazard using frequency ratio, statistical index and Poisson method. The six factors affecting the occurrence of flood including elevation, distance from the drainage network, rainfall, soil texture, geology and erosion were created using ArcGIS 10.1 software. Flood location map in this study has been generated based on flooded area in year 2010 from DID. These parameters and flood location map were analysed to prepare flood hazard mapping in representing the probability of flood area. The results of the analysis were verified using flood location data in year 2013, 2014, 2015. The comparison result showed statistical index method is better in prediction of flood area rather than frequency ratio and Poisson method.

  5. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information must...

  6. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information must...

  7. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information must...

  8. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... areas subject to alluvial fan flooding. 65.13 Section 65.13 Emergency Management and Assistance FEDERAL... areas subject to alluvial fan flooding. This section describes the procedures to be followed and the... provides protection from the base flood in an area subject to alluvial fan flooding. This information must...

  9. Flood mapping from Sentinel-1 and Landsat-8 data: a case study from river Evros, Greece

    NASA Astrophysics Data System (ADS)

    Kyriou, Aggeliki; Nikolakopoulos, Konstantinos

    2015-10-01

    Floods are suddenly and temporary natural events, affecting areas which are not normally covered by water. The influence of floods plays a significant role both in society and the natural environment, therefore flood mapping is crucial. Remote sensing data can be used to develop flood map in an efficient and effective way. This work is focused on expansion of water bodies overtopping natural levees of the river Evros, invading the surroundings areas and converting them in flooded. Different techniques of flood mapping were used using data from active and passive remote sensing sensors like Sentinlel-1 and Landsat-8 respectively. Space borne pairs obtained from Sentinel-1 were processed in this study. Each pair included an image during the flood, which is called "crisis image" and another one before the event, which is called "archived image". Both images covering the same area were processed producing a map, which shows the spread of the flood. Multispectral data From Landsat-8 were also processed in order to detect and map the flooded areas. Different image processing techniques were applied and the results were compared to the respective results of the radar data processing.

  10. Flood Disaster Analysis Using Landsat-8 and SPOT-6 Imagery for Determination of Flooded Areas in Sampang, Madura

    NASA Astrophysics Data System (ADS)

    Sukojo, B. M.; Alfiansyah, F.

    2017-12-01

    Based on data of disaster which is defaced by Badan Penanggulangan Bencana Daerah (BPBD) of Sampang that in the period of 2015 - 2017 as many as 25 cases from 31 cases of disaster caused by flood disaster or 80.65% from total disaster. Therefore, the purpose of this research is to create a map of flood vulnerability in Sampang. From the vulnerability map, we can know the area with the impacted flood level in Sampang so that from the map of flood affected areas can be known the extent of the affected area in each class. In this study, two Landsat-8 and SPOT 6 data were used. For Landsat-8 imagery used for land cover on district level disaster level vulnerability maps, while high-resolution SPOT-6 images were used for land cover making maps of flood affected areas Sampang district. With the flood affected areas in this study, it is expected to be used as a determinant of flood affected areas in Sampang district. Based on data processing and analysis it is found that the highest impacted area is located in Sampang district with 12 cases of 17 cases of total flood disaster in Sampang district based on data from BPBD Kabupaten Sampang in 2016. There are 4 classes of flood affected areas in Sampang district i.e. not affected by 9039,540 ha, low impact 46262.881 ha, medium impact 43012.431 ha and high impact of 14009,760 ha.

  11. Mapping Infected Area after a Flash-Flooding Storm Using Multi Criteria Analysis and Spectral Indices

    NASA Astrophysics Data System (ADS)

    Al-Akad, S.; Akensous, Y.; Hakdaoui, M.

    2017-11-01

    This research article is summarize the applications of remote sensing and GIS to study the urban floods risk in Al Mukalla. Satellite acquisition of a flood event on October 2015 in Al Mukalla (Yemen) by using flood risk mapping techniques illustrate the potential risk present in this city. Satellite images (The Landsat and DEM images data were atmospherically corrected, radiometric corrected, and geometric and topographic distortions rectified.) are used for flood risk mapping to afford a hazard (vulnerability) map. This map is provided by applying image-processing techniques and using geographic information system (GIS) environment also the application of NDVI, NDWI index, and a method to estimate the flood-hazard areas. Four factors were considered in order to estimate the spatial distribution of the hazardous areas: flow accumulation, slope, land use, geology and elevation. The multi-criteria analysis, allowing to deal with vulnerability to flooding, as well as mapping areas at the risk of flooding of the city Al Mukalla. The main object of this research is to provide a simple and rapid method to reduce and manage the risks caused by flood in Yemen by take as example the city of Al Mukalla.

  12. Flood Extent Mapping Using Dual-Polarimetric SENTINEL-1 Synthetic Aperture Radar Imagery

    NASA Astrophysics Data System (ADS)

    Jo, M.-J.; Osmanoglu, B.; Zhang, B.; Wdowinski, S.

    2018-04-01

    Rapid generation of synthetic aperture radar (SAR) based flood extent maps provide valuable data in disaster response efforts thanks to the cloud penetrating ability of microwaves. We present a method using dual-polarimetric SAR imagery acquired on Sentinel-1a/b satellites. A false-colour map is generated using pre- and post- disaster imagery, allowing operators to distinguish between existing standing water pre-flooding, and recently flooded areas. The method works best in areas of standing water and provides mixed results in urban areas. A flood depth map is also estimated by using an external DEM. We will present the methodology, it's estimated accuracy as well as investigations into improving the response in urban areas.

  13. Utah Flooding Hazard: Raising Public Awareness through the Creation of Multidisciplinary Web-Based Maps

    NASA Astrophysics Data System (ADS)

    Castleton, J.; Erickson, B.; Bowman, S. D.; Unger, C. D.

    2014-12-01

    The Utah Geological Survey's (UGS) Geologic Hazards Program has partnered with the U.S. Army Corps of Engineers to create geologically derived web-based flood hazard maps. Flooding in Utah communities has historically been one of the most damaging geologic hazards. The most serious floods in Utah have generally occurred in the Great Salt Lake basin, particularly in the Weber River drainage on the western slopes of the Wasatch Range, in areas of high population density. With a growing population of 2.9 million, the state of Utah is motivated to raise awareness about the potential for flooding. The process of increasing community resiliency to flooding begins with identification and characterization of flood hazards. Many small communities in areas experiencing rapid growth have not been mapped completely by the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM). Existing FIRM maps typically only consider drainage areas that are greater than one square mile in determining flood zones and do not incorporate geologic data, such as the presence of young, geologically active alluvial fans that indicate a high potential for debris flows and sheet flooding. Our new flood hazard mapping combines and expands on FEMA data by incorporating mapping derived from 1:24,000-scale UGS geologic maps, LiDAR data, digital elevation models, and historical aerial photography. Our flood hazard maps are intended to supplement the FIRM maps to provide local governments and the public with additional flood hazard information so they may make informed decisions, ultimately reducing the risk to life and property from flooding hazards. Flooding information must be widely available and easily accessed. One of the most effective ways to inform the public is through web-based maps. Web-based flood hazard maps will not only supply the public with the flood information they need, but also provides a platform to add additional geologic hazards to an easily accessible format.

  14. Probabilistic mapping of flood-induced backscatter changes in SAR time series

    NASA Astrophysics Data System (ADS)

    Schlaffer, Stefan; Chini, Marco; Giustarini, Laura; Matgen, Patrick

    2017-04-01

    The information content of flood extent maps can be increased considerably by including information on the uncertainty of the flood area delineation. This additional information can be of benefit in flood forecasting and monitoring. Furthermore, flood probability maps can be converted to binary maps showing flooded and non-flooded areas by applying a threshold probability value pF = 0.5. In this study, a probabilistic change detection approach for flood mapping based on synthetic aperture radar (SAR) time series is proposed. For this purpose, conditional probability density functions (PDFs) for land and open water surfaces were estimated from ENVISAT ASAR Wide Swath (WS) time series containing >600 images using a reference mask of permanent water bodies. A pixel-wise harmonic model was used to account for seasonality in backscatter from land areas caused by soil moisture and vegetation dynamics. The approach was evaluated for a large-scale flood event along the River Severn, United Kingdom. The retrieved flood probability maps were compared to a reference flood mask derived from high-resolution aerial imagery by means of reliability diagrams. The obtained performance measures indicate both high reliability and confidence although there was a slight under-estimation of the flood extent, which may in part be attributed to topographically induced radar shadows along the edges of the floodplain. Furthermore, the results highlight the importance of local incidence angle for the separability between flooded and non-flooded areas as specular reflection properties of open water surfaces increase with a more oblique viewing geometry.

  15. Flood hazards studies in the Mississippi River basin using remote sensing

    NASA Technical Reports Server (NTRS)

    Rango, A.; Anderson, A. T.

    1974-01-01

    The Spring 1973 Mississippi River flood was investigated using remotely sensed data from ERTS-1. Both manual and automatic analyses of the data indicated that ERTS-1 is extremely useful as a regional tool for flood mamagement. Quantitative estimates of area flooded were made in St. Charles County, Missouri and Arkansas. Flood hazard mapping was conducted in three study areas along the Mississippi River using pre-flood ERTS-1 imagery enlarged to 1:250,000 and 1:100,000 scale. Initial results indicate that ERTS-1 digital mapping of flood prone areas can be performed at 1:62,500 which is comparable to some conventional flood hazard map scales.

  16. Estimated flood-inundation maps for Cowskin Creek in western Wichita, Kansas

    USGS Publications Warehouse

    Studley, Seth E.

    2003-01-01

    The October 31, 1998, flood on Cowskin Creek in western Wichita, Kansas, caused millions of dollars in damages. Emergency management personnel and flood mitigation teams had difficulty in efficiently identifying areas affected by the flooding, and no warning was given to residents because flood-inundation information was not available. To provide detailed information about future flooding on Cowskin Creek, high-resolution estimated flood-inundation maps were developed using geographic information system technology and advanced hydraulic analysis. Two-foot-interval land-surface elevation data from a 1996 flood insurance study were used to create a three-dimensional topographic representation of the study area for hydraulic analysis. The data computed from the hydraulic analyses were converted into geographic information system format with software from the U.S. Army Corps of Engineers' Hydrologic Engineering Center. The results were overlaid on the three-dimensional topographic representation of the study area to produce maps of estimated flood-inundation areas and estimated depths of water in the inundated areas for 1-foot increments on the basis of stream stage at an index streamflow-gaging station. A Web site (http://ks.water.usgs.gov/Kansas/cowskin.floodwatch) was developed to provide the public with information pertaining to flooding in the study area. The Web site shows graphs of the real-time streamflow data for U.S. Geological Survey gaging stations in the area and monitors the National Weather Service Arkansas-Red Basin River Forecast Center for Cowskin Creek flood-forecast information. When a flood is forecast for the Cowskin Creek Basin, an estimated flood-inundation map is displayed for the stream stage closest to the National Weather Service's forecasted peak stage. Users of the Web site are able to view the estimated flood-inundation maps for selected stages at any time and to access information about this report and about flooding in general. Flood recovery teams also have the ability to view the estimated flood-inundation map pertaining to the most recent flood. The availability of these maps and the ability to monitor the real-time stream stage through the U.S. Geological Survey Web site provide emergency management personnel and residents with information that is critical for evacuation and rescue efforts in the event of a flood as well as for post-flood recovery efforts.

  17. The pattern of spatial flood disaster region in DKI Jakarta

    NASA Astrophysics Data System (ADS)

    Tambunan, M. P.

    2017-02-01

    The study of disaster flood area was conducted in DKI Jakarta Province, Indonesia. The aim of this research is: to study the spatial distribution of potential and actual of flood area The flood was studied from the geographic point of view using spatial approach, while the study of the location, the distribution, the depth and the duration of flooding was conducted using geomorphologic approach and emphasize on the detailed landform unit as analysis unit. In this study the landforms in DKI Jakarta have been a diversity, as well as spatial and temporal pattern of the actual and potential flood area. Landform at DKI Jakarta has been largely used as built up area for settlement and it facilities, thus affecting the distribution pattern of flooding area. The collection of the physical condition of landform in DKI Jakarta data prone were conducted through interpretation of the topographic map / RBI map and geological map. The flood data were obtained by survey and secondary data from Kimpraswil (Public Work) of DKI Jakarta Province for 3 years (1996, 2002, and 2007). Data of rainfall were obtained from BMKG and land use data were obtained from BPN DKI Jakarta. The analysis of the causal factors and distribution of flooding was made spatially and temporally using geographic information system. This study used survey method with a pragmatic approach. In this study landform as result from the analytical survey was settlement land use as result the synthetic survey. The primary data consist of landform, and the flood characteristic obtained by survey. The samples were using purposive sampling. Landform map was composed by relief, structure and material stone, and process data Landform map was overlay with flood map the flood prone area in DKI Jakarta Province in scale 1:50,000 to show. Descriptive analysis was used the spatial distribute of the flood prone area. The result of the study show that actual of flood prone area in the north, west and east of Jakarta lowland both in beach ridge, coastal alluvial plain, and alluvial plain; while the flood potential area on the slope is found flat and steep at alluvial fan, alluvial plain, beach ridge, and coastal alluvial plain in DKI Jakarta. Based on the result can be concluded that actual flood prone is not distributed on potential flood prone

  18. Low cost, multiscale and multi-sensor application for flooded area mapping

    NASA Astrophysics Data System (ADS)

    Giordan, Daniele; Notti, Davide; Villa, Alfredo; Zucca, Francesco; Calò, Fabiana; Pepe, Antonio; Dutto, Furio; Pari, Paolo; Baldo, Marco; Allasia, Paolo

    2018-05-01

    Flood mapping and estimation of the maximum water depth are essential elements for the first damage evaluation, civil protection intervention planning and detection of areas where remediation is needed. In this work, we present and discuss a methodology for mapping and quantifying flood severity over floodplains. The proposed methodology considers a multiscale and multi-sensor approach using free or low-cost data and sensors. We applied this method to the November 2016 Piedmont (northwestern Italy) flood. We first mapped the flooded areas at the basin scale using free satellite data from low- to medium-high-resolution from both the SAR (Sentinel-1, COSMO-Skymed) and multispectral sensors (MODIS, Sentinel-2). Using very- and ultra-high-resolution images from the low-cost aerial platform and remotely piloted aerial system, we refined the flooded zone and detected the most damaged sector. The presented method considers both urbanised and non-urbanised areas. Nadiral images have several limitations, in particular in urbanised areas, where the use of terrestrial images solved this limitation. Very- and ultra-high-resolution images were processed with structure from motion (SfM) for the realisation of 3-D models. These data, combined with an available digital terrain model, allowed us to obtain maps of the flooded area, maximum high water area and damaged infrastructures.

  19. Flooding Hazard Maps of Different Land Uses in Subsidence Area

    NASA Astrophysics Data System (ADS)

    Lin, Yongjun; Chang, Hsiangkuan; Tan, Yihchi

    2017-04-01

    This study aims on flooding hazard maps of different land uses in the subsidence area of southern Taiwan. Those areas are low-lying due to subsidence resulting from over pumping ground water for aquaculture. As a result, the flooding due to storm surges and extreme rainfall are frequent in this area and are expected more frequently in the future. The main land uses there include: residence, fruit trees, and aquaculture. The hazard maps of the three land uses are investigated. The factors affecting hazards of different land uses are listed below. As for residence, flooding depth, duration of flooding, and rising rate of water surface level are factors affecting its degree of hazard. High flooding depth, long duration of flooding, and fast rising rate of water surface make residents harder to evacuate. As for fruit trees, flooding depth and duration of flooding affects its hazard most due to the root hypoxia. As for aquaculture, flooding depth affects its hazard most because the high flooding depth may cause the fish flush out the fishing ponds. An overland flow model is used for simulations of hydraulic parameters for factors such as flooding depth, rising rate of water surface level and duration of flooding. As above-mentioned factors, the hazard maps of different land uses can be made and high hazardous are can also be delineated in the subsidence areas.

  20. Extent of Texas Flooding Shown in New NASA Map

    NASA Image and Video Library

    2017-08-30

    The Advanced Rapid Imaging and Analysis (ARIA) team at NASA's Jet Propulsion Laboratory in Pasadena, California, created this Flood Proxy Map depicting areas of Southeastern Texas that are likely flooded as a result of Hurricane Harvey, shown by light blue pixels. The map is derived from synthetic aperture radar amplitude images from the Japan Aerospace Exploration Agency's (JAXA) ALOS-2 PALSAR-2 satellite, taken before (July 30, 2017) and after (August 27, 2017) Hurricane Harvey made landfall. The map covers an area of 135 square miles (350 square kilometers). Each pixel measures about 538 square feet (50 square meters). Local ground observations provided anecdotal preliminary validation. This flood proxy map should be used as guidance to identify areas that are likely flooded, and may be less reliable over urban areas. ALOS-2 data were accessed through the International Charter. https://photojournal.jpl.nasa.gov/catalog/PIA21928

  1. Flood-inundation maps for the Susquehanna River near Harrisburg, Pennsylvania, 2013

    USGS Publications Warehouse

    Roland, Mark A.; Underwood, Stacey M.; Thomas, Craig M.; Miller, Jason F.; Pratt, Benjamin A.; Hogan, Laurie G.; Wnek, Patricia A.

    2014-01-01

    A series of 28 digital flood-inundation maps was developed for an approximate 25-mile reach of the Susquehanna River in the vicinity of Harrisburg, Pennsylvania. The study was selected by the U.S. Army Corps of Engineers (USACE) national Silver Jackets program, which supports interagency teams at the state level to coordinate and collaborate on flood-risk management. This study to produce flood-inundation maps was the result of a collaborative effort between the USACE, National Weather Service (NWS), Susquehanna River Basin Commission (SRBC), The Harrisburg Authority, and the U.S. Geological Survey (USGS). These maps are accessible through Web-mapping applications associated with the NWS, SRBC, and USGS. The maps can be used in conjunction with the real-time stage data from the USGS streamgage 01570500, Susquehanna River at Harrisburg, Pa., and NWS flood-stage forecasts to help guide the general public in taking individual safety precautions and will provide local municipal officials with a tool to efficiently manage emergency flood operations and flood mitigation efforts. The maps were developed using the USACE HEC–RAS and HEC–GeoRAS programs to compute water-surface profiles and to delineate estimated flood-inundation areas for selected stream stages. The maps show estimated flood-inundation areas overlaid on high-resolution, georeferenced, aerial photographs of the study area for stream stages at 1-foot intervals between 11 feet and 37 feet (which include NWS flood categories Action, Flood, Moderate, and Major) and the June 24, 1972, peak-of-record flood event at a stage of 33.27 feet at the Susquehanna River at Harrisburg, Pa., streamgage.

  2. Flood Water Level Mapping and Prediction Due to Dam Failures

    NASA Astrophysics Data System (ADS)

    Musa, S.; Adnan, M. S.; Ahmad, N. A.; Ayob, S.

    2016-07-01

    Sembrong dam has undergone overflow failure. Flooding has been reported to hit the town, covering an area of up to Parit Raja, located in the district of Batu Pahat. This study aims to identify the areas that will be affected by flood in the event of a dam failure in Sembrong Dam, Kluang, Johor at a maximum level. To grasp the extent, the flood inundation maps have been generated by using the InfoWorks ICM and GIS software. By using these maps, information such as the depth and extent of floods can be identified the main ares flooded. The flood map was created starting with the collection of relevant data such as measuring the depth of the river and a maximum flow rate for Sembrong Dam. The data were obtained from the Drainage and Irrigation Department Malaysia and the Department of Survey and Mapping and HLA Associates Sdn. Bhd. Then, the data were analyzed according to the established Info Works ICM method. The results found that the flooded area were listed at Sri Lalang, Parit Sagil, Parit Sonto, Sri Paya, Parit Raja, Parit Sempadan, Talang Bunut, Asam Bubok, Tanjung Sembrong, Sungai Rambut and Parit Haji Talib. Flood depth obtained for the related area started from 0.5 m up to 1.2 m. As a conclusion, the flood emanating from this study include the area around the town of Ayer Hitam up to Parit Raja approximately of more than 20 km distance. This may give bad implication to residents around these areas. In future studies, other rivers such as Sungai Batu Pahat should be considered for this study to predict and reduce the yearly flood victims for this area.

  3. Flood inundation map library, Fort Kent, Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2012-01-01

    Severe flooding occurred in northern Maine from April 28 to May 1, 2008, and damage was extensive in the town of Fort Kent (Lombard, 2010). Aroostook County was declared a Federal disaster area on May 9, 2008. The extent of flooding on both the Fish and St. John Rivers during this event showed that the current Federal Emergency Management Agency (FEMA) Flood Insurance Study (FIS) and Flood Insurance Rate Map (FIRM) (Federal Emergency Management Agency, 1979) were out of date. The U.S. Geological Survey (USGS) conducted a study to develop a flood inundation map library showing the areas and depths for a range of flood stages from bankfull to the flood of record for Fort Kent to complement an updated FIS (Federal Emergency Management Agency, in press). Hydrologic analyses that support the maps include computer models with and without the levee and with various depths of backwater on the Fish River. This fact sheet describes the methods used to develop the maps and describes how the maps can be accessed.

  4. 44 CFR 64.3 - Flood Insurance Maps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tidal floods (coastal high hazard area) V1-30, VE Area of special flood hazards, with water surface elevations determined and with velocity, that is inundated by tidal floods (coastal high hazard area) V0 Area..., but possible, mudslide hazards E Area of special flood-related erosion hazards. Areas identified as...

  5. 44 CFR 64.3 - Flood Insurance Maps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tidal floods (coastal high hazard area) V1-30, VE Area of special flood hazards, with water surface elevations determined and with velocity, that is inundated by tidal floods (coastal high hazard area) V0 Area..., but possible, mudslide hazards E Area of special flood-related erosion hazards. Areas identified as...

  6. 44 CFR 64.3 - Flood Insurance Maps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tidal floods (coastal high hazard area) V1-30, VE Area of special flood hazards, with water surface elevations determined and with velocity, that is inundated by tidal floods (coastal high hazard area) V0 Area..., but possible, mudslide hazards E Area of special flood-related erosion hazards. Areas identified as...

  7. Flood Vulnerability Analysis of the part of Karad Region, Satara District, Maharashtra using Remote Sensing and Geographic Information System technique

    NASA Astrophysics Data System (ADS)

    Warghat, Sumedh R.; Das, Sandipan; Doad, Atul; Mali, Sagar; Moon, Vishal S.

    2012-07-01

    Karad City is situated on the bank of confluence of river Krishna & Koyana, which is severely flood prone area. The floodwaters enter the city through the roads and disrupt the infrastructure in the whole city. Furthermore, due to negligence of the authorities and unplanned growth of the city, the people living in the city have harnessed the natural flow of water by constructing unnecessary embankments in the river Koyna. Due to this reason now river koyna is flowing in the form of a narrow channel, which very easily over-flows during very minor flooding.Flood Vulnerabilty Analysis has been done for the karad region of satara district, maharashtra using remote sensing and geographic information system technique. The aim of this study is to identify flood vulnerability zone by using GIS and RS technique and an attempt has been to demonstrat the application of remote sensing and GIS in order to map flood vulnerabilty area by utilizing ArcMap, and Erdas software. Flood vulnerabilty analysis of part the Karad Regian of Satara District, Maharashtra has been carried out with the objectives - Identify the Flood Prone area in the Koyana and Krishna river basin, Calculate surface runoff and Delineate flood sensitive areas. Delineate classified hazard Map, Evaluate the Flood affected area, Prepare the Flood Vulnerability Map by utilizing Remote Sensing and GIS technique. (C.J. Kumanan;S.M. Ramasamy)The study is based on GIS and spatial technique is used for analysis and understanding of flood problem in Karad Tahsil. The flood affected areas of the different magnitude has been identified and mapped using Arc GIS software. The analysis is useful for local planning authority for identification of risk areas and taking proper decision in right moment. In the analysis causative factors for flooding in watershed are taken into account as annual rainfall, size of watershed, basin slope, drainage density of natural channels and land use. (Dinand Alkema; Farah Aziz.)This study of flood vulnerable area determination in a part of Karad Tahsil is employed to illustrate the different approaches.

  8. Flood Hazard Mapping by Applying Fuzzy TOPSIS Method

    NASA Astrophysics Data System (ADS)

    Han, K. Y.; Lee, J. Y.; Keum, H.; Kim, B. J.; Kim, T. H.

    2017-12-01

    There are lots of technical methods to integrate various factors for flood hazard mapping. The purpose of this study is to suggest the methodology of integrated flood hazard mapping using MCDM(Multi Criteria Decision Making). MCDM problems involve a set of alternatives that are evaluated on the basis of conflicting and incommensurate criteria. In this study, to apply MCDM to assessing flood risk, maximum flood depth, maximum velocity, and maximum travel time are considered as criterion, and each applied elements are considered as alternatives. The scheme to find the efficient alternative closest to a ideal value is appropriate way to assess flood risk of a lot of element units(alternatives) based on various flood indices. Therefore, TOPSIS which is most commonly used MCDM scheme is adopted to create flood hazard map. The indices for flood hazard mapping(maximum flood depth, maximum velocity, and maximum travel time) have uncertainty concerning simulation results due to various values according to flood scenario and topographical condition. These kind of ambiguity of indices can cause uncertainty of flood hazard map. To consider ambiguity and uncertainty of criterion, fuzzy logic is introduced which is able to handle ambiguous expression. In this paper, we made Flood Hazard Map according to levee breach overflow using the Fuzzy TOPSIS Technique. We confirmed the areas where the highest grade of hazard was recorded through the drawn-up integrated flood hazard map, and then produced flood hazard map can be compared them with those indicated in the existing flood risk maps. Also, we expect that if we can apply the flood hazard map methodology suggested in this paper even to manufacturing the current flood risk maps, we will be able to make a new flood hazard map to even consider the priorities for hazard areas, including more varied and important information than ever before. Keywords : Flood hazard map; levee break analysis; 2D analysis; MCDM; Fuzzy TOPSIS Acknowlegement This research was supported by a grant (17AWMP-B079625-04) from Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  9. Fifty-Year Flood-Inundation Maps for Santa Rosa de Aguan, Honduras

    USGS Publications Warehouse

    Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the coastal municipality of Santa Rosa de Aguan that are prone to oceanic storm-surge flooding and wave action. The 50-year flood on the Rio Aguan (4,270 cubic meters per second), would inundate most of the area surveyed for this municipality and beyond. Therefore a detailed numerical hydraulic model was not developed for this municipality as it was for the others. The 50-year storm surge would likely produce higher water levels than the 50-year flood on the river during normal astronomical tides. The elevation of the 50-year storm surge was estimated to be 4.35 meters above normal sea level, based on hurricane probabilities and published storm-surge elevations associated with various hurricane categories. Flood-inundation maps, including areas of wave-action hazard and a color-shaded elevation map, were created from the available data and the estimated 50-year storm tide. Geographic Information System (GIS) coverages of the hazard areas are available on a computer in the municipality of Santa Rosa de Aguan as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Data Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the maps in much more detail than is possible using the maps in this report.

  10. Geomorphic Flood Area (GFA): a DEM-based tool for flood susceptibility mapping at large scales

    NASA Astrophysics Data System (ADS)

    Manfreda, S.; Samela, C.; Albano, R.; Sole, A.

    2017-12-01

    Flood hazard and risk mapping over large areas is a critical issue. Recently, many researchers are trying to achieve a global scale mapping encountering several difficulties, above all the lack of data and implementation costs. In data scarce environments, a preliminary and cost-effective floodplain delineation can be performed using geomorphic methods (e.g., Manfreda et al., 2014). We carried out several years of research on this topic, proposing a morphologic descriptor named Geomorphic Flood Index (GFI) (Samela et al., 2017) and developing a Digital Elevation Model (DEM)-based procedure able to identify flood susceptible areas. The procedure exhibited high accuracy in several test sites in Europe, United States and Africa (Manfreda et al., 2015; Samela et al., 2016, 2017) and has been recently implemented in a QGIS plugin named Geomorphic Flood Area (GFA) - tool. The tool allows to automatically compute the GFI, and turn it into a linear binary classifier capable of detecting flood-prone areas. To train this classifier, an inundation map derived using hydraulic models for a small portion of the basin is required (the minimum is 2% of the river basin's area). In this way, the GFA-tool allows to extend the classification of the flood-prone areas across the entire basin. We are also defining a simplified procedure for the estimation of the river depth, which may be helpful for large-scale analyses to approximatively evaluate the expected flood damages in the surrounding areas. ReferencesManfreda, S., Nardi, F., Samela, C., Grimaldi, S., Taramasso, A. C., Roth, G., & Sole, A. (2014). Investigation on the use of geomorphic approaches for the delineation of flood prone areas. J. Hydrol., 517, 863-876. Manfreda, S., Samela, C., Gioia, A., Consoli, G., Iacobellis, V., Giuzio, L., & Sole, A. (2016). Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models. Nat. Hazards, Vol. 79 (2), pp 735-754. Samela, C., Manfreda, S., Paola, F. D., Giugni, M., Sole, A., & Fiorentino, M. (2016). DEM-Based Approaches for the Delineation of Flood-Prone Areas in an Ungauged Basin in Africa. J. Hydrol. Eng,, 06015010. Samela, C., Troy, T. J., & Manfreda, S. (2017a). Geomorphic classifiers for flood-prone areas delineation for data-scarce environments. Adv. Water Resour., 102, 13-28.

  11. Importance of Integrating High-Resoultion 2D Flood Hazard Maps in the Flood Disaster Management of Marikina City, Philippines

    NASA Astrophysics Data System (ADS)

    Tapales, Ben Joseph; Mendoza, Jerico; Uichanco, Christopher; Mahar Francisco Amante Lagmay, Alfredo; Moises, Mark Anthony; Delmendo, Patricia; Eneri Tingin, Neil

    2015-04-01

    Flooding has been a perennial problem in the city of Marikina. These incidences result in human and economic losses. In response to this, the city has been investing in their flood disaster mitigation program in the past years. As a result, flooding in Marikina was reduced by 31% from 1992 to 2004. [1] However, these measures need to be improved so as to mitigate the effects of floods with more than 100 year return period, such as the flooding brought by tropical storm Ketsana in 2009 which generated 455mm of rains over a 24-hour period. Heavy rainfall caused the streets to be completely submerged in water, leaving at least 70 people dead in the area. In 2012, the Southwest monsoon, enhanced by a typhoon, brought massive rains with an accumulated rainfall of 472mm for 22-hours, a number greater than that which was experienced during Ketsana. At this time, the local government units were much more prepared in mitigating the risk with the use of early warning and evacuation measures, resulting to zero casualty in the area. Their urban disaster management program, however, can be further improved through the integration of high-resolution 2D flood hazard maps in the city's flood disaster management. The use of these maps in flood disaster management is essential in reducing flood-related risks. This paper discusses the importance and advantages of integrating flood maps in structural and non-structural mitigation measures in the case of Marikina City. Flood hazard maps are essential tools in predicting the frequency and magnitude of floods in an area. An information that may be determined with the use of these maps is the locations of evacuation areas, which may be accurately positioned using high-resolution 2D flood hazard maps. Evacuation of people in areas that are not vulnerable of being inundated is one of the unnecessary measures that may be prevented and thus optimizing mitigation efforts by local government units. This paper also discusses proposals for a more efficient exchange of information, allowing for flood simulations to be utilized in local flood disaster management programs. The success of these systems relies heavily on the knowledge of the people involved. As environmental changes create more significant impacts, the need to adapt to these is vital for man's safety. [1] Pacific Disaster Center

  12. Importance of Integrating High-Resoultion 2D Flood Hazard Maps in the Flood Disaster Management of Marikina City, Philippines

    NASA Astrophysics Data System (ADS)

    Tapales, B. J. M.; Mendoza, J.; Uichanco, C.; Lagmay, A. M. F. A.; Moises, M. A.; Delmendo, P.; Tingin, N. E.

    2014-12-01

    Flooding has been a perennial problem in the city of Marikina. These incidences result in human and economic losses. In response to this, the city has been investing in their flood disaster mitigation program in the past years. As a result, flooding in Marikina was reduced by 31% from 1992 to 2004. [1] However, these measures need to be improved so as to mitigate the effects of floods with more than 100 year return period, such as the flooding brought by tropical storm Ketsana in 2009 which generated 455mm of rains over a 24-hour period. Heavy rainfall caused the streets to be completely submerged in water, leaving at least 70 people dead in the area. In 2012, the Southwest monsoon, enhanced by a typhoon, brought massive rains with an accumulated rainfall of 472mm for 22-hours, a number greater than that which was experienced during Ketsana. At this time, the local government units were much more prepared in mitigating the risk with the use of early warning and evacuation measures, resulting to zero casualty in the area. Their urban disaster management program, however, can be further improved through the integration of high-resolution 2D flood hazard maps in the city's flood disaster management. The use of these maps in flood disaster management is essential in reducing flood-related risks. This paper discusses the importance and advantages of integrating flood maps in structural and non-structural mitigation measures in the case of Marikina City. Flood hazard maps are essential tools in predicting the frequency and magnitude of floods in an area. An information that may be determined with the use of these maps is the locations of evacuation areas, which may be accurately positioned using high-resolution 2D flood hazard maps. Evacuation of areas that are not vulnerable of being inundated is one of the unnecessary measures that may be prevented and thus optimizing mitigation efforts by local government units. This paper also discusses proposals for a more efficient exchange of information, allowing for flood simulations to be utilized in local flood disaster management programs. The success of these systems relies heavily on the knowledge of the people involved. As environmental changes create more significant impacts, the need to adapt to these is vital for man's safety. [1] Pacific Disaster Center

  13. Participatory Mapping for Flood Disaster Zoning based on World View-2 Data in Long Beluah, North Kalimantan Province

    NASA Astrophysics Data System (ADS)

    Sudaryatno; Awanda, Disyacitta; Eka Pratiwi, Sufiyana

    2017-12-01

    Flood is one of the most frequent disasters in Indonesia. These conditions cause the necessary efforts to reduce the impact of these hazards. To reduce the impact of these hazards is to understand spatially the impact of previous disasters. Participatory mapping is one of the solutions to be able to assist in reducing the impact of flood disaster by conducting flood zoning so it can be known the range of the flood. The community plays an important role in participatory mapping because the experiences and mental maps of the community are the main sources of information used. North Kalimantan Province has a very large watershed area that is in Kayan watershed, there are several villages, one of them is Long Beluah Village. Kayan watershed has a flood problem annually that affects most of the areas including the Long Beluah Village. This study aims to map the zoning of floods in the village of Long Beluah in a participatory manner using remote sensing World View-2 data within community, so that people also understand the conditions they face. The method for achieving that goal is participatory mapping which means community involvement as well as the ability of community mental maps that will make an important contribution in this research. The results of this study show that flood zoning can be mapped based on experience and community mental maps that the greatest floods in February 2015 inundated most of the community settlements in Long Beluah Village. There are few places from the uninhabited areas of settlements and serve as refugee camps. The participatory zonation map of the participatory floods is quite appropriate with the situation at the time of the greatest flood that hit the village of Long Beluah, so that through the map can be drawn up plans to reduce the impact of such disasters such as evacuation routes and a more strategic refuge point.

  14. Fifty-year flood-inundation maps for El Progreso, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of El Progreso that would be inundated by a 50-year flood of Rio Pelo. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of El Progreso as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood on Rio Pelo at El Progreso were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. There are no nearby long-term stream-gaging stations on Rio Pelo; therefore, the 50-year-flood discharge for Rio Pelo, 235 cubic meters per second, was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The drainage area and mean annual precipitation estimated for Rio Pelo at El Progreso are 47.4 square kilometers and 1,920 millimeters, respectively.

  15. Fifty-year flood-inundation maps for Choloma, Honduras

    USGS Publications Warehouse

    Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Choloma that would be inundated by a 50-year flood of Rio Choloma. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Choloma as part of the in the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood on Rio Choloma at Choloma were determined using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light detection and ranging (LIDAR) topographic survey of the area. There are no nearby long-term stream-gaging stations on Rio Choloma; therefore, the 50-year-flood discharge for Rio Choloma, 370 cubic meters per second, was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The drainage area and mean annual precipitation estimated for Rio Choloma at Choloma are 89.5 square kilometers and 2,164 millimeters, respectively.

  16. Fifty-year flood-inundation maps for Catacamas, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Catacamas that would be inundated by a 50-year-flood of Rio Catacamas. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Catacamas as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/ floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood on Rio Catacamas at Catacamas were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. The 50-year-flood discharge for Rio Catacamas at Catacamas, 216 cubic meters per second, was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation because there are no long-term stream-gaging stations on the river from which to estimate the discharge. The drainage area and mean annual precipitation estimated for Rio Catacamas at Catacamas are 45.4 square kilometers and 1,773 millimeters, respectively.

  17. Fifty-year flood-inundation maps for Olanchito, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, M.C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Olanchito that would be inundated by a 50-year-flood of Rio Uchapa. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Olanchito as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood discharge of 243 cubic meters per second on Rio Uchapa at Olanchito were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. There are no nearby long-term stream-gaging stations on Rio Uchapa; therefore, the 50-year-flood discharge for Rio Uchapa was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The drainage area and mean annual precipitation estimated for Rio Uchapa at Olanchito are 97.1 square kilometers and 1,178 millimeters, respectively.

  18. Fifty-year flood-inundation maps for La Ceiba, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, M.C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of La Ceiba that would be inundated by a 50-year-flood of Rio Cangrejal. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of La Ceiba as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood discharge of 1,030 cubic meters per second on Rio Cangrejal at La Ceiba were computed using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. There are no nearby long-term stream-gaging stations on Rio Cangrejal; therefore, the 50-year-flood discharge for Rio Cangrejal at La Ceiba was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The drainage area and mean annual precipitation estimated for Rio Cangrejal at La Ceiba are 498 square kilometers and 2,306 millimeters, respectively.

  19. Framework for National Flood Risk Assessment for Canada

    NASA Astrophysics Data System (ADS)

    Elshorbagy, A. A.; Raja, B.; Lakhanpal, A.; Razavi, S.; Ceola, S.; Montanari, A.

    2016-12-01

    Worldwide, floods have been identified as a standout amongst the most widely recognized catastrophic events, resulting in the loss of life and property. These natural hazards cannot be avoided, but their consequences can certainly be reduced by having prior knowledge of their occurrence and impact. In the context of floods, the terms occurrence and impact are substituted by flood hazard and flood vulnerability, respectively, which collectively define the flood risk. There is a high need for identifying the flood-prone areas and to quantify the risk associated with them. The present study aims at delivering flood risk maps, which prioritize the potential flood risk areas in Canada. The methodology adopted in this study involves integrating various available spatial datasets such as nightlights satellite imagery, land use, population and the digital elevation model, to build a flexible framework for national flood risk assessment for Canada. The flood risk framework assists in identifying the flood-prone areas and evaluating the associated risk. All these spatial datasets were brought to a common GIS platform for flood risk analysis. The spatial datasets deliver the socioeconomic and topographical information that is required for evaluating the flood vulnerability and flood hazard, respectively. Nightlights have been investigated as a tool to be used as a proxy for the human activities to identify areas with regard to economic investment. However, other datasets, including existing flood protection measures, we added to identify a realistic flood assessment framework. Furthermore, the city of Calgary was used as an example to investigate the effect of using Digital Elevation Models (DEMs) of varying resolutions on risk maps. Along with this, the risk map for the city was further enhanced by including the population data to give a social dimension to the risk map. Flood protection measures play a major role by significantly reducing the flood risk of events with a specific return period. An analysis to update the risk maps when information on protection measures is available was carried out for the city of Winnipeg, Canada. The proposed framework is a promising approach to identify and prioritize flood-prone areas, which are in need of intervention or detailed studies.

  20. Flood of May 26-27, 1984 in Tulsa, Oklahoma

    USGS Publications Warehouse

    Bergman, DeRoy L.; Tortorelli, Robert L.

    1988-01-01

    The greatest flood disaster in the history of Tulsa, Oklahoma occurred during 8 hours from 2030 hours May 26 to 0430 hours May 27, 1984, as a result of intense rainfall centered over the metropolitan area. Storms of the magnitude that caused this flood are not uncommon to the southern great plains. Such storms are seldom documented in large urban areas. Total rainfall depth and rainfall distribution in the Tulsa metropolitan area during the May 26-27 storm were recorded by 16 recording rain gages. This report presents location of recording rain gages with corresponding rainfall histograms and mass curves, lines of equal rainfall depth (map A), and flood magnitudes and inundated areas of selected streams within the city (map B). The limits of the study areas (fig. 1) are the corporate boundaries of Tulsa, an area of about 185 square miles. Streams draining the city are: Dirty Butter, Coal, and Mingo Creeks which drain northward into Bird Creek along the northern boundary of the city; and Cherry, Crow, Harlow, Joe Haikey, Fry, Vensel, Fred, and Mooser Creeks which flow into the Arkansas River along the southern part of the city. Flooding along Haikey, Fry, Fred, Vensel, and Mooser Creeks was not documented for this report. The Arkansas River is regulated by Keystone Dam upstream from Tulsa (fig. 1). The Arkansas River remained below flood stage during the storm. Flooded areas in Tulsa (map B) were delineated on the topographic maps using flood profiles based on surveys of high-water marks identified immediately after the flood. The flood boundaries show the limits of stream flooding. Additional areas flooded because of overfilled storm drains or by sheet runoff are not shown in this report. Data presented in this report, including rainfall duration and frequency, and flood discharges and elevations, provide city officials and consultants a technical basis for making flood-plain management decisions.

  1. 44 CFR 64.3 - Flood Insurance Maps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... flood hazard that results from the decertification of a previously accredited flood protection system that is determined to be in the process of being restored to provide base flood protection V Area of... tidal floods (coastal high hazard area) V1-30, VE Area of special flood hazards, with water surface...

  2. Flood-plain areas of the Mississippi River, mile 866.8 to mile 888.0, Minnesota

    USGS Publications Warehouse

    Carlson, George H.; Gue, Lowell C.

    1980-01-01

    Profiles of the regional flood, 500-year flood, and flood-protection elevation have been developed for a 21-mile reach of the Mississippi River. Areas flooded by the regional flood and by the 500-year flood were delineated by photogrammetric mapping techniques and are shown on seven large-scale map sheets. Over 1,300 acres of flood plain are included in the cities of Anoka, Champlin, Coon Rapids, Dayton, Ramsey and Elk River, and in unincorporated areas of Wright County. The flood-outline maps and flood profiles comprise data needed by local units of government to adopt, enforce, and administer flood-plain management regulations along the Mississippi River throughout the study reach. Streamflow data from two gaging stations provided the basis for definition of the regional and 500-year floods. Cross-section data obtained at 83 locations were used to develop a digital computer model of the river. Flood elevation and discharge data from the 1965 flood provided a basis for adjusting the computer model. Information relating the history of floods, formation of ice jams, and duration of flood elevations at Anoka and at Elk River are included.

  3. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...

  4. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...

  5. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...

  6. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...

  7. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... storm-induced dune erosion potential in its determination of coastal flood hazards and risk mapping... base flood storm surges and associated wave action where the cross-sectional area of the primary... storm surges and associated wave action. [53 FR 16279, May 6, 1988] ...

  8. Development of flood profiles and flood-inundation maps for the Village of Killbuck, Ohio

    USGS Publications Warehouse

    Ostheimer, Chad J.

    2013-01-01

    Digital flood-inundation maps for a reach of Killbuck Creek near the Village of Killbuck, Ohio, were created by the U.S. Geological Survey (USGS), in cooperation with Holmes County, Ohio. The inundation maps depict estimates of the areal extent of flooding corresponding to water levels (stages) at the USGS streamgage Killbuck Creek near Killbuck (03139000) and were completed as part of an update to Federal Emergency Management Agency Flood-Insurance Study. The maps were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning system that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. The digital maps also have been submitted for inclusion in the data libraries of the USGS interactive Flood Inundation Mapper. Data from the streamgage can be used by emergency-management personnel, in conjunction with the flood-inundation maps, to help determine a course of action when flooding is imminent. Flood profiles for selected reaches were prepared by calibrating a steady-state step-backwater model to an established streamgage rating curve. The step-backwater model then was used to determine water-surface-elevation profiles for 10 flood stages at the streamgage with corresponding streamflows ranging from approximately the 50- to 0.2-percent annual exceedance probabilities. The computed flood profiles were used in combination with digital elevation data to delineate flood-inundation areas.

  9. Flood-hazard mapping in Honduras in response to Hurricane Mitch

    USGS Publications Warehouse

    Mastin, M.C.

    2002-01-01

    The devastation in Honduras due to flooding from Hurricane Mitch in 1998 prompted the U.S. Agency for International Development, through the U.S. Geological Survey, to develop a country-wide systematic approach of flood-hazard mapping and a demonstration of the method at selected sites as part of a reconstruction effort. The design discharge chosen for flood-hazard mapping was the flood with an average return interval of 50 years, and this selection was based on discussions with the U.S. Agency for International Development and the Honduran Public Works and Transportation Ministry. A regression equation for estimating the 50-year flood discharge using drainage area and annual precipitation as the explanatory variables was developed, based on data from 34 long-term gaging sites. This equation, which has a standard error of prediction of 71.3 percent, was used in a geographic information system to estimate the 50-year flood discharge at any location for any river in the country. The flood-hazard mapping method was demonstrated at 15 selected municipalities. High-resolution digital-elevation models of the floodplain were obtained using an airborne laser-terrain mapping system. Field verification of the digital elevation models showed that the digital-elevation models had mean absolute errors ranging from -0.57 to 0.14 meter in the vertical dimension. From these models, water-surface elevation cross sections were obtained and used in a numerical, one-dimensional, steady-flow stepbackwater model to estimate water-surface profiles corresponding to the 50-year flood discharge. From these water-surface profiles, maps of area and depth of inundation were created at the 13 of the 15 selected municipalities. At La Lima only, the area and depth of inundation of the channel capacity in the city was mapped. At Santa Rose de Aguan, no numerical model was created. The 50-year flood and the maps of area and depth of inundation are based on the estimated 50-year storm tide.

  10. Updated NASA Satellite Flood Map of Southeastern Texas (ALOS-2 Data)

    NASA Image and Video Library

    2017-08-31

    The Advanced Rapid Imaging and Analysis (ARIA) team at NASA's Jet Propulsion Laboratory in Pasadena, California, used synthetic aperture radar imagery from the Japan Aerospace Exploration Agency's (JAXA) ALOS-2 satellite to create this Flood Proxy Map depicting areas of Southeastern Texas that are likely flooded as a result of Hurricane Harvey (shown by light blue pixels). The map is derived images taken before (July 30, 2017) and after (Aug. 27, 2017) Hurricane Harvey made landfall. The map covers an area of 220 by 400 miles (350 by 640 kilometers). Each pixel measures about 55 yards (50 meters) across. Local ground observations provided anecdotal preliminary validation. The results are also cross-validated with ARIA Sentinel-1 flood proxy map v0.2. The map should be used as guidance, and may be less reliable over urban areas. ALOS-2 data were accessed through the International Charter. https://photojournal.jpl.nasa.gov/catalog/PIA21931

  11. Fifty-year flood-inundation maps for Choluteca, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Choluteca that would be inundated by 50-year floods on Rio Choluteca and Rio Iztoca. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Choluteca as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for 50-year-floods on Rio Choluteca and Rio Iztoca at Choluteca were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. The estimated 50-year-flood discharge for Rio Choluteca at Choluteca is 4,620 cubic meters per second, which is the drainage-area-adjusted weighted-average of two independently estimated 50-year-flood discharges for the gaging station Rio Choluteca en Puente Choluteca. One discharge, 4,913 cubic meters per second, was estimated from a frequency analysis of the 17 years of peak discharge record for the gage, and the other, 2,650 cubic meters per second, was estimated from a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The weighted-average of the two discharges at the gage is 4,530 cubic meters per second. The 50-year-flood discharge for the study area reach of Rio Choluteca was estimated by multiplying the weighted discharge at the gage by the ratio of the drainage areas upstream from the two locations. The 50-year-flood discharge for Rio Iztoca, which was estimated from the regression equation, is 430 cubic meters per second.

  12. Fifty-year flood-inundation maps for Sonaguera, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Sonaguera that would be inundated by a 50-year flood of Rio Sonaguera and its tributary, Rio Juan Lazaro. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Sonaguera as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for an estimated 50-year-flood on Rio Sonaguera and Rio Juan Lazaro at Sonaguera were determined using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and a ground survey at the bridge. There are no nearby long-term stream-gaging stations on Rio Sonaguera or Rio Juan Lazaro; therefore, the 50-year-flood discharge for Rio Sonaguera above the confluence with Rio Juan Lazaro, 194 cubic meters per second; for Rio Juan Lazaro at its mouth, 168 cubic meters per second, and for Rio Sonaguera at the downstream end of the study area, 282 cubic meters per second; were estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation.

  13. Mapping Coastal Flood Zones for the National Flood Insurance Program

    NASA Astrophysics Data System (ADS)

    Carlton, D.; Cook, C. L.; Weber, J.

    2004-12-01

    The National Flood Insurance Program (NFIP) was created by Congress in 1968, and significantly amended in 1973 to reduce loss of life and property caused by flooding, reduce disaster relief costs caused by flooding and make Federally backed flood insurance available to property owners. These goals were to be achieved by requiring building to be built to resist flood damages, guide construction away from flood hazards, and transferring the cost of flood losses from taxpayers to policyholders. Areas subject to flood hazards were defined as those areas that have a probability greater than 1 percent of being inundated in any given year. Currently over 19,000 communities participate in the NFIP, many of them coastal communities subject to flooding from tides, storm surge, waves, or tsunamis. The mapping of coastal hazard areas began in the early 1970's and has been evolving ever since. At first only high tides and storm surge were considered in determining the hazardous areas. Then, after significant wave caused storm damage to structures outside of the mapped hazard areas wave hazards were also considered. For many years FEMA has had Guidelines and Specifications for mapping coastal hazards for the East Coast and the Gulf Coast. In September of 2003 a study was begun to develop similar Guidelines and Specifications for the Pacific Coast. Draft Guidelines and Specifications will be delivered to FEMA by September 30, 2004. During the study tsunamis were identified as a potential source of a 1 percent flood event on the West Coast. To better understand the analytical results, and develop adequate techniques to estimate the magnitude of a tsunami with a 1 percent probability of being equaled or exceeded in any year, a pilot study has begun at Seaside Oregon. Both the onshore velocity and the resulting wave runup are critical functions for FEMA to understand and potentially map. The pilot study is a cooperative venture between NOAA and USGS that is partially funded by both agencies and by FEMA. The results of the pilot study will help FEMA determine when tsunamis should be considered in mapping coastal hazards, how to predict their impact, how they should be mapped and possibly the construction standards for zones mapped as having a 1 percent or greater chance of suffering a tsunami.

  14. Fifty-year flood-inundation maps for Tocoa, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Tocoa that would be inundated by a 50-year flood of Rio Tocoa. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Tocoa as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for an estimated 50-year-flood on Rio Tocoa at Tocoa were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and a ground survey at one bridge. There are no nearby long-term stream-gaging stations on Rio Tocoa; therefore, the 50-year-flood discharge for Rio Tocoa, 552 cubic meters per second, was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The drainage area and mean annual precipitation estimated for Rio Tocoa at Tocoa are 204 square kilometers and 1,987 millimeters, respectively. It was assumed that a portion of the 50-year flood, 200 cubic meters per second, would escape the main channel and flow down a side channel before re-entering the main channel again near the lower end of the study area.

  15. Fifty-year flood-inundation maps for Comayagua, Hondura

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Comayagua that would be inundated by 50-year floods on Rio Humuya and Rio Majada. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Comayagua as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for 50-year-floods on Rio Humuya and Rio Majada at Comayagua were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. The 50-year-flood discharge for Rio Humuya at Comayagua, 1,400 cubic meters per second, was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The reasonableness of the regression discharge was evaluated by comparing it with drainage-area-adjusted 50-year-flood discharges estimated for three long-term Rio Humuya stream-gaging stations. The drainage-area-adjusted 50-year-flood discharges estimated from the gage records ranged from 946 to 1,365 cubic meters per second. Because the regression equation discharge agrees closely with the high end of the range of discharges estimated from the gaging-station records, it was used for the hydraulic modeling to ensure that the resulting 50-year-flood water-surface elevations would not be underestimated. The 50-year-flood discharge for Rio Majada at Comayagua (230 cubic meters per second) was estimated using the regression equation because there are no long-term gaging-stations on this river from which to estimate the discharge.

  16. Flood-inundation maps for a 9.1-mile reach of the Coast Fork Willamette River near Creswell and Goshen, Lane County, Oregon

    USGS Publications Warehouse

    Hess, Glen W.; Haluska, Tana L.

    2016-04-13

    Digital flood-inundation maps for a 9.1-mile reach of the Coast Fork Willamette River near Creswell and Goshen, Oregon, were developed by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers (USACE). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected stages at the USGS streamgage at Coast Fork Willamette River near Goshen, Oregon (14157500), at State Highway 58. Current stage at the streamgage for estimating near-real-time areas of inundation may be obtained at http://waterdata.usgs.gov/or/nwis/uv/?site_no=14157500&PARAmeter_cd=00065,00060. In addition, the National Weather Service (NWS) forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.In this study, areas of inundation were provided by USACE. The inundated areas were developed from flood profiles simulated by a one-dimensional unsteady step‑backwater hydraulic model. The profiles were checked by the USACE using documented high-water marks from a January 2006 flood. The model was compared and quality assured using several other methods. The hydraulic model was then used to determine eight water-surface profiles at various flood stages referenced to the streamgage datum and ranging from 11.8 to 19.8 ft, approximately 2.6 ft above the highest recorded stage at the streamgage (17.17 ft) since 1950. The intervals between stages are variable and based on annual exceedance probability discharges, some of which approximate NWS action stages.The areas of inundation and water depth grids provided to USGS by USACE were used to create interactive flood‑inundation maps. The availability of these maps with current stage from USGS streamgage and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures as well as for post flood recovery efforts.

  17. An integrated approach to flood hazard assessment on alluvial fans using numerical modeling, field mapping, and remote sensing

    USGS Publications Warehouse

    Pelletier, J.D.; Mayer, L.; Pearthree, P.A.; House, P.K.; Demsey, K.A.; Klawon, J.K.; Vincent, K.R.

    2005-01-01

    Millions of people in the western United States live near the dynamic, distributary channel networks of alluvial fans where flood behavior is complex and poorly constrained. Here we test a new comprehensive approach to alluvial-fan flood hazard assessment that uses four complementary methods: two-dimensional raster-based hydraulic modeling, satellite-image change detection, fieldbased mapping of recent flood inundation, and surficial geologic mapping. Each of these methods provides spatial detail lacking in the standard method and each provides critical information for a comprehensive assessment. Our numerical model simultaneously solves the continuity equation and Manning's equation (Chow, 1959) using an implicit numerical method. It provides a robust numerical tool for predicting flood flows using the large, high-resolution Digital Elevation Models (DEMs) necessary to resolve the numerous small channels on the typical alluvial fan. Inundation extents and flow depths of historic floods can be reconstructed with the numerical model and validated against field- and satellite-based flood maps. A probabilistic flood hazard map can also be constructed by modeling multiple flood events with a range of specified discharges. This map can be used in conjunction with a surficial geologic map to further refine floodplain delineation on fans. To test the accuracy of the numerical model, we compared model predictions of flood inundation and flow depths against field- and satellite-based flood maps for two recent extreme events on the southern Tortolita and Harquahala piedmonts in Arizona. Model predictions match the field- and satellite-based maps closely. Probabilistic flood hazard maps based on the 10 yr, 100 yr, and maximum floods were also constructed for the study areas using stream gage records and paleoflood deposits. The resulting maps predict spatially complex flood hazards that strongly reflect small-scale topography and are consistent with surficial geology. In contrast, FEMA Flood Insurance Rate Maps (FIRMs) based on the FAN model predict uniformly high flood risk across the study areas without regard for small-scale topography and surficial geology. ?? 2005 Geological Society of America.

  18. Fifty-year flood-inundation maps for Juticalpa, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, M.C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Juticalpa that would be inundated by a 50-year flood of Rio Juticalpa. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Juticalpa as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for a 50-year-flood on Rio Juticalpa at Juticalpa were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. The estimated 50-year-flood discharge for Rio Juticalpa at Juticalpa, 1,360 cubic meters per second, was computed as the drainage-area-adjusted weighted average of two independently estimated 50-year-flood discharges for the gaging station Rio Juticalpa en El Torito, located about 2 kilometers upstream from Juticalpa. One discharge, 1,551 cubic meters per second, was estimated from a frequency analysis of the 33 years of peak-discharge record for the gage, and the other, 486 cubic meters per second, was estimated from a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The weighted-average of the two discharges at the gage is 1,310 cubic meters per second. The 50-year flood discharge for the study area reach of Rio Juticalpa was estimated by multiplying the weighted discharge at the gage by the ratio of the drainage areas upstream from the two locations.

  19. Fifty-year flood-inundation maps for Siguatepeque, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Siguatepeque that would be inundated by 50-year floods on Rio Selguapa, Rio Guique, Rio Celan, Rio Calan, and Quebrada Chalantuma. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Siguatepeque as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for 50-year-floods on each of the streams studied were computed using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and ground surveys at six bridges. There are no nearby long-term stream-gaging stations on any of the streams studied; therefore, the 50-year-flood discharges were estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The 50-year-flood discharges estimated for Rio Selguapa, Rio Guique, Rio Celan, Rio Calan, and Quebrada Chalantuma are 323, 168, 161, 146, and 90 cubic meters per second, respectively.

  20. Values of Flood Hazard Mapping for Disaster Risk Assessment and Communication

    NASA Astrophysics Data System (ADS)

    Sayama, T.; Takara, K. T.

    2015-12-01

    Flood plains provide tremendous benefits for human settlements. Since olden days people have lived with floods and attempted to control them if necessary. Modern engineering works such as building embankment have enabled people to live even in flood prone areas, and over time population and economic assets have concentrated in these areas. In developing countries also, rapid land use change alters exposure and vulnerability to floods and consequently increases disaster risk. Flood hazard mapping is an essential step for any counter measures. It has various objectives including raising awareness of residents, finding effective evacuation routes and estimating potential damages through flood risk mapping. Depending on the objectives and data availability, there are also many possible approaches for hazard mapping including simulation basis, community basis and remote sensing basis. In addition to traditional paper-based hazard maps, Information and Communication Technology (ICT) promotes more interactive hazard mapping such as movable hazard map to demonstrate scenario simulations for risk communications and real-time hazard mapping for effective disaster responses and safe evacuations. This presentation first summarizes recent advancement of flood hazard mapping by focusing on Japanese experiences and other examples from Asian countries. Then it introduces a flood simulation tool suitable for hazard mapping at the river basin scale even in data limited regions. In the past few years, the tool has been practiced by local officers responsible for disaster management in Asian countries. Through the training activities of hazard mapping and risk assessment, we conduct comparative analysis to identify similarity and uniqueness of estimated economic damages depending on topographic and land use conditions.

  1. Flood-inundation maps and updated components for a flood-warning system or the City of Marietta, Ohio and selected communities along the Lower Muskingum River and Ohio River

    USGS Publications Warehouse

    Whitehead, Matthew T.; Ostheimer, Chad J.

    2014-01-01

    Flood profiles for selected reaches were prepared by calibrating steady-state step-backwater models to selected streamgage rating curves. The step-backwater models were used to determine water-surface-elevation profiles for up to 12 flood stages at a streamgage with corresponding stream-flows ranging from approximately the 10- to 0.2-percent chance annual-exceedance probabilities for each of the 3 streamgages that correspond to the flood-inundation maps. Additional hydraulic modeling was used to account for the effects of backwater from the Ohio River on water levels in the Muskingum River. The computed longitudinal profiles of flood levels were used with a Geographic Information System digital elevation model (derived from light detection and ranging) to delineate flood-inundation areas. Digital maps showing flood-inundation areas overlain on digital orthophotographs were prepared for the selected floods.

  2. Estimated Flood Discharges and Map of Flood-Inundated Areas for Omaha Creek, near Homer, Nebraska, 2005

    USGS Publications Warehouse

    Dietsch, Benjamin J.; Wilson, Richard C.; Strauch, Kellan R.

    2008-01-01

    Repeated flooding of Omaha Creek has caused damage in the Village of Homer. Long-term degradation and bridge scouring have changed substantially the channel characteristics of Omaha Creek. Flood-plain managers, planners, homeowners, and others rely on maps to identify areas at risk of being inundated. To identify areas at risk for inundation by a flood having a 1-percent annual probability, maps were created using topographic data and water-surface elevations resulting from hydrologic and hydraulic analyses. The hydrologic analysis for the Omaha Creek study area was performed using historical peak flows obtained from the U.S. Geological Survey streamflow gage (station number 06601000). Flood frequency and magnitude were estimated using the PEAKFQ Log-Pearson Type III analysis software. The U.S. Army Corps of Engineers' Hydrologic Engineering Center River Analysis System, version 3.1.3, software was used to simulate the water-surface elevation for flood events. The calibrated model was used to compute streamflow-gage stages and inundation elevations for the discharges corresponding to floods of selected probabilities. Results of the hydrologic and hydraulic analyses indicated that flood inundation elevations are substantially lower than from a previous study.

  3. A national scale flood hazard mapping methodology: The case of Greece - Protection and adaptation policy approaches.

    PubMed

    Kourgialas, Nektarios N; Karatzas, George P

    2017-12-01

    The present work introduces a national scale flood hazard assessment methodology, using multi-criteria analysis and artificial neural networks (ANNs) techniques in a GIS environment. The proposed methodology was applied in Greece, where flash floods are a relatively frequent phenomenon and it has become more intense over the last decades, causing significant damages in rural and urban sectors. In order the most prone flooding areas to be identified, seven factor-maps (that are directly related to flood generation) were combined in a GIS environment. These factor-maps are: a) the Flow accumulation (F), b) the Land use (L), c) the Altitude (A), b) the Slope (S), e) the soil Erodibility (E), f) the Rainfall intensity (R), and g) the available water Capacity (C). The name to the proposed method is "FLASERC". The flood hazard for each one of these factors is classified into five categories: Very low, low, moderate, high, and very high. The above factors are combined and processed using the appropriate ANN algorithm tool. For the ANN training process spatial distribution of historical flooded points in Greece within the five different flood hazard categories of the aforementioned seven factor-maps were combined. In this way, the overall flood hazard map for Greece was determined. The final results are verified using additional historical flood events that have occurred in Greece over the last 100years. In addition, an overview of flood protection measures and adaptation policy approaches were proposed for agricultural and urban areas located at very high flood hazard areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A new automatic synthetic aperture radar-based flood mapping application hosted on the European Space Agency's Grid Processing of Demand Fast Access to Imagery environment

    NASA Astrophysics Data System (ADS)

    Matgen, Patrick; Giustarini, Laura; Hostache, Renaud

    2012-10-01

    This paper introduces an automatic flood mapping application that is hosted on the Grid Processing on Demand (GPOD) Fast Access to Imagery (Faire) environment of the European Space Agency. The main objective of the online application is to deliver operationally flooded areas using both recent and historical acquisitions of SAR data. Having as a short-term target the flooding-related exploitation of data generated by the upcoming ESA SENTINEL-1 SAR mission, the flood mapping application consists of two building blocks: i) a set of query tools for selecting the "crisis image" and the optimal corresponding "reference image" from the G-POD archive and ii) an algorithm for extracting flooded areas via change detection using the previously selected "crisis image" and "reference image". Stakeholders in flood management and service providers are able to log onto the flood mapping application to get support for the retrieval, from the rolling archive, of the most appropriate reference image. Potential users will also be able to apply the implemented flood delineation algorithm. The latter combines histogram thresholding, region growing and change detection as an approach enabling the automatic, objective and reliable flood extent extraction from SAR images. Both algorithms are computationally efficient and operate with minimum data requirements. The case study of the high magnitude flooding event that occurred in July 2007 on the Severn River, UK, and that was observed with a moderateresolution SAR sensor as well as airborne photography highlights the performance of the proposed online application. The flood mapping application on G-POD can be used sporadically, i.e. whenever a major flood event occurs and there is a demand for SAR-based flood extent maps. In the long term, a potential extension of the application could consist in systematically extracting flooded areas from all SAR images acquired on a daily, weekly or monthly basis.

  5. Policy Implications and Suggestions on Administrative Measures of Urban Flood

    NASA Astrophysics Data System (ADS)

    Lee, S. V.; Lee, M. J.; Lee, C.; Yoon, J. H.; Chae, S. H.

    2017-12-01

    The frequency and intensity of floods are increasing worldwide as recent climate change progresses gradually. Flood management should be policy-oriented in urban municipalities due to the characteristics of urban areas with a lot of damage. Therefore, the purpose of this study is to prepare a flood susceptibility map by using data mining model and make a policy suggestion on administrative measures of urban flood. Therefore, we constructed a spatial database by collecting relevant factors including the topography, geology, soil and land use data of the representative city, Seoul, the capital city of Korea. Flood susceptibility map was constructed by applying the data mining models of random forest and boosted tree model to input data and existing flooded area data in 2010. The susceptibility map has been validated using the 2011 flood area data which was not used for training. The predictor importance value of each factor to the results was calculated in this process. The distance from the water, DEM and geology showed a high predictor importance value which means to be a high priority for flood preparation policy. As a result of receiver operating characteristic (ROC), random forest model showed 78.78% and 79.18% accuracy of regression and classification and boosted tree model showed 77.55% and 77.26% accuracy of regression and classification, respectively. The results show that the flood susceptibility maps can be applied to flood prevention and management, and it also can help determine the priority areas for flood mitigation policy by providing useful information to policy makers.

  6. Back analysis of Swiss flood danger map to define local flood hazards

    NASA Astrophysics Data System (ADS)

    Choffet, Marc; Derron, Marc-Henri; Jaboyedoff, Michel; Leroi, Eric; Mayis, Arnaud

    2010-05-01

    The flood hazard maps for the entire Switzerland will be available at the end of 2011. Furthermore, the Swiss territory has been covered by aerial laser scanning (ALS) providing high resolution digital elevation model (DEM). This paper describes the development of a method for analyzing the local flood hazard based on Swiss hazard maps and HR-DEM. In their original state, Swiss hazard maps are constructed on the basis of an aggregation of information, a matrix intensity, and frequency. The degree of danger represented by the yellow, blue and red zones gives no information on the water level at each point of the territory. The developed method is based on a superposition of the danger map with the HR-DEM to determine the water level in a hazard area. To perform this method, (1) a triangulation is based on the intersection of the hazard map with the HR-DEM. It uses the limits of area where information is contrain. The hazard map perimeter and the boundaries of hazard areas give information on the widest possible overflow in case of flooding. It is also possible to associate it with a return period. (2) Based on these areas and the difference with the DEM, it is possible to calibrate the highest flood level and the extract water levels for the entire area. This analysis of existing documents opens up interesting perspectives for understanding how infrastructures are threatened by flood hazard by predicting water levels and potential damages to buildings while proposing remedial measures. Indeed, this method allows estimating the water level at each point of a building in case of flooding. It is designed to provide spatial information on water height levels; this offers a different approach of buildings in danger zones. Indeed, it is possible to discern several elements, such as areas of water accumulation involving longer flood duration, possible structural damages to buildings due to high hydrostatic pressure, determination of a local hazard, or the display of water levels in 3D.

  7. Remote Sensing for Hydrology: Surface Water Dynamics from Three Decades of Landsat Data

    NASA Astrophysics Data System (ADS)

    Tulbure, M. G.; Broich, M.; Kingsford, R.; Lucas, R.; Keith, D.

    2014-12-01

    Surface water is a vital resource affected by changes in climate and anthropogenic factors. Knowledge of surface water dynamics provides critical information for flood and drought management. Here we focused on the on the entire Murray-Darling Basin (MDB) of Australia, a large semi-arid region with scarce water resources, high hydroclimatic variability and competing water demands, impacted by climate change, altered flow regimes and land use changes. The MDB is also an area where substantial investment in environmental water allocation of large volumes of environmental flow was made. We used Landsat TM and ETM+ time series to synoptically map the dynamic of surface water extent with an internally consistent algorithm (Tulbure and Broich, 2013) over decades (1986-2011). We used a subset of Landsat path/rows for image training in both wet and dry years. Results show high interannual variability in number and size of flooded areas, with flooded areas during the Millennium Drought (until 2009) being substantially smaller than during the excessive 2010-2011 La Nina flooding. Flooding frequency in 2006, a very dry year was lower than in 2010, the La Nina year when extensive floods occurred. More developed areas of the basin showed different inter-annual patterns from natural areas of the basin. At Barmah-Millewa, the largest river red gum forest in the world, we also mapped flooded forest and tracked changes in NDVI. Higher NDVI values were found in areas more frequently flooded. Knowledge of the spatial and temporal dynamics of flooding and the response of riparian vegetation communities to flooding is important for management of floodplain wetlands and vegetation communities and for investigating effectiveness of environmental flows and flow regimes in the MDB. Existing maps of inundated areas are linked with river flow to quantify the relationship between river flow and inundated area in the MDB. Historic flood inundation extent mapped via remote sensing can be used to quantify spatially explicit changes in surface water dynamics and vegetation communities as outcomes of management scenarios in response to water management decisions. This methodology is globally applicable and relevant to areas prone to flooding with competing water demands and can be used for mapping water availability in data scarce regions.

  8. Teton Dam flood of June 1976, Firth quadrangle, Idaho

    USGS Publications Warehouse

    Hubbard, Larry L.; Bartells, John H.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Firth quadrangle. (Woodard-USGS)

  9. Teton Dam flood of June 1976, Rose quadrangle, Idaho

    USGS Publications Warehouse

    Bartells, John H.; Hubbard, Larry L.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Rose quadrangle. (Woodard-USGS)

  10. Teton Dam flood of June 1976, Rexburg quadrangle, Idaho

    USGS Publications Warehouse

    Harenberg, W.A.; Bigelow, B.B.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification on these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Rexburg quadrangle. (Woodard-USGS)

  11. Teton Dam flood of June 1976, Deer Parks quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Bennett, C. Michael; Records, Andrew W.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Deer Parks quadrangle. (Woodard-USGS)

  12. Teton Dam flood of June 1976, Parker quadrangle, Idaho

    USGS Publications Warehouse

    Thomas, Cecil Albert; Ray, Herman A.

    1976-01-01

    The failure of Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls, Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Parker quadrangle. (Woodard-USGS)

  13. Teton Dam flood of June 1976, St. Anthony quadrangle, Idaho

    USGS Publications Warehouse

    Thomas, Cecil A.; Ray, Herman A.; Matthai, Howard F.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the St. Anthony quadrangle. (Woodard-USGS)

  14. Teton Dam flood of June 1976, Woodville quadrangle, Idaho

    USGS Publications Warehouse

    Matthai, Howard F.; Ray, Herman A.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Woodville quadrangle. (Woodard-USGS)

  15. Teton Dam flood of June 1976, Menan Buttes quadrangle, Idaho

    USGS Publications Warehouse

    Thomas, Cecil A.; Ray, Herman A.; Harenberg, William A.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Menan Buttes quadrangle. (Woodard-USGS)

  16. Teton Dam flood of June 1976, Idaho Falls South quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Matthai, Howard F.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Idaho Falls South quadrangle. (Woodard-USGS)

  17. Teton Dam flood of June 1976, Lewisville quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Bigelow, Bruce B.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Lewisville quadrangle. (Woodard-USGS)

  18. Teton Dam flood of June 1976, Idaho Falls North quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Matthai, Howard F.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Idaho Falls North quadrangle. (Woodard-USGS)

  19. Teton Dam flood of June 1976, Pingree quadrangle, Idaho

    USGS Publications Warehouse

    Hubbard, Larry L.; Bartells, John H.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Pingree quadrangle. (Woodard-USGS)

  20. Teton Dam flood of June 1976, Blackfoot quadrangle, Idaho

    USGS Publications Warehouse

    Bartells, J.H.; Hubbard, Larry L.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Blackfoot quadrangle. (Woodard-USGS)

  1. Teton Dam flood of June 1976, Rigby quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Bigelow, Bruce B.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Rigby quadrangle. (Woodard-USGS)

  2. Teton Dam flood of June 1976, Newdale quadrangle, Idaho

    USGS Publications Warehouse

    Ray, Herman A.; Matthai, Howard F.; Thomas, Cecil A.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Newdale quadrangle. (Woodard-USGS)

  3. Teton Dam flood of June 1976, Moody quadrangle, Idaho

    USGS Publications Warehouse

    Harenberg, William A.; Bigelow, Bruce B.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Moody quadrangle. (Woodard-USGS)

  4. Floods of 1971 and 1972 on Glover Creek and Little River in southeastern Oklahoma

    USGS Publications Warehouse

    Thomas, Wilbert O.; Corley, Robert K.

    1973-01-01

    Heavy rains of December 9-10, 1971, and Oct. 30-31, 1972, caused outstanding floods on Glover Creek and Little River in McCurtain County in southeastern Oklahoma. This report presents hydrologic data that document the extent of flooding, flood profiles, and frequency of flooding on reaches of both streams. The data presented provide a technical basis for formulating effective flood-plain zoning that will minimize existing and future flood problems. The report also can be useful for locating waste-disposal and water-treatment facilities, and for the development of recreational areas. The area studied includes the reach of Little River on the Garvin and Idabel 7 1/2-minute quadrangles (sheet 1) and the reach of Glover Creek on the southwest quarter of the Golden 15-minute quadrangle (sheet 2). The flood boundaries delineated on the maps are the limits of flooding during the December 1971 and October 1972 floods. Any attempt to delineate the flood boundaries on streams in the study area other than Glover Creek and Little River was considered to be beyond the scope of this report. The general procedure used in defining the flood boundaries was to construct the flood profiles from high-water marks obtained by field surveys and by records at three stream-gaging stations (two on Little River and one on Glover Creek.). The extent of flooding was delineated on the topographic maps by using the flood profiles to define the flood elevations at various points along the channel and locating the elevations on the map by interpolating between contours (lines of equal ground elevation). In addition, flood boundaries were defined in places by field survey, aerial photographs, and information from local residents. The accuracy of the flood boundaries is consistent with the scale and contour interval of the maps (1 inch = 2,000 feet; contour interval 10 and 20 feet), which means the flood boundaries are drawn as accurately as possible on maps having 10- and 20-foot contour intervals.

  5. Development of a flood-warning network and flood-inundation mapping for the Blanchard River in Ottawa, Ohio

    USGS Publications Warehouse

    Whitehead, Matthew T.

    2011-01-01

    Digital flood-inundation maps of the Blanchard River in Ottawa, Ohio, were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Department of Agriculture, Natural Resources Conservation Service and the Village of Ottawa, Ohio. The maps, which correspond to water levels (stages) at the USGS streamgage at Ottawa (USGS streamgage site number 04189260), were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning Network that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. Flood profiles were computed by means of a step-backwater model calibrated to recent field measurements of streamflow. The step-backwater model was then used to determine water-surface-elevation profiles for 12 flood stages with corresponding streamflows ranging from less than the 2-year and up to nearly the 500-year recurrence-interval flood. The computed flood profiles were used in combination with digital elevation data to delineate flood-inundation areas. Maps of the Village of Ottawa showing flood-inundation areas overlain on digital orthophotographs are presented for the selected floods. As part of this flood-warning network, the USGS upgraded one streamgage and added two new streamgages, one on the Blanchard River and one on Riley Creek, which is tributary to the Blanchard River. The streamgage sites were equipped with both satellite and telephone telemetry. The telephone telemetry provides dual functionality, allowing village officials and the public to monitor current stage conditions and enabling the streamgage to call village officials with automated warnings regarding flood stage and/or predetermined rates of stage increase. Data from the streamgages serve as a flood warning that emergency management personnel can use in conjunction with the flood-inundation maps by to determine a course of action when flooding is imminent.

  6. Optical and Physical Methods for Mapping Flooding with Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Fayne, Jessica Fayne; Bolten, John; Lakshmi, Venkat; Ahamed, Aakash

    2016-01-01

    Flood and surface water mapping is becoming increasingly necessary, as extreme flooding events worldwide can damage crop yields and contribute to billions of dollars economic damages as well as social effects including fatalities and destroyed communities (Xaio et al. 2004; Kwak et al. 2015; Mueller et al. 2016).Utilizing earth observing satellite data to map standing water from space is indispensable to flood mapping for disaster response, mitigation, prevention, and warning (McFeeters 1996; Brakenridge and Anderson 2006). Since the early 1970s(Landsat, USGS 2013), researchers have been able to remotely sense surface processes such as extreme flood events to help offset some of these problems. Researchers have demonstrated countless methods and modifications of those methods to help increase knowledge of areas at risk and areas that are flooded using remote sensing data from optical and radar systems, as well as free publically available and costly commercial datasets.

  7. Fifty-year flood-inundation maps for Tegucigalpa, Honduras

    USGS Publications Warehouse

    Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Tegucigalpa that would be inundated by a 50-year flood of Rio Choluteca, Rio Grande, Rio Guacerique, and Rio Chiquito. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Tegucigalpa as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for an estimated 50-year-flood on Rio Choluteca, Rio Grande, Rio Guacerique, and Rio Chiquito at Tegucigalpa were determined using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and ground surveys at bridges. There are no nearby long-term stream-gaging stations; therefore, the 50-year-flood discharges were estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The estimated 50-year-flood discharge is 922 cubic meters per second at Rio Choluteca at downstream end of the study area boundary, 663 cubic meters per second at the mouth of the Rio Grande, 475 cubic meters per second at the mouth of the Rio Guacerique, and 254 cubic meters per second at the mouth of the Rio Chiquito.

  8. Development of Probabilistic Flood Inundation Mapping For Flooding Induced by Dam Failure

    NASA Astrophysics Data System (ADS)

    Tsai, C.; Yeh, J. J. J.

    2017-12-01

    A primary function of flood inundation mapping is to forecast flood hazards and assess potential losses. However, uncertainties limit the reliability of inundation hazard assessments. Major sources of uncertainty should be taken into consideration by an optimal flood management strategy. This study focuses on the 20km reach downstream of the Shihmen Reservoir in Taiwan. A dam failure induced flood herein provides the upstream boundary conditions of flood routing. The two major sources of uncertainty that are considered in the hydraulic model and the flood inundation mapping herein are uncertainties in the dam break model and uncertainty of the roughness coefficient. The perturbance moment method is applied to a dam break model and the hydro system model to develop probabilistic flood inundation mapping. Various numbers of uncertain variables can be considered in these models and the variability of outputs can be quantified. The probabilistic flood inundation mapping for dam break induced floods can be developed with consideration of the variability of output using a commonly used HEC-RAS model. Different probabilistic flood inundation mappings are discussed and compared. Probabilistic flood inundation mappings are hoped to provide new physical insights in support of the evaluation of concerning reservoir flooded areas.

  9. Mapping the Extent and Magnitude of Severe Flooding Induced by Hurricanes Harvey, Irma, and Maria with Sentinel-1 SAR and InSAR Observations

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Koirala, R.; Oliver-Cabrera, T.; Wdowinski, S.; Osmanoglu, B.

    2017-12-01

    Hurricanes can cause winds, rainfall and storm surge, all of which could result in flooding. Between August and September 2017, Hurricanes Harvey, Irma and Maria made landfall over Texas, Florida and Puerto Rico causing destruction and damages. Flood mapping is important for water management and to estimate risks and property damage. Though water gauges are able to monitor water levels, they are normally distributed sparsely. To map flooding products of these extreme events, we use Synthetic Aperture Radar (SAR) observations acquired by the European satellite constellation Sentinel-1. We obtained two acquisitions from before each flooding event, a single acquisition during the hurricane, and two after each event, a total of five acquisitions. We use both amplitude and phase observations to map extent and magnitude of flooding respectively. To map flooding extents, we use amplitude images from before, after and if possible during the hurricane pass. A calibration is used to convert the image raw data to backscatter coefficient, termed sigma nought. We generate a composite of the two image layers using red and green bands to show the change of sigma nought between acquisitions, which directly reflects the extent of flooding. Because inundation can result with either an increase or decrease of sigma nought values depending on the surface scattering characteristics, we map flooded areas in location where sigma nought changes were above a detection threshold. To study magnitude of flooding we study Interferometric Synthetic Aperture Radar (InSAR) phase changes. Changes in the water level can be detected by the radar when the signal is reflected away from water surface and bounces again by another object (e.g. trees and/or buildings) known as double bounce phase. To generate meaningful interferograms, we compare phase information with the nearest water gauge records to verify our results. Preliminary results show that the three hurricanes caused flooding condition over wide area including both rural and urban areas. The flooding in Everglades National Park in Florida following hurricane Irma covered area 1087.35 km2. Flooding in Puerto Rico main island was limited to low flat areas covering 287.84 km2. Preliminary results of the InSAR analysis shows that flooding magnitude reached in some location level of 1 m.

  10. New NASA Satellite Flood Map of Southeastern Texas (Sentinel-1 Data)

    NASA Image and Video Library

    2017-08-31

    The Advanced Rapid Imaging and Analysis (ARIA) team at NASA's Jet Propulsion Laboratory in Pasadena, California, used synthetic aperture radar imagery from the European Space Agency's (ESA) Sentinel-1 satellite to create this Flood Proxy Map of Southeastern Texas, showing areas that are likely flooded as a result of Hurricane Harvey (light blue pixels). The images used to create the map were taken before (Aug. 5, 2017) and after (Aug. 29, 2017) Hurricane Harvey made landfall. The map covers an area of 155 by 211 miles (250 by 340 kilometers). Each pixel measures about 33 yards (30 meters) across. Local ground observations provided anecdotal preliminary validation. The results were also cross-validated with the ARIA ALOS-2 flood proxy map v0.2. The map should be used as guidance, and may be less reliable over urban areas. Sentinel-1 data were accessed through the Copernicus Open Access Hub. Contains modified Copernicus Sentinel data 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21932

  11. Dam-breach analysis and flood-inundation mapping for Lakes Ellsworth and Lawtonka near Lawton, Oklahoma

    USGS Publications Warehouse

    Rendon, Samuel H.; Ashworth, Chad E.; Smith, S. Jerrod

    2012-01-01

    Dams provide beneficial functions such as flood control, recreation, and reliable water supplies, but they also entail risk: dam breaches and resultant floods can cause substantial property damage and loss of life. The State of Oklahoma requires each owner of a high-hazard dam, which the Federal Emergency Management Agency defines as dams for which failure or misoperation probably will cause loss of human life, to develop an emergency action plan specific to that dam. Components of an emergency action plan are to simulate a flood resulting from a possible dam breach and map the resulting downstream flood-inundation areas. The resulting flood-inundation maps can provide valuable information to city officials, emergency managers, and local residents for planning the emergency response if a dam breach occurs. Accurate topographic data are vital for developing flood-inundation maps. This report presents results of a cooperative study by the city of Lawton, Oklahoma, and the U.S. Geological Survey (USGS) to model dam-breach scenarios at Lakes Ellsworth and Lawtonka near Lawton and to map the potential flood-inundation areas of such dam breaches. To assist the city of Lawton with completion of the emergency action plans for Lakes Ellsworth and Lawtonka Dams, the USGS collected light detection and ranging (lidar) data that were used to develop a high-resolution digital elevation model and a 1-foot contour elevation map for the flood plains downstream from Lakes Ellsworth and Lawtonka. This digital elevation model and field measurements, streamflow-gaging station data (USGS streamflow-gaging station 07311000, East Cache Creek near Walters, Okla.), and hydraulic values were used as inputs for the dynamic (unsteady-flow) model, Hydrologic Engineering Center's River Analysis System (HEC-RAS). The modeled flood elevations were exported to a geographic information system to produce flood-inundation maps. Water-surface profiles were developed for a 75-percent probable maximum flood scenario and a sunny-day dam-breach scenario, as well as for maximum flood-inundation elevations and flood-wave arrival times for selected bridge crossings. Some areas of concern near the city of Lawton, if a dam breach occurs at Lakes Ellsworth or Lawtonka, include water treatment plants, wastewater treatment plants, recreational areas, and community-services offices.

  12. The Use of LIDAR and Volunteered Geographic Information to Map Flood Extents and Inundation

    NASA Astrophysics Data System (ADS)

    McDougall, K.; Temple-Watts, P.

    2012-07-01

    Floods are one of the most destructive natural disasters that threaten communities and properties. In recent decades, flooding has claimed more lives, destroyed more houses and ruined more agricultural land than any other natural hazard. The accurate prediction of the areas of inundation from flooding is critical to saving lives and property, but relies heavily on accurate digital elevation and hydrologic models. The 2011 Brisbane floods provided a unique opportunity to capture high resolution digital aerial imagery as the floods neared their peak, allowing the capture of areas of inundation over the various city suburbs. This high quality imagery, together with accurate LiDAR data over the area and publically available volunteered geographic imagery through repositories such as Flickr, enabled the reconstruction of flood extents and the assessment of both area and depth of inundation for the assessment of damage. In this study, approximately 20 images of flood damaged properties were utilised to identify the peak of the flood. Accurate position and height values were determined through the use of RTK GPS and conventional survey methods. This information was then utilised in conjunction with river gauge information to generate a digital flood surface. The LiDAR generated DEM was then intersected with the flood surface to reconstruct the area of inundation. The model determined areas of inundation were then compared to the mapped flood extent from the high resolution digital imagery to assess the accuracy of the process. The paper concludes that accurate flood extent prediction or mapping is possible through this method, although its accuracy is dependent on the number and location of sampled points. The utilisation of LiDAR generated DEMs and DSMs can also provide an excellent mechanism to estimate depths of inundation and hence flood damage

  13. Spatiotemporal hazard mapping of a flood event "migration" in a transboundary river basin as an operational tool in flood risk management

    NASA Astrophysics Data System (ADS)

    Perrou, Theodora; Papastergios, Asterios; Parcharidis, Issaak; Chini, Marco

    2017-10-01

    Flood disaster is one of the heaviest disasters in the world. It is necessary to monitor and evaluate the flood disaster in order to mitigate the consequences. As floods do not recognize borders, transboundary flood risk management is imperative in shared river basins. Disaster management is highly dependent on early information and requires data from the whole river basin. Based on the hypothesis that the flood events over the same area with same magnitude have almost identical evolution, it is crucial to develop a repository database of historical flood events. This tool, in the case of extended transboundary river basins, could constitute an operational warning system for the downstream area. The utility of SAR images for flood mapping, was demonstrated by previous studies but the SAR systems in orbit were not characterized by high operational capacity. Copernicus system will fill this gap in operational service for risk management, especially during emergency phase. The operational capabilities have been significantly improved by newly available satellite constellation, such as the Sentinel-1A AB mission, which is able to provide systematic acquisitions with a very high temporal resolution in a wide swath coverage. The present study deals with the monitoring of a transboundary flood event in Evros basin. The objective of the study is to create the "migration story" of the flooded areas on the basis of the evolution in time for the event occurred from October 2014 till May 2015. Flood hazard maps will be created, using SAR-based semi-automatic algorithms and then through the synthesis of the related maps in a GIS-system, a spatiotemporal thematic map of the event will be produced. The thematic map combined with TanDEM-X DEM, 12m/pixel spatial resolution, will define the non- affected areas which is a very useful information for the emergency planning and emergency response phases. The Sentinels meet the main requirements to be an effective and suitable operational tool in transboundary flood risk management.

  14. Identification and delineation of areas flood hazard using high accuracy of DEM data

    NASA Astrophysics Data System (ADS)

    Riadi, B.; Barus, B.; Widiatmaka; Yanuar, M. J. P.; Pramudya, B.

    2018-05-01

    Flood incidents that often occur in Karawang regency need to be mitigated. These expectations exist on technologies that can predict, anticipate and reduce disaster risks. Flood modeling techniques using Digital Elevation Model (DEM) data can be applied in mitigation activities. High accuracy DEM data used in modeling, will result in better flooding flood models. The result of high accuracy DEM data processing will yield information about surface morphology which can be used to identify indication of flood hazard area. The purpose of this study was to identify and describe flood hazard areas by identifying wetland areas using DEM data and Landsat-8 images. TerraSAR-X high-resolution data is used to detect wetlands from landscapes, while land cover is identified by Landsat image data. The Topography Wetness Index (TWI) method is used to detect and identify wetland areas with basic DEM data, while for land cover analysis using Tasseled Cap Transformation (TCT) method. The result of TWI modeling yields information about potential land of flood. Overlay TWI map with land cover map that produces information that in Karawang regency the most vulnerable areas occur flooding in rice fields. The spatial accuracy of the flood hazard area in this study was 87%.

  15. A new automatic SAR-based flood mapping application hosted on the European Space Agency's grid processing on demand fast access to imagery environment

    NASA Astrophysics Data System (ADS)

    Hostache, Renaud; Chini, Marco; Matgen, Patrick; Giustarini, Laura

    2013-04-01

    There is a clear need for developing innovative processing chains based on earth observation (EO) data to generate products supporting emergency response and flood management at a global scale. Here an automatic flood mapping application is introduced. The latter is currently hosted on the Grid Processing on Demand (G-POD) Fast Access to Imagery (Faire) environment of the European Space Agency. The main objective of the online application is to deliver flooded areas using both recent and historical acquisitions of SAR data in an operational framework. It is worth mentioning that the method can be applied to both medium and high resolution SAR images. The flood mapping application consists of two main blocks: 1) A set of query tools for selecting the "crisis image" and the optimal corresponding pre-flood "reference image" from the G-POD archive. 2) An algorithm for extracting flooded areas using the previously selected "crisis image" and "reference image". The proposed method is a hybrid methodology, which combines histogram thresholding, region growing and change detection as an approach enabling the automatic, objective and reliable flood extent extraction from SAR images. The method is based on the calibration of a statistical distribution of "open water" backscatter values inferred from SAR images of floods. Change detection with respect to a pre-flood reference image helps reducing over-detection of inundated areas. The algorithms are computationally efficient and operate with minimum data requirements, considering as input data a flood image and a reference image. Stakeholders in flood management and service providers are able to log onto the flood mapping application to get support for the retrieval, from the rolling archive, of the most appropriate pre-flood reference image. Potential users will also be able to apply the implemented flood delineation algorithm. Case studies of several recent high magnitude flooding events (e.g. July 2007 Severn River flood, UK and March 2010 Red River flood, US) observed by high-resolution SAR sensors as well as airborne photography highlight advantages and limitations of the online application. A mid-term target is the exploitation of ESA SENTINEL 1 SAR data streams. In the long term it is foreseen to develop a potential extension of the application for systematically extracting flooded areas from all SAR images acquired on a daily, weekly or monthly basis. On-going research activities investigate the usefulness of the method for mapping flood hazard at global scale using databases of historic SAR remote sensing-derived flood inundation maps.

  16. Stream channel cross sections for a reach of the Boise River in Ada County, Idaho

    USGS Publications Warehouse

    Hortness, Jon E.; Werner, Douglas C.

    1999-01-01

    The Federal Emergency Management Agency produces maps of areas that are likely to be inundated during major floods, usually the 100-year, or 1-percent probability, flood. The maps, called Flood Insurance Rate Maps, are used to determine flood insurance rates for homes, businesses, or other structures located in flood-prone areas. State and local governments also use these maps for help with, among other things, development planning and disaster mitigation. During the period October 1997 through December 1998, the initial phase of a hydraulic analysis project of the Boise River from Barber Dam to the Ada/Canyon County boundary, the U.S. Geological Survey collected stream channel cross-section data at 238 locations along the river and documented 108 elevation reference marks established for horizontal and vertical control. In the final phase of the project, the Survey will use these data to determine water-surface elevations for the 10-, 50-, 100-, and 500-year floods and to define floodway limits. The Federal Emergency Management Agency will use the results of this hydraulic analysis to update the 100- and 500-year flood boundaries and the floodway limits on their Flood Insurance Rate Maps.

  17. Testing an innovative framework for flood forecasting, monitoring and mapping in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Kalas, Milan; Lorini, Valerio; Wania, Annett; Pappenberger, Florian; Salamon, Peter; Ramos, Maria Helena; Cloke, Hannah; Castillo, Carlos

    2017-04-01

    Between May and June 2016, France was hit by severe floods, particularly in the Loire and Seine river basins. In this work, we use this case study to test an innovative framework for flood forecasting, mapping and monitoring. More in detail, the system integrates in real-time two components of the Copernicus Emergency mapping services, namely the European Flood Awareness System and the satellite-based Rapid Mapping, with new procedures for rapid risk assessment and social media and news monitoring. We explore in detail the performance of each component of the system, demonstrating the improvements in respect to stand-alone flood forecasting and monitoring systems. We show how the performances of the forecasting component can be refined using the real-time feedback from social media monitoring to identify which areas were flooded, to evaluate the flood intensity, and therefore to correct impact estimations. Moreover, we show how the integration with impact forecast and social media monitoring can improve the timeliness and efficiency of satellite based emergency mapping, and reduce the chances of missing areas where flooding is already happening. These results illustrate how the new integrated approach leads to a better and earlier decision making and a timely evaluation of impacts.

  18. Estimated post-flood effects through Sentinel and Landsat data to support civil protection

    NASA Astrophysics Data System (ADS)

    Cicala, Luca; Angelino, Cesario Vincenzo; Fiscante, Nicomino; Focareta, Mariano

    2016-10-01

    On October 15, 2015, a severe and devastating flood hit the region of Sannio, Southern Italy, and the city of Benevento. Benevento and the hilly area of Sannio, have already experienced similar disasters, but the natural disasters occurred in the past did not help to better cope with current ones. The flood in this almost unknown area of Campania reached its climax with the flooding of the Tammaro and Calore rivers. The extent of the damage to the region, businesses and people was very heavy. Benevento is the most affected area. Utilizing a combination of remote-sensing techniques, Geographic Information System (GIS) data, this project employed Sentinel-1/2 and Landsat 8 imagery taken before and during the floods to calculate total inundated area and delineate flood extent. This data was then used to assess pre-existing flood hazard maps of the area. The resulting maps and methodologies from this project were delivered to the local governments and organizations as they work to better understand this historic event and plan for recovery throughout the region. The main goal of this study is to map flood inundation using principally open, free and full data acquired by Sentinel and Landsat satellite platforms operated by European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA) respectively.

  19. The Use of Geospatial Technologies in Flood Hazard Mapping and Assessment: Case Study from River Evros

    NASA Astrophysics Data System (ADS)

    Mentzafou, Angeliki; Markogianni, Vasiliki; Dimitriou, Elias

    2017-02-01

    Many scientists link climate change to the increase of the extreme weather phenomena frequency, which combined with land use changes often lead to disasters with severe social and economic effects. Especially floods as a consequence of heavy rainfall can put vulnerable human and natural systems such as transboundary wetlands at risk. In order to meet the European Directive 2007/60/EC requirements for the development of flood risk management plans, the flood hazard map of Evros transboundary watershed was produced after a grid-based GIS modelling method that aggregates the main factors related to the development of floods: topography, land use, geology, slope, flow accumulation and rainfall intensity. The verification of this tool was achieved through the comparison between the produced hazard map and the inundation maps derived from the supervised classification of Landsat 5 and 7 satellite imageries of four flood events that took place at Evros delta proximity, a wetland of international importance. The comparison of the modelled output (high and very high flood hazard areas) with the extent of the inundated areas as mapped from the satellite data indicated the satisfactory performance of the model. Furthermore, the vulnerability of each land use against the flood events was examined. Geographically Weighted Regression has also been applied between the final flood hazard map and the major factors in order to ascertain their contribution to flood events. The results accredited the existence of a strong relationship between land uses and flood hazard indicating the flood susceptibility of the lowlands and agricultural land. A dynamic transboundary flood hazard management plan should be developed in order to meet the Flood Directive requirements for adequate and coordinated mitigation practices to reduce flood risk.

  20. Probabilistic flood extent estimates from social media flood observations

    NASA Astrophysics Data System (ADS)

    Brouwer, Tom; Eilander, Dirk; van Loenen, Arnejan; Booij, Martijn J.; Wijnberg, Kathelijne M.; Verkade, Jan S.; Wagemaker, Jurjen

    2017-05-01

    The increasing number and severity of floods, driven by phenomena such as urbanization, deforestation, subsidence and climate change, create a growing need for accurate and timely flood maps. In this paper we present and evaluate a method to create deterministic and probabilistic flood maps from Twitter messages that mention locations of flooding. A deterministic flood map created for the December 2015 flood in the city of York (UK) showed good performance (F(2) = 0.69; a statistic ranging from 0 to 1, with 1 expressing a perfect fit with validation data). The probabilistic flood maps we created showed that, in the York case study, the uncertainty in flood extent was mainly induced by errors in the precise locations of flood observations as derived from Twitter data. Errors in the terrain elevation data or in the parameters of the applied algorithm contributed less to flood extent uncertainty. Although these maps tended to overestimate the actual probability of flooding, they gave a reasonable representation of flood extent uncertainty in the area. This study illustrates that inherently uncertain data from social media can be used to derive information about flooding.

  1. A simple statistical method for analyzing flood susceptibility with incorporating rainfall and impervious surface

    NASA Astrophysics Data System (ADS)

    Chiang, Shou-Hao; Chen, Chi-Farn

    2016-04-01

    Flood, as known as the most frequent natural hazard in Taiwan, has induced severe damages of residents and properties in urban areas. The flood risk is even more severe in Tainan since 1990s, with the significant urban development over recent decades. Previous studies have indicated that the characteristics and the vulnerability of flood are affected by the increase of impervious surface area (ISA) and the changing climate condition. Tainan City, in southern Taiwan is selected as the study area. This study uses logistic regression to functionalize the relationship between rainfall variables, ISA and historical flood events. Specifically, rainfall records from 2001 to 2014 were collected and mapped, and Landsat images of year 2001, 2004, 2007, 2010 and 2014 were used to generate the ISA with SVM (support vector machine) classifier. The result shows that rainfall variables and ISA are significantly correlated to the flood occurrence in Tainan City. With applying the logistic function, the likelihood of flood occurrence can be estimated and mapped over the study area. This study suggests the method is simple and feasible for rapid flood susceptibility mapping, when real-time rainfall observations can be available, and it has potential for future flood assessment, with incorporating climate change projections and urban growth prediction.

  2. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images

    PubMed Central

    Zhou, Yuting; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Wang, Jie; Li, Xiangping

    2016-01-01

    Accurate and up-to-date information on the spatial distribution of paddy rice fields is necessary for the studies of trace gas emissions, water source management, and food security. The phenology-based paddy rice mapping algorithm, which identifies the unique flooding stage of paddy rice, has been widely used. However, identification and mapping of paddy rice in rice-wetland coexistent areas is still a challenging task. In this study, we found that the flooding/transplanting periods of paddy rice and natural wetlands were different. The natural wetlands flood earlier and have a shorter duration than paddy rice in the Panjin Plain, a temperate region in China. We used this asynchronous flooding stage to extract the paddy rice planting area from the rice-wetland coexistent area. MODIS Land Surface Temperature (LST) data was used to derive the temperature-defined plant growing season. Landsat 8 OLI imagery was used to detect the flooding signal and then paddy rice was extracted using the difference in flooding stages between paddy rice and natural wetlands. The resultant paddy rice map was evaluated with in-situ ground-truth data and Google Earth images. The estimated overall accuracy and Kappa coefficient were 95% and 0.90, respectively. The spatial pattern of OLI-derived paddy rice map agrees well with the paddy rice layer from the National Land Cover Dataset from 2010 (NLCD-2010). The differences between RiceLandsat and RiceNLCD are in the range of ±20% for most 1-km grid cell. The results of this study demonstrate the potential of the phenology-based paddy rice mapping algorithm, via integrating MODIS and Landsat 8 OLI images, to map paddy rice fields in complex landscapes of paddy rice and natural wetland in the temperate region. PMID:27688742

  3. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images.

    PubMed

    Zhou, Yuting; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Wang, Jie; Li, Xiangping

    2016-04-01

    Accurate and up-to-date information on the spatial distribution of paddy rice fields is necessary for the studies of trace gas emissions, water source management, and food security. The phenology-based paddy rice mapping algorithm, which identifies the unique flooding stage of paddy rice, has been widely used. However, identification and mapping of paddy rice in rice-wetland coexistent areas is still a challenging task. In this study, we found that the flooding/transplanting periods of paddy rice and natural wetlands were different. The natural wetlands flood earlier and have a shorter duration than paddy rice in the Panjin Plain, a temperate region in China. We used this asynchronous flooding stage to extract the paddy rice planting area from the rice-wetland coexistent area. MODIS Land Surface Temperature (LST) data was used to derive the temperature-defined plant growing season. Landsat 8 OLI imagery was used to detect the flooding signal and then paddy rice was extracted using the difference in flooding stages between paddy rice and natural wetlands. The resultant paddy rice map was evaluated with in-situ ground-truth data and Google Earth images. The estimated overall accuracy and Kappa coefficient were 95% and 0.90, respectively. The spatial pattern of OLI-derived paddy rice map agrees well with the paddy rice layer from the National Land Cover Dataset from 2010 (NLCD-2010). The differences between Rice Landsat and Rice NLCD are in the range of ±20% for most 1-km grid cell. The results of this study demonstrate the potential of the phenology-based paddy rice mapping algorithm, via integrating MODIS and Landsat 8 OLI images, to map paddy rice fields in complex landscapes of paddy rice and natural wetland in the temperate region.

  4. Hurricanes Harvey and Irma - High-Resolution Flood Mapping and Monitoring from Sentinel SAR with the Depolarization Reduction Algorithm for Global Observations of InundatioN (DRAGON)

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Brakenridge, G. R.; Nguyen, D. T.

    2017-12-01

    Hurricane Harvey inflicted historical catastrophic flooding across extensive regions around Houston and southeast Texas after making landfall on 25 August 2017. The Federal Emergency Management Agency (FEMA) requested urgent supports for flood mapping and monitoring in an emergency response to the extreme flood situation. An innovative satellite remote sensing method, called the Depolarization Reduction Algorithm for Global Observations of inundatioN (DRAGON), has been developed and implemented for use with Sentinel synthetic aperture radar (SAR) satellite data at a resolution of 10 meters to identify, map, and monitor inundation including pre-existing water bodies and newly flooded areas. Results from this new method are hydrologically consistent and have been verified with known surface waters (e.g., coastal ocean, rivers, lakes, reservoirs, etc.), with clear-sky high-resolution WorldView images (where waves can be seen on surface water in inundated areas within a small spatial coverage), and with other flood maps from the consortium of Global Flood Partnership derived from multiple satellite datasets (including clear-sky Landsat and MODIS at lower resolutions). Figure 1 is a high-resolution (4K UHD) image of a composite inundation map for the region around Rosharon (in Brazoria County, south of Houston, Texas). This composite inundation map reveals extensive flooding on 29 August 2017 (four days after Hurricane Harvey made landfall), and the inundation was still persistent in most of the west and south of Rosharon one week later (5 September 2017) while flooding was reduced in the east of Rosharon. Hurricane Irma brought flooding to a number of areas in Florida. As of 10 September 2017, Sentinel SAR flood maps reveal inundation in the Florida Panhandle and over lowland surfaces on several islands in the Florida Keys. However, Sentinel SAR results indicate that flooding along the Florida coast was not extreme despite Irma was a Category-5 hurricane that might have inflicted a potentially strong storm surge. DRAGON flood mapping products over various regions in Texas and in Florida were provided to FEMA. Figure 1. Composite inundation map derived from Sentinel SAR data for the region around Rosharon on 9/5/2017 (orange), inundation on 8/29/2017 (yellow), and pre-existing surface waters on 8/5/2017 (blue).

  5. Collaborative multi-stakeholder approach to drafting flood risk management plans in Wallonia, Belgium

    NASA Astrophysics Data System (ADS)

    Maroy, Edith; Javaux, Mathieu; Vandermosten, Pierre; Englebert, Benjamin

    2015-04-01

    The Flood Directive 2007/60/CE establishes a common framework within the European Union for assessing and reducing risks posed by floods on human health, the environment, economic activity and cultural heritage. For that purpose, Member States had to establish flood areas and flood risk maps, and subsequently, flood risk management plans (due December 2015). According to the Directive, special attention is to be paid to international coordination for transboundary water courses, integrated management approaches at the catchment scale, cost-effectiveness of measures and public involvement. Management measures must focus on reducing the probability of flooding and the potential consequences of flooding. They must cover prevention, protection and preparedness and must take into account relevant aspects, such as water management, soil management, spatial planning, land use and nature conservation. Floods in Wallonia mostly originate from overflowing of both little sloped rivers and highly reactive rivers but also, from concentrated runoff in the intensely cultivated and erosion-prone region north of the Sambre-Meuse axis. Consequently, walloon flood area maps not only show flood areas based on hydraulic modelling and observations but also runoff concentration axis in agricultural areas. Now released to the public, this information can be used to assess the risk of damage for land planning and erosion control strategies. Incidentally, some 166 km2 were mapped as flood hazard area with a return period of 25 years, 28.8 of which are urbanized or destined to urbanisation and counting of number of approximatively 39.000 people living in those areas. Flood area and flood risk maps should be the starting point of elaborating flood risk management plans. In order to involve the diversity of water managers and stakeholders in the drafting of a management plan for hydrographic districts in Wallonia, responsible authorities decided to mandate scientists and engineers to organize an extensive participatory process. A series of meetings were organised, first, to raise awareness of local managers on the information provided by flood maps and on the objectives of the Directive towards integrated water management. Second, these successive meetings and the use of decision support tools such as a multicriteria analysis matrix allowed the team to collect local information on risks and opportunities, to foster emergence of integrated solutions, and to reach an agreement on priorities at the catchment scale and then at the regional level. This case study provides insights on practicability of using hydrological data on flood hazard in a collaborative, bottom-up approach to flood risk management. Lessons learnt from this project are a foundation for a realistic and effective management plan but limitations of the method and time constrains of this project leave a number of questions as to follow-up, exhaustiveness and cost-effectiveness of measures constituting the plan.

  6. Flood-inundation maps for the White River at Spencer, Indiana

    USGS Publications Warehouse

    Nystrom, Elizabeth A.

    2013-01-01

    Digital flood-inundation maps for a 5.3-mile reach of the White River at Spencer, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage White River at Spencer, Indiana (sta. no. 03357000). Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/. National Weather Service (NWS)-forecasted peak-stage inforamation may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation at the White River at Spencer, Indiana, streamgage and documented high-water marks from the flood of June 8, 2008. The hydraulic model was then used to compute 20 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from the NWS action stage (9 feet) to the highest rated stage (28 feet) at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The availability of these maps along with Internet information regarding the current stage from the Spencer USGS streamgage and forecasted stream stages from the NWS will provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

  7. Fifty-year flood-inundation maps for Nacaome, Honduras

    USGS Publications Warehouse

    Kresch, David L.; Mastin, M.C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Nacaome that would be inundated by 50-year floods on Rio Nacaome, Rio Grande, and Rio Guacirope. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Nacaome as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for 50-year-floods on Rio Nacaome, Rio Grande, and Rio Guacirope at Nacaome were computed using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and ground surveys at two bridges. The estimated 50-year-flood discharge for Rio Nacaome at Nacaome, 5,040 cubic meters per second, was computed as the drainage-area-adjusted weighted average of two independently estimated 50-year-flood discharges for the gaging station Rio Nacaome en Las Mercedes, located about 13 kilometers upstream from Nacaome. One of the discharges, 4,549 cubic meters per second, was estimated from a frequency analysis of the 16 years of peak-discharge record for the gage, and the other, 1,922 cubic meters per second, was estimated from a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The weighted-average of the two discharges is 3,770 cubic meters per second. The 50-year-flood discharges for Rio Grande, 3,890 cubic meters per second, and Rio Guacirope, 1,080 cubic meters per second, were also computed by adjusting the weighted-average 50-year-flood discharge for the Rio Nacaome en Las Mercedes gaging station for the difference in drainage areas between the gage and these river reaches.

  8. Typhoon Doksuri Flooding in 2017 - High-Resolution Inundation Mapping and Monitoring from Sentinel Satellite SAR Data

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Nguyen, D. T.

    2017-12-01

    In 2017, typhoons and hurricanes have inflicted catastrophic flooding across extensive regions in many countries on several continents, including Asia and North America. The U.S. Federal Emergency Management Agency (FEMA) requested urgent support for flood mapping and monitoring in an emergency response to the devastating flood situation. An innovative satellite remote sensing method, called the Depolarization Reduction Algorithm for Global Observations of inundatioN (DRAGON), has been developed and implemented for use with Sentinel synthetic aperture radar (SAR) satellite data at a resolution of 10 meters to identify, map, and monitor inundation including pre-existing water bodies and newly flooded areas. Because Sentinel SAR operates at C-band microwave frequency, it can be used for flood mapping regardless of could cover conditions typically associated with storms, and thus can provide immediate results without the need to wait for the clouds to clear out. In Southeast Asia, Typhoon Doksuri caused significant flooding across extensive regions in Vietnam and other countries in September 2017. Figure 1 presents the flood mapping result over a region around Hà Tĩnh (north central coast of Vietnam) showing flood inundated areas (in yellow) on 16 September 2017 together with pre-existing surface water (in blue) on 4 September 2017. This is just one example selected from a larger flood map covering an extensive region of about 250 km x 680 km all along the central coast of Vietnam.

  9. Probabilistic Flood Mapping using Volunteered Geographical Information

    NASA Astrophysics Data System (ADS)

    Rivera, S. J.; Girons Lopez, M.; Seibert, J.; Minsker, B. S.

    2016-12-01

    Flood extent maps are widely used by decision makers and first responders to provide critical information that prevents economic impacts and the loss of human lives. These maps are usually obtained from sensory data and/or hydrologic models, which often have limited coverage in space and time. Recent developments in social media and communication technology have created a wealth of near-real-time, user-generated content during flood events in many urban areas, such as flooded locations, pictures of flooding extent and height, etc. These data could improve decision-making and response operations as events unfold. However, the integration of these data sources has been limited due to the need for methods that can extract and translate the data into useful information for decision-making. This study presents an approach that uses volunteer geographic information (VGI) and non-traditional data sources (i.e., Twitter, Flicker, YouTube, and 911 and 311 calls) to generate/update the flood extent maps in areas where no models and/or gauge data are operational. The approach combines Web-crawling and computer vision techniques to gather information about the location, extent, and water height of the flood from unstructured textual data, images, and videos. These estimates are then used to provide an updated flood extent map for areas surrounding the geo-coordinate of the VGI through the application of a Hydro Growing Region Algorithm (HGRA). HGRA combines hydrologic and image segmentation concepts to estimate a probabilistic flooding extent along the corresponding creeks. Results obtained for a case study in Austin, TX (i.e., 2015 Memorial Day flood) were comparable to those obtained by a calibrated hydrologic model and had good spatial correlation with flooding extents estimated by the Federal Emergency Management Agency (FEMA).

  10. Vulnerability Assessment Using LIDAR Data in Silang-Sta Rosa Subwatershed, Philippines

    NASA Astrophysics Data System (ADS)

    Bragais, M. A.; Magcale-Macandog, D. B.; Arizapa, J. L.; Manalo, K. M.

    2016-10-01

    Silang-Sta. Rosa Subwatershed is experiencing rapid urbanization. Its downstream area is already urbanized and the development is moving fast upstream. With the rapid land conversion of pervious to impervious areas and increase frequency of intense rainfall events, the downstream of the watershed is at risk of flood hazard. The widely used freeware HEC-RAS (Hydrologic Engineering Center- River Analysis System) model was used to implement the 2D unsteady flow analysis to develop a flood hazard map. The LiDAR derived digital elevation model (DEM) with 1m resolution provided detailed terrain that is vital for producing reliable flood extent map that can be used for early warning system. With the detailed information from the simulation like areas to be flooded, the predicted depth and duration, we can now provide specific flood forecasting and mitigation plan even at community level. The methodology of using 2D unsteady flow modelling and high resolution DEM in a watershed can be replicated to other neighbouring watersheds specially those areas that are not yet urbanized so that their development will be guided to be flood hazard resilient. LGUs all over the country will benefit from having a high resolution flood hazard map.

  11. A software tool for rapid flood inundation mapping

    USGS Publications Warehouse

    Verdin, James; Verdin, Kristine; Mathis, Melissa L.; Magadzire, Tamuka; Kabuchanga, Eric; Woodbury, Mark; Gadain, Hussein

    2016-06-02

    The GIS Flood Tool (GFT) was developed by the U.S. Geological Survey with support from the U.S. Agency for International Development’s Office of U.S. Foreign Disaster Assistance to provide a means for production of reconnaissance-level flood inundation mapping for data-sparse and resource-limited areas of the world. The GFT has also attracted interest as a tool for rapid assessment flood inundation mapping for the Flood Inundation Mapping Program of the U.S. Geological Survey. The GFT can fill an important gap for communities that lack flood inundation mapping by providing a first-estimate of inundation zones, pending availability of resources to complete an engineering study. The tool can also help identify priority areas for application of scarce flood inundation mapping resources. The technical basis of the GFT is an application of the Manning equation for steady flow in an open channel, operating on specially processed digital elevation data. The GFT is implemented as a software extension in ArcGIS. Output maps from the GFT were validated at 11 sites with inundation maps produced previously by the Flood Inundation Mapping Program using standard one-dimensional hydraulic modeling techniques. In 80 percent of the cases, the GFT inundation patterns matched 75 percent or more of the one-dimensional hydraulic model inundation patterns. Lower rates of pattern agreement were seen at sites with low relief and subtle surface water divides. Although the GFT is simple to use, it should be applied with the oversight or review of a qualified hydraulic engineer who understands the simplifying assumptions of the approach.

  12. Monitoring and Mapping the Hurricane Harvey Flooding in Houston, Texas.

    NASA Astrophysics Data System (ADS)

    Balaji Bhaskar, M. S.

    2017-12-01

    Monitoring and Mapping the Hurricane Harvey Flooding in Houston, Texas.Urban flooding is a hazard that causes major destruction and loss of life. High intense precipitation events have increased significantly in Houston, Texas in recent years resulting in frequent river and bayou flooding. Many of the historical storm events such as Allison, Rita and Ike have caused several billion dollars in losses for the Houston-Galveston Region. A category 4 Hurricane Harvey made landfall on South Texas resulting in heavy precipitation from Aug 25 to 29 of 2017. About 1 trillion gallons of water fell across Harris County over a 4-day period. This amount of water covers Harris County's 1,800 square miles with an average of 33 inches of water. The long rain event resulted in an average 40inch rainfall across the area in several rain gauges and the maximum rainfall of 49.6 inches was recorded near Clear Creek. The objectives of our study are to 1) Process the Geographic Information System (GIS) and satellite data from the pre and post Hurricane Harvey event in Houston, Texas and 2) Analyze the satellite imagery to map the nature and pattern of the flooding in Houston-Galveston Region. The GIS data of the study area was downloaded and processed from the various publicly available resources such as Houston Galveston Area Council (HGAC), Texas Commission of Environmental Quality (TCEQ) and Texas Natural Resource Information Systems (TNRIS). The satellite data collected soon after the Harvey flooding event were downloaded and processed using the ERDAS image processing software. The flood plain areas surrounding the Brazos River, Buffalo Bayou and the Addicks Barker reservoirs showed severe inundation. The different watershed areas affected by the catastrophic flooding in the wake of Hurricane Harvey were mapped and compared with the pre flooding event.

  13. Flood-inundation maps for the St. Marys River at Fort Wayne, Indiana

    USGS Publications Warehouse

    Menke, Chad D.; Kim, Moon H.; Fowler, Kathleen K.

    2012-01-01

    Digital flood-inundation maps for a 9-mile reach of the St. Marys River that extends from South Anthony Boulevard to Main Street at Fort Wayne, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Fort Wayne. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at the USGS streamgage 04182000 St. Marys River near Fort Wayne, Ind. Current conditions at the USGS streamgages in Indiana may be obtained from the National Water Information System: Web Interface. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system. The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, water-surface profiles were simulated for the stream reach by means of a hydraulic one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relation at the USGS streamgage 04182000 St. Marys River near Fort Wayne, Ind. The hydraulic model was then used to simulate 11 water-surface profiles for flood stages at 1-ft intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. A flood inundation map was generated for each water-surface profile stage (11 maps in all) so that for any given flood stage users will be able to view the estimated area of inundation. The availability of these maps along with current stage from USGS streamgages and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post flood recovery efforts.

  14. Flooding risks: a comparison of lay people's perceptions and expert's assessments in Switzerland.

    PubMed

    Siegrist, Michael; Gutscher, Heinz

    2006-08-01

    Experts on the risk of flooding have developed very detailed maps for different parts of Switzerland that indicate the types of damage possible and the probabilities of adverse events. Four categories of risk severity are defined on the maps, ranging from high risk to no risk. Based on these existing maps, we selected respondents for a mail survey, some from areas high in risk and others from low-risk regions. Respondents answered several questions related to flood risk perception and preparedness. Survey results showed that respondents' risk perceptions were correlated with the experts' risk assessments. Respondents who lived in areas designated "no risk" by the experts had lower perceptions of risk than respondents who lived in areas with higher levels of designated risk. With regard to concrete prevention behavior, no differences between people living in different risk areas were observed. Survey results further suggest that many inhabitants do not know that flooding maps exist for their region. Results suggest that in some regions people overestimate the risks associated with flooding. Consequently, some people are more afraid of flooding than is justified by the facts. Some people show prevention behavior that most likely is superfluous. However, in other regions people underestimate the risks associated with flooding. These people do not show prevention behavior, and they are not well prepared for an adverse event. Furthermore, results suggest that respondents' experiences with flooding are positively related to their perceptions of flood risk. Findings of the present study are in line with the availability heuristic.

  15. Adige river in Trento flooding map, 1892: private or public risk transfer?

    NASA Astrophysics Data System (ADS)

    Ranzi, Roberto

    2016-04-01

    For the determination of the flood risk hydrologist and hydraulic engineers focuse their attention mainly to the estimation of physical factors determining the flood hazard, while economists and experts of social sciences deal mainly with the estimation of vulnerability and exposure. The fact that flood zoning involves both hydrological and socio-economic aspects, however, was clear already in the XIX century when the impact of floods on inundated areas started to appear in flood maps, for instance in the UK and in Italy. A pioneering 'flood risk' map for the Adige river in Trento, Italy, was already published in 1892, taking into account in detail both hazard intensity in terms of velocity and depth, frequency of occurrence, vulnerability and economic costs for flood protection with river embankments. This map is likely to be the reinterpreted certainly as a pioneering, and possibly as the first flood risk map for an Italian river and worldwide. Risk levels were divided in three categories and seven sub-categories, depending on flood water depth, velocity, frequency and damage costs. It is interesting to notice the fact that at that time the map was used to share the cost of levees' reparation and enhancement after the severe September 1882 flood as a function of the estimated level of protection of the respective areas against the flood risk. The sharing of costs between public bodies, the railway company and private owners was debated for about 20 years and at the end the public sustained the major costs. This shows how already at that time the economic assessment of structural flood protections was based on objective and rational cost-benefit criteria, that hydraulic risk mapping was perceived by the society as fundamental for the design of flood protection systems and that a balanced cost sharing between public and private was an accepted approach although some protests arose at that time.

  16. 44 CFR 64.3 - Flood Insurance Maps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with water surface elevations determined A0 Area of special flood hazards having shallow water depths... insurance rating purposes AH Areas of special flood hazards having shallow water depths and/or unpredictable... of special flood hazards having shallow water depths and/or unpredictable flow paths between (1) and...

  17. Scoping of Flood Hazard Mapping Needs for Androscoggin County, Maine

    USGS Publications Warehouse

    Schalk, Charles W.; Dudley, Robert W.

    2007-01-01

    Background The Federal Emergency Management Agency (FEMA) developed a plan in 1997 to modernize the FEMA flood mapping program. FEMA flood maps delineate flood hazard areas in support of the National Flood Insurance Program (NFIP). FEMA's plan outlined the steps necessary to update FEMA's flood maps for the nation to a seamless digital format and streamline FEMA's operations in raising public awareness of the importance of the maps and responding to requests to revise them. The modernization of flood maps involves conversion of existing information to digital format and integration of improved flood hazard data as needed and as funds allow. To determine flood mapping modernization needs, FEMA has established specific scoping activities to be done on a county-by-county basis for identifying and prioritizing requisite flood-mapping activities for map modernization. The U.S. Geological Survey (USGS), in cooperation with FEMA and the Maine Floodplain Management Program (MFMP) State Planning Office, began scoping work in 2006 for Androscoggin County. Scoping activities included assembling existing data and map needs information for communities in Androscoggin County, documentation of data, contacts, community meetings, and prioritized mapping needs in a final scoping report (this document), and updating the Mapping Needs Update Support System (MNUSS) Database with information gathered during the scoping process. The average age of the FEMA floodplain maps in Androscoggin County, Maine, is at least 17 years. Most studies were published in the early 1990s, and some towns have partial maps that are more recent than their study date. Since the studies were done, development has occurred in many of the watersheds and the characteristics of the watersheds have changed with time. Therefore, many of the older studies may not depict current conditions nor accurately estimate risk in terms of flood heights or flood mapping.

  18. Scoping of Flood Hazard Mapping Needs for Lincoln County, Maine

    USGS Publications Warehouse

    Schalk, Charles W.; Dudley, Robert W.

    2007-01-01

    Background The Federal Emergency Management Agency (FEMA) developed a plan in 1997 to modernize the FEMA flood mapping program. FEMA flood maps delineate flood hazard areas in support of the National Flood Insurance Program (NFIP). FEMA's plan outlined the steps necessary to update FEMA's flood maps for the nation to a seamless digital format and streamline FEMA's operations in raising public awareness of the importance of the maps and responding to requests to revise them. The modernization of flood maps involves conversion of existing information to digital format and integration of improved flood hazard data as needed. To determine flood mapping modernization needs, FEMA has established specific scoping activities to be done on a county-by-county basis for identifying and prioritizing requisite flood-mapping activities for map modernization. The U.S. Geological Survey (USGS), in cooperation with FEMA and the Maine Floodplain Management Program (MFMP) State Planning Office, began scoping work in 2006 for Lincoln County. Scoping activities included assembling existing data and map needs information for communities in Lincoln County, documentation of data, contacts, community meetings, and prioritized mapping needs in a final scoping report (this document), and updating the Mapping Needs Update Support System (MNUSS) database with information gathered during the scoping process. The average age of the FEMA floodplain maps in Lincoln County, Maine is at least 17 years. Many of these studies were published in the mid- to late-1980s, and some towns have partial maps that are more recent than their study. However, in the ensuing 15-20 years, development has occurred in many of the watersheds, and the characteristics of the watersheds have changed with time. Therefore, many of the older studies may not depict current conditions nor accurately estimate risk in terms of flood heights or flood mapping.

  19. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China.

    PubMed

    Hong, Haoyuan; Tsangaratos, Paraskevas; Ilia, Ioanna; Liu, Junzhi; Zhu, A-Xing; Chen, Wei

    2018-06-01

    In China, floods are considered as the most frequent natural disaster responsible for severe economic losses and serious damages recorded in agriculture and urban infrastructure. Based on the international experience prevention of flood events may not be completely possible, however identifying susceptible and vulnerable areas through prediction models is considered as a more visible task with flood susceptibility mapping being an essential tool for flood mitigation strategies and disaster preparedness. In this context, the present study proposes a novel approach to construct a flood susceptibility map in the Poyang County, JiangXi Province, China by implementing fuzzy weight of evidence (fuzzy-WofE) and data mining methods. The novelty of the presented approach is the usage of fuzzy-WofE that had a twofold purpose. Firstly, to create an initial flood susceptibility map in order to identify non-flood areas and secondly to weight the importance of flood related variables which influence flooding. Logistic Regression (LR), Random Forest (RF) and Support Vector Machines (SVM) were implemented considering eleven flood related variables, namely: lithology, soil cover, elevation, slope angle, aspect, topographic wetness index, stream power index, sediment transport index, plan curvature, profile curvature and distance from river network. The efficiency of this new approach was evaluated using area under curve (AUC) which measured the prediction and success rates. According to the outcomes of the performed analysis, the fuzzy WofE-SVM model was the model with the highest predictive performance (AUC value, 0.9865) which also appeared to be statistical significant different from the other predictive models, fuzzy WofE-RF (AUC value, 0.9756) and fuzzy WofE-LR (AUC value, 0.9652). The proposed methodology and the produced flood susceptibility map could assist researchers and local governments in flood mitigation strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. An experimental system for flood risk forecasting at global scale

    NASA Astrophysics Data System (ADS)

    Alfieri, L.; Dottori, F.; Kalas, M.; Lorini, V.; Bianchi, A.; Hirpa, F. A.; Feyen, L.; Salamon, P.

    2016-12-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by an increasing range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasts, combining streamflow estimations with expected inundated areas and flood impacts. To this end, we have developed an experimental procedure for near-real time flood mapping and impact assessment based on the daily forecasts issued by the Global Flood Awareness System (GloFAS). The methodology translates GloFAS streamflow forecasts into event-based flood hazard maps based on the predicted flow magnitude and the forecast lead time and a database of flood hazard maps with global coverage. Flood hazard maps are then combined with exposure and vulnerability information to derive flood risk. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To further increase the reliability of the proposed methodology we integrated model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification of impact forecasts. The preliminary tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management. In particular, the link with social media is crucial for improving the accuracy of impact predictions.

  1. Inventory and mapping of flood inundation using interactive digital image analysis techniques

    USGS Publications Warehouse

    Rohde, Wayne G.; Nelson, Charles A.; Taranik, J.V.

    1979-01-01

    LANDSAT digital data and color infra-red photographs were used in a multiphase sampling scheme to estimate the area of agricultural land affected by a flood. The LANDSAT data were classified with a maximum likelihood algorithm. Stratification of the LANDSAT data, prior to classification, greatly reduced misclassification errors. The classification results were used to prepare a map overlay showing the areal extent of flooding. These data also provided statistics required to estimate sample size in a two phase sampling scheme, and provided quick, accurate estimates of areas flooded for the first phase. The measurements made in the second phase, based on ground data and photo-interpretation, were used with two phase sampling statistics to estimate the area of agricultural land affected by flooding These results show that LANDSAT digital data can be used to prepare map overlays showing the extent of flooding on agricultural land and, with two phase sampling procedures, can provide acreage estimates with sampling errors of about 5 percent. This procedure provides a technique for rapidly assessing the areal extent of flood conditions on agricultural land and would provide a basis for designing a sampling framework to estimate the impact of flooding on crop production.

  2. Flood evolution assessment and monitoring using hydrological modelling techniques: analysis of the inundation areas at a regional scale

    NASA Astrophysics Data System (ADS)

    Podhoranyi, M.; Kuchar, S.; Portero, A.

    2016-08-01

    The primary objective of this study is to present techniques that cover usage of a hydrodynamic model as the main tool for monitoring and assessment of flood events while focusing on modelling of inundation areas. We analyzed the 2010 flood event (14th May - 20th May) that occurred in the Moravian-Silesian region (Czech Republic). Under investigation were four main catchments: Opava, Odra, Olše and Ostravice. Four hydrodynamic models were created and implemented into the Floreon+ platform in order to map inundation areas that arose during the flood event. In order to study the dynamics of the water, we applied an unsteady flow simulation for the entire area (HEC-RAS 4.1). The inundation areas were monitored, evaluated and recorded semi-automatically by means of the Floreon+ platform. We focused on information about the extent and presence of the flood areas. The modeled flooded areas were verified by comparing them with real data from different sources (official reports, aerial photos and hydrological networks). The study confirmed that hydrodynamic modeling is a very useful tool for mapping and monitoring of inundation areas. Overall, our models detected 48 inundation areas during the 2010 flood event.

  3. Uncertainty in surface water flood risk modelling

    NASA Astrophysics Data System (ADS)

    Butler, J. B.; Martin, D. N.; Roberts, E.; Domuah, R.

    2009-04-01

    Two thirds of the flooding that occurred in the UK during summer 2007 was as a result of surface water (otherwise known as ‘pluvial') rather than river or coastal flooding. In response, the Environment Agency and Interim Pitt Reviews have highlighted the need for surface water risk mapping and warning tools to identify, and prepare for, flooding induced by heavy rainfall events. This need is compounded by the likely increase in rainfall intensities due to climate change. The Association of British Insurers has called for the Environment Agency to commission nationwide flood risk maps showing the relative risk of flooding from all sources. At the wider European scale, the recently-published EC Directive on the assessment and management of flood risks will require Member States to evaluate, map and model flood risk from a variety of sources. As such, there is now a clear and immediate requirement for the development of techniques for assessing and managing surface water flood risk across large areas. This paper describes an approach for integrating rainfall, drainage network and high-resolution topographic data using Flowroute™, a high-resolution flood mapping and modelling platform, to produce deterministic surface water flood risk maps. Information is provided from UK case studies to enable assessment and validation of modelled results using historical flood information and insurance claims data. Flowroute was co-developed with flood scientists at Cambridge University specifically to simulate river dynamics and floodplain inundation in complex, congested urban areas in a highly computationally efficient manner. It utilises high-resolution topographic information to route flows around individual buildings so as to enable the prediction of flood depths, extents, durations and velocities. As such, the model forms an ideal platform for the development of surface water flood risk modelling and mapping capabilities. The 2-dimensional component of Flowroute employs uniform flow formulae (Manning's Equation) to direct flow over the model domain, sourcing water from the channel or sea so as to provide a detailed representation of river and coastal flood risk. The initial development step was to include spatially-distributed rainfall as a new source term within the model domain. This required optimisation to improve computational efficiency, given the ubiquity of ‘wet' cells early on in the simulation. Collaboration with UK water companies has provided detailed drainage information, and from this a simplified representation of the drainage system has been included in the model via the inclusion of sinks and sources of water from the drainage network. This approach has clear advantages relative to a fully coupled method both in terms of reduced input data requirements and computational overhead. Further, given the difficulties associated with obtaining drainage information over large areas, tests were conducted to evaluate uncertainties associated with excluding drainage information and the impact that this has upon flood model predictions. This information can be used, for example, to inform insurance underwriting strategies and loss estimation as well as for emergency response and planning purposes. The Flowroute surface-water flood risk platform enables efficient mapping of areas sensitive to flooding from high-intensity rainfall events due to topography and drainage infrastructure. As such, the technology has widespread potential for use as a risk mapping tool by the UK Environment Agency, European Member States, water authorities, local governments and the insurance industry. Keywords: Surface water flooding, Model Uncertainty, Insurance Underwriting, Flood inundation modelling, Risk mapping.

  4. Flood on Big Fossil Creek at Haltom City near Fort Worth, Texas, in 1962

    USGS Publications Warehouse

    Montgomery, John H.; Ruggles, Frederick H.; Patterson, James Lee

    1965-01-01

    The approximate area inundated near Fort Worth, Texas, by Big Fossil Creek, during the flood of September 7, 1962, is shown on a topographic map to record the flood hazard in graphic form. Big Fossil Creek, which drains an area of 74.7 square miles, flows generally southeastward along the northeast edge of Fort Worth through Richland Hills and Haltom City, into West Fork Trinity River. The flood of September 7, 1962, the greatest in Richland Hills since at least 1900 was the result of a high rate of discharge from the area upstream from the confluence of Big Fossil Creek and Whites Branch. Greater floods are possible, but no attempt has been made to show their probable overflow limits. Future protective works may reduce the frequency of flooding in the area but will not necessarily eliminate flooding. Changes in culture such as new highways and bridges and changes in land use may influence the inundation pattern of future floods. Mapping of the West Fork Trinity River flood was beyond the scope of the Big Fossil Creek study, and is not shown.

  5. Rapid Flood Map Generation from Spaceborne SAR Observations

    NASA Astrophysics Data System (ADS)

    Yun, S. H.; Liang, C.; Manipon, G.; Jung, J.; Gurrola, E. M.; Owen, S. E.; Hua, H.; Agram, P. S.; Webb, F.; Sacco, G. F.; Rosen, P. A.; Simons, M.

    2016-12-01

    The Advanced Rapid Imaging and Analysis (ARIA) team has responded to the January 2016 US Midwest Floods along the Mississippi River. Daily teleconferences with FEMA, NOAA, NGA, and USGS, provided information on precipitation and flood crest migration, based on which we coordinated with the Japanese Aerospace Exploration Agency (JAXA) through NASA headquarters for JAXA's ALOS-2 timely tasking over two paths. We produced flood extent maps using ALOS-2 SM3 mode Level 1.5 data that were provided through the International Charter and stored at the US Geological Survey's Hazards Data Distribution System (HDDS) archive. On January 6, the first four frames (70 km x 240 km) were acquired, which included the City of Memphis. We registered post-event SAR images to pre-event images, applied radiometric calibration, took a logarithm of the ratio of the two images. Two thresholds were applied to represent flooded areas that became open water (colored in blue) and flooded areas with tall vegetation (colored in red). The second path was acquired on January 11 further down along the Mississippi River. Seven frames (70 km x 420 km) were acquired and flood maps were created in the similar fashion. The maps were delivered to the FEMA as well as posted on ARIA's public website. The FEMA stated that SAR provides inspection priority for optical imagery and ground response. The ALOS-2 data and the products have been a very important source of information during this response as the flood crest has moved down stream. The SAR data continue to be an important resource during times when optical observations are often not useful. In close collaboration with FEMA and USGS, we also work on other flood events including June 2016 China Floods using European Space Agency's (ESA's) Sentienl-1 data, to produce flood extent maps and identify algorithmic needs and ARIA system's requirements to automate and rapidly produce and deliver flood maps for future events. With the addition of Sentinel-1B satellite, the composite expected wait time until a SAR satellite to fly over a flooded area became smaller than 12 hours. With more SAR missions, such as SAOCOM, RADARSAT Constellation, Sentinel-1C/D, ALOS-3, and NISAR, SAR data are becoming more useful for rapid mapping of devastating floods, which are becoming more frequent and more severe around the world.

  6. Evaluation of various modelling approaches in flood routing simulation and flood area mapping

    NASA Astrophysics Data System (ADS)

    Papaioannou, George; Loukas, Athanasios; Vasiliades, Lampros; Aronica, Giuseppe

    2016-04-01

    An essential process of flood hazard analysis and mapping is the floodplain modelling. The selection of the modelling approach, especially, in complex riverine topographies such as urban and suburban areas, and ungauged watersheds may affect the accuracy of the outcomes in terms of flood depths and flood inundation area. In this study, a sensitivity analysis implemented using several hydraulic-hydrodynamic modelling approaches (1D, 2D, 1D/2D) and the effect of modelling approach on flood modelling and flood mapping was investigated. The digital terrain model (DTMs) used in this study was generated from Terrestrial Laser Scanning (TLS) point cloud data. The modelling approaches included 1-dimensional hydraulic-hydrodynamic models (1D), 2-dimensional hydraulic-hydrodynamic models (2D) and the coupled 1D/2D. The 1D hydraulic-hydrodynamic models used were: HECRAS, MIKE11, LISFLOOD, XPSTORM. The 2D hydraulic-hydrodynamic models used were: MIKE21, MIKE21FM, HECRAS (2D), XPSTORM, LISFLOOD and FLO2d. The coupled 1D/2D models employed were: HECRAS(1D/2D), MIKE11/MIKE21(MIKE FLOOD platform), MIKE11/MIKE21 FM(MIKE FLOOD platform), XPSTORM(1D/2D). The validation process of flood extent achieved with the use of 2x2 contingency tables between simulated and observed flooded area for an extreme historical flash flood event. The skill score Critical Success Index was used in the validation process. The modelling approaches have also been evaluated for simulation time and requested computing power. The methodology has been implemented in a suburban ungauged watershed of Xerias river at Volos-Greece. The results of the analysis indicate the necessity of sensitivity analysis application with the use of different hydraulic-hydrodynamic modelling approaches especially for areas with complex terrain.

  7. Flood-prone area maps of three sites along the Trans-Alaska Pipeline, Alaska

    USGS Publications Warehouse

    Lamke, Robert D.; Jones, Stanley H.

    1980-01-01

    Flood-prone areas in Alaska are delineated on aerial photographs for the Sagavanirktok River near Pump Station 3, Middle Fork Koyukuk River at Coldfoot, and Jim River near Pump Station 5. An analysis of available flood data and a description of recent flood evidence and maximum evident flood marks are included. (Kosco-USGS)

  8. Teton Dam flood of June 1976, Moreland quadrangle, Idaho

    USGS Publications Warehouse

    Hubbard, Larry L.; Bartells, John H.

    1976-01-01

    The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The aea covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Moreland quadrangle. (Woodard-USGS)

  9. Flood-inundation maps for the Iroquois River at Rensselaer, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.; Bunch, Aubrey R.

    2013-01-01

    Digital flood-inundation maps for a 4.0-mile reach of the Iroquois River at Rensselaer, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage 05522500, Iroquois River at Rensselaer, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at (http://waterdata.usgs.gov/in/nwis/uv?site_no=05522500). In addition, the National Weather Service (NWS) forecasts flood hydrographs at the Rensselaer streamgage. That forecasted peak-stage information, also available on the Internet (http://water.weather.gov/ahps/), may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the Iroquois River reach by means of a one-dimensional step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the most current (June 27, 2012) stage-discharge relations at USGS streamgage 05522500, Iroquois River at Rensselaer, Ind., and high-water marks from the flood of July 2003. The calibrated hydraulic model was then used to determine nine water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage at Rensselaer, Ind., and forecasted stream stages from the NWS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  10. Recommendations for the user-specific enhancement of flood maps

    NASA Astrophysics Data System (ADS)

    Meyer, V.; Kuhlicke, C.; Luther, J.; Fuchs, S.; Priest, S.; Dorner, W.; Serrhini, K.; Pardoe, J.; McCarthy, S.; Seidel, J.; Palka, G.; Unnerstall, H.; Viavattene, C.; Scheuer, S.

    2012-05-01

    The European Union Floods Directive requires the establishment of flood maps for high risk areas in all European member states by 2013. However, the current practice of flood mapping in Europe still shows some deficits. Firstly, flood maps are frequently seen as an information tool rather than a communication tool. This means that, for example, local stocks of knowledge are not incorporated. Secondly, the contents of flood maps often do not match the requirements of the end-users. Finally, flood maps are often designed and visualised in a way that cannot be easily understood by residents at risk and/or that is not suitable for the respective needs of public authorities in risk and event management. The RISK MAP project examined how end-user participation in the mapping process may be used to overcome these barriers and enhance the communicative power of flood maps, fundamentally increasing their effectiveness. Based on empirical findings from a participatory approach that incorporated interviews, workshops and eye-tracking tests, conducted in five European case studies, this paper outlines recommendations for user-specific enhancements of flood maps. More specific, recommendations are given with regard to (1) appropriate stakeholder participation processes, which allow incorporating local knowledge and preferences, (2) the improvement of the contents of flood maps by considering user-specific needs and (3) the improvement of the visualisation of risk maps in order to produce user-friendly and understandable risk maps for the user groups concerned. Furthermore, "idealised" maps for different user groups are presented: for strategic planning, emergency management and the public.

  11. Mapping Daily and Maximum Flood Extents at 90-m Resolution During Hurricanes Harvey and Irma Using Passive Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Galantowicz, J. F.; Picton, J.; Root, B.

    2017-12-01

    Passive microwave remote sensing can provided a distinct perspective on flood events by virtue of wide sensor fields of view, frequent observations from multiple satellites, and sensitivity through clouds and vegetation. During Hurricanes Harvey and Irma, we used AMSR2 (Advanced Microwave Scanning Radiometer 2, JAXA) data to map flood extents starting from the first post-storm rain-free sensor passes. Our standard flood mapping algorithm (FloodScan) derives flooded fraction from 22-km microwave data (AMSR2 or NASA's GMI) in near real time and downscales it to 90-m resolution using a database built from topography, hydrology, and Global Surface Water Explorer data and normalized to microwave data footprint shapes. During Harvey and Irma we tested experimental versions of the algorithm designed to map the maximum post-storm flood extent rapidly and made a variety of map products available immediately for use in storm monitoring and response. The maps have several unique features including spanning the entire storm-affected area and providing multiple post-storm updates as flood water shifted and receded. From the daily maps we derived secondary products such as flood duration, maximum flood extent (Figure 1), and flood depth. In this presentation, we describe flood extent evolution, maximum extent, and local details as detected by the FloodScan algorithm in the wake of Harvey and Irma. We compare FloodScan results to other available flood mapping resources, note observed shortcomings, and describe improvements made in response. We also discuss how best-estimate maps could be updated in near real time by merging FloodScan products and data from other remote sensing systems and hydrological models.

  12. Flood-inundation maps for the Tippecanoe River near Delphi, Indiana

    USGS Publications Warehouse

    Menke, Chad D.; Bunch, Aubrey R.; Kim, Moon H.

    2013-01-01

    Digital flood-inundation maps for an 11-mile reach of the Tippecanoe River that extends from County Road W725N to State Road 18 below Oakdale Dam, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at USGS streamgage 03333050, Tippecanoe River near Delphi, Ind. Current conditions at the USGS streamgages in Indiana may be obtained online at http://waterdata.usgs.gov/in/nwis/current/?type=flow. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, water-surface profiles were simulated for the stream reach by means of a hydraulic one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation at USGS streamgage 03333050, Tippecanoe River near Delphi, Ind., and USGS streamgage 03332605, Tippecanoe River below Oakdale Dam, Ind. The hydraulic model was then used to simulate 13 water-surface profiles for flood stages at 1-foot intervals reference to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. A flood inundation map was generated for each water-surface profile stage (13 maps in all) so that, for any given flood stage, users will be able to view the estimated area of inundation. The availability of these maps, along with current stage from USGS streamgages and forecasted stream stages from the NWS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  13. Hurricane coastal flood analysis using multispectral spectral images

    NASA Astrophysics Data System (ADS)

    Ogashawara, I.; Ferreira, C.; Curtarelli, M. P.

    2013-12-01

    Flooding is one of the main hazards caused by extreme events such as hurricanes and tropical storms. Therefore, flood maps are a crucial tool to support policy makers, environmental managers and other government agencies for emergency management, disaster recovery and risk reduction planning. However traditional flood mapping methods rely heavily on the interpolation of hydrodynamic models results, and most recently, the extensive collection of field data. These methods are time-consuming, labor intensive, and costly. Efficient and fast response alternative methods should be developed in order to improve flood mapping, and remote sensing has been proved as a valuable tool for this application. Our goal in this paper is to introduce a novel technique based on spectral analysis in order to aggregate knowledge and information to map coastal flood areas. For this purpose we used the Normalized Diference Water Index (NDWI) which was derived from two the medium resolution LANDSAT/TM 5 surface reflectance product from the LANDSAT climate data record (CDR). This product is generated from specialized software called Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS). We used the surface reflectance products acquired before and after the passage of Hurricane Ike for East Texas in September of 2008. We used as end member a classification of estimated flooded area based on the United States Geological Survey (USGS) mobile storm surge network that was deployed for Hurricane Ike. We used a dataset which consisted of 59 water levels recording stations. The estimated flooded area was delineated interpolating the maximum surge in each location using a spline with barriers method with high tension and a 30 meter Digital Elevation Model (DEM) from the National Elevation Dataset (NED). Our results showed that, in the flooded area, the NDWI values decreased after the hurricane landfall on average from 0.38 to 0.18 and the median value decreased from 0.36 to 0.2. However for the non-flooded area the NDWI increased after the hurricane landfall. The average value varied from 0.15 to 0.43 and the median value from 0.13 to 0.43. These results demonstrate that these differences can be explored for the mapping of flood areas. As NDWI was developed to quantify the amount of water in the leaf of the plants, the increase of the value is expected within the amount of water that the leaf will absorb. However in flooded areas the amount of water is so high that it is possible that the reflectance follows the water spectral behavior absorbing more than reflecting in the Near Infrared region. Thus, remote sensing techniques showed to be powerful tools since they could characterize flooded areas. However further studies are needed, applying and validating these techniques for other regions and different storms. Optical remote sensing is promising for many applications, since it will be an open door to studies of spatial and temporal analysis of the flood impacts mainly in areas with remote access and with a lack of in situ data.

  14. Updating flood maps efficiently using existing hydraulic models, very-high-accuracy elevation data, and a geographic information system; a pilot study on the Nisqually River, Washington

    USGS Publications Warehouse

    Jones, Joseph L.; Haluska, Tana L.; Kresch, David L.

    2001-01-01

    A method of updating flood inundation maps at a fraction of the expense of using traditional methods was piloted in Washington State as part of the U.S. Geological Survey Urban Geologic and Hydrologic Hazards Initiative. Large savings in expense may be achieved by building upon previous Flood Insurance Studies and automating the process of flood delineation with a Geographic Information System (GIS); increases in accuracy and detail result from the use of very-high-accuracy elevation data and automated delineation; and the resulting digital data sets contain valuable ancillary information such as flood depth, as well as greatly facilitating map storage and utility. The method consists of creating stage-discharge relations from the archived output of the existing hydraulic model, using these relations to create updated flood stages for recalculated flood discharges, and using a GIS to automate the map generation process. Many of the effective flood maps were created in the late 1970?s and early 1980?s, and suffer from a number of well recognized deficiencies such as out-of-date or inaccurate estimates of discharges for selected recurrence intervals, changes in basin characteristics, and relatively low quality elevation data used for flood delineation. FEMA estimates that 45 percent of effective maps are over 10 years old (FEMA, 1997). Consequently, Congress has mandated the updating and periodic review of existing maps, which have cost the Nation almost 3 billion (1997) dollars. The need to update maps and the cost of doing so were the primary motivations for piloting a more cost-effective and efficient updating method. New technologies such as Geographic Information Systems and LIDAR (Light Detection and Ranging) elevation mapping are key to improving the efficiency of flood map updating, but they also improve the accuracy, detail, and usefulness of the resulting digital flood maps. GISs produce digital maps without manual estimation of inundated areas between cross sections, and can generate working maps across a broad range of scales, for any selected area, and overlayed with easily updated cultural features. Local governments are aggressively collecting very-high-accuracy elevation data for numerous reasons; this not only lowers the cost and increases accuracy of flood maps, but also inherently boosts the level of community involvement in the mapping process. These elevation data are also ideal for hydraulic modeling, should an existing model be judged inadequate.

  15. Maps Showing Inundation Depths, Ice-Rafted Erratics, and Sedimentary Facies of Late Pleistocene Missoula Floods in the Willamette Valley, Oregon

    USGS Publications Warehouse

    Minervini, J.M.; O'Connor, J. E.; Wells, R.E.

    2003-01-01

    Glacial Lake Missoula, impounded by the Purcell Trench lobe of the late Pleistocene Cordilleran Icesheet, repeatedly breached its ice dam, sending floods as large as 2,500 cubic kilometers racing across the Channeled Scabland and down the Columbia River valley to the Pacific Ocean. Peak discharges for some floods exceeded 20 million cubic meters per second. At valley constrictions along the flood route, floodwaters temporarily ponded behind each narrow zone. One such constriction at Kalama Gap-northwest of Portland-backed water 120-150 meters high in the Portland basin, and backflooded 200 km south into Willamette Valley. Dozens of floods backed up into the Willamette Valley, eroding 'scabland' channels, and depositing giant boulder gravel bars in areas of vigorous currents as well as bedded flood sand and silt in backwater areas. Also, large chunks of ice entrained from the breached glacier dam rafted hundreds of 'erratic' rocks, leaving them scattered among the flanking foothills and valley bottom. From several sources and our own mapping, we have compiled information on many of these features and depict them on physiographic maps derived from digital elevation models of the Portland Basin and Willamette Valley. These maps show maximum flood inundation levels, inundation levels associated with stratigraphic evidence of repeated floodings, distribution of flood deposits, and sites of ice-rafted erratics. Accompanying these maps, a database lists locations, elevations, and descriptions of approximately 400 ice-rafted erratics-most compiled from early 20th-century maps and notes of A.M. Piper and I.S. Allison.

  16. Topography- and nightlight-based national flood risk assessment in Canada

    NASA Astrophysics Data System (ADS)

    Elshorbagy, Amin; Bharath, Raja; Lakhanpal, Anchit; Ceola, Serena; Montanari, Alberto; Lindenschmidt, Karl-Erich

    2017-04-01

    In Canada, flood analysis and water resource management, in general, are tasks conducted at the provincial level; therefore, unified national-scale approaches to water-related problems are uncommon. In this study, a national-scale flood risk assessment approach is proposed and developed. The study focuses on using global and national datasets available with various resolutions to create flood risk maps. First, a flood hazard map of Canada is developed using topography-based parameters derived from digital elevation models, namely, elevation above nearest drainage (EAND) and distance from nearest drainage (DFND). This flood hazard mapping method is tested on a smaller area around the city of Calgary, Alberta, against a flood inundation map produced by the city using hydraulic modelling. Second, a flood exposure map of Canada is developed using a land-use map and the satellite-based nightlight luminosity data as two exposure parameters. Third, an economic flood risk map is produced, and subsequently overlaid with population density information to produce a socioeconomic flood risk map for Canada. All three maps of hazard, exposure, and risk are classified into five classes, ranging from very low to severe. A simple way to include flood protection measures in hazard estimation is also demonstrated using the example of the city of Winnipeg, Manitoba. This could be done for the entire country if information on flood protection across Canada were available. The evaluation of the flood hazard map shows that the topography-based method adopted in this study is both practical and reliable for large-scale analysis. Sensitivity analysis regarding the resolution of the digital elevation model is needed to identify the resolution that is fine enough for reliable hazard mapping, but coarse enough for computational tractability. The nightlight data are found to be useful for exposure and risk mapping in Canada; however, uncertainty analysis should be conducted to investigate the effect of the overglow phenomenon on flood risk mapping.

  17. Geographic information systems supporting the solution of emergencies and their connection to self-actuated notification systems

    NASA Astrophysics Data System (ADS)

    Reil, Adam; Bureš, Luděk; Roub, Radek; Hejduk, Tomáš; Novák, Pavel

    2015-04-01

    Geographic information systems represent an important tool in supporting the operation and crisis management of Integrated Rescue System (IRS) branches. The technology of geographic information systems makes it possible to localize specific information directly in the concerned area. A basic pre-requisite for efficient IRS functioning is the identification of so-called critical points in the given territory. The next step is the identification of endangered persons and properties. In these issues, emphasis is put particularly on the time scale, which represents a key aspect of the crisis management. In case of flood danger, the Early Flood Warning Service would inform flood authorities responsible for warning the population, declaring flood activity degrees, IRS activation and organization. For their decision-making, the flood authorities need data on level heights, current discharge rates and inundation areas. The information about discharge rates and height levels can be obtained from the network of recording stream gauge stations operated by the Czech Hydrometeorological Institute. Inundation areas are plotted in the flood control plans of municipalities, which however contain default information about areas flooded at the N-year flood discharges Q5, Q20 and Q100. Because of large intervals, these three scenarios are insufficient for the crisis management of larger communities and towns. Therefore, a data store was suggested that would include maps showing flow rate fields and inundation areas for a finer scale of flood discharges at regular intervals. The scale should be based on the N-year flood discharges with a possibility of extension if required by flood authorities. The discharge interval size should be selected with regard to the dynamics of level height change in the given watercourse. The inundation areas will be then established by way of calculation using the MIKE 21C 2D hydrodynamic model. The novel approach was applied recently in the cadastral area of Lety on the Berounka River. Two sets of certified maps were created: (1) The map of endangered properties 1 - grid of depths, and (2) The map of endangered properties 2 - grid of flow rates. The maps were created from the discharge of 500 m3/s to 1460 m3/s at intervals of 60 m3/s. Two additional discharge values were 1500 m3/s and a calibration discharge of 990 m3/s. In total, thirty-eight maps were created the foundation of which was an orthophotograph map where endangered properties were plotted together with inundation areas. The next step will now be a specific proposal for data store version. The data store will be placed on the web interface where scenarios will be possible to display according to the selected discharge. At the same time, information will be available about the current discharge in the given watercourse. The web interface will be publicly accessible and will be connected to IRS. This study was supported from the Project VG20132015127 as a part of the Security Research conducted by the Ministry of the Interior of the Czech Republic. Keywords: IRS, MIKE 21C, flood

  18. A Study of Flood Evacuation Center Using GIS and Remote Sensing Technique

    NASA Astrophysics Data System (ADS)

    Mustaffa, A. A.; Rosli, M. F.; Abustan, M. S.; Adib, R.; Rosli, M. I.; Masiri, K.; Saifullizan, B.

    2016-07-01

    This research demonstrated the use of Remote Sensing technique and GIS to determine the suitability of an evacuation center. This study was conducted in Batu Pahat areas that always hit by a series of flood. The data of Digital Elevation Model (DEM) was obtained by ASTER database that has been used to delineate extract contour line and elevation. Landsat 8 image was used for classification purposes such as land use map. Remote Sensing incorporate with GIS techniques was used to determined the suitability location of the evacuation center from contour map of flood affected areas in Batu Pahat. GIS will calculate the elevation of the area and information about the country of the area, the road access and percentage of the affected area. The flood affected area map may provide the suitability of the flood evacuation center during the several levels of flood. The suitability of evacuation centers can be determined based on several criteria and the existing data of the evacuation center will be analysed. From the analysis among 16 evacuation center listed, there are only 8 evacuation center suitable for the usage during emergency situation. The suitability analysis was based on the location and the road access of the evacuation center toward the flood affected area. There are 10 new locations with suitable criteria of evacuation center proposed on the study area to facilitate the process of rescue and evacuating flood victims to much safer and suitable locations. The results of this study will help in decision making processes and indirectly will help organization such as fire-fighter and the Department of Social Welfare in their work. Thus, this study can contribute more towards the society.

  19. Delineating Floodplain in North Korea using Remote Sensing and Geographic Information System

    NASA Astrophysics Data System (ADS)

    Lim, J.; Lee, K. S.

    2015-12-01

    Korea has been divided into two countries after World War II. So environmental studies about North Korean are not easy and very limited. There were several flood damages every summer in North Korea since 1995, which induces lots of economic loss and agricultural production decrease. Delineating floodplain is indispensable to estimate the magnitude of flood damage and restore the flooded paddy field after unification. Remote Sensing (RS) can provide opportunity to study inaccessible area. In addition, flooding detection is possible. Several research groups study about flooding disaster using RS. Optical images and microwave images have been used in that field. Also, Digital topographic data have been used for flooding detection. Therefore, the purpose of this study is to investigate the land characteristics of floodplain by delineating floodplain in inaccessible North Korea using Landsat and digital topographic data. Landsat TM 5 images were used in this study. North Korea had severe flooding disaster since 1995. Among them 1995, 2007 and 2012 flooding are known for serious damages. Two Landsat images before and after flooding of each year were used to delineate floodplain. Study areas are Pyongyang City, Nampo City, North and South Hwanghae Province and South Pyongan Province. Floodplain are derived from overlaid classification image and flood-depth map. 1:25,000 scale digital topographic data were used to make flood-depth map. For land cover classification image enhancement and supervised classification with maximum likelihood classifier were used. Training areas were selected by visual interpretation using Daum-map which provides high resolution image of whole North Korea. The spatial characteristics of the floodplain were discussed based on floodplain map delineated in this study.

  20. Flood-inundation maps for an 8.9-mile reach of the South Fork Little River at Hopkinsville, Kentucky

    USGS Publications Warehouse

    Lant, Jeremiah G.

    2013-01-01

    Digital flood-inundation maps for an 8.9-mile reach of South Fork Little River at Hopkinsville, Kentucky, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Hopkinsville Community Development Services. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at South Fork Little River at Highway 68 By-Pass at Hopkinsville, Kentucky (station no. 03437495). Current conditions for the USGS streamgage may be obtained online at the USGS National Water Information System site (http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=03437495). In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. The forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the South Fork Little River reach by using HEC-RAS, a one-dimensional step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the most current (2012) stage-discharge relation at the South Fork Little River at Highway 68 By-Pass at Hopkinsville, Kentucky, streamgage and measurements collected during recent flood events. The calibrated model was then used to calculate 13 water-surface profiles for a sequence of flood stages, most at 1-foot intervals, referenced to the streamgage datum and ranging from a stage near bank full to the estimated elevation of the 1.0-percent annual exceedance probability flood at the streamgage. To delineate the flooded area at each interval flood stage, the simulated water-surface profiles were combined with a Digital Elevation Model (DEM) of the study area by using Geographic Information System (GIS) software. The DEM consisted of bare-earth elevations within the study area and was derived from a Light Detection And Ranging (LiDAR) dataset having a 3.28-foot horizontal resolution. These flood-inundation maps, along with online information regarding current stages from USGS streamgage and forecasted stages from the NWS, provide emergency management and local residents with critical information for flood response activities such as evacuations, road closures, and post-flood recovery efforts.

  1. Scoping of Flood Hazard Mapping Needs for Penobscot County, Maine

    USGS Publications Warehouse

    Schalk, Charles W.; Dudley, Robert W.

    2007-01-01

    Background The Federal Emergency Management Agency (FEMA) developed a plan in 1997 to modernize the FEMA flood mapping program. FEMA flood maps delineate flood hazard areas in support of the National Flood Insurance Program (NFIP). FEMA's plan outlined the steps necessary to update FEMA's flood maps for the nation to a seamless digital format and streamline FEMA's operations in raising public awareness of the importance of the maps and responding to requests to revise them. The modernization of flood maps involves conversion of existing information to digital format and integration of improved flood hazard data as needed. To determine flood mapping modernization needs, FEMA has established specific scoping activities to be done on a county-by-county basis for identifying and prioritizing requisite flood-mapping activities for map modernization. The U.S. Geological Survey (USGS), in cooperation with FEMA and the Maine State Planning Office Floodplain Management Program (MFMP), began scoping work in 2006 for Penobscot County. Scoping activities included assembling existing data and map needs information for communities in Penobscot County, documentation of data, contacts, community meetings, and prioritized mapping needs in a final scoping report (this document), and updating the Mapping Needs Update Support System (MNUSS) Database with information gathered during the scoping process. As of 2007, the average age of the FEMA floodplain maps in Penobscot County, Maine, is 22 years, based on the most recent revisions to the maps. Because the revisions did not affect all the map panels in each town, however, the true average date probably is more than 22 years. Many of the studies were published in the mid-1980s. Since the studies were completed, development has occurred in many of the watersheds, and the characteristics of the watersheds have changed with time. Therefore, many of the older studies may not depict current conditions nor accurately estimate risk in terms of flood heights or flood mapping.

  2. An expanded model: flood-inundation maps for the Leaf River at Hattiesburg, Mississippi, 2013

    USGS Publications Warehouse

    Storm, John B.

    2014-01-01

    Digital flood-inundation maps for a 6.8-mile reach of the Leaf River at Hattiesburg, Mississippi (Miss.), were created by the U.S. Geological Survey (USGS) in cooperation with the City of Hattiesburg, City of Petal, Forrest County, Mississippi Emergency Management Agency, Mississippi Department of Homeland Security, and the Emergency Management District. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Leaf River at Hattiesburg, Miss. (station no. 02473000). Current conditions for estimating near-real-time areas of inundation by use of USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relations at the Leaf River at Hattiesburg, Miss. streamgage (02473000) and documented high-water marks from recent and historical floods. The hydraulic model was then used to determine 13 water-surface profiles for flood stages at 1.0-foot intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM, derived from light detection and ranging (lidar) data having a 0.6-foot vertical and 9.84-foot horizontal resolution) in order to delineate the area flooded at each water level. Development of the estimated flood inundation maps as described in this report update previously published inundation estimates by including reaches of the Bouie and Leaf Rivers above their confluence. The availability of these maps along with Internet information regarding current stage from USGS streamgages and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post flood recovery efforts.

  3. a Novel Methodology for Developing Inundation Maps Under Climate Change Scenarios Using One-Dimensional Model

    NASA Astrophysics Data System (ADS)

    Vu, M. T.; Liong, S. Y.; Raghavan, V. S.; Liew, S. C.

    2011-07-01

    Climate change is expected to cause increases in extreme climatic events such as heavy rainstorms and rising tidal level. Heavy rainstorms are known to be serious causes of flooding problems in big cities. Thus, high density residential and commercial areas along the rivers are facing risks of being flooded. For that reason, inundated area determination is now being considered as one of the most important areas of research focus in flood forecasting. In such a context, this paper presents the development of a floodmap in determining flood-prone areas and its volumes. The areas and volumes of flood are computed by the inundated level using the existing digital elevation model (DEM) of a hypothetical catchment chosen for study. The study focuses on the application of Flood Early Warning System (Delft — FEWS, Deltares), which is designated to work with the SOBEK (Delft) to simulate the extent of stormwater on the ground surface. The results from FEWS consist of time-series of inundation maps in Image file format (PNG) and ASCII format, which are subsequently imported to ArcGIS for further calculations. In addition, FEWS results provide options to export the video clip of water spreading out over the catchment. Consequently, inundated area and volume will be determined by the water level on the ground. Final floodmap is displayed in colors created by ArcGIS. Various flood map results corresponding to climate change scenarios will be displayed in the main part of the paper.

  4. Robust flood area detection using a L-band synthetic aperture radar: Preliminary application for Florida, the U.S. affected by Hurricane Irma

    NASA Astrophysics Data System (ADS)

    Nagai, H.; Ohki, M.; Abe, T.

    2017-12-01

    Urgent crisis response for a hurricane-induced flood needs urgent providing of a flood map covering a broad region. However, there is no standard threshold values for automatic flood identification from pre-and-post images obtained by satellite-based synthetic aperture radars (SARs). This problem could hamper prompt data providing for operational uses. Furthermore, one pre-flood SAR image does not always represent potential water surfaces and river flows especially in tropical flat lands which are greatly influenced by seasonal precipitation cycle. We are, therefore, developing a new method of flood mapping using PALSAR-2, an L-band SAR, which is less affected by temporal surface changes. Specifically, a mean-value image and a standard-deviation image are calculated from a series of pre-flood SAR images. It is combined with a post-flood SAR image to obtain normalized backscatter amplitude difference (NoBADi), with which a difference between a post-flood image and a mean-value image is divided by a standard-deviation image to emphasize anomalous water extents. Flooding areas are then automatically obtained from the NoBADi images as lower-value pixels avoiding potential water surfaces. We applied this method to PALSAR-2 images acquired on Sept. 8, 10, and 12, 2017, covering flooding areas in a central region of Dominican Republic and west Florida, the U.S. affected by Hurricane Irma. The output flooding outlines are validated with flooding areas manually delineated from high-resolution optical satellite images, resulting in higher consistency and less uncertainty than previous methods (i.e., a simple pre-and-post flood difference and pre-and-post coherence changes). The NoBADi method has a great potential to obtain a reliable flood map for future flood hazards, not hampered by cloud cover, seasonal surface changes, and "casual" thresholds in the flood identification process.

  5. Ohio River backwater flood-inundation maps for the Saline and Wabash Rivers in southern Illinois

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Sharpe, Jennifer B.; Soong, David T.

    2012-01-01

    Digital flood-inundation maps for the Saline and Wabash Rivers referenced to elevations on the Ohio River in southern Illinois were created by the U.S. Geological Survey (USGS). The inundation maps, accessible through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Ohio River at Old Shawneetown, Illinois-Kentucky (station number 03381700). Current gage height and flow conditions at this USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?03381700. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That NWS forecasted peak-stage information, also shown on the Ohio River at Old Shawneetown inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, eight water-surface elevations were mapped at 5-foot (ft) intervals referenced to the streamgage datum ranging from just above the NWS Action Stage (31 ft) to above the maximum historical gage height (66 ft). The elevations of the water surfaces were compared to a Digital Elevation Model (DEM) by using a Geographic Information System (GIS) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage heights from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  6. Flood-inundation maps for the North Branch Elkhart River at Cosperville, Indiana

    USGS Publications Warehouse

    Kim, Moon H.; Johnson, Esther M.

    2014-01-01

    Digital flood-inundation maps for a reach of the North Branch Elkhart River at Cosperville, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers, Detroit District. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage 04100222, North Branch Elkhart River at Cosperville, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=04100222. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http:/water.weather.gov/ahps/). The NWS AHPS forecasts flood hydrographs at many places that are often colocated with USGS streamgages, including the North Branch Elkhart River at Cosperville, Ind. NWS AHPS-forecast peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the North Branch Elkhart River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 04100222, North Branch Elkhart River at Cosperville, Ind., and preliminary high-water marks from the flood of March 1982. The calibrated hydraulic model was then used to determine four water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM, derived from Light Detection and Ranging [LiDAR]) in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage 04100222, North Branch Elkhart River at Cosperville, Ind., and forecast stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  7. Developing flood-inundation maps for Johnson Creek, Portland, Oregon

    USGS Publications Warehouse

    Stonewall, Adam J.; Beal, Benjamin A.

    2017-04-14

    Digital flood-inundation maps were created for a 12.9‑mile reach of Johnson Creek by the U.S. Geological Survey (USGS). The flood-inundation maps depict estimates of water depth and areal extent of flooding from the mouth of Johnson Creek to just upstream of Southeast 174th Avenue in Portland, Oregon. Each flood-inundation map is based on a specific water level and associated streamflow at the USGS streamgage, Johnson Creek at Sycamore, Oregon (14211500), which is located near the upstream boundary of the maps. The maps produced by the USGS, and the forecasted flood hydrographs produced by National Weather Service River Forecast Center can be accessed through the USGS Flood Inundation Mapper Web site (http://wimcloud.usgs.gov/apps/FIM/FloodInundationMapper.html).Water-surface elevations were computed for Johnson Creek using a combined one-dimensional and two‑dimensional unsteady hydraulic flow model. The model was calibrated using data collected from the flood of December 2015 (including the calculated streamflows at two USGS streamgages on Johnson Creek) and validated with data from the flood of January 2009. Results were typically within 0.6 foot (ft) of recorded or measured water-surface elevations from the December 2015 flood, and within 0.8 ft from the January 2009 flood. Output from the hydraulic model was used to create eight flood inundation maps ranging in stage from 9 to 16 ft. Boundary condition hydrographs were identical in shape to those from the December 2015 flood event, but were scaled up or down to produce the amount of streamflow corresponding to a specific water-surface elevation at the Sycamore streamgage (14211500). Sensitivity analyses using other hydrograph shapes, and a version of the model in which the peak flow is maintained for an extended period of time, showed minimal variation, except for overbank areas near the Foster Floodplain Natural Area.Simulated water-surface profiles were combined with light detection and ranging (lidar) data collected in 2014 to delineate water-surface extents for each of the eight modeled stages. The availability of flood-inundation maps in conjunction with real-time data from the USGS streamgages along Johnson Creek and forecasted hydrographs from the National Weather Service Northwest River Forecast Center will provide residents of the watershed and emergency management personnel with valuable information that may aid in flood response, including potential evacuations, road closures, and mitigation efforts. In addition, these maps may be used for post-flood recovery efforts.

  8. Scoping of Flood Hazard Mapping Needs for Hancock County, Maine

    USGS Publications Warehouse

    Schalk, Charles W.; Dudley, Robert W.

    2007-01-01

    Background The Federal Emergency Management Agency (FEMA) developed a plan in 1997 to modernize the FEMA flood mapping program. FEMA flood maps delineate flood hazard areas in support of the National Flood Insurance Program (NFIP). FEMA's plan outlined the steps necessary to update FEMA's flood maps for the nation to a seamless digital format and streamline FEMA's operations in raising public awareness of the importance of the maps and responding to requests to revise them. The modernization of flood maps involves conversion of existing information to digital format and integration of improved flood hazard data as needed. To determine flood mapping modernization needs, FEMA has established specific scoping activities to be done on a county-by-county basis for identifying and prioritizing requisite flood-mapping activities for map modernization. The U.S. Geological Survey (USGS), in cooperation with FEMA and the Maine Floodplain Management Program (MFMP) State Planning Office, began scoping work in 2006 for Hancock County. Scoping activities included assembling existing data and map needs information for communities in Hancock County, documentation of data, contacts, community meetings, and prioritized mapping needs in a final scoping report (this document), and updating the Mapping Needs Update Support System (MNUSS) database with information gathered during the scoping process. The average age of the FEMA floodplain maps (all types) in Hancock County, Maine, is at least 19 years. Most of these studies were published in the late 1980s and early 1990s, and no study is more recent than 1992. Some towns have partial maps that are more recent than their study, indicating that the true average age of the data is probably more than 19 years. Since the studies were done, development has occurred in some of the watersheds and the characteristics of the watersheds have changed. Therefore, many of the older studies may not depict current conditions or accurately estimate risk in terms of flood heights or flood mapping.

  9. Strength in Numbers: Describing the Flooded Area of Isolated Wetlands

    USGS Publications Warehouse

    Lee, Terrie M.; Haag, Kim H.

    2006-01-01

    Thousands of isolated, freshwater wetlands are scattered across the karst1 landscape of central Florida. Most are small (less than 15 acres), shallow, marsh and cypress wetlands that flood and dry seasonally. Wetland health is threatened when wetland flooding patterns are altered either by human activities, such as land-use change and ground-water pumping, or by changes in climate. Yet the small sizes and vast numbers of isolated wetlands in Florida challenge our efforts to characterize them collectively as a statewide water resource. In the northern Tampa Bay area of west-central Florida alone, water levels are measured monthly in more than 400 wetlands by the Southwest Florida Water Management Distirct (SWFWMD). Many wetlands have over a decade of measurements. The usefulness of long-term monitoring of wetland water levels would greatly increase if it described not just the depth of water at a point in the wetland, but also the amount of the total wetland area that was flooded. Water levels can be used to estimate the flooded area of a wetland if the elevation contours of the wetland bottom are determined by bathymetric mapping. Despite the recognized importance of the flooded area to wetland vegetation, bathymetric maps are not available to describe the flooded areas of even a representative number of Florida's isolated wetlands. Information on the bathymetry of isolated wetlands is rare because it is labor intensive to collect the land-surface elevation data needed to create the maps. Five marshes and five cypress wetlands were studied by the U.S. Geological Survey (USGS) during 2000 to 2004 as part of a large interdisciplinary study of isolated wetlands in central Florida. The wetlands are located either in municipal well fields or on publicly owned lands (fig. 1). The 10 wetlands share similar geology and climate, but differ in their ground-water settings. All have historical water-level data and multiple vegetation surveys. A comprehensive report by Haag and others (2005) documents bathymetric mapping approaches, the frequency of flooding in different areas of the wetlands, and the relation between flooding and vegetation in these wetlands. This fact sheet describes bathymetric mapping approaches and partial results from two natural marshes (Hillsborough River State Park Marsh, and Green Swamp Marsh) and one impaired marsh (W-29 Marsh) that is located on a municipal well field and is affected by ground-water withdrawals. (fig. 1).

  10. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms.

    PubMed

    Razavi Termeh, Seyed Vahid; Kornejady, Aiding; Pourghasemi, Hamid Reza; Keesstra, Saskia

    2018-02-15

    Flood is one of the most destructive natural disasters which cause great financial and life losses per year. Therefore, producing susceptibility maps for flood management are necessary in order to reduce its harmful effects. The aim of the present study is to map flood hazard over the Jahrom Township in Fars Province using a combination of adaptive neuro-fuzzy inference systems (ANFIS) with different metaheuristics algorithms such as ant colony optimization (ACO), genetic algorithm (GA), and particle swarm optimization (PSO) and comparing their accuracy. A total number of 53 flood locations areas were identified, 35 locations of which were randomly selected in order to model flood susceptibility and the remaining 16 locations were used to validate the models. Learning vector quantization (LVQ), as one of the supervised neural network methods, was employed in order to estimate factors' importance. Nine flood conditioning factors namely: slope degree, plan curvature, altitude, topographic wetness index (TWI), stream power index (SPI), distance from river, land use/land cover, rainfall, and lithology were selected and the corresponding maps were prepared in ArcGIS. The frequency ratio (FR) model was used to assign weights to each class within particular controlling factor, then the weights was transferred into MATLAB software for further analyses and to combine with metaheuristic models. The ANFIS-PSO was found to be the most practical model in term of producing the highly focused flood susceptibility map with lesser spatial distribution related to highly susceptible classes. The chi-square result attests the same, where the ANFIS-PSO had the highest spatial differentiation within flood susceptibility classes over the study area. The area under the curve (AUC) obtained from ROC curve indicated the accuracy of 91.4%, 91.8%, 92.6% and 94.5% for the respective models of FR, ANFIS-ACO, ANFIS-GA, and ANFIS-PSO ensembles. So, the ensemble of ANFIS-PSO was introduced as the premier model in the study area. Furthermore, LVQ results revealed that slope degree, rainfall, and altitude were the most effective factors. As regards the premier model, a total area of 44.74% was recognized as highly susceptible to flooding. The results of this study can be used as a platform for better land use planning in order to manage the highly susceptible zones to flooding and reduce the anticipated losses. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Upstream Structural Management Measures for an Urban Area Flooding in Turkey and their Consequences on Flood Risk Management

    NASA Astrophysics Data System (ADS)

    Akyurek, Z.; Bozoglu, B.; Girayhan, T.

    2015-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. In this study the flood modelling in an urbanized area, namely Samsun-Terme in Blacksea region of Turkey is done. MIKE21 with flexible grid is used in 2- dimensional shallow water flow modelling. 1/1000 scaled maps with the buildings for the urbanized area and 1/5000 scaled maps for the rural parts are used to obtain DTM needed in the flood modelling. The bathymetry of the river is obtained from additional surveys. The main river passing through the urbanized area has a capacity of Q5 according to the design discharge obtained by simple ungauged discharge estimation depending on catchment area only. The effects of the available structures like bridges across the river on the flooding are presented. The upstream structural measures are studied on scenario basis. Four sub-catchments of Terme River are considered as contributing the downstream flooding. The existing circumstance of the Terme River states that the meanders of the river have a major effect on the flood situation and lead to approximately 35% reduction in the peak discharge between upstream and downstream of the river. It is observed that if the flow from the upstream catchments can be retarded through a detention pond constructed in at least two of the upstream catchments, estimated Q100 flood can be conveyed by the river without overtopping from the river channel. The operation of the upstream detention ponds and the scenarios to convey Q500 without causing flooding are also presented. Structural management measures to address changes in flood characteristics in water management planning are discussed. Flood risk is obtained by using the flood hazard maps and water depth-damage functions plotted for a variety of building types and occupancies. The estimated mean annual hazard for the area is calculated as $340 000 and it is estimated that the upstream structural management measures can decrease the direct economic risk 11% for the 500 return period flood.

  12. Flood-inundation maps for the West Branch Delaware River, Delhi, New York, 2012

    USGS Publications Warehouse

    Coon, William F.; Breaker, Brian K.

    2012-01-01

    Digital flood-inundation maps for a 5-mile reach of the West Branch Delaware River through the Village and part of the Town of Delhi, New York, were created by the U.S. Geological Survey (USGS) in cooperation with the Village of Delhi, the Delaware County Soil and Water Conservation District, and the Delaware County Planning Department. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the Federal Flood Inundation Mapper Web site at http://wim.usgs.gov/FIMI/FloodInundationMapper.html, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) referenced to the USGS streamgage at West Branch Delaware River upstream from Delhi, N.Y. (station number 01421900). In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model that had been used to produce the flood insurance rate maps for the most recent flood insurance study for the Town and Village of Delhi. This hydraulic model was used to compute 10 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from 7 ft or near bankfull to 16 ft, which exceeds the stages that correspond to both the estimated 0.2-percent annual-exceedance-probability flood (500-year recurrence interval flood) and the maximum recorded peak flow. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model, which was derived from Light Detection and Ranging (LiDAR) data with a 1.2-ft (0.61-ft root mean squared error) vertical accuracy and 3.3-ft (1-meter) horizontal resolution, to delineate the area flooded at each water level. A map that was produced using this method to delineate the inundated area for the flood that occurred on August 28, 2011, agreed well with highwater marks that had been located in the field using a global positioning system. The availability of the 10 flood-inundation maps on the USGS Flood Inundation Mapping Science Web site, along with Internet information regarding current stage from the USGS streamgage, will provide emergency management personnel and residents with information that is critical for flood-response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

  13. Fifty-year flood-inundation maps for La Lima, Honduras

    USGS Publications Warehouse

    Mastin, Mark C.; Olsen, T.D.

    2002-01-01

    After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of La Lima that would be inundated by Rio Chamelecon with a discharge of 500 cubic meters per second, the approximate capacity of the river channel through the city of La Lima. The 50-year flood (2,400 cubic meters per second), the original design flow to be mapped, would inundate the entire area surveyed for this municipality. Because water-surface elevations of the 50-year flood could not be mapped properly without substantially expanding the area of the survey, the available data were used instead to estimate the channel capacity of Rio Chamelecon in La Lima by trial-and-error runs of different flows in a numerical model and to estimate the increase in height of levees needed to contain flows of 1,000 and 2,400 cubic meters per second. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of La Lima as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for various discharges on Rio Chamelecon at La Lima were determined using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and ground surveys at three bridges. Top-of-levee or top-of-channel-bank elevations and locations at the cross sections were critical to estimating the channel capacity of Rio Chamelecon. These elevations and locations are provided along with the water-surface elevations for the 500-cubic-meter-per-second flow of Rio Chamelecon. Also, water-surface elevations of the 1,000 and 2,400 cubic-meter-per-second flows are provided, assuming that the existing levees are raised to contained the flows.

  14. Geomorphic Flood Area (GFA): a QGIS tool for a cost-effective delineation of the floodplains

    NASA Astrophysics Data System (ADS)

    Samela, Caterina; Albano, Raffaele; Sole, Aurelia; Manfreda, Salvatore

    2017-04-01

    The importance of delineating flood hazard and risk areas at a global scale has been highlighted for many years. However, its complete achievement regularly encounters practical difficulties, above all the lack of data and implementation costs. In conditions of scarce data availability (e.g. ungauged basins, large-scale analyses), a fast and cost-effective floodplain delineation can be carried out using geomorphic methods (e.g., Manfreda et al., 2011; 2014). In particular, an automatic DEM-based procedure has been implemented in an open-source QGIS plugin named Geomorphic Flood Area - tool (GFA - tool). This tool performs a linear binary classification based on the recently proposed Geomorphic Flood Index (GFI), which exhibited high classification accuracy and reliability in several test sites located in Europe, United States and Africa (Manfreda et al., 2015; Samela et al., 2016, 2017; Samela, 2016). The GFA - tool is designed to make available to all users the proposed procedure, that includes a number of operations requiring good geomorphic and GIS competences. It allows computing the GFI through terrain analysis, turning it into a binary classifier, and training it on the base of a standard inundation map derived for a portion of the river basin (a minimum of 2% of the river basin's area is suggested) using detailed methods of analysis (e.g. flood hazard maps produced by emergency management agencies or river basin authorities). Finally, GFA - tool allows to extend the classification outside the calibration area to delineate the flood-prone areas across the entire river basin. The full analysis has been implemented in this plugin with a user-friendly interface that should make it easy to all user to apply the approach and produce the desired results. Keywords: flood susceptibility; data scarce environments; geomorphic flood index; linear binary classification; Digital elevation models (DEMs). References Manfreda, S., Di Leo, M., Sole, A., (2011). Detection of Flood Prone Areas using Digital Elevation Models, Journal of Hydrologic Engineering, 16(10), 781-790. Manfreda, S., Nardi, F., Samela, C., Grimaldi, S., Taramasso, A. C., Roth, G., & Sole, A. (2014). Investigation on the Use of Geomorphic Approaches for the Delineation of Flood Prone Areas, Journal of Hydrology, 517, 863-876. Manfreda, S., Samela, C., Gioia, A., Consoli, G., Iacobellis, V., Giuzio, L., & Sole, A. (2015). Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models. Natural Hazards, Vol. 79 (2), pp 735-754. Samela, C. (2016), 100-year flood susceptibility maps for the continental U.S. derived with a geomorphic method. University of Basilicata. Dataset. Samela, C., Manfreda, S., Paola, F. D., Giugni, M., Sole, A., & Fiorentino, M. (2016). DEM-Based Approaches for the Delineation of Flood-Prone Areas in an Ungauged Basin in Africa. Journal of Hydrologic Engineering, 21(2), 1-10. Samela, C., Troy, T.J., Manfreda, S. (2017). Geomorphic classifiers for flood-prone areas delineation for data-scarce environments, Advances in Water Resources (under review).

  15. Flood-inundation maps for the Yellow River at Plymouth, Indiana

    USGS Publications Warehouse

    Menke, Chad D.; Bunch, Aubrey R.; Kim, Moon H.

    2016-11-16

    Digital flood-inundation maps for a 4.9-mile reach of the Yellow River at Plymouth, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 05516500, Yellow River at Plymouth, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=05516500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http:/water.weather.gov/ahps/). The NWS AHPS forecasts flood hydrographs at many sites that are often collocated with USGS streamgages, including the Yellow River at Plymouth, Ind. NWS AHPS-forecast peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood and forecasts of flood hydrographs at this site.For this study, flood profiles were computed for the Yellow River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the current stage-discharge relations at the Yellow River streamgage, in combination with the flood-insurance study for Marshall County (issued in 2011). The calibrated hydraulic model was then used to determine eight water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The 1-percent annual exceedance probability flood profile elevation (flood elevation with recurrence intervals within 100 years) is within the calibrated water-surface elevations for comparison. The simulated water-surface profiles were then used with a geographic information system (GIS) digital elevation model (DEM, derived from Light Detection and Ranging [lidar]) in order to delineate the area flooded at each water level.The availability of these maps, along with Internet information regarding current stage from the USGS streamgage 05516500, Yellow River at Plymouth, Ind., and forecast stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for postflood recovery efforts.

  16. Benchmarking an operational procedure for rapid flood mapping and risk assessment in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Salamon, Peter; Kalas, Milan; Bianchi, Alessandra; Feyen, Luc

    2016-04-01

    The development of real-time methods for rapid flood mapping and risk assessment is crucial to improve emergency response and mitigate flood impacts. This work describes the benchmarking of an operational procedure for rapid flood risk assessment based on the flood predictions issued by the European Flood Awareness System (EFAS). The daily forecasts produced for the major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations, based on the hydro-meteorological dataset of EFAS. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in near real-time in terms of flood prone areas, potential economic damage, affected population, infrastructures and cities. An extensive testing of the operational procedure is carried out using the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-derived flood footprints, while ground-based estimations of economic damage and affected population is compared against modelled estimates. We evaluated the skill of flood hazard and risk estimations derived from EFAS flood forecasts with different lead times and combinations. The assessment includes a comparison of several alternative approaches to produce and present the information content, in order to meet the requests of EFAS users. The tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management.

  17. Development of flood-inundation maps for the Mississippi River in Saint Paul, Minnesota

    USGS Publications Warehouse

    Czuba, Christiana R.; Fallon, James D.; Lewis, Corby R.; Cooper, Diane F.

    2014-01-01

    Digital flood-inundation maps for a 6.3-mile reach of the Mississippi River in Saint Paul, Minnesota, were developed through a multi-agency effort by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers and in collaboration with the National Weather Service. The inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the National Weather Service Advanced Hydrologic Prediction Service site at http://water.weather.gov/ahps/inundation.php, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgage at the Mississippi River at Saint Paul (05331000). The National Weather Service forecasted peak-stage information at the streamgage may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the Mississippi River by means of a one-dimensional step-backwater model. The hydraulic model was calibrated using the most recent stage-discharge relation at the Robert Street location (rating curve number 38.0) of the Mississippi River at Saint Paul (streamgage 05331000), as well as an approximate water-surface elevation-discharge relation at the Mississippi River at South Saint Paul (U.S. Army Corps of Engineers streamgage SSPM5). The model also was verified against observed high-water marks from the recent 2011 flood event and the water-surface profile from existing flood insurance studies. The hydraulic model was then used to determine 25 water-surface profiles for flood stages at 1-foot intervals ranging from approximately bankfull stage to greater than the highest recorded stage at streamgage 05331000. The simulated water-surface profiles were then combined with a geographic information system digital elevation model, derived from high-resolution topography data, to delineate potential areas flooded and to determine the water depths within the inundated areas for each stage at streamgage 05331000. The availability of these maps along with information regarding current stage at the U.S. Geological Survey streamgage and forecasted stages from the National Weather Service provides enhanced flood warning and visualization of the potential effects of a forecasted flood for the city of Saint Paul and its residents. The maps also can aid in emergency management planning and response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

  18. Assessment of the spatial extent and height of flooding in Lake Champlain during May 2011, using satellite remote sensing and ground-based information

    USGS Publications Warehouse

    Bjerklie, David M.; Trombley, Thomas J.; Olson, Scott A.

    2014-01-01

    Landsat 5 and moderate resolution imaging spectro-radiometer satellite imagery were used to map the area of inundation of Lake Champlain, which forms part of the border between New York and Vermont, during May 2011. During this month, the lake’s water levels were record high values not observed in the previous 150 years. Lake inundation area determined from the satellite imagery is correlated with lake stage measured at three U.S. Geological Survey lake level gages to provide estimates of lake area at different lake levels (stage/area rating) and also compared with the levels of the high-water marks (HWMs) located on the Vermont side of the lake. The rating developed from the imagery shows a somewhat different relation than a similar stage/area rating developed from a medium-resolution digital elevation model (DEM) of the region. According to the rating derived from the imagery, the lake surface area during the peak lake level increased by about 17 percent above the average or “normal” lake level. By using a comparable rating developed from the DEM, the increase above average is estimated to be about 12 percent. The northern part of the lake (north of Burlington) showed the largest amount of flooding. Based on intersecting the inundation maps with the medium-resolution DEM, lake levels were not uniform around the lake. This is also evident from the lake level gage measurements and HWMs. The gage data indicate differences up to 0.5 feet between the northern and southern end of the lake. Additionally, the gage data show day-to-day and intradaily variation of the same range (0.5 foot). The high-water mark observations show differences up to 2 feet around the lake, with the highest level generally along the south- and west-facing shorelines. The data suggest that during most of May 2011, water levels were slightly higher and less variable in the northern part of the lake. These phenomena may be caused by wind effects as well as proximity to major river inputs to the lake. The inundation areas generated from the imagery generally coincide with flood mapping as estimated by the Federal Emergency Management Agency (FEMA) and shown on its digital flood insurance rate maps. Where areas in the flood inundation map derived from the imagery and the FEMA estimated flooded areas differ substantially, this difference may be due to differences between the flood magnitude at the time of the image and the assumed flood condition used for the FEMA modeling and mapping, wind/storage effects not accounted for by the FEMA modeling, and the resolution of the image compared to the DEM used in the FEMA mapping.

  19. Development of a flood-warning system and flood-inundation mapping in Licking County, Ohio

    USGS Publications Warehouse

    Ostheimer, Chad J.

    2012-01-01

    Digital flood-inundation maps for selected reaches of South Fork Licking River, Raccoon Creek, North Fork Licking River, and the Licking River in Licking County, Ohio, were created by the U.S. Geological Survey (USGS), in cooperation with the Ohio Department of Transportation; U.S. Department of Transportation, Federal Highway Administration; Muskingum Watershed Conservancy District; U.S. Department of Agriculture, Natural Resources Conservation Service; and the City of Newark and Village of Granville, Ohio. The inundation maps depict estimates of the areal extent of flooding corresponding to water levels (stages) at the following USGS streamgages: South Fork Licking River at Heath, Ohio (03145173); Raccoon Creek below Wilson Street at Newark, Ohio (03145534); North Fork Licking River at East Main Street at Newark, Ohio (03146402); and Licking River near Newark, Ohio (03146500). The maps were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning system that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. As part of the flood-warning streamflow network, the USGS re-installed one streamgage on North Fork Licking River, and added three new streamgages, one each on North Fork Licking River, South Fork Licking River, and Raccoon Creek. Additionally, the USGS upgraded a lake-level gage on Buckeye Lake. Data from the streamgages and lake-level gage can be used by emergency-management personnel, in conjunction with the flood-inundation maps, to help determine a course of action when flooding is imminent. Flood profiles for selected reaches were prepared by calibrating steady-state step-backwater models to selected, established streamgage rating curves. The step-backwater models then were used to determine water-surface-elevation profiles for up to 10 flood stages at a streamgage with corresponding streamflows ranging from approximately the 50 to 0.2-percent chance annual-exceedance probabilities for each of the 4 streamgages that correspond to the flood-inundation maps. The computed flood profiles were used in combination with digital elevation data to delineate flood-inundation areas. Maps of Licking County showing flood-inundation areas overlain on digital orthophotographs are presented for the selected floods. The USGS also developed an unsteady-flow model for a reach of South Fork Licking River for use by the NWS to enhance their ability to provide advanced flood warning in the region north of Buckeye Lake, Ohio. The unsteady-flow model was calibrated based on data from four flooding events that occurred from June 2008 to December 2011. Model calibration was approximate due to the fact that there were unmeasured inflows to the river that were not able to be considered during the calibration. Information on unmeasured inflow derived from NWS hydrologic models and additional flood-event data could enable the NWS to further refine the unsteady-flow model.

  20. Flood-inundation maps for the Wabash River at Lafayette, Indiana

    USGS Publications Warehouse

    Kim, Moon H.

    2018-05-10

    Digital flood-inundation maps for an approximately 4.8-mile reach of the Wabash River at Lafayette, Indiana (Ind.) were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science web site at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage 03335500, Wabash River at Lafayette, Ind. Current streamflow conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the internet at https://waterdata.usgs.gov/in/nwis/uv?site_no=03335500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood-warning system (https://water.weather.gov/ahps/). The NWS AHPS forecasts flood hydrographs at many places that are often colocated with USGS streamgages, including the Wabash River at Lafayette, Ind. NWS AHPS-forecast peak-stage information may be used with the maps developed in this study to show predicted areas of flood inundation.For this study, flood profiles were computed for the Wabash River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 03335500, Wabash River at Lafayette, Ind., and high-water marks from the flood of July 2003 (U.S. Army Corps of Engineers [USACE], 2007). The calibrated hydraulic model was then used to determine 23 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a geographic information system digital elevation model derived from light detection and ranging to delineate the area flooded at each water level. The availability of these maps, along with internet information regarding current stage from the USGS streamgage 03335500, Wabash River at Lafayette, Ind., and forecasted high-flow stages from the NWS AHPS, will provide emergency management personnel and residents with information that is critical for flood-response activities such as evacuations and road closures, and for postflood recovery efforts.

  1. Flood-inundation maps for the East Fork White River near Bedford, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2014-01-01

    Digital flood-inundation maps for an 1.8-mile reach of the East Fork White River near Bedford, Indiana (Ind.) were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selectedwater levels (stages) at USGS streamgage 03371500, East Fork White River near Bedford, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=03371500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages, including the East Fork White River near Bedford, Ind. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the East Fork White River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 03371500, East Fork White River near Bedford, Ind., and documented high-water marks from the flood of June 2008. The calibrated hydraulic model was then used to determine 20 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM, derived from Light Detection and Ranging (LiDAR) data having a 0.593-foot vertical accuracy) in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage near Bedford, Ind., and forecasted stream stages from the NWS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for postflood recovery eforts.

  2. Flood-inundation map library for the Licking River and South Fork Licking River near Falmouth, Kentucky

    USGS Publications Warehouse

    Lant, Jeremiah G.

    2016-09-19

    Digital flood inundation maps for a 17-mile reach of Licking River and 4-mile reach of South Fork Licking River near Falmouth, Kentucky, were created by the U.S. Geological Survey (USGS) in cooperation with Pendleton County and the U.S. Army Corps of Engineers–Louisville District. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://wim.usgs.gov/FIMI/FloodInundationMapper.html, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Licking River at Catawba, Ky., (station 03253500) and the USGS streamgage on the South Fork Licking River at Hayes, Ky., (station 03253000). Current conditions (2015) for the USGS streamgages may be obtained online at the USGS National Water Information System site (http://waterdata.usgs.gov/nwis). In addition, the streamgage information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http:/water.weather.gov/ahps/). The flood hydrograph forecasts provided by the NWS are usually collocated with USGS streamgages. The forecasted peak-stage information, also available on the NWS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.In this study, flood profiles were computed for the Licking River reach and South Fork Licking River reach by using a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current (2015) stage-discharge relations for the Licking River at Catawba, Ky., and the South Fork Licking River at Hayes, Ky., USGS streamgages. The calibrated model was then used to calculate 60 water-surface profiles for a sequence of flood stages, at 2-foot intervals, referenced to the streamgage datum and ranging from an elevation near bankfull to the elevation associated with a major flood that occurred in the region in 1997. To delineate the flooded area at each interval flood stage, the simulated water-surface profiles were combined with a digital elevation model of the study area by using geographic information system software.The availability of these flood inundation maps for Falmouth, Ky., along with online information regarding current stages from the USGS streamgages and forecasted stages from the NWS, provides emergency management personnel and local residents with information that is critical for flood response activities such as evacuations, road closures, and post-flood recovery efforts.

  3. Determining the most suitable areas for artificial groundwater recharge via an integrated PROMETHEE II-AHP method in GIS environment (case study: Garabaygan Basin, Iran).

    PubMed

    Nasiri, Hossein; Boloorani, Ali Darvishi; Sabokbar, Hassan Ali Faraji; Jafari, Hamid Reza; Hamzeh, Mohamad; Rafii, Yusef

    2013-01-01

    Flood spreading is a suitable strategy for controlling and benefiting from floods. Selecting suitable areas for flood spreading and directing the floodwater into permeable formations are amongst the most effective strategies in flood spreading projects. Having combined geographic information systems (GIS) and multi-criteria decision analysis approaches, the present study sought to locate the most suitable areas for flood spreading operation in the Garabaygan Basin of Iran. To this end, the data layers relating to the eight effective factors were prepared in GIS environment. This stage was followed by elimination of the exclusionary areas for flood spreading while determining the potentially suitable ones. Having closely examined the potentially suitable areas using the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) II and analytic hierarchy process (AHP) methods, the land suitability map for flood spreading was produced. The PROMETHEE II and AHP were used for ranking all the alternatives and weighting the criteria involved, respectively. The results of the study showed that most suitable areas for the artificial groundwater recharge are located in Quaternary Q(g) and Q(gsc) geologic units and in geomorphological units of pediment and Alluvial fans with slopes not exceeding 3%. Furthermore, significant correspondence between the produced map and the control areas, where the flood spreading projects were successfully performed, provided further evidence for the acceptable efficiency of the integrated PROMETHEE II-AHP method in locating suitable flood spreading areas.

  4. Flood-inundation maps for the West Branch Susquehanna River near the Boroughs of Lewisburg and Milton, Pennsylvania

    USGS Publications Warehouse

    Roland, Mark A.; Hoffman, Scott A.

    2014-01-01

    Digital flood-inundation maps for an approximate 8-mile reach of the West Branch Susquehanna River from approximately 2 miles downstream from the Borough of Lewisburg, extending upstream to approximately 1 mile upstream from the Borough of Milton, Pennsylvania, were created by the U.S. Geological Survey (USGS) in cooperation with the Susquehanna River Basin Commission (SRBC). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict the estimated areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 01553500, West Branch Susquehanna River at Lewisburg, Pa. In addition, the information has been provided to the Susquehanna River Basin Commission (SRBC) for incorporation into their Susquehanna Inundation Map Viewer (SIMV) flood warning system (http://maps.srbc.net/simv/). The National Weather Service (NWS) forecasted peak-stage information (http://water.weather.gov/ahps) for USGS streamgage 01553500, West Branch Susquehanna River at Lewisburg, Pa., may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. Calibration of the model was achieved using the most current stage-discharge relations (rating number 11.1) at USGS streamgage 01553500, West Branch Susquehanna River at Lewisburg, Pa., a documented water-surface profile from the December 2, 2010, flood, and recorded peak stage data. The hydraulic model was then used to determine 26 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum ranging from 14 feet (ft) to 39 ft. Modeled flood stages, as defined by NWS, include Action Stage, 14 ft; Flood Stage, 18 ft; Moderate Flood Stage, 23 ft; and Major Flood Stage, 28 ft. Geographic information system (GIS) technology was then used to combine the simulated water-surface profiles with a digital elevation model (DEM) derived from light detection and ranging (lidar) data to delineate the area flooded at each water level. The availability of these maps, along with World Wide Web information regarding current stage from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

  5. Flood-inundation maps for Suwanee Creek from the confluence of Ivy Creek to the Noblin Ridge Drive bridge, Gwinnett County, Georgia

    USGS Publications Warehouse

    Musser, Jonathan W.

    2012-01-01

    Digital flood-inundation maps for a 6.9-mile reach of Suwanee Creek, from the confluence of Ivy Creek to the Noblin Ridge Drive bridge, were developed by the U.S. Geological Survey (USGS) in cooperation with Gwinnett County, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Suwanee Creek at Suwanee, Georgia (02334885). Current stage at this USGS streamgage may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that commonly are collocated at USGS streamgages. The forecasted peak-stage information for the USGS streamgage at Suwanee Creek at Suwanee (02334885), available through the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. A one-dimensional step-backwater model was developed using the U.S. Army Corps of Engineers HEC-RAS software for Suwanee Creek and was used to compute flood profiles for a 6.9-mile reach of the creek. The model was calibrated using the most current stage-discharge relations at the Suwanee Creek at Suwanee streamgage (02334885). The hydraulic model was then used to determine 19 water-surface profiles for flood stages at the Suwanee Creek streamgage at 0.5-foot intervals referenced to the streamgage. The profiles ranged from just above bankfull stage (7.0 feet) to approximately 1.7 feet above the highest recorded water level at the streamgage (16.0 feet). The simulated water-surface profiles were then combined with a geographic information system digital elevation model - derived from light detection and ranging (LiDAR) data having a 5.0-foot horizontal resolution - to delineate the area flooded for each 0.5-foot increment of stream stage. The availability of these maps, when combined with real-time stage information from USGS streamgages and forecasted stream stage from the NWS, provides emergency management personnel and residents with critical information during flood-response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

  6. Physical and Economic Impacts of Sea-Level Rise and Low Probability Flooding Events on Coastal Communities

    PubMed Central

    Prime, Thomas; Brown, Jennifer M.; Plater, Andrew J.

    2015-01-01

    Conventionally flood mapping typically includes only a static water level (e.g. peak of a storm tide) in coastal flood inundation events. Additional factors become increasingly important when increased water-level thresholds are met during the combination of a storm tide and increased mean sea level. This research incorporates factors such as wave overtopping and river flow in a range of flood inundation scenarios of future sea-level projections for a UK case study of Fleetwood, northwest England. With increasing mean sea level it is shown that wave overtopping and river forcing have an important bearing on the cost of coastal flood events. The method presented converts inundation maps into monetary cost. This research demonstrates that under scenarios of joint extreme surge-wave-river events the cost of flooding can be increased by up to a factor of 8 compared with an increase in extent of up to a factor of 3 relative to “surge alone” event. This is due to different areas being exposed to different flood hazards and areas with common hazard where flood waters combine non-linearly. This shows that relying simply on flood extent and volume can under-predict the actual economic impact felt by a coastal community. Additionally, the scenario inundation depths have been presented as “brick course” maps, which represent a new way of interpreting flood maps. This is primarily aimed at stakeholders to increase levels of engagement within the coastal community. PMID:25710497

  7. Physical and economic impacts of sea-level rise and low probability flooding events on coastal communities.

    PubMed

    Prime, Thomas; Brown, Jennifer M; Plater, Andrew J

    2015-01-01

    Conventionally flood mapping typically includes only a static water level (e.g. peak of a storm tide) in coastal flood inundation events. Additional factors become increasingly important when increased water-level thresholds are met during the combination of a storm tide and increased mean sea level. This research incorporates factors such as wave overtopping and river flow in a range of flood inundation scenarios of future sea-level projections for a UK case study of Fleetwood, northwest England. With increasing mean sea level it is shown that wave overtopping and river forcing have an important bearing on the cost of coastal flood events. The method presented converts inundation maps into monetary cost. This research demonstrates that under scenarios of joint extreme surge-wave-river events the cost of flooding can be increased by up to a factor of 8 compared with an increase in extent of up to a factor of 3 relative to "surge alone" event. This is due to different areas being exposed to different flood hazards and areas with common hazard where flood waters combine non-linearly. This shows that relying simply on flood extent and volume can under-predict the actual economic impact felt by a coastal community. Additionally, the scenario inundation depths have been presented as "brick course" maps, which represent a new way of interpreting flood maps. This is primarily aimed at stakeholders to increase levels of engagement within the coastal community.

  8. Optical data processing and projected applications of the ERTS-1 imagery covering the 1973 Mississippi River Valley floods

    USGS Publications Warehouse

    Deutsch, Morris; Ruggles, Fred

    1974-01-01

    Flooding along the Mississippi River and some of its tributaries was detected by the multispectral scanner (MSS) on the Earth Resources Technology Satellite (ERTS-1) on at least three orbits during the spring of 1973. The ERTS data provided the first opportunity for mapping the regional extent of flooding at the time of the imagery. Special optical data processing techniques were used to produce a variety of multispectral color composites enhancing flood-plain details. One of these, a 2-color composite of near infrared bands 6 and 7, was enlarged and registered to 1:250,000-scale topographic maps and used as the basis for preparation of flood image maps. Two specially filtered 3-color composites of MSS bands 5, 6, and 7 and 4, 5, and 7 were prepared to aid in the interpretation of the data. The extent of the flooding was vividly depicted on a single image by 2-color temporal composites produced on the additive-color viewer using band 7 flood data superimposed on pre-flood band 7 images. On May 24, when the floodwaters at St. Louis receded to bankfull stage, imagery was again obtained by ERTS. Analysis of temporal data composites of the pre-flood and post-flood band 7 images indicate that changes in surface reflectance characteristics caused by the flooding can be delineated, thus making it possible to map the overall area flooded without the necessity of a real-time system to track and image the peak flood waves. Regional planning and disaster relief agencies such as the Corps of Engineers, Office of Emergency Preparedness, Soil Conservation Service, interstate river basin commissions and state agencies, as well as private lending and insurance institutions, have indicated strong potential applications for ERTS image-maps of flood-prone areas.

  9. Integrating Physical and Topographic Information Into a Fuzzy Scheme to Map Flooded Area by SAR.

    PubMed

    Pierdicca, Nazzareno; Chini, Marco; Pulvirenti, Luca; Macina, Flavia

    2008-07-10

    A flood mapping procedure based on a fuzzy sets theory has been developed. The method is based on the integration of Synthetic Aperture Radar (SAR) measurements with additional data on the inundated area, such as a land cover map and a digital elevation model (DEM). The information on land cover has allowed us to account for both specular reflection, typical of open water, and double bounce backscattering, typical of forested and urban areas. DEM has been exploited to include simple hydraulic considerations on the dependence of inundation probability on surface characteristics. Contextual information has been taken into account too. The proposed algorithm has been tested on a flood occurred in Italy on November 1994. A pair of ERS-1 images, collected before and after (three days later) the flood, has been used. The results have been compared with the data provided by a ground survey carried out when the flood reached its maximum extension. Despite the temporal mismatch between the survey and the post-inundation SAR image, the comparison has yielded encouraging results, with the 87% of the pixels correctly classified as inundated.

  10. Applications of Radarsat-1 synthetic aperture radar imagery to assess hurricane-related flooding of coastal Louisiana

    USGS Publications Warehouse

    Kiage, L.M.; Walker, N.D.; Balasubramanian, S.; Babin, A.; Barras, J.

    2005-01-01

    The Louisiana coast is subjected to hurricane impacts including flooding of human settlements, river channels and coastal marshes, and salt water intrusion. Information on the extent of flooding is often required quickly for emergency relief, repairs of infrastructure, and production of flood risk maps. This study investigates the feasibility of using Radarsat-1 SAR imagery to detect flooded areas in coastal Louisiana after Hurricane Lili, October 2002. Arithmetic differencing and multi-temporal enhancement techniques were employed to detect flooding and to investigate relationships between backscatter and water level changes. Strong positive correlations (R2=0.7-0.94) were observed between water level and SAR backscatter within marsh areas proximate to Atchafalaya Bay. Although variations in elevation and vegetation type did influence and complicate the radar signature at individual sites, multi-date differences in backscatter largely reflected the patterns of flooding within large marsh areas. Preliminary analyses show that SAR imagery was not useful in mapping urban flooding in New Orleans after Hurricane Katrina's landfall on 29 August 2005. ?? 2005 Taylor & Francis.

  11. Polarization Reversal Over Flooded Regions and Applications to Large-Scale Flood Mapping with Spaceborne Scatterometers

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Liu, W. Timothy; Xie, Xiao-Su

    1999-01-01

    We present the polarization reversal in backscatter over flooded land regions, and demonstrate for the first time the utility of spaceborne Ku-band scatterometer for large-scale flood mapping. Scatterometer data were collected over the globe by the NASA Scatterometer (NSCAT) operated at 14 GHz on the Japanese ADEOS spacecraft from September 1996 to June 1997. During this time span, several severe floods occurred. Over most land surface, vertical polarization backscatter (Sigma(sub upsilon(upsilon)) is larger than horizontal polarization backscatter (sigma(sub hh)). Such polarization characteristics is reversed and sigma(sub upsilon(upsilon)) is smaller than sigma(sub hh) over flooded regions, except under a dense forest canopy. The total backscatter from the flooded landscape consists of direct backscatter and boundary-interaction backscatter. The direct term is contributed by direct backscattering from objects protruding above the water surface, and by backscattering from waves on the water surface. The boundary-interaction term is contributed by the forward scattering from the protruding objects and then reflected from the water surface, and also by the forward scattering from these objects after the water-surface reflection. Over flooded regions, the boundary-interaction term is dominant at large incidence angles and the strong water-surface reflection is much larger for horizontal polarization than the vertical one due to the Brewster effect in transverse-magnetic waves. These scattering mechanisms cause the polarization reversal over flooded regions. An example obtained with the Analytic Wave Theory is used to illustrate the scattering mechanisms leading to the polarization reversal. We then demonstrate the utility of spaceborne Ku-band scatterometer for large-scale flood mapping. We process NSCAT data to obtain the polarization ratio sigma(sub hh)/sigma(sub upsilon(upsilon)) with colocated data at incidence angles larger than 40 deg. The results over Asian summer monsoon regions in September-October 1996 indicate flooded areas in many countries such as Bangladesh, India, Lao, Vietnam, Cambodia, and China. Reports documented by the United Nation Department of Humanitarian Affairs (now called UN Office for the Coordination of Humanitarian Affairs) show loss of many lives and severe flood related damages which affected many million people in the corresponding flooded areas. We also map the NSCAT polarization ratio over the same regions in the "dry season" in January 1997 as a reference to confirm our results. Furthermore, we obtain concurrent ocean wind fields also derived from NSCAT data, and Asia topographic data (USGS GTOPO30) to investigate the flooded area. The results show that winds during summer monsoon season blowing inland, which perplex flood problems. Overlaying the topographic map over NSCAT results reveals an excellent correspondence between the confinement of flooded area within the relevant topographic features, which very well illustrates the value of topographic wetness index. Finally, we discuss the applications of future spaceborne scatterometers, including QuikSCAT and Seawinds, for flood mapping over the globe.

  12. Flood-inundation maps for a 6.5-mile reach of the Kentucky River at Frankfort, Kentucky

    USGS Publications Warehouse

    Lant, Jeremiah G.

    2013-01-01

    Digital flood-inundation maps for a 6.5-mile reach of Kentucky River at Frankfort, Kentucky, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Frankfort Office of Emergency Management. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage Kentucky River at Lock 4 at Frankfort, Kentucky (station no. 03287500). Current conditions for the USGS streamgage may be obtained online at the USGS National Water Information System site (http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=03287500). In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http:/water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated at USGS streamgages. The forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the Kentucky River reach by using HEC–RAS, a one-dimensional step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the most current (2013) stage-discharge relation for the Kentucky River at Lock 4 at Frankfort, Kentucky, in combination with streamgage and high-water-mark measurements collected for a flood event in May 2010. The calibrated model was then used to calculate 26 water-surface profiles for a sequence of flood stages, at 1-foot intervals, referenced to the streamgage datum and ranging from a stage near bankfull to the elevation that breached the levees protecting the City of Frankfort. To delineate the flooded area at each interval flood stage, the simulated water-surface profiles were combined with a digital elevation model (DEM) of the study area by using geographic information system software. The DEM consisted of bare-earth elevations within the study area and was derived from a Light Detection And Ranging (LiDAR) dataset having a 5.0-foot horizontal resolution and an accuracy of 0.229 foot. The availability of these maps, along with Internet information regarding current stages from USGS streamgages and forecasted stages from the NWS, provides emergency management personnel and local residents with critical information for flood response activities such as evacuations, road closures, and postflood recovery efforts.

  13. Flood inundation mapping in the Logone floodplain from multi temporal Landsat ETM+ imagery

    NASA Astrophysics Data System (ADS)

    Jung, H.; Alsdorf, D. E.; Moritz, M.; Lee, H.; Vassolo, S.

    2011-12-01

    Yearly flooding in the Logone floodplain makes an impact on agricultural, pastoral, and fishery systems in the Lake Chad Basin. Since the flooding extent and depth are highly variable, flood inundation mapping helps us make better use of water resources and prevent flood hazards in the Logone floodplain. The flood maps are generated from 33 multi temporal Landsat Enhanced Thematic Mapper Plus (ETM+) during three years 2006 to 2008. Flooded area is classified using a short-wave infrared band whereas open water is classified by Iterative Self-organizing Data Analysis (ISODATA) clustering. The maximum flooding extent in the study area increases up to ~5.8K km2 in late October 2008. The study also provides strong correlation of the flooding extents with water height variations in both the floodplain and the river based on a second polynomial regression model. The water heights are from ENIVSAT altimetry in the floodplain and gauge measurements in the river. Coefficients of determination between flooding extents and water height variations are greater than 0.91 with 4 to 36 days in phase lag. Floodwater drains back to the river and to the northeast during the recession period in December and January. The study supports understanding of the Logone floodplain dynamics in detail of spatial pattern and size of the flooding extent and assists the flood monitoring and prediction systems in the catchment.

  14. Flood Inundation Mapping in the Logone Floodplain from Multi Temporal Landsat ETM+Imagery

    NASA Technical Reports Server (NTRS)

    Jung, Hahn Chul; Alsdorf, Douglas E.; Moritz, Mark; Lee, Hyongki; Vassolo, Sara

    2011-01-01

    Yearly flooding in the Logone floodplain makes an impact on agricultural, pastoral, and fishery systems in the Lake Chad Basin. Since the flooding extent and depth are highly variable, flood inundation mapping helps us make better use of water resources and prevent flood hazards in the Logone floodplain. The flood maps are generated from 33 multi temporal Landsat Enhanced Thematic Mapper Plus (ETM+) during three years 2006 to 2008. Flooded area is classified using a short-wave infrared band whereas open water is classified by Iterative Self-organizing Data Analysis (ISODATA) clustering. The maximum flooding extent in the study area increases up to approximately 5.8K km2 in late October 2008. The study also provides strong correlation of the flooding extents with water height variations in both the floodplain and the river based on a second polynomial regression model. The water heights are from ENIVSAT altimetry in the floodplain and gauge measurements in the river. Coefficients of determination between flooding extents and water height variations are greater than 0.91 with 4 to 36 days in phase lag. Floodwater drains back to the river and to the northeast during the recession period in December and January. The study supports understanding of the Logone floodplain dynamics in detail of spatial pattern and size of the flooding extent and assists the flood monitoring and prediction systems in the catchment.

  15. Communicating Flood Risk with Street-Level Data

    NASA Astrophysics Data System (ADS)

    Sanders, B. F.; Matthew, R.; Houston, D.; Cheung, W. H.; Karlin, B.; Schubert, J.; Gallien, T.; Luke, A.; Contreras, S.; Goodrich, K.; Feldman, D.; Basolo, V.; Serrano, K.; Reyes, A.

    2015-12-01

    Coastal communities around the world face significant and growing flood risks that require an accelerating adaptation response, and fine-resolution urban flood models could serve a pivotal role in enabling communities to meet this need. Such models depict impacts at the level of individual buildings and land parcels or "street level" - the same spatial scale at which individuals are best able to process flood risk information - constituting a powerful tool to help communities build better understandings of flood vulnerabilities and identify cost-effective interventions. To measure understanding of flood risk within a community and the potential impact of street-level models, we carried out a household survey of flood risk awareness in Newport Beach, California, a highly urbanized coastal lowland that presently experiences nuisance flooding from high tides, waves and rainfall and is expected to experience a significant increase in flood frequency and intensity with climate change. Interviews were completed with the aid of a wireless-enabled tablet device that respondents could use to identify areas they understood to be at risk of flooding and to view either a Federal Emergency Management Agency (FEMA) flood map or a more detailed map prepared with a hydrodynamic urban coastal flood model (UCI map) built with grid cells as fine as 3 m resolution and validated with historical flood data. Results indicate differences in the effectiveness of the UCI and FEMA maps at communicating the spatial distribution of flood risk, gender differences in how the maps affect flood understanding, and spatial biases in the perception of flood vulnerabilities.

  16. An operational procedure for rapid flood risk assessment in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Kalas, Milan; Salamon, Peter; Bianchi, Alessandra; Alfieri, Lorenzo; Feyen, Luc

    2017-07-01

    The development of methods for rapid flood mapping and risk assessment is a key step to increase the usefulness of flood early warning systems and is crucial for effective emergency response and flood impact mitigation. Currently, flood early warning systems rarely include real-time components to assess potential impacts generated by forecasted flood events. To overcome this limitation, this study describes the benchmarking of an operational procedure for rapid flood risk assessment based on predictions issued by the European Flood Awareness System (EFAS). Daily streamflow forecasts produced for major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in terms of flood-prone areas, economic damage and affected population, infrastructures and cities.An extensive testing of the operational procedure has been carried out by analysing the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-based and report-based flood extent data, while modelled estimates of economic damage and affected population are compared against ground-based estimations. Finally, we evaluate the skill of risk estimates derived from EFAS flood forecasts with different lead times and combinations of probabilistic forecasts. Results highlight the potential of the real-time operational procedure in helping emergency response and management.

  17. Hydrology Analysis and Modelling for Klang River Basin Flood Hazard Map

    NASA Astrophysics Data System (ADS)

    Sidek, L. M.; Rostam, N. E.; Hidayah, B.; Roseli, ZA; Majid, W. H. A. W. A.; Zahari, N. Z.; Salleh, S. H. M.; Ahmad, R. D. R.; Ahmad, M. N.

    2016-03-01

    Flooding, a common environmental hazard worldwide has in recent times, increased as a result of climate change and urbanization with the effects felt more in developing countries. As a result, the explosive of flooding to Tenaga Nasional Berhad (TNB) substation is increased rapidly due to existing substations are located in flood prone area. By understanding the impact of flood to their substation, TNB has provided the non-structure mitigation with the integration of Flood Hazard Map with their substation. Hydrology analysis is the important part in providing runoff as the input for the hydraulic part.

  18. Index of flood maps prepared by the U.S. Geological Survey through 1973

    USGS Publications Warehouse

    Carrigan, Philip Hadley

    1974-01-01

    A listing is presented of flood maps prepared by the U.S. Geological Survey through 1973. Maps are listed by State and county and the list provides information on the type of flooding depicted and the reliability of the delineation.The list was prepared from a computer file, and an available program allows retrieval of data by land-line location, State and county, and Standard Metropolitan Statistical Area (SMSA). The file will be continuously updated.

  19. Automated Mapping of Flood Events in the Mississippi River Basin Utilizing NASA Earth Observations

    NASA Technical Reports Server (NTRS)

    Bartkovich, Mercedes; Baldwin-Zook, Helen Blue; Cruz, Dashiell; McVey, Nicholas; Ploetz, Chris; Callaway, Olivia

    2017-01-01

    The Mississippi River Basin is the fourth largest drainage basin in the world, and is susceptible to multi-level flood events caused by heavy precipitation, snow melt, and changes in water table levels. Conducting flood analysis during periods of disaster is a challenging endeavor for NASA's Short-term Prediction Research and Transition Center (SPoRT), Federal Emergency Management Agency (FEMA), and the U.S. Geological Survey's Hazards Data Distribution Systems (USGS HDDS) due to heavily-involved research and lack of manpower. During this project, an automated script was generated that performs high-level flood analysis to relieve the workload for end-users. The script incorporated Landsat 8 Operational Land Imager (OLI) tiles and utilized computer-learning techniques to generate accurate water extent maps. The script referenced the Moderate Resolution Imaging Spectroradiometer (MODIS) land-water mask to isolate areas of flood induced waters. These areas were overlaid onto the National Land Cover Database's (NLCD) land cover data, the Oak Ridge National Laboratory's LandScan data, and Homeland Infrastructure Foundation-Level Data (HIFLD) to determine the classification of areas impacted and the population density affected by flooding. The automated algorithm was initially tested on the September 2016 flood event that occurred in Upper Mississippi River Basin, and was then further tested on multiple flood events within the Mississippi River Basin. This script allows end users to create their own flood probability and impact maps for disaster mitigation and recovery efforts.

  20. Upstream structural management measures for an urban area flooding in Turkey

    NASA Astrophysics Data System (ADS)

    Akyurek, Z.; Bozoğlu, B.; Sürer, S.; Mumcu, H.

    2015-06-01

    In recent years, flooding has become an increasing concern across many parts of the world of both the general public and their governments. The climate change inducing more intense rainfall events occurring in short period of time lead flooding in rural and urban areas. In this study the flood modelling in an urbanized area, namely Samsun-Terme in Blacksea region of Turkey is performed. MIKE21 with flexible grid is used in 2-dimensional shallow water flow modelling. 1 × 1000-1 scaled maps with the buildings for the urbanized area and 1 × 5000-1 scaled maps for the rural parts are used to obtain DTM needed in the flood modelling. The bathymetry of the river is obtained from additional surveys. The main river passing through the urbanized area has a capacity of 500 m3 s-1 according to the design discharge obtained by simple ungauged discharge estimation depending on catchment area only. The upstream structural base precautions against flooding are modelled. The effect of four main upstream catchments on the flooding in the downstream urban area are modelled as different scenarios. It is observed that if the flow from the upstream catchments can be retarded through a detention pond constructed in one of the upstream catchments, estimated Q100 flood can be conveyed by the river without overtopping from the river channel. The operation of the upstream detention ponds and the scenarios to convey Q500 without causing flooding are also presented. Structural management measures to address changes in flood characteristics in water management planning are discussed.

  1. Natural hazards in Slovene karst areas: Flood risk areas in the Upper Pivka valley

    NASA Astrophysics Data System (ADS)

    Ravbar, N.; Kovacic, G.

    2009-04-01

    An overview of exceptional natural processes or natural hazards from the human perspective in Slovene karst areas is made. Some types of natural hazards are typical for karst due to the process of karstification and resulting geomorphological and hydrological characteristics of karst landscapes (presence of voids within the rock, absence of superficial flow and presence of specific karst groundwater flow system), while the others occur evenly in all types of landscapes. However, their impact is different in karst as it is in the non-karst landscapes. Examples of particular phenomenon or events, their frequency of occurrence, expansion and caused damage are presented. Special emphasis is laid on high waters in karst poljes, shallow karst areas or contact karst, where flooding emerges due to the raise of karst groundwater table as a consequence of intensive precipitation or snowmelt. Flooding in karst can also appear due to insufficient swallow capacities of the underground channels, which are not capable of conducting surpluses of inflowing water. In opposite to flash floods, the karst floods are more predictable, since they usually occur in the same areas to the same elevation and in the same season of the year. Inhabitants are easily adapted to this phenomenon, setting the settlements and other important infrastructure on elevations above the highest recorded water level. Usually such flooding does not pose serious threat and causes no serious flood damage, except during extreme events, as it was in the case of the autumn 2000 floods. Case study of the Upper Pivka valley, where floods usually cover around 6.6 km2, is treated and explained. During the intensive rain period from September to November 2000, the groundwater table rose for about 20-35 m above the usual level, causing flooding also in the areas, where they have never been recorded before. Precise mapping of the flooded area extents in the discussed area and the height of the water levels was performed. With the help of the photographic documentation, Golden software and ArsGis 9.1 program tools the surfaces and the volumes of the particular closed flooded areas were calculated and digitized on the map. The continuous surface of the flood extended to 59 ha. Beside the groundwater table rise, a surface stream, which emerged in the ancient Pivka riverbed, additionally contributed to the flooding in the area, especially in the Bač settlement. Though the residents are aware of flood risk and adapted to the floods with some technical provisions (e.g. lifting roads above the usually flooded areas), the long-term spatial plan neglects mapped flood risk areas, but it allows new buildings to be set up. In this manner the need to comprehensive knowledge of the natural hazards problematic is emphasised. A stress is laid also to the well considered land use planning, which is the basis for the reduction or even prevention of negative consequences of such events.

  2. A Study on the Assessment of Multi-Factors Affecting Urban Floods Using Satellite Image: A Case Study in Nakdong Basin, S. Korea

    NASA Astrophysics Data System (ADS)

    Kwak, Youngjoo; Kondoh, Akihiko

    2010-05-01

    Floods are also related to the changes in social economic conditions and land use. Recently, floods increased due to rapid urbanization and human activity in the lowland. Therefore, integrated management of total basin system is necessary to get the secure society. Typhoon ‘Rusa’ swept through eastern and southern parts of South Korea in the 2002. This pity experience gave us valuable knowledge that could be used to mitigate the future flood hazards. The purpose of this study is to construct the digital maps of the multi-factors related to urban flood concerning geomorphologic characteristics, land cover, and surface wetness. Parameters particularly consider geomorphologic functional unit, geomorphologic parameters derived from DEM (digital elevation model), and land use. The research area is Nakdong River Basin in S. Korea. As a result of preliminary analysis for Pusan area, the vulnerability map and the flood-prone areas can be extracted by applying spatial analysis on GIS (geographic information system).

  3. Geographical Information Analysis of Tsunami Flooded Area by the Great East Japan Earthquake Using Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Koarai, M.; Okatani, T.; Nakano, T.; Nakamura, T.; Hasegawa, M.

    2012-07-01

    The great earthquake occurred in Tohoku District, Japan on 11th March, 2011. This earthquake is named "the 2011 off the Pacific coast of Tohoku Earthquake", and the damage by this earthquake is named "the Great East Japan Earthquake". About twenty thousand people were killed or lost by the tsunami of this earthquake, and large area was flooded and a large number of buildings were destroyed by the tsunami. The Geospatial Information Authority of Japan (GSI) has provided the data of tsunami flooded area interpreted from aerial photos taken just after the great earthquake. This is fundamental data of tsunami damage and very useful for consideration of reconstruction planning of tsunami damaged area. The authors analyzed the relationship among land use, landform classification, DEMs data flooded depth of the tsunami flooded area by the Great East Japan Earthquake in the Sendai Plain using GIS. Land use data is 100 meter grid data of National Land Information Data by the Ministry of Land, Infrastructure, Transportation and Tourism (MLIT). Landform classification data is vector data of Land Condition Map produced by GSI. DEMs data are 5 meters grid data measured with LiDAR by GSI after earthquake. Especially, the authors noticed the relationship between tsunami hazard damage and flooded depth. The authors divided tsunami damage into three categories by interpreting aerial photos; first is the completely destroyed area where almost wooden buildings were lost, second is the heavily damaged area where a large number of houses were destroyed by the tsunami, and third is the flooded only area where houses were less destroyed. The flooded depth was measured by photogrammetric method using digital image taken by Mobile Mapping System (MMS). The result of these geographic analyses show the distribution of tsunami damage level is as follows: 1) The completely destroyed area was located within 1km area from the coastline, flooded depth of this area is over 4m, and no relationship between damaged area and landform classification. 2) The heavily damaged area was observed up to 3 or 4km from the coastline. Flooded depth of this area is over 1.5m, and there is a good relationship between damaged area and height of DEMs. 3) The flood only area was observed up to 4 or 5km from the coastline. Flooded depth of this area was less than 1.5m, and there is a good relationship between damaged area and landform. For instance, a certain area in valley plain or flooded plain was not affected by the tsunami, even though an area with almost the same height in coastal plain or delta was flooded. These results mean that it is important for tsunami disaster management to consider not only DEMs but also landform classification.

  4. Flood-inundation maps for a nine-mile reach of the Des Plaines River from Riverwoods to Mettawa, Illinois

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2012-01-01

    Digital flood-inundation maps for a 9-mile reach of the Des Plaines River from Riverwoods to Mettawa, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the Lake County Stormwater Management Commission and the Villages of Lincolnshire and Riverwoods. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Des Plaines River at Lincolnshire, Illinois (station no. 05528100). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05528100. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. The NWS forecasted peak-stage information, also shown on the Des Plaines River at Lincolnshire inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was then used to determine seven water-surface profiles for flood stages at roughly 1-ft intervals referenced to the streamgage datum and ranging from the 50- to 0.2-percent annual exceedance probability flows. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) Digital Elevation Model (DEM) (derived from Light Detection And Ranging (LiDAR) data) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage height from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  5. Flood-inundation maps for the White River at Newberry, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.; Kim, Moon H.; Menke, Chad D.

    2012-01-01

    Digital flood-inundation maps for a 4.9-mile reach of the White River at Newberry, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at USGS streamgage 03360500, White River at Newberry, Ind. Current conditions at the USGS streamgage may be obtained on the Internet (http://waterdata.usgs.gov/in/nwis/uv?site_no=03360500). The National Weather Service (NWS) forecasts flood hydrographs at the Newberry streamgage. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the White River reach by means of a one-dimensional step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the most current stage-discharge relation at USGS streamgage 03360500, White River at Newberry, Ind., and high-water marks from a flood in June 2008.The calibrated hydraulic model was then used to determine 22 water-surface profiles for flood stages a1-foot intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage at Newberry, Ind., and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post-flood recovery efforts.

  6. Flood risk assessment through 1D/2D couple HEC-RAS hydrodynamic modeling- A case study of Surat City, Lower Tapi Basin, India

    NASA Astrophysics Data System (ADS)

    Patel, Dhruvesh; Ramirez, Jorge; Srivastava, Prashant; Bray, Michaela; Han, Dawei

    2017-04-01

    Surat, known as the diamond city of Gujart is situated 100 km downstream of Ukai dam and near the mouth of river Tapi and affected by the flood at every alternate year. The city experienced catastrophic floods in 1933, 1959, 1968, 1970, 1994, 1998 and 2006. It is estimated that a single flood event during August 6-12, 2006 in Surat and Hazira twin-city, caused heavy damages, resulted in the death of 300 people and property damage worth € 289 million. The peak discharge of 25768 m3 s-1 release from Ukai dam was responsible for the disastrous flood in Surat city. To identifylow lying areas prone to inundation and reduce the uncertainty in flood mitigation measures, HEC-RAS based 1D/2D Couple hydrodynamic modeling is carried out for Surat city. Release from the Ukai dam and tidal level of the sea are considered for upstream and downstream boundary condition. 299 surveyed cross-sections have been considered for 1D modeling, whereas a topographic map at 0.5 m contour interval was used to produce a 5 m grid and SRTM (30 & 90 m) grid has been considered for Suart and Lower Tapi Basin (LTB). Flow is simulated under unsteady conditions, calibrated for the year 1998 and validated for the year 2006. The simulated result shows that the 9th August 18.00 hr was the worst day for Surat city and maximum 75-77 % area was under inundation. Most of the flooded area experienced 0.25 m/s water velocity with the duration of 90 hr. Due to low velocity and high duration of the flood, a low lying area within the west zone and south-west zone of the city was badly affected by the flood, whereas the south zone and south-east zone was least. Simulated results show good correlation when compared with an observed flood level map. The simulated results will be helpful to improve the flood resilience strategy at Surat city and reduce the uncertainty for flood inundation mapping for future dam releases. The present case study shows the applicability of 1D/2D coupled hydrodynamic modeling for flood inundation mapping and can be applied for flood assessment at locations with similar geographical conditions.

  7. Space Radar Image of Manaus, Brazil

    NASA Image and Video Library

    1999-01-27

    These two images were created using data from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). On the left is a false-color image of Manaus, Brazil acquired April 12, 1994, onboard space shuttle Endeavour. In the center of this image is the Solimoes River just west of Manaus before it combines with the Rio Negro to form the Amazon River. The scene is around 8 by 8 kilometers (5 by 5 miles) with north toward the top. The radar image was produced in L-band where red areas correspond to high backscatter at HH polarization, while green areas exhibit high backscatter at HV polarization. Blue areas show low backscatter at VV polarization. The image on the right is a classification map showing the extent of flooding beneath the forest canopy. The classification map was developed by SIR-C/X-SAR science team members at the University of California,Santa Barbara. The map uses the L-HH, L-HV, and L-VV images to classify the radar image into six categories: Red flooded forest Green unflooded tropical rain forest Blue open water, Amazon river Yellow unflooded fields, some floating grasses Gray flooded shrubs Black floating and flooded grasses Data like these help scientists evaluate flood damage on a global scale. Floods are highly episodic and much of the area inundated is often tree-covered. http://photojournal.jpl.nasa.gov/catalog/PIA01712

  8. Landslide and flood hazard assessment in urban areas of Levoča region (Eastern Slovakia)

    NASA Astrophysics Data System (ADS)

    Magulova, Barbora; Caporali, Enrica; Bednarik, Martin

    2010-05-01

    The case study presents the use of statistical methods and analysis tools, for hazard assessment of "urbanization units", implemented in a Geographic Information Systems (GIS) environment. As a case study, the Levoča region (Slovakia) is selected. The region, with a total area of about 351 km2, is widely affected by landslides and floods. The problem, for small urbanization areas, is nowadays particularly significant from the socio-economic point of view. It is considered, presently, also an increasing problem, mainly because of climate change and more frequent extreme rainfall events. The geo-hazards are evaluated using a multivariate analysis. The landslide hazard assessment is based on the comparison and subsequent statistical elaboration of territorial dependence among different input factors influencing the instability of the slopes. Particularly, five factors influencing slope stability are evaluated, i.e. lithology, slope aspect, slope angle, hypsographic level and present land use. As a result a new landslide susceptibility map is compiled and different zones of stable, dormant and non-stable areas are defined. For flood hazard map a detailed digital elevation model is created. A compose index of flood hazard is derived from topography, land cover and pedology related data. To estimate flood discharge, time series of stream flow and precipitation measurements are used. The assessment results are prognostic maps of landslide hazard and flood hazard, which presents the optimal base for urbanization planning.

  9. Potential flood hazard assessment by integration of ALOS PALSAR and ASTER GDEM: a case study for the Hoa Chau commune, Hoa Vang district, in central Vietnam

    NASA Astrophysics Data System (ADS)

    Huong, Do Thi Viet; Nagasawa, Ryota

    2014-01-01

    The potential flood hazard was assessed for the Hoa Chau commune in central Vietnam in order to identify the high flood hazard zones for the decision makers who will execute future rural planning. A new approach for deriving the potential flood hazard based on integration of inundation and flow direction maps is described. Areas inundated in the historical flood event of 2007 were extracted from Advanced Land Observing Satellite (ALOS) phased array L-band synthetic aperture data radar (PALSAR) images, while flow direction characteristics were derived from the ASTER GDEM to extract the depressed surfaces. Past flood experience and the flow direction were then integrated to analyze and rank the potential flood hazard zones. The land use/cover map extracted from LANDSAT TM and flood depth point records from field surveys were utilized to check the possibility of susceptible inundated areas, extracting data from ALOS PALSAR and ranking the potential flood hazard. The estimation of potential flood hazard areas revealed that 17.43% and 17.36% of Hoa Chau had high and medium potential flood hazards, respectively. The flow direction and ALOS PALSAR data were effectively integrated for determining the potential flood hazard when hydrological and meteorological data were inadequate and remote sensing images taken during flood times were not available or were insufficient.

  10. Mapping hurricane rita inland storm tide

    USGS Publications Warehouse

    Berenbrock, C.; Mason, R.R.; Blanchard, S.F.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of affected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-h intervals from midnight (00:00 hours) through noon (12:00 hours) on 24 September 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared with the extent of flood inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks. ?? 2009 Blackwell Publishing Ltd.

  11. Mapping Hurricane Rita inland storm tide

    USGS Publications Warehouse

    Berenbrock, Charles; Mason, Jr., Robert R.; Blanchard, Stephen F.; Simonovic, Slobodan P.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of effected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems (GIS) provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-hour intervals from midnight (0000 hour) through noon (1200 hour) on September 24, 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared to the extent of flood-inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks.

  12. Flood Inundation Mapping and Management using RISAT-1 derived Flood Inundation Areas, Cartosat-1 DEM and a River Flow Model

    NASA Astrophysics Data System (ADS)

    Kuldeep, K.; Garg, P. K.; Garg, R. D.

    2017-12-01

    The frequent occurrence of repeated flood events in many regions of the world causing damage to human life and property has augmented the need for effective flood risk management. Microwave satellite data is becoming an indispensable asset for monitoring of many environmental and climatic applications as numerous space-borne synthetic aperture radar (SAR) sensors are offering the data with high spatial resolutions and multi-polarization capabilities. The implementation and execution of Flood mapping, monitoring and management applications has become easier with the availability of SAR data which has obvious advantages over optical data due to its all weather, day and night capabilities. In this study, the exploitation of the SAR dataset for hydraulic modelling and disaster management has been highlighted using feature extraction techniques for water area identification and water level extraction within the floodplain. The availability of high precision digital elevation model generated from the Cartosat-1 stereo pairs has enhanced the capability of retrieving the water depth maps by incorporating the SAR derived flood extent maps. This paper illustrates the flood event on June 2013 in Yamuna River, Haryana, India. The water surface profile computed by combining the topographic data with the RISAT-1 data accurately reflects the true water line. Water levels that were computed by carrying out the modelling using hydraulic model in HECRAS also suggest that the water surface profiles provided by the combined use of topographic data and SAR accurately reflect the true water line. The proposed approach has also been found better in extraction of inundation within vegetated areas.

  13. Flood-inundation maps for the DuPage River from Plainfield to Shorewood, Illinois, 2013

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Sharpe, Jennifer B.

    2013-01-01

    Digital flood-inundation maps for a 15.5-mi reach of the DuPage River from Plainfield to Shorewood, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the Will County Stormwater Management Planning Committee. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights or stages) at the USGS streamgage at DuPage River at Shorewood, Illinois (sta. no. 05540500). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05540500. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. The NWS-forecasted peak-stage information, also shown on the DuPage River at Shorewood inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was then used to determine nine water-surface profiles for flood stages at 1-ft intervals referenced to the streamgage datum and ranging from NWS Action stage of 6 ft to the historic crest of 14.0 ft. The simulated water-surface profiles were then combined with a Digital Elevation Model (DEM) (derived from Light Detection And Ranging (LiDAR) data) by using a Geographic Information System (GIS) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage height from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for postflood recovery efforts.

  14. Wetland Classification for Black Duck Habitat Management Using Combined Polarimetric RADARSAT 2 and SPOT Imagery

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Hu, B.; Brown, G.

    2018-04-01

    The black duck population has decreased significantly due to loss of its breeding habitat. Wetlands are an important feature that relates to habitat management and requires monitoring. Synthetic Aperture Radar (SAR) systems are helpful to map the wetland as the microwave signals are sensitive to water content and can be used to map surface water extent, saturated soils, and flooded vegetation. In this study, RadarSat 2 Polarimetric data is employed to map surface water and track changes in extent over the years through image thresholding and reviewed different approaches of Polarimetric decompositions for detecting flooded vegetation. Also, object-based analysis associated with beaver activity is conducted with combined multispectral SPOT satellite imagery. Results show SAR data has proven ability to improve mapping open water areas and locate flooded vegetation areas.

  15. Surficial geologic map of the greater Omaha area, Nebraska and Iowa

    USGS Publications Warehouse

    Shroba, R.R.; Brandt, T.R.; Blossom, J.C.

    2001-01-01

    Geologic mapping, in support of the USGS Omaha-Kansas City Geologic Mapping Project, shows the spatial distribution of artificial-fill, alluvial, eolian, and glacial deposits and bedrock in and near Omaha, Nebraska. Artificial fill deposits are mapped chiefly beneath commercial structures, segments of interstate highways and other major highways, railroad tracks, airport runways, and military facilities, and in landfills and earth fills. Alluvial deposits are mapped beneath flood plains, in stream terraces, and on hill slopes. They include flood-plain and stream-channel alluvium, sheetwash alluvium, and undivided sheetwash alluvium and stream alluvium. Wind-deposited loess forms sheets that mantle inter-stream areas and late Wisconsin terrace alluvium. Peoria Loess is younger of the two loess sheets and covers much of the inter-stream area in the map area. Loveland Loess is older and is exposed in a few small areas in the eastern part of the map area. Glacial deposits are chiefly heterogeneous, ice-deposited, clayey material (till) and minor interstratified stream-deposited sand and gravel. Except for small outcrops, glacial deposits are covered by eolian and alluvial deposits throughout most of the map area. Bedrock is locally exposed in natural exposures along the major streams and in quarries. It consists of Dakota Sandstone and chiefly limestone and shale of the Lansing and Kansas City Groups. Sand and gravel in flood plain and stream-channel alluvium in the Platte River valley are used mainly for concrete aggregate. Limestone of the Lansing and Kansas City Groups is used for road-surfacing material, rip rap, and fill material.

  16. Development of flood-inundation maps for the West Branch Susquehanna River near the Borough of Jersey Shore, Lycoming County, Pennsylvania

    USGS Publications Warehouse

    Roland, Mark A.; Hoffman, Scott A.

    2011-01-01

    Streamflow data, water-surface-elevation profiles derived from a Hydrologic Engineering Center River Analysis System hydraulic model, and geographical information system digital elevation models were used to develop a set of 18 flood-inundation maps for an approximately 5-mile reach of the West Branch Susquehanna River near the Borough of Jersey Shore, Pa. The inundation maps were created by the U.S. Geological Survey in cooperation with the Susquehanna River Basin Commission and Lycoming County as part of an ongoing effort by the National Oceanic and Atmospheric Administration's National Weather Service to focus on continued improvements to the flood forecasting and warning abilities in the Susquehanna River Basin and to modernize flood-forecasting methodologies. The maps, ranging from 23.0 to 40.0 feet in 1-foot increments, correspond to river stage at the U.S. Geological Survey streamgage 01549760 at Jersey Shore. The electronic files used to develop the maps were provided to the National Weather Service for incorporation into their Advanced Hydrologic Prediction Service website. The maps are displayed on this website, which serves as a web-based floodwarning system, and can be used to identify areas of predicted flood inundation associated with forecasted flood-peak stages. During times of flooding or predicted flooding, these maps can be used by emergency managers and the public to take proactive steps to protect life and reduce property damage caused by floods.

  17. Use of C-band Sentinel-1 and L-band UAVSAR data for flood extent mapping during Hurricane Harvey

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.; Kundu, S.; Torres, R.

    2017-12-01

    Hurricane Harvey was one of the most destructive storms that struck the Houston area in August 2017 causing loss of life and property. In this study, an estimation of flooding extent is done using two sets of microwave remote sensing data, Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and Sentinel-1. UAVSAR is an L-band SAR (Synthetic Aperture Radar) data which is an airborne repeat-pass interferometric observation system and has 16 km swath. Sentinel-1 is the C band microwave data developed by European Space Agency covering a large area (250 km). Data are analyzed to examine the flood extent over Houston during Harvey. Flood extent mapping is carried out using the Sentinel-1 data and UAVSAR using backscatter signatures which displays the extent of changes and destruction during the flood. Keywords: Harvey, UAVSAR, Sentinel-1, flood extent

  18. 44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Standard Flood Hazard... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.16 Standard Flood Hazard Determination...

  19. Dam-breach analysis and flood-inundation mapping for selected dams in Oklahoma City, Oklahoma, and near Atoka, Oklahoma

    USGS Publications Warehouse

    Shivers, Molly J.; Smith, S. Jerrod; Grout, Trevor S.; Lewis, Jason M.

    2015-01-01

    Digital-elevation models, field survey measurements, hydraulic data, and hydrologic data (U.S. Geological Survey streamflow-gaging stations North Canadian River below Lake Overholser near Oklahoma City, Okla. [07241000], and North Canadian River at Britton Road at Oklahoma City, Okla. [07241520]), were used as inputs for the one-dimensional dynamic (unsteady-flow) models using Hydrologic Engineering Centers River Analysis System (HEC–RAS) software. The modeled flood elevations were exported to a geographic information system to produce flood-inundation maps. Water-surface profiles were developed for a 75-percent probable maximum flood dam-breach scenario and a sunny-day dam-breach scenario, as well as for maximum flood-inundation elevations and flood-wave arrival times at selected bridge crossings. Points of interest such as community-services offices, recreational areas, water-treatment plants, and wastewater-treatment plants were identified on the flood-inundation maps.

  20. Flood Impacts on People: from Hazard to Risk Maps

    NASA Astrophysics Data System (ADS)

    Arrighi, C.; Castelli, F.

    2017-12-01

    The mitigation of adverse consequences of floods on people is crucial for civil protection and public authorities. According to several studies, in the developed countries the majority of flood-related fatalities occurs due to inappropriate high risk behaviours such as driving and walking in floodwaters. In this work both the loss of stability of vehicles and pedestrians in floodwaters are analysed. Flood hazard is evaluated, based on (i) a 2D inundation model of an urban area, (ii) 3D hydrodynamic simulations of water flows around vehicles and human body and (iii) a dimensional analysis of experimental activity. Exposure and vulnerability of vehicles and population are assessed exploiting several sources of open GIS data in order to produce risk maps for a testing case study. The results show that a significant hazard to vehicles and pedestrians exists in the study area. Particularly high is the hazard to vehicles, which are likely to be swept away by flood flow, possibly aggravate damages to structures and infrastructures and locally alter the flood propagation. Exposure and vulnerability analysis identifies some structures such as schools and public facilities, which may attract several people. Moreover, some shopping facilities in the area, which attract both vehicular and pedestrians' circulation are located in the highest flood hazard zone.The application of the method demonstrates that, at municipal level, such risk maps can support civil defence strategies and education to active citizenship, thus contributing to flood impact reduction to population.

  1. A new approach for river flood extent delineation in rural and urban areas combining RADARSAT-2 imagery and flood recurrence interval data

    NASA Astrophysics Data System (ADS)

    Tanguy, Marion; Bernier, Monique; Chokmani, Karem

    2015-04-01

    When a flood hits an inhabited area, managers and services responsible for public safety need precise, reliable and up to date maps of the areas affected by the flood, in order to quickly roll out and to coordinate the adequate intervention and assistance plans required to limit the human and material damages caused by the disaster. Synthetic aperture radar (SAR) sensors are now considered as one of the most adapted tool for flood detection and mapping in a context of crisis management. Indeed, due to their capacity to acquire data night and day, in almost all meteorological conditions, SAR sensors allow the acquisition of synoptic but detailed views of the areas affected by the flood, even during the active phases of the event. Moreover, new generation sensors such as RADARSAT-2, TerraSAR-X, COSMO-SkyMed, are providing very high resolution images of the disaster (down to 1m ground resolution). Further, critical improvements have been made on the temporal repetitivity of acquisitions and on data availability, through the development of satellite constellations (i.e the four COSMO-Skymed or the Sentinel-1A and 1B satellites) and thanks to the implementation of the International Charter "Space and Major Disasters", which guarantees high priority images acquisition and delivery with 4 to 12 hours. If detection of open water flooded areas is relatively straightforward with SAR imagery, flood detection in built-up areas is often associated with important issues. Indeed, because of the side looking geometry of the SAR sensors, structures such as tall vegetation and structures parallel to the satellite direction of travel may produce shadow and layover effects, leading to important over and under-detections of flooded pixels. Besides, the numerous permanent water-surfaces like radar response areas present in built-up environments, such as parking lots, roads etc., may be mixed up with flooded areas, resulting in substantial inaccuracies in the final flood map. In spite of the many efforts recently done toward the improvements of the accuracy of the processing algorithms for flood detection in urban areas with high resolution SAR imagery, these algorithms still encounter difficulties to detect urban flooded pixels with precision. The difficulties do not seem to be only ascribable to the choice of SAR image processing methods, but can also be imputed to the limitations of the SAR imaging technique itself in urban areas. We propose a fully automatic and effective approach for near-real time delineation of urban and rural flooded areas, which combines the capacity of SAR imagery to detect open water areas, and explicit hydrodynamic characteristics of the region affected by the flood, expressed through flood recurrence interval data. This innovative approach has been tested with RADARSAT-2 Fine and Ultrafine Mode images acquired during the 2011 Richelieu River flooding, in Canada. It proved successful in accurately delineating flooding in urban and rural areas, with a RMSE inferior to 2 pixels.

  2. Flood inundation maps for the Wabash and Eel Rivers at Logansport, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2014-01-01

    Digital flood-inundation maps for an 8.3-mile reach of the Wabash River and a 7.6-mile reach of the Eel River at Logansport, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage Wabash River at Logansport, Ind. (sta. no. 03329000) and USGS streamgage Eel River near Logansport, Ind. (sta. no. 03328500). Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system http:/water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgages 03329000, Wabash River at Logansport, Ind., and 03328500, Eel River near Logansport, Ind. The calibrated hydraulic model was then used to determine five water-surface profiles for flood stage at 1-foot intervals referenced to the Wabash River streamgage datum, and four water-surface profiles for flood stages at 1-foot intervals referenced to the Eel River streamgage datum. The stages range from bankfull to approximately the highest stages that have occurred since 1967 when three flood control dams were built upstream of Logansport, Ind. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM, derived from Light Detection and Ranging [lidar] data having a 0.37-foot vertical accuracy and 3.9-foot horizontal resolution) in order to delineate the area flooded at each stage. The availability of these maps, along with information available on the Internet regarding current stages from the USGS streamgages at Logansport, Ind., and forecasted stream stages from the NWS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post flood recovery efforts.

  3. Integrating Physical and Topographic Information Into a Fuzzy Scheme to Map Flooded Area by SAR

    PubMed Central

    Pierdicca, Nazzareno; Chini, Marco; Pulvirenti, Luca; Macina, Flavia

    2008-01-01

    A flood mapping procedure based on a fuzzy sets theory has been developed. The method is based on the integration of Synthetic Aperture Radar (SAR) measurements with additional data on the inundated area, such as a land cover map and a digital elevation model (DEM). The information on land cover has allowed us to account for both specular reflection, typical of open water, and double bounce backscattering, typical of forested and urban areas. DEM has been exploited to include simple hydraulic considerations on the dependence of inundation probability on surface characteristics. Contextual information has been taken into account too. The proposed algorithm has been tested on a flood occurred in Italy on November 1994. A pair of ERS-1 images, collected before and after (three days later) the flood, has been used. The results have been compared with the data provided by a ground survey carried out when the flood reached its maximum extension. Despite the temporal mismatch between the survey and the post-inundation SAR image, the comparison has yielded encouraging results, with the 87% of the pixels correctly classified as inundated. PMID:27879928

  4. Flood-inundation maps for the East Fork White River at Shoals, Indiana

    USGS Publications Warehouse

    Boldt, Justin A.

    2016-05-06

    Digital flood-inundation maps for a 5.9-mile reach of the East Fork White River at Shoals, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the East Fork White River at Shoals, Ind. (USGS station number 03373500). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS AHPS site SHLI3). NWS AHPS forecast peak stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.Flood profiles were computed for the East Fork White River reach by means of a one-dimensional, step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the current stage-discharge relation (USGS rating no. 43.0) at USGS streamgage 03373500, East Fork White River at Shoals, Ind. The calibrated hydraulic model was then used to compute 26 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from approximately bankfull (10 ft) to the highest stage of the current stage-discharge rating curve (35 ft). The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model (DEM), derived from light detection and ranging (lidar) data, to delineate the area flooded at each water level. The areal extent of the 24-ft flood-inundation map was verified with photographs from a flood event on July 20, 2015.The availability of these maps, along with information on the Internet regarding current stage from the USGS streamgage at East Fork White River at Shoals, Ind., and forecasted stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  5. Flood frequency analysis and generation of flood hazard indicator maps in a semi-arid environment, case of Ourika watershed (western High Atlas, Morocco)

    NASA Astrophysics Data System (ADS)

    El Alaoui El Fels, Abdelhafid; Alaa, Noureddine; Bachnou, Ali; Rachidi, Said

    2018-05-01

    The development of the statistical models and flood risk modeling approaches have seen remarkable improvements in their productivities. Their application in arid and semi-arid regions, particularly in developing countries, can be extremely useful for better assessment and planning of flood risk in order to reduce the catastrophic impacts of this phenomenon. This study focuses on the Setti Fadma region (Ourika basin, Morocco) which is potentially threatened by floods and is subject to climatic and anthropogenic forcing. The study is based on two main axes: (i) the extreme flow frequency analysis, using 12 probability laws adjusted by Maximum Likelihood method and (ii) the generation of the flood risk indicator maps are based on the solution proposed by the Nays2DFlood solver of the Hydrodynamic model of two-dimensional Saint-Venant equations. The study is used as a spatial high-resolution digital model (Lidar) in order to get the nearest hydrological simulation of the reality. The results showed that the GEV is the most appropriate law of the extreme flows estimation for different return periods. Taking into consideration the mapping of 100-year flood area, the study revealed that the fluvial overflows extent towards the banks of Ourika and consequently, affects some living areas, cultivated fields and the roads that connects the valley to the city of Marrakech. The aim of this study is to propose new technics of the flood risk management allowing a better planning of the flooded areas.

  6. Detection of Flood Inundation Information of the Kinu River Flooding in 2015 by Social Media

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Sayama, T.; Takara, K. T.

    2016-12-01

    On September 10th, 2015, due to Kanto Tohoku heavy rainfall in Japan, an overtopping occurred from the Kinu River around 6:00. At the same day, levee breach occurred at the downstream area near Joso city in Ibaraki Prefecture, Japan. This flood disaster caused two people dead, several people injured, and enormous damages on houses and infrastructures in the city. In order to mitigate such flood disasters with large inundations, it is important to identify flood-affected areas on real-time basis. The real-time flood hazard map, which is our ultimate goal of the study, provides information on location of inundated areas during a flood. However, the technology has not been achieved yet mainly due to the difficulty in identifying the flood extent on real time. With the advantage of efficiency and wide coverage, social media, such as Twitter, appears as a good data source for collecting real-time flood information. However, there are some concerns on social media information, including the trustworthiness, and the amount of useful information in the case tweets from flood affected areas. This study collected tweet regarding the Kinu River flooding and investigated how many people in affected area posted tweets on the flooding and how the detected information is useful for the eventual goal on the real-time flood hazard mapping. The tweets were collected by three ways: advanced search on twitter web page; DISAster-information ANAlyzer system; and Twitter Application Programming Interfaces. As a result, 109 disaster relevant tweets were collected. Out of the 109 tweets, 32% of the total tweets are posted at real-time, 43% of total tweets are posted with photos and 46 tweets are related to the inundation information. 46% of the inundation related tweets were able to identify locations. In order to investigate the reliability of tweet post, the location identified tweets were marked on map to compare with the real inundation extent that measured by the Geospatial Information Authority of Japan (GSI) by helicopter on September 10, 2015. The result shows a good agreement between the actual inundation information and tweet post. Moreover, the tweet posts show an appropriate change of inundation extent. In addition, tweet posts show some additional inundated areas not reported by GSI, but confirmed the inundation after the disaster.

  7. Development of a Flood-Warning System and Flood-Inundation Mapping in Licking County, Ohio : Executive Summary Report

    DOT National Transportation Integrated Search

    2012-04-01

    Licking County, Ohio, has experienced numerous floods with the majority of flood damages occurring in the central and south-central areas of the county along four streams: the Licking River, North Fork Licking River, South Fork Licking River, and Rac...

  8. Rapid Mapping Of Floods Using SAR Data: Opportunities And Critical Aspects

    NASA Astrophysics Data System (ADS)

    Pulvirenti, Luca; Pierdicca, Nazzareno; Chini, Marco

    2013-04-01

    The potentiality of spaceborne Synthetic Aperture Radar (SAR) for flood mapping was demonstrated by several past investigations. The synoptic view, the capability to operate in almost all-weather conditions and during both day time and night time and the sensitivity of the microwave band to water are the key features that make SAR data useful for monitoring inundation events. In addition, their high spatial resolution, which can reach 1m with the new generation of X-band instruments such as TerraSAR-X and COSMO-SkyMed (CSK), allows emergency managers to use flood maps at very high spatial resolution. CSK gives also the possibility of performing frequent observations of regions hit by floods, thanks to the four-satellite constellation. Current research on flood mapping using SAR is focused on the development of automatic algorithms to be used in near real time applications. The approaches are generally based on the low radar return from smooth open water bodies that behave as specular reflectors and appear dark in SAR images. The major advantage of automatic algorithms is the computational efficiency that makes them suitable for rapid mapping purposes. The choice of the threshold value that, in this kind of algorithms, separates flooded from non-flooded areas is a critical aspect because it depends on the characteristics of the observed scenario and on system parameters. To deal with this aspect an algorithm for automatic detection of the regions of low backscatter has been developed. It basically accomplishes three steps: 1) division of the SAR image in a set of non-overlapping sub-images or splits; 2) selection of inhomogeneous sub-images that contain (at least) two populations of pixels, one of which is formed by dark pixels; 3) the application in sequence of an automatic thresholding algorithm and a region growing algorithm in order to produce a homogeneous map of flooded areas. Besides the aforementioned choice of the threshold, rapid mapping of floods may present other critical aspects. Searching for low SAR backscatter areas only may cause inaccuracies because flooded soils do not always act as smooth open water bodies. The presence of wind or of vegetation emerging above the water surface may give rise to an increase of the radar backscatter. In particular, mapping flooded vegetation using SAR data may represent a difficult task since backscattering phenomena in the volume between canopy, trunks and floodwater are quite complex in the presence of vegetation. A typical phenomenon is the double-bounce effect involving soil and stems or trunks, which is generally enhanced by the floodwater, so that flooded vegetation may appear very bright in a SAR image. Even in the absence of dense vegetation or wind, some regions may appear dark because of artefacts due to topography (shadowing), absorption caused by wet snow, and attenuation caused by heavy precipitating clouds (X-band SARs). Examples of the aforementioned effects that may limit the reliability of flood maps will be presented at the conference and some indications to deal with these effects (e.g. presence of vegetation and of artefacts) will be provided.

  9. Comparing the Performance of Commonly Available Digital Elevation Models in GIS-based Flood Simulation

    NASA Astrophysics Data System (ADS)

    Ybanez, R. L.; Lagmay, A. M. A.; David, C. P.

    2016-12-01

    With climatological hazards increasing globally, the Philippines is listed as one of the most vulnerable countries in the world due to its location in the Western Pacific. Flood hazards mapping and modelling is one of the responses by local government and research institutions to help prepare for and mitigate the effects of flood hazards that constantly threaten towns and cities in floodplains during the 6-month rainy season. Available digital elevation maps, which serve as the most important dataset used in 2D flood modelling, are limited in the Philippines and testing is needed to determine which of the few would work best for flood hazards mapping and modelling. Two-dimensional GIS-based flood modelling with the flood-routing software FLO-2D was conducted using three different available DEMs from the ASTER GDEM, the SRTM GDEM, and the locally available IfSAR DTM. All other parameters kept uniform, such as resolution, soil parameters, rainfall amount, and surface roughness, the three models were run over a 129-sq. kilometer watershed with only the basemap varying. The output flood hazard maps were compared on the basis of their flood distribution, extent, and depth. The ASTER and SRTM GDEMs contained too much error and noise which manifested as dissipated and dissolved hazard areas in the lower watershed where clearly delineated flood hazards should be present. Noise on the two datasets are clearly visible as erratic mounds in the floodplain. The dataset which produced the only feasible flood hazard map is the IfSAR DTM which delineates flood hazard areas clearly and properly. Despite the use of ASTER and SRTM with their published resolution and accuracy, their use in GIS-based flood modelling would be unreliable. Although not as accessible, only IfSAR or better datasets should be used for creating secondary products from these base DEM datasets. For developing countries which are most prone to hazards, but with limited choices for basemaps used in hazards studies, the caution must be taken in the use of globally available GDEMs and higher-resolution DEMs must always be sought.

  10. Germany wide seasonal flood risk analysis for agricultural crops

    NASA Astrophysics Data System (ADS)

    Klaus, Stefan; Kreibich, Heidi; Kuhlmann, Bernd; Merz, Bruno; Schröter, Kai

    2016-04-01

    In recent years, large-scale flood risk analysis and mapping has gained attention. Regional to national risk assessments are needed, for example, for national risk policy developments, for large-scale disaster management planning and in the (re-)insurance industry. Despite increasing requests for comprehensive risk assessments some sectors have not received much scientific attention, one of these is the agricultural sector. In contrast to other sectors, agricultural crop losses depend strongly on the season. Also flood probability shows seasonal variation. Thus, the temporal superposition of high flood susceptibility of crops and high flood probability plays an important role for agricultural flood risk. To investigate this interrelation and provide a large-scale overview of agricultural flood risk in Germany, an agricultural crop loss model is used for crop susceptibility analyses and Germany wide seasonal flood-frequency analyses are undertaken to derive seasonal flood patterns. As a result, a Germany wide map of agricultural flood risk is shown as well as the crop type most at risk in a specific region. The risk maps may provide guidance for federal state-wide coordinated designation of retention areas.

  11. DAFNE: A Matlab toolbox for Bayesian multi-source remote sensing and ancillary data fusion, with application to flood mapping

    NASA Astrophysics Data System (ADS)

    D'Addabbo, Annarita; Refice, Alberto; Lovergine, Francesco P.; Pasquariello, Guido

    2018-03-01

    High-resolution, remotely sensed images of the Earth surface have been proven to be of help in producing detailed flood maps, thanks to their synoptic overview of the flooded area and frequent revisits. However, flood scenarios can be complex situations, requiring the integration of different data in order to provide accurate and robust flood information. Several processing approaches have been recently proposed to efficiently combine and integrate heterogeneous information sources. In this paper, we introduce DAFNE, a Matlab®-based, open source toolbox, conceived to produce flood maps from remotely sensed and other ancillary information, through a data fusion approach. DAFNE is based on Bayesian Networks, and is composed of several independent modules, each one performing a different task. Multi-temporal and multi-sensor data can be easily handled, with the possibility of following the evolution of an event through multi-temporal output flood maps. Each DAFNE module can be easily modified or upgraded to meet different user needs. The DAFNE suite is presented together with an example of its application.

  12. Flood damage in Italy: towards an assessment model of reconstruction costs

    NASA Astrophysics Data System (ADS)

    Sterlacchini, Simone; Zazzeri, Marco; Genovese, Elisabetta; Modica, Marco; Zoboli, Roberto

    2016-04-01

    Recent decades in Italy have seen a very rapid expansion of urbanisation in terms of physical assets, while demographics have remained stable. Both the characteristics of Italian soil and anthropic development, along with repeated global climatic stress, have made the country vulnerable to floods, the intensity of which is increasingly alarming. The combination of these trends will contribute to large financial losses due to property damage in the absence of specific mitigation strategies. The present study focuses on the province of Sondrio in Northern Italy (area of about 3,200 km²), which is home to more than 180,000 inhabitants and the population is growing slightly. It is clearly a hot spot for flood exposure, as it is primarily a mountainous area where floods and flash floods hit frequently. The model we use for assessing potential flood damage determines risk scenarios by overlaying flood hazard maps and economic asset data. In Italy, hazard maps are provided by Regional Authorities through the Hydrogeological System Management Plan (PAI) based on EU Flood Directive guidelines. The PAI in the study area includes both the large plain and the secondary river system and considers three hazard scenarios of Low, Medium and High Frequency associated with return periods of 20, 200 and 500 years and related water levels. By an overlay of PAI maps and residential areas, visualized on a GIS, we determine which existing built-up areas are at risk for flood according to each scenario. Then we investigate the value of physical assets potentially affected by floods in terms of market values, using the database of the Italian Property Market Observatory (OMI), and in terms of reconstruction costs, by considering synthetic cost indexes of predominant building types (from census information) and PAI water height. This study illustrates a methodology to assess flood damage in urban settlements and aims to determine general guidelines that can be extended throughout Italy. The final objective will be to analyse how the loss prospective can change when mitigation measures, including actions to reduce the flood hazard and strategies to prevent potential consequences, are implemented. Flood impacts and the corresponding value of mitigation measures will be assessed by means of a cost-benefit analysis in accordance with the EU Floods Directive.

  13. Monitoring urban land cover with the use of satellite remote sensing techniques as a means of flood risk assessment in Cyprus

    NASA Astrophysics Data System (ADS)

    Alexakis, Dimitris; Hadjimitsis, Diofantos; Agapiou, Athos; Themistocleous, Kyriacos; Retalis, Adrianos

    2011-11-01

    The increase of flood inundation occuring in different regions all over the world have enhanced the need for effective flood risk management. As floods frequency is increasing with a steady rate due to ever increasing human activities on physical floodplains there is a respectively increasing of financial destructive impact of floods. A flood can be determined as a mass of water that produces runoff on land that is not normally covered by water. However, earth observation techniques such as satellite remote sensing can contribute toward a more efficient flood risk mapping according to EU Directives of 2007/60. This study strives to highlight the need of digital mapping of urban sprawl in a catchment area in Cyprus and the assessment of its contribution to flood risk. The Yialias river (Nicosia, Cyprus) was selected as case study where devastating flash floods events took place at 2003 and 2009. In order to search the diachronic land cover regime of the study area multi-temporal satellite imagery was processed and analyzed (e.g Landsat TMETM+, Aster). The land cover regime was examined in detail by using sophisticated post-processing classification algorithms such as Maximum Likelihood, Parallelepiped Algorithm, Minimum Distance, Spectral Angle and Isodata. Texture features were calculated using the Grey Level Co-Occurence Matrix. In addition three classification techniques were compared : multispectral classification, texture based classification and a combination of both. The classification products were compared and evaluated for their accuracy. Moreover, a knowledge-rule method is proposed based on spectral, texture and shape features in order to create efficient land use and land cover maps of the study area. Morphometric parameters such as stream frequency, drainage density and elongation ratio were calculated in order to extract the basic watershed characteristics. In terms of the impacts of land use/cover on flooding, GIS and Fragstats tool were used to detect identifying trends, both visually and statistically, resulting from land use changes in a flood prone area such as Yialias by the use of spatial metrics. The results indicated that there is a considerable increase of urban areas cover during the period of the last 30 years. All these denoted that one of the main driving force of the increasing flood risk in catchment areas in Cyprus is generally associated to human activities.

  14. Flood-inundation maps for the Driftwood River and Sugar Creek near Edinburgh, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.; Kim, Moon H.; Menke, Chad D.

    2012-01-01

    Digital flood-inundation maps for an 11.2 mile reach of the Driftwood River and a 5.2 mile reach of Sugar Creek, both near Edinburgh, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Camp Atterbury Joint Maneuver Training Center, Edinburgh, Indiana. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at the USGS streamgage 03363000 Driftwood River near Edinburgh, Ind. Current conditions at the USGS streamgage in Indiana may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/current/?type=flow. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system at http://water.weather.gov/ahps/. The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relations at the USGS streamgage 03363000 Driftwood River near Edinburgh, Ind. The hydraulic model was then used to determine elevations throughout the study reaches for nine water-surface profiles for flood stages at 1-ft intervals referenced to the streamgage datum and ranging from bankfull to nearly the highest recorded water level at the USGS streamgage 03363000 Driftwood River near Edinburgh, Ind. The simulated water-surface profiles were then combined with a geospatial digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The availability of these maps along with real-time information available online regarding current stage from USGS streamgages and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post flood recovery efforts.

  15. Flood-inundation maps for the East Fork White River at Columbus, Indiana

    USGS Publications Warehouse

    Lombard, Pamela J.

    2013-01-01

    Digital flood-inundation maps for a 5.4-mile reach of the East Fork White River at Columbus, Indiana, from where the Flatrock and Driftwood Rivers combine to make up East Fork White River to just upstream of the confluence of Clifty Creek with the East Fork White River, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at USGS streamgage 03364000, East Fork White River at Columbus, Indiana. Current conditions at the USGS streamgage may be obtained on the Internet from the USGS National Water Information System (http://waterdata.usgs.gov/in/nwis/uv/?site_no=03364000&agency_cd=USGS&). The National Weather Service (NWS) forecasts flood hydrographs for the East Fork White River at Columbus, Indiana at their Advanced Hydrologic Prediction Service (AHPS) flood warning system Website (http://water.weather.gov/ahps/), that may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at USGS streamgage 03364000, East Fork White River at Columbus, Indiana. The calibrated hydraulic model was then used to determine 15 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data), having a 0.37-ft vertical accuracy and a 1.02 ft horizontal accuracy), in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage at Columbus, Indiana, and forecasted stream stages from the NWS will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post-flood recovery efforts.

  16. Flood-inundation maps for the Wabash River at Terre Haute, Indiana

    USGS Publications Warehouse

    Lombard, Pamela J.

    2013-01-01

    Digital flood-inundation maps for a 6.3-mi reach of the Wabash River from 0.1 mi downstream of the Interstate 70 bridge to 1.1 miles upstream of the Route 63 bridge, Terre Haute, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to select water levels (stages) at the USGS streamgage Wabash River at Terre Haute (station number 03341500). Current conditions at the USGS streamgage may be obtained on the Internet from the USGS National Water Information System (http://waterdata.usgs.gov/in/nwis/uv/?site_no=03341500&agency_cd=USGS&p"). In addition, the same data are provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps//). Within this system, the NWS forecasts flood hydrographs for the Wabash River at Terre Haute that may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relation at the Wabash River at the Terre Haute streamgage. The hydraulic model was then used to compute 22 water-surface profiles for flood stages at 1-ft interval referenced to the streamgage datum and ranging from bank-full to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data having a 0.37-ft vertical accuracy and a 1.02-ft horizontal accuracy) to delineate the area flooded at each water level. The availability of these maps along with Internet information regarding the current stage from the USGS streamgage and forecasted stream stages from the NWS can provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post flood recovery efforts.

  17. Decision Support for Emergency Operations Centers

    NASA Technical Reports Server (NTRS)

    Harvey, Craig; Lawhead, Joel; Watts, Zack

    2005-01-01

    The Flood Disaster Mitigation Decision Support System (DSS) is a computerized information system that allows regional emergency-operations government officials to make decisions regarding the dispatch of resources in response to flooding. The DSS implements a real-time model of inundation utilizing recently acquired lidar elevation data as well as real-time data from flood gauges, and other instruments within and upstream of an area that is or could become flooded. The DSS information is updated as new data become available. The model generates realtime maps of flooded areas and predicts flood crests at specified locations. The inundation maps are overlaid with information on population densities, property values, hazardous materials, evacuation routes, official contact information, and other information needed for emergency response. The program maintains a database and a Web portal through which real-time data from instrumentation are gathered into the database. Also included in the database is a geographic information system, from which the program obtains the overlay data for areas of interest as needed. The portal makes some portions of the database accessible to the public. Access to other portions of the database is restricted to government officials according to various levels of authorization. The Flood Disaster Mitigation DSS has been integrated into a larger DSS named REACT (Real-time Emergency Action Coordination Tool), which also provides emergency operations managers with data for any type of impact area such as floods, fires, bomb

  18. Geomorphologic flood-hazard assessment of alluvial fans and piedmonts

    USGS Publications Warehouse

    Field, J.J.; Pearthree, P.A.

    1997-01-01

    Geomorphologic studies are an excellent means of flood-hazard assessment on alluvial fans and piedmonts in the southwestern United States. Inactive, flood-free, alluvial fans display well developed soils, desert pavement, rock varnish, and tributary drainage networks. These areas are easily distinguished from flood-prone active alluvial fans on aerial photographs and in the field. The distribution of flood-prone areas associated with alluvial fans is strongly controlled by fanhead trenches dissecting the surface. Where fanhead trenches are permanent features cut in response to long-term conditions such as tectonic quiescence, flood-prone surfaces are situated down-slope from the mountain front and their positions are stable for thousands of years. Since the length and permanency of fanhead trenches can vary greatly between adjacent drainages, it is not appropriate to use regional generalizations to evaluate the distribution and stability of flood-hazard zones. Site-specific geomorphologic studies must be carried out if piedmont areas with a high risk of flooding are to be correctly identified and losses due to alluvial-fan flooding minimized. To meet the growing demand for trained professionals to complete geomorphologic maps of desert piedmonts, undergraduate and graduate geomorphology courses should adopt an instructional unit on alluvial-fan flood hazards that includes: 1) a review of geomorphologic characteristics that vary with surface age; 2) a basic mapping exercise; and 3) a discussion of the causes of fanhead trenching.

  19. Flood-inundation maps for the Suncook River in Epsom, Pembroke, Allenstown, and Chichester, New Hampshire

    USGS Publications Warehouse

    Flynn, Robert H.; Johnston, Craig M.; Hays, Laura

    2012-01-01

    Digital flood-inundation maps for a 16.5-mile reach of the Suncook River in Epsom, Pembroke, Allenstown, and Chichester, N.H., from the confluence with the Merrimack River to U.S. Geological Survey (USGS) Suncook River streamgage 01089500 at Depot Road in North Chichester, N.H., were created by the USGS in cooperation with the New Hampshire Department of Homeland Security and Emergency Management. The inundation maps presented in this report depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Suncook River at North Chichester, N.H. (station 01089500). The current conditions at the USGS streamgage may be obtained on the Internet (http://waterdata.usgs.gov/nh/nwis/uv/?site_no=01089500&PARAmeter_cd=00065,00060). The National Weather Service forecasts flood hydrographs at many places that are often collocated with USGS streamgages. Forecasted peak-stage information is available on the Internet at the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) flood-warning system site (http://water.weather.gov/ahps/) and may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. These maps along with real-time stream stage data from the USGS Suncook River streamgage (station 01089500) and forecasted stream stage from the NWS will provide emergency management personnel and residents with information that is critical for flood-response activities, such as evacuations, road closures, disaster declarations, and post-flood recovery. The maps, along with current stream-stage data from the USGS Suncook River streamgage and forecasted stream-stage data from the NWS, can be accessed at the USGS Flood Inundation Mapping Science Web site http://water.usgs.gov/osw/flood_inundation/.

  20. Flood-inundation maps for the Saddle River from Upper Saddle River Borough to Saddle River Borough, New Jersey, 2013

    USGS Publications Warehouse

    Watson, Kara M.; Hoppe, Heidi L.

    2013-01-01

    Digital flood-inundation maps for a 4.1-mile reach of the Saddle River from 0.6 miles downstream from the New Jersey-New York State boundary in Upper Saddle River Borough to 0.2 miles downstream from the East Allendale Road bridge in Saddle River Borough, New Jersey, were created by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to select water levels (stages) at the USGS streamgage 01390450, Saddle River at Upper Saddle River, New Jersey. Current conditions for estimating near real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/nwis/uv?site_no=01390450. The National Weather Service (NWS) forecasts flood hydrographs at many places that are often collocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relations (in effect March 2013) at USGS streamgage 01390450, Saddle River at Upper Saddle River, New Jersey, and documented high-water marks from recent floods. The hydraulic model was then used to determine eight water-surface profiles for flood stages at 0.5-foot (ft) intervals referenced to the streamgage datum, North American Vertical Datum of 1988 (NAVD 88), and ranging from bankfull, 0.5 ft below NWS Action Stage, to the upper extent of the stage-discharge rating which is approximately 1 ft higher than the highest recorded water level at the streamgage. Action Stage is the stage which when reached by a rising stream the NWS or a partner needs to take some type of mitigation action in preparation for possible significant hydrologic activity. The simulated water-surface profiles were then combined with a geographic information system 3-meter (9.84 ft) digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The availability of these maps along with real-time streamflow data and information regarding current stage from USGS streamgages and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

  1. Flood-inundation maps for the Saddle River from Rochelle Park to Lodi, New Jersey, 2012

    USGS Publications Warehouse

    Hoppe, Heidi L.; Watson, Kara M.

    2012-01-01

    Digital flood-inundation maps for a 2.75-mile reach of the Saddle River from 0.2 mile upstream from the Interstate 80 bridge in Rochelle Park to 1.5 miles downstream from the U.S. Route 46 bridge in Lodi, New Jersey, were created by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Saddle River at Lodi, New Jersey (station 01391500). Current conditions for estimating near real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/nwis/uv?site_no=01391500. The National Weather Service (NWS) forecasts flood hydrographs at many places that are often collocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relations at the Saddle River at Lodi, New Jersey streamgage and documented high-water marks from recent floods. The hydraulic model was then used to determine 11 water-surface profiles for flood stages at the Saddle River streamgage at 1-ft intervals referenced to the streamgage datum, North American Vertical Datum of 1988 (NAVD 88), and ranging from bankfull, 0.5 ft below NWS Action Stage, to the extent of the stage-discharge rating, which is approximately 1 ft higher than the highest recorded water level at the streamgage. Action Stage is the stage which when reached by a rising stream the NWS or a partner needs to take some type of mitigation action in preparation for possible significant hydrologic activity. The simulated water-surface profiles were then combined with a geographic information system 3-meter (9.84-ft) digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

  2. Flood-inundation maps for Sweetwater Creek from above the confluence of Powder Springs Creek to the Interstate 20 bridge, Cobb and Douglas Counties, Georgia

    USGS Publications Warehouse

    Musser, Jonathan W.

    2012-01-01

    Digital flood-inundation maps for a 10.5-mile reach of Sweetwater Creek, from about 1,800 feet above the confluence of Powder Springs Creek to about 160 feet below the Interstate 20 bridge, were developed by the U.S. Geological Survey (USGS) in cooperation with Cobb County, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Sweetwater Creek near Austell, Georgia (02337000). Current stage at this USGS streamgage may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that commonly are collocated at USGS streamgages. The forecasted peak-stage information for the USGS streamgage at Sweetwater Creek near Austell (02337000), which is available through the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. A one-dimensional step-backwater model was developed using the U.S. Army Corps of Engineers Hydrologic Engineering Centers River Analysis System (HEC–RAS) software for Sweetwater Creek and was used to compute flood profiles for a 10.5-mile reach of the creek. The model was calibrated using the most current stage-discharge relations at the Sweetwater Creek near Austell streamgage (02337000), as well as high-water marks collected during annual peak-flow events in 1982 and 2009. The hydraulic model was then used to determine 21 water-surface profiles for flood stages at the Sweetwater Creek streamgage at 1-foot intervals referenced to the streamgage datum and ranging from just above bankfull stage (12.0 feet) to approximately 1.2 feet above the highest recorded water level at the streamgage (32.0 feet). The simulated water-surface profiles were then combined with a geographic information system digital elevation model—derived from contour data (8-foot horizontal resolution), in Cobb County, and USGS National Elevation Dataset (31-foot horizontal resolution), in Douglas County—to delineate the area flooded for each 1-foot increment of stream stage. The availability of these maps, when combined with real-time information regarding current stage from USGS streamgages and forecasted stream stages from the NWS, provides emergency management personnel and residents with critical information during flood-response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

  3. Uncorrected land-use planning highlighted by flooding: the Alba case study (Piedmont, Italy)

    NASA Astrophysics Data System (ADS)

    Luino, F.; Turconi, L.; Petrea, C.; Nigrelli, G.

    2012-07-01

    Alba is a town of over 30 000 inhabitants located along the Tanaro River (Piedmont, northwestern Italy) and is famous for its wine and white truffles. Many important industries and companies are based in Alba, including the famous confectionery group Ferrero. The town suffered considerably from a flood that occurred on 5-6 November 1994. Forty-eight percent of the urban area was inundated, causing severe damage and killing nine people. After the flood, the Alba area was analysed in detail to determine the reasons for its vulnerability. Information on serious floods in this area since 1800 was gathered from official records, state technical office reports, unpublished documents in the municipal archives, and articles published in local and national newspapers. Maps, plans and aerial photographs (since 1954) were examined to reconstruct Alba's urban development over the last two centuries and the planform changes of the Tanaro River. The results were compared with the effects of the November 1994 flood, which was mapped from aerial photographs taken immediately after the flood, field surveys and eyewitness reports. The territory of Alba was subdivided into six categories: residential; public service; industrial, commercial and hotels; sports areas, utilities and standards (public gardens, parks, athletics grounds, private and public sport clubs); aggregate plants and dumps; and agriculture and riverine strip. The six categories were then grouped into three classes with different flooding-vulnerability levels according to various parameters. Using GIS, the three river corridors along the Tanaro identified by the Autorità di Bacino del Fiume Po were overlaid on the three classes to produce a final map of the risk areas. This study shows that the historic floods and their dynamics have not been duly considered in the land-use planning of Alba. The zones that were most heavily damaged in the 1994 flood were those that were frequently affected in the past and sites of more recent urbanisation. Despite recurrent severe flooding of the Tanaro River and its tributaries, areas along the riverbed and its paleochannels have been increasingly used for infrastructure and building (e.g., roads, a municipal dump, a prison, natural aggregate plants, a nomad camp), which has often interfered with the natural spread of the floodwaters. Since the 1994 flood, many remedial projects have been completed along the Tanaro and its tributaries, including levees, bank protection, concrete walls and floodway channels. In spite of these costly projects, some areas remain at high risk for flooding. The method used, which considered historical data, river corridors identified by hydraulic calculations, geomorphological aspects and land-use planning, can indicate with good accuracy flood-prone areas and in consequence to be an useful tool for the coherent planning of urban expansion and the mitigation of flood risk.

  4. Flood-inundation maps for the Elkhart River at Goshen, Indiana

    USGS Publications Warehouse

    Strauch, Kellan R.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Indiana Office of Community and Rural Affairs, created digital flood-inundation maps for an 8.3-mile reach of the Elkhart River at Goshen, Indiana, extending from downstream of the Goshen Dam to downstream from County Road 17. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to nine selected water levels (stages) at the USGS streamgage at Elkhart River at Goshen (station number 04100500). Current conditions for the USGS streamgages in Indiana may be obtained on the Internet at http://waterdata.usgs.gov/. In addition, stream stage data have been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often colocated with USGS streamgages. NWS-forecasted peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relation at the Elkhart River at Goshen streamgage. The hydraulic model was then used to compute nine water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from approximately bankfull (5 ft) to greater than the highest recorded water level (13 ft). The simulated water-surface profiles were then combined with a geographic information system (GIS) digital-elevation model (DEM), derived from Light Detection and Ranging (LiDAR) data having a 0.37-ft vertical accuracy and 3.9-ft horizontal resolution in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for postflood recovery efforts.

  5. Flash flood hazard assessment through modelling in small semi-arid watersheds. The example of the Beni Mellal watershed in Morocco

    NASA Astrophysics Data System (ADS)

    Werren, G.; Balin, D.; Reynard, E.; Lane, S. N.

    2012-04-01

    Flood modelling is essential for flood hazard assessment. Modelling becomes a challenge in small, ungauged watersheds prone to flash floods, like the ones draining the town of Beni Mellal (Morocco). Four temporary streams meet in the urban area of Beni Mellal, producing every year sheet floods, harmful to infrastructure and to people. Here, statistical analysis may not give realistic results, but the study of these repeated real flash flood events may provide a better understanding of watershed specific hydrology. This study integrates a larger cooperation project between Switzerland and Morroco, aimed at knowledge transfer in disaster risk reduction, especially through hazard mapping and land-use planning, related to implementation of hazard maps. Hydrologic and hydraulic modelling was carried out to obtain hazard maps. An important point was to find open source data and methods that could still produce a realistic model for the area concerned, in order to provide easy-to-use, cost-effective tools for risk management in developing countries like Morocco, where routine data collection is largely lacking. The data used for modelling is the Web available TRMM 3-Hour 0.25 degree rainfall data provided by the Tropical Rainfall Measurement Mission Project (TRMM). Hydrologic modelling for discharge estimation was undertaken using methods available in the HEC-HMS software provided by the US Army Corps of Engineers® (USACE). Several transfer models were used, so as to choose the best-suited method available. As no model calibration was possible for no measured flow data was available, a one-at-the-time sensitivity analysis was performed on the parameters chosen, in order to detect their influence on the results. But the most important verification method remained field observation, through post-flood field campaigns aimed at mapping water surfaces and depths in the flooded areas, as well as river section monitoring, where rough discharge estimates could be obtained using empirical equations. Another information source was local knowledge, as people could give a rough estimation of concentration time by describing flood evolution. Finally, hydraulic modelling of the flooded areas in the urban perimeter was performed using the USACE HEC-RAS® software capabilities. A specific challenge at this stage was field morphology, as the flooded areas form large alluvial fans, with very different flood behaviour compared to flood plains. Model "calibration" at this stage was undertaken using the mapped water surfaces and depths. Great care was taken for field geometry design, where field observations, measured cross sections and field images were used to improve the existing DTM data. The model included protection dikes already built by local authorities in their flood-fight effort. Because of flash-flood specific behaviour, only maximal flooded surfaces and flow velocities were simulated through steady flow analysis in HEC-RAS. The discharge estimates obtained for the chosen event were comparable to 10-year return periods as estimated by the watershed authorities. Times of concentration correspond to this previous estimation and to local people descriptions. The modelled water surfaces reflect field reality. Flash-flood modelling demands extensive knowledge of the studied field in order to compensate data scarcity. However, more precise data, like radar rainfall estimates available in Morocco, would definitely improve outputs. In this perspective, better data access at the local level and good use of the available methods could benefit the disaster risk reduction effort as a whole.

  6. Flood-inundation map and water-surface profiles for floods of selected recurrence intervals, Consumnes River and Deer Creek, Sacramento County, California

    USGS Publications Warehouse

    Guay, Joel R.; Harmon, Jerry G.; McPherson, Kelly R.

    1998-01-01

    The damage caused by the January 1997 floods along the Cosumnes River and Deer Creek generated new interest in planning and managing land use in the study area. The 1997 floodflow peak, the highest on record and considered to be a 150-year flood, caused levee failures at 24 locations. In order to provide a technical basis for floodplain management practices, the U.S. Goelogical Survey, in cooperation with the Federal Emergency Management Agency, completed a flood-inundation map of the Cosumnes River and Deer Creek drainage from Dillard Road bridge to State Highway 99. Flood frequency was estimated from streamflow records for the Cosumnes River at Michigan Bar and Deer Creek near Sloughhouse. Cross sections along a study reach, where the two rivers generally flow parallel to one another, were used with a step-backwater model (WSPRO) to estimate the water-surface profile for floods of selected recurrence intervals. A flood-inundation map was developed to show flood boundaries for the 100-year flood. Water-surface profiles were developed for the 5-, 10-, 50-, 100-, and 500-year floods.

  7. Spatial-Temporal dynamics of surface water flooding and consequences for emergency services accessibility

    NASA Astrophysics Data System (ADS)

    Pattison, Ian; Green, Daniel; Yu, Dapeng; Bosher, Lee; Wilby, Rob; Yang, Lili; Ryley, Tim

    2016-04-01

    Urban areas are increasingly susceptible to surface water flooding, with more intense precipitation and intensification of land development. Flooding has both direct impacts i.e. locations inundated with water, and indirect impacts i.e. transport networks, utility e.g. electricity/water services etc. The direct areas flooded evolve in space through the event, and are predicted by standard inundation models. However, the wider indirect impacts and the spatial-temporal patterns are less constrained and it is these that are needed to manage the impacts in real-time. This paper focusses on the Category One responders of the Fire and Rescue and Ambulance Services in the City of Leicester, East Midlands, UK. Leicester is ranked 16th out of 4215 settlements at risk of surface water flooding in the UK based upon the population at risk (15,200 people) (DEFRA, 2009). The analysis undertaken involved overlaying the flood extent with the Integrated Transport Network (ITN) data within a GIS framework. Then a simple transport routing algorithm was used to predict the travel time from specific nodes representing ambulance or fire stations to different parts of the city. Flood magnitudes with 1:20, 1:100 and 1:1000 return periods have been investigated. Under a scenario of no flooding, 100% of the city is accessible by the six fire stations in the city. However, in the 1 in 20 year surface water flood event the peak inundation results in 66.5% being accessible in the 10 minute permitted time and 6% is totally inaccessible. This falls to 40% and 13% respectively for the 1 in 100 year event. Maps show the area of the city that are accessible by two or more stations within the permitted response time, which shows these areas are the most resilient to surface water flooding. However, it isn't just the peak water depths at every location which impacts accessibility within the city but the spatial-temporal patterns of the inundation. The areas within the 10 minute response time expand and contract through the event as the inundated area makes roads in different parts of the city inaccessible through the event. These maps also allow key access roads to be identified. Key stakeholders, within the City of Leicester, have highlighted the potential benefit of such dynamic accessibility maps for their multi-agency planning and response for surface water flooding.

  8. Hydrodynamic modeling of urban flooding taking into account detailed data about city infrastructure

    NASA Astrophysics Data System (ADS)

    Belikov, Vitaly; Norin, Sergey; Aleksyuk, Andrey; Krylenko, Inna; Borisova, Natalya; Rumyantsev, Alexey

    2017-04-01

    Flood waves moving across urban areas have specific features. Thus, the linear objects of infrastructure (such as embankments, roads, dams) can change the direction of flow or block the water movement. On the contrary, paved avenues and wide streets in the cities contribute to the concentration of flood waters. Buildings create an additional resistance to the movement of water, which depends on the urban density and the type of constructions; this effect cannot be completely described by Manning's resistance law. In addition, part of the earth surface, occupied by buildings, is excluded from the flooded area, which results in a substantial (relative to undeveloped areas) increase of the depth of flooding, especially for unsteady flow conditions. An approach to numerical simulation of urban areas flooding that consists in direct allocating of all buildings and structures on the computational grid are proposed. This can be done in almost full automatic way with usage of modern software. Real geometry of all objects of infrastructure can be taken into account on the base of highly detailed digital maps and satellite images. The calculations based on two-dimensional Saint-Venant equations on irregular adaptive computational meshes, which can contain millions of cells and take into account tens of thousands of buildings and other objects of infrastructure. Flood maps, received as result of modeling, are the basis for the damage and risk assessment for urban areas. The main advantage of the developed method is high-precision calculations, realistic modeling results and appropriate graphical display of the flood dynamics and dam-break wave's propagation on urban areas. Verification of this method has been done on the experimental data and real events simulations, including catastrophic flooding of the Krymsk city in 2012 year.

  9. Sources of uncertainty in flood inundation maps

    USGS Publications Warehouse

    Bales, J.D.; Wagner, C.R.

    2009-01-01

    Flood inundation maps typically have been used to depict inundated areas for floods having specific exceedance levels. The uncertainty associated with the inundation boundaries is seldom quantified, in part, because all of the sources of uncertainty are not recognized and because data available to quantify uncertainty seldom are available. Sources of uncertainty discussed in this paper include hydrologic data used for hydraulic model development and validation, topographic data, and the hydraulic model. The assumption of steady flow, which typically is made to produce inundation maps, has less of an effect on predicted inundation at lower flows than for higher flows because more time typically is required to inundate areas at high flows than at low flows. Difficulties with establishing reasonable cross sections that do not intersect and that represent water-surface slopes in tributaries contribute additional uncertainties in the hydraulic modelling. As a result, uncertainty in the flood inundation polygons simulated with a one-dimensional model increases with distance from the main channel.

  10. NASA's Support to Flood Response

    NASA Astrophysics Data System (ADS)

    Green, D. S.; Murray, J. J.; Stough, T.

    2016-12-01

    The extent of flood and inundation, the impacts on people and infrastructure, and generally the situational awareness on all scales for decision making are areas where NASA is mobilizing scientific results, advanced sensing and technologies, experts and partnerships to support response. NASA has targeted mature application science and ready technology for flood and inundation monitoring and assessment. This includes supporting timely data management and product dissemination with users and partners. Requirements are captured in the form of science-area questions, while solutions measure readiness for use by considering standard tools and approaches that make information more accessible, interoperable, understandable and reliable. The program collaborates with capacity building and areas of education and outreach needed to create and leverage non-traditional partnerships in transdisciplinary areas including socio-economic practice, preparedness and resilience assessment, early warning and forecast response, and emergency management, relief and recovery. The program outcomes also seek alignment with and support to global and community priorities related to water resources and food security. This presentation will examine the achievements of individual projects and the challenges and opportunities of more comprehensive and collaborative teams behind NASA's response to global flooding. Examples from recent event mobilization will be reviewed including to the serious of domestic floods across the south and Midwest United States throughout 2015 and 2016. Progress on the combined use of optical, microwave and SAR remote sensing measurements, topographic and geodetic data and mapping, data sharing practices will be reviewed. Other response case studies will examine global flood events monitored, characterized and supported in various boundary regions and nations. Achievements and future plans will be described for capabilities including global flood modeling, near real time flood water mapping and damage mapping, observatories, missions and tools to assess surface water variability. Progress being made to establish a comprehensive global flood science team and coordinated response system will be highlighted.

  11. Improvements on flood alleviation in Germany: lessons learned from the Elbe flood in August 2002.

    PubMed

    Petrow, Theresia; Thieken, Annegret H; Kreibich, Heidi; Bahlburg, Cord Heinrich; Merz, Bruno

    2006-11-01

    The increase in damage due to natural disasters is directly related to the number of people who live and work in hazardous areas and continuously accumulate assets. Therefore, land use planning authorities have to manage effectively the establishment and development of settlements in flood-prone areas in order to avoid the further increase of vulnerable assets. Germany faced major destruction during the flood in August 2002 in the Elbe and Danube catchments, and many changes have been suggested in the existing German water and planning regulations. This article presents some findings of a "Lessons Learned" study that was carried out in the aftermath of the flood and discusses the following topics: 1) the establishment of comprehensive hazard maps and flood protection concepts, 2) the harmonization of regulations of flood protection at the federal level, 3) the communication of the flood hazard and awareness strategies, and 4) how damage potential can be minimized through measures of area precaution such as resettlement and risk-adapted land use. Although attempts towards a coordinated and harmonized creation of flood hazard maps and concepts have been made, there is still no uniform strategy at all planning levels and for all states (Laender) of the Federal Republic of Germany. The development and communication of possible mitigation strategies for "unthinkable extreme events" beyond the common safety level of a 100-year flood are needed. In order to establish a sustainable and integrated flood risk management, interdisciplinary and catchment-based approaches are needed.

  12. Flash-flood potential assessment and mapping by integrating the weights-of-evidence and frequency ratio statistical methods in GIS environment - case study: Bâsca Chiojdului River catchment (Romania)

    NASA Astrophysics Data System (ADS)

    Costache, Romulus; Zaharia, Liliana

    2017-06-01

    Given the significant worldwide human and economic losses caused due to floods annually, reducing the negative consequences of these hazards is a major concern in development strategies at different spatial scales. A basic step in flood risk management is identifying areas susceptible to flood occurrences. This paper proposes a methodology allowing the identification of areas with high potential of accelerated surface run-off and consequently, of flash-flood occurrences. The methodology involves assessment and mapping in GIS environment of flash flood potential index (FFPI), by integrating two statistical methods: frequency ratio and weights-of-evidence. The methodology was applied for Bâsca Chiojdului River catchment (340 km2), located in the Carpathians Curvature region (Romania). Firstly, the areas with torrential phenomena were identified and the main factors controlling the surface run-off were selected (in this study nine geographical factors were considered). Based on the features of the considered factors, many classes were set for each of them. In the next step, the weights of each class/category of the considered factors were determined, by identifying their spatial relationships with the presence or absence of torrential phenomena. Finally, the weights for each class/category of geographical factors were summarized in GIS, resulting the FFPI values for each of the two statistical methods. These values were divided into five classes of intensity and were mapped. The final results were used to estimate the flash-flood potential and also to identify the most susceptible areas to this phenomenon. Thus, the high and very high values of FFPI characterize more than one-third of the study catchment. The result validation was performed by (i) quantifying the rate of the number of pixels corresponding to the torrential phenomena considered for the study (training area) and for the results' testing (validating area) and (ii) plotting the ROC (receiver operating characteristics) curve.

  13. Active and Passive Remote Sensing Data Time Series for Flood Detection and Surface Water Mapping

    NASA Astrophysics Data System (ADS)

    Bioresita, Filsa; Puissant, Anne; Stumpf, André; Malet, Jean-Philippe

    2017-04-01

    As a consequence of environmental changes surface waters are undergoing changes in time and space. A better knowledge of the spatial and temporal distribution of surface waters resources becomes essential to support sustainable policies and development activities. Especially because surface waters, are not only a vital sweet water resource, but can also pose hazards to human settlements and infrastructures through flooding. Floods are a highly frequent disaster in the world and can caused huge material losses. Detecting and mapping their spatial distribution is fundamental to ascertain damages and for relief efforts. Spaceborne Synthetic Aperture Radar (SAR) is an effective way to monitor surface waters bodies over large areas since it provides excellent temporal coverage and, all-weather day-and-night imaging capabilities. However, emergent vegetation, trees, wind or flow turbulence can increase radar back-scatter returns and pose problems for the delineation of inundated areas. In such areas, passive remote sensing data can be used to identify vegetated areas and support the interpretation of SAR data. The availability of new Earth Observation products, for example Sentinel-1 (active) and Sentinel-2 (passive) imageries, with both high spatial and temporal resolution, have the potential to facilitate flood detection and monitoring of surface waters changes which are very dynamic in space and time. In this context, the research consists of two parts. In the first part, the objective is to propose generic and reproducible methodologies for the analysis of Sentinel-1 time series data for floods detection and surface waters mapping. The processing chain comprises a series of pre-processing steps and the statistical modeling of the pixel value distribution to produce probabilistic maps for the presence of surface waters. Images pre-processing for all Sentinel-1 images comprise the reduction SAR effect like orbit errors, speckle noise, and geometric effects. A modified Split Based Approach (MSBA) is used in order to focus on surface water areas automatically and facilitate the estimation of class models for water and non-water areas. A Finite Mixture Model is employed as the underlying statistical model to produce probabilistic maps. Subsequently, bilateral filtering is applied to take into account spatial neighborhood relationships in the generation of final map. The elimination of shadows effect is performed in a post-processing step. The processing chain is tested on three case studies. The first case is a flood event in central Ireland, the second case is located in Yorkshire county / Great Britain, and the third test case covers a recent flood event in northern Italy. The tests showed that the modified SBA step and the Finite Mixture Models can be applied for the automatic surface water detection in a variety of test cases. An evaluation again Copernicus products derived from very-high resolution imagery was performed, and showed a high overall accuracy and F-measure of the obtained maps. This evaluation also showed that the use of probability maps and bilateral filtering improved the accuracy of classification results significantly. Based on this quantitative evaluation, it is concluded that the processing chain can be applied for flood mapping from Sentinel-1 data. To estimate robust statistical distributions the method requires sufficient surface waters areas in the observed zone and sufficient contrast between surface waters and other land use classes. Ongoing research addresses the fusion of Sentinel-1 and passive remote sensing data (e.g. Sentinel-2) in order to reduce the current shortcomings in the developed processing chain. In this work, fusion is performed at the feature level to better account for the difference image properties of SAR and optical sensors. Further, the processing chain is currently being optimized in terms of calculation time for a further integration as a flood mapping service on the A2S (Alsace Aval Sentinel) high-performance computing infrastructure of University of Strasbourg.

  14. New NASA Maps Show Flooding Changes In Aftermath of Hurricane Harvey

    NASA Image and Video Library

    2017-09-13

    Data from NASA's Soil Moisture Active Passive (SMAP) satellite have been used to create new surface flooding maps of Southeast Texas and the Tennessee Valley following Hurricane Harvey. The SMAP observations detect the proportional cover of surface water within the satellite sensor's field of view. This sequence of images shows changes in the extent of surface flooding from successive five-day SMAP observation composite images. Widespread flooding can be seen in the Houston metropolitan area on Aug. 27 following record rainfall from the Category 4 hurricane, which made landfall on Aug. 25th, 2017 (left image). Flood waters around Houston had substantially receded by Aug. 31 (middle image), while flooding had increased across Louisiana, eastern Arkansas, and western Tennessee as then Tropical Storm Harvey passed over the area. The far right image shows the change in flooded area between Aug. 27 and Aug. 31, with regions showing the most flooding recession depicted in yellow and orange shades and those where flooding had increased depicted in blue shades. The SMAP satellite has a low-frequency (L-band) microwave radiometer with enhanced capabilities for detecting surface water changes in nearly all weather conditions and under low-to-moderate vegetation cover. SMAP provides global coverage with one-to-three-day repeat sampling that is well suited for global monitoring of inland surface water cover dynamics. https://photojournal.jpl.nasa.gov/catalog/PIA21951

  15. Swift delineation of flood-prone areas over large European regions

    NASA Astrophysics Data System (ADS)

    Tavares da Costa, Ricardo; Castellarin, Attilio; Manfreda, Salvatore; Samela, Caterina; Domeneghetti, Alessio; Mazzoli, Paolo; Luzzi, Valerio; Bagli, Stefano

    2017-04-01

    According to the European Environment Agency (EEA Report No 1/2016), a significant share of the European population is estimated to be living on or near a floodplain, with Italy having the highest population density in flood-prone areas among the countries analysed. This tendency, tied with event frequency and magnitude (e.g.: the 24/11/2016 floods in Italy) and the fact that river floods may occur at large scales and at a transboundary level, where data is often sparse, presents a challenge in flood-risk management. The availability of consistent flood hazard and risk maps during prevention, preparedness, response and recovery phases are a valuable and important step forward in improving the effectiveness, efficiency and robustness of evidence-based decision making. The present work aims at testing and discussing the usefulness of pattern recognition techniques based on geomorphologic indices (Manfreda et al., J. Hydrol. Eng., 2011, Degiorgis et al., J Hydrol., 2012, Samela et al., J. Hydrol. Eng., 2015) for the simplified mapping of river flood-prone areas at large scales. The techniques are applied to 25m Digital Elevation Models (DEM) of the Danube, Po and Severn river watersheds, obtained from the Copernicus data and information funded by the European Union - EU-DEM layers. Results are compared to the Pan-European flood hazard maps derived by Alfieri et al. (Hydrol. Proc., 2013) using a set of distributed hydrological (LISFLOOD, van der Knijff et al., Int. J. Geogr. Inf. Sci., 2010, employed within the European Flood Awareness System, www.efas.eu) and hydraulic models (LISFLOOD-FP, Bates and De Roo, J. Hydrol., 2000). Our study presents different calibration and cross-validation exercises of the DEM-based mapping algorithms to assess to which extent, and with which accuracy, they can be reproduced over different regions of Europe. This work is being developed under the System-Risk project (www.system-risk.eu) that received funding from the European Union's Framework Programme for Research and Innovation Horizon 2020 under the Marie Skłodowska-Curie Grant Agreement No. 676027. Keywords: flood hazard, data-scarce regions, large-scale studies, pattern recognition, linear binary classifiers, basin geomorphology, DEM.

  16. 77 FR 18846 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... panels of experts in hydrology, hydraulics, and other pertinent sciences established to review... Incorporated Areas Maps Available for Inspection Online at: http://www.dnr.sc.gov/water/flood/comaps.html City...

  17. Colombia Mi Pronostico Flood Application: Updating and Improving the Mi Pronostico Flood Web Application to Include an Assessment of Flood Risk

    NASA Technical Reports Server (NTRS)

    Rushley, Stephanie; Carter, Matthew; Chiou, Charles; Farmer, Richard; Haywood, Kevin; Pototzky, Anthony, Jr.; White, Adam; Winker, Daniel

    2014-01-01

    Colombia is a country with highly variable terrain, from the Andes Mountains to plains and coastal areas, many of these areas are prone to flooding disasters. To identify these risk areas NASA's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was used to construct a digital elevation model (DEM) for the study region. The preliminary risk assessment was applied to a pilot study area, the La Mosca River basin. Precipitation data from the National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM)'s near-real-time rainfall products as well as precipitation data from the Instituto de Hidrologia, Meteorologia y Estudios Ambientales (the Institute of Hydrology, Meteorology and Environmental Studies, IDEAM) and stations in the La Mosca River Basin were used to create rainfall distribution maps for the region. Using the precipitation data and the ASTER DEM, the web application, Mi Pronóstico, run by IDEAM, was updated to include an interactive map which currently allows users to search for a location and view the vulnerability and current weather and flooding conditions. The geospatial information was linked to an early warning system in Mi Pronóstico that can alert the public of flood warnings and identify locations of nearby shelters.

  18. Development of a hydraulic model and flood-inundation maps for the Wabash River near the Interstate 64 Bridge near Grayville, Illinois

    USGS Publications Warehouse

    Boldt, Justin A.

    2018-01-16

    A two-dimensional hydraulic model and digital flood‑inundation maps were developed for a 30-mile reach of the Wabash River near the Interstate 64 Bridge near Grayville, Illinois. The flood-inundation maps, which can be accessed through the U.S. Geological Survey (USGS) Flood Inundation Mapping Science web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Wabash River at Mount Carmel, Ill (USGS station number 03377500). Near-real-time stages at this streamgage may be obtained on the internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS AHPS site MCRI2). The NWS AHPS forecasts peak stage information that may be used with the maps developed in this study to show predicted areas of flood inundation.Flood elevations were computed for the Wabash River reach by means of a two-dimensional, finite-volume numerical modeling application for river hydraulics. The hydraulic model was calibrated by using global positioning system measurements of water-surface elevation and the current stage-discharge relation at both USGS streamgage 03377500, Wabash River at Mount Carmel, Ill., and USGS streamgage 03378500, Wabash River at New Harmony, Indiana. The calibrated hydraulic model was then used to compute 27 water-surface elevations for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from less than the action stage (9 ft) to the highest stage (35 ft) of the current stage-discharge rating curve. The simulated water‑surface elevations were then combined with a geographic information system digital elevation model, derived from light detection and ranging data, to delineate the area flooded at each water level.The availability of these maps, along with information on the internet regarding current stage from the USGS streamgage at Mount Carmel, Ill., and forecasted stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood-response activities such as evacuations and road closures, as well as for postflood recovery efforts.

  19. Map showing flood and surface water information in the Sugar House quadrangle, Salt Lake County, Utah

    USGS Publications Warehouse

    Van Horn, Richard; Fields, F.K.

    1974-01-01

    In the past man has built on land that might be covered by floodwaters, with little consideration of the consequences. The result has been disastrous to those in the path of floodwaters and has cost the loss of thousands of lives and untold billions of dollars in property damage in the United States. Salt Lake County, of which the Sugar House quadrangle is a part, has had many floods in the past and can be expected to have more in the future. Construction has taken place in filled or dried-up marshes and lakes, in spring areas, and even in stream channels. Lack of prior knowledge of these and other forms of surface water (water at the surface of the ground) can increase construction and maintenance costs significantly.The map shows the area that probably will be covered by floods at least once in every 100 years on the long-term average (unit IRF, intermediate regional flood), the area that probably will be covered by floods from the worst possible combination of very wet weather and high streamflow reasonably expected of the area (unit SPF, standard project flood), the mapped extent of streamflow by channel shifting or flooding in the past 5,000 years (unit fa), and the probable maximum extent of damaging flash floods and mudflows from small valleys in the Wasatch Range. The map also shows the location of water at the surface of the ground: lakes, streams, springs, weep holes, canals, and reservoirs. Lakes and marshes that existed within the past 100 years, but now are drained, filled, or dried up, are also shown.The following examples show that the presence of water can be desirable or undesirable, depending on how the water occurs. Floods, the most spectacular form of surface water, may result in great property damage and loss of life. Lakes normally are beneficial, in that they may support plant growth and provide habitats for fish and other wildlife, provide water for livestock, and can be used for recreation. Springs may or may not be desirable: they may provide a source of water for domestic or stock use but are undesirable if they appear in a foundation excavation for a building. Thus, the location of areas that may be affected by floods and other surface water is important to people concerned with land-use planning, zoning, and legislation, and with the environment in which we must live.

  20. 75 FR 28492 - Suspension of Community Eligibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... Special Flood Hazard Areas (SFHAs) in these communities by publishing a Flood Insurance Rate Map (FIRM... Do. Joseph County. Emerg; December 15, 1990, Reg; June 4, 2010, Susp. White Pigeon, Village of...

  1. Radar Mosaic of Africa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is an image of equatorial Africa, centered on the equator at longitude 15degrees east. This image is a mosaic of almost 4,000 separate images obtained in 1996 by the L-band imaging radar onboard the Japanese Earth Resources Satellite. Using radar to penetrate the persistent clouds prevalent in tropical forests, the Japanese Earth Resources Satellite was able for the first time to image at high resolution this continental scale region during single flooding seasons. The area shown covers about 7.4 million square kilometers (2.8 million square miles) of land surface, spans more than 5,000 kilometers(3,100 miles) east and west and some 2,000 kilometers (1,240 miles) north and south. North is up in this image. At the full resolution of the mosaic (100 meters or 330 feet), this image is more than 500 megabytes in size, and was processed from imagery totaling more than 60 gigabytes.

    Central Africa was imaged twice in 1996, once between January and March, which is the major low-flood season in the Congo Basin, and once between October and November, which is the major high-flood season in the Congo Basin. The red color corresponds to the data from the low-flood season, the green to the high-flood season, and the blue to the 'texture' of the low-flood data. The forests appear green as a result, the flooded and palm forests, as well as urban areas, appear yellow, the ocean and lakes appear black, and savanna areas appear blue, black or green, depending on the savanna type, surface topography and other factors. The areas of the image that are black and white were mapped only between January and March 1996. In these areas, the black areas are savanna or open water, the gray are forests, and the white areas are flooded forests or urban areas. The Congo River dominates the middle of the image, where the nearby forests that are periodically flooded by the Congo and its tributaries stand out as yellow. The Nile River flows north from Lake Victoria in the middle right of the color portion of the mosaic.

    This image is one of the products resulting from the Global Rain Forest Mapping project, a joint project between the National Space Development Agency of Japan, the Space Applications Institute of the Joint Research Centre of the European Commission, NASA's Jet Propulsion Laboratory and an international team of scientists. The goal of the Global Rain Forest Mapping mission is to map with the Japanese Earth Resources Satellite the world's tropical rain forests. The Japanese satellite was launched in 1992 by the National Space Development Agency of Japan and the Japanese Ministry of International Trade and Industry, with support from the Remote Sensing Technology Center of Japan.

  2. Characteristics of peak streamflows and extent of inundation in areas of West Virginia and southwestern Virginia affected by flooding, June 2016

    USGS Publications Warehouse

    Austin, Samuel H.; Watson, Kara M.; Lotspeich, R. Russell; Cauller, Stephen J.; White , Jeremy S.; Wicklein, Shaun M.

    2017-11-17

    Heavy rainfall occurred across central and southern West Virginia in June 2016 as a result of repeated rounds of torrential thunderstorms. The storms caused major flooding and flash flooding in central and southern West Virginia with Kanawha, Fayette, Nicholas, and Greenbrier Counties among the hardest hit. Over the duration of the storms, from 8 to 9.37 inches of rain was reported in areas in Greenbrier County. Peak streamflows were the highest on record at 7 locations, and streamflows at 18 locations ranked in the top five for the period of record at U.S. Geological Survey streamflow-gaging stations used in this study. Following the storms, U.S. Geological Survey hydrographers identified and documented 422 high-water marks in West Virginia, noting location and height of the water above land surface. Many of these high-water marks were used to create flood-inundation maps for selected communities of West Virginia that experienced flooding in June 2016. Digital datasets of the inundation areas, mapping boundaries, and water depth rasters are available online.

  3. The use of remote sensing imagery for environmental land use and flood hazard mapping

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Miller, D. A.; Foster, K. E.

    1976-01-01

    Flood hazard maps have been constructed for Graham, Yuma, and Yavapai Counties in Arizona using remote sensing techniques. Watershed maps of priority areas were selected on the basis of their interest to the county planning staff and represented areas of imminent or ongoing development and those known to be subject to inundation by storm runoff. Landsat color infrared imagery at scales of 1:1,000,000, 1:500,000, and 1:250,000 was used together with high-altitude aerial photography at scales of 1:120,000 and 1:60,000 to determine drainage patterns and erosional features, soil type, and the extent and type of ground cover. The satellite imagery was used in the form of 70 mm chips for enhancement in a color additive viewer and in all available enlargement modes. Field checking served as the main backup to the interpretations. Areas with high susceptibility to flooding were determined with a high level of confidence from the remotely sensed imagery.

  4. Two-Dimensional Flood-Inundation Model of the Flint River at Albany, Georgia

    USGS Publications Warehouse

    Musser, Jonathan W.; Dyar, Thomas R.

    2007-01-01

    Potential flow characteristics of future flooding along a 4.8-mile reach of the Flint River in Albany, Georgia, were simulated using recent digital-elevation-model data and the U.S. Geological Survey finite-element surface-water modeling system for two-dimensional flow in the horizontal plane (FESWMS-2DH). Simulated inundated areas, in 1-foot (ft) increments, were created for water-surface altitudes at the Flint River at Albany streamgage (02352500) from 192.5-ft altitude with a flow of 123,000 cubic feet per second (ft3/s) to 179.5-ft altitude with a flow of 52,500 ft3/s. The model was calibrated to match actual floods during July 1994 and March 2005 and Federal Emergency Management Administration floodplain maps. Continuity checks of selected stream profiles indicate the area near the Oakridge Drive bridge had lower velocities than other areas of the Flint River, which contributed to a rise in the flood-surface profile. The modeled inundated areas were mapped onto monochrome orthophoto imagery for use in planning for future floods. As part of a cooperative effort, the U.S. Geological Survey, the City of Albany, and Dougherty County, Georgia, conducted this study.

  5. Mapping the Extent and Magnitude of Sever Flooding Induced by Hurricane IRMA with Multi-Temporal SENTINEL-1 SAR and Insar Observations

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Wdowinski, S.; Oliver-Cabrera, T.; Koirala, R.; Jo, M. J.; Osmanoglu, B.

    2018-04-01

    During Hurricane Irma's passage over Florida in September 2017, many sections of the state experienced heavy rain and sequent flooding. In order to drain water out of potential flooding zones and assess property damage, it is important to map the extent and magnitude of the flooded areas at various stages of the storm. We use Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) observations, acquired by Sentinel-1 before, during and after the hurricane passage, which enable us to evaluate surface condition during different stages of the hurricane. This study uses multi-temporal images acquired under dry condition before the hurricane to constrain the background backscattering signature. Flooded areas are detected when the backscattering during the hurricane is statistically significantly different from the average dry conditions. The detected changes can be either an increase or decrease of the backscattering, which depends on the scattering characteristics of the surface. In addition, water level change information in Palmdale, South Florida is extracted from an interferogram with the aid of a local water gauge as the reference. The results of our flooding analysis revealed that the majority of the study area in South Florida was flooded during Hurricane Irma.

  6. An experimental system for flood risk forecasting and monitoring at global scale

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Alfieri, Lorenzo; Kalas, Milan; Lorini, Valerio; Salamon, Peter

    2017-04-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by a wide range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasting, combining streamflow estimations with expected inundated areas and flood impacts. Finally, emerging technologies such as crowdsourcing and social media monitoring can play a crucial role in flood disaster management and preparedness. Here, we present some recent advances of an experimental procedure for near-real time flood mapping and impact assessment. The procedure translates in near real-time the daily streamflow forecasts issued by the Global Flood Awareness System (GloFAS) into event-based flood hazard maps, which are then combined with exposure and vulnerability information at global scale to derive risk forecast. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To increase the reliability of our forecasts we propose the integration of model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification and correction of impact forecasts. Finally, we present the results of preliminary tests which show the potential of the proposed procedure in supporting emergency response and management.

  7. 75 FR 52861 - Suspension of Community Eligibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... Special Flood Hazard Areas (SFHAs) in these communities by publishing a Flood Insurance Rate Map (FIRM.... Duck Hill, Town of, 280118 June 23, 1975, ......do Do. Montgomery County. Emerg; April 2, 1986, Reg...

  8. Flood-inundation maps for the Saluda River from Old Easley Bridge Road to Saluda Lake Dam near Greenville, South Carolina

    USGS Publications Warehouse

    Benedict, Stephen T.; Caldwell, Andral W.; Clark, Jimmy M.

    2013-01-01

    Digital flood-inundation maps for a 3.95-mile reach of the Saluda River from approximately 815 feet downstream from Old Easley Bridge Road to approximately 150 feet downstream from Saluda Lake Dam near Greenville, South Carolina, were developed by the U.S. Geological Survey (USGS). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Saluda River near Greenville, South Carolina (station 02162500). Current conditions at the USGS streamgage may be obtained through the National Water Information System Web site at http://waterdata.usgs.gov/sc/nwis/uv/?site_no=02162500&PARAmeter_cd=00065,00060,00062. The National Weather Service (NWS) forecasts flood hydrographs at many places that are often collocated with USGS streamgages. Forecasted peak-stage information is available on the Internet at the NWS Advanced Hydrologic Prediction Service (AHPS) flood-warning system Web site (http://water.weather.gov/ahps/) and may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-streamflow relations at USGS streamgage station 02162500, Saluda River near Greenville, South Carolina. The hydraulic model was then used to determine water-surface profiles for flood stages at 1.0-foot intervals referenced to the streamgage datum and ranging from approximately bankfull to 2 feet higher than the highest recorded water level at the streamgage. The simulated water-surface profiles were then exported to a geographic information system, ArcGIS, and combined with a digital elevation model (derived from Light Detection and Ranging [LiDAR] data with a 0.6-foot vertical Root Mean Square Error [RMSE] and a 3.0-foot horizontal RMSE), using HEC-GeoRAS tools in order to delineate the area flooded at each water level. The availability of these maps, along with real-time stage data from the USGS streamgage station 02162500 and forecasted stream stages from the NWS, can provide emergency management personnel and residents with information that is critical during flood-response and flood-recovery activities, such as evacuations, road closures, and disaster declarations.

  9. Global Rapid Flood Mapping System with Spaceborne SAR Data

    NASA Astrophysics Data System (ADS)

    Yun, S. H.; Owen, S. E.; Hua, H.; Agram, P. S.; Fattahi, H.; Liang, C.; Manipon, G.; Fielding, E. J.; Rosen, P. A.; Webb, F.; Simons, M.

    2017-12-01

    As part of the Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards, at NASA's Jet Propulsion Laboratory and California Institute of Technology, we have developed an automated system that produces derived products for flood extent map generation using spaceborne SAR data. The system takes user's input of area of interest polygons and time window for SAR data search (pre- and post-event). Then the system automatically searches and downloads SAR data, processes them to produce coregistered SAR image pairs, and generates log amplitude ratio images from each pair. Currently the system is automated to support SAR data from the European Space Agency's Sentinel-1A/B satellites. We have used the system to produce flood extent maps from Sentinel-1 SAR data for the May 2017 Sri Lanka floods, which killed more than 200 people and displaced about 600,000 people. Our flood extent maps were delivered to the Red Cross to support response efforts. Earlier we also responded to the historic August 2016 Louisiana floods in the United States, which claimed 13 people's lives and caused over $10 billion property damage. For this event, we made synchronized observations from space, air, and ground in close collaboration with USGS and NOAA. The USGS field crews acquired ground observation data, and NOAA acquired high-resolution airborne optical imagery within the time window of +/-2 hours of the SAR data acquisition by JAXA's ALOS-2 satellite. The USGS coordinates of flood water boundaries were used to calibrate our flood extent map derived from the ALOS-2 SAR data, and the map was delivered to FEMA for estimating the number of households affected. Based on the lessons learned from this response effort, we customized the ARIA system automation for rapid flood mapping and developed a mobile friendly web app that can easily be used in the field for data collection. Rapid automatic generation of SAR-based global flood maps calibrated with independent observations from ground, air, and space will provide reliable snapshot extent of many flooding events. SAR missions with easy data access, such as the Sentinel-1 and NASA's upcoming NISAR mission, combined with the ARIA system, will enable forming a library of flood extent maps, which can soon support flood modeling community, by providing observation-based constraints.

  10. A simple methodology to produce flood risk maps consistent with FEMA's base flood elevation maps: Implementation and validation over the entire contiguous United States

    NASA Astrophysics Data System (ADS)

    Goteti, G.; Kaheil, Y. H.; Katz, B. G.; Li, S.; Lohmann, D.

    2011-12-01

    In the United States, government agencies as well as the National Flood Insurance Program (NFIP) use flood inundation maps associated with the 100-year return period (base flood elevation, BFE), produced by the Federal Emergency Management Agency (FEMA), as the basis for flood insurance. A credibility check of the flood risk hydraulic models, often employed by insurance companies, is their ability to reasonably reproduce FEMA's BFE maps. We present results from the implementation of a flood modeling methodology aimed towards reproducing FEMA's BFE maps at a very fine spatial resolution using a computationally parsimonious, yet robust, hydraulic model. The hydraulic model used in this study has two components: one for simulating flooding of the river channel and adjacent floodplain, and the other for simulating flooding in the remainder of the catchment. The first component is based on a 1-D wave propagation model, while the second component is based on a 2-D diffusive wave model. The 1-D component captures the flooding from large-scale river transport (including upstream effects), while the 2-D component captures the flooding from local rainfall. The study domain consists of the contiguous United States, hydrologically subdivided into catchments averaging about 500 km2 in area, at a spatial resolution of 30 meters. Using historical daily precipitation data from the Climate Prediction Center (CPC), the precipitation associated with the 100-year return period event was computed for each catchment and was input to the hydraulic model. Flood extent from the FEMA BFE maps is reasonably replicated by the 1-D component of the model (riverine flooding). FEMA's BFE maps only represent the riverine flooding component and are unavailable for many regions of the USA. However, this modeling methodology (1-D and 2-D components together) covers the entire contiguous USA. This study is part of a larger modeling effort from Risk Management Solutions° (RMS) to estimate flood risk associated with extreme precipitation events in the USA. Towards this greater objective, state-of-the-art models of flood hazard and stochastic precipitation are being implemented over the contiguous United States. Results from the successful implementation of the modeling methodology will be presented.

  11. Cartographic Design in Flood Risk Mapping - A Challenge for Communication and Stakeholder Involvement

    NASA Astrophysics Data System (ADS)

    Fuchs, S.; Serrhini, K.; Dorner, W.

    2009-12-01

    In order to mitigate flood hazards and to minimise associated losses, technical protection measures have been additionally and increasingly supplemented by non-technical mitigation, i.e. land-use planning activities. This is commonly done by creating maps which indicate such areas by different cartographic symbols, such as colour, size, shape, and typography. Hazard and risk mapping is the accepted procedure when communicating potential threats to stakeholders, and is therefore required in the European Member States in order to meet the demands of the European Flood Risk Directive. However, available information is sparse concerning the impact of such maps on different stakeholders, i.e., specialists in flood risk management, politicians, and affected citizens. The lack of information stems from a traditional approach to map production which does not take into account specific end-user needs. In order to overcome this information shortage the current study used a circular approach such that feed-back mechanisms originating from different perception patterns of the end user would be considered. Different sets of small-scale as well as large-scale risk maps were presented to different groups of test persons in order to (1) study reading behaviour as well as understanding and (2) deduce the most attractive components that are essential for target-oriented communication of cartographic information. Therefore, the method of eye tracking was applied using a video-oculography technique. This resulted in a suggestion for a map template which fulfils the requirement to serve as an efficient communication tool for specialists and practitioners in hazard and risk mapping as well as for laypersons. Taking the results of this study will enable public authorities who are responsible for flood mitigation to (1) improve their flood risk maps, (2) enhance flood risk awareness, and therefore (3) create more disaster-resilient communities.

  12. Calibration of 2D Hydraulic Inundation Models with SAR Imagery in the Floodplain Region of the Lower Tagus River

    NASA Astrophysics Data System (ADS)

    Pestana, Rita; Matias, Magda; Canelas, Ricardo; Roque, Dora; Araujo, Amelia; Van Zeller, Emilia; Trigo-Teixeira, Antonio; Ferreira, Rui; Oliveira, Rodrigo; Heleno, Sandra; Falcão, Ana Paula; Gonçalves, Alexandre B.

    2014-05-01

    Floods account for 40% of all natural hazards worldwide and were responsible for the loss of about 100 thousand human lives and affected more than 1,4 million people in the last decade of the 20th century alone. Floods have been the deadliest natural hazard in Portugal in the last 100 years. In terms of inundated area, the largest floods in Portugal occur in the Lower Tagus (LT) River. On average, the river overflows every 2.5 years, at times blocking roads and causing important agricultural damages. The economical relevance of the area and the high frequency of the relevant flood events make the LT floodplain a good pilot region to conduct a data-driven, systematic calibration work of flood hydraulic models. This paper focus on the calibration of 2D-horizontal flood simulation models for the floods of 1997, 2001 and 2006 on a 70-km stretch of the LT River, between Tramagal and Omnias, using the software Tuflow. This computational engine provides 2D solutions based on the Stelling finite-difference, alternating direction implicit (ADI) scheme that solves the full 2D free surface shallow-water flow equations and allowed the introduction of structures that constrain water flow. The models were based on a digital terrain model (DTM) acquired in 2008 by radar techniques (5m of spatial resolution) and on in situ measurements of water elevation in Omnias (downstream boundary condition) and discharge in Tramagal and Zezere (upstream boundary conditions). Due to the relevancy of several dykes on this stretch of the LT River, non-existent on the available DTM, five of them were introduced in the models. All models have the same boundaries and were simulated using steady-state flow initial conditions. The resolution of the 2D grid mesh was 30m. Land cover data for the study area was retrieved from Corine Land Cover 2006 (CO-ordination of INformation on the Environment) with spatial resolution of 100m, and combined with estimated manning coefficients obtained in literature for the different land cover classes. Flood extent maps, derived from satellite-born Synthetic Aperture Radar (SAR), namely ERS SAR and ENVISAT ASAR imagery, provided the spatially distributed data needed for the calibration of the hydraulic models for the several floods. The flood extent maps obtained for each simulation were then compared with the flood extent maps derived from SAR imagery for each flood and the roughness coefficients changed accordingly. The models were also calibrated in terms of the stage at the gauging station Almourol, located 12km downriver from Tramagal. The combination of the calibration results for the several past floods provided 100 meters resolution Manning coefficient maps of the study area. An application of the obtained calibrated Manning coefficient maps was made for the largest flood of the 20th century (February 1979), for which no SAR imagery was available. In this case validation of the model was made in terms of the stage at the gauging station Almourol and at flood stage marks distributed throughout the floodplain.

  13. LiDAR and IFSAR-Based Flood Inundation Model Estimates for Flood-Prone Areas of Afghanistan

    NASA Astrophysics Data System (ADS)

    Johnson, W. C.; Goldade, M. M.; Kastens, J.; Dobbs, K. E.; Macpherson, G. L.

    2014-12-01

    Extreme flood events are not unusual in semi-arid to hyper-arid regions of the world, and Afghanistan is no exception. Recent flashfloods and flashflood-induced landslides took nearly 100 lives and destroyed or damaged nearly 2000 homes in 12 villages within Guzargah-e-Nur district of Baghlan province in northeastern Afghanistan. With available satellite imagery, flood-water inundation estimation can be accomplished remotely, thereby providing a means to reduce the impact of such flood events by improving shared situational awareness during major flood events. Satellite orbital considerations, weather, cost, data licensing restrictions, and other issues can often complicate the acquisition of appropriately timed imagery. Given the need for tools to supplement imagery where not available, complement imagery when it is available, and bridge the gap between imagery based flood mapping and traditional hydrodynamic modeling approaches, we have developed a topographic floodplain model (FLDPLN), which has been used to identify and map river valley floodplains with elevation data ranging from 90-m SRTM to 1-m LiDAR. Floodplain "depth to flood" (DTF) databases generated by FLDPLN are completely seamless and modular. FLDPLN has been applied in Afghanistan to flood-prone areas along the northern and southern flanks of the Hindu Kush mountain range to generate a continuum of 1-m increment flood-event models up to 10 m in depth. Elevation data used in this application of FLDPLN included high-resolution, drone-acquired LiDAR (~1 m) and IFSAR (5 m; INTERMAP). Validation of the model has been accomplished using the best available satellite-derived flood inundation maps, such as those issued by Unitar's Operational Satellite Applications Programme (UNOSAT). Results provide a quantitative approach to evaluating the potential risk to urban/village infrastructure as well as to irrigation systems, agricultural fields and archaeological sites.

  14. Analysis of floods, including the tropical storm Irene inundation, of the Ottauquechee River in Woodstock, Bridgewater, and Killington and of Reservoir Brook in Bridgewater and Plymouth, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.

    2014-01-01

    In addition to the two digital flood inundation maps, flood profiles were created that depict the study reach flood elevation of tropical storm Irene of August 2011 and the 10-, 2-, 1-, and 0.2-percent AEP floods, also known as the 10-, 50-, 100-, and 500-year floods, respectively. The 10-, 2-, 1-, and 0.2-percent AEP flood discharges were determined using annual peak flow data from the USGS Ottauquechee River near West Bridgewater, Vt. streamgage (station 01150900). Flood profiles were computed for the Ottauquechee River and Reservoir Brook by means of a one-dimensional step-backwater model. The model was calibrated using documented high-water marks of the peak of the tropical storm Irene flood of August 2011 as well as stage discharge data as determined for USGS Ottauquechee River near West Bridgewater, Vt. streamgage (station 01150900). The simulated water-surface profiles were combined with a digital elevation model within a geographic information system to delineate the areas flooded during tropical storm Irene and for the 1-percent AEP water-surface profile. The digital elevation model data were derived from light detection and ranging (lidar) data obtained for a 3,281-foot (1,000-meter) corridor along the Ottauquechee River study reach and were augmented with 33-foot (10- meter) contour interval data in the modeled flood-inundation areas outside the lidar corridor. The 33-foot (10-meter) contour interval USGS 15-minute quadrangle topographic digital raster graphics map used to augment lidar data was produced at a scale of 1:24,000. The digital flood inundation maps and flood profiles along with information regarding current stage from USGS streamgages on the Internet provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

  15. Linking flood peak, flood volume and inundation extent: a DEM-based approach

    NASA Astrophysics Data System (ADS)

    Rebolho, Cédric; Furusho-Percot, Carina; Blaquière, Simon; Brettschneider, Marco; Andréassian, Vazken

    2017-04-01

    Traditionally, flood inundation maps are computed based on the Shallow Water Equations (SWE) in one or two dimensions, with various simplifications that have proved to give good results. However, the complexity of the SWEs often requires a numerical resolution which can need long computing time, as well as detailed cross section data: this often results in restricting these models to rather small areas abundant with high quality data. This, along with the necessity for fast inundation mapping, are the reason why rapid inundation models are being designed, working for (almost) any river with a minimum amount of data and, above all, easily available data. Our model tries to follow this path by using a 100m DEM over France from which are extracted a drainage network and the associated drainage areas. It is based on two pre-existing methods: (1) SHYREG (Arnaud et al.,2013), a regionalized approach used to calculate the 2-year and 10-year flood quantiles (used as approximated bankfull flow and maximum discharge, respectively) for each river pixel of the DEM (below a 10 000 km2 drainage area) and (2) SOCOSE (Mailhol,1980), which gives, amongst other things, an empirical formula of a characteristic flood duration (for each pixel) based on catchment area, average precipitation and temperature. An overflow volume for each river pixel is extracted from a triangular shaped synthetic hydrograph designed with SHYREG quantiles and SOCOSE flood duration. The volume is then spread from downstream to upstream one river pixel at a time. When the entire hydrographic network is processed, the model stops and generates a map of potential inundation area associated with the 10-year flood quantile. Our model can also be calibrated using past-events inundation maps by adjusting two parameters, one which modifies the overflow duration, and the other, equivalent to a minimum drainage area for river pixels to be flooded. Thus, in calibration on a sample of 42 basins, the first draft of the model showed a 0.51 median Fit (intersection of simulated and observed areas divided by the union of the two, Bates and De Roo, 2000) and a 0.74 maximum. Obviously, this approach is quite rough, and would require testing on events of homogeneous return periods (which is not the case for now). The next steps in the test and the development of our method include the use of the AIGA distributed model to simulate past-events hydrographs, the search for a new way to automatically approach bankfull flow and the integration of the results in our model to build dynamic maps of the flood. References Arnaud, P., Eglin, Y., Janet, B., and Payrastre, O. (2013). Notice utilisateur : bases de données SHYREG-Débit. Méthode - Performances - Limites. Bates, P. D. and De Roo, A. P. J. (2000). A simple raster-based model for flood inundation simulation. Journal of Hydrology, 236(1-2):54-77. Mailhol, J. (1980). Pour une approche plus réaliste du temps caractéristique de crues des bassins versants. In Actes du Colloque d'Oxford, volume 129, pages 229-237, Oxford. IAHS-AISH.

  16. Application of Satellite Observations to Manage Natural Disasters in the Lake Victoria Basin

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Policelli, F.; Irwin, D.; Korme, Tesfaye; Adler, Bob; Hong, Yang

    2010-01-01

    Lake Victoria, the second largest fresh water lake in the Eastern part of Africa is a vital natural resource for the economic well being and prosperity of over 30 million people located in riparian regions of Uganda, Kenya and Tanzania. It covers a large area of about 68,870 km2 and produces a GDP of about US $30 billion per year. The region is also very much prone to natural disasters such as severe floods during heavy precipitation periods in the Eastern part of Africa. In addition to floods, the precipitation also produces large infestations of mosquito larvae due to the standing water in many areas. This further causes multiple vector borne diseases such as Malaria, Rift Valley Fever and more. These problems are of serious concern and require active and aggressive surveillance and management to minimize the loss of human and animal lives and property damage. Satellite imagery and observations along with the in situ measurements provide a great tool to analyze and study this area and inform the policy makers to make calculated policy decisions which are more beneficial to the environment. Recently, NASA and USAID have joined forces with the Regional Center for Mapping of Resources for Development (RCMRD) located in Nairobi, Kenya to utilize multiple NASA sensors such as TRMM, SRTM and MODIS to develop flood potential maps for the Lake Victoria Basin. The idea is to generate a flood forecasts and "nowcasts" that can be sent to the disaster management organizations of Uganda, Kenya, and Tanzania. Post flood event satellite imagery is becoming a common tool to assess the areas inundated by flooding. However, this work is unique undertaking by utilizing land imaging and atmospheric satellites to build credible flood potential maps. At same time, we are also studying the potential occurrence and spread of Rift Valley Fever disease based on the short term climate records and precipitation data. These activities require multi-nation coordination and agreements and multiple operational agencies within each respective country. It also requires credible in situ data such as precipitation, river flow rates and lake levels to further validate the global and regional Hood models and algorithms. This also requires a considerable amount of training and capacity building for the RCMRD experts who will help us validate the model results and eventually transition it for operational use. In a final analysis, Disaster management and humanitarian aid organizations need accurate and timely information for making decisions regarding deployment of relief teams and emergency supplies during major floods. Flood maps based on the use of satellite data have proven extremely valuable to such organizations for identifying the location, extent, and severity of these events. However, despite extraordinary efforts on the part of remote sensing data providers to rapidly deliver such maps, there is typically a delay of several days or even weeks from the on-set of flooding until such maps are available to the disaster management community. This paper summarizes efforts at NASA to address this problem through development of an integrated and automated process of a) flood forecasting b) flood detection, c) satellite data acquisition, d) rapid Hood mapping and distribution, and e) validation of Hood forecasting and detection products.

  17. On the combined use of high temporal resolution, optical satellite data for flood monitoring and mapping: a possible contribution from the RST approach

    NASA Astrophysics Data System (ADS)

    Faruolo, M.; Coviello, I.; Lacava, T.; Pergola, N.; Tramutoli, V.

    2009-04-01

    Among natural disasters, floods are ones of those more common and devastating, often causing high environmental, economical and social costs. When a flooding event occurs, timely information about precise location, extent, dynamic evolution, etc., is highly required in order to effectively support civil protection activities aimed at managing the emergency. Satellite remote sensing may represent a supplementary information source, providing mapping and continuous monitoring of flooding extent as well as a quick damage assessment. Such purposes need frequently updated satellite images as well as suitable image processing techniques, able to identify flooded areas with reliability and timeliness. Recently, an innovative satellite data analysis approach (named RST, Robust Satellite Technique) has been applied to NOAA-AVHRR (Advanced Very High Resolution Radiometer) satellite data in order to dynamically map flooded areas. Thanks to a multi-temporal analysis of co-located satellite records and an automatic change detection scheme, such an approach allows to overcome major drawbacks related to the previously proposed methods (mostly not automatic and based on empirically chosen thresholds, often affected by false identifications). In this paper, RST approach has been for the first time applied to both AVHRR and EOS/MODIS (Moderate Resolution Imaging Spectroradiometer) data, in order to assess its potential - in flooded area mapping and monitoring - on different satellite packages characterized by different spectral and spatial resolutions. As a study case, the flooding event which hit the Europe in August 2002 has been selected. Preliminary results shown in this study seem to confirm the potential of such an approach in providing reliable and timely information, useful for near real time flood hazard assessment and monitoring, using both MODIS and AVHRR data. Moreover, the combined use of information coming from both satellite packages (easily achievable thanks to the intrinsic RST exportability on different sensors) significantly improves (from 6 to less than 3 hours) surface sampling rate, reducing the negative impact of cloud coverage, currently one of the main limit of this kind of satellite technology.

  18. Monitoring flood extent and area through multi-sensor, multi-temporal remote sensing: the Strymonas (Greece) river flood

    NASA Astrophysics Data System (ADS)

    Refice, Alberto; Tijani, Khalid; Lovergine, Francesco P.; D'Addabbo, Annarita; Nutricato, Raffaele; Morea, Alberto

    2017-04-01

    Satellite monitoring of flood events at high spatial and temporal resolution is considered a difficult problem, mainly due to the lack of data with sufficient acquisition frequency and timeliness. The problem is worsened by the typically cloudy weather conditions associated to floods, which obstacle the propagation of e.m. waves in the optical spectral range, forbidding acquisitions by optical sensors. This problem is not present for longer wavelengths, so that radar imaging sensors are recognized as viable solutions for long-term flood monitoring. In selected cases, however, weather conditions may remain clear for sufficient amounts of time, enabling monitoring of the evolution of flood events through long time series of satellite images, both optical and radar. In this contribution, we present a case study of long-term integrated monitoring of a flood event which affected part of the Strymonas river basin, a transboundary river with source in Bulgaria, which flows then through Greece up to the Aegean Sea. The event, which affected the floodplain close to the river mouth, started at the beginning of April 2015, due to heavy rain, and lasted for several months, with some water pools still present at the beginning of September. Due to the arid climate characterizing the area, weather conditions were cloud-free for most of the period covering the event. We collected one high-resolution, X-band, COSMO-SkyMed, 5 C-band, Sentinel-1 SAR images, and 11 optical Landsat-8 images of the area. SAR images were calibrated, speckle-filtered and precisely geocoded; optical images were radiometrically corrected to obtain ground reflectance values from which NDVI maps were derived. The images were then thresholded to obtain binary flood maps for each day. Threshold values for microwave and optical data were calibrated by comparing one SAR and one optical image acquired on the same date. Results allow to draw a multi-temporal map of the flood evolution with high temporal resolution. The extension of flooded area can also be tracked in time, allowing to envisage testing of evapotranspiration/absorption models.

  19. Assessing the Impacts of Flooding Caused by Extreme Rainfall Events Through a Combined Geospatial and Numerical Modeling Approach

    NASA Astrophysics Data System (ADS)

    Santillan, J. R.; Amora, A. M.; Makinano-Santillan, M.; Marqueso, J. T.; Cutamora, L. C.; Serviano, J. L.; Makinano, R. M.

    2016-06-01

    In this paper, we present a combined geospatial and two dimensional (2D) flood modeling approach to assess the impacts of flooding due to extreme rainfall events. We developed and implemented this approach to the Tago River Basin in the province of Surigao del Sur in Mindanao, Philippines, an area which suffered great damage due to flooding caused by Tropical Storms Lingling and Jangmi in the year 2014. The geospatial component of the approach involves extraction of several layers of information such as detailed topography/terrain, man-made features (buildings, roads, bridges) from 1-m spatial resolution LiDAR Digital Surface and Terrain Models (DTM/DSMs), and recent land-cover from Landsat 7 ETM+ and Landsat 8 OLI images. We then used these layers as inputs in developing a Hydrologic Engineering Center Hydrologic Modeling System (HEC HMS)-based hydrologic model, and a hydraulic model based on the 2D module of the latest version of HEC River Analysis System (RAS) to dynamically simulate and map the depth and extent of flooding due to extreme rainfall events. The extreme rainfall events used in the simulation represent 6 hypothetical rainfall events with return periods of 2, 5, 10, 25, 50, and 100 years. For each event, maximum flood depth maps were generated from the simulations, and these maps were further transformed into hazard maps by categorizing the flood depth into low, medium and high hazard levels. Using both the flood hazard maps and the layers of information extracted from remotely-sensed datasets in spatial overlay analysis, we were then able to estimate and assess the impacts of these flooding events to buildings, roads, bridges and landcover. Results of the assessments revealed increase in number of buildings, roads and bridges; and increase in areas of land-cover exposed to various flood hazards as rainfall events become more extreme. The wealth of information generated from the flood impact assessment using the approach can be very useful to the local government units and the concerned communities within Tago River Basin as an aid in determining in an advance manner all those infrastructures (buildings, roads and bridges) and land-cover that can be affected by different extreme rainfall event flood scenarios.

  20. Satellite images of the September 2013 flood event in Lyons, Colorado

    USGS Publications Warehouse

    Cole, Christopher J.; Friesen, Beverly A.; Wilds, Stanley; Noble, Suzanne; Warner, Harumi; Wilson, Earl M.

    2013-01-01

    The U.S. Geological Survey (USGS) Special Applications Science Center (SASC) produced an image base map showing high-resolution remotely sensed data over Lyons, Colorado—a city that was severely affected by the flood event that occurred throughout much of the Colorado Front Range in September of 2013. The 0.5-meter WorldView-2 data products were created from imagery collected by DigitalGlobe on September 13 and September 24, 2013, during and following the flood event. The images shown on this map were created to support flood response efforts, specifically for use in determining damage assessment and mitigation decisions. The raw, unprocessed imagery were orthorectified and pan-sharpened to enhance mapping accuracy and spatial resolution, and reproduced onto a cartographic base map. These maps are intended to provide a snapshot representation of post-flood ground conditions, which may be useful to decisionmakers and the general public. The SASC also provided data processing and analysis support for other Colorado flood-affected areas by creating cartographic products, geo-corrected electro-optical and radar image mosaics, and GIS water cover files for use by the Colorado National Guard, the National Park Service, the U.S. Forest Service, and the flood response community. All products for this International Charter event were uploaded to the USGS Hazards Data Distribution System (HDDS) website (http://hdds.usgs.gov/hdds2/) for distribution.

  1. Scoping of flood hazard mapping needs for Carroll County, New Hampshire

    USGS Publications Warehouse

    Flynn, Robert H.

    2006-01-01

    This report was prepared by the U.S. Geological Survey (USGS) New Hampshire/Vermont Water Science Center for scoping of flood-hazard mapping needs for Carroll County, New Hampshire, under Federal Emergency Management Agency (FEMA) Inter-Agency agreement Number HSFE01-05X-0018. FEMA is embarking on a map modernization program nationwide to: 1. Gather and develop updated data for all flood prone areas in support of flood plain management. 2. Provide maps and data in a digital format for the improvement in the efficiency and precision of the mapping program. 3. Integrate FEMA's community and state partners into the mapping process One of the priorities for FEMA, Region 1, is to develop updated Digital Flood Insurance Rate Maps (DFIRMs) and Flood Insurance Studies (FIS) for Carroll County, New Hampshire. The information provided in this report will be used to develop the scope for the first phase of a multiyear project that will ultimately result in the production of new DFIRMs and FIS for the communities and flooding sources in Carroll County. The average age of the FEMA flood plain maps in Carroll County, New Hampshire is 18 years. Most of these studies were computed in the late 1970s to the mid 1980s. However, in the ensuing 20-30 years, development has occurred in many of the watersheds, and the rivers and streams and their flood plains have changed as a result. In addition, as development has occurred, peak flooding has increased downstream of the development from increased flows across impervious surfaces. Therefore, many of the older studies may not depict current conditions nor accurately estimate risk in terms of flood heights. Carroll County gained 3,773 residents between 2000 and 2005. This represents a growth of 8.6 percent compared to 6.0 percent for the state as a whole. Carroll County ranks second (from highest to lowest) out of New Hampshire's 10 counties in terms of rate of population increase. Since 1990, Carroll County has gained 12,029 residents (University of New Hampshire, 2006).

  2. 44 CFR 9.7 - Determination of proposed action's location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AGENCY, DEPARTMENT OF HOMELAND SECURITY GENERAL FLOODPLAIN MANAGEMENT AND PROTECTION OF WETLANDS § 9.7... and 500-year floods and location of floodways and coastal high hazard areas may also be needed to... elevations, floodways, or coastal high hazard areas are needed, or if the map does not delineate the flood...

  3. Improving flood risk mapping in Italy: the FloodRisk open-source software

    NASA Astrophysics Data System (ADS)

    Albano, Raffaele; Mancusi, Leonardo; Craciun, Iulia; Sole, Aurelia; Ozunu, Alexandru

    2017-04-01

    Time and again, floods around the world illustrate the devastating impact they can have on societies. Furthermore, the expectation that the flood damages can increase over time with climate, land-use change and social growth in flood prone-areas has raised the public and other stakeholders' (governments, international organization, re-insurance companies and emergency responders) awareness for the need to manage risks in order to mitigate their causes and consequences. In this light, the choice of appropriate measures, the assessment of the costs and effects of such measures, and their prioritization are crucial for decision makers. As a result, a priori flood risk assessment has become a key part of flood management practices with the aim of minimizing the total costs related to the risk management cycle. In this context, The EU Flood Directive 2007/60 requires the delineation of flood risk maps on the bases of most appropriate and advanced tools, with particular attention on limiting required economic efforts. The main aim of these risk maps is to provide the required knowledge for the development of flood risk management plans (FRMPs) by considering both costs and benefits of alternatives and results from consultation with all interested parties. In this context, this research project developed a free and open-source (FOSS) GIS software, called FloodRisk, to operatively support stakeholders in their compliance with the FRMPs. FloodRisk aims to facilitate the development of risk maps and the evaluation and management of current and future flood risk for multi-purpose applications. This new approach overcomes the limits of the expert-drive qualitative (EDQ) approach currently adopted in several European countries, such as Italy, which does not permit a suitable evaluation of the effectiveness of risk mitigation strategies, because the vulnerability component cannot be properly assessed. Moreover, FloodRisk is also able to involve the citizens in the flood management process, enhancing their awareness. This FOSS approach can promotes transparency and accountability through a process of "guided discovery". Moreover, the immediacy with which information is presented by the qualitative flood risk map, can facilitate and speed up the process of knowledge acquisition. An application of FloodRisk model is showed on a pilot case in "Serio" Valley, (North Italy), and its strengths and limits, in terms of additional efforts required in its application compared with EDQ procedure, have been highlighted focusing on the utility of the results provided for the development of FRMPs. Although they still present limits which prevent the FloodRisk application without critically consider the peculiarities of the investigated area in terms of available knowledge on hazard, exposure and vulnerability, the proposed approach surely produces an increase in available knowledge of flood risk and its drivers. This further information cannot be neglected for defining risk mitigation objectives and strategies. Hence, considering the ongoing efforts in the improvement of data availability and quality, FloodRisk could be a suitable tool for the next revision of flood risk maps due by December 2019, supporting effectively Italian and EU practitioners in the delineation of FRMPs (and for flood risk management in general).

  4. Combined fluvial and pluvial urban flood hazard analysis: method development and application to Can Tho City, Mekong Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Apel, H.; Trepat, O. M.; Hung, N. N.; Chinh, D. T.; Merz, B.; Dung, N. V.

    2015-08-01

    Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas, and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either fluvial or pluvial flood hazard, studies of combined fluvial and pluvial flood hazard are hardly available. Thus this study aims at the analysis of fluvial and pluvial flood hazard individually, but also at developing a method for the analysis of combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as example. In this tropical environment the annual monsoon triggered floods of the Mekong River can coincide with heavy local convective precipitation events causing both fluvial and pluvial flooding at the same time. Fluvial flood hazard was estimated with a copula based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. Pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data, and a stochastic rain storm generator. Inundation was simulated by a 2-dimensional hydrodynamic model implemented on a Graphical Processor Unit (GPU) for time-efficient flood propagation modelling. All hazards - fluvial, pluvial and combined - were accompanied by an uncertainty estimation considering the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median) and the uncertainty by percentile maps. The results are critically discussed and ways for their usage in flood risk management are outlined.

  5. Geohazard monitoring and modelling using Persistent Scatterer Interferometry in the framework of the European project Terrafirma

    NASA Astrophysics Data System (ADS)

    Cooksley, Geraint; Arnaud, Alain; Banwell, Marie-Josée

    2013-04-01

    Increasingly, geohazard risk managers are looking to satellite observations as a promising option for supporting their risk management and mitigation strategies. The Terrafirma project, aimed at supporting civil protection agencies, local authorities in charge of risk assessment and mitigation is a pan-European ground motion information service funded by the European Space Agency's Global Monitoring for Environment and Security initiative. Over 100 services were delivered to organizations over the last ten years. Terrafirma promotes the use of Synthetic Aperture Radar Interferometry (InSAR) and Persistent Scatterer InSAR (PSI) within three thematic areas for terrain motion analysis: Tectonics, Flooding and Hydrogeology (ground water, landslides and inactive mines), as well as the innovative Wide Area mapping service, aimed at measuring land deformation over very large areas. Terrafirma's thematic services are based on advanced satellite interferometry products; however they exploit additional data sources, including non-EO, coupled with expert interpretation specific to each thematic line. Based on the combination of satellite-derived ground-motion information products with expert motion interpretation, a portfolio of services addressing geo-hazard land motion issues was made available to users. Although not a thematic in itself, the Wide Area mapping product constitutes the fourth quarter of the Terrafirma activities. The wide area processing chain is nearly fully automatic and requires only a little operator interaction. The service offers an operational PSI processing for wide-area mapping with mm accuracy of ground-deformation measurement at a scale of 1:250,000 (i.e. one cm in the map corresponds to 2.5 Km on the ground) on a country or continent level. The WAP was demonstrated using stripmap ERS data however it is foreseen to be a standard for the upcoming Sentinel-1 mission that will be operated in Terrain Observation by Progressive Scan (TOPS) mode. Within each theme, a series of products are offered. The Hydrogeology service delivers geo-information for hydrogeological hazards affecting urban areas, mountainous zones and infra-structures. Areas where groundwater has been severely exploited often experience subsidence as a result. Likewise, many European towns and cities built above abandoned and inactive mines experience strong ground deformation. The hydrogeology theme products study these phenomenon as well as slope instability in mountainous areas. The Tectonics service presents information on seismic hazards. The crustal block boundaries service provides users with information on terrain motion related to major and local faults, earthquake cycles, and vertical deformation sources. The vulnerability map service combines radar satellite date with in situ measurements to identify regions that may be vulnerable in the case of an earthquake. Within the Coastal Lowland and Flood Risk service, the flood plain hazard product assesses flood risk in coastal lowland areas and flood-prone river basins. The advanced subsidence mapping service combines PSI with levelling data and GPS to enable users to interpret subsidence maps within their geodetic reference systems. The flood defence monitoring service focuses on flood protection systems such as dykes and dams. Between 2003 and 2013, Terrafirma delivered services to 51 user organizations in over 25 countries. The archive of datasets is available to organisations involved in geohazard risk management and mitigation. Keywords: Persistent Scatterer Interferometry, Synthetic Aperture Radar, ground motion monitoring, Terrafirma project, multi-hazard analysis

  6. A data fusion framework for floodplain analysis using GIS and remotely sensed data

    NASA Astrophysics Data System (ADS)

    Necsoiu, Dorel Marius

    Throughout history floods have been part of the human experience. They are recurring phenomena that form a necessary and enduring feature of all river basin and lowland coastal systems. In an average year, they benefit millions of people who depend on them. In the more developed countries, major floods can be the largest cause of economic losses from natural disasters, and are also a major cause of disaster-related deaths in the less developed countries. Flood disaster mitigation research was conducted to determine how remotely sensed data can effectively be used to produce accurate flood plain maps (FPMs), and to identify/quantify the sources of error associated with such data. Differences were analyzed between flood maps produced by an automated remote sensing analysis tailored to the available satellite remote sensing datasets (rFPM), the 100-year flooded areas "predicted" by the Flood Insurance Rate Maps, and FPMs based on DEM and hydrological data (aFPM). Landuse/landcover was also examined to determine its influence on rFPM errors. These errors were identified and the results were integrated in a GIS to minimize landuse/landcover effects. Two substantial flood events were analyzed. These events were selected because of their similar characteristics (i.e., the existence of FIRM or Q3 data; flood data which included flood peaks, rating curves, and flood profiles; and DEM and remote sensing imagery). Automatic feature extraction was determined to be an important component for successful flood analysis. A process network, in conjunction with domain specific information, was used to map raw remotely sensed data onto a representation that is more compatible with a GIS data model. From a practical point of view, rFPM provides a way to automatically match existing data models to the type of remote sensing data available for each event under investigation. Overall, results showed how remote sensing could contribute to the complex problem of flood management by providing an efficient way to revise the National Flood Insurance Program maps.

  7. Flooding and mental health: a systematic mapping review.

    PubMed

    Fernandez, Ana; Black, John; Jones, Mairwen; Wilson, Leigh; Salvador-Carulla, Luis; Astell-Burt, Thomas; Black, Deborah

    2015-01-01

    Floods are the most common type of global natural disaster. Floods have a negative impact on mental health. Comprehensive evaluation and review of the literature are lacking. To systematically map and review available scientific evidence on mental health impacts of floods caused by extended periods of heavy rain in river catchments. We performed a systematic mapping review of published scientific literature in five languages for mixed studies on floods and mental health. PUBMED and Web of Science were searched to identify all relevant articles from 1994 to May 2014 (no restrictions). The electronic search strategy identified 1331 potentially relevant papers. Finally, 83 papers met the inclusion criteria. Four broad areas are identified: i) the main mental health disorders-post-traumatic stress disorder, depression and anxiety; ii] the factors associated with mental health among those affected by floods; iii) the narratives associated with flooding, which focuses on the long-term impacts of flooding on mental health as a consequence of the secondary stressors; and iv) the management actions identified. The quantitative and qualitative studies have consistent findings. However, very few studies have used mixed methods to quantify the size of the mental health burden as well as exploration of in-depth narratives. Methodological limitations include control of potential confounders and short-term follow up. Floods following extreme events were excluded from our review. Although the level of exposure to floods has been systematically associated with mental health problems, the paucity of longitudinal studies and lack of confounding controls precludes strong conclusions. We recommend that future research in this area include mixed-method studies that are purposefully designed, using more rigorous methods. Studies should also focus on vulnerable groups and include analyses of policy and practical responses.

  8. Flooding and Mental Health: A Systematic Mapping Review

    PubMed Central

    Fernandez, Ana; Black, John; Jones, Mairwen; Wilson, Leigh; Salvador-Carulla, Luis; Astell-Burt, Thomas; Black, Deborah

    2015-01-01

    Background Floods are the most common type of global natural disaster. Floods have a negative impact on mental health. Comprehensive evaluation and review of the literature are lacking. Objective To systematically map and review available scientific evidence on mental health impacts of floods caused by extended periods of heavy rain in river catchments. Methods We performed a systematic mapping review of published scientific literature in five languages for mixed studies on floods and mental health. PUBMED and Web of Science were searched to identify all relevant articles from 1994 to May 2014 (no restrictions). Results The electronic search strategy identified 1331 potentially relevant papers. Finally, 83 papers met the inclusion criteria. Four broad areas are identified: i) the main mental health disorders—post-traumatic stress disorder, depression and anxiety; ii] the factors associated with mental health among those affected by floods; iii) the narratives associated with flooding, which focuses on the long-term impacts of flooding on mental health as a consequence of the secondary stressors; and iv) the management actions identified. The quantitative and qualitative studies have consistent findings. However, very few studies have used mixed methods to quantify the size of the mental health burden as well as exploration of in-depth narratives. Methodological limitations include control of potential confounders and short-term follow up. Limitations Floods following extreme events were excluded from our review. Conclusions Although the level of exposure to floods has been systematically associated with mental health problems, the paucity of longitudinal studies and lack of confounding controls precludes strong conclusions. Implications We recommend that future research in this area include mixed-method studies that are purposefully designed, using more rigorous methods. Studies should also focus on vulnerable groups and include analyses of policy and practical responses. PMID:25860572

  9. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data

    PubMed Central

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2016-01-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting. PMID:27667901

  10. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data.

    PubMed

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2015-08-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting.

  11. Scoping of flood hazard mapping needs for Kennebec County, Maine

    USGS Publications Warehouse

    Dudley, Robert W.; Schalk, Charles W.

    2006-01-01

    This report was prepared by the U.S. Geological Survey (USGS) Maine Water Science Center as the deliverable for scoping of flood hazard mapping needs for Kennebec County, Maine, under Federal Emergency Management Agency (FEMA) Inter-Agency Agreement Number HSFE01-05-X-0018. This section of the report explains the objective of the task and the purpose of the report. The Federal Emergency Management Agency (FEMA) developed a plan in 1997 to modernize the FEMA flood mapping program. FEMA flood maps delineate flood hazard areas in support of the National Flood Insurance Program (NFIP). FEMA's plan outlined the steps necessary to update FEMA's flood maps for the nation to a seamless digital format and streamline FEMA's operations in raising public awareness of the importance of the maps and responding to requests to revise them. The modernization of flood maps involves conversion of existing information to digital format and integration of improved flood hazard data as needed. To determine flood mapping modernization needs, FEMA has established specific scoping activities to be done on a county-by-county basis for identifying and prioritizing requisite flood-mapping activities for map modernization. The U.S. Geological Survey (USGS), in cooperation with FEMA and the Maine State Planning Office Floodplain Management Program, began scoping work in 2005 for Kennebec County. Scoping activities included assembling existing data and map needs information for communities in Kennebec County (efforts were made to not duplicate those of pre-scoping completed in March 2005), documentation of data, contacts, community meetings, and prioritized mapping needs in a final scoping report (this document), and updating the Mapping Needs Update Support System (MNUSS) Database or its successor with information gathered during the scoping process. The average age of the FEMA floodplain maps in Kennebec County, Maine is 16 years. Most of these studies were in the late 1970's to the mid 1980s. However, in the ensuing 20-30 years, development has occurred in many of the watersheds, and the characteristics of the watersheds have changed with time. Therefore, many of the older studies may not depict current conditions nor accurately estimate risk in terms of flood heights. The following is the scope of work as defined in the FEMA/USGS Statement of Work: Task 1: Collect data from a variety of sources including community surveys, other Federal and State Agencies, National Flood Insurance Program (NFIP) State Coordinators, Community Assistance Visits (CAVs) and FEMA archives. Lists of mapping needs will be obtained from the MNUSS database, community surveys, and CAVs, if available. FEMA archives will be inventoried for effective FIRM panels, FIS reports, and other flood-hazard data or existing study data. Best available base map information, topographic data, flood-hazard data, and hydrologic and hydraulic data will be identified. Data from the Maine Floodplain Management Program database also will be utilized. Task 2: Contact communities in Kennebec County to notify them that FEMA and the State have selected them for a map update, and that a project scope will be developed with their input. Topics to be reviewed with the communities include (1) Purpose of the Flood Map Project (for example, the update needs that have prompted the map update); (2) The community's mapping needs; (3) The community's available mapping, hydrologic, hydraulic, and flooding information; (4) target schedule for completing the project; and (5) The community's engineering, planning, and geographic information system (GIS) capabilities. On the basis of the collected information from Task 1 and community contacts/meetings in Task 2, the USGS will develop a Draft Project Scope for the identified mapping needs of the communities in Kennebec County. The following items will be addressed in the Draft Project Scope: review of available information, determine if and how e

  12. Scoping of flood hazard mapping needs for Somerset County, Maine

    USGS Publications Warehouse

    Dudley, Robert W.; Schalk, Charles W.

    2006-01-01

    This report was prepared by the U.S. Geological Survey (USGS) Maine Water Science Center as the deliverable for scoping of flood hazard mapping needs for Somerset County, Maine, under Federal Emergency Management Agency (FEMA) Inter-Agency Agreement Number HSFE01-05-X-0018. This section of the report explains the objective of the task and the purpose of the report. The Federal Emergency Management Agency (FEMA) developed a plan in 1997 to modernize the FEMA flood mapping program. FEMA flood maps delineate flood hazard areas in support of the National Flood Insurance Program (NFIP). FEMA's plan outlined the steps necessary to update FEMA's flood maps for the nation to a seamless digital format and streamline FEMA's operations in raising public awareness of the importance of the maps and responding to requests to revise them. The modernization of flood maps involves conversion of existing information to digital format and integration of improved flood hazard data as needed. To determine flood mapping modernization needs, FEMA has established specific scoping activities to be done on a county-by-county basis for identifying and prioritizing requisite flood-mapping activities for map modernization. The U.S. Geological Survey (USGS), in cooperation with FEMA and the Maine State Planning Office Floodplain Management Program, began scoping work in 2005 for Somerset County. Scoping activities included assembling existing data and map needs information for communities in Somerset County (efforts were made to not duplicate those of pre-scoping completed in March 2005), documentation of data, contacts, community meetings, and prioritized mapping needs in a final scoping report (this document), and updating the Mapping Needs Update Support System (MNUSS) Database or its successor with information gathered during the scoping process. The average age of the FEMA floodplain maps in Somerset County, Maine is 18.1 years. Most of these studies were in the late 1970's to the mid 1980s. However, in the ensuing 20-30 years, development has occurred in many of the watersheds, and the characteristics of the watersheds have changed with time. Therefore, many of the older studies may not depict current conditions nor accurately estimate risk in terms of flood heights. The following is the scope of work as defined in the FEMA/USGS Statement of Work: Task 1: Collect data from a variety of sources including community surveys, other Federal and State Agencies, National Flood Insurance Program (NFIP) State Coordinators, Community Assistance Visits (CAVs) and FEMA archives. Lists of mapping needs will be obtained from the MNUSS database, community surveys, and CAVs, if available. FEMA archives will be inventoried for effective FIRM panels, FIS reports, and other flood-hazard data or existing study data. Best available base map information, topographic data, flood-hazard data, and hydrologic and hydraulic data will be identified. Data from the Maine Floodplain Management Program database also will be utilized. Task 2: Contact communities in Somerset County to notify them that FEMA and the State have selected them for a map update, and that a project scope will be developed with their input. Topics to be reviewed with the communities include (1) Purpose of the Flood Map Project (for example, the update needs that have prompted the map update); (2) The community's mapping needs; (3) The community's available mapping, hydrologic, hydraulic, and flooding information; (4) target schedule for completing the project; and (5) The community's engineering, planning, and geographic information system (GIS) capabilities. On the basis of the collected information from Task 1 and community contacts/meetings in Task 2, the USGS will develop a Draft Project Scope for the identified mapping needs of the communities in Somerset County. The following items will be addressed in the Draft Project Scope: review of available information, determine if and ho

  13. Scoping of flood hazard mapping needs for Cumberland County, Maine

    USGS Publications Warehouse

    Dudley, Robert W.; Schalk, Charles W.

    2006-01-01

    This report was prepared by the U.S. Geological Survey (USGS) Maine Water Science Center as the deliverable for scoping of flood hazard mapping needs for Cumberland County, Maine, under Federal Emergency Management Agency (FEMA) Inter-Agency Agreement Number HSFE01-05-X-0018. This section of the report explains the objective of the task and the purpose of the report. The Federal Emergency Management Agency (FEMA) developed a plan in 1997 to modernize the FEMA flood mapping program. FEMA flood maps delineate flood hazard areas in support of the National Flood Insurance Program (NFIP). FEMA's plan outlined the steps necessary to update FEMA's flood maps for the nation to a seamless digital format and streamline FEMA's operations in raising public awareness of the importance of the maps and responding to requests to revise them. The modernization of flood maps involves conversion of existing information to digital format and integration of improved flood hazard data as needed. To determine flood mapping modernization needs, FEMA has established specific scoping activities to be done on a county-by-county basis for identifying and prioritizing requisite flood-mapping activities for map modernization. The U.S. Geological Survey (USGS), in cooperation with FEMA and the Maine State Planning Office Floodplain Management Program, began scoping work in 2005 for Cumberland County. Scoping activities included assembling existing data and map needs information for communities in Cumberland County, documentation of data, contacts, community meetings, and prioritized mapping needs in a final scoping report (this document), and updating the Mapping Needs Update Support System (MNUSS) Database or its successor with information gathered during the scoping process. The average age of the FEMA floodplain maps in Cumberland County, Maine is 21 years. Most of these studies were in the early to mid 1980s. However, in the ensuing 20-25 years, development has occurred in many of the watersheds, and the characteristics of the watersheds have changed with time. Therefore, many of the older studies may not depict current conditions nor accurately estimate risk in terms of flood heights. The following is the scope of work as defined in the FEMA/USGS Statement of Work: Task 1: Collect data from a variety of sources including community surveys, other Federal and State Agencies, National Flood Insurance Program (NFIP) State Coordinators, Community Assistance Visits (CAVs) and FEMA archives. Lists of mapping needs will be obtained from the MNUSS database, community surveys, and CAVs, if available. FEMA archives will be inventoried for effective FIRM panels, FIS reports, and other flood-hazard data or existing study data. Best available base map information, topographic data, flood-hazard data, and hydrologic and hydraulic data will be identified. Data from the Maine Floodplain Management Program database also will be utilized. Task 2: Contact communities in Cumberland County to notify them that FEMA and the State have selected them for a map update, and that a project scope will be developed with their input. Topics to be reviewed with the communities include (1) Purpose of the Flood Map Project (for example, the update needs that have prompted the map update); (2) The community's mapping needs; (3) The community's available mapping, hydrologic, hydraulic, and flooding information; (4) target schedule for completing the project; and (5) The community's engineering, planning, and geographic information system (GIS) capabilities. On the basis of the collected information from Task 1 and community contacts/meetings in Task 2, the USGS will develop a Draft Project Scope for the identified mapping needs of the communities in Cumberland County. The following items will be addressed in the Draft Project Scope: review of available information, determine if and how effective FIS data can be used in new project, and identify other data needed to

  14. Flood of May 5 and 6, 1981, Mobile, Alabama

    USGS Publications Warehouse

    Ming, C.O.; Nelson, G.H.

    1981-01-01

    Heavy and intense rainfall in the late evening and early morning hours, May 5 and 6, 1981, caused widespread flooding along streams and low-lying areas in the port city of Mobile, Ala. More than 12 inches of rain fell between 6 p.m. May 5, and 3 a.m. May 6. Damage caused by flooding was estimated by the Mobile Department of Public Works to be millions of dollars. Maximum water surface elevations on streams in the area were 2 to 3 feet higher than those that occurred during a similar flood in April 1980. The approximate extent of flooding delineated on maps using flood profiles obtained by field surveys will provide a basis for formulating effective flood plain zoning that could minimize existing and future flood problems. (USGS)

  15. Flood hazard mapping of Palembang City by using 2D model

    NASA Astrophysics Data System (ADS)

    Farid, Mohammad; Marlina, Ayu; Kusuma, Muhammad Syahril Badri

    2017-11-01

    Palembang as the capital city of South Sumatera Province is one of the metropolitan cities in Indonesia that flooded almost every year. Flood in the city is highly related to Musi River Basin. Based on Indonesia National Agency of Disaster Management (BNPB), the level of flood hazard is high. Many natural factors caused flood in the city such as high intensity of rainfall, inadequate drainage capacity, and also backwater flow due to spring tide. Furthermore, anthropogenic factors such as population increase, land cover/use change, and garbage problem make flood problem become worse. The objective of this study is to develop flood hazard map of Palembang City by using two dimensional model. HEC-RAS 5.0 is used as modelling tool which is verified with field observation data. There are 21 sub catchments of Musi River Basin in the flood simulation. The level of flood hazard refers to Head Regulation of BNPB number 2 in 2012 regarding general guideline of disaster risk assessment. The result for 25 year return per iod of flood shows that with 112.47 km2 area of inundation, 14 sub catchments are categorized in high hazard level. It is expected that the hazard map can be used for risk assessment.

  16. Magnitude and extent of flooding at selected river reaches in western Washington, January 2009

    USGS Publications Warehouse

    Mastin, M.C.; Gendaszek, A.S.; Barnas, C.R.

    2010-01-01

    A narrow plume of warm, moist tropical air produced prolonged precipitation and melted snow in low-to-mid elevations throughout western Washington in January 2009. As a result, peak-of-record discharges occurred at many long-term streamflow-gaging stations in the region. A disaster was declared by the President for eight counties in Washington State and by May 2009, aid payments by the Federal Emergency Management Agency (FEMA) had exceeded $17 million. In an effort to document the flood and to obtain flood information that could be compared with simulated flood extents that are commonly prepared in conjunction with flood insurance studies by FEMA, eight stream reaches totaling 32.6 miles were selected by FEMA for inundation mapping. The U.S. Geological Survey?s Washington Water Science Center used a survey-grade global positioning system (GPS) the following summer to survey high-water marks (HWMs) left by the January 2009 flood at these reaches. A Google Maps (copyright) application was developed to display all HWM data on an interactive mapping tool on the project?s web site soon after the data were collected. Water-surface profiles and maps that display the area and depth of inundation were produced through a geographic information system (GIS) analysis that combined surveyed HWM elevations with Light Detection and Ranging (LiDAR)-derived digital elevation models of the study reaches and surrounding terrain. In several of the reaches, floods were well confined in their flood plains and were relatively straightforward to map. More common, however, were reaches with more complicated hydraulic geometries where widespread flooding resulted in flows that separated from the main channel. These proved to be more difficult to map, required subjective hydrologic judgment, and relied on supplementary information, such as aerial photographs and descriptions of the flooding from local landowners and government officials to obtain the best estimates of the extent of flooding.

  17. Flood-inundation maps for Peachtree Creek from the Norfolk Southern Railway bridge to the Moores Mill Road NW bridge, Atlanta, Georgia

    USGS Publications Warehouse

    Musser, Jonathan W.

    2012-01-01

    Digital flood-inundation maps for a 5.5-mile reach of the Peachtree Creek from the Norfolk Southern Railway bridge to the Moores Mill Road NW bridge, were developed by the U.S. Geological Survey (USGS) in cooperation with the City of Atlanta, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Peachtree Creek at Atlanta, Georgia (02336300) and the USGS streamgage at Chattahoochee River at Georgia 280, near Atlanta, Georgia (02336490). Current water level (stage) at these USGS streamgages may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http:/water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that commonly are collocated at USGS streamgages. The forecasted peak-stage information for the USGS streamgage at Peachtree Creek, which is available through the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. A one-dimensional step-backwater model was developed using the U.S. Army Corps of Engineers HEC–RAS software for a 6.5-mile reach of Peachtree Creek and was used to compute flood profiles for a 5.5-mile reach of the creek. The model was calibrated using the most current stage-discharge relations at the Peachtree Creek at Atlanta, Georgia, streamgage (02336300), and the Chattahoochee River at Georgia 280, near Atlanta, Georgia, streamgage (02336490) as well as high water marks collected during the 2010 annual peak flow event. The hydraulic model was then used to determine 50 water-surface profiles. The profiles are for 10 flood stages at the Peachtree Creek streamgage at 1-foot intervals referenced to the streamgage datum and ranging from just above bankfull stage (15.0 feet) to approximately the highest recorded water level at the streamgage (24.0 feet). At each stage on Peachtree Creek, five stages at the Chattahoochee River streamgage, from 26.4 feet to 38.4 feet in 3-foot intervals, were used to determine backwater effects. The simulated water-surface profiles were then combined with a geographic information system digital elevation model—derived from Light Detection and Ranging (LiDAR) data having a 0.3-foot vertical and 16.4-foot horizontal resolution—to delineate the area flooded for each 1-foot increment of stream stage. The availability of these maps, when combined with real-time information regarding current stage from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with critical information during flood response activities, such as evacuations and road closures as well as for postflood-recovery efforts.

  18. Flood-inundation maps for the Leaf River at Hattiesburg, Mississippi

    USGS Publications Warehouse

    Storm, John B.

    2012-01-01

    Digital flood-inundation maps for a 1.7-mile reach of the Leaf River were developed by the U.S. Geological Survey (USGS) in cooperation with the City of Hattiesburg, City of Petal, Forrest County, Mississippi Emergency Management Agency, Mississippi Department of Homeland Security, and the Emergency Management District. The Leaf River study reach extends from just upstream of the U.S. Highway 11 crossing to just downstream of East Hardy/South Main Street and separates the cities of Hattiesburg and Petal, Mississippi. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water-surface elevations (stages) at the USGS streamgage at Leaf River at Hattiesburg, Mississippi (02473000). Current conditions at the USGS streamgage may be obtained through the National Water Information System Web site at http://waterdata.usgs.gov/ms/nwis/uv/?site_no=02473000&PARAmeter_cd=00065,00060. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. The forecasted peak-stage information, available on the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relations at the Leaf River at Hattiesburg, Mississippi, streamgage and documented high-water marks from recent and historical floods. The hydraulic model was then used to determine 13 water-surface profiles for flood stages at 1.0-foot intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water-surface elevation at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model [derived from Light Detection and Ranging (LiDAR) data having a 0.6-foot vertical accuracy and 9.84-foot horizontal resolution] in order to delineate the area flooded at each 1-foot increment of stream stage. The availability of these maps, when combined with real-time stage information from USGS streamgages and forecasted stream stage from the NWS, provides emergency management personnel and residents with critical information during flood-response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

  19. Flood Extent Mapping for Namibia Using Change Detection and Thresholding with SAR

    NASA Technical Reports Server (NTRS)

    Long, Stephanie; Fatoyinbo, Temilola E.; Policelli, Frederick

    2014-01-01

    A new method for flood detection change detection and thresholding (CDAT) was used with synthetic aperture radar (SAR) imagery to delineate the extent of flooding for the Chobe floodplain in the Caprivi region of Namibia. This region experiences annual seasonal flooding and has seen a recent renewal of severe flooding after a long dry period in the 1990s. Flooding in this area has caused loss of life and livelihoods for the surrounding communities and has caught the attention of disaster relief agencies. There is a need for flood extent mapping techniques that can be used to process images quickly, providing near real-time flooding information to relief agencies. ENVISAT/ASAR and Radarsat-2 images were acquired for several flooding seasons from February 2008 to March 2013. The CDAT method was used to determine flooding from these images and includes the use of image subtraction, decision based classification with threshold values, and segmentation of SAR images. The total extent of flooding determined for 2009, 2011 and 2012 was about 542 km2, 720 km2, and 673 km2 respectively. Pixels determined to be flooded in vegetation were typically <0.5 % of the entire scene, with the exception of 2009 where the detection of flooding in vegetation was much greater (almost one third of the total flooded area). The time to maximum flooding for the 2013 flood season was determined to be about 27 days. Landsat water classification was used to compare the results from the new CDAT with SAR method; the results show good spatial agreement with Landsat scenes.

  20. High Risk Flash Flood Rainstorm Mapping Based on Regional L-moments Approach

    NASA Astrophysics Data System (ADS)

    Ding, Hui; Liao, Yifan; Lin, Bingzhang

    2017-04-01

    Difficulties and complexities in elaborating flash flood early-warning and forecasting system prompt hydrologists to develop some techniques to substantially reduce the disastrous outcome of a flash flood in advance. An ideal to specify those areas that are subject at high risk to flash flood in terms of rainfall intensity in a relatively large region is proposed in this paper. It is accomplished through design of the High Risk Flash Flood Rainstorm Area (HRFFRA) based on statistical analysis of historical rainfall data, synoptic analysis of prevailing storm rainfalls as well as the field survey of historical flash flood events in the region. A HRFFRA is defined as the area potentially under hitting by higher intense-precipitation for a given duration with certain return period that may cause a flash flood disaster in the area. This paper has presented in detail the development of the HRFFRA through the application of the end-to-end Regional L-moments Approach (RLMA) to precipitation frequency analysis in combination with the technique of spatial interpolation in Jiangxi Province, South China Mainland. Among others, the concept of hydrometeorologically homogenous region, the precision of frequency analysis in terms of parameter estimation, the accuracy of quantiles in terms of uncertainties and the consistency adjustments of quantiles over durations and space, etc., have been addressed. At the end of this paper, the mapping of the HRFFRA and an internet-based visualized user-friendly data-server of the HRFFRA are also introduced. Key words: HRFFRA; Flash Flood; RLMA; rainfall intensity; Hydrometeorological homogenous region.

  1. Increasing resilience through participative flood risk map design

    NASA Astrophysics Data System (ADS)

    Fuchs, Sven; Spira, Yvonne; Stickler, Therese

    2013-04-01

    In recent years, an increasing number of flood hazards has shown to the European Commission and the Member States of the European Union the importance of flood risk management strategies in order to reduce losses and to protect the environment and the citizens. Exposure to floods as well as flood vulnerability might increase across Europe due to the ongoing economic development in many EU countries. Thus even without taking climate change into account an increase of flood disasters in Europe might be foreseeable. These circumstances have produced a reaction in the European Commission, and a Directive on the Assessment and Management of Flood Risks was issued as one of the three components of the European Action Programme on Flood Risk Management. Floods have the potential to jeopardise economic development, above all due to an increase of human activities in floodplains and the reduction of natural water retention by land use activities. As a result, an increase in the likelihood and adverse impacts of flood events is expected. Therefore, concentrated action is needed at the European level to avoid severe impacts on human life and property. In order to have an effective tool available for gathering information, as well as a valuable basis for priority setting and further technical, financial and political decisions regarding flood risk mitigation and management, it is necessary to provide for the establishment of flood risk maps which show the potential adverse consequences associated with different flood scenarios. So far, hazard and risk maps are compiled in terms of a top-down linear approach: planning authorities take the responsibility to create and implement these maps on different national and local scales, and the general public will only be informed about the outcomes (EU Floods Directive, Article 10). For the flood risk management plans, however, an "active involvement of interested parties" is required, which means at least some kind of multilateral consultation on the management plans that allows stakeholders to discuss relevant issues and to contribute to arguments and propositions put forward by the stakeholders. Through a wider stakeholder participation and more effective communication, awareness of flood risks should be raised. With the term participation diverse voluntary and informal forms of inclusion are summarized (in contrast to legal forms of participation like the status as a party). When discussing the theoretical and practical implications of participation in flood risk management, it is important to make a clear distinction between public and stakeholder participation. The broad public is "everybody" and refers to the participation by non-organised individuals as members of the general public, and specifically to individuals whose profession is not connected to flood risk management. As such, they have to be regarded as lay persons, which, nevertheless, does not mean that these individuals do not have any idea about the hazard they are exposed to or can contribute to the quality of an decision making process. In contrast to professionally interested parties, this group is typically comprised of individuals with different individual perspectives on flood risk management. It is argued that including practical knowledge and perceptions (reflecting values and preferences) into the flood risk management process is - apart from professional assessments (as systematic knowledge) - a milestone towards adequate governance structures in any institutional process with political legitimacy. Neither normative concepts like sustainable development or "Good Governance" nor the European Water Framework Directive 2000/60/EC do specify what public participation or the participation of user means in detail. As also scientific literature offers no consistent definition of public participation and stakeholder participation we developed an innovative approach used in the pilot project Krems, Austria. The most innovative step regarding participation was not the methods used for participation but the involvement of concerned lay persons not only in the design of the hazard and risk maps or the risk assessments itself but the cooperative elaboration of the risk assessment approach especially for the harbour area. Following these principles, flood risk maps were created in the underlying EU-project DANUBE FLOODRISK. In this ETC SEE project "DANUBE FLOODRISK - Stakeholder Oriented Assessment of the Danube Floodplains" (2009-2012), hazard and risk maps harmonized across borders for the Danube main stream were produced. This way the overall DANUBE FLOODRISK project contributed to Article 6 of the EU Floods Directive, the hazard and risk maps for international river basins, and provides with the involvement of the national and regional stakeholders the first step to the implementation of Article 7, the Flood Risk Management Plans. By testing the involvement of the broad public and local stakeholders, first exemplary steps were taken for local flood risk management planning. A first set of maps was created for an underlying hazard scenario of a 1-in-100 year flood affecting the city of Krems assuming a failure of the temporal flood protection due to the impact of a ship in the area of the pier. Moreover, both, hazard scenarios with and without a second line of defence were visualised. The set of maps includes (a) an evaluative risk map showing the risk qualitatively aggregated for each building exposed and the number of affected citizens, (b) an evaluative risk map showing the risk qualitatively aggregated per square footage for each building exposed and the number of affected citizens, (c) an evaluative risk map showing the risk quantitatively in monetary units per square footage for each building exposed and the number of affected citizens, and (d) as well as (e) risk maps according to (a) and (b) without the second line of defence in order to communicate the effectiveness of temporal flood protection. For the harbour of Krems, a risk map was compiled based on a self-evaluation of the effects of flooding by the harbour companies. This risk map was based on the assumption of a failure of the harbour gate during a flood event. The self-evaluation was undertaken based on a developed risk matrix which includes significant adverse impacts on human health, the environment, cultural heritage and economic activity. Insights on stakeholder-oriented risk communication were gained with respect to the design and the layout of the maps. Specific elements of semiology for the cartographic representation were deduced. The pilot initiative discussed in this paper is brought added value to all involved parties so far. All participants brought in knowledge, data and time resources. The project team was involved in a social learning process and gained additional know-how about adequate stakeholder involvement and communication as well as about risk assessment methods and mapping. It could be shown that it is possible to involve lay persons in topics such as risk assessments so far only defined by technical experts. Stakeholders from the harbour area were not only involved in the risk assessment but also in the development of the methods for this risk assessment. Such approaches may be increasingly used to develop a better understanding of flood risk within affected communities, and thus increase flood resilience.

  2. Use of map analysis to elucidate flooding in an Australian Riparian River Red Gum Forest

    NASA Astrophysics Data System (ADS)

    Bren, L. J.; O'Neill, I. C.; Gibbs, N. L.

    1988-07-01

    Red gum (Eucalyptus camaldulensis) forests occur on extensive floodplains along the river Murray in Australia. This type of forest is unusual because of its high quality in a semiarid area, the absence of woody species other than red gum, and its survival on a deep, intractable, swelling clay soil of depths exceeding 20 m. This soil probably acts as an aquiclude. The forests require flooding to thrive and regenerate. For many years there has been speculation that irrigation regulation of the river was reducing forest flooding. A grid cell analysis of flood maps of areas flooded over a period of 22 years showed that vegetation communities and forest site quality were statistically related to the flood frequencies of sites. The percentage of forest inundated was dependent on the peak daily flow during the period of inundation. A historical analysis of the estimated percentage of forest inundated showed a substantial influence of river regulation on both timing and extent of inundation. Estimates of historical floodings showed that the environment is one that changes rapidly from wetland to dry land. Although not without limitations, the analysis produced information not available from other sources.

  3. Flood area and damage estimation in Zhejiang, China.

    PubMed

    Liu, Renyi; Liu, Nan

    2002-09-01

    A GIS-based method to estimate flood area and damage is presented in this paper, which is oriented to developing countries like China, where labor is readily available for GIS data collecting, and tools such as, HEC-GeoRAS might not be readily available. At present local authorities in developing countries are often not predisposed to pay for commercial GIS platforms. To calculate flood area, two cases, non-source flood and source flood, are distinguished and a seed-spread algorithm suitable for source-flooding is described. The flood damage estimation is calculated in raster format by overlaying the flood area range with thematic maps and relating this to other socioeconomic data. Several measures used to improve the geometric accuracy and computing efficiency are presented. The management issues related to the application of this method, including the cost-effectiveness of approximate method in practice and supplementing two technical lines (self-programming and adopting commercial GIS software) to each other, are also discussed. The applications show that this approach has practical significance to flood fighting and control in developing countries like China.

  4. The challenge of forecasting impacts of flash floods: test of a simplified hydraulic approach and validation based on insurance claim data

    NASA Astrophysics Data System (ADS)

    Le Bihan, Guillaume; Payrastre, Olivier; Gaume, Eric; Moncoulon, David; Pons, Frédéric

    2017-11-01

    Up to now, flash flood monitoring and forecasting systems, based on rainfall radar measurements and distributed rainfall-runoff models, generally aimed at estimating flood magnitudes - typically discharges or return periods - at selected river cross sections. The approach presented here goes one step further by proposing an integrated forecasting chain for the direct assessment of flash flood possible impacts on inhabited areas (number of buildings at risk in the presented case studies). The proposed approach includes, in addition to a distributed rainfall-runoff model, an automatic hydraulic method suited for the computation of flood extent maps on a dense river network and over large territories. The resulting catalogue of flood extent maps is then combined with land use data to build a flood impact curve for each considered river reach, i.e. the number of inundated buildings versus discharge. These curves are finally used to compute estimated impacts based on forecasted discharges. The approach has been extensively tested in the regions of Alès and Draguignan, located in the south of France, where well-documented major flash floods recently occurred. The article presents two types of validation results. First, the automatically computed flood extent maps and corresponding water levels are tested against rating curves at available river gauging stations as well as against local reference or observed flood extent maps. Second, a rich and comprehensive insurance claim database is used to evaluate the relevance of the estimated impacts for some recent major floods.

  5. Flood-inundation maps for the Saddle River in Ho-Ho-Kus Borough, the Village of Ridgewood, and Paramus Borough, New Jersey, 2013

    USGS Publications Warehouse

    Watson, Kara M.; Niemoczynski, Michal J.

    2014-01-01

    Digital flood-inundation maps for a 5.4-mile reach of the Saddle River in New Jersey from Hollywood Avenue in Ho-Ho-Kus Borough downstream through the Village of Ridgewood and Paramus Borough to the confluence with Hohokus Brook in the Village of Ridgewood were created by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP). The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Saddle River at Ridgewood, New Jersey (station 01390500). Current conditions for estimating near real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/nwis/uv?site_no=01390500 or at the National Weather Services (NWS) Advanced Hydrologic Prediction Service (AHPS) at http://water.weather.gov/ahps2/hydrograph.php?wfo=okx&gage=rwdn4. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation (March 11, 2011) at the USGS streamgage 01390500, Saddle River at Ridgewood, New Jersey. The hydraulic model was then used to compute 10 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum, North American Vertical Datum of 1988 (NAVD 88), and ranging from 5 ft, the NWS “action and minor flood stage”, to 14 ft, which is the maximum extent of the stage-discharge rating and 0.6 ft higher than the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system 3-meter (9.84-ft) digital elevation model derived from Light Detection and Ranging (lidar) data in order to delineate the area flooded at each water level. The availability of these maps along with information on the Internet regarding current stage from the USGS streamgage provides emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures as well as for post-flood recovery efforts.

  6. Flood-plain delineation for Accotink Creek Basin, Fairfax County, Virginia

    USGS Publications Warehouse

    Soule, Pat L.

    1977-01-01

    Water-surface profiles of the 25-year and 100-year floods maps on which the 25-, 50-, and 100-year flood limits are delineated for streams in the Accotink Creek basin are presented in this report. Excluded are segments of Accotink Creek within the Fort Belvoir Military Reservation. The techniques used in the computation of the flood profiles and delineation of flood limits are presented, and specific hydraulic problems encountered within the study area are also included.

  7. Disaster mitigation at drainage basin of Kuranji Padang City

    NASA Astrophysics Data System (ADS)

    Utama, L.; Yamin, M.

    2017-06-01

    Floods is flooding of effect of exit water groove river because big river debit sudden its accomodation energy, happened swiftly knock over areas which is debasement, in river basin and hollow. Flow debris or which is recognized with galodo have knock over river of Kuranji year 2012 in Padang city. Area is floods disaster are: 19 Sub-District in 7 district, and hard that is district of Pauh and district of Nanggalo. Governmental claim tired loss of Rp 263,9 Billion while Government of Provinsi West Sumatera appraise loss estimated by Fourty Billion Rupiah (Padang Ekspress 28 July 2012), with detail of damage house counted 878 unit, damage religious service house 15 unit, damage irrigation 12 unit, damage bridge 6 unit, damage school 2 unit, damage health post 1 unit. Result of calculation, by using rainfall of year 2003 until year 2015 with method Gumbel, Hasper and Wedwen, got high rainfall plan is 310,00 mm, and method Melchior and Hasper floods is 1125,86 m³ / second. From result of study analyse at Citra map of correlation and image to parameters cause of floods, and use software Watershed Modelling System (WMS) this region have two class that is middle susceptance and low susceptance. Middle susceptance area is there are in middle river and downstream river, with inclination level off. Low susceptance area there is middle river. Area which have potency result the happening of floods is headwaters, because having keen ramp storey level ( 45 - 55%) and is hilly. For the mitigasi of floods disaster determined by three area evacuate that are: Sub-District Of Kelurahan Limau Manis District Of Pauh, Sub-District Of Surau Gadang District Of Nanggalo, and Sub-District Of Lambung Bukik District of Pauh, in the form of map.

  8. An exhaustive approach for identification of flood risk hotspots in data poor regions enforcing combined geomorphic and socio-economic indicators

    NASA Astrophysics Data System (ADS)

    Mohanty, M. P.; Karmakar, S.; Ghosh, S.

    2017-12-01

    Many countries across the Globe are victims of floods. To monitor them, various sophisticated algorithms and flood models are used by the scientific community. However, there still lies a gap to efficiently mapping flood risk. The limitations being: (i) scarcity of extensive data inputs required for precise flood modeling, (ii) fizzling performance of models in large and complex terrains (iii) high computational cost and time, and (iv) inexpertise in handling model simulations by civic bodies. These factors trigger the necessity of incorporating uncomplicated and inexpensive, yet precise approaches to identify areas at different levels of flood risk. The present study addresses this issue by utilizing various easily available, low cost data in a GIS environment for a large flood prone and data poor region. A set of geomorphic indicators of Digital Elevation Model (DEM) are analysed through linear binary classification, and are used to identify the flood hazard. The performance of these indicators is then investigated using receiver operating characteristics (ROC) curve, whereas the calibration and validation of the derived flood maps are accomplished through a comparison with dynamically coupled 1-D 2-D flood model outputs. A high degree of similarity on flood inundation proves the reliability of the proposed approach in identifying flood hazard. On the other hand, an extensive list of socio-economic indicators is selected to represent the flood vulnerability at a very finer forward sortation level using multivariate Data Envelopment Analysis (DEA). A set of bivariate flood risk maps is derived combining the flood hazard and socio-economic vulnerability maps. Given the acute problem of floods in developing countries, the proposed methodology which may be characterized by low computational cost, lesser data requirement and limited flood modeling complexity may facilitate local authorities and planners for deriving effective flood management strategies.

  9. Flood extent and water level estimation from SAR using data-model integration

    NASA Astrophysics Data System (ADS)

    Ajadi, O. A.; Meyer, F. J.

    2017-12-01

    Synthetic Aperture Radar (SAR) images have long been recognized as a valuable data source for flood mapping. Compared to other sources, SAR's weather and illumination independence and large area coverage at high spatial resolution supports reliable, frequent, and detailed observations of developing flood events. Accordingly, SAR has the potential to greatly aid in the near real-time monitoring of natural hazards, such as flood detection, if combined with automated image processing. This research works towards increasing the reliability and temporal sampling of SAR-derived flood hazard information by integrating information from multiple SAR sensors and SAR modalities (images and Interferometric SAR (InSAR) coherence) and by combining SAR-derived change detection information with hydrologic and hydraulic flood forecast models. First, the combination of multi-temporal SAR intensity images and coherence information for generating flood extent maps is introduced. The application of least-squares estimation integrates flood information from multiple SAR sensors, thus increasing the temporal sampling. SAR-based flood extent information will be combined with a Digital Elevation Model (DEM) to reduce false alarms and to estimate water depth and flood volume. The SAR-based flood extent map is assimilated into the Hydrologic Engineering Center River Analysis System (Hec-RAS) model to aid in hydraulic model calibration. The developed technology is improving the accuracy of flood information by exploiting information from data and models. It also provides enhanced flood information to decision-makers supporting the response to flood extent and improving emergency relief efforts.

  10. Regional early flood warning system: design and implementation

    NASA Astrophysics Data System (ADS)

    Chang, L. C.; Yang, S. N.; Kuo, C. L.; Wang, Y. F.

    2017-12-01

    This study proposes a prototype of the regional early flood inundation warning system in Tainan City, Taiwan. The AI technology is used to forecast multi-step-ahead regional flood inundation maps during storm events. The computing time is only few seconds that leads to real-time regional flood inundation forecasting. A database is built to organize data and information for building real-time forecasting models, maintaining the relations of forecasted points, and displaying forecasted results, while real-time data acquisition is another key task where the model requires immediately accessing rain gauge information to provide forecast services. All programs related database are constructed in Microsoft SQL Server by using Visual C# to extracting real-time hydrological data, managing data, storing the forecasted data and providing the information to the visual map-based display. The regional early flood inundation warning system use the up-to-date Web technologies driven by the database and real-time data acquisition to display the on-line forecasting flood inundation depths in the study area. The friendly interface includes on-line sequentially showing inundation area by Google Map, maximum inundation depth and its location, and providing KMZ file download of the results which can be watched on Google Earth. The developed system can provide all the relevant information and on-line forecast results that helps city authorities to make decisions during typhoon events and make actions to mitigate the losses.

  11. The land morphology approach to flood risk mapping: An application to Portugal.

    PubMed

    Cunha, N S; Magalhães, M R; Domingos, T; Abreu, M M; Küpfer, C

    2017-05-15

    In the last decades, the increasing vulnerability of floodplains is linked to societal changes such as population density growth, land use changes, water use patterns, among other factors. Land morphology directly influences surface water flow, transport of sediments, soil genesis, local climate and vegetation distribution. Therefore, the land morphology, the land used and management directly influences flood risks genesis. However, attention is not always given to the underlying geomorphological and ecological processes that influence the dynamic of rivers and their floodplains. Floodplains are considered a part of a larger system called Wet System (WS). The WS includes permanent and temporary streams, water bodies, wetlands and valley bottoms. Valley bottom is a broad concept which comprehends not only floodplains but also flat and concave areas, contiguous to streams, in which slope is less than 5%. This will be addressed through a consistent method based on a land morphology approach that classifies landforms according to their hydrological position in the watershed. This method is based on flat areas (slopes less than 5%), surface curvature and hydrological features. The comparison between WS and flood risk data from the Portuguese Environmental Agency for the main rivers of mainland Portugal showed that in downstream areas of watersheds, valley bottoms are coincident with floodplains modelled by hydrological methods. Mapping WS has a particular interest in analysing river ecosystems position and function in the landscape, from upstream to downstream areas in the watershed. This morphological approach is less demanding data and time-consuming than hydrological methods and can be used as the preliminary delimitation of floodplains and potential flood risk areas in situations where there is no hydrological data available. The results were also compared with the land use/cover map at a national level and detailed in Trancão river basin, located in Lisbon metropolitan area, an urbanized basin that suffered heavy flooding in the last decades. This study also contributes to a better understanding of the basin morphology at a local-scale and the effects of soil sealing in downstream flood risks. This work will contribute to the understanding of the morphology, ecology and land use of watersheds that could be used to reduce runoff and downstream flood risk. This can be accomplished by using natural water retention and infiltration methods or higher-level based planning instead of a reaction to local decisions on flood hazards. This morphological approach to map landforms, including wet system, is a valuable tool to assist policy makers and planners in flood risk and land use management, floodplain restoration, agricultural land management practices, and location of human activities according to ecological suitability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Potential of high resolution satellite imagery, remote weather data and 1D hydraulic modeling to evaluate flood areas in Gonaives, Haiti

    NASA Astrophysics Data System (ADS)

    Bozza, Andrea; Durand, Arnaud; Allenbach, Bernard; Confortola, Gabriele; Bocchiola, Daniele

    2013-04-01

    We present a feasibility study to explore potential of high-resolution imagery, coupled with hydraulic flood modeling to predict flooding risks, applied to the case study of Gonaives basins (585 km²), Haiti. We propose a methodology working at different scales, providing accurate results and a faster intervention during extreme flood events. The 'Hispaniola' island, in the Caribbean tropical zone, is often affected by extreme floods events. Floods are caused by tropical springs and hurricanes, and may lead to several damages, including cholera epidemics, as recently occurred, in the wake of the earthquake upon January 12th 2010 (magnitude 7.0). Floods studies based upon hydrological and hydraulic modeling are hampered by almost complete lack of ground data. Thenceforth, and given the noticeable cost involved in the organization of field measurement campaigns, the need for exploitation of remote sensing images data. HEC-RAS 1D modeling is carried out under different scenarios of available Digital Elevation Models. The DEMs are generated using optical remote sensing satellite (WorldView-1) and SRTM, combined with information from an open source database (Open Street Map). We study two recent flood episodes, where flood maps from remote sensing were available. Flood extent and land use have been assessed by way of data from SPOT-5 satellite, after hurricane Jeanne in 2004 and hurricane Hanna in 2008. A semi-distributed, DEM based hydrological model is used to simulate flood flows during the hurricanes. Precipitation input is taken from daily rainfall data derived from TRMM satellite, plus proper downscaling. The hydraulic model is calibrated using floodplain friction as tuning parameters against the observed flooded area. We compare different scenarios of flood simulation, and the predictive power of model calibration. The method provide acceptable results in depicting flooded areas, especially considering the tremendous lack of ground data, and show the potential of remote sensing information in prediction of flood events in this area, for the purpose of risk assessment and land use planning, and possibly for flood forecast during extreme events.

  13. 24 CFR 3285.102 - Installation of manufactured homes in flood hazard areas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... subpart are as defined in 44 CFR 59.1 of the National Flood Insurance Program (NFIP) regulations. (b... accordance with NFIP regulations. If so located, and before an installation method is agreed upon, the map...

  14. 24 CFR 3285.102 - Installation of manufactured homes in flood hazard areas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... subpart are as defined in 44 CFR 59.1 of the National Flood Insurance Program (NFIP) regulations. (b... accordance with NFIP regulations. If so located, and before an installation method is agreed upon, the map...

  15. 75 FR 34381 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... ground [caret] Elevation in meters (MSL) Modified Mississippi County, Arkansas, and Incorporated Areas... the nearest 0.1 meter. ADDRESSES City of Luxora Maps are available for inspection at 204 North Main... meter. ADDRESSES Unincorporated Areas of Yolo County Maps are available for inspection at the Yolo...

  16. 78 FR 58334 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    .... Upper Great Miami, Indiana, Ohio Watershed Shelby County, Ohio, and Incorporated Areas Maps Available... De Tour Village Hall, 260 South Superior Street, De Tour Village, MI 49725. Erie County, Ohio, and... Watershed Lawrence County, Ohio, and Incorporated Areas Maps Available for Inspection Online at: www.fema...

  17. Remote Sensing-Based Quantification of the Impact of Flash Flooding on the Rice Production: A Case Study over Northeastern Bangladesh

    PubMed Central

    Rahaman, Khan Rubayet; Kok, Aaron; Hassan, Quazi K.

    2017-01-01

    The northeastern region of Bangladesh often experiences flash flooding during the pre-harvesting period of the boro rice crop, which is the major cereal crop in the country. In this study, our objective was to delineate the impact of the 2017 flash flood (that initiated on 27 March 2017) on boro rice using multi-temporal Landsat-8 OLI and MODIS data. Initially, we opted to use Landsat-8 OLI data for mapping the damages; however, during and after the flooding event the acquisition of cloud free images were challenging. Thus, we used this data to map the cultivated boro rice acreage considering the planting to mature stages of the crop. Also, in order to map the extent of the damaged boro area, we utilized MODIS data as their 16-day composites provided cloud free information. Our results indicated that both the cultivated and damaged boro area estimates based on satellite data had strong relationships while compared to the ground-based estimates (i.e., r2 values approximately 0.92 for both cases, and RMSE of 18,374 and 9380 ha for cultivated and damaged areas, respectively). Finally, we believe that our study would be critical for planning and ensuring food security for the country. PMID:29036896

  18. Remote Sensing-Based Quantification of the Impact of Flash Flooding on the Rice Production: A Case Study over Northeastern Bangladesh.

    PubMed

    Ahmed, M Razu; Rahaman, Khan Rubayet; Kok, Aaron; Hassan, Quazi K

    2017-10-14

    The northeastern region of Bangladesh often experiences flash flooding during the pre-harvesting period of the boro rice crop, which is the major cereal crop in the country. In this study, our objective was to delineate the impact of the 2017 flash flood (that initiated on 27 March 2017) on boro rice using multi-temporal Landsat-8 OLI and MODIS data. Initially, we opted to use Landsat-8 OLI data for mapping the damages; however, during and after the flooding event the acquisition of cloud free images were challenging. Thus, we used this data to map the cultivated boro rice acreage considering the planting to mature stages of the crop. Also, in order to map the extent of the damaged boro area, we utilized MODIS data as their 16-day composites provided cloud free information. Our results indicated that both the cultivated and damaged boro area estimates based on satellite data had strong relationships while compared to the ground-based estimates (i.e., r ² values approximately 0.92 for both cases, and RMSE of 18,374 and 9380 ha for cultivated and damaged areas, respectively). Finally, we believe that our study would be critical for planning and ensuring food security for the country.

  19. Understanding the effects of past flood events and perceived and estimated flood risks on individuals' voluntary flood insurance purchase behavior.

    PubMed

    Shao, Wanyun; Xian, Siyuan; Lin, Ning; Kunreuther, Howard; Jackson, Nida; Goidel, Kirby

    2017-01-01

    Over the past several decades, the economic damage from flooding in the coastal areas has greatly increased due to rapid coastal development coupled with possible climate change impacts. One effective way to mitigate excessive economic losses from flooding is to purchase flood insurance. Only a minority of coastal residents however have taken this preventive measure. Using original survey data for all coastal counties of the United States Gulf Coast merged with contextual data, this study examines the effects of external influences and perceptions of flood-related risks on individuals' voluntary behaviors to purchase flood insurance. It is found that the estimated flood hazard conveyed through the U.S. Federal Emergency Management Agency's (FEMA's) flood maps, the intensities and consequences of past storms and flooding events, and perceived flood-related risks significantly affect individual's voluntary purchase of flood insurance. This behavior is also influenced by home ownership, trust in local government, education, and income. These findings have several important policy implications. First, FEMA's flood maps have been effective in conveying local flood risks to coastal residents, and correspondingly influencing their decisions to voluntarily seek flood insurance in the U.S. Gulf Coast. Flood maps therefore should be updated frequently to reflect timely and accurate information about flood hazards. Second, policy makers should design strategies to increase homeowners' trust in the local government, to better communicate flood risks with residents, to address the affordability issue for the low-income, and better inform less educated homeowners through various educational programs. Future studies should examine the voluntary flood insurance behavior across countries that are vulnerable to flooding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A framework for the case-specific assessment of Green Infrastructure in mitigating urban flood hazards

    NASA Astrophysics Data System (ADS)

    Schubert, Jochen E.; Burns, Matthew J.; Fletcher, Tim D.; Sanders, Brett F.

    2017-10-01

    This research outlines a framework for the case-specific assessment of Green Infrastructure (GI) performance in mitigating flood hazard in small urban catchments. The urban hydrologic modeling tool (MUSIC) is coupled with a fine resolution 2D hydrodynamic model (BreZo) to test to what extent retrofitting an urban watershed with GI, rainwater tanks and infiltration trenches in particular, can propagate flood management benefits downstream and support intuitive flood hazard maps useful for communicating and planning with communities. The hydrologic and hydraulic models are calibrated based on current catchment conditions, then modified to represent alternative GI scenarios including a complete lack of GI versus a full implementation of GI. Flow in the hydrologic/hydraulic models is forced using a range of synthetic rainfall events with annual exceedance probabilities (AEPs) between 1-63% and durations from 10 min to 24 h. Flood hazard benefits mapped by the framework include maximum flood depths and extents, flow intensity (m2/s), flood duration, and critical storm duration leading to maximum flood conditions. Application of the system to the Little Stringybark Creek (LSC) catchment shows that across the range of AEPs tested and for storm durations equal or less than 3 h, presently implemented GI reduces downstream flooded area on average by 29%, while a full implementation of GI would reduce downstream flooded area on average by 91%. A full implementation of GI could also lower maximum flow intensities by 83% on average, reducing the drowning hazard posed by urban streams and improving the potential for access by emergency responders. For storm durations longer than 3 h, a full implementation of GI lacks the capacity to retain the resulting rainfall depths and only reduces flooded area by 8% and flow intensity by 5.5%.

  1. Application of STORMTOOLS's simplified flood inundation model with sea level rise to assess impacts to RI coastal areas

    NASA Astrophysics Data System (ADS)

    Spaulding, M. L.

    2015-12-01

    The vision for STORMTOOLS is to provide access to a suite of coastal planning tools (numerical models et al), available as a web service, that allows wide spread accessibly and applicability at high resolution for user selected coastal areas of interest. The first product developed under this framework were flood inundation maps, with and without sea level rise, for varying return periods for RI coastal waters. The flood mapping methodology is based on using the water level vs return periods at a primary NOAA water level gauging station and then spatially scaling the values, based on the predictions of high resolution, storm and wave simulations performed by Army Corp of Engineers, North Atlantic Comprehensive Coastal Study (NACCS) for tropical and extratropical storms on an unstructured grid, to estimate inundation levels for varying return periods. The scaling for the RI application used Newport, RI water levels as the reference point. Predictions are provided for once in 25, 50, and 100 yr return periods (at the upper 95% confidence level), with sea level rises of 1, 2, 3, and 5 ft. Simulations have also been performed for historical hurricane events including 1938, Carol (1954), Bob (1991), and Sandy (2012) and nuisance flooding events with return periods of 1, 3, 5, and 10 yr. Access to the flooding maps is via a web based, map viewer that seamlessly covers all coastal waters of the state at one meter resolution. The GIS structure of the map viewer allows overlays of additional relevant data sets (roads and highways, wastewater treatment facilities, schools, hospitals, emergency evacuation routes, etc.) as desired by the user. The simplified flooding maps are publically available and are now being implemented for state and community resilience planning and vulnerability assessment activities in response to climate change impacts.

  2. Flood maps in Europe - methods, availability and use

    NASA Astrophysics Data System (ADS)

    de Moel, H.; van Alphen, J.; Aerts, J. C. J. H.

    2009-03-01

    To support the transition from traditional flood defence strategies to a flood risk management approach at the basin scale in Europe, the EU has adopted a new Directive (2007/60/EC) at the end of 2007. One of the major tasks which member states must carry out in order to comply with this Directive is to map flood hazards and risks in their territory, which will form the basis of future flood risk management plans. This paper gives an overview of existing flood mapping practices in 29 countries in Europe and shows what maps are already available and how such maps are used. Roughly half of the countries considered have maps covering as good as their entire territory, and another third have maps covering significant parts of their territory. Only five countries have very limited or no flood maps available yet. Of the different flood maps distinguished, it appears that flood extent maps are the most commonly produced floods maps (in 23 countries), but flood depth maps are also regularly created (in seven countries). Very few countries have developed flood risk maps that include information on the consequences of flooding. The available flood maps are mostly developed by governmental organizations and primarily used for emergency planning, spatial planning, and awareness raising. In spatial planning, flood zones delimited on flood maps mainly serve as guidelines and are not binding. Even in the few countries (e.g. France, Poland) where there is a legal basis to regulate floodplain developments using flood zones, practical problems are often faced which reduce the mitigating effect of such binding legislation. Flood maps, also mainly extent maps, are also created by the insurance industry in Europe and used to determine insurability, differentiate premiums, or to assess long-term financial solvency. Finally, flood maps are also produced by international river commissions. With respect to the EU Flood Directive, many countries already have a good starting point to map their flood hazards. A flood risk based map that includes consequences, however, has yet to be developed by most countries.

  3. Flood mapping with multitemporal MODIS data

    NASA Astrophysics Data System (ADS)

    Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru

    2014-05-01

    Flood is one of the most devastating and frequent disasters resulting in loss of human life and serve damage to infrastructure and agricultural production. Flood is phenomenal in the Mekong River Delta (MRD), Vietnam. It annually lasts from July to November. Information on spatiotemporal flood dynamics is thus important for planners to devise successful strategies for flood monitoring and mitigation of its negative effects. The main objective of this study is to develop an approach for weekly mapping flood dynamics with the Moderate Resolution Imaging Spectroradiometer data in MRD using the water fraction model (WFM). The data processed for 2009 comprises three main steps: (1) data pre-processing to construct smooth time series of the difference in the values (DVLE) between land surface water index (LSWI) and enhanced vegetation index (EVI) using the empirical mode decomposition (EMD), (2) flood derivation using WFM, and (3) accuracy assessment. The mapping results were compared with the ground reference data, which were constructed from Envisat Advanced Synthetic Aperture Radar (ASAR) data. As several error sources, including mixed-pixel problems and low-resolution bias between the mapping results and ground reference data, could lower the level of classification accuracy, the comparisons indicated satisfactory results with the overall accuracy of 80.5% and Kappa coefficient of 0.61, respectively. These results were reaffirmed by a close correlation between the MODIS-derived flood area and that of the ground reference map at the provincial level, with the correlation coefficients (R2) of 0.93. Considering the importance of remote sensing for monitoring floods and mitigating the damage caused by floods to crops and infrastructure, this study eventually leads to the realization of the value of using time-series MODIS DVLE data for weekly flood monitoring in MRD with the aid of EMD and WFM. Such an approach that could provide quantitative information on spatiotemporal flood dynamics for monitoring purposes was completely transferable to other regions in the world.

  4. Comparison between flood prone areas' geomorphic features in the Abruzzo region

    NASA Astrophysics Data System (ADS)

    Orlando, D.; Giglioni, M.; Magnaldi, S.

    2017-07-01

    Flood risk maps are one of the main non-structural measures for risk mitigation, but, as the risk knowledge degree is directly proportional to the community interest and financial capability, many sites are devoid of flood inundation areas studies. Recently many authors have investigated the capability of flood prone areas individuation with geomorphological DIGITAL ELEVATION MODEL(DEM) based approaches. These approaches highlight the role of geomorphic features derived from DEM, in this case slope, curvature, elevation, and topographic wetness index, to preliminary inundated areas' identification, without using hydraulic simulations. The present studies aim to analyze the geomorphic features of different hazard levels that lie under the identified inundated areas that have been carried out by the Abruzzo Region Basin Authority. The Aterno-Pescara and Foro river basins have been investigated. The results show that the characteristics of the flooded areas can be clearly distinguished from those of the entire basin,however, the difficultly of geomorphic features in individuatingthe areas of different hazard classifications is obvious.

  5. Overcoming complexities for consistent, continental-scale flood mapping

    NASA Astrophysics Data System (ADS)

    Smith, Helen; Zaidman, Maxine; Davison, Charlotte

    2013-04-01

    The EU Floods Directive requires all member states to produce flood hazard maps by 2013. Although flood mapping practices are well developed in Europe, there are huge variations in the scale and resolution of the maps between individual countries. Since extreme flood events are rarely confined to a single country, this is problematic, particularly for the re/insurance industry whose exposures often extend beyond country boundaries. Here, we discuss the challenges of large-scale hydrological and hydraulic modelling, using our experience of developing a 12-country model and set of maps, to illustrate how consistent, high-resolution river flood maps across Europe can be produced. The main challenges addressed include: data acquisition; manipulating the vast quantities of high-resolution data; and computational resources. Our starting point was to develop robust flood-frequency models that are suitable for estimating peak flows for a range of design flood return periods. We used the index flood approach, based on a statistical analysis of historic river flow data pooled on the basis of catchment characteristics. Historical flow data were therefore sourced for each country and collated into a large pan-European database. After a lengthy validation these data were collated into 21 separate analysis zones or regions, grouping smaller river basins according to their physical and climatic characteristics. The very large continental scale basins were each modelled separately on account of their size (e.g. Danube, Elbe, Drava and Rhine). Our methodology allows the design flood hydrograph to be predicted at any point on the river network for a range of return periods. Using JFlow+, JBA's proprietary 2D hydraulic hydrodynamic model, the calculated out-of-bank flows for all watercourses with an upstream drainage area exceeding 50km2 were routed across two different Digital Terrain Models in order to map the extent and depth of floodplain inundation. This generated modelling for a total river length of approximately 250,000km. Such a large-scale, high-resolution modelling exercise is extremely demanding on computational resources and would have been unfeasible without the use of Graphics Processing Units on a network of standard specification gaming computers. Our GPU grid is the world's largest flood-dedicated computer grid. The European river basins were split out into approximately 100 separate hydraulic models and managed individually, although care was taken to ensure flow continuity was maintained between models. The flood hazard maps from the modelling were pieced together using GIS techniques, to provide flood depth and extent information across Europe to a consistent scale and standard. After discussing the methodological challenges, we shall present our flood hazard maps and, from extensive validation work, compare these against historical flow records and observed flood extents.

  6. Analysis of flood vulnerability in urban area; a case study in deli watershed

    NASA Astrophysics Data System (ADS)

    Indrawan, I.; Siregar, R. I.

    2018-03-01

    Based on the National Disaster Management Agency of Indonesia, the distribution of disasters and victims died until the year 2016 is the largest flood disaster. Deli River is a river that has the greatest flood potential through Medan City. In Deli Watershed, flow discharge affected by the discharge from its tributaries, the high rainfall intensity and human activity. We should anticipate reducing and preventing the occurrence of losses due to flood damage. One of the ways to anticipate flood disaster is to predict which part of urban area is would flood. The objective of this study is to analyze the flood inundation areas due to overflow of Deli River through Medan city. Two-dimensional modeling by HEC-RAS 5.0.3 is a widely used hydraulic software tool developed by the U.S Army Corps of Engineers, which combined with the HEC-HMS for hydrological modeling. The result shows flood vulnerability in Medan by a map to present the spot that vulnerable about flood. The flooded area due to the overflowing of Deli River consists of seven sub districts, namely Medan Johor, Medan Selayang, Medan Kota, Medan Petisah, Medan Maimun, Medan Perjuangan and Medan Barat.

  7. Sub-pixel flood inundation mapping from multispectral remotely sensed images based on discrete particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Li, Linyi; Chen, Yun; Yu, Xin; Liu, Rui; Huang, Chang

    2015-03-01

    The study of flood inundation is significant to human life and social economy. Remote sensing technology has provided an effective way to study the spatial and temporal characteristics of inundation. Remotely sensed images with high temporal resolutions are widely used in mapping inundation. However, mixed pixels do exist due to their relatively low spatial resolutions. One of the most popular approaches to resolve this issue is sub-pixel mapping. In this paper, a novel discrete particle swarm optimization (DPSO) based sub-pixel flood inundation mapping (DPSO-SFIM) method is proposed to achieve an improved accuracy in mapping inundation at a sub-pixel scale. The evaluation criterion for sub-pixel inundation mapping is formulated. The DPSO-SFIM algorithm is developed, including particle discrete encoding, fitness function designing and swarm search strategy. The accuracy of DPSO-SFIM in mapping inundation at a sub-pixel scale was evaluated using Landsat ETM + images from study areas in Australia and China. The results show that DPSO-SFIM consistently outperformed the four traditional SFIM methods in these study areas. A sensitivity analysis of DPSO-SFIM was also carried out to evaluate its performances. It is hoped that the results of this study will enhance the application of medium-low spatial resolution images in inundation detection and mapping, and thereby support the ecological and environmental studies of river basins.

  8. LiDAR-Derived Flood-Inundation Maps for Real-Time Flood-Mapping Applications, Tar River Basin, North Carolina

    USGS Publications Warehouse

    Bales, Jerad D.; Wagner, Chad R.; Tighe, Kirsten C.; Terziotti, Silvia

    2007-01-01

    Flood-inundation maps were created for selected streamgage sites in the North Carolina Tar River basin. Light detection and ranging (LiDAR) data with a vertical accuracy of about 20 centimeters, provided by the Floodplain Mapping Information System of the North Carolina Floodplain Mapping Program, were processed to produce topographic data for the inundation maps. Bare-earth mass point LiDAR data were reprocessed into a digital elevation model with regularly spaced 1.5-meter by 1.5-meter cells. A tool was developed as part of this project to connect flow paths, or streams, that were inappropriately disconnected in the digital elevation model by such features as a bridge or road crossing. The Hydraulic Engineering Center-River Analysis System (HEC-RAS) model, developed by the U.S. Army Corps of Engineers, was used for hydraulic modeling at each of the study sites. Eleven individual hydraulic models were developed for the Tar River basin sites. Seven models were developed for reaches with a single gage, and four models were developed for reaches of the Tar River main stem that receive flow from major gaged tributaries, or reaches in which multiple gages were near one another. Combined, the Tar River hydraulic models included 272 kilometers of streams in the basin, including about 162 kilometers on the Tar River main stem. The hydraulic models were calibrated to the most current stage-discharge relations at 11 long-term streamgages where rating curves were available. Medium- to high-flow discharge measurements were made at some of the sites without rating curves, and high-water marks from Hurricanes Fran and Floyd were available for high-stage calibration. Simulated rating curves matched measured curves over the full range of flows. Differences between measured and simulated water levels for a specified flow were no more than 0.44 meter and typically were less. The calibrated models were used to generate a set of water-surface profiles for each of the 11 modeled reaches at 0.305-meter increments for water levels ranging from bankfull to approximately the highest recorded water level at the downstream-most gage in each modeled reach. Inundated areas were identified by subtracting the water-surface elevation in each 1.5-meter by 1.5-meter grid cell from the land-surface elevation in the cell through an automated routine that was developed to identify all inundated cells hydraulically connected to the cell at the downstream-most gage in the model domain. Inundation maps showing transportation networks and orthoimagery were prepared for display on the Internet. These maps also are linked to the U.S. Geological Survey North Carolina Water Science Center real-time streamflow website. Hence, a user can determine the near real-time stage and water-surface elevation at a U.S. Geological Survey streamgage site in the Tar River basin and link directly to the flood-inundation maps for a depiction of the estimated inundated area at the current water level. Although the flood-inundation maps represent distinct boundaries of inundated areas, some uncertainties are associated with these maps. These are uncertainties in the topographic data for the hydraulic model computational grid and inundation maps, effective friction values (Manning's n), model-validation data, and forecast hydrographs, if used. The Tar River flood-inundation maps were developed by using a steady-flow hydraulic model. This assumption clearly has less of an effect on inundation maps produced for low flows than for high flows when it typically takes more time to inundate areas. A flood in which water levels peak and fall slowly most likely will result in more inundation than a similar flood in which water levels peak and fall quickly. Limitations associated with the steady-flow assumption for hydraulic modeling vary from site to site. The one-dimensional modeling approach used in this study resulted in good agreement between measurements and simulations. T

  9. Widening ERTS applications

    NASA Technical Reports Server (NTRS)

    Mercanti, E. P.

    1974-01-01

    In less than two years of operation ERTS-1 is shown to have successfully completed its experimental mission and to be delivering an ever-increasing roster of benefits. The widening ERTS applications reviewed include air quality and weather modification, aid to oil exploration, ore-deposit exploration, short-lived event observation, flood area assessment and flood-plain mapping, land and water quality assessment, soil association mapping, crop production measurements, wildlife resources, drought and desertification studies, ground-water exploration, watershed surveys, snow and ice monitoring, surface water mapping, and iceberg surveys. Future projects and developments are also briefly reviewed.

  10. Assessment of the landslide and flood risks in São Paulo City, Brazil

    NASA Astrophysics Data System (ADS)

    Vieira, Bianca; Listo, Fabrízio

    2010-05-01

    In Brazilian cities, especially during summer, the landslides and floods cause disaster and economic losses. Aricanduva basin is one of the most critical in the Metropolitan Region of São Paulo (RMSP), where many types of morphodynamic processes occur. This is the largest river basin in São Paulo City. The current situation is characterized by intense urbanization, soil sealing and consequent reduction of soil infiltration, increasing the frequency of flood events in this area. Thus, the main objective of this paper is to map risk areas of landslides and floods in the sub-basin Limoeiro, located in the head of the Aricanduva basin. For mapping the risk areas, we prepared a record field to floods and landslides, based on several studies. Initially, it were identified the natural indicators (vegetation, topography, surface cover and drainage) and anthropogenic (urban pattern, soil cover, building types, occupation density, road conditions, infrastructure, drainage systems, distance between houses and slope, at the top and base, and the drainage channel). On the second step of this research, we identified the evidences of mass movements (scars, cracks, subsidence, trees, poles and inclined walls). Thus, on the basis of this analysis it was possible to define the risk probability: R1 (low or no risk), R2 (moderate), R3 (high) and, R4 (very high). Subsequently, by means of oblique photographs (taken from helicopter flight) it was possible to define risk areas in the basin. In all the sectors identified, were recorded approximately 903 urban settlements. The results showed that from the 25 sectors of risk, 14 sectors (56%) presented landslide risk and 11 (44%), flood risk. Of the sectors that showed landslide risk areas, 21% have very high probability (R4), 21% high (R3), 29% moderate (R2) and 29% low (R1). The sectors at flood risk presented 45% of very high probability (R4), 10% high (R3), 18% moderate (R2) and 27% low (R1). There is large presence of sediments from landslides, debris and remnants of buildings. The drainage systems are precarious and there is runoff on the surface and sewage pipes on soil surface. Some houses were built without keeping safe distance from the top and bottom of the slope, increasing landslide risk. Others were built very close to the stream. There are cracks in the houses and walls and trees inclined by mass movements and riverbank erosion. In general, the urban occupation, after deforesting, characterized by land fragmentation and by settlements without urban infrastructure, occurred in the terrain less favorable to the occupation, where a natural susceptibility to landslides and flood processes exists. Thus, we believe that this mapping can help the identification of the active processes (landslides and floods) and the assessment of risk areas. Therefore, these maps can be used by public administration on identifying areas more appropriate to urban occupation.

  11. The October 2015 flash-floods in south eastern France: hydrological analyses, inundation mapping and impact estimations

    NASA Astrophysics Data System (ADS)

    Payrastre, Olivier; Bourgin, François; Lebouc, Laurent; Le Bihan, Guillaume; Gaume, Eric

    2017-04-01

    The October 2015 flash-floods in south eastern France caused more than twenty fatalities, high damages and large economic losses in high density urban areas of the Mediterranean coast, including the cities of Mandelieu-La Napoule, Cannes and Antibes. Following a post event survey and preliminary analyses conducted within the framework of the Hymex project, we set up an entire simulation chain at the regional scale to better understand this outstanding event. Rainfall-runoff simulations, inundation mapping and a first estimation of the impacts are conducted following the approach developed and successfully applied for two large flash-flood events in two different French regions (Gard in 2002 and Var in 2010) by Le Bihan (2016). A distributed rainfall-runoff model applied at high resolution for the whole area - including numerous small ungauged basins - is used to feed a semi-automatic hydraulic approach (Cartino method) applied along the river network - including small tributaries. Estimation of the impacts is then performed based on the delineation of the flooded areas and geographic databases identifying buildings and population at risk.

  12. Flood-inundation maps for the Withlacoochee River From Skipper Bridge Road to St. Augustine Road, within the City of Valdosta, Georgia, and Lowndes County, Georgia

    USGS Publications Warehouse

    Musser, Jonathan W.

    2018-01-31

    Digital flood-inundation maps for a 12.6-mile reach of the Withlacoochee River from Skipper Bridge Road to St. Augustine Road (Georgia State Route 133) were developed to depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey (USGS) streamgage at Withlacoochee River at Skipper Bridge Road, near Bemiss, Ga. (023177483). Real-time stage information from this streamgage can be used with these maps to estimate near real-time areas of inundation. The forecasted peak-stage information for the USGS streamgage at Withlacoochee River at Skipper Bridge Road, near Bemiss, Ga. (023177483), can be used in conjunction with the maps developed for this study to show predicted areas of flood inundation.A one-dimensional step-backwater model was developed using the U.S. Army Corps of Engineers Hydrologic Engineer-ing Center’s River Analysis System (HEC–RAS) software for the Withlacoochee River and was used to compute flood profiles for a 12.6-mile reach of the Withlacoochee River. The hydraulic model was then used to simulate 23 water-surface profiles at 1.0-foot (ft) intervals at the Withlacoochee River near the Bemiss streamgage. The profiles ranged from the National Weather Service action stage of 10.7 ft, which is 131.0 ft above the North American Vertical Datum of 1988 (NAVD 88), to a stage of 32.7 ft, which is 153.0 ft above NAVD 88. The simulated water-surface profiles were then combined with a geographic information system digital elevation model—derived from light detection and ranging (lidar) data having a 4.0-ft horizontal resolution—to delineate the area flooded at each 1.0-ft interval of stream stage.

  13. Coupling high-resolution hydraulic and hydrologic models for flash flood forecasting and inundation mapping in urban areas - A case study for the City of Fort Worth

    NASA Astrophysics Data System (ADS)

    Nazari, B.; Seo, D.; Cannon, A.

    2013-12-01

    With many diverse features such as channels, pipes, culverts, buildings, etc., hydraulic modeling in urban areas for inundation mapping poses significant challenges. Identifying the practical extent of the details to be modeled in order to obtain sufficiently accurate results in a timely manner for effective emergency management is one of them. In this study we assess the tradeoffs between model complexity vs. information content for decision making in applying high-resolution hydrologic and hydraulic models for real-time flash flood forecasting and inundation mapping in urban areas. In a large urban area such as the Dallas-Fort Worth Metroplex (DFW), there exists very large spatial variability in imperviousness depending on the area of interest. As such, one may expect significant sensitivity of hydraulic model results to the resolution and accuracy of hydrologic models. In this work, we present the initial results from coupling of high-resolution hydrologic and hydraulic models for two 'hot spots' within the City of Fort Worth for real-time inundation mapping.

  14. Database assessment of CMIP5 and hydrological models to determine flood risk areas

    NASA Astrophysics Data System (ADS)

    Limlahapun, Ponthip; Fukui, Hiromichi

    2016-11-01

    Solutions for water-related disasters may not be solved with a single scientific method. Based on this premise, we involved logic conceptions, associate sequential result amongst models, and database applications attempting to analyse historical and future scenarios in the context of flooding. The three main models used in this study are (1) the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to derive precipitation; (2) the Integrated Flood Analysis System (IFAS) to extract amount of discharge; and (3) the Hydrologic Engineering Center (HEC) model to generate inundated areas. This research notably focused on integrating data regardless of system-design complexity, and database approaches are significantly flexible, manageable, and well-supported for system data transfer, which makes them suitable for monitoring a flood. The outcome of flood map together with real-time stream data can help local communities identify areas at-risk of flooding in advance.

  15. Quality control of the RMS US flood model

    NASA Astrophysics Data System (ADS)

    Jankowfsky, Sonja; Hilberts, Arno; Mortgat, Chris; Li, Shuangcai; Rafique, Farhat; Rajesh, Edida; Xu, Na; Mei, Yi; Tillmanns, Stephan; Yang, Yang; Tian, Ye; Mathur, Prince; Kulkarni, Anand; Kumaresh, Bharadwaj Anna; Chaudhuri, Chiranjib; Saini, Vishal

    2016-04-01

    The RMS US flood model predicts the flood risk in the US with a 30 m resolution for different return periods. The model is designed for the insurance industry to estimate the cost of flood risk for a given location. Different statistical, hydrological and hydraulic models are combined to develop the flood maps for different return periods. A rainfall-runoff and routing model, calibrated with observed discharge data, is run with 10 000 years of stochastic simulated precipitation to create time series of discharge and surface runoff. The 100, 250 and 500 year events are extracted from these time series as forcing for a two-dimensional pluvial and fluvial inundation model. The coupling of all the different models which are run on the large area of the US implies a certain amount of uncertainty. Therefore, special attention is paid to the final quality control of the flood maps. First of all, a thorough quality analysis of the Digital Terrain model and the river network was done, as the final quality of the flood maps depends heavily on the DTM quality. Secondly, the simulated 100 year discharge in the major river network (600 000 km) is compared to the 100 year discharge derived using extreme value distribution of all USGS gauges with more than 20 years of peak values (around 11 000 gauges). Thirdly, for each gauge the modelled flood depth is compared to the depth derived from the USGS rating curves. Fourthly, the modelled flood depth is compared to the base flood elevation given in the FEMA flood maps. Fifthly, the flood extent is compared to the FEMA flood extent. Then, for historic events we compare flood extents and flood depths at given locations. Finally, all the data and spatial layers are uploaded on geoserver to facilitate the manual investigation of outliers. The feedback from the quality control is used to improve the model and estimate its uncertainty.

  16. Locally Operated Levees: Issues and Federal Programs

    DTIC Science & Technology

    2011-04-05

    attention. Congressional authorization of the National Flood Insurance Program ( NFIP ), managed by the Federal Emergency Management Agency (FEMA), expires...levees, FEMA’s Flood Insurance Rate Maps (FIRMs) and levee accreditation (which determine which NFIP requirements and premiums apply in an area), and...investments that reduce flood risk; concerns about the local costs associated with NFIP purchase and levee accreditation requirements; and consideration

  17. Flood-inundation maps for the Big Blue River at Shelbyville, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2017-02-13

    Digital flood-inundation maps for a 4.1-mile reach of the Big Blue River at Shelbyville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The floodinundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at https://water. usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Big Blue River at Shelbyville, Ind. (station number 03361500). Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at https://waterdata. usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at https://water.weather.gov/ ahps/, which also forecasts flood hydrographs at this site (SBVI3). Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at the Big Blue River at Shelbyville, Ind., streamgage. The calibrated hydraulic model was then used to compute 12 water-surface profiles for flood stages referenced to the streamgage datum and ranging from 9.0 feet, or near bankfull, to 19.4 feet, the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar] data having a 0.98-foot vertical accuracy and 4.9-foot horizontal resolution) to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage at the Big Blue River at Shelbyville, Ind., and forecasted stream stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post-flood recovery efforts.

  18. Characterization of peak streamflows and flood inundation of selected areas in Louisiana from the August 2016 flood

    USGS Publications Warehouse

    Watson, Kara M.; Storm, John B.; Breaker, Brian K.; Rose, Claire E.

    2017-02-06

    Heavy rainfall occurred across Louisiana and southwestern Mississippi in August 2016 as a result of a slow-moving area of low pressure and a high amount of atmospheric moisture. The storm caused major flooding in the southern portions of Louisiana including areas surrounding Baton Rouge and Lafayette. Flooding occurred along the rivers such as the Amite, Comite, Tangipahoa, Tickfaw, Vermilion, and Mermentau Rivers. Over 31 inches of rain was reported in the city of Watson, 20 miles northeast of Baton Rouge, La., over the duration of the event. Streamflow-gaging stations operated by the U.S. Geological Survey (USGS) recorded peak streamflows of record at 10 locations, and 7 other locations experienced peak streamflows ranking in the top five for the duration of the period of record. In August 2016, USGS hydrographers made 50 discharge measurements at 21 locations on streams in Louisiana. Many of those discharge measurements were made for the purpose of verifying the accuracy of stage-streamflow relations at gaging stations operated by the USGS. Following the storm event, USGS hydrographers recovered and documented 590 high-water marks, noting location and height of the water above land surface. Many of these high-water marks were used to create 12 flood-inundation maps for selected communities of Louisiana that experienced flooding in August 2016. Digital datasets of the inundation area, modeling boundary, water depth rasters, and final map products are available online.

  19. 77 FR 26968 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    .... Unincorporated Areas of Madison Parish Maps are available for inspection at the Madison Parish Police Jury, 100... Jury, 100 North Cedar Street, Tallulah, LA 71282. Village of Richmond Maps are available for inspection...

  20. Process-based model with flood control measures towards more realistic global flood modeling

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Zhang, X.; Wang, Y.; Mu, M.; Lv, A.; Li, Z.

    2017-12-01

    In the profoundly human-influenced era, the Anthropocene, increased amount of land was developed in flood plains and many flood control measures were implemented to protect people and infrastructures placed in the flood-prone areas. These human influences (for example, dams and dykes) have altered peak streamflow and flood risk, and are already an integral part of flood. However, most of the process-based flood models have yet to taken into account the human influences. In this study, we used a hydrological model together with an advanced hydrodynamic model to assess flood risk at the Baiyangdian catchment. The Baiyangdian Lake is the largest shallow freshwater lake in North China, and it was used as a flood storage area in the past. A new development hub for the Beijing-Tianjin-Hebei economic triangle, namely the Xiongan new area, was recently established in the flood-prone area around the lake. The shuttle radar topography mission (SRTM) digital elevation model (DEMs) was used to parameterize the hydrodynamic model simulation, and the inundation estimates were compared with published flood maps and observed inundation area during the extreme historical flood events. A simple scheme was carried out to consider the impacts of flood control measures, including the reservoirs in the headwaters and the dykes to be built. By comparing model simulations with and without the influences of flood control measures, we demonstrated the importance of human influences in altering the inundated area and depth under design flood conditions. Based on the SRTM DEM and dam and reservoir data in the Global Reservoir and Dam (GRanD) database, we further discuss the potential to develop a global flood model with human influences.

  1. A fluvial and pluvial probabilistic flood hazard analysis for Can Tho city, Vietnam

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Martinez, Oriol; Thi Chinh, Do; Viet Dung, Nguyen

    2014-05-01

    Can Tho city is the largest city and the economic heart of the Mekong Delta, Vietnam. Due to its economic importance and envisaged development goals the city grew rapidly in population size and extend over the last two decades. Large parts of the city are located in flood prone areas, and also the central parts of the city recently experienced an increasing number of flood events, both of fluvial and pluvial nature. As the economic power and asset values are constantly increasing, this poses a considerable risk for the city. The the aim of this study is to perform a flood hazard analysis considering both fluvial and pluvial floods and to derive probabilistic flood hazard maps. This requires in a first step an understanding of the typical flood mechanisms. Fluvial floods are triggered by a coincidence of high water levels during the annual flood period in the Mekong Delta with high tidal levels, which cause in combination short term inundations in Can Tho. Pluvial floods are triggered by typical tropical convective rain storms during the monsoon season. These two flood pathways are essentially independent in its sources and can thus be treated in the hazard analysis accordingly. For the fluvial hazard analysis we propose a bivariate frequency analysis of the Mekong flood characteristics, the annual maximum flood discharge Q and the annual flood volume V at the upper boundary of the Mekong Delta, the gauging station Kratie. This defines probabilities of exceedance of different Q-V pairs, which are transferred into synthetic flood hydrographs. The synthetic hydrographs are routed through a quasi-2D hydrodynamic model of the entire Mekong Delta in order to provide boundary conditions for a detailed hazard mapping of Can Tho. This downscaling step is necessary, because the huge complexity of the river and channel network does not allow for a proper definition of boundary conditions for Can Tho city by gauge data alone. In addition the available gauge data around Can Tho are too short for a meaningful frequency analysis. The detailed hazard mapping is performed by a 2D hydrodynamic model for Can Tho city. As the scenarios are derived in a Monte-Carlo framework, the final flood hazard maps are probabilistic, i.e. show the median flood hazard along with uncertainty estimates for each defined level of probabilities of exceedance. For the pluvial flood hazard a frequency analysis of the hourly rain gauge data of Can Tho is performed implementing a peak-over-threshold procedure. Based on this frequency analysis synthetic rains storms are generated in a Monte-Carlo framework for the same probabilities of exceedance as in the fluvial flood hazard analysis. Probabilistic flood hazard maps were then generated with the same 2D hydrodynamic model for the city. In a last step the fluvial and pluvial scenarios are combined assuming independence of the events. These scenarios were also transferred into hazard maps by the 2D hydrodynamic model finally yielding combined fluvial-pluvial probabilistic flood hazard maps for Can Tho. The derived set of maps may be used for an improved city planning or a flood risk analysis.

  2. Geological setting control of flood dynamics in lowland rivers (Poland).

    PubMed

    Wierzbicki, Grzegorz; Ostrowski, Piotr; Falkowski, Tomasz; Mazgajski, Michał

    2018-04-27

    We aim to answer a question: how does the geological setting affect flood dynamics in lowland alluvial rivers? The study area covers three river reaches: not trained, relatively large on the European scale, flowing in broad valleys cut in the landscape of old glacial plains. We focus on the locations where levees [both: a) natural or b) artificial] were breached during flood. In these locations we identify (1) the erosional traces of flood (crevasse channels) on the floodplain displayed on DEM derived from ALS LIDAR. In the main river channel, we perform drillings in order to measure the depth of the suballuvial surface and to locate (2) the protrusions of bedrock resistant to erosion. We juxtapose on one map: (1) the floodplain geomorphology with (2) the geological data from the river channel. The results from each of the three study reaches are presented on maps prepared in the same manner in order to enable a comparison of the regularities of fluvial processes written in (1) the landscape and driven by (2) the geological setting. These processes act in different river reaches: (a) not embanked and dominated by ice jam floods, (b) embanked and dominated by rainfall and ice jam floods. We also analyse hydrological data to present hydrodynamic descriptions of the flood. Our principal results indicate similarity of (1) distinctive erosional patterns and (2) specific geological features in all three study reaches. We draw the conclusion: protrusions of suballuvial bedrock control the flood dynamics in alluvial rivers. It happens in both types of rivers. In areas where the floodplain remains natural, the river inundates freely during every flood. In other areas the floodplain has been reclaimed by humans who constructed an artificial levee system, which protects the flood-prone area from inundation, until levee breach occurs. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Effect of uncertainty in Digital Surface Models on the boundary of inundated areas

    NASA Astrophysics Data System (ADS)

    Nalbantis, I.; Papageorgaki, I.; Sioras, P.; Ioannidis, Ch.

    2012-04-01

    The planning, design and operation of flood damage reduction works or non-structural measures require the construction of maps that indicate zones to be potentially inundated during floods. Referring to floods due to heavy rainfall, the common procedure for flood mapping consists of the following five computational steps: (1) Frequency analysis of extreme rainfall; (2) construction of design hyetographs for various return periods; (3) construction of the related direct runoff hydrographs; (4) routing of these hydrographs through the hydrographic network; (5) mapping of the inundated area that corresponds to the temporally maximum depth for each location in the flood plain. Steps 3 through 5 require the use of spatial information which can be easily obtained from a Digital Surface Model (DSM). The DSM contains grid-based elevations of the ground or overlying objects that influence the propagation of flood waves. In this work, the SCS-CN method is used in step 3 in combination with a synthetic Unit Hydrograph based on the SCS dimensionless Unit Hydrograph. In step 4, the full one-dimensional Saint Venant equations for non-uniform unsteady flow on fixed bed are used, which are numerically solved. The impact of uncertainty in the DSM on the inundated area boundary is investigated. For this the Monte Carlo simulation method is employed to produce a large number of erroneous DSMs through introducing errors in elevation with a standard deviation equal to σ. These DSMs are then used for delineating potentially flooded areas. The standard deviation of the distance (from the riverbed axis) of the boundary of these areas, herein denoted as σF, is used as the measure of the resulting uncertainty. The link between σ and σF is examined for a spectrum of large return periods (100 to 10000). A computer experiment was set up based on data from two drainage basins. The first basin is located in East Attica and is drained by a branch of the Erasinos Torrent named the South-East Kalyvia Torrent; it extends over an area of about 17 square kilometres. The second basin is that of the Kerynitis River in north-western Peloponnesus; it covers an area of 89 square kilometres. In each one of the two basins hydrographs at the outlet of the upper part of the basin are estimated with the aid of hydrological modelling, while, for the lower part hydraulic routing is employed. The South-East Kalyvia basin is hilly, whereas the Kerynitis Basin shows high ground slopes in its upper part and low slopes in the lower part. Graphs of σ vs. σF and maps showing the mean position μF of the boundary of flooded area along with limits of this boundary that reflect positions μF±2σF help visualize the impact of the uncertainty in DSM. To acquire a better feeling of the effect of DSM uncertainty, results are compared to those obtained from uncertain rainfall depths of the design hyetographs.

  4. Going beyond the flood insurance rate map: insights from flood hazard map co-production

    NASA Astrophysics Data System (ADS)

    Luke, Adam; Sanders, Brett F.; Goodrich, Kristen A.; Feldman, David L.; Boudreau, Danielle; Eguiarte, Ana; Serrano, Kimberly; Reyes, Abigail; Schubert, Jochen E.; AghaKouchak, Amir; Basolo, Victoria; Matthew, Richard A.

    2018-04-01

    Flood hazard mapping in the United States (US) is deeply tied to the National Flood Insurance Program (NFIP). Consequently, publicly available flood maps provide essential information for insurance purposes, but they do not necessarily provide relevant information for non-insurance aspects of flood risk management (FRM) such as public education and emergency planning. Recent calls for flood hazard maps that support a wider variety of FRM tasks highlight the need to deepen our understanding about the factors that make flood maps useful and understandable for local end users. In this study, social scientists and engineers explore opportunities for improving the utility and relevance of flood hazard maps through the co-production of maps responsive to end users' FRM needs. Specifically, two-dimensional flood modeling produced a set of baseline hazard maps for stakeholders of the Tijuana River valley, US, and Los Laureles Canyon in Tijuana, Mexico. Focus groups with natural resource managers, city planners, emergency managers, academia, non-profit, and community leaders refined the baseline hazard maps by triggering additional modeling scenarios and map revisions. Several important end user preferences emerged, such as (1) legends that frame flood intensity both qualitatively and quantitatively, and (2) flood scenario descriptions that report flood magnitude in terms of rainfall, streamflow, and its relation to an historic event. Regarding desired hazard map content, end users' requests revealed general consistency with mapping needs reported in European studies and guidelines published in Australia. However, requested map content that is not commonly produced included (1) standing water depths following the flood, (2) the erosive potential of flowing water, and (3) pluvial flood hazards, or flooding caused directly by rainfall. We conclude that the relevance and utility of commonly produced flood hazard maps can be most improved by illustrating pluvial flood hazards and by using concrete reference points to describe flooding scenarios rather than exceedance probabilities or frequencies.

  5. Developing a GIS based integrated approach to flood management in Trinidad, West Indies.

    PubMed

    Ramlal, Bheshem; Baban, Serwan M J

    2008-09-01

    Trinidad and Tobago is plagued with a perennial flooding problem. The higher levels of rainfall in the wet season often lead to extensive flooding in the low-lying areas of the country. This has lead to significant damage to livestock, agricultural produce, homes and businesses particularly in the Caparo River Basin. Clearly, there is a need for developing flood mitigation and management strategies to manage flooding in the areas most affected. This paper utilizes geographic information systems to map the extent of the flooding, estimate soil loss due to erosion and estimate sediment loading in the rivers in the Caparo River Basin. In addition, the project required the development of a watershed management plan and a flood control plan. The results indicate that flooding was caused by several factors including clear cutting of vegetative cover, especially in areas of steep slopes that lead to sediment filled rivers and narrow waterways. Other factors include poor agricultural practices, and uncontrolled development in floodplains. Recommendations to manage floods in the Caparo River Basin have been provided.

  6. Detection and assessment of flood susceptible irrigation networks in Licab, Nueva Ecija, Philippines using LiDAR DTM

    NASA Astrophysics Data System (ADS)

    Alberto, R. T.; Hernando, P. J. C.; Tagaca, R. C.; Celestino, A. B.; Palado, G. C.; Camaso, E. E.; Damian, G. B.

    2017-09-01

    Climate change has wide-ranging effects on the environment and socio-economic and related sectors which includes water resources, agriculture and food security, human health, terrestrial ecosystems, coastal zones and biodiversity. Farmers are under pressure to the changing weather and increasing unpredictable water supply. Because of rainfall deficiencies, artificial application of water has been made through irrigation. Irrigation is a basic determinant of agriculture because its inadequacies are the most powerful constraints on the increase of agricultural production. Irrigation networks are permanent and temporary conduits that supply water to agricultural areas from an irrigation source. Detection of irrigation networks using LiDAR DTM, and flood susceptible assessment of irrigation networks could give baseline information on the development and management of sustainable agriculture. Map Gully Depth (MGD) in Whitebox GAT was used to generate the potential irrigation networks. The extracted MGD was overlaid in ArcGIS as guide in the digitization of potential irrigation networks. A flood hazard map was also used to identify the flood susceptible irrigation networks in the study area. The study was assessed through field validation of points which were generated using random sampling method. Results of the study showed that most of the detected irrigation networks have low to moderate susceptibility to flooding while the rest have high susceptibility to flooding which is due to shifting weather. These irrigation networks may cause flood when it overflows that could also bring huge damage to rice and other agricultural areas.

  7. Effective Integration of Earth Observation Data and Flood Modeling for Rapid Disaster Response: The Texas 2015 Case

    NASA Astrophysics Data System (ADS)

    Schumann, G.

    2016-12-01

    Routinely obtaining real-time 2-D inundation patterns of a flood event at a meaningful spatial resolution and over large scales is at the moment only feasible with either operational aircraft flights or satellite imagery. Of course having model simulations of floodplain inundation available to complement the remote sensing data is highly desirable, for both event re-analysis and forecasting event inundation. Using the Texas 2015 flood disaster, we demonstrate the value of multi-scale EO data for large scale 2-D floodplain inundation modeling and forecasting. A dynamic re-analysis of the Texas 2015 flood disaster was run using a 2-D flood model developed for accurate large scale simulations. We simulated the major rivers entering the Gulf of Mexico and used flood maps produced from both optical and SAR satellite imagery to examine regional model sensitivities and assess associated performance. It was demonstrated that satellite flood maps can complement model simulations and add value, although this is largely dependent on a number of important factors, such as image availability, regional landscape topology, and model uncertainty. In the preferred case where model uncertainty is high, landscape topology is complex (i.e. urbanized coastal area) and satellite flood maps are available (in case of SAR for instance), satellite data can significantly reduce model uncertainty by identifying the "best possible" model parameter set. However, most often the situation is occurring where model uncertainty is low and spatially contiguous flooding can be mapped from satellites easily enough, such as in rural large inland river floodplains. Consequently, not much value from satellites can be added. Nevertheless, where a large number of flood maps are available, model credibility can be increased substantially. In the case presented here this was true for at least 60% of the many thousands of kilometers of river flow length simulated, where satellite flood maps existed. The next steps of this project is to employ a technique termed "targeted observation" approach, which is an assimilation based procedure that allows quantifying the impact observations have on model predictions at the local scale and also along the entire river system, when assimilated with the model at specific "overpass" locations.

  8. Introduction to SNPP/VIIRS Flood Mapping Software Version 1.0

    NASA Astrophysics Data System (ADS)

    Li, S.; Sun, D.; Goldberg, M.; Sjoberg, W.; Santek, D.; Hoffman, J.

    2017-12-01

    Near real-time satellite-derived flood maps are invaluable to river forecasters and decision-makers for disaster monitoring and relief efforts. With support from the JPSS (Joint Polar Satellite System) Proving Ground and Risk Reduction (PGRR) Program, flood detection software has been developed using Suomi-NPP/VIIRS (Suomi National Polar-orbiting Partnership/Visible Infrared Imaging Radiometer Suite) imagery to automatically generate near real-time flood maps for National Weather Service (NWS) River Forecast Centers (RFC) in the USA. The software, which is called VIIRS NOAA GMU Flood Version 1.0 (hereafter referred to as VNG Flood V1.0), consists of a series of algorithms that include water detection, cloud shadow removal, terrain shadow removal, minor flood detection, water fraction retrieval, and floodwater determination. The software is designed for flood detection in any land region between 80°S and 80°N, and it has been running routinely with direct broadcast SNPP/VIIRS data at the Space Science and Engineering Center at the University of Wisconsin-Madison (UW/SSEC) and the Geographic Information Network of Alaska at the University of Alaska-Fairbanks (UAF/GINA) since 2014. Near real-time flood maps are distributed via the Unidata Local Data Manager (LDM), reviewed by river forecasters in AWIPS-II (the second generation of the Advanced Weather Interactive Processing System) and applied in flood operations. Initial feedback from operational forecasters on the product accuracy and performance has been largely positive. The software capability has also been extended to areas outside of the USA via a case-driven mode to detect major floods all over the world. Offline validation efforts include the visual inspection of over 10,000 VIIRS false-color composite images, an inter-comparison with MODIS automatic flood products and a quantitative evaluation using Landsat imagery. The steady performance from the 3-year routine process and the promising validation results indicate that VNG Flood V1.0 has a high feasibility for flood detection at the product level.

  9. 78 FR 36212 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... repository Community address Prince George's County, Maryland, and Incorporated Areas Maps Available for..., Laurel, MD 20707. Unincorporated Areas of Prince George's Prince George's County County. Department of...

  10. Calibrating a Rainfall-Runoff and Routing Model for the Continental United States

    NASA Astrophysics Data System (ADS)

    Jankowfsky, S.; Li, S.; Assteerawatt, A.; Tillmanns, S.; Hilberts, A.

    2014-12-01

    Catastrophe risk models are widely used in the insurance industry to estimate the cost of risk. The models consist of hazard models linked to vulnerability and financial loss models. In flood risk models, the hazard model generates inundation maps. In order to develop country wide inundation maps for different return periods a rainfall-runoff and routing model is run using stochastic rainfall data. The simulated discharge and runoff is then input to a two dimensional inundation model, which produces the flood maps. In order to get realistic flood maps, the rainfall-runoff and routing models have to be calibrated with observed discharge data. The rainfall-runoff model applied here is a semi-distributed model based on the Topmodel (Beven and Kirkby, 1979) approach which includes additional snowmelt and evapotranspiration models. The routing model is based on the Muskingum-Cunge (Cunge, 1969) approach and includes the simulation of lakes and reservoirs using the linear reservoir approach. Both models were calibrated using the multiobjective NSGA-II (Deb et al., 2002) genetic algorithm with NLDAS forcing data and around 4500 USGS discharge gauges for the period from 1979-2013. Additional gauges having no data after 1979 were calibrated using CPC rainfall data. The model performed well in wetter regions and shows the difficulty of simulating areas with sinks such as karstic areas or dry areas. Beven, K., Kirkby, M., 1979. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 24 (1), 43-69. Cunge, J.A., 1969. On the subject of a flood propagation computation method (Muskingum method), J. Hydr. Research, 7(2), 205-230. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on evolutionary computation, 6(2), 182-197.

  11. Characterization of rainfall events and correlation with reported disasters: A case in Cali, Colombia

    NASA Astrophysics Data System (ADS)

    Canon, C. C.; Tischbein, B.; Bogardi, J.

    2017-12-01

    Flood maps generally display the area that a river might overflow after a rainfall event takes place, under different scenarios of climate, land use/land cover, and/or failure of dams and dikes. However, rainfall is not limited to feed runoff and enlarge the river: it also causes minor disasters outside the map's highlighted area. The city of Cali in Colombia illustrates very well this situation: its flat topography and its major critical infrastructure near the river make it flood-risk prone; a heavy rainfall event would potentially deplete drinking water, electrical power and drainage capacity, and trigger outbreaks of water-borne diseases in the whole city, not only in the flooded area. Unfortunately, the government's disaster prevention strategies focus on the floodplain and usually overlook the aftermath of these minor disasters for being milder and scattered. Predicted losses in flood maps are potentially big, while those from minor disasters over the city are small but real, and citizens, utility companies and urban maintenance funds must constantly take them over. Mitigation and prevention of such minor disasters can save money for the development of the city in other aspects. This paper characterizes hundreds of rainfall events selected from 10-min step time series from 2006 to 2017, and finds their correlation with reported rainfall-related disasters throughout Cali, identified by date and neighborhood. Results show which rainfall parameters are most likely to indicate the occurrence of such disasters and their approximate location in the urban area of Cali. These results, when coupled with real-time observations of rainfall data and simulations of drainage network response, may help citizens and emergency bodies prioritize zones to assist during heavy storms. In the long term, stakeholders may also implement low impact development solutions in these zones to reduce flood risks.

  12. Bathymetry and vegetation in isolated marsh and cypress wetlands in the northern Tampa Bay Area, 2000-2004

    USGS Publications Warehouse

    Haag, Kim H.; Lee, Terrie M.; Herndon, Donald C.

    2005-01-01

    Wetland bathymetry and vegetation mapping are two commonly used lines of evidence for assessing the hydrologic and ecologic status of expansive coastal and riverine wetlands. For small isolated freshwater wetlands, however, bathymetric data coupled with vegetation assessments are generally scarce, despite the prevalence of isolated wetlands in many regions of the United States and the recognized importance of topography as a control on inundation patterns and vegetation distribution. In the northern Tampa Bay area of west-central Florida, bathymetry was mapped and vegetation was assessed in five marsh and five cypress wetlands. These 10 isolated wetlands were grouped into three categories based on the effects of ground-water withdrawals from regional municipal well fields: natural (no effect), impaired (drier than natural), and augmented (wetlands with artificially augmented water levels). Delineation of the wetland perimeter was a critical component for estimating wetland-surface area and stored water volume. The wetland perimeter was delineated by the presence of Serenoa repens (the 'palmetto fringe') at 9 of the 10 sites. At the 10th site, where the palmetto fringe was absent, hydric-soils indicators were used to delineate the perimeter. Bathymetric data were collected using one or more techniques, depending on the physical characteristics of each wetland. Wetland stage was measured hourly using continuous stage recorders. Wetland vegetation was assessed semiannually for 2 1/2 years in fixed plots located at three distinct elevations. Vegetation assessments were used to determine the community composition and the relative abundance of obligate, facultative wet, and facultative species at each elevation. Bathymetry maps were generated, and stage-area and stage-volume relations were developed for all 10 wetlands. Bathymetric data sets containing a high density of data points collected at frequent and regular spatial intervals provided the most useful stage-area and stage-volume relations. Bathymetric maps of several wetlands also were generated using a low density of data points collected along transect lines or contour lines. In a comparative analysis of the three mapping approaches, stage-area and stage-volume relations based on transect data alone underestimated (by 50-100 percent over certain ranges of stage) the wetland area and volume compared to results using a high density of data points. Adding data points collected along one elevation contour below the wetland perimeter to the transect data set greatly improved the agreement of the resulting stage-area and stage-volume relations to the high-density mapping approach. Stage-area relations and routinely monitored stage data were used to compare and contrast the average flooded area in a natural marsh and an impaired marsh over a 2-year period. Vegetation assessments used together with flooded-area information provided the potential for extrapolating vegetation results from points or transects to wetlands as a whole. A comparison of the frequency of flooding of different areas of the wetland and the species composition in vegetation plots at different elevations indicated the dependence of vegetation on inundation frequency. Because of the broad tolerances of many wetlands plants to a range of inundation conditions, however, vegetation assessments alone provided less definitive evidence of the hydrologic differences between the two sites, and hydrologic changes occurring during the 2 years, than the flooded-area frequencies. Combining flooded-area frequencies with vegetation assessments could provide a more versatile and insightful approach for determining the ecological status of wetlands than using vegetation and stage data alone. Flooded-area frequencies may further provide a useful approach for assessing the ecological status of wetlands where historical vegetation surveys and stage data are lacking. Comparing the contemporary flooded-area frequencies a

  13. Combined fluvial and pluvial urban flood hazard analysis: concept development and application to Can Tho city, Mekong Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Martínez Trepat, Oriol; Nghia Hung, Nguyen; Thi Chinh, Do; Merz, Bruno; Viet Dung, Nguyen

    2016-04-01

    Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either a fluvial or pluvial flood hazard, studies of a combined fluvial and pluvial flood hazard are hardly available. Thus this study aims to analyse a fluvial and a pluvial flood hazard individually, but also to develop a method for the analysis of a combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as an example. In this tropical environment the annual monsoon triggered floods of the Mekong River, which can coincide with heavy local convective precipitation events, causing both fluvial and pluvial flooding at the same time. The fluvial flood hazard was estimated with a copula-based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. The pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data and a stochastic rainstorm generator. Inundation for all flood scenarios was simulated by a 2-dimensional hydrodynamic model implemented on a Graphics Processing Unit (GPU) for time-efficient flood propagation modelling. The combined fluvial-pluvial flood scenarios were derived by adding rainstorms to the fluvial flood events during the highest fluvial water levels. The probabilities of occurrence of the combined events were determined assuming independence of the two flood types and taking the seasonality and probability of coincidence into account. All hazards - fluvial, pluvial and combined - were accompanied by an uncertainty estimation taking into account the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median) and the uncertainty by percentile maps. The results are critically discussed and their usage in flood risk management are outlined.

  14. RASOR flood modelling

    NASA Astrophysics Data System (ADS)

    Beckers, Joost; Buckman, Lora; Bachmann, Daniel; Visser, Martijn; Tollenaar, Daniel; Vatvani, Deepak; Kramer, Nienke; Goorden, Neeltje

    2015-04-01

    Decision making in disaster management requires fast access to reliable and relevant information. We believe that online information and services will become increasingly important in disaster management. Within the EU FP7 project RASOR (Rapid Risk Assessment and Spatialisation of Risk) an online platform is being developed for rapid multi-hazard risk analyses to support disaster management anywhere in the world. The platform will provide access to a plethora of GIS data that are relevant to risk assessment. It will also enable the user to run numerical flood models to simulate historical and newly defined flooding scenarios. The results of these models are maps of flood extent, flood depths and flow velocities. The RASOR platform will enable to overlay historical event flood maps with observations and Earth Observation (EO) imagery to fill in gaps and assess the accuracy of the flood models. New flooding scenarios can be defined by the user and simulated to investigate the potential impact of future floods. A series of flood models have been developed within RASOR for selected case study areas around the globe that are subject to very different flood hazards: • The city of Bandung in Indonesia, which is prone to fluvial flooding induced by heavy rainfall. The flood hazard is exacerbated by land subsidence. • The port of Cilacap on the south coast of Java, subject to tsunami hazard from submarine earthquakes in the Sunda trench. • The area south of city of Rotterdam in the Netherlands, prone to coastal and/or riverine flooding. • The island of Santorini in Greece, which is subject to tsunamis induced by landslides. Flood models have been developed for each of these case studies using mostly EO data, augmented by local data where necessary. Particular use was made of the new TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) product from the German Aerospace centre (DLR) and EADS Astrium. The presentation will describe the flood models and the flooding scenarios that can be defined by the RASOR end user to support risk management in each area. Ongoing work for three more case studies (Haiti, Po valley in Italy and Jakarta, Indonesia) will also be discussed.

  15. Flood-inundation maps for the Mississinewa River at Marion, Indiana, 2013

    USGS Publications Warehouse

    Coon, William F.

    2014-01-01

    Digital flood-inundation maps for a 9-mile (mi) reach of the Mississinewa River from 0.75 mi upstream from the Pennsylvania Street bridge in Marion, Indiana, to 0.2 mi downstream from State Route 15 were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Mississinewa River at Marion (station number 03326500). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site. Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the current stage-discharge relation at the Mississinewa River streamgage, in combination with water-surface profiles from historic floods and from the current (2002) flood-insurance study for Grant County, Indiana. The hydraulic model was then used to compute seven water-surface profiles for flood stages at 1-fo (ft) intervals referenced to the streamgage datum and ranging from 10 ft, which is near bankfull, to 16 ft, which is between the water levels associated with the estimated 10- and 2-percent annual exceedance probability floods (floods with recurrence interval between 10 and 50 years) and equals the “major flood stage” as defined by the NWS. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging (lidar) data having a 0.98 ft vertical accuracy and 4.9 ft horizontal resolution) to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  16. Flood Hazard Assessment of the coastal lowland in the Kujukuri Plain of Chiba Prefecture, Japan, using GIS and multicriteria decision analysis

    NASA Astrophysics Data System (ADS)

    CHEN, Huali; Tokunaga, Tomochika; Ito, Yuka; Sawamukai, Marie

    2014-05-01

    Floods, the most common natural disaster in the world, cause serious loss of life and economic damage. Flood is one of the disasters in the coastal lowland along the Kujukuri Plain, Chiba Prefecture, Japan. Many natural and human activities have changed the surface environment of the Plain. These include agricultural development, urban and industrial development, change of the drainage patterns of the land surface, deposition and/or erosion of the river valleys, and so on. In addition, wide spread occurrence of land subsidence has been caused by the abstraction of natural gas dissolved in groundwater. The locations of the groundwater extraction include nearby the coast, and it may increase the flood risk. Hence, it is very important to evaluate flood hazard by taking into account the temporal change of land elevation caused by land subsidence, and to develop hazard maps for protecting surface environment and land-use planning. Multicriteria decision analysis (MCDA) provides methodology and techniques for analyzing complex decision problems, which often involve incommensurable data or criteria. Also, Geographical Information System (GIS) is the powerful tool since it manages large amount of spatial data involved in MCDA. The purpose of this study is to present a flood hazard model using MCDA techniques with GIS support in a region where primary data are scare. The model incorporates six parameters: river system, topography, land-use, flood control project, passing flood from coast, and precipitation. Main data sources used are 10 meter resolution topography data, airborne laser scanning data, leveling data, Landsat-TM data, two 1:30,000 scale river watershed map, and precipitation data from precipitation observation stations around the study area. River system map was created by merging the river order, the line density, and the river sink point density layers. Land-use data were derived from Landsat-TM images. A final hazard map for 2004, as an example, was obtained using an algorithm that combines factors in weighted linear combinations. The assignment of the weight/rank values and their analysis were realized by the application of the Analytic Hierarchy Process (AHP) method. This study is the preliminary work to investigate the flood hazard at the Kujukuri Plain. Flood hazard map of the other years will be analyzed to investigate the temporal change of the flood hazard area, and more data will be collected and added to improve the assessment.

  17. Utilising social media contents for flood inundation mapping

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Dransch, Doris; Fohringer, Joachim; Kreibich, Heidi

    2016-04-01

    Data about the hazard and its consequences are scarce and not readily available during and shortly after a disaster. An information source which should be explored in a more efficient way is eyewitness accounts via social media. This research presents a methodology that leverages social media content to support rapid inundation mapping, including inundation extent and water depth in the case of floods. It uses quantitative data that are estimated from photos extracted from social media posts and their integration with established data. Due to the rapid availability of these posts compared to traditional data sources such as remote sensing data, areas affected by a flood, for example, can be determined quickly. Key challenges are to filter the large number of posts to a manageable amount of potentially useful inundation-related information, and to interpret and integrate the posts into mapping procedures in a timely manner. We present a methodology and a tool ("PostDistiller") to filter geo-located posts from social media services which include links to photos and to further explore this spatial distributed contextualized in situ information for inundation mapping. The June 2013 flood in Dresden is used as an application case study in which we evaluate the utilization of this approach and compare the resulting spatial flood patterns and inundation depths to 'traditional' data sources and mapping approaches like water level observations and remote sensing flood masks. The outcomes of the application case are encouraging. Strengths of the proposed procedure are that information for the estimation of inundation depth is rapidly available, particularly in urban areas where it is of high interest and of great value because alternative information sources like remote sensing data analysis do not perform very well. The uncertainty of derived inundation depth data and the uncontrollable availability of the information sources are major threats to the utility of the approach.

  18. The KULTURisk Regional Risk Assessment methodology for flood risk: the case of Sihl river in Zurich

    NASA Astrophysics Data System (ADS)

    Ronco, Paolo; Bullo, Martina; Gallina, Valentina; Torresan, Silvia; Critto, Andrea; Zabeo, Alex; Semenzin, Elena; Buchecker, Matthias; Marcomini, Antonio

    2014-05-01

    In recent years, the frequency of catastrophes induced by natural hazard has increased and flood events in particular have been recognized as one of the most threatening water-related disasters. Severe floods have occurred in Europe over the last decade causing loss of life, displacement of people and heavy economic losses. Flood disasters are growing as a consequence of many factors both climatic and non-climatic. Indeed, the current increase of water-related disasters can be mainly attributed to the increase of exposure (elements potentially at risk in floodplains area) and vulnerability (i.e. economic, social, geographic, cultural, and physical/environmental characteristics of the exposure). Besides these factors, the strong effect of climate change is projected to radically modify the usual pattern of the hydrological cycle by intensifying the frequency and severity of flood events both at local, regional and global scale. Within this context, it is necessary to develop effective and pro-active strategies, tools and actions which allow to assess and (possibly) to reduce the risk of floods. In light of the recent European Flood Directive (FD), the KULTURisk-FP7 Project developed a state-of-the-art Regional Risk Assessment (RRA) methodology for assessing the risk imposed by floods events. The KULTURisk RRA methodology is based on the concept of risk being function of hazard, exposure and vulnerability. It is a flexible that can be adapted to different case studies (i.e. large rivers, alpine/mountain catchments, urban areas and coastal areas) and spatial scales (i.e. from the large river to the urban scale) that integrates the outputs of various hydrodynamics models (hazard) with sito-specific geophysical and socio-economic indicators (exposure and vulnerability factors such as land cover, slope, soil permeability, population density, economic activities, etc.). The main outputs of the methodology are GIS-based risk maps that identify and prioritize relative hot-spot areas and targets at risk (i.e. people, buildings, infrastructures, agriculture, natural and semi-natural systems, cultural heritages) in the considered region by comparing the baseline scenario with alternative scenarios, where different structural and/or non-structural mitigation measures are planned. Risk maps, along with related statistics, provide crucial information about flood risk pattern, and allow the development of relevant and strategic mitigation and prevention measures to minimizing flood risk in urban areas. The present study applied and validated the KULTURisk RRA methodology to the Sihl river case study in Zurich (Switzerland). Through a tuning process of the methodology to the site-specific context and features, flood related risks have been assessed for different receptors lying on the Sihl river valley, which represents a typical case of river flooding in urban area. The total risk maps obtained under a 300 years return period scenario (selected as the reference one) have highlighted that the area is associated with the lower class of risk. Moreover, the relative risk is higher in Zurich city centre, in the few residential areas around the city centre and within the districts that rely just beside to the Sihl river course.

  19. Etude du risque d'inondation en aval du delta du fleuve rouge en utilisant la teledetection et les sig: Le cas du district de Bac Hung Hai

    NASA Astrophysics Data System (ADS)

    Bui, Duc Viet

    The Bac Hung Hai zone is the greatest basin in the Red River Delta in Vietnam and also one of the most densely populated regions of the planet. It is mainly a rural region and its economy is dominated by agriculture. In the context of frequent and larger floods in the Bac Hung Hai zone, causing deep socio-economical consequences, the focus of this study is to establish cartography of the high risk areas for flooding in the Bac Hung Hai region using remote sensing and GIS to assist land management. The preparation of a map describing land management in this region is more complicated because parcels for farming are very small and not homogeneous. A consistent and precise map of land use is essential for studies of flooding. The secondary objective is to improve the land use map. To this effect, a classification has been applied to the combination of the spectral bands and textures (TM and ETM+) of Landsat and a radar image (ERS). The addition of this information to the spectral bands increases the accuracy of classification by 1% to 4%, according to the dates selected. Additionally, in the study zone where there are few days without clouds, a problem related to the optical satellite image is the cloud cover. Then, the use of radar images will provide ground information for areas hidden by clouds where spectral images are not sufficient. To reach these goals, we have determined the main biophysical considerations that influence flooding. Then, these considerations have been combined in a multi-criteria analysis to evaluate the risks of flooding in the entire basin area. The results show that high to very high risks affect 47% of the area studied and that the south-east region, center, and north-east present the greatest risk. Keywords. Flood risks, remote sensing, GIS, land use, multicriteria analysis, Red river delta, Vietnam.

  20. Flood Risk in Motozintla de Mendoza, Chiapas: An Approximation

    NASA Astrophysics Data System (ADS)

    Rodriguez, F.; Novelo-Casanova, D. A.

    2012-12-01

    The town of Motozintla de Mendoza (15o 22' N and 92o 15' W) is located southern Chiapas, Mexico, and it is highly exposed to flood hazards. This community has suffered the impact of two disaster events due to this natural hazard in less than ten years, the first one in 1998 and the second one in 2005. The objective of this research is to assess the level of flood risk in the community of Motozintla. The methodology consisted of four steps: (1) Identification of the level of flood hazard; (2) Vulnerability assessment considering weighted variables according to their level of incidence on the local risk conditions; (3) Preparation of risk matrices for each area exposed to floods; and 4) Cartographic representation and spatial analysis of the results. We obtained a Geographical Information System (GIS) map for each group of analyzed vulnerabilities (structural, public services, socio-economic, existing plans in case of contingencies, and risk perception) and one map associated to global vulnerability (overposing of all estimated vulnerabilities). These maps demonstrates that the local conditions of structural vulnerability have a high incidence in the generation of risk, differing from the lack of public basic services, which although unfavorable for the population, it is not a deciding factor for preserving life or housing. Another interesting result is that the lack of preparation of the community to face a disaster generates a higher risk level than the other analyzed socioeconomic conditions. The global vulnerability allowed us to determine with greater detail the flood risk levels in the community. Our results indicate that the area in Motozintla with the highest level of flood risk is located in the margins of the Xelajú river, particularly the region that was flooded in 2005, which is precisely the area where the rivers Xelajú, Allende and La Mina meet and the river flow increases. Unfortunately, the northeasters part of this zone had been populated by people that was relocated by the local government due to past flooding events. For these reasons, it is necessary to make urgent decisions for disaster mitigation measures based on results from scientific research and models for territorial planning.

  1. Geospatial Modelling Approach for Interlinking of Rivers: A Case Study of Vamsadhara and Nagavali River Systems in Srikakulam, Andhra Pradesh

    NASA Astrophysics Data System (ADS)

    Swathi Lakshmi, A.; Saran, S.; Srivastav, S. K.; Krishna Murthy, Y. V. N.

    2014-11-01

    India is prone to several natural disasters such as floods, droughts, cyclones, landslides and earthquakes on account of its geoclimatic conditions. But the most frequent and prominent disasters are floods and droughts. So to reduce the impact of floods and droughts in India, interlinking of rivers is one of the best solutions to transfer the surplus flood waters to deficit/drought prone areas. Geospatial modelling provides a holistic approach to generate probable interlinking routes of rivers based on existing geoinformatics tools and technologies. In the present study, SRTM DEM and AWiFS datasets coupled with land-use/land -cover, geomorphology, soil and interpolated rainfall surface maps have been used to identify the potential routes in geospatial domain for interlinking of Vamsadhara and Nagavali River Systems in Srikakulam district, Andhra Pradesh. The first order derivatives are derived from DEM and road, railway and drainage networks have been delineated using the satellite data. The inundation map has been prepared using AWiFS derived Normalized Difference Water Index (NDWI). The Drought prone areas were delineated on the satellite image as per the records declared by Revenue Department, Srikakulam. Majority Rule Based (MRB) aggregation technique is performed to optimize the resolution of obtained data in order to retain the spatial variability of the classes. Analytical Hierarchy Process (AHP) based Multi-Criteria Decision Making (MCDM) is implemented to obtain the prioritization of parameters like geomorphology, soil, DEM, slope, and land use/land-cover. A likelihood grid has been generated and all the thematic layers are overlaid to identify the potential grids for routing optimization. To give a better routing map, impedance map has been generated and several other constraints are considered. The implementation of canal construction needs extra cost in some areas. The developed routing map is published into OGC WMS services using open source GeoServer and proposed routing service can be visualized over Bhuvan portal (http://www.bhuvan.nrsc.gov.in/).Thus the obtained routing map of proposed canals focuses on transferring the surplus waters to drought prone areas to solve the problem of water scarcity, to properly utilize the flood waters for irrigational purposes and also help in recharging of groundwater. Similar methodology can be adopted in other interlinking of river systems.

  2. Floods on Roseberry Creek, Wacker Branch, and three unnamed tributaries to Roseberry Creek in the vicinity of Scottsboro, Alabama. Flood report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-10-01

    The study was requested by the city to provide information reflecting current flood conditions in order for the community to better administer its floodplain management program and to qualify for participation in the regular phase of the National Flood Insurance Program (NFIP). This report updates and expands the coverage of a previous TVA report published in April 1967. Profiles and flooded area and floodway maps are provided for Roseberry Creek, Wacker Branch, and three previously unstudied tributaries to Roseberry Creek.

  3. Flood characteristics of streams in Owyhee County, Idaho

    USGS Publications Warehouse

    Riggs, H.C.; Harenberg, W.A.

    1976-01-01

    Channel-width measurements were used to estimate annual peaks with a recurrence interval of 10 years at 79 sites in Owyhee County, Idaho, and adjacent areas. These discharges and those from 33 gaging stations are plotted on a map of the area. The map will allow the user to interpolate between sites. (Woodard-USGS)

  4. The KULTURisk Regional Risk Assessment methodology for water-related natural hazards - Part 2: Application to the Zurich case study

    NASA Astrophysics Data System (ADS)

    Ronco, P.; Bullo, M.; Torresan, S.; Critto, A.; Olschewski, R.; Zappa, M.; Marcomini, A.

    2014-07-01

    The main objective of the paper is the application of the KULTURisk Regional Risk Assessment (KR-RRA) methodology, presented in the companion paper (Part 1, Ronco et al., 2014), to the Sihl River valley, in Switzerland. Through a tuning process of the methodology to the site-specific context and features, flood related risks have been assessed for different receptors lying on the Sihl River valley including the city of Zurich, which represents a typical case of river flooding in urban area. After characterizing the peculiarities of the specific case study, risk maps have been developed under a 300 years return period scenario (selected as baseline) for six identified relevant targets, exposed to flood risk in the Sihl valley, namely: people, economic activities (including buildings, infrastructures and agriculture), natural and semi-natural systems and cultural heritage. Finally, the total risk index map, which allows to identify and rank areas and hotspots at risk by means of Multi Criteria Decision Analysis tools, has been produced to visualize the spatial pattern of flood risk within the area of study. By means of a tailored participative approach, the total risk maps supplement the consideration of technical experts with the (essential) point of view of the relevant stakeholders for the appraisal of the specific scores and weights related to the receptor-relative risks. The total risk maps obtained for the Sihl River case study are associated with the lower classes of risk. In general, higher relative risks are concentrated in the deeply urbanized area within and around the Zurich city centre and areas that rely just behind to the Sihl River course. Here, forecasted injuries and potential fatalities are mainly due to high population density and high presence of old (vulnerable) people; inundated buildings are mainly classified as continuous and discontinuous urban fabric; flooded roads, pathways and railways, the majority of them referring to the Zurich main train station (Hauptbahnhof), are at high risk of inundation, causing huge indirect damages. The analysis of flood risk to agriculture, natural and semi-natural systems and cultural heritage have pointed out that these receptors could be relatively less impacted by the selected flood scenario mainly because their scattered presence. Finally, the application of the KR-RRA methodology to the Sihl River case study as well as to several other sites across Europe (not presented here), has demonstrated its flexibility and possible adaptation to different geographical and socio-economic contexts, depending on data availability and peculiarities of the sites, as well as for other hazard scenarios.

  5. The impact of local land subsidence and global sea level rise on flood severity in Houston-Galveston caused by Hurricane Harvey

    NASA Astrophysics Data System (ADS)

    Miller, M. M.; Shirzaei, M.

    2017-12-01

    Category-4 Hurricane Harvey had devastating socioeconomic impacts to Houston, with flooding far past the 100-year flood zones published by FEMA. In recent decades, frequency and intensity of coastal flooding are escalating, correlated with sea level rise (SLR). Moreover, Local land subsidence (LLS) due to groundwater and hydrocarbon extraction and natural compaction changes surface elevation and slope, potentially altering drainage patterns. GPS data show a mm broad co-cyclonic subsidence due to elastic loading from the water mass measured by GPS, which is inverted to solve for the total fluid volume of 2.73x1010 m3. We additionally investigate the joint impact of an SLR and pre-cyclonic LLS on the flooding of Houston-Galveston during Hurricane Harvey. We examine vertical land motion within North American Vertical Datum 2012 for the period 2007 until the cyclone by investigating SAR imaged acquired by ALOS and Sentinel-1A/B radar satellites combined with GPS data. We find patchy, LLS bowls resulting in sinks where floodwater can collect. We map the flooding extent by comparing amplitudes of Sentinal1-A/B pixels' backscattered radar signal from pre- and post-Harvey acquisitions and estimate 782 km2 are submerged within the area of 3478 km2 of pixels covered by Sentinel frame. Comparing with the LLS map, 89% of the flooded pixels exhibit -3 mm/yr or greater vertical motion. Flooding attributed to the storm surge is determined with high-resolution LiDAR digital elevation models (DEM) and a 0.75 m storm tide inundation model, which engulfs only 195 km2 and nearby the shorelines. We estimate future inundation hazard by combining LiDAR DEMs with our InSAR derived subsidence map, projecting LLS rates forward 100 years, and modeling projected SLR from 0.4 to 1.2 meters. Were subsidence to continue unabated, the total flooded area is 281 km2 with a 0.4 m and 394 km2 with a 1.2 m SLR. Next, we add a modest storm tide (0.752 m), which increases the flooded area to 389 - 480 km2. The combined effects of LLS and SLR are important to evaluate flood resilience strategies.

  6. How do we best estimate fluvial flood risk in urban environments? : The case of the city of Eilenburg, Germany

    NASA Astrophysics Data System (ADS)

    Longo, Elisa; Tito Aronica, Giuseppe; Di Baldassarre, Giuliano; Mukolwe, Micah

    2015-04-01

    Flooding is one of the most impactful natural hazards. In particular, by looking at the data of damages from natural hazards in Europe collected in the International Disaster Database (EM-DAT) one can see a significant increase over the past four decades of both frequency of floods and associated economic damages. Similarly, dramatic trends are also found by analyzing other types of flood losses, such as the number of people affected by floods, homeless, injured or killed. To deal with the aforementioned increase of flood risk, more and more efforts are being made to promote integrated flood risk management, for instance, at the end of 2007, the European Community (EC) issued the Flood Directive (F.D.) 2007/60/EC. One of the major innovations was that the F.D. 2007/60/C requires Member State to carry out risk maps and then take appropriate measures to reduce the evaluated risk. The main goal of this research was to estimate flood damaging using a computer code based on a recently developed method (KULTURisk, www.kulturisk.eu) and to compare the estimated damage with the observed one. The study area was the municipality of Eilenburg, which in 2002 was subjected to a destructive flood event. Were produced flood damage maps with new procedures (e.g. KULTURisk) and compared the estimates with observed data. This study showed the possibility to extend the lesson learned with the Eilenburg case study in other similar contexts. The outcomes of this test provided interesting insights about the flood risk mapping, which are expected to contribute to raise awareness to the flooding issues,to plan (structural and/or non-structural) measures of flood risk reduction and to support better land-use and urban planning.

  7. GIS data for the Seaside, Oregon, Tsunami Pilot Study to modernize FEMA flood hazard maps

    USGS Publications Warehouse

    Wong, Florence L.; Venturato, Angie J.; Geist, Eric L.

    2007-01-01

    A Tsunami Pilot Study was conducted for the area surrounding the coastal town of Seaside, Oregon, as part of the Federal Emergency Management's (FEMA) Flood Insurance Rate Map Modernization Program (Tsunami Pilot Study Working Group, 2006). The Cascadia subduction zone extends from Cape Mendocino, California, to Vancouver Island, Canada. The Seaside area was chosen because it is typical of many coastal communities subject to tsunamis generated by far- and near-field (Cascadia) earthquakes. Two goals of the pilot study were to develop probabilistic 100-year and 500-year tsunami inundation maps using Probabilistic Tsunami Hazard Analysis (PTHA) and to provide recommendations for improving tsunami hazard assessment guidelines for FEMA and state and local agencies. The study was an interagency effort by the National Oceanic and Atmospheric Administration, U.S. Geological Survey, and FEMA, in collaboration with the University of Southern California, Middle East Technical University, Portland State University, Horning Geoscience, Northwest Hydraulics Consultants, and the Oregon Department of Geological and Mineral Industries. The pilot study model data and results are published separately as a geographic information systems (GIS) data report (Wong and others, 2006). The flood maps and GIS data are briefly described here.

  8. Creating a Flood Risk Index to Improve Community Resilience

    NASA Astrophysics Data System (ADS)

    Klima, K.; El Gammal, L.

    2017-12-01

    While flood risk reduction is an existent discourse and agenda in policy and insurance, vulnerabilities vary between communities; some communities may have aging infrastructure, or an older/poorer population less able to absorb a flood, putting them at increased risk from the hazards. As a result, some are considering environmental justice aspects of flood risk reduction. To date, catastrophe models have focused on creating floodmaps (e.g., NOAA's Sea Level Rise Viewer, Climate Central's Surging Seas), or on linking hydrological models to economic loss models (e.g., HEC-RAS + HAZUS). However, this approach may be highly inequitable between areas of different income (as well as other demographics). Some have begun work on combining hydrology with vulnerability information (e.g., USACE's North Atlantic Comprehensive Coastal Study). To our knowledge, no one has tried to adapt the more advanced known heat risk theory to water risk by combining hydrology information (e.g., HEC-RAS, floodplain maps) with the social vulnerability (e.g., Cutter et al.) of the residents. This project will create a method to combine water hazard data with a derived water vulnerability index to help a community understand their current and future water risk. We will use the case study area of Pittsburgh, PA, which faces severe precipitation and riverine flooding hazards. Building on present literature of factors influencing water vulnerability contextualized to the Pittsburgh region, we will identify, quantify, and map the top factors impacting water vulnerability. We will combine these with flood maps to identify the geospatial distribution of water risk. This work will allow policy makers to identify location-specific aspects of water vulnerability and risk in any community, thus promoting environmental justice. It is possible that this type of original research would create maps of relative water risk that may prove as understandable to the general public as other flood maps, and may also help to promote "just resilience". This presentation will present a method to combine water hazard data with a derived water vulnerability index to present work on the geospatial distribution of water risk in Pittsburgh, PA.

  9. Flood of April 1975 at Lansing, Michigan

    USGS Publications Warehouse

    Miller, John B.; Swallow, L.A.

    1975-01-01

    On April 18 between 5 p.m. and 12 p.m. an intense rainstorm fell in the Lansing area resulting in extensive flooding.  The Federal Disaster Assistance Administration estimated that 175 homes were damaged to at least half their value, 4,500 received some damage, with additional losses to schools, utilities, hospitals, and transportation systems.  Early estimates indicated that damages may be as high as $20 million.During the time of flooding the U.S. Geological Survey obtained aerial photography and streamflow data to document the disaster.  This report shows on photomosaic base maps the extent of flooding in the Lansing area.  Areas included are the lower reaches of the Red Cedar River and Sycamore Creek and the Grand River downstream from the confluence of the Red Cedar River.  Little flooding occurred on the Grand River upstream from the Red Cedar so, although aerial photography was obtained for that reach, photomosaics were not prepared.  Streamflow data collected at five gaging stations near Lansing are given.  Information on the magnitude of the flood should be useful in making decisions regarding use of flood plains in the area.  It is one of a series of reports on the April 1975 flood in the Lansing metropolitan area.

  10. Beyond 'flood hotspots': Modelling emergency service accessibility during flooding in York, UK

    NASA Astrophysics Data System (ADS)

    Coles, Daniel; Yu, Dapeng; Wilby, Robert L.; Green, Daniel; Herring, Zara

    2017-03-01

    This paper describes the development of a method that couples flood modelling with network analysis to evaluate the accessibility of city districts by emergency responders during flood events. We integrate numerical modelling of flood inundation with geographical analysis of service areas for the Ambulance Service and the Fire & Rescue Service. The method was demonstrated for two flood events in the City of York, UK to assess the vulnerability of care homes and sheltered accommodation. We determine the feasibility of emergency services gaining access within the statutory 8- and 10-min targets for high-priority, life-threatening incidents 75% of the time, during flood episodes. A hydrodynamic flood inundation model (FloodMap) simulates the 2014 pluvial and 2015 fluvial flood events. Predicted floods (with depth >25 cm and areas >100 m2) were overlain on the road network to identify sites with potentially restricted access. Accessibility of the city to emergency responders during flooding was quantified and mapped using; (i) spatial coverage from individual emergency nodes within the legislated timeframes, and; (ii) response times from individual emergency service nodes to vulnerable care homes and sheltered accommodation under flood and non-flood conditions. Results show that, during the 2015 fluvial flood, the area covered by two of the three Fire & Rescue Service stations reduced by 14% and 39% respectively, while the remaining station needed to increase its coverage by 39%. This amounts to an overall reduction of 6% and 20% for modelled and observed floods respectively. During the 2014 surface water flood, 7 out of 22 care homes (32%) and 15 out of 43 sheltered accommodation nodes (35%) had modelled response times above the 8-min threshold from any Ambulance station. Overall, modelled surface water flooding has a larger spatial footprint than fluvial flood events. Hence, accessibility of emergency services may be impacted differently depending on flood mechanism. Moreover, we expect emergency services to face greater challenges under a changing climate with a growing, more vulnerable population. The methodology developed in this study could be applied to other cities, as well as for scenario-based evaluation of emergency preparedness to support strategic decision making, and in real-time forecasting to guide operational decisions where heavy rainfall lead-time and spatial resolution are sufficient.

  11. Non-parametric data-based approach for the quantification and communication of uncertainties in river flood forecasts

    NASA Astrophysics Data System (ADS)

    Van Steenbergen, N.; Willems, P.

    2012-04-01

    Reliable flood forecasts are the most important non-structural measures to reduce the impact of floods. However flood forecasting systems are subject to uncertainty originating from the input data, model structure and model parameters of the different hydraulic and hydrological submodels. To quantify this uncertainty a non-parametric data-based approach has been developed. This approach analyses the historical forecast residuals (differences between the predictions and the observations at river gauging stations) without using a predefined statistical error distribution. Because the residuals are correlated with the value of the forecasted water level and the lead time, the residuals are split up into discrete classes of simulated water levels and lead times. For each class, percentile values are calculated of the model residuals and stored in a 'three dimensional error' matrix. By 3D interpolation in this error matrix, the uncertainty in new forecasted water levels can be quantified. In addition to the quantification of the uncertainty, the communication of this uncertainty is equally important. The communication has to be done in a consistent way, reducing the chance of misinterpretation. Also, the communication needs to be adapted to the audience; the majority of the larger public is not interested in in-depth information on the uncertainty on the predicted water levels, but only is interested in information on the likelihood of exceedance of certain alarm levels. Water managers need more information, e.g. time dependent uncertainty information, because they rely on this information to undertake the appropriate flood mitigation action. There are various ways in presenting uncertainty information (numerical, linguistic, graphical, time (in)dependent, etc.) each with their advantages and disadvantages for a specific audience. A useful method to communicate uncertainty of flood forecasts is by probabilistic flood mapping. These maps give a representation of the probability of flooding of a certain area, based on the uncertainty assessment of the flood forecasts. By using this type of maps, water managers can focus their attention on the areas with the highest flood probability. Also the larger public can consult these maps for information on the probability of flooding for their specific location, such that they can take pro-active measures to reduce the personal damage. The method of quantifying the uncertainty was implemented in the operational flood forecasting system for the navigable rivers in the Flanders region of Belgium. The method has shown clear benefits during the floods of the last two years.

  12. 44 CFR 65.3 - Requirement to submit new technical data.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... technical data. 65.3 Section 65.3 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY... IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.3 Requirement to submit new technical data. A community's base flood elevations may increase or decrease resulting from physical changes affecting flooding...

  13. 77 FR 29678 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... resolution process. SRPs are independent panels of experts in hydrology, hydraulics, and other pertinent..., and Incorporated Areas Maps Available for Inspection Online at: http://www.in.gov/dnr/water/7293.htm... Online at: http://www.dnr.sc.gov/water/flood/comaps.html City of Manning 29 West Boyce Street, Manning...

  14. A method for mapping flood hazard along roads.

    PubMed

    Kalantari, Zahra; Nickman, Alireza; Lyon, Steve W; Olofsson, Bo; Folkeson, Lennart

    2014-01-15

    A method was developed for estimating and mapping flood hazard probability along roads using road and catchment characteristics as physical catchment descriptors (PCDs). The method uses a Geographic Information System (GIS) to derive candidate PCDs and then identifies those PCDs that significantly predict road flooding using a statistical modelling approach. The method thus allows flood hazards to be estimated and also provides insights into the relative roles of landscape characteristics in determining road-related flood hazards. The method was applied to an area in western Sweden where severe road flooding had occurred during an intense rain event as a case study to demonstrate its utility. The results suggest that for this case study area three categories of PCDs are useful for prediction of critical spots prone to flooding along roads: i) topography, ii) soil type, and iii) land use. The main drivers among the PCDs considered were a topographical wetness index, road density in the catchment, soil properties in the catchment (mainly the amount of gravel substrate) and local channel slope at the site of a road-stream intersection. These can be proposed as strong indicators for predicting the flood probability in ungauged river basins in this region, but some care is needed in generalising the case study results other potential factors are also likely to influence the flood hazard probability. Overall, the method proposed represents a straightforward and consistent way to estimate flooding hazards to inform both the planning of future roadways and the maintenance of existing roadways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. 77 FR 31372 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... West Baxter Avenue, Knoxville, TN 37917. Leon County, Texas, and Incorporated Areas Maps Available for.... Unincorporated Areas of Leon County.... Leon County Judge's Office, 130 East St. Marys, Centerville, TX 75833...

  16. Can Atmospheric Reanalysis Data Sets Be Used to Reproduce Flooding Over Large Scales?

    NASA Astrophysics Data System (ADS)

    Andreadis, Konstantinos M.; Schumann, Guy J.-P.; Stampoulis, Dimitrios; Bates, Paul D.; Brakenridge, G. Robert; Kettner, Albert J.

    2017-10-01

    Floods are costly to global economies and can be exceptionally lethal. The ability to produce consistent flood hazard maps over large areas could provide a significant contribution to reducing such losses, as the lack of knowledge concerning flood risk is a major factor in the transformation of river floods into flood disasters. In order to accurately reproduce flooding in river channels and floodplains, high spatial resolution hydrodynamic models are needed. Despite being computationally expensive, recent advances have made their continental to global implementation feasible, although inputs for long-term simulations may require the use of reanalysis meteorological products especially in data-poor regions. We employ a coupled hydrologic/hydrodynamic model cascade forced by the 20CRv2 reanalysis data set and evaluate its ability to reproduce flood inundation area and volume for Australia during the 1973-2012 period. Ensemble simulations using the reanalysis data were performed to account for uncertainty in the meteorology and compared with a validated benchmark simulation. Results show that the reanalysis ensemble capture the inundated areas and volumes relatively well, with correlations for the ensemble mean of 0.82 and 0.85 for area and volume, respectively, although the meteorological ensemble spread propagates in large uncertainty of the simulated flood characteristics.

  17. Flood risk assessment of land pollution hotspots

    NASA Astrophysics Data System (ADS)

    Masi, Matteo; Arrighi, Chiara; Iannelli, Renato

    2017-04-01

    Among the risks caused by extreme events, the potential spread of pollutants stored in land hotspots due to floods is an aspect that has been rarely examined with a risk-based approach. In this contribution, an attempt to estimate pollution risks related to flood events of land pollution hotspots was carried out. Flood risk has been defined as the combination of river flood hazard, hotspots exposure and vulnerability to contamination of the area, i.e. the expected severity of the environmental impacts. The assessment was performed on a geographical basis, using geo-referenced open data, available from databases of land management institutions, authorities and agencies. The list of land pollution hotspots included landfills and other waste handling facilities (e.g., temporary storage, treatment and recycling sites), municipal wastewater treatment plants, liquid waste treatment facilities and contaminated sites. The assessment was carried out by combining geo-referenced data of pollution hotspots with flood hazard maps. We derived maps of land pollution risk based on geographical and geological properties and source characteristics available from environmental authorities. These included information about soil particle size, soil hydraulic conductivity, terrain slope, type of stored pollutants, the type of facility, capacity, size of the area, land use, etc. The analysis was carried out at catchment scale. The case study of the Arno river basin in Tuscany (central Italy) is presented.

  18. Flood of June 2008 in Southern Wisconsin

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Peppler, Marie C.; Walker, John F.; Rose, William J.; Waschbusch, Robert J.; Kennedy, James L.

    2008-01-01

    In June 2008, heavy rain caused severe flooding across southern Wisconsin. The floods were aggravated by saturated soils that persisted from unusually wet antecedent conditions from a combination of floods in August 2007, more than 100 inches of snow in winter 2007-08, and moist conditions in spring 2008. The flooding caused immediate evacuations and road closures and prolonged, extensive damages and losses associated with agriculture, businesses, housing, public health and human needs, and infrastructure and transportation. Record gage heights and streamflows occurred at 21 U.S. Geological Survey streamgages across southern Wisconsin from June 7 to June 21. Peak-gage-height data, peak-streamflow data, and flood probabilities are tabulated for 32 USGS streamgages in southern Wisconsin. Peak-gage-height and peak-streamflow data also are tabulated for three ungaged locations. Extensive flooding along the Baraboo River, Kickapoo River, Crawfish River, and Rock River caused particularly severe damages in nine communities and their surrounding areas: Reedsburg, Rock Springs, La Farge, Gays Mills, Milford, Jefferson, Fort Atkinson, Janesville, and Beloit. Flood-peak inundation maps and water-surface profiles were generated for the nine communities in a geographic information system by combining flood high-water marks with available 1-10-meter resolution digital-elevation-model data. The high-water marks used in the maps were a combination of those surveyed during the June flood by communities, counties, and Federal agencies and hundreds of additional marks surveyed in August by the USGS. The flood maps and profiles outline the extent and depth of flooding through the communities and are being used in ongoing (as of November 2008) flood response and recovery efforts by local, county, State, and Federal agencies.

  19. Mapping Urban Risk: Flood Hazards, Race, & Environmental Justice In New York”

    PubMed Central

    Maantay, Juliana; Maroko, Andrew

    2009-01-01

    This paper demonstrates the importance of disaggregating population data aggregated by census tracts or other units, for more realistic population distribution/location. A newly-developed mapping method, the Cadastral-based Expert Dasymetric System (CEDS), calculates population in hyper-heterogeneous urban areas better than traditional mapping techniques. A case study estimating population potentially impacted by flood hazard in New York City compares the impacted population determined by CEDS with that derived by centroid-containment method and filtered areal weighting interpolation. Compared to CEDS, 37 percent and 72 percent fewer people are estimated to be at risk from floods city-wide, using conventional areal weighting of census data, and centroid-containment selection, respectively. Undercounting of impacted population could have serious implications for emergency management and disaster planning. Ethnic/racial populations are also spatially disaggregated to determine any environmental justice impacts with flood risk. Minorities are disproportionately undercounted using traditional methods. Underestimating more vulnerable sub-populations impairs preparedness and relief efforts. PMID:20047020

  20. Flood risks in urbanized areas - multi-sensoral approaches using remotely sensed data for risk assessment

    NASA Astrophysics Data System (ADS)

    Taubenböck, H.; Wurm, M.; Netzband, M.; Zwenzner, H.; Roth, A.; Rahman, A.; Dech, S.

    2011-02-01

    Estimating flood risks and managing disasters combines knowledge in climatology, meteorology, hydrology, hydraulic engineering, statistics, planning and geography - thus a complex multi-faceted problem. This study focuses on the capabilities of multi-source remote sensing data to support decision-making before, during and after a flood event. With our focus on urbanized areas, sample methods and applications show multi-scale products from the hazard and vulnerability perspective of the risk framework. From the hazard side, we present capabilities with which to assess flood-prone areas before an expected disaster. Then we map the spatial impact during or after a flood and finally, we analyze damage grades after a flood disaster. From the vulnerability side, we monitor urbanization over time on an urban footprint level, classify urban structures on an individual building level, assess building stability and quantify probably affected people. The results show a large database for sustainable development and for developing mitigation strategies, ad-hoc coordination of relief measures and organizing rehabilitation.

  1. Flood susceptibility analysis through remote sensing, GIS and frequency ratio model

    NASA Astrophysics Data System (ADS)

    Samanta, Sailesh; Pal, Dilip Kumar; Palsamanta, Babita

    2018-05-01

    Papua New Guinea (PNG) is saddled with frequent natural disasters like earthquake, volcanic eruption, landslide, drought, flood etc. Flood, as a hydrological disaster to humankind's niche brings about a powerful and often sudden, pernicious change in the surface distribution of water on land, while the benevolence of flood manifests in restoring the health of the thalweg from excessive siltation by redistributing the fertile sediments on the riverine floodplains. In respect to social, economic and environmental perspective, flood is one of the most devastating disasters in PNG. This research was conducted to investigate the usefulness of remote sensing, geographic information system and the frequency ratio (FR) for flood susceptibility mapping. FR model was used to handle different independent variables via weighted-based bivariate probability values to generate a plausible flood susceptibility map. This study was conducted in the Markham riverine precinct under Morobe province in PNG. A historical flood inventory database of PNG resource information system (PNGRIS) was used to generate 143 flood locations based on "create fishnet" analysis. 100 (70%) flood sample locations were selected randomly for model building. Ten independent variables, namely land use/land cover, elevation, slope, topographic wetness index, surface runoff, landform, lithology, distance from the main river, soil texture and soil drainage were used into the FR model for flood vulnerability analysis. Finally, the database was developed for areas vulnerable to flood. The result demonstrated a span of FR values ranging from 2.66 (least flood prone) to 19.02 (most flood prone) for the study area. The developed database was reclassified into five (5) flood vulnerability zones segmenting on the FR values, namely very low (less that 5.0), low (5.0-7.5), moderate (7.5-10.0), high (10.0-12.5) and very high susceptibility (more than 12.5). The result indicated that about 19.4% land area as `very high' and 35.8% as `high' flood vulnerable class. The FR model output was validated with remaining 43 (30%) flood points, where 42 points were marked as correct predictions which evinced an accuracy of 97.7% in prediction. A total of 137292 people are living in those vulnerable zones. The flood susceptibility analysis using this model will be very useful and also an efficient tool to the local government administrators, researchers and planners for devising flood mitigation plans.

  2. Flood-inundation maps for the Patoka River in and near Jasper, southwestern Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2018-01-23

    Digital flood-inundation maps for a 9.5-mile reach of the Patoka River in and near the city of Jasper, southwestern Indiana (Ind.), from the streamgage near County Road North 175 East, downstream to State Road 162, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science web site at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage Patoka River at Jasper, Ind. (station number 03375500). The Patoka streamgage is located at the upstream end of the 9.5-mile river reach. Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at https://waterdata.usgs.gov/ or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, although flood forecasts and stages for action and minor, moderate, and major flood stages are not currently (2017) available at this site (JPRI3).Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at the Patoka River at Jasper, Ind., streamgage and the documented high-water marks from the flood of April 30, 2017. The calibrated hydraulic model was then used to compute five water-surface profiles for flood stages referenced to the streamgage datum ranging from 15 feet (ft), or near bankfull, to 19 ft. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging [lidar] data having a 0.98 ft vertical accuracy and 4.9 ft horizontal resolution) to delineate the area flooded at each water level.The availability of these flood-inundation maps, along with real-time stage from the USGS streamgage at the Patoka River at Jasper, Ind., will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for postflood recovery efforts.

  3. Flood-inundation maps for the St. Joseph River at Elkhart, Indiana

    USGS Publications Warehouse

    Martin, Zachary W.

    2017-02-01

    Digital flood-inundation maps for a 6.6-mile reach of the St. Joseph River at Elkhart, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 04101000, St. Joseph River at Elkhart, Ind. Real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at https://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS site EKMI3).Flood profiles were computed for the stream reach by means of a one-dimensional, step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 04101000, St. Joseph River at Elkhart, Ind., and the documented high-water marks from the flood of March 1982. The hydraulic model was then used to compute six water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 23.0 ft (the NWS “action stage”) to 28.0 ft, which is the highest stage interval of the current USGS stage-discharge rating curve and 1 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar] data having a 0.49-ft root mean squared error and 4.9-ft horizontal resolution, resampled to a 10-ft grid) to delineate the area flooded at each stage.The availability of these maps, along with Internet information regarding current stage from the USGS streamgage and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  4. Flood-Inundation Maps for Sugar Creek at Crawfordsville, Indiana

    USGS Publications Warehouse

    Martin, Zachary W.

    2016-06-06

    Digital flood-inundation maps for a 6.5-mile reach of Sugar Creek at Crawfordsville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind. Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS site CRWI3).Flood profiles were computed for the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., reach by means of a one-dimensional step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., and high-water marks from the flood of April 19, 2013, which reached a stage of 15.3 feet. The hydraulic model was then used to compute 13 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 4.0 ft (the NWS “action stage”) to 16.0 ft, which is the highest stage interval of the current USGS stage-discharge rating curve and 2 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar]) data having a 0.49-ft root mean squared error and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability of these maps, along with Internet information regarding current stage from the USGS streamgage and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  5. Flood hazards in the Seattle-Tacoma urban complex and adjacent areas, Washington

    USGS Publications Warehouse

    Foxworthy, B.L.; Nassar, E.G.

    1975-01-01

    Floods are natural hazards that have complicated man's land-use planning for as long as we have had a history. Although flood hzards are a continuing danger, the year-to-year threat cannot be accurately predicted. Also, on any one stream, the time since the last destructive flood might be so long that most people now living near the stream have not experienced such a flood. Because of the unpredictability and common infrequency of disastrous flooding, or out of ignorance about the danger, or perhaps because of an urge to gamble, man tends to focus his attention on only the advantages of the flood-prone areas, rather than the risk due to the occasional major flood. The purposes of this report are to: (1) briefly describe flood hazards in this region, including some that may be unique to the Puget Sound basin, (2) indicate the parts of the area for which flood-hazard data are available, and (3) list the main sources of hydrologic information that is useful for flood-hazard analysis in conjuction with long-range planning. This map-type report is one of a series being prepared by the U.S. Geological Survey to present basic environmental information and interpretations to assist land-use planning in the Puget Sound region.

  6. Flood-inundation maps for North Fork Salt Creek at Nashville, Indiana

    USGS Publications Warehouse

    Martin, Zachary W.

    2017-11-13

    Digital flood-inundation maps for a 3.2-mile reach of North Fork Salt Creek at Nashville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding that correspond to selected water levels (stages) at the North Fork Salt Creek at Nashville, Ind., streamgage (USGS station number 03371650). Real-time stages at this streamgage may be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also shows observed USGS stages at the same site as the USGS streamgage (NWS site NFSI3).Flood profiles were computed for the stream reach by means of a one-dimensional, step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current (2015) stage-discharge rating at the USGS streamgage 03371650, North Fork Salt Creek at Nashville, Ind. The hydraulic model was then used to compute 12 water-surface profiles for flood stages at 1-foot (ft) intervals, except for the highest profile of 22.9 ft, referenced to the streamgage datum ranging from 12.0 ft (the NWS “action stage”) to 22.9 ft, which is the highest stage of the current (2015) USGS stage-discharge rating curve and 1.9 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability of these maps, along with information regarding current stage from the USGS streamgage, will provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for postflood recovery efforts.

  7. Flood-Inundation Maps for a 1.6-Mile Reach of Salt Creek, Wood Dale, Illinois

    USGS Publications Warehouse

    Soong, David T.; Murphy, Elizabeth A.; Sharpe, Jennifer B.

    2012-01-01

    Digital flood-inundation maps for a 1.6-mile reach of Salt Creek from upstream of the Chicago, Milwaukee, St. Paul & Pacific Railroad to Elizabeth Drive, Wood Dale, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the DuPage County Stormwater Management Division. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage on Salt Creek at Wood Dale, Illinois (station number 05531175). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05531175. In this study, flood profiles were computed for the stream reach by means of a one-dimensional unsteady flow Full EQuations (FEQ) model. The unsteady flow model was verified by comparing the rating curve output for a September 2008 flood event to discharge measurements collected at the Salt Creek at Wood Dale gage. The hydraulic model was then used to determine 14 water-surface profiles for gage heights at 0.5-ft intervals referenced to the streamgage datum and ranging from less than bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) Digital Elevation Model (DEM) (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The areal extent of the inundation was verified with high-water marks from a flood in July 2010 with a peak gage height of 14.08 ft recorded at the Salt Creek at Wood Dale gage. The availability of these maps along with Internet information regarding current gage height from USGS streamgages provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post-flood recovery efforts.

  8. Flood boundaries and water-surface profile for the computed 100-year flood, Swift Creek at Afton, Wyoming, 1986

    USGS Publications Warehouse

    Rankl, James G.; Wallace, Joe C.

    1989-01-01

    Flood flows on Swift Creek near Afton, Wyoming, were analyzed. Peak discharge with an average recurrence interval of 100 years was computed and used to determine the flood boundaries and water surface profile in the study reach. The study was done in cooperation with Lincoln County and the Town of Afton to determine the extent of flooding in the Town of Afton from a 100-year flood on Swift Creek. The reach of Swift Creek considered in the analysis extends upstream from the culvert at Allred County Road No. 12-135 to the US Geological Survey streamflow-gaging station located in the Bridger National Forest , a distance of 3.2 miles. Boundaries of the 100-year flood are delineated on a map using the computed elevation of the flood at each cross section, survey data, and a 1983 aerial photograph. The computed water surface elevation for the 100-year flood was plotted at each cross section, then the lateral extent of the flood was transferred to the flood map. Boundaries between cross sections were sketched using information taken from the aerial photograph. Areas that are inundated, but not part of the active flow, are designated on the cross sections. (Lantz-PTT)

  9. Analysis of the French insurance market exposure to floods: a stochastic model combining river overflow and surface runoff

    NASA Astrophysics Data System (ADS)

    Moncoulon, D.; Labat, D.; Ardon, J.; Onfroy, T.; Leblois, E.; Poulard, C.; Aji, S.; Rémy, A.; Quantin, A.

    2013-07-01

    The analysis of flood exposure at a national scale for the French insurance market must combine the generation of a probabilistic event set of all possible but not yet occurred flood situations with hazard and damage modeling. In this study, hazard and damage models are calibrated on a 1995-2012 historical event set, both for hazard results (river flow, flooded areas) and loss estimations. Thus, uncertainties in the deterministic estimation of a single event loss are known before simulating a probabilistic event set. To take into account at least 90% of the insured flood losses, the probabilistic event set must combine the river overflow (small and large catchments) with the surface runoff due to heavy rainfall, on the slopes of the watershed. Indeed, internal studies of CCR claim database has shown that approximately 45% of the insured flood losses are located inside the floodplains and 45% outside. 10% other percent are due to seasurge floods and groundwater rise. In this approach, two independent probabilistic methods are combined to create a single flood loss distribution: generation of fictive river flows based on the historical records of the river gauge network and generation of fictive rain fields on small catchments, calibrated on the 1958-2010 Météo-France rain database SAFRAN. All the events in the probabilistic event sets are simulated with the deterministic model. This hazard and damage distribution is used to simulate the flood losses at the national scale for an insurance company (MACIF) and to generate flood areas associated with hazard return periods. The flood maps concern river overflow and surface water runoff. Validation of these maps is conducted by comparison with the address located claim data on a small catchment (downstream Argens).

  10. Global coastal flood hazard mapping

    NASA Astrophysics Data System (ADS)

    Eilander, Dirk; Winsemius, Hessel; Ward, Philip; Diaz Loaiza, Andres; Haag, Arjen; Verlaan, Martin; Luo, Tianyi

    2017-04-01

    Over 10% of the world's population lives in low-lying coastal areas (up to 10m elevation). Many of these areas are prone to flooding from tropical storm surges or extra-tropical high sea levels in combination with high tides. A 1 in 100 year extreme sea level is estimated to expose 270 million people and 13 trillion USD worth of assets to flooding. Coastal flood risk is expected to increase due to drivers such as ground subsidence, intensification of tropical and extra-tropical storms, sea level rise and socio-economic development. For better understanding of the hazard and drivers to global coastal flood risk, a globally consistent analysis of coastal flooding is required. In this contribution we present a comprehensive global coastal flood hazard mapping study. Coastal flooding is estimated using a modular inundation routine, based on a vegetation corrected SRTM elevation model and forced by extreme sea levels. Per tile, either a simple GIS inundation routine or a hydrodynamic model can be selected. The GIS inundation method projects extreme sea levels to land, taking into account physical obstructions and dampening of the surge level land inwards. For coastlines with steep slopes or where local dynamics play a minor role in flood behavior, this fast GIS method can be applied. Extreme sea levels are derived from the Global Tide and Surge Reanalysis (GTSR) dataset. Future sea level projections are based on probabilistic sea level rise for RCP 4.5 and RCP 8.5 scenarios. The approach is validated against observed flood extents from ground and satellite observations. The results will be made available through the online Aqueduct Global Flood Risk Analyzer of the World Resources Institute.

  11. On the value of satellite-based river discharge and river flood data

    NASA Astrophysics Data System (ADS)

    Kettner, A. J.; Brakenridge, R.; van Praag, E.; Borrero, S.; Slayback, D. A.; Young, C.; Cohen, S.; Prades, L.; de Groeve, T.

    2015-12-01

    Flooding is the most common natural hazard worldwide. According to the World Resources Institute, floods impact 21 million people every year and affect the global GDP by $96 billion. Providing accurate flood maps in near-real time (NRT) is critical to their utility to first responders. Also, in times of flooding, river gauging stations on location, if any, are of less use to monitor stage height as an approximation for water surface area, as often the stations themselves get washed out or peak water levels reach much beyond their design measuring capacity. In a joint effort with NASA Goddard Space Flight Center, the European Commission Joint Research Centre and the University of Alabama, the Dartmouth Flood Observatory (DFO) measures NRT: 1) river discharges, and 2) water inundation extents, both with a global coverage on a daily basis. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations'. Once calibrated, daily discharge time series span from 1998 to the present. Also, the two MODIS instruments aboard the NASA Terra and Aqua satellites provide daily floodplain inundation extent with global coverage at a spatial resolution of 250m. DFO's mission is to provide easy access to NRT river and flood data products. Apart from the DFO web portal, several water extent products can be ingested by utilizing a Web Map Service (WMS), such as is established with for Latin America and the Caribbean (LAC) region through the GeoSUR program portal. This effort includes implementing over 100 satellite discharge stations showing in NRT if a river is flooding, normal, or in low flow. New collaborative efforts have resulted in flood hazard maps which display flood extent as well as exceedance probabilities. The record length of our sensors allows mapping the 1.5 year, 5 year and 25 year flood extent. These can provide key information to water management and disaster response entities.

  12. Flood-inundation maps for the Flatrock River at Columbus, Indiana, 2012

    USGS Publications Warehouse

    Coon, William F.

    2013-01-01

    Digital flood-inundation maps for a 5-mile reach of the Flatrock River on the western side of Columbus, Indiana, from County Road 400N to the river mouth at the confluence with Driftwood River, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the Federal Flood Inundation Mapper Web site at http://wim.usgs.gov/FIMI/FloodInundationMapper.html, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Flatrock River at Columbus (station number 03363900). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service, which also presents the USGS data, at http:/water.weather.gov/ahps/. Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation at the Flatrock River streamgage, high-water marks that were surveyed following the flood of June 7, 2008, and water-surface profiles from the current flood-insurance study for the City of Columbus. The hydraulic model was then used to compute 12 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from 9 ft or near bankfull to 20 ft, which exceeds the stages that correspond to both the estimated 0.2-percent annual exceedance probability flood (500-year recurrence interval flood) and the maximum recorded peak flow. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from Light Detection and Ranging (LiDAR) data having a 0.37 ft vertical accuracy and 3.9 ft horizontal resolution) to delineate the area flooded at each water level. The availability of these maps on the USGS Federal Flood Inundation Mapper Web site, along with Internet information regarding current stage from the USGS streamgage, will provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

  13. Flood profiles for lower Brooker Creek, west-central Florida

    USGS Publications Warehouse

    Murphy, W.R.

    1978-01-01

    Flood heights are computed for a range of recurrence intervals for a 12.6 mile reach of Brooker Creek, beginning at the mouth at Lake Tarpon. A Geological Survey step-backwater computer program, E431, was used in these analyses using: (1) Stream and valley cross-section geometry and roughness data; (2) Recurrence interval flood-peak discharges; (3) Recurrence interval starting elevations; (4) Gaging station stage-discharge relations. Flood heights may be plotted versus distance above stream mouth and connected to construct flood profiles. They may also be used to indicate areas of inundation on detailed topographic maps.

  14. Meteorological Hazard Assessment and Risk Mitigation in Rwanda.

    NASA Astrophysics Data System (ADS)

    Nduwayezu, Emmanuel; Jaboyedoff, Michel; Bugnon, Pierre-Charles; Nsengiyumva, Jean-Baptiste; Horton, Pascal; Derron, Marc-Henri

    2015-04-01

    Between 10 and 13 April 2012, heavy rains hit sectors adjacent to the Vulcanoes National Park (Musanze District in the Northern Province and Nyabihu and Rubavu Districts in the Western Province of RWANDA), causing floods that affected about 11,000 persons. Flooding caused deaths and injuries among the affected population, and extensive damage to houses and properties. 348 houses were destroyed and 446 were partially damaged or have been underwater for several days. Families were forced to leave their flooded homes and seek temporal accommodation with their neighbors, often in overcrowded places. Along the West-northern border of RWANDA, Virunga mountain range consists of 6 major volcanoes. Mount Karisimbi is the highest volcano at 4507m. The oldest mountain is mount Sabyinyo which rises 3634m. The hydraulic network in Musanze District is formed by temporary torrents and permanent watercourses. Torrents surge during strong storms, and are provoked by water coming downhill from the volcanoes, some 20 km away. This area is periodically affected by flooding and landslides because of heavy rain (Rwanda has 2 rainy seasons from February to April and from September to November each year in general and 2 dry seasons) striking the Volcano National Park. Rain water creates big water channels (in already known torrents or new ones) that impact communities, agricultural soils and crop yields. This project aims at identifying hazardous and risky areas by producing susceptibility maps for floods, debris flow and landslides over this sector. Susceptibility maps are being drawn using field observations, during and after the 2012 events, and an empirical model of propagation for regional susceptibility assessments of debris flows (Flow-R). Input data are 10m and 30m resolution DEMs, satellite images, hydrographic network, and some information on geological substratum and soil occupation. Combining susceptibility maps with infrastructures, houses and population density maps will be used in identifying the most risky areas. Finally, based on practical experiences in this kind of field and produced documents some recommendations for low-cost mitigation measures will be proposed. Reference: MIDIMAR, Impacts of floods and landslides on socio-economic development profile. Case study: Musanze District. Kigali, June 2012.

  15. Integration of social vulnerability into emergency management plans: designing of evacuation routes against flood disasters

    NASA Astrophysics Data System (ADS)

    Aroca-Jimenez, Estefanía; Bodoque, Jose Maria; Garcia, Juan Antonio; Diez-Herrero, Andres

    2017-04-01

    Flash floods are highly spatio-temporal localized flood events characterized by reaching a high peak flow in a very short period of time, i.e., generally with times of concentration lower than six hours. Its short duration, which limits or even voids any warning time, means that flash floods are considered to be one of the most destructive natural hazards with the greatest capacity to generate risk, either in terms of the number of people affected globally or the proportion of individual fatalities. The above highlights the importance of a realistic and appropriate design of evacuation strategies in order to reduce flood-related losses, being evacuation planning considered of critical importance for disaster management. Traditionally, evacuation maps have been based on flood-prone areas, shelters or emergency residences location and evacuation routes information. However, evacuation plans rarely consider the spatial distribution of vulnerable population (i.e., people with special needs, mobility constraints or economic difficulties), which usually require assistance from emergency responders. The goal of this research is to elaborate an evacuation map against the occurrence of flash floods by combining geographic information (e.g. roads, health facilities location, sanitary helicopters) and social vulnerability patterns, which are previously obtained from socioeconomic variables (e.g. population, unemployment, dwelling characteristics). To do this, ArcGis Network Analyst tool is used, which allows to calculate the optimal evacuation routes. The methodology proposed here is implemented in the region of Castilla y León (94,230 km2). Urban areas prone to flash flooding are identified taking into account the following requirements: i) city centers are crossed by rivers or streams with a longitudinal slope higher than 0.01 m m-1; ii) city centers are potentially affected by flash floods; and iii) city centers are affected by an area with low or exceptional probability of flooding (i.e., 500-year flood). A total of 3 evacuation routes were designed and automatically traced for each of the 39 urban areas identified as interest, considering the nearest: i) health facility, ii) hospital; and iii) evacuation area (i.e. sports halls or any other). The suitable elaboration of evacuation plans is really important in small mountainous areas prone to flash flooding as they are managed by local organisms where available economic resources are often limited. Furthermore, the short response time obliges emergency responders to act efficiently, which requires the design of evacuation plans taking into account certain social characteristics for evacuation routes designing.

  16. Near-real-time simulation and internet-based delivery of forecast-flood inundation maps using two-dimensional hydraulic modeling--A pilot study for the Snoqualmie River, Washington

    USGS Publications Warehouse

    Jones, Joseph L.; Fulford, Janice M.; Voss, Frank D.

    2002-01-01

    A system of numerical hydraulic modeling, geographic information system processing, and Internet map serving, supported by new data sources and application automation, was developed that generates inundation maps for forecast floods in near real time and makes them available through the Internet. Forecasts for flooding are generated by the National Weather Service (NWS) River Forecast Center (RFC); these forecasts are retrieved automatically by the system and prepared for input to a hydraulic model. The model, TrimR2D, is a new, robust, two-dimensional model capable of simulating wide varieties of discharge hydrographs and relatively long stream reaches. TrimR2D was calibrated for a 28-kilometer reach of the Snoqualmie River in Washington State, and is used to estimate flood extent, depth, arrival time, and peak time for the RFC forecast. The results of the model are processed automatically by a Geographic Information System (GIS) into maps of flood extent, depth, and arrival and peak times. These maps subsequently are processed into formats acceptable by an Internet map server (IMS). The IMS application is a user-friendly interface to access the maps over the Internet; it allows users to select what information they wish to see presented and allows the authors to define scale-dependent availability of map layers and their symbology (appearance of map features). For example, the IMS presents a background of a digital USGS 1:100,000-scale quadrangle at smaller scales, and automatically switches to an ortho-rectified aerial photograph (a digital photograph that has camera angle and tilt distortions removed) at larger scales so viewers can see ground features that help them identify their area of interest more effectively. For the user, the option exists to select either background at any scale. Similar options are provided for both the map creator and the viewer for the various flood maps. This combination of a robust model, emerging IMS software, and application interface programming should allow the technology developed in the pilot study to be applied to other river systems where NWS forecasts are provided routinely.

  17. Floodplain-mapping With Modern It-instruments

    NASA Astrophysics Data System (ADS)

    Bley, D.; Pasche, E.

    of all natural hazards, floods occur globally most frequently, claim most casualities and cause the biggest economic losses. Reasons are anthropogenic changes (river cor- rection, land surface sealing, waldsterben, climatic changes) combined with a high population density. Counteractions must be the resettlement of human beings away from flood-prone areas, flood controls and environmental monitoring, as well as renat- uralization and provision of retention basins and areas. The consequence, especially if we think of the recent flood-events on the rivers Rhine, Odra and Danube must be a preventive and sustainable flood control. As a consequence the legislator de- manded in the Water Management Act nation-wide floodplain-mapping, to preserve the necessary retention-areas for high water flows and prevent misuses. In this context, water level calculations based on a one-dimensional steady-flow computer model are among the major tasks in hydraulic engineering practice. Bjoernsen Consulting En- gineers developed in cooperation with the Technical University of Hamburg-Harburg the integrated software system WSPWIN. It is based upon state of the art informa- tion technology and latest developments in hydraulic research. WSPWIN consists of a pre-processing module, a calculation core, and GIS-based post-processing elements. As water level calculations require the recording and storage of large amounts of to- pographic and hydraulic data it is helpful that WSPWIN consists of an interactive graphical profile-editor, which allows visual data checking and editing. The calcu- lation program comprises water level calculations under steady uniform and steady non-uniform flow conditions using the formulas of Darcy-Weisbach and Gauckler- Manning-Strickler. Bridges, weirs, pipes as well as the effects of submerged vege- tation are taken into account. Post-processing includes plotting facilities for cross- sectional and longitudinal profiles as well as map-oriented GIS-based data editing and result presentation. Import of digital elevation models and generation of profiles are possible. Furthermore, the intersection of the DEM with the calculated water level en- ables the creation of floodplain maps. WSPWIN is the official standard software for one-dimensional hydraulic modeling in six German Federal States, where it is used by all water-management agencies. Moreover, many private companies, universities and water-associations employ WSPWIN as well. The program is presented showing the procedure and difficulties of floodplain-mapping and flood control on a Bavarian river.

  18. 44 CFR 9.7 - Determination of proposed action's location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Regional Administrator shall consult the FEMA Flood Insurance Rate Map (FIRM) the Flood Boundary Floodway Map (FBFM) and the Flood Insurance Study (FIS). (ii) If a detailed map (FIRM or FBFM) is not available, the Regional Administrator shall consult an FEMA Flood Hazard Boundary Map (FHBM) . If data on flood...

  19. GIS-based flood risk model evaluated by Fuzzy Analytic Hierarchy Process (FAHP)

    NASA Astrophysics Data System (ADS)

    Sukcharoen, Tharapong; Weng, Jingnong; Teetat, Charoenkalunyuta

    2016-10-01

    Over the last 2-3 decades, the economy of many countries around the world has been developed rapidly but it was unbalanced development because of expecting on economic growth only. Meanwhile it lacked of effective planning in the use of natural resources. This can significantly induce climate change which is major cause of natural disaster. Hereby, Thailand has also suffered from natural disaster for ages. Especially, the flood which is most hazardous disaster in Thailand can annually result in the great loss of life and property, environment and economy. Since the flood management of country is inadequate efficiency. It is unable to support the flood analysis comprehensively. This paper applied Geographic Information System and Multi-Criteria Decision Making to create flood risk model at regional scale. Angthong province in Thailand was used as the study area. In practical process, Fuzzy logic technique has been used to improve specialist's assessment by implementing with Fuzzy membership because human decision is flawed under uncertainty then AHP technique was processed orderly. The hierarchy structure in this paper was categorized the spatial flood factors into two levels as following: 6 criteria (Meteorology, Geology, Topography, Hydrology, Human and Flood history) and 8 factors (Average Rainfall, Distance from Stream, Soil drainage capability, Slope, Elevation, Land use, Distance from road and Flooded area in the past). The validity of the pair-wise comparison in AHP was shown as C.R. value which indicated that the specialist judgment was reasonably consistent. FAHP computation result has shown that the first priority of criteria was Meteorology. In addition, the Rainfall was the most influencing factor for flooding. Finally, the output was displayed in thematic map of Angthong province with flood risk level processed by GIS tools. The map was classified into: High Risk, Moderate Risk and Low Risk (13.20%, 75.58%, and 11.22% of total area).

  20. Digital floodplain mapping and an analysis of errors involved

    USGS Publications Warehouse

    Hamblen, C.S.; Soong, D.T.; Cai, X.

    2007-01-01

    Mapping floodplain boundaries using geographical information system (GIS) and digital elevation models (DEMs) was completed in a recent study. However convenient this method may appear at first, the resulting maps potentially can have unaccounted errors. Mapping the floodplain using GIS is faster than mapping manually, and digital mapping is expected to be more common in the future. When mapping is done manually, the experience and judgment of the engineer or geographer completing the mapping and the contour resolution of the surface topography are critical in determining the flood-plain and floodway boundaries between cross sections. When mapping is done digitally, discrepancies can result from the use of the computing algorithm and digital topographic datasets. Understanding the possible sources of error and how the error accumulates through these processes is necessary for the validation of automated digital mapping. This study will evaluate the procedure of floodplain mapping using GIS and a 3 m by 3 m resolution DEM with a focus on the accumulated errors involved in the process. Within the GIS environment of this mapping method, the procedural steps of most interest, initially, include: (1) the accurate spatial representation of the stream centerline and cross sections, (2) properly using a triangulated irregular network (TIN) model for the flood elevations of the studied cross sections, the interpolated elevations between them and the extrapolated flood elevations beyond the cross sections, and (3) the comparison of the flood elevation TIN with the ground elevation DEM, from which the appropriate inundation boundaries are delineated. The study area involved is of relatively low topographic relief; thereby, making it representative of common suburban development and a prime setting for the need of accurately mapped floodplains. This paper emphasizes the impacts of integrating supplemental digital terrain data between cross sections on floodplain delineation. ?? 2007 ASCE.

  1. Floods at Mount Clemens, Michigan

    USGS Publications Warehouse

    Wiitala, S.W.; Ash, Arlington D.

    1962-01-01

    The approximate areas inundated during the flood of April 5-6, 1947, by Clinton River, North Branch and Middle Branch of Clinton River, and Harrington Drain, in Clinton Township, Macomb County, Mich., are shown on a topographic map base to record the flood hazard in graphical form. The flood of April 1947 is the highest known since 1934 and probably since 1902. Greater floods are possible, but no attempt was made to define their probable overflow limits.The Clinton River Cut-Off Canal, a flood-relief channel which diverts flow directly into Lake St. Clair from a point about 1500 feet downstream from Gratiot Avenue (about 9 miles upstream from the mouth) has been in operation since October 1951. The approximate limits of overflow that would results from a flood equivalent in discharge to that of April 1947, and occurring with the Cut-Off Canal in operation, are also shown. Although the Cut-Off Canal may reduce the frequency and depth of flooding it will not necessarily eliminate future flooding in the area. Improvements and additions to the drainage systems in the basin, expanding urbanization, new highways, and other cultural changes may influence the inundation pattern of future floods.The preparation of this flood inundation map was financed through a cooperative agreement between Clinton Township, Macomb County, Mich., and the U.S. Geological Survey.Backwater curves used to define the profile for a hypothetical flood on the Clinton River downstream from Moravian Drive, equivalent in discharge to the 1947 flood, but occurring with the present Cut-Off Canal in operation; flood stage established at the gaging station on Clinton River at Mount Clemens; and supplementary floodmark elevations were furnished by the Corps of Engineers.Bench-mark elevations and field survey data, used in the analysis of floods on Harrington Drain, were furnished by the Macomb County Drain Commission.

  2. Identifying Populace Susceptible to Flooding Using ArcGIS and Remote Sensing Datasets

    NASA Astrophysics Data System (ADS)

    Fernandez, Sim Joseph; Milano, Alan

    2016-07-01

    Remote sensing technologies are growing vastly as with its various applications. The Department of Science and Technology (DOST), Republic of the Philippines, has made projects exploiting LiDAR datasets from remote sensing technologies. The Phil-LiDAR 1 project of DOST is a flood hazard mapping project. Among the project's objectives is the identification of building features which can be associated to the flood-exposed population. The extraction of building features from the LiDAR dataset is arduous as it requires manual identification of building features on an elevation map. The mapping of building footprints is made meticulous in order to compensate the accuracy between building floor area and building height both of which are crucial in flood decision making. A building identification method was developed to generate a LiDAR derivative which will serve as a guide in mapping building footprints. The method utilizes several tools of a Geographic Information System (GIS) software called ArcGIS which can operate on physical attributes of buildings such as roofing curvature, slope and blueprint area in order to obtain the LiDAR derivative from LiDAR dataset. The method also uses an intermediary process called building removal process wherein buildings and other features lying below the defined minimum building height - 2 meters in the case of Phil-LiDAR 1 project - are removed. The building identification method was developed in the hope to hasten the identification of building features especially when orthophotographs and/or satellite imageries are not made available.

  3. KULTURisk regional risk assessment methodology for water-related natural hazards - Part 2: Application to the Zurich case study

    NASA Astrophysics Data System (ADS)

    Ronco, P.; Bullo, M.; Torresan, S.; Critto, A.; Olschewski, R.; Zappa, M.; Marcomini, A.

    2015-03-01

    The aim of this paper is the application of the KULTURisk regional risk assessment (KR-RRA) methodology, presented in the companion paper (Part 1, Ronco et al., 2014), to the Sihl River basin, in northern Switzerland. Flood-related risks have been assessed for different receptors lying on the Sihl River valley including Zurich, which represents a typical case of river flooding in an urban area, by calibrating the methodology to the site-specific context and features. Risk maps and statistics have been developed using a 300-year return period scenario for six relevant targets exposed to flood risk: people; economic activities: buildings, infrastructure and agriculture; natural and semi-natural systems; and cultural heritage. Finally, the total risk index map has been produced to visualize the spatial pattern of flood risk within the target area and, therefore, to identify and rank areas and hotspots at risk by means of multi-criteria decision analysis (MCDA) tools. Through a tailored participatory approach, risk maps supplement the consideration of technical experts with the (essential) point of view of relevant stakeholders for the appraisal of the specific scores weighting for the different receptor-relative risks. The total risk maps obtained for the Sihl River case study are associated with the lower classes of risk. In general, higher (relative) risk scores are spatially concentrated in the deeply urbanized city centre and areas that lie just above to river course. Here, predicted injuries and potential fatalities are mainly due to high population density and to the presence of vulnerable people; flooded buildings are mainly classified as continuous and discontinuous urban fabric; flooded roads, pathways and railways, most of them in regards to the Zurich central station (Hauptbahnhof) are at high risk of inundation, causing severe indirect damage. Moreover, the risk pattern for agriculture, natural and semi-natural systems and cultural heritage is relatively less important mainly because the scattered presence of these assets. Finally, the application of the KR-RRA methodology to the Sihl River case study, as well as to several other sites across Europe (not presented here), has demonstrated its flexibility and the possible adaptation of it to different geographical and socioeconomic contexts, depending on data availability and particulars of the sites, and for other (hazard) scenarios.

  4. 76 FR 50915 - Changes in Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-17

    ... indicated on the following table and revise the Flood Insurance Rate Maps (FIRMs) in effect for the listed... Rock, CO 80104. Delaware: Sussex, (FEMA Docket Unincorporated areas June 16, 2010; June The Honorable... 480076 1162). 06-1185P). August 16, 2010; Martin, Mayor, City of The Alvin Sun. Manvel, P.O. Box 187...

  5. 28 CFR 63.7 - Determination of location.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION PROCEDURES § 63.7 Determination of location. (a) In order to determine whether an action is... FIA Flood Hazard Boundary Map (FHBM); or (3) If data on flood elevations, floodways, or coastal high... to (i) Locate the site and the limits of the coastal high hazard area, floodway and of the applicable...

  6. 28 CFR 63.7 - Determination of location.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION PROCEDURES § 63.7 Determination of location. (a) In order to determine whether an action is... FIA Flood Hazard Boundary Map (FHBM); or (3) If data on flood elevations, floodways, or coastal high... to (i) Locate the site and the limits of the coastal high hazard area, floodway and of the applicable...

  7. 28 CFR 63.7 - Determination of location.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION PROCEDURES § 63.7 Determination of location. (a) In order to determine whether an action is... FIA Flood Hazard Boundary Map (FHBM); or (3) If data on flood elevations, floodways, or coastal high... to (i) Locate the site and the limits of the coastal high hazard area, floodway and of the applicable...

  8. 28 CFR 63.7 - Determination of location.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION PROCEDURES § 63.7 Determination of location. (a) In order to determine whether an action is... FIA Flood Hazard Boundary Map (FHBM); or (3) If data on flood elevations, floodways, or coastal high... to (i) Locate the site and the limits of the coastal high hazard area, floodway and of the applicable...

  9. 28 CFR 63.7 - Determination of location.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION PROCEDURES § 63.7 Determination of location. (a) In order to determine whether an action is... FIA Flood Hazard Boundary Map (FHBM); or (3) If data on flood elevations, floodways, or coastal high... to (i) Locate the site and the limits of the coastal high hazard area, floodway and of the applicable...

  10. Flood-inundation maps for the White River at Noblesville, Indiana

    USGS Publications Warehouse

    Martin, Zachary W.

    2017-11-02

    Digital flood-inundation maps for a 7.5-mile reach of the White River at Noblesville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the White River at Noblesville, Ind., streamgage (USGS station number 03349000). Real-time stages at this streamgage may be obtained from the USGS National Water Information System at https://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at the same site as the USGS streamgage (NWS site NBLI3).Flood profiles were computed for the stream reach by means of a one-dimensional, step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current (2016) stage-discharge rating at the USGS streamgage 03349000, White River at Noblesville, Ind., and documented high-water marks from the floods of September 4, 2003, and May 6, 2017. The hydraulic model was then used to compute 15 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 10.0 ft (the NWS “action stage”) to 24.0 ft, which is the highest stage interval of the current (2016) USGS stage-discharge rating curve and 2 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability of these maps, along with internet information regarding current stage from the USGS streamgage and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for postflood recovery efforts.

  11. Flood inundation maps for the Wabash River at New Harmony, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2016-10-11

    Digital flood-inundation maps for a 3.68-mile reach of the Wabash River extending 1.77 miles upstream and 1.91 miles downstream from streamgage 03378500 at New Harmony, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Wabash River at New Harmony, Ind. (station 03378500). Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NHRI3).Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at the Wabash River at New Harmony, Ind., streamgage and the documented high-water marks from the flood of April 27–28, 2013. The calibrated hydraulic model was then used to compute 17 water-surface profiles for flood stages at approximately 1-foot intervals referenced to the streamgage datum and ranging from 10.0 feet, or near bankfull, to 25.4 feet, the highest stage of the stage-discharge rating curve used in the model. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging (lidar) data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) to delineate the area flooded at each water level.The availability of these maps along with Internet information regarding current stage from the USGS streamgage at Wabash River at New Harmony, Ind., and forecasted stream stages from the NWS will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  12. Preparation of a flood-risk environmental index: case study of eight townships in Changhua County, Taiwan.

    PubMed

    Peng, Szu-Hsien

    2018-02-26

    To evaluate flood-prone areas, correlation analysis of flooding factors for the quantitative evaluation of hazard degree was determined to assist in further disaster prevention management. This study used flood-prone areas in 35 villages over eight townships (Changhua, Huatan, Yuanlin, Xiushui, Puyan, Hemei, Dacun, and Erlin) in Changhua County as research samples. Linear combination was used to evaluate flood-prone environmental indices, and an expert questionnaire was designed by using the analytic hierarchy process and the Delphi method to determine the weights of factors. These factors were then used to calculate the eigenvector of a pairwise comparison matrix to obtain the weights for the risk assessment criteria. Through collection of disaster cases, with particular focus on specifically protected areas where flooding has occurred or is likely to occur, public adaptation and response capabilities were evaluated by using an interview questionnaire that contains the items of perceived disaster risk, resource acquisition capability, adaptation capability, and environment understanding and disaster prevention education. Overlays in a geographic information system were used to analyze the flood-risk degree in villages and to construct a distribution map that contains flood-prone environment indices. The results can assist local governments in understanding the risk degree of various administrative areas to aid them in developing effective mitigation plans.

  13. Duration and Frequency Analysis of Lowland Flooding in Western Murfreesboro, Rutherford County, Tennessee, 1998-2000

    USGS Publications Warehouse

    Law, George S.

    2002-01-01

    Periodic flooding occurs at lowlands and sinkholes in and adjacent to the flood plain of the West Fork Stones River in the western part of Murfreesboro, Tennessee. Flooding in this area commonly occurs during the winter months from December through March. The maximum water level that flood waters will reach in a lowland or sinkhole is controlled by the elevation of the land surrounding the site or the overflow outlet. Maximum water levels, independent of overflow from the river, were estimated to be reached in lowlands and sinkholes in the study area every 1 to 4 years. Minor overflow from the West Fork Stones River (less than 1 foot in depth) into the study area has been estimated to occur every 10 to 20 years. Moderate overflow from the river (1 to 2 feet in depth) occurs on average every 20 to 50 years, while major river overflow (in excess of 2 feet in depth) can be expected every 50 years. Rainfall information for the area, and streamflow and water-level measurements from the West Fork Stones River, lowlands, sinkholes, caves, and wells in the study area were used to develop a flood-prone area map, independent of overflow from the river, for the study area. Water-level duration and frequency relations, independent of overflow from the river, were estimated for several lowlands, sinkholes, and wells in the study area. These relations are used to characterize flooding in lowland areas of western Murfreesboro, Rutherford County, Tennessee.

  14. An assessment of the Height Above Nearest Drainage terrain descriptor for the thematic enhancement of automatic SAR-based flood monitoring services

    NASA Astrophysics Data System (ADS)

    Chow, Candace; Twele, André; Martinis, Sandro

    2016-10-01

    Flood extent maps derived from Synthetic Aperture Radar (SAR) data can communicate spatially-explicit information in a timely and cost-effective manner to support disaster management. Automated processing chains for SAR-based flood mapping have the potential to substantially reduce the critical time delay between the delivery of post-event satellite data and the subsequent provision of satellite derived crisis information to emergency management authorities. However, the accuracy of SAR-based flood mapping can vary drastically due to the prevalent land cover and topography of a given scene. While expert-based image interpretation with the consideration of contextual information can effectively isolate flood surface features, a fully-automated feature differentiation algorithm mainly based on the grey levels of a given pixel is comparatively more limited for features with similar SAR-backscattering characteristics. The inclusion of ancillary data in the automatic classification procedure can effectively reduce instances of misclassification. In this work, a near-global `Height Above Nearest Drainage' (HAND) index [10] was calculated with digital elevation data and drainage directions from the HydroSHEDS mapping project [2]. The index can be used to separate flood-prone regions from areas with a low probability of flood occurrence. Based on the HAND-index, an exclusion mask was computed to reduce water look-alikes with respect to the hydrologictopographic setting. The applicability of this near-global ancillary data set for the thematic improvement of Sentinel-1 and TerraSAR-X based services for flood and surface water monitoring has been validated both qualitatively and quantitatively. Application of a HAND-based exclusion mask resulted in improvements to the classification accuracy of SAR scenes with high amounts of water look-alikes and considerable elevation differences.

  15. Flood Inundation Modelling in the Kuantan River Basin using 1D-2D Flood Modeller coupled with ASTER-GDEM

    NASA Astrophysics Data System (ADS)

    Ng, Z. F.; Gisen, J. I.; Akbari, A.

    2018-03-01

    Topography dataset is an important input in performing flood inundation modelling. However, it is always difficult to obtain high resolution topography that provide accurate elevation information. Fortunately, there are some open source topography datasets available with reasonable resolution such as SRTM and ASTER-GDEM. In Malaysia particularly in Kuantan, the modelling research on the floodplain area is still lacking. This research aims to: a) to investigate the suitability of ASTER-GDEM to be applied in the 1D-2D flood inundation modelling for the Kuantan River Basin; b) to generate flood inundation map for Kuantan river basin. The topography dataset used in this study is ASTER-GDEM to generate physical characteristics of watershed in the basin. It is used to perform rainfall runoff modelling for hydrological studies and to delineate flood inundation area in the Flood Modeller. The results obtained have shown that a 30m resolution ASTER-GDEM is applicable as an input for the 1D-2D flood modelling. The simulated water level in 2013 has NSE of 0.644 and RSME of 1.259. As a conclusion, ASTER-GDEM can be used as one alternative topography datasets for flood inundation modelling. However, the flood level obtained from the hydraulic modelling shows low accuracy at flat urban areas.

  16. Improving Flood Risk Maps as a Capacity Building Activity: Fostering Public Participation and Raising Flood Risk Awareness in the German Mulde Region (project RISK MAP)

    NASA Astrophysics Data System (ADS)

    Luther, J.; Meyer, V.; Kuhlicke, C.; Scheuer, S.; Unnerstall, H.

    2012-04-01

    The EU Floods Directive requires the establishment of flood risk maps for high risk areas in all EU Member States by 2013. However, if existing at all, the current practice of risk mapping still shows some deficits: Risk maps are often seen as an information tool rather than a communication tool. This means that e.g. important local knowledge is not incorporated and forms a contrast to the understanding of capacity building which calls for engaging individuals in the process of learning and adapting to change and for the establishment of a more interactive public administration that learns equally from its actions and from the feedback it receives. Furthermore, the contents of risk maps often do not match the requirements of the end users, so that risk maps are often designed and visualised in a way which cannot be easily understood by laypersons and/or which is not suitable for the respective needs of public authorities in risk and flood event management. The project RISK MAP aimed at improving flood risk maps as a means to foster public participation and raising flood risk awareness. For achieving this aim, RISK MAP (1) developed rules for appropriate stakeholder participation enabling the incorporation of local knowledge and preferences; (2) improved the content of risk maps by considering different risk criteria through the use of a deliberative multicriteria risk mapping tool; and (3) improved the visualisation of risk maps in order to produce user-friendly risk maps by applying the experimental graphic semiology (EGS) method that uses the eye tracking approach. The research was carried out in five European case studies where the status quo of risk mapping and the legal framework was analysed, several stakeholder interviews and workshops were conducted, the visual perception of risk maps was tested and - based on this empirical work - exemplary improved risk maps were produced. The presentation and paper will outline the main findings of the project which ended in September 2011, focussing on the participatory aspects in one of the German case studies (the Mulde River in Saxony). In short, different map users such as strategic planners, emergency managers or the (affected) public require different maps, with varying information density and complexity. The purpose of participation may therefore have a substantive rationale (i.e. improving the content, including local knowledge) or a more instrumental rationale (i.e. building trust, raising awareness, increasing legitimacy). The degree to which both rationales are accommodated depends on the project objectives and determines the participants and process type. In the Mulde case study, both the process of collaborating with each other and considering the (local) knowledge and different experiences as well as the results were highly appreciated. Hazard and risk maps are thus not an end-product that could be complemented e.g. by emergency management information on existing or planned defences, evacuation routes, assembly points, but they should be embedded into a participatory maintenance/updating framework. Map visualisation could be enhanced by using more common and/or self-explanatory symbols, text and a limited number of colour grades for hazard and risk information. Keywords: Flood mapping, hazard and risk maps, participation, risk communication, flood risk awareness, emergency management

  17. The potential of crowdsourcing and mobile technology to support flood disaster risk reduction

    NASA Astrophysics Data System (ADS)

    See, Linda; McCallum, Ian; Liu, Wei; Mechler, Reinhard; Keating, Adriana; Hochrainer-Stigler, Stefan; Mochizuki, Junko; Fritz, Steffen; Dugar, Sumit; Arestegui, Michael; Szoenyi, Michael; Laso-Bayas, Juan-Carlos; Burek, Peter; French, Adam; Moorthy, Inian

    2016-04-01

    The last decade has seen a rise in citizen science and crowdsourcing for carrying out a variety of tasks across a number of different fields, most notably the collection of data such as the identification of species (e.g. eBird and iNaturalist) and the classification of images (e.g. Galaxy Zoo and Geo-Wiki). Combining human computing with the proliferation of mobile technology has resulted in vast amounts of geo-located data that have considerable value across multiple domains including flood disaster risk reduction. Crowdsourcing technologies, in the form of online mapping, are now being utilized to great effect in post-disaster mapping and relief efforts, e.g. the activities of Humanitarian OpenStreetMap, complementing official channels of relief (e.g. Haiti, Nepal and New York). Disaster event monitoring efforts have been further complemented with the use of social media (e.g. twitter for earthquakes, flood monitoring, and fire detection). Much of the activity in this area has focused on ex-post emergency management while there is considerable potential for utilizing crowdsourcing and mobile technology for vulnerability assessment, early warning and to bolster resilience to flood events. This paper examines the use of crowdsourcing and mobile technology for measuring and monitoring flood hazards, exposure to floods, and vulnerability, drawing upon examples from the literature and ongoing projects on flooding and food security at IIASA.

  18. Global river flood hazard maps: hydraulic modelling methods and appropriate uses

    NASA Astrophysics Data System (ADS)

    Townend, Samuel; Smith, Helen; Molloy, James

    2014-05-01

    Flood hazard is not well understood or documented in many parts of the world. Consequently, the (re-)insurance sector now needs to better understand where the potential for considerable river flooding aligns with significant exposure. For example, international manufacturing companies are often attracted to countries with emerging economies, meaning that events such as the 2011 Thailand floods have resulted in many multinational businesses with assets in these regions incurring large, unexpected losses. This contribution addresses and critically evaluates the hydraulic methods employed to develop a consistent global scale set of river flood hazard maps, used to fill the knowledge gap outlined above. The basis of the modelling approach is an innovative, bespoke 1D/2D hydraulic model (RFlow) which has been used to model a global river network of over 5.3 million kilometres. Estimated flood peaks at each of these model nodes are determined using an empirically based rainfall-runoff approach linking design rainfall to design river flood magnitudes. The hydraulic model is used to determine extents and depths of floodplain inundation following river bank overflow. From this, deterministic flood hazard maps are calculated for several design return periods between 20-years and 1,500-years. Firstly, we will discuss the rationale behind the appropriate hydraulic modelling methods and inputs chosen to produce a consistent global scaled river flood hazard map. This will highlight how a model designed to work with global datasets can be more favourable for hydraulic modelling at the global scale and why using innovative techniques customised for broad scale use are preferable to modifying existing hydraulic models. Similarly, the advantages and disadvantages of both 1D and 2D modelling will be explored and balanced against the time, computer and human resources available, particularly when using a Digital Surface Model at 30m resolution. Finally, we will suggest some appropriate uses of global scale hazard maps and explore how this new approach can be invaluable in areas of the world where flood hazard and risk have not previously been assessed.

  19. Changes of paddy rice planting areas in Northeastern Asia from 1986 to 2014 based on Landsat data

    NASA Astrophysics Data System (ADS)

    Dong, J.; Xiao, X.; Kou, W.; Qin, Y.; Wang, J.; Zhang, G.; Jin, C.; Zhou, Y.; Menarguez, M. A.; Moore, B., III

    2014-12-01

    Paddy rice is an important cereal crop and main grain source for more than half of the global human population. However, knowledge about its area and spatial pattern is still limited due to large changes in agriculture in different regions; for example, higher latitude areas underwent increase (e.g., northeastern China) and decrease (e.g., South Korea) of paddy rice planting areas due to climatic warming, urbanization and other drivers. It is necessary to track paddy rice planting area changes in these regions in the past decades. We developed a pixel- and phenology-based image analysis system, Landsat-RICE, to map the paddy rice by using Landsat imagery. The algorithm was based on the unique physical and spectral characteristics of paddy rice fields during the flooding and transplanting phases. First, Landsat images are preprocessed and time series vegetation indices (NDVI, EVI, and LSWI) are generated. Second, MODIS Land Surface Temperature (LST) data were used to define thermal plant growing season (0 oC, 5 oC and 10 oC), which provides a guide for selection of Landsat images within the period of flooding and transplanting. Third, several non-cropland land cover maps (e.g., permanent water bodies, built-up and barren lands, sparsely vegetated lands, and evergreen vegetation) are produced through analysis of Landsat-based vegetation indices within the plant growing season and combined as a mask. Fourthly, vegetation index data within the time window of flooded and rice transplanting were analyzed to identify flood/transplanting signals. Finally, the maps of paddy rice planting areas were generated through overlying the results from Step 3 and 4. Paddy rice planting area changes were investigated in some hotspots of Northeastern Asia from 1986 to 2014 at 30-m spatial resolution and 5-year interval. This study has demonstrated that our newly developed Landsat-Rice system is robust and effective for tracking paddy rice changes in cold temperate and temperate zones.

  20. Quantifying changes in flooding and habitats in the Tonle Sap Lake (Cambodia) caused by water infrastructure development and climate change in the Mekong Basin.

    PubMed

    Arias, Mauricio E; Cochrane, Thomas A; Piman, Thanapon; Kummu, Matti; Caruso, Brian S; Killeen, Timothy J

    2012-12-15

    The economic value of the Tonle Sap Lake Floodplain to Cambodia is arguably among the highest provided to a nation by a single ecosystem around the world. Nonetheless, the Mekong River Basin is changing rapidly due to accelerating water infrastructure development (hydropower, irrigation, flood control, and water supply) and climate change, bringing considerable modifications to the flood pulse of the Tonle Sap Lake in the foreseeable future. This paper presents research conducted to determine how the historical flooding regime, together with human action, influenced landscape patterns of habitats in the Tonle Sap Lake, and how these habitats might shift as a result of hydrological changes. Maps of water depth, annual flood duration, and flood frequency were created for recent historical hydrological conditions and for simulated future scenarios of water infrastructure development and climate change. Relationships were then established between the historical flood maps and land cover, and these were subsequently applied to assess potential changes to habitat cover in future decades. Five habitat groups were clearly distinguishable based on flood regime, physiognomic patterns, and human activity: (1) Open water, flooded for 12 months in an average hydrological year; (2) Gallery forest, with flood duration of 9 months annually; (3) Seasonally flooded habitats, flooded 5-8 months and dominated by shrublands and grasslands; (4) transitional habitats, flooded 1-5 months and dominated by abandoned agricultural fields, receding rice/floating rice, and lowland grasslands; and (5) Rainfed habitats, flooded up to 1 month and consisting mainly of wet season rice fields and village crops. It was found that water infrastructure development could increase the area of open water (+18 to +21%) and the area of rainfed habitats (+10 to +14%), while reducing the area covered with seasonally flooded habitats (-13 to -22%) and gallery forest (-75 to -83%). Habitat cover shifts as a result of climate change include a net increase of open water (2-21%), as well as a reduction of rainfed habitats by 2-5% and seasonally flooded habitats by 5-11%. Findings from this study will help guide on-going and future conservation and restoration efforts throughout this unique and critical ecosystem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. A methodology for the assessment of flood hazards at the regional scale

    NASA Astrophysics Data System (ADS)

    Gallina, Valentina; Torresan, Silvia; Critto, Andrea; Zabeo, Alex; Semenzin, Elena; Marcomini, Antonio

    2013-04-01

    In recent years, the frequency of water-related disasters has increased and recent flood events in Europe (e.g. 2002 in Central Europe, 2007 in UK, 2010 in Italy) caused physical-environmental and socio-economic damages. Specifically, floods are the most threatening water-related disaster that affects humans, their lives and properties. Within the KULTURisk project (FP7) a Regional Risk Assessment (RRA) methodology is proposed to evaluate the benefits of risk prevention in terms of reduced environmental risks due to floods. The method is based on the KULTURisk framework and allows the identification and prioritization of targets (i.e. people, buildings, infrastructures, agriculture, natural and semi-natural systems, cultural heritages) and areas at risk from floods in the considered region by comparing the baseline scenario (i.e. current state) with alternative scenarios (i.e. where different structural and/or non-structural measures are planned). The RRA methodology is flexible and can be adapted to different case studies (i.e. large rivers, alpine/mountain catchments, urban areas and coastal areas) and spatial scales (i.e. from the large river to the urban scale). The final aim of RRA is to help decision-makers in examining the possible environmental risks associated with uncertain future flood hazards and in identifying which prevention scenario could be the most suitable one. The RRA methodology employs Multi-Criteria Decision Analysis (MCDA functions) in order to integrate stakeholder preferences and experts judgments into the analysis. Moreover, Geographic Information Systems (GISs) are used to manage, process, analyze, and map data to facilitate the analysis and the information sharing with different experts and stakeholders. In order to characterize flood risks, the proposed methodology integrates the output of hydrodynamic models with the analysis of site-specific bio-geophysical and socio-economic indicators (e.g. slope of the territory, land cover, population density, economic activities) of several case studies in order to develop risk maps that identify and prioritize relative hot-spot areas and targets at risk at the regional scale. The main outputs of the RRA are receptor-based maps of risks useful to communicate the potential implications of floods in non-monetary terms to stakeholders and administrations. These maps can be a basis for the management of flood risks as they can provide information about the indicative number of inhabitants, the type of economic activities, natural systems and cultural heritages potentially affected by flooding. Moreover, they can provide suitable information about flood risk in the considered area in order to define priorities for prevention measures, for land use planning and management. Finally, the outputs of the RRA methodology can be used as data input in the Socio- Economic Regional Risk Assessment methodology for the economic evaluation of different damages (e.g. tangible costs, intangible costs) and for the social assessment considering the benefits of the human dimension of vulnerability (i.e. adaptive and coping capacity). Within the KULTURisk project, the methodology has been applied and validated in several European case studies. Moreover, its generalization to address other types of natural hazards (e.g. earthquakes, forest fires) will be evaluated. The preliminary results of the RRA application in the KULTURisk project will be here presented and discussed.

  2. Utilizing NASA Earth Observations to Assess Landslide Characteristics and Devlelop Susceptibility and Exposure Maps in Malawi

    NASA Astrophysics Data System (ADS)

    Klug, M.; Cissell, J.; Grossman, M.

    2017-12-01

    Malawi has become increasingly prone to landslides in the past few decades. This can be attributed to the terrain, types of soil and vegetation, increased human interference, and heavy flooding after long periods of drought. In addition to the floods and droughts, landslides cause extra stress to farmlands, thus exacerbating the current food security crisis in the country. It can be difficult to pinpoint just how many people are affected by landslides in Malawi because landslides often occur in rural areas or are grouped with other disasters, such as floods or earthquakes. This project created a Landslide Susceptibility Map to assess landslide-prone areas in Malawi using variables such as slope, distance to roads, distance to streams, soil type, and precipitation. These variables were derived using imagery from Landsat 8 Operational Land Imager (OLI), Shuttle Radar Topography Mission Version 3 (SRTM-v3), Global Precipitation Measurement (GPM), and Tropical Rainfall Measuring Mission (TRMM) satellites. Furthermore, this project created a Landslide Exposure Map to estimate how much of the local population lives in susceptible areas by intersecting population data with the Landslide Susceptibility Map. Additionally, an assessment of GPM and TRMM precipitation measurements was generated to better understand the reliability of both measurements for landslide monitoring. Finally, this project updated NASA SERVIR's Global Landslide Catalog (GLC) for Malawi by using WorldView data from Google Earth and Landsat 8 OLI. These end products were used by NASA SERVIR and the Regional Centre for Mapping of Resources for Development (RCMRD) for aiding in disaster management throughout Malawi.

  3. Validation of a 30m resolution flood hazard model of the conterminous United States

    NASA Astrophysics Data System (ADS)

    Sampson, C. C.; Wing, O.; Smith, A.; Bates, P. D.; Neal, J. C.

    2017-12-01

    We present a 30m resolution two-dimensional hydrodynamic model of the entire conterminous US that has been used to simulate continent-wide flood extent for ten return periods. The model uses a highly efficient numerical solution of the shallow water equations to simulate fluvial flooding in catchments down to 50 km2 and pluvial flooding in all catchments. We use the US National Elevation Dataset (NED) to determine topography for the model and the US Army Corps of Engineers National Levee Dataset to explicitly represent known flood defences. Return period flows and rainfall intensities are estimated using regionalized frequency analyses. We validate these simulations against the complete catalogue of Federal Emergency Management Agency (FEMA) Special Flood Hazard Area maps. We also compare the results obtained from the NED-based continental model with results from a 90m resolution global hydraulic model built using SRTM terrain and identical boundary conditions. Where the FEMA Special Flood Hazard Areas are based on high quality local models the NED-based continental scale model attains a Hit Rate of 86% and a Critical Success Index (CSI) of 0.59; both are typical of scores achieved when comparing high quality reach-scale models to observed event data. The NED model also consistently outperformed the coarser SRTM model. The correspondence between the continental model and FEMA improves in temperate areas and for basins above 400 km2. Given typical hydraulic modeling uncertainties in the FEMA maps, it is probable that the continental-scale model can replicate them to within error. The continental model covers the entire continental US, compared to only 61% for FEMA, and also maps flooding in smaller watersheds not included in the FEMA coverage. The simulations were performed using computing hardware costing less than 100k, whereas the FEMA flood layers are built from thousands of individual local studies that took several decades to develop at an estimated cost (up to 2013) of 4.5 - $7.5bn. The continental model is relatively straightforward to modify and could be re-run under different scenarios, such as climate change. The results show that continental-scale models may now offer sufficient rigor to inform some decision-making needs with far lower cost and greater coverage than traditional patchwork approaches.

  4. Flood risk assessment and mapping for the Lebanese watersheds

    NASA Astrophysics Data System (ADS)

    Abdallah, Chadi; Hdeib, Rouya

    2016-04-01

    Of all natural disasters, floods affect the greatest number of people worldwide and have the greatest potential to cause damage. Nowadays, with the emerging global warming phenomenon, this number is expected to increase. The Eastern Mediterranean area, including Lebanon (10452 Km2, 4.5 M habitant), has witnessed in the past few decades an increase frequency of flooding events. This study profoundly assess the flood risk over Lebanon covering all the 17 major watersheds and a number of small sub-catchments. It evaluate the physical direct tangible damages caused by floods. The risk assessment and evaluation process was carried out over three stages; i) Evaluating Assets at Risk, where the areas and assets vulnerable to flooding are identified, ii) Vulnerability Assessment, where the causes of vulnerability are assessed and the value of the assets are provided, iii) Risk Assessment, where damage functions are established and the consequent damages of flooding are estimated. A detailed Land CoverUse map was prepared at a scale of 1/ 1 000 using 0.4 m resolution satellite images within the flood hazard zones. The detailed field verification enabled to allocate and characterize all elements at risk, identify hotspots, interview local witnesses, and to correlate and calibrate previous flood damages with the utilized models. All filed gathered information was collected through Mobile Application and transformed to be standardized and classified under GIS environment. Consequently; the general damage evaluation and risk maps at different flood recurrence periods (10, 50, 100 years) were established. Major results showed that floods in a winter season (December, January, and February) of 10 year recurrence and of water retention ranging from 1 to 3 days can cause total damages (losses) that reach 1.14 M for crop lands and 2.30 M for green houses. Whereas, it may cause 0.2 M to losses in fruit trees for a flood retention ranging from 3 to 5 days. These numbers differs according to the flooding season, cultivation type and the agro-climatic zone. The flood damage equivalence to constructions summed up to reach 32 M for residential structures, 29 M for non-residential structures, and 5 M for the Syrian refugees tents, while structures' content losses were estimated at 27M, 54M, 7 M respectively for the same flood frequency. The total length of affected road networks during flooding is 1589km with an estimated cost of 565M. The total number of affected population reached 82,000 while the number of effected vehicles is 62,000 for a 50year recurrence period

  5. Floods of June 24-25, 1966 in southwest-central North Dakota

    USGS Publications Warehouse

    Crosby, Orlo A.

    1966-01-01

    A severe thunderstorm accompanied by much hail swept through southwest-central North Dakota on the afternoon of June 24.  Rainfall of up to 13 inches caused floods higher than any previously known in the area.  The isohyetal map (fig. 1) indicates the extent and magnitude of the storm. This map was derived from rainfall data at 20 U.S. Weather Bureau gages (4 recording), 26 Geological Survey gages (5 recording) and 124 sites located in a bucket survey made by the Geological Survey (table 1).

  6. Investigation of Flood Risk Assessment in Inaccessible Regions using Multiple Remote Sensing and Geographic Information Systems

    NASA Astrophysics Data System (ADS)

    Lim, J.; Lee, K. S.

    2017-12-01

    Flooding is extremely dangerous when a river overflows to inundate an urban area. From 1995 to 2016, North Korea (NK) experienced annual extensive damage to life and property almost each year due to a levee breach resulting from typhoons and heavy rainfall during the summer monsoon season. Recently, Hoeryeong City (2016) experienced heavy rainfall during typhoon Lionrock and the resulting flood killed and injured many people (68,900) and destroyed numerous buildings and settlements (11,600). The NK state media described it as the biggest national disaster since 1945. Thus, almost all annual repeat occurrences of floods in NK have had a serious impact, which makes it necessary to figure out the extent of floods in restoring the damaged environment. In addition, traditional hydrological model is impractical to delineate Flood Damaged Areas (FDAs) in NK due to the inaccessibility. Under such a situation, multiple optical Remote Sensing (RS) and radar RS along with a Geographic Information System (GIS)-based spatial analysis were utilized in this study (1) to develop modelling FDA delineation using multiple RS and GIS methods and (2) to conduct flood risk assessment in NK. Interpreting high-resolution web-based satellite imagery were also implemented to confirm the results of the study. From the study result, it was found that (1) on August 30th, 2016, an area of 117.2 km2 (8.6%) at Hoeryeong City was inundated. Most floods occurred in flat areas with a lower and middle stream order. (2) In the binary logistic regression model applied in this study, the distance from the nearest stream map and landform map variables are important factors to delineate FDAs because these two factors reflect heterogeneous mountainous NK topography. (3) Total annual flood risk of study area is estimated to be ₩454.13 million NKW ($504,417.24 USD, and ₩576.53 million SKW). The risk of the confluence of the Tumen River and Hoeryeong stream appears to be the highest. (4) High resolution satellite images can be used to confirm study results as ground truth data in this study, which shows the possibility of further application in environmental research of NK. Ultimately, this study provides recommendations to improve flood risk management in NK upon reunification.

  7. Flood Discharge Analysis with Nakayasu Method Using Combination of HEC-RAS Method on Deli River in Medan City

    NASA Astrophysics Data System (ADS)

    Harahap, Rumilla; Jeumpa, Kemala; Hadibroto, Bambang

    2018-03-01

    The problem in this research is how in the rainy season the water does not overflow, does not occur flood and during the dry season does not occur drought so it can adjust the condition or existence of Deli river which is around Medan city. Deli River floods often occur, either caused by a smaller capacity than the existing discharge, lack of maintenance and drainage and disposal systems that do not fit with the environment, resulting in flood subscriptions every year. The purpose of this research is to know flood discharge at Deli river as Flood control in Medan city. This research is analyzed on several methods such as log Pearson, Gumbel and hydrograph unit, while HEC-RAS method is modeling conducted in analyzing the water profile of the Deli River. Furthermore, the calculation of the periodic flood discharge using the Nakayasu Method. Calculation result at Deli River return period flood discharge 2 years with an area of 14.8 km2 annual flood hydrograph the total is 26.79 m3/sec on the hours at the 4th time. Return period flood discharge 5 years with an area of 14.8 km2 annual flood hydrograph the total is 73,44 m3/sec. While 25 annual return period total flood hydrograph is 146.50 m3/sec. With flood analysis can reduce and minimize the risk of losses and land can be mapped if in the area there is flooding.

  8. Hydrological applications of Landsat imagery used in the study of the 1973 Indus River flood, Pakistan

    USGS Publications Warehouse

    Deutsch, Morris; Ruggles, F.H.

    1978-01-01

    During August and September 1973, the Indus River Valley of Pakistan experienced one of the largest floods on record, resulting in damages to homes, businesses, public works, and crops amounting to millions of rupees. Tremendous areas of lowlands were inundated along the Indus River and major tributaries. Landsat data made it possible to easily measure the extent of flooding, totaling about 20,000 km2 within an area of about 400,000 km2 south from the Punjab to the Arabian Sea.The Indus River data were used to continue experimentation in the development of rapid, accurate, and inexpensive optical techniques of flood mapping by satellite begun in 1973 for the Mississipi River floods. The research work on the Indus River not resulted in the development of more effective procedures for optical processing of flood data and synoptically depicting flooding, but also provided potentially valuable ancillary information concerning the hydrology of much of the Indus River Basin.

  9. Flood-inundation maps for Cedar Creek at 18th Street at Auburn, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2018-02-27

    Digital flood-inundation maps for a 1.9-mile reach of Cedar Creek at Auburn, Indiana (Ind.), from the First Street bridge, downstream to the streamgage at 18th Street, then ending approximately 1,100 feet (ft) downstream of the Baltimore and Ohio railroad, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science web site at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on Cedar Creek at 18th Street at Auburn, Ind. (station number 04179520). Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at https://waterdata.usgs.gov/ or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, although forecasts of flood hydrographs are not available at this site (ABBI3).Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at the Cedar Creek at 18th Street at Auburn, Ind. streamgage and the documented high-water marks from the flood of March 11, 2009. The calibrated hydraulic model was then used to compute seven water-surface profiles for flood stages referenced to the streamgage datum and ranging from 7 ft, or near bankfull, to 13 ft, in 1-foot increments. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging [lidar] data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) to delineate the area flooded at each water level.The availability of these maps, along with internet information regarding current stage from the USGS streamgage at Cedar Creek at 18th Street at Auburn, Ind., and stream information from the National Weather Service, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for postflood recovery efforts.

  10. Mesh versus bathtub - effects of flood models on exposure analysis in Switzerland

    NASA Astrophysics Data System (ADS)

    Röthlisberger, Veronika; Zischg, Andreas; Keiler, Margreth

    2016-04-01

    In Switzerland, mainly two types of maps that indicate potential flood zones are available for flood exposure analyses: 1) Aquaprotect, a nationwide overview provided by the Federal Office for the Environment and 2) communal flood hazard maps available from the 26 cantons. The model used to produce Aquaprotect can be described as a bathtub approach or linear superposition method with three main parameters, namely the horizontal and vertical distance of a point to water features and the size of the river sub-basin. Whereas the determination of flood zones in Aquaprotect is based on a uniform, nationwide model, the communal flood hazard maps are less homogenous, as they have been elaborated either at communal or cantonal levels. Yet their basic content (i.e. indication of potential flood zones for three recurrence periods, with differentiation of at least three inundation depths) is described in national directives and the vast majority of communal flood hazard maps are based on 2D inundation simulations using meshes. Apart from the methodical differences between Aquaprotect and the communal flood hazard maps (and among different communal flood hazard maps), all of these maps include a layer with a similar recurrence period (i.e. Aquaprotect 250 years, flood hazard maps 300 years) beyond the intended protection level of installed structural systems. In our study, we compare the resulting exposure by overlaying the two types of flood maps with a complete, harmonized, and nationwide dataset of building polygons. We assess the different exposure at the national level, and also consider differences among the 26 cantons and the six biogeographically unique regions, respectively. It was observed that while the nationwide exposure rates for both types of flood maps are similar, the differences within certain cantons and biogeographical regions are remarkable. We conclude that flood maps based on bathtub models are appropriate for assessments at national levels, while maps based on 2D simulations are preferable at sub-national levels.

  11. Quantifying the Influence of Urbanization on a Coastal Floodplain

    NASA Astrophysics Data System (ADS)

    Sebastian, A.; Juan, A.; Bedient, P. B.

    2016-12-01

    The U.S. Gulf Coast is the fastest growing region in the United States; between 1960 and 2010, the number of housing units along the Gulf of Mexico increased by 246%, vastly outpacing growth in other parts of the country (NOAA 2013). Numerous studies have shown that increases in impervious surface associated with urbanization reduce infiltration and increase surface runoff. While empirical evidence suggests that changes in land use are leading to increased flood damage in overland areas, earlier studies have largely focused on the impacts of urbanization on surface runoff and watershed hydrology, rather than quantifying its influence on the spatial extent of flooding. In this study, we conduct a longitudinal assessment of the evolution of flood risk since 1970 in an urbanizing coastal watershed. Utilizing the distributed hydrologic model, Vflo®, in combination with the hydraulic model, HEC-RAS, we quantify the impact of localized land use/land cover (LULC) change on the spatial extent of flooding in the watershed and the underlying flood hazard structure. The results demonstrate that increases in impervious cover between 1970 and 2010 (34%) and 2010 and 2040 (18%) increase the size of the floodplain by 26 and 17%, respectively. Furthermore, the results indicate that the depth and frequency of flooding in neighborhoods within the 1% floodplain have increased substantially (see attached figure). Finally, this analysis provides evidence that outdated FEMA floodplain maps could be underestimating the extent of the floodplain by upwards of 25%, depending on the rate of urbanization in the watershed; and, that by incorporating physics-based distributed hydrologic models into floodplain studies, floodplain maps can be easily updated to reflect the most recent LULC information available. The methods presented in this study have important implications for the development of mitigation strategies in coastal areas, such as deterring future development in flood prone areas and directing flood mitigation efforts in already flood prone communities. ReferencesNational Oceanic and Atmospheric Administration (NOAA). (2013). National Coastal Population Report: Population Trends from 1970 to 2020.

  12. Water Induced Hazard Mapping in Nepal: A Case Study of East Rapti River Basin

    NASA Astrophysics Data System (ADS)

    Neupane, N.

    2010-12-01

    This paper presents illustration on typical water induced hazard mapping of East Rapti River Basin under the DWIDP, GON. The basin covers an area of 2398 sq km. The methodology includes making of base map of water induced disaster in the basin. Landslide hazard maps were prepared by SINMAP approach. Debris flow hazard maps were prepared by considering geology, slope, and saturation. Flood hazard maps were prepared by using two approaches: HEC-RAS and Satellite Imagery Interpretation. The composite water-induced hazard maps were produced by compiling the hazards rendered by landslide, debris flow, and flood. The monsoon average rainfall in the basin is 1907 mm whereas maximum 24 hours precipitation is 456.8 mm. The peak discharge of the Rapati River in the year of 1993 at station was 1220 cu m/sec. This discharge nearly corresponds to the discharge of 100-year return period. The landslides, floods, and debris flows triggered by the heavy rain of July 1993 claimed 265 lives, affected 148516 people, and damaged 1500 houses in the basin. The field investigation and integrated GIS interpretation showed that the very high and high landslide hazard zones collectively cover 38.38% and debris flow hazard zone constitutes 6.58%. High flood hazard zone occupies 4.28% area of the watershed. Mitigation measures are recommendated according to Integrated Watershed Management Approach under which the non-structural and structural measures are proposed. The non-structural measures includes: disaster management training, formulation of evacuation system (arrangement of information plan about disaster), agriculture management practices, protection of water sources, slope protections and removal of excessive bed load from the river channel. Similarly, structural measures such as dike, spur, rehabilitation of existing preventive measures and river training at some locations are recommendated. The major factors that have contributed to induce high incidences of various types of mass movements and inundation in the basin are rock and soil properties, prolonged and high-intensity rainfall, steep topography and various anthropogenic factors.

  13. Geographic applications of ERTS-1 imagery to landscape change. [Mississippi River and Great Smoky Mountains of Tennessee and North Carolina

    NASA Technical Reports Server (NTRS)

    Rehder, J. B. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. ERTS-1 has proven to be an effective earth-orbiting monitor of landscape change. Its regional coverage for large areal monitoring has been effective for the detection and mapping of agricultural plowing regions, for general forest cover mapping, for flood mapping, for strip mine mapping, and for short-lived precipitation mapping patterns. Paramount to the entire study has been the temporal coverage provided by ERTS. Without the cyclic coverage on an 18 day basis, temporal coverage would have been inadequate for the detection and mapping of strip mining landscape change, the analysis of agricultural landscape change based on plowing patterns, the analysis of urban-suburban growth changes, and the mapping of the Mississippi River floods. Cost benefits from ERTS are unquestionably superior to aircraft systems in regard to large regional coverage and cyclic temporal parameters. For the analysis of landscape change in large regions such as statewide areas or even areas of 10,000 square miles, ERTS is of cost benefit consideration. Not only does the cost of imagery favor ERTS but the reduction of man-hours using ERTS has been in the magnitude of 1:10.

  14. 76 FR 39305 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified Franklin County... Level, rounded to the nearest 0.1 meter. ADDRESSES Unincorporated Areas of Franklin County Maps are....1 meter. ADDRESSES City of Spring Valley Maps are available for inspection at City Hall, 215 North...

  15. A study of atmospheric effects on pattern recognition devices. [Sacramento Valley, California

    NASA Technical Reports Server (NTRS)

    Thomson, F. J. (Principal Investigator); Sadowski, F. G.

    1975-01-01

    The author has identified the following significant results. ERTS-1 imagery can be applied in the broadscale assessment of forest resources as a supplement to aerial photography and field survey. There was no application to inventory of crop and pasture diseases mainly because of poor quality and low resolution, and unreliability of image acquisition. Inventory of soil erosion was satisfactory in humid eastern New South Wales, but not in semi-arid areas. Patterns of snow cover, areas of water in natural and artificial water bodies, extent of bushfires, and location of coastal mobile sand bodies were readily apparent. ERTS-1 imagery was judged to be a valuable addition to conventional techniques of regional small scale geological mapping. ERTS data was successfully used to map flooding and flood progression. The imagery was found suitable for mapping at 1:1,000,000 scale both on the mainland and in Antarctica, but did not meet accuracy specifications for 1:250,000 mapping.

  16. Heterogeneous Data Fusion Methods for Disaster Risk Assessment using Grid Infrastructure

    NASA Astrophysics Data System (ADS)

    Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii

    2014-05-01

    In recent years, a risk-oriented approach to manage disasters has been adopted. Risk is a function of two arguments: hazard probability and vulnerability [1]. In order to assess flood risk, for example, aggregation of heterogeneous data acquired from multiple sources is required. Outputs from hydrological and hydraulic models make it possible to predict floods; in situ observations such as river level and flows are used for early warning and models calibration. Remote sensing observations can be effectively used for rapid mapping in case of emergencies, and can be assimilated into models. One point that is mutual for all datasets is their geospatial nature. In order to enable operational assessment of disaster risk, appropriate technology is necessary. In this paper we discuss different strategies to heterogeneous data fusion and show their application in the domain of disaster monitoring and risk assessment. In particular, two case-studies are presented. The first one focuses on the use of time-series of satellite imagery to flood hazard mapping and flood risk assessment. Flooded areas are extracted from satellite images to generate a maximum flood extent image for each flood event. These maps are fused to determine relative frequency of inundation (RFI) [2]. The RFI values are compared to relative water depth generated from the LISFLOOD-FP model. The model is calibrated against the satellite-derived flood extent. The model with different combinations of Manning's parameters was run in the Grid environment at Space Research Institute NASU-SSAU [3], and the optimal set of parameters was found. It is shown that RFI and water depth exhibit the same probabilistic distribution which is confirmed by Kolmogorov-Smirnov test. Therefore, it justifies the use of RFI values for risk assessment. The second case-study deals with quantitative estimation of drought risk in Ukraine based on satellite data. Drought hazard mapping is performed based on the use of vegetation health index (VHI) derived from NOAA satellites, and the extreme value theory techniques. Drought vulnerability is assessed by estimating the crop areas and crop yield to quantify potential impact of a drought on crop production. Finally, drought hazard and vulnerability maps are fused to derive a drought risk map. [1] N.N. Kussul, B.V. Sokolov, Y.I. Zyelyk, V.A. Zelentsov, S.V. Skakun, and A.Yu. Shelestov, "Disaster Risk Assessment Based on Heterogeneous Geospatial Information," J. of Autom. and Inf. Sci., 42(12), pp. 32-45, 2010. [2] S. Skakun, N. Kussul, A. Shelestov, and O. Kussul, "Flood Hazard and Flood Risk Assessment Using a Time Series of Satellite Images: A Case Study in Namibia," Risk Analysis, 2013, doi: 10.1111/risa.12156. [3] L. Hluchy, N. Kussul, A. Shelestov, S. Skakun, O. Kravchenko, Y. Gripich, P. Kopp, E. Lupian, "The Data Fusion Grid Infrastructure: Project Objectives and Achievements," Computing and Informatics, vol. 29, no. 2, pp. 319-334, 2010.

  17. Flood-inundation maps and wetland restoration suitability index for the Blue River and selected tributaries, Kansas City, Missouri, and vicinity, 2012

    USGS Publications Warehouse

    Heimann, David C.; Kelly, Brian P.; Studley, Seth E.

    2015-01-01

    Additional information in this report includes maps of simulated stream velocity for an 8.2-mile, two-dimensional modeled reach of the Blue River and a Wetland Restoration Suitability Index (WRSI) generated for the study area that was based on hydrologic, topographic, and land-use digital feature layers. The calculated WRSI for the selected flood-plain area ranged from 1 (least suitable for possible wetland mitigation efforts) to 10 (most suitable for possible wetland mitigation efforts). A WRSI of 5 to 10 is most closely associated with existing riparian wetlands in the study area. The WRSI allows for the identification of lands along the Blue River and selected tributaries that are most suitable for restoration or creation of wetlands. Alternatively, the index can be used to identify and avoid disturbances to areas with the highest potential to support healthy sustainable riparian wetlands.

  18. Estimated Flood-Inundation Mapping for the Upper Blue River, Indian Creek, and Dyke Branch in Kansas City, Missouri, 2006-08

    USGS Publications Warehouse

    Kelly, Brian P.; Huizinga, Richard J.

    2008-01-01

    In the interest of improved public safety during flooding, the U.S. Geological Survey, in cooperation with the city of Kansas City, Missouri, completed a flood-inundation study of the Blue River in Kansas City, Missouri, from the U.S. Geological Survey streamflow gage at Kenneth Road to 63rd Street, of Indian Creek from the Kansas-Missouri border to its mouth, and of Dyke Branch from the Kansas-Missouri border to its mouth, to determine the estimated extent of flood inundation at selected flood stages on the Blue River, Indian Creek, and Dyke Branch. The results of this study spatially interpolate information provided by U.S. Geological Survey gages, Kansas City Automated Local Evaluation in Real Time gages, and the National Weather Service flood-peak prediction service that comprise the Blue River flood-alert system and are a valuable tool for public officials and residents to minimize flood deaths and damage in Kansas City. To provide public access to the information presented in this report, a World Wide Web site (http://mo.water.usgs.gov/indep/kelly/blueriver) was created that displays the results of two-dimensional modeling between Hickman Mills Drive and 63rd Street, estimated flood-inundation maps for 13 flood stages, the latest gage heights, and National Weather Service stage forecasts for each forecast location within the study area. The results of a previous study of flood inundation on the Blue River from 63rd Street to the mouth also are available. In addition the full text of this report, all tables and maps are available for download (http://pubs.usgs.gov/sir/2008/5068). Thirteen flood-inundation maps were produced at 2-foot intervals for water-surface elevations from 763.8 to 787.8 feet referenced to the Blue River at the 63rd Street Automated Local Evaluation in Real Time stream gage operated by the city of Kansas City, Missouri. Each map is associated with gages at Kenneth Road, Blue Ridge Boulevard, Kansas City (at Bannister Road), U.S. Highway 71, and 63rd Street on the Blue River, and at 103rd Street on Indian Creek. The National Weather Service issues peak stage forecasts for Blue Ridge Boulevard, Kansas City (at Bannister Road), U.S. Highway 71, and 63rd Street during floods. A two-dimensional depth-averaged flow model simulated flooding within a hydraulically complex, 5.6-mile study reach of the Blue River between Hickman Mills Drive and 63rd Street. Hydraulic simulation of the study reach provided information for the estimated flood-inundation maps and water-velocity magnitude and direction maps. Flood profiles of the upper Blue River between the U.S. Geological Survey streamflow gage at Kenneth Road and Hickman Mills Drive were developed from water-surface elevations calculated using Federal Emergency Management Agency flood-frequency discharges and 2006 stage-discharge ratings at U.S. Geological Survey streamflow gages. Flood profiles between Hickman Mills Drive and 63rd Street were developed from two-dimensional hydraulic modeling conducted for this study. Flood profiles of Indian Creek between the Kansas-Missouri border and the mouth were developed from water-surface elevations calculated using current stage-discharge ratings at the U.S. Geological Survey streamflow gage at 103rd Street, and water-surface slopes derived from Federal Emergency Management Agency flood-frequency stage-discharge relations. Mapped flood water-surface elevations at the mouth of Dyke Branch were set equal to the flood water-surface elevations of Indian Creek at the Dyke Branch mouth for all Indian Creek water-surface elevations; water-surface elevation slopes were derived from Federal Emergency Management Agency flood-frequency stage-discharge relations.

  19. Using risk-based analysis and geographic information systems to assess flooding problems in an urban watershed in Rhode Island.

    PubMed

    Hardmeyer, Kent; Spencer, Michael A

    2007-04-01

    This article provides an overview of the use of risk-based analysis (RBA) in flood damage assessment, and it illustrates the use of Geographic Information Systems (GIS) in identifying flood-prone areas, which can aid in flood-mitigation planning assistance. We use RBA to calculate expected annual flood damages in an urban watershed in the state of Rhode Island, USA. The method accounts for the uncertainty in the three primary relationships used in computing flood damage: (1) the probability that a given flood will produce a given amount of floodwater, (2) the probability that a given amount of floodwater will reach a certain stage or height, and (3) the probability that a certain stage of floodwater will produce a given amount of damage. A greater than 50% increase in expected annual flood damage is estimated for the future if previous development patterns continue and flood-mitigation measures are not taken. GIS is then used to create a map that shows where and how often floods might occur in the future, which can help (1) identify priority areas for flood-mitigation planning assistance and (2) disseminate information to public officials and other decision-makers.

  20. Flood hazard assessment in areas prone to flash flooding

    NASA Astrophysics Data System (ADS)

    Kvočka, Davor; Falconer, Roger A.; Bray, Michaela

    2016-04-01

    Contemporary climate projections suggest that there will be an increase in the occurrence of high-intensity rainfall events in the future. These precipitation extremes are usually the main cause for the emergence of extreme flooding, such as flash flooding. Flash floods are among the most unpredictable, violent and fatal natural hazards in the world. Furthermore, it is expected that flash flooding will occur even more frequently in the future due to more frequent development of extreme weather events, which will greatly increase the danger to people caused by flash flooding. This being the case, there will be a need for high resolution flood hazard maps in areas susceptible to flash flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by flash flooding. Two different types of flood hazard assessment methods were tested: (i) a widely used method based on an empirical analysis, and (ii) a new, physically based and experimentally calibrated method. Two flash flood events were considered herein, namely: the 2004 Boscastle flash flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas susceptible to extreme flooding, the flood hazard assessment should be conducted using methods based on a mechanics-based analysis. In comparison to standard flood hazard assessment methods, these physically based methods: (i) take into account all of the physical forces, which act on a human body in floodwater, (ii) successfully adapt to abrupt changes in the flow regime, which often occur for flash flood events, and (iii) rapidly assess a flood hazard index in a relatively short period of time.

  1. Hydraulic and hydrologic aspects of flood-plain planning

    USGS Publications Warehouse

    Wiitala, S.W.; Jetter, K.R.; Sommerville, Alan J.

    1961-01-01

    The valid incentives compelling occupation of the flood plain, up to and eve n into the stream channel, undoubtedly have contributed greatly to the development of the country. But the result has been a heritage of flood disaster, suffering, and enormous costs. Flood destruction awakened a consciousness toward reduction and elimination of flood hazards, originally manifested in the protection of existing developments. More recently, increased knowledge of the problem has shown the impracticability of permitting development that requires costly flood protect/on. The idea of flood zoning, or flood-plain planning, has received greater impetus as a result of this realization. This study shows how hydraulic and hydrologic data concerning the flood regimen of a stream can be used in appraising its flood potential and the risk inherent in occupation of its flood plain. The approach involves the study of flood magnitudes as recorded or computed; flood frequencies based1 on experience shown by many years of gaging-station record; use of existing or computed stagedischarge relations and flood profiles; and, where required, the preparation of flood-zone maps to show the areas inundated by floods of several magnitudes and frequencies. The planner can delineate areas subject to inundation by floods o* specific recurrence intervals for three conditions: (a) for the immediate vicinity of a gaging station; (b) for a gaged stream at a considerable distance from a gaging station; and (c) for an ungaged stream. The average depth for a flood of specific frequency can be estimated on the basis of simple measurements of area of drainage basin, width of channel, and slope of streambed. This simplified approach should be useful in the initial stages of flood-plain planning. Brief discussions are included on various types of flood hazards, the effects of urbanization on flood runoff, and zoning considerations.

  2. Climatic changes and flooding durations in relation with public health

    NASA Astrophysics Data System (ADS)

    Sandoz, A.; Roumieux, C.; Trouillet, A.

    2009-04-01

    Climatic Changes, and more generaly Global Changes, play a major role in environmental modifications in relation with public health. Modifications of temperatures, precipitations... influence ecological habitats. These habitats can be adapted for some animals species, responsable of certain pandemics. Mosquitoes and birds represent for certain pandemics the essential elements of virus transmission. Abundance of mosquitoes and birds species, is heavily conditioned by flooded areas extent and specific habitats and their variations. The study we carried, has been done in South of France. We show present status of ecological habitats and flooded durations and future previsions. We reach environment impact for certain virus like West Nile virus. This virus affects bird, horse and sometimes man. Presence of the virus is conditioned by different factors, primarily including vector distribution (mosquitoes). We show how it's possible to localise favorable areas for the virus and to predict its future expansion areas. We present maps of the possibilities for future concerning previsions of bioclimatic steps variations. Thanks to the latest remote sensing and spatial analysis techniques. Our maps may be used as precious tools to help decision makers when faced with mosquito related problems.

  3. Flood-plain delineation for Occoquan River, Wolf Run, Sandy Run, Elk Horn Run, Giles Run, Kanes Creek, Racoon Creek, and Thompson Creek, Fairfax County, Virginia

    USGS Publications Warehouse

    Soule, Pat LeRoy

    1978-01-01

    Water-surface profiles of the 25-, 50-, and 100-year recurrence interval discharges have been computed for all streams and reaches of channels in Fairfax County, Virginia, having a drainage area greater than 1 square mile except for Dogue Creek, Little Hunting Creek, and that portion of Cameron Run above Lake Barcroft. Maps having a 2-foot contour interval and a horizontal scale of 1 inch equals 100 feet were used for base on which flood boundaries were delineated for 25-, 50-, and 100-year floods to be expected in each basin under ultimate development conditions. This report is one of a series and presents a discussion of techniques employed in computing discharges and profiles as well as the flood profiles and maps on which flood boundaries have been delineated for the Occoquan River and its tributaries within Fairfax County and those streams on Mason Neck within Fairfax County tributary to the Potomac River. (Woodard-USGS)

  4. Social media as an information source for rapid flood inundation mapping

    NASA Astrophysics Data System (ADS)

    Fohringer, J.; Dransch, D.; Kreibich, H.; Schröter, K.

    2015-12-01

    During and shortly after a disaster, data about the hazard and its consequences are scarce and not readily available. Information provided by eyewitnesses via social media is a valuable information source, which should be explored in a~more effective way. This research proposes a methodology that leverages social media content to support rapid inundation mapping, including inundation extent and water depth in the case of floods. The novelty of this approach is the utilization of quantitative data that are derived from photos from eyewitnesses extracted from social media posts and their integration with established data. Due to the rapid availability of these posts compared to traditional data sources such as remote sensing data, areas affected by a flood, for example, can be determined quickly. The challenge is to filter the large number of posts to a manageable amount of potentially useful inundation-related information, as well as to interpret and integrate the posts into mapping procedures in a timely manner. To support rapid inundation mapping we propose a methodology and develop "PostDistiller", a tool to filter geolocated posts from social media services which include links to photos. This spatial distributed contextualized in situ information is further explored manually. In an application case study during the June 2013 flood in central Europe we evaluate the utilization of this approach to infer spatial flood patterns and inundation depths in the city of Dresden.

  5. Social media as an information source for rapid flood inundation mapping

    NASA Astrophysics Data System (ADS)

    Fohringer, J.; Dransch, D.; Kreibich, H.; Schröter, K.

    2015-07-01

    During and shortly after a disaster data about the hazard and its consequences are scarce and not readily available. Information provided by eye-witnesses via social media are a valuable information source, which should be explored in a more effective way. This research proposes a methodology that leverages social media content to support rapid inundation mapping, including inundation extent and water depth in case of floods. The novelty of this approach is the utilization of quantitative data that are derived from photos from eye-witnesses extracted from social media posts and its integration with established data. Due to the rapid availability of these posts compared to traditional data sources such as remote sensing data, for example areas affected by a flood can be determined quickly. The challenge is to filter the large number of posts to a manageable amount of potentially useful inundation-related information as well as their timely interpretation and integration in mapping procedures. To support rapid inundation mapping we propose a methodology and develop a tool to filter geo-located posts from social media services which include links to photos. This spatial distributed contextualized in-situ information is further explored manually. In an application case study during the June 2013 flood in central Europe we evaluate the utilization of this approach to infer spatial flood patterns and inundation depths in the city of Dresden.

  6. Interpretation of the Cosmo-SkyMed observations of the 2009 Tanaro river flood

    NASA Astrophysics Data System (ADS)

    Pulvirenti, L.; Pierdicca, N.; Chini, M.; Guerriero, L.

    2010-09-01

    The potentiality of spaceborne Synthetic Aperture Radar (SAR) for flood mapping was demonstrated by several past investigations. The synoptic view and the capability to operate in almost all-weather conditions and during both day and night are the key features that make the SAR images useful for monitoring inundation events. In addition, their high spatial resolution allows a fairly accurate delineation of the flood extent. The Cosmo-SkyMed (COnstellation of small Satellites for Mediterranean basin Observation) mission offers a unique opportunity to obtain radar images characterized by short revisit time, so that an operational use of Cosmo-SkyMed data in flood management systems can be envisaged. However, the interpretation of SAR images of flooded areas might be complex, because of the dependence of the radar response from flooded pixels on land cover, system parameters and environmental conditions. An example of radar data whose interpretation is not straightforward is represented by the Cosmo-SkyMed observations of the overflowing of the Tanaro river, close to the city of Alessandria (Northern Italy), occurred on April, 27-28 2009. Within the framework of a study, funded by the Italian Space Agency (ASI), aiming at evaluating the usefulness of Earth Observation techniques into operational flood prediction and assessment chains (named OPERA, civil protection from floods), ASI provided a number of Cosmo-SkyMed images of the Tanaro basin. In this study, we use three images that were acquired during three days in succession: from April, 29 to May, 1 2009, as well as other two acquisitions performed two weeks later (May, 16 and May, 17 2009), when the effects of the flood were disappeared. In this work, we firstly extract information on the spatial extension of homogeneous objects present in the scene through a segmentation procedure. In this way we cope with the speckle noise characteristic of SAR images and produce, from the multi-temporal series of five imagery we employ, a map formed by homogeneous regions. Among these regions we single out some areas presenting a fairly complex temporal evolution of the radar return. To correctly explain the multi-temporal radar signature of these segments, we use of a well-established electromagnetic model. Some reference multi-temporal backscattering trends are analyzed with the aid of the theoretical model to associate the segments to the classes of flooded or non-flooded areas. Using these reference trends as a training set, a classification algorithm is also developed to generate a map of the flood evolution. This study aims at demonstrating the importance and the feasibility of a method based on a joint use of a well-established electromagnetic scattering model and an advanced image processing technique to reliably interpreting SAR observations of floods.

  7. Observed and forecast flood-inundation mapping application-A pilot study of an eleven-mile reach of the White River, Indianapolis, Indiana

    USGS Publications Warehouse

    Kim, Moon H.; Morlock, Scott E.; Arihood, Leslie D.; Kiesler, James L.

    2011-01-01

    Near-real-time and forecast flood-inundation mapping products resulted from a pilot study for an 11-mile reach of the White River in Indianapolis. The study was done by the U.S. Geological Survey (USGS), Indiana Silver Jackets hazard mitigation taskforce members, the National Weather Service (NWS), the Polis Center, and Indiana University, in cooperation with the City of Indianapolis, the Indianapolis Museum of Art, the Indiana Department of Homeland Security, and the Indiana Department of Natural Resources, Division of Water. The pilot project showed that it is technically feasible to create a flood-inundation map library by means of a two-dimensional hydraulic model, use a map from the library to quickly complete a moderately detailed local flood-loss estimate, and automatically run the hydraulic model during a flood event to provide the maps and flood-damage information through a Web graphical user interface. A library of static digital flood-inundation maps was created by means of a calibrated two-dimensional hydraulic model. Estimated water-surface elevations were developed for a range of river stages referenced to a USGS streamgage and NWS flood forecast point colocated within the study reach. These maps were made available through the Internet in several formats, including geographic information system, Keyhole Markup Language, and Portable Document Format. A flood-loss estimate was completed for part of the study reach by using one of the flood-inundation maps from the static library. The Federal Emergency Management Agency natural disaster-loss estimation program HAZUS-MH, in conjunction with local building information, was used to complete a level 2 analysis of flood-loss estimation. A Service-Oriented Architecture-based dynamic flood-inundation application was developed and was designed to start automatically during a flood, obtain near real-time and forecast data (from the colocated USGS streamgage and NWS flood forecast point within the study reach), run the two-dimensional hydraulic model, and produce flood-inundation maps. The application used local building data and depth-damage curves to estimate flood losses based on the maps, and it served inundation maps and flood-loss estimates through a Web-based graphical user interface.

  8. 76 FR 43194 - Changes in Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... the dates listed in the table below and revise the Flood Insurance Rate Maps (FIRMs) in effect prior... Express-News. Street, Suite 1.20, San Antonio, TX 78205. Brazos City of College May 9, 2011; May 16, The... Unincorporated areas May 9, 2011; May 16, The Honorable Duane September 13, 2011 481195 of Brazos County (10...

  9. A high-resolution global flood hazard model

    NASA Astrophysics Data System (ADS)

    Sampson, Christopher C.; Smith, Andrew M.; Bates, Paul B.; Neal, Jeffrey C.; Alfieri, Lorenzo; Freer, Jim E.

    2015-09-01

    Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data-scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross-disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ˜90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high-resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ˜1 km, mean absolute error in flooded fraction falls to ˜5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2-D only variant and an independently developed pan-European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next-generation global terrain data sets will offer the best prospect for a step-change improvement in model performance.

  10. A high‐resolution global flood hazard model†

    PubMed Central

    Smith, Andrew M.; Bates, Paul D.; Neal, Jeffrey C.; Alfieri, Lorenzo; Freer, Jim E.

    2015-01-01

    Abstract Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data‐scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross‐disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ∼90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high‐resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ∼1 km, mean absolute error in flooded fraction falls to ∼5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2‐D only variant and an independently developed pan‐European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next‐generation global terrain data sets will offer the best prospect for a step‐change improvement in model performance. PMID:27594719

  11. Validation of a 30 m resolution flood hazard model of the conterminous United States

    NASA Astrophysics Data System (ADS)

    Wing, Oliver E. J.; Bates, Paul D.; Sampson, Christopher C.; Smith, Andrew M.; Johnson, Kris A.; Erickson, Tyler A.

    2017-09-01

    This paper reports the development of a ˜30 m resolution two-dimensional hydrodynamic model of the conterminous U.S. using only publicly available data. The model employs a highly efficient numerical solution of the local inertial form of the shallow water equations which simulates fluvial flooding in catchments down to 50 km2 and pluvial flooding in all catchments. Importantly, we use the U.S. Geological Survey (USGS) National Elevation Dataset to determine topography; the U.S. Army Corps of Engineers National Levee Dataset to explicitly represent known flood defenses; and global regionalized flood frequency analysis to characterize return period flows and rainfalls. We validate these simulations against the complete catalogue of Federal Emergency Management Agency (FEMA) Special Flood Hazard Area (SFHA) maps and detailed local hydraulic models developed by the USGS. Where the FEMA SFHAs are based on high-quality local models, the continental-scale model attains a hit rate of 86%. This correspondence improves in temperate areas and for basins above 400 km2. Against the higher quality USGS data, the average hit rate reaches 92% for the 1 in 100 year flood, and 90% for all flood return periods. Given typical hydraulic modeling uncertainties in the FEMA maps and USGS model outputs (e.g., errors in estimating return period flows), it is probable that the continental-scale model can replicate both to within error. The results show that continental-scale models may now offer sufficient rigor to inform some decision-making needs with dramatically lower cost and greater coverage than approaches based on a patchwork of local studies.

  12. Characterization of peak streamflows and flood inundation at selected areas in North Carolina following Hurricane Matthew, October 2016

    USGS Publications Warehouse

    Musser, Jonathan W.; Watson, Kara M.; Gotvald, Anthony J.

    2017-05-05

    The passage of Hurricane Matthew through central and eastern North Carolina during October 7–9, 2016, brought heavy rainfall, which resulted in major flooding. More than 15 inches of rain was recorded in some areas. More than 600 roads were closed, including Interstates 95 and 40, and nearly 99,000 structures were affected by floodwaters. Immediately following the flooding, the U.S. Geological Survey documented 267 high-water marks, of which 254 were surveyed. North Carolina Emergency Management documented and surveyed 353 high-water marks. Using a subset of these highwater marks, six flood-inundation maps were created for hard-hit communities. Digital datasets of the inundation areas, study reach boundary, and water-depth rasters are available for download. In addition, peak gage-height data, peak streamflow data, and annual exceedance probabilities (in percent) were determined for 24 U.S. Geological Survey streamgages located near the heavily flooded communities.

  13. Historic flooding in northern Georgia, September 16-22, 2009

    USGS Publications Warehouse

    McCallum, Brian E.; Gotvald, Anthony J.

    2010-01-01

    A primary mission of the U.S. Geological Survey (USGS) is the measurement and documentation of the magnitude and extent of hydrologic hazards, such as floods, droughts, and hurricane storm surge. USGS personnel were deployed to document historic, widespread flooding that occurred throughout the Atlanta metropolitan area and northwestern Georgia in the early fall of 2009. The floods were created by prolonged rainfall that occurred during September 16?22, 2009, with an especially intense period of rainfall during the late evening of September 20. The National Weather Service (NWS) reported that the southeastern United States had above-normal precipitation from August into early September, resulting in saturated soil conditions making the region extremely flood prone. Precipitation totals were the sixth highest on record for the month of September for the region (National Weather Service, 2010). Lessons learned from this flood include the need for more effective communication of the latest river information by Federal agencies with flood-threatened communities. Communicating the flood threat in an easy, accessible manner would have helped emergency managers and the public greatly during this flood. In response, the USGS developed WaterAlert (http://water.usgs.gov/wateralert/) to send notifications of flood events by way of text and e-mail. Also in development are real-time flood-inundation maps to give the hydrograph spatial context by way of a map-based product.

  14. Flood-Inundation Maps of Selected Areas Affected by the Flood of October 2015 in Central and Coastal South Carolina

    USGS Publications Warehouse

    Musser, Jonathan W.; Watson, Kara M.; Painter, Jaime A.; Gotvald, Anthony J.

    2016-02-22

    Heavy rainfall occurred across South Carolina during October 1–5, 2015, as a result of an upper atmospheric low-pressure system that funneled tropical moisture from Hurricane Joaquin into the State. The storm caused major flooding in the central and coastal parts of South Carolina. Almost 27 inches of rain fell near Mount Pleasant in Charleston County during this period. U.S. Geological Survey (USGS) streamgages recorded peaks of record at 17 locations, and 15 other locations had peaks that ranked in the top 5 for the period of record. During the October 2015 flood event, USGS personnel made about 140 streamflow measurements at 86 locations to verify, update, or extend existing rating curves (which are used to compute streamflow from monitored river stage). Immediately after the storm event, USGS personnel documented 602 high-water marks, noting the location and height of the water above land surface. Later in October, 50 additional high-water marks were documented near bridges for South Carolina Department of Transportation. Using a subset of these high-water marks, 20 flood-inundation maps of 12 communities were created. Digital datasets of the inundation area, modeling boundary, and water depth rasters are all available for download.

  15. Flood Risk and Global Change: Future Prospects

    NASA Astrophysics Data System (ADS)

    Serra-Llobet, A.

    2014-12-01

    Global flood risk is increasing in response to population growth in flood-prone areas, human encroachment into natural flood paths (exacerbating flooding in areas formerly out of harm's way), and climate change (which alters variables driving floods). How will societies respond to and manage flood risk in coming decades? Analysis of flood policy evolution in the EU and US demonstrates that changes occurred in steps, in direct response to disasters. After the flood produced by the collapse of Tous Dam in 1982, Spain initiated a systematic assessment of areas of greatest flood risk and civil protection response. The devastating floods on the Elbe and elsewhere in central Europe in 2002 motivated adoption of the EU Floods Directive (2007), which requires member states to develop systematic flood risk maps (now due) and flood risk management plans (due in 2015). The flooding of New Orleans by Hurricane Katrina in 2005 resulted in a nationwide levee-safety assessment and improvements in communicating risk, but overall less fundamental change in US flood management than manifest in the EU since 2007. In the developing world, large (and increasing) concentrations of populations in low-lying floodplains, deltas, and coasts are increasingly vulnerable, and governments mostly ill-equipped to implement fundamental changes in land use to prevent future increases in exposure, nor to develop responses to the current threats. Even in the developed world, there is surprisingly little research on how well residents of flood-prone lands understand their true risk, especially when they are 'protected' by '100-year' levees. Looking ahead, researchers and decision makers should prioritize improvements in flood risk perception, river-basin-scale assessment of flood runoff processes (under current and future climate and land-use conditions) and flood management alternatives, and bridging the disconnect between national and international floodplain management policies and local land-use decisions.

  16. Hydrological and hydraulic models for determination of flood-prone and flood inundation areas

    NASA Astrophysics Data System (ADS)

    Aksoy, Hafzullah; Sadan Ozgur Kirca, Veysel; Burgan, Halil Ibrahim; Kellecioglu, Dorukhan

    2016-05-01

    Geographic Information Systems (GIS) are widely used in most studies on water resources. Especially, when the topography and geomorphology of study area are considered, GIS can ease the work load. Detailed data should be used in this kind of studies. Because of, either the complication of the models or the requirement of highly detailed data, model outputs can be obtained fast only with a good optimization. The aim in this study, firstly, is to determine flood-prone areas in a watershed by using a hydrological model considering two wetness indexes; the topographical wetness index, and the SAGA (System for Automated Geoscientific Analyses) wetness index. The wetness indexes were obtained in the Quantum GIS (QGIS) software by using the Digital Elevation Model of the study area. Flood-prone areas are determined by considering the wetness index maps of the watershed. As the second stage of this study, a hydraulic model, HEC-RAS, was executed to determine flood inundation areas under different return period-flood events. River network cross-sections required for this study were derived from highly detailed digital elevation models by QGIS. Also river hydraulic parameters were used in the hydraulic model. Modelling technology used in this study is made of freely available open source softwares. Based on case studies performed on watersheds in Turkey, it is concluded that results of such studies can be used for taking precaution measures against life and monetary losses due to floods in urban areas particularly.

  17. Future trends in flood risk in Indonesia - A probabilistic approach

    NASA Astrophysics Data System (ADS)

    Muis, Sanne; Guneralp, Burak; Jongman, Brenden; Ward, Philip

    2014-05-01

    Indonesia is one of the 10 most populous countries in the world and is highly vulnerable to (river) flooding. Catastrophic floods occur on a regular basis; total estimated damages were US 0.8 bn in 2010 and US 3 bn in 2013. Large parts of Greater Jakarta, the capital city, are annually subject to flooding. Flood risks (i.e. the product of hazard, exposure and vulnerability) are increasing due to rapid increases in exposure, such as strong population growth and ongoing economic development. The increase in risk may also be amplified by increasing flood hazards, such as increasing flood frequency and intensity due to climate change and land subsidence. The implementation of adaptation measures, such as the construction of dykes and strategic urban planning, may counteract these increasing trends. However, despite its importance for adaptation planning, a comprehensive assessment of current and future flood risk in Indonesia is lacking. This contribution addresses this issue and aims to provide insight into how socio-economic trends and climate change projections may shape future flood risks in Indonesia. Flood risk were calculated using an adapted version of the GLOFRIS global flood risk assessment model. Using this approach, we produced probabilistic maps of flood risks (i.e. annual expected damage) at a resolution of 30"x30" (ca. 1km x 1km at the equator). To represent flood exposure, we produced probabilistic projections of urban growth in a Monte-Carlo fashion based on probability density functions of projected population and GDP values for 2030. To represent flood hazard, inundation maps were computed using the hydrological-hydraulic component of GLOFRIS. These maps show flood inundation extent and depth for several return periods and were produced for several combinations of GCMs and future socioeconomic scenarios. Finally, the implementation of different adaptation strategies was incorporated into the model to explore to what extent adaptation may be able to decrease future risks. Preliminary results show that the urban extent in Indonesia is projected to increase within 211 to 351% over the period 2000-2030 (5 and 95 percentile). Mainly driven by this rapid urbanization, potential flood losses in Indonesia increase rapidly and are primarily concentrated on the island of Java. The results reveal the large risk-reducing potential of adaptation measures. Since much of the urban development between 2000 and 2030 takes place in flood-prone areas, strategic urban planning (i.e. building in safe areas) may significantly reduce the urban population and infrastructure exposed to flooding. We conclude that a probabilistic risk approach in future flood risk assessment is vital; the drivers behind risk trends (exposure, hazard, vulnerability) should be understood to develop robust and efficient adaptation pathways.

  18. A geomorphic approach to 100-year floodplain mapping for the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Jafarzadegan, Keighobad; Merwade, Venkatesh; Saksena, Siddharth

    2018-06-01

    Floodplain mapping using hydrodynamic models is difficult in data scarce regions. Additionally, using hydrodynamic models to map floodplain over large stream network can be computationally challenging. Some of these limitations of floodplain mapping using hydrodynamic modeling can be overcome by developing computationally efficient statistical methods to identify floodplains in large and ungauged watersheds using publicly available data. This paper proposes a geomorphic model to generate probabilistic 100-year floodplain maps for the Conterminous United States (CONUS). The proposed model first categorizes the watersheds in the CONUS into three classes based on the height of the water surface corresponding to the 100-year flood from the streambed. Next, the probability that any watershed in the CONUS belongs to one of these three classes is computed through supervised classification using watershed characteristics related to topography, hydrography, land use and climate. The result of this classification is then fed into a probabilistic threshold binary classifier (PTBC) to generate the probabilistic 100-year floodplain maps. The supervised classification algorithm is trained by using the 100-year Flood Insurance Rated Maps (FIRM) from the U.S. Federal Emergency Management Agency (FEMA). FEMA FIRMs are also used to validate the performance of the proposed model in areas not included in the training. Additionally, HEC-RAS model generated flood inundation extents are used to validate the model performance at fifteen sites that lack FEMA maps. Validation results show that the probabilistic 100-year floodplain maps, generated by proposed model, match well with both FEMA and HEC-RAS generated maps. On average, the error of predicted flood extents is around 14% across the CONUS. The high accuracy of the validation results shows the reliability of the geomorphic model as an alternative approach for fast and cost effective delineation of 100-year floodplains for the CONUS.

  19. Estimated flood-inundation mapping for the Lower Blue River in Kansas City, Missouri, 2003-2005

    USGS Publications Warehouse

    Kelly, Brian P.; Rydlund, Jr., Paul H.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the city of Kansas City, Missouri, began a study in 2003 of the lower Blue River in Kansas City, Missouri, from Gregory Boulevard to the mouth at the Missouri River to determine the estimated extent of flood inundation in the Blue River valley from flooding on the lower Blue River and from Missouri River backwater. Much of the lower Blue River flood plain is covered by industrial development. Rapid development in the upper end of the watershed has increased the volume of runoff, and thus the discharge of flood events for the Blue River. Modifications to the channel of the Blue River began in late 1983 in response to the need for flood control. By 2004, the channel had been widened and straightened from the mouth to immediately downstream from Blue Parkway to convey a 30-year flood. A two-dimensional depth-averaged flow model was used to simulate flooding within a 2-mile study reach of the Blue River between 63rd Street and Blue Parkway. Hydraulic simulation of the study reach provided information for the design and performance of proposed hydraulic structures and channel improvements and for the production of estimated flood-inundation maps and maps representing an areal distribution of water velocity, both magnitude and direction. Flood profiles of the Blue River were developed between Gregory Boulevard and 63rd Street from stage elevations calculated from high water marks from the flood of May 19, 2004; between 63rd Street and Blue Parkway from two-dimensional hydraulic modeling conducted for this study; and between Blue Parkway and the mouth from an existing one-dimensional hydraulic model by the U.S. Army Corps of Engineers. Twelve inundation maps were produced at 2-foot intervals for Blue Parkway stage elevations from 750 to 772 feet. Each map is associated with National Weather Service flood-peak forecast locations at 63rd Street, Blue Parkway, Stadium Drive, U.S. Highway 40, 12th Street, and the Missouri River at the Hannibal railroad bridge in Kansas City. The National Weather Service issues peak-stage forecasts for these locations during times of flooding. Missouri River backwater inundation profiles were developed using interpolated Missouri River stage elevations at the mouth of the Blue River. Twelve backwater-inundation maps were produced at 2-foot intervals for the mouth of the Blue River from 730.9 to 752.9. To provide public access to the information presented in this report, a World Wide Web site (http://mo.water.usgs.gov/indep/kelly/blueriver/index.htm) was created that displays the results of two-dimensional modeling between 63rd Street and Blue Parkway, estimated flood-inundation maps, estimated backwater-inundation maps, and the latest gage heights and National Weather Service stage forecast for each forecast location within the study area. In addition, the full text of this report, all tables, and all plates are available for download at http://pubs.water.usgs.gov/sir2006-5089.

  20. Estimation of Flood Discharges at Selected Recurrence Intervals for Streams in New Hampshire

    USGS Publications Warehouse

    Olson, Scott A.

    2009-01-01

    This report provides estimates of flood discharges at selected recurrence intervals for streamgages in and adjacent to New Hampshire and equations for estimating flood discharges at recurrence intervals of 2-, 5-, 10-, 25-, 50-, 100-, and 500-years for ungaged, unregulated, rural streams in New Hampshire. The equations were developed using generalized least-squares regression. Flood-frequency and drainage-basin characteristics from 117 streamgages were used in developing the equations. The drainage-basin characteristics used as explanatory variables in the regression equations include drainage area, mean April precipitation, percentage of wetland area, and main channel slope. The average standard error of prediction for estimating the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence interval flood discharges with these equations are 30.0, 30.8, 32.0, 34.2, 36.0, 38.1, and 43.4 percent, respectively. Flood discharges at selected recurrence intervals for selected streamgages were computed following the guidelines in Bulletin 17B of the U.S. Interagency Advisory Committee on Water Data. To determine the flood-discharge exceedence probabilities at streamgages in New Hampshire, a new generalized skew coefficient map covering the State was developed. The standard error of the data on new map is 0.298. To improve estimates of flood discharges at selected recurrence intervals for 20 streamgages with short-term records (10 to 15 years), record extension using the two-station comparison technique was applied. The two-station comparison method uses data from a streamgage with long-term record to adjust the frequency characteristics at a streamgage with a short-term record. A technique for adjusting a flood-discharge frequency curve computed from a streamgage record with results from the regression equations is described in this report. Also, a technique is described for estimating flood discharge at a selected recurrence interval for an ungaged site upstream or downstream from a streamgage using a drainage-area adjustment. The final regression equations and the flood-discharge frequency data used in this study will be available in StreamStats. StreamStats is a World Wide Web application providing automated regression-equation solutions for user-selected sites on streams.

  1. Piloting a real-time surface water flood nowcasting system for enhancing operational resilience of emergency responders

    NASA Astrophysics Data System (ADS)

    Yu, Dapeng; Guan, Mingfu; Wilby, Robert; Bruce, Wright; Szegner, Mark

    2017-04-01

    Emergency services (such as Fire & Rescue, and Ambulance) can face the challenging tasks of having to respond to or operate under extreme and fast changing weather conditions, including surface water flooding. UK-wide, return period based surface water flood risk mapping undertaken by the Environment Agency provides useful information about areas at risks. Although these maps are useful for planning purposes for emergency responders, their utility to operational response during flood emergencies can be limited. A street-level, high resolution, real-time, surface water flood nowcasting system, has been piloted in the City of Leicester, UK to assess emergency response resilience to surface water flooding. Precipitation nowcasting over 7- and 48-hour horizons are obtained from the UK Met Office and used as inputs to the system. A hydro-inundation model is used to simulate urban surface water flood depths/areas at both the city and basin scale, with a 20 m and 3 m spatial resolution respectively, and a 15-minute temporal resolution, 7-hour and 48-hour in advance. Based on this, we evaluate both the direct and indirect impacts of potential surface water flood events on emergency responses, including: (i) identifying vulnerable populations (e.g. care homes and schools) at risk; and (ii) generating novel metrics of accessibility (e.g. travel time from service stations to vulnerable sites; spatial coverage with certain legislative timeframes) in real-time. In doing so, real-time information on potential risks and impacts of emerging flood incidents arising from intense rainfall can be communicated via a dedicated web-based platform to emergency responders thereby improving response times and operational resilience.

  2. Uncertainty Analysis of A Flood Risk Mapping Procedure Applied In Urban Areas

    NASA Astrophysics Data System (ADS)

    Krause, J.; Uhrich, S.; Bormann, H.; Diekkrüger, B.

    In the framework of IRMA-Sponge program the presented study was part of the joint research project FRHYMAP (flood risk and hydrological mapping). A simple con- ceptual flooding model (FLOODMAP) has been developed to simulate flooded areas besides rivers within cities. FLOODMAP requires a minimum of input data (digital el- evation model (DEM), river line, water level plain) and parameters and calculates the flood extent as well as the spatial distribution of flood depths. of course the simulated model results are affected by errors and uncertainties. Possible sources of uncertain- ties are the model structure, model parameters and input data. Thus after the model validation (comparison of simulated water to observed extent, taken from airborne pictures) the uncertainty of the essential input data set (digital elevation model) was analysed. Monte Carlo simulations were performed to assess the effect of uncertain- ties concerning the statistics of DEM quality and to derive flooding probabilities from the set of simulations. The questions concerning a minimum resolution of a DEM re- quired for flood simulation and concerning the best aggregation procedure of a given DEM was answered by comparing the results obtained using all available standard GIS aggregation procedures. Seven different aggregation procedures were applied to high resolution DEMs (1-2m) in three cities (Bonn, Cologne, Luxembourg). Basing on this analysis the effect of 'uncertain' DEM data was estimated and compared with other sources of uncertainties. Especially socio-economic information and monetary transfer functions required for a damage risk analysis show a high uncertainty. There- fore this study helps to analyse the weak points of the flood risk and damage risk assessment procedure.

  3. A fully automatic tool to perform accurate flood mapping by merging remote sensing imagery and ancillary data

    NASA Astrophysics Data System (ADS)

    D'Addabbo, Annarita; Refice, Alberto; Lovergine, Francesco; Pasquariello, Guido

    2016-04-01

    Flooding is one of the most frequent and expansive natural hazard. High-resolution flood mapping is an essential step in the monitoring and prevention of inundation hazard, both to gain insight into the processes involved in the generation of flooding events, and from the practical point of view of the precise assessment of inundated areas. Remote sensing data are recognized to be useful in this respect, thanks to the high resolution and regular revisit schedules of state-of-the-art satellites, moreover offering a synoptic overview of the extent of flooding. In particular, Synthetic Aperture Radar (SAR) data present several favorable characteristics for flood mapping, such as their relative insensitivity to the meteorological conditions during acquisitions, as well as the possibility of acquiring independently of solar illumination, thanks to the active nature of the radar sensors [1]. However, flood scenarios are typical examples of complex situations in which different factors have to be considered to provide accurate and robust interpretation of the situation on the ground: the presence of many land cover types, each one with a particular signature in presence of flood, requires modelling the behavior of different objects in the scene in order to associate them to flood or no flood conditions [2]. Generally, the fusion of multi-temporal, multi-sensor, multi-resolution and/or multi-platform Earth observation image data, together with other ancillary information, seems to have a key role in the pursuit of a consistent interpretation of complex scenes. In the case of flooding, distance from the river, terrain elevation, hydrologic information or some combination thereof can add useful information to remote sensing data. Suitable methods, able to manage and merge different kind of data, are so particularly needed. In this work, a fully automatic tool, based on Bayesian Networks (BNs) [3] and able to perform data fusion, is presented. It supplies flood maps describing the dynamics of each analysed event, combining time series of images, acquired by different sensors, with ancillary information. Some experiments have been performed by combining multi-temporal SAR intensity images, InSAR coherence and optical data, with geomorphic and other ground information. The tool has been tested on different flood events occurred in the Basilicata region (Italy) during the last years, showing good capabilities of identification of a large area interested by the flood phenomenon, partially overcoming the obstacle constituted by the presence of scattering/coherence classes corresponding to different land cover types, which respond differently to the presence of water and to inundation evolution [1] A. Refice et al, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 7, pp. 2711-2722, 2014. [2] L. Pulvirenti et al., IEEE Trans. Geosci. Rem. Sens., Vol. PP, pp. 1- 13, 2015. [3] A. D'Addabbo et al., "A Bayesian Network for Flood Detection combining SAR Imagery and Ancillary Data," IEEE Trans. Geosci. Rem. Sens., in press.

  4. Application of ERTS-1 imagery to detecting and mapping modern erosion features, and to monitoring erosional changes, in southern Arizona

    NASA Technical Reports Server (NTRS)

    Morrison, R. B.; Cooley, M. E.

    1973-01-01

    The author has identified the following significant results. The red MSS band 5 gives the sharpest definition of modern arroyos. On the best images, modern arroy0s can be distinguished as narrow as 150 to 200 feet in reaches where their contrast with adjacent areas is only moderate, and as narrow as 60 to 75 feet where their contrast is high. Both the red and infrared bands show differences is soils and vegetation. In the late fall and winter imagery, band 7 generally is the most useful for mapping the areas of the more erodible soils. A map at 1:1,000,000 scale has been prepared that shows all the arroyos within the 17,000 square mile study area that have been identified from ERTS-1 images. Also, from U-2 color infrared airphotos, a 1:125,000 scale map has been made of a 50 mile reach along San Simon Wash, in southeastern Arizona. This map shows not only the arroyo channels and narrow flood plains that have developed since 1890, but also areas within a few miles of the wash that are severely guilled, severely sheet-eroded, and moderately sheet-eroded. Two important effects of the third largest recorded flood of the upper Gila River also have been determined from the ERTS-1 images. The inundated area is best displayed on band 7, and the areas of severe sand/gravel erosion/deposition show best on band 5.

  5. Direct local building inundation depth determination in 3-D point clouds generated from user-generated flood images

    NASA Astrophysics Data System (ADS)

    Griesbaum, Luisa; Marx, Sabrina; Höfle, Bernhard

    2017-07-01

    In recent years, the number of people affected by flooding caused by extreme weather events has increased considerably. In order to provide support in disaster recovery or to develop mitigation plans, accurate flood information is necessary. Particularly pluvial urban floods, characterized by high temporal and spatial variations, are not well documented. This study proposes a new, low-cost approach to determining local flood elevation and inundation depth of buildings based on user-generated flood images. It first applies close-range digital photogrammetry to generate a geo-referenced 3-D point cloud. Second, based on estimated camera orientation parameters, the flood level captured in a single flood image is mapped to the previously derived point cloud. The local flood elevation and the building inundation depth can then be derived automatically from the point cloud. The proposed method is carried out once for each of 66 different flood images showing the same building façade. An overall accuracy of 0.05 m with an uncertainty of ±0.13 m for the derived flood elevation within the area of interest as well as an accuracy of 0.13 m ± 0.10 m for the determined building inundation depth is achieved. Our results demonstrate that the proposed method can provide reliable flood information on a local scale using user-generated flood images as input. The approach can thus allow inundation depth maps to be derived even in complex urban environments with relatively high accuracies.

  6. Characterizing the impacts of the 2006 New Year's flood in the Laguna de Santa Rosa floodplain, Sonoma County, CA

    NASA Astrophysics Data System (ADS)

    Flint, L. E.; Curtis, J. A.; Flint, A. L.

    2006-12-01

    The Laguna de Santa Rosa (Laguna), the largest tributary to the Russian River located in Sonoma County, California, occupies a relatively flat low-lying area west of the Santa Rosa Plain. From December 12, 2005 to January 6, 2006 the Laguna experienced heavy flooding, with peak flows on New Year's Day of over 185 m3/s, at a location that experiences median flows of less than 14 m3/s. The objectives of this study were to (1) analyze precipitation intensities and amounts for the region to establish the conditions under which flooding occurred, (2) measure and map inundation areas and floodplain sediment deposition, and (3) compare field data with a GIS sediment deposition potential map. Spatial variations in intensities and total volumes of precipitation correlate well with evidence of local flooding throughout the region, particularly in the mountains to the east and southeast of Santa Rosa. Total precipitation for the month of December was 200 percent of normal, and maximum hourly intensities reached 20 mm/hour during the storm. High water marks and floodplain deposition sites were mapped using kinematic GPS surveying with post-processed differential correction, and sediment deposition was measured. The surveyed data were superimposed on an available two-foot-interval contour map to create an inundation map and a GIS point coverage of sediment deposition. Landscape attributes relevant to floodplain sedimentation were assessed and a sediment deposition potential map was created at the 30-m scale using a matrix of landscape characteristics that included: land use; roughness (influenced by vegetation type and density); channel and hillslope sediment sources (influenced by soils, geology, and cutbank erosion); slope and topography; and geomorphic terrain type. A calculation of sediment deposition potential was developed within a GIS that accounts for all contributing factors and illustrates that floodplain deposition is dominated by localized sedimentation, reflecting the importance of sediment point sources, rather than extensive sedimentation throughout the floodplain. The data collected in this study will be used to constrain model simulations of recurrence-interval floods and provide information on patterns of hydrology and sedimentation for extreme events that will help refine conceptual models of floodplain processes.

  7. "Flooding Risk Analysis and the Understanding of Hydrological Disturbance due to the Rapid Urbanization in a Low-Scale Subwatershed in Houston Area". ( The project develops a relavant Model of flooding risk assessment to define the connection between increased streamflow/flooding and the rapid urban land development).

    NASA Astrophysics Data System (ADS)

    Geldiyev, P.

    2017-12-01

    Rapid urban development and changing climate influences the frequency and magnitude of flooding in Houston area. This proposed project aims to evaluate the flooding risks with the current and future land use changes by 2040 for one subbasin of the San Jacinto Brazos/Neches-Trinity Coastal basin. Surface environments and streamflow data of the Clear Creek are analyzed and stimulated to discuss the possible impact of urbanization on the occurrence of floods. The streamflow data is analyzed and simulated with the application of the Geographic Information Systems and its extensions. Both hydrologic and hydraulic models of the Clear Creek are created with the use of HEC-HMS and HEC-RAS software. Both models are duplicated for the year 2040, based on projected 2040 Landcover Maps developed by Houston and Galveston Area Council. This project examines a type of contemporary hydrologic disturbance and the interaction between land cover and changes in hydrological processes. Expected results will be very significant for urban development and flooding management.

  8. Model Integration for Real-Time Flood Forecasting Inundation Mapping for Nashville Tributaries

    NASA Astrophysics Data System (ADS)

    Charley, W.; Moran, B.; LaRosa, J.

    2012-12-01

    In May of 2010, between 14 and 19 inches of rain fell on the Nashville metro area in two days, quickly overwhelming tributaries to the Cumberland River and causing wide-spread, serious flooding. Tractor-trailers and houses were seen floating down Mill Creek, a primary tributary in the south eastern area of Nashville. Twenty-six people died and over 2 billion dollars in damage occurred as a result of the flood. Since that time, several other significant rainfall events have occurred in the area. Emergency responders were unable to deliver aid or preventive measures to areas under threat of flooding (or under water) in time to reduce damages because they could not identify those areas far enough in advance of the floods. Nashville Metro Water, the National Weather Service, the US Geological Survey and the US Army Corps of Engineers established a joint venture to seek ways to better forecast short-term flood events in the region. One component of this effort was a pilot project to compute and display real time inundation maps for Mill Creek, a 108 square-mile basin to the south east of Nashville. HEC-RTS (Real-Time Simulation) was used to assimilate and integrate the hydrologic model HEC-HMS with the hydraulics model HEC-RAS and the inundation mapping program HEC-RAS Mapper. The USGS, along with the other agencies, installed additional precipitation and flow/stage gages in the area. Measurements are recorded every 5-30 minutes and are posted on the USGS NWIS database, which are downloaded by HEC-RTS. Using this data in combination with QPFs (Quantitative Precipitation Forecasts) from the NWS, HEC-RTS applies HEC-HMS and HEC-RAS to estimate current and forecast stage hydrographs. The peak stages are read by HEC-RAS Mapper to compute inundation depths for 6 by 6 foot grid cells. HEC-RTS displays the inundation on a high resolution MrSid aerial photo, along with subbasin boundary, street and various other layers. When a user zooms in and "mouses" over a cell, the inundation depth for that cell is displayed as a tool-tip. This procedure for real-time inundation mapping provides a relatively accurate depiction of water depths throughout the basin, as it is computed using the temporal and spatial distribution of rainfall that has actually occurred and will compute depths based on forecasted rainfall. In addition, the HEC-RAS hydraulics model can be modified as the event is occurring to represent changes in the stream channels, such as obstructions at bridges. This paper covers the procedure used and provides results and images from the integrated models for various precipitation scenarios.

  9. Map showing flood-prone areas, greater Denver area, Front Range Urban Corridor, Colorado

    USGS Publications Warehouse

    McCain, J.F.; Hotchkiss, W.R.

    1975-01-01

    The rapid growth of population in the Front Range Urban Corridor of Colorado is causing intense competition for available land resources. One form of competition posing serious problems in indiscriminate development on flood plains along creeks and rivers. Flood plains are natural features of the landscape developed by streams in carry water in excess of channel capacity. Although not used as often by the stream, flood plains are as much a part of the stream system as is the channel. Whenever man competes with this natural function of the flood plain he must inevitably pay the price through property damage and varying degrees of human suffering Flood damages in the United States have been estimated to average about \\$1 billion annually (American Public Works Association, 1966.) This tremendous waste of national resources is borne not only by those citizens in direct contact with floods but also to a lesser degree by all citizens through increased cost of public services. Thus, floods are of concern to the entire community, and solutions to existing or potential problems should be a community effort.

  10. Flood-inundation maps for the Peckman River in the Townships of Verona, Cedar Grove, and Little Falls, and the Borough of Woodland Park, New Jersey, 2014

    USGS Publications Warehouse

    Niemoczynski, Michal J.; Watson, Kara M.

    2016-10-19

    Digital flood-inundation maps for an approximate 7.5-mile reach of the Peckman River in New Jersey, which extends from Verona Lake Dam in the Township of Verona downstream through the Township of Cedar Grove and the Township of Little Falls to the confluence with the Passaic River in the Borough of Woodland Park, were created by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the probable areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Peckman River at Ozone Avenue at Verona, New Jersey (station number 01389534). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/.Flood profiles were simulated for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relations at USGS streamgages on the Peckman River at Ozone Avenue at Verona, New Jersey (station number 01389534) and the Peckman River at Little Falls, New Jersey (station number 01389550). The hydraulic model was then used to compute eight water-surface profiles for flood stages at 0.5-foot (ft) intervals ranging from 3.0 ft or near bankfull to 6.5 ft, which is approximately the highest recorded water level during the period of record (1979–2014) at USGS streamgage 01389534, Peckman River at Ozone Avenue at Verona, New Jersey. The simulated water-surface profiles were then combined with a geographic information system digital elevation model derived from light detection and ranging (lidar) data to delineate the area flooded at each water level.The availability of these maps along with Internet information regarding current stage from the USGS streamgage provides emergency management personnel and residents with information, such as estimates of inundation extents, based on water stage, that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  11. User-Driven Workflow for Modeling, Monitoring, Product Development, and Flood Map Delivery Using Satellites for Daily Coverage Over Texas May-June 2015

    NASA Astrophysics Data System (ADS)

    Green, D. S.; Frye, S. W.; Wells, G. L.; Adler, R. F.; Brakenridge, R.; Bolten, J. D.; Murray, J. J.; Slayback, D. A.; Kirschbaum, D.; Wu, H.; Cappelaere, P. G.; Schumann, G.; Howard, T.; Flamig, Z.; Clark, R. A.; Stough, T.; Chini, M.; Matgen, P.

    2015-12-01

    Intense rainfall during late April and early May 2015 in Texas and Oklahoma led to widespread flooding in several river basins in that region. Texas state agencies were activated for the May-June floods and severe weather event that ensued for six weeks from May 8 until June 19 following Tropical Storm Bill. This poster depicts a case study where modeling flood potential informed decision making authorities for user-driven high resolution satellite acquisitions over the most critical areas and how experimental flood mapping techniques provided the capability for daily on-going monitoring of these events through the use of increased automation. Recent improvements in flood models resulting from higher frequency updates, better spatial resolution, and increased accuracy of now cast and forecast precipitation products coupled with advanced technology to improve situational awareness for decision makers. These advances enabled satellites to be tasked, data products to be developed and distributed, and feedback loops between the emergency authorities, satellite operators, and mapping researchers to deliver a daily stream of relevant products that informed deployment of emergency resources and improved management of the large-scale event across the local, state, and national levels. This collaboration was made possible through inter-agency cooperation on an international scale through the Committee on Earth Observation Satellites Flood Pilot activity that is supported in the USA by NASA, NOAA, and USGS and includes numerous civilian space agency assets from the European Space Agency along with national agencies from Italy, France, Germany, Japan, and others. The poster describes the inter-linking technology infrastructure, the development and delivery of mapping products, and the lessons learned for product improvement in the future.

  12. Conveying Flood Hazard Risk Through Spatial Modeling: A Case Study for Hurricane Sandy-Affected Communities in Northern New Jersey.

    PubMed

    Artigas, Francisco; Bosits, Stephanie; Kojak, Saleh; Elefante, Dominador; Pechmann, Ildiko

    2016-10-01

    The accurate forecast from Hurricane Sandy sea surge was the result of integrating the most sophisticated environmental monitoring technology available. This stands in contrast to the limited information and technology that exists at the community level to translate these forecasts into flood hazard levels on the ground at scales that are meaningful to property owners. Appropriately scaled maps with high levels of certainty can be effectively used to convey exposure to flood hazard at the community level. This paper explores the most basic analysis and data required to generate a relatively accurate flood hazard map to convey inundation risk due to sea surge. A Boolean overlay analysis of four input layers: elevation and slope derived from LiDAR data and distances from streams and catch basins derived from aerial photography and field reconnaissance were used to create a spatial model that explained 55 % of the extent and depth of the flood during Hurricane Sandy. When a ponding layer was added to the previous model to account for depressions that would fill and spill over to nearby areas, the new model explained almost 70 % of the extent and depth of the flood. The study concludes that fairly accurate maps can be created with readily available information and that it is possible to infer a great deal about risk of inundation at the property level, from flood hazard maps. The study goes on to conclude that local communities are encouraged to prepare for disasters, but in reality because of the existing Federal emergency management framework there is very little incentive to do so.

  13. Conveying Flood Hazard Risk Through Spatial Modeling: A Case Study for Hurricane Sandy-Affected Communities in Northern New Jersey

    NASA Astrophysics Data System (ADS)

    Artigas, Francisco; Bosits, Stephanie; Kojak, Saleh; Elefante, Dominador; Pechmann, Ildiko

    2016-10-01

    The accurate forecast from Hurricane Sandy sea surge was the result of integrating the most sophisticated environmental monitoring technology available. This stands in contrast to the limited information and technology that exists at the community level to translate these forecasts into flood hazard levels on the ground at scales that are meaningful to property owners. Appropriately scaled maps with high levels of certainty can be effectively used to convey exposure to flood hazard at the community level. This paper explores the most basic analysis and data required to generate a relatively accurate flood hazard map to convey inundation risk due to sea surge. A Boolean overlay analysis of four input layers: elevation and slope derived from LiDAR data and distances from streams and catch basins derived from aerial photography and field reconnaissance were used to create a spatial model that explained 55 % of the extent and depth of the flood during Hurricane Sandy. When a ponding layer was added to the previous model to account for depressions that would fill and spill over to nearby areas, the new model explained almost 70 % of the extent and depth of the flood. The study concludes that fairly accurate maps can be created with readily available information and that it is possible to infer a great deal about risk of inundation at the property level, from flood hazard maps. The study goes on to conclude that local communities are encouraged to prepare for disasters, but in reality because of the existing Federal emergency management framework there is very little incentive to do so.

  14. Flood of April 1975 at Williamston, Michigan

    USGS Publications Warehouse

    Knutilla, R.L.; Swallow, L.A.

    1975-01-01

    On April 18 between 5 p.m. and 12 p.m. the city of Williamston experienced an intense rain storm that caused the Red Cedar River and the many small streams in the area to overflow their banks and resulted in the most devastating flood since at least 1904. Local officials estimated a loss of \\$775,000 in property damage. Damage from flooding by the Red Cedar River was caused primarily by inundation, rather than by water moving at high velocity, as is common when many streams are flooded. During the flood of April 1975 many basements were flooded as well as the lower floors of some homes in the flood plain. Additional damage occurred in places when sewers backed up and flooded basements, and when ground water seeped through basement walls and floors—situations that affected many homes including those that were well outside of the flood plain.During the time of flooding the U.S. Geological Survey obtained aerial photography and data on a streamflow to document the disaster. This report shows on a photomosaic base map the extent of flooding along the Red Cedar River at Williamston, during the flood. It also presents data obtained at stream-gaging stations near Williamston, as well as the results of peak-flow discharge measurements made on the Red Cedar River at Michigan State Highway M-52 east of the city. Information on the magnitude of the flood can guide in making decisions pertaining to the use of flood-plains in the area. It is one of a series of reports on the April 1975 flood in the Lansing metropolitan area.

  15. Dynamic inundation mapping of Hurricane Harvey flooding in the Houston metro area using hyper-resolution modeling and quantitative image reanalysis

    NASA Astrophysics Data System (ADS)

    Noh, S. J.; Lee, J. H.; Lee, S.; Zhang, Y.; Seo, D. J.

    2017-12-01

    Hurricane Harvey was one of the most extreme weather events in Texas history and left significant damages in the Houston and adjoining coastal areas. To understand better the relative impact to urban flooding of extreme amount and spatial extent of rainfall, unique geography, land use and storm surge, high-resolution water modeling is necessary such that natural and man-made components are fully resolved. In this presentation, we reconstruct spatiotemporal evolution of inundation during Hurricane Harvey using hyper-resolution modeling and quantitative image reanalysis. The two-dimensional urban flood model used is based on dynamic wave approximation and 10 m-resolution terrain data, and is forced by the radar-based multisensor quantitative precipitation estimates. The model domain includes Buffalo, Brays, Greens and White Oak Bayous in Houston. The model is simulated using hybrid parallel computing. To evaluate dynamic inundation mapping, we combine various qualitative crowdsourced images and video footages with LiDAR-based terrain data.

  16. Landsat Earth Monitor.

    ERIC Educational Resources Information Center

    Haggerty, James J.

    1979-01-01

    The uses of NASA's Landsat in the areas of cartography, flood control, agricultural inventory, land use mapping, water runoff, urban planning, erosion, geology, and water quality monitoring are illustrated. (BB)

  17. Using Multiple Space Assests with In-Situ Measurements to Track Flooding in Thailand

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Doubleday, Joshua; Mclaren, David; Tran, Daniel; Khunboa, Chatchai; Leelapatra, Watis; Pergamon, Vichain; Tanpipat, Veerachai; Chitradon, Royal; Boonya-aroonnet, Surajate; hide

    2001-01-01

    Increasing numbers of space assets can enable coordinated measurements of flooding phenomena to enhance tracking of extreme events. We describe the use of space and ground measurements to target further measurements as part of a flood monitoring system in Thailand. We utilize rapidly delivered MODIS data to detect major areas of flooding and the target the Earth Observing One Advanced Land Imager sensor to acquire higher spatial resolution data. Automatic surface water extent mapping products delivered to interested parties. We are also working to extend our network to include in-situ sensing networks and additional space assets.

  18. Coastal Hazard Vulnerability Assessment: A Case Study of Erosion and Flooding on Herschel Island, Yukon Territory, Canada

    NASA Astrophysics Data System (ADS)

    Radosavljevic, B.; Lantuit, H.; Overduin, P. P.; Fritz, M.

    2015-12-01

    Coastal infrastructure, cultural, and archeological sites are increasingly vulnerable to erosion and flooding along permafrost coasts. Amplified warming of the Arctic, sea level rise, lengthening of the open water period, and a predicted increase in frequency of major storms compound these threats. Mitigation necessitates decision-making tools at an appropriate scale. We present a study of coastal erosion combining it with a flooding risk assessment for the culturally important historic settlement on Herschel Island, a UNESCO World Heritage candidate site. The resulting map may help local stakeholders devise management strategies to cope with rapidly changing environmental conditions. We analyzed shoreline movement using the Digital Shoreline Analysis System (DSAS) after digitizing shorelines from 1952, 1970, and 2011. Using these data, forecasts of shoreline positions were made for 20 and 50 years into the future. Flooding risk was assessed using a cost-distance map based on a high-resolution Light Detection and Ranging (LiDAR) dataset and current Intergovernmental Panel on Climate Change sea level estimates. Widespread erosion characterizes the study area. The rate of shoreline movement for different periods of the study ranges from -5.5 to 2.7 m·a-1 (mean -0.6 m·a-1). Mean coastal retreat decreased from -0.6 m·a-1 to -0.5 m·a-1, for 1952-1970 and 1970-2000, respectively, and increased to -1.3 m·a-1 in the period 2000-2011. Ice-rich coastal sections, and coastal sections most exposed to wave attack exhibited the highest rates of coastal retreat. The geohazard map resulting from shoreline projections and flood risk analysis indicates that most of the area occupied by the historic settlement is at extreme or very high risk of flooding, and some buildings are vulnerable to coastal erosion. The results of this study indicate a greater threat by coastal flooding than erosion. Our assessment may be applied in other locations where limited data are available.

  19. Mapping flood hazards under uncertainty through probabilistic flood inundation maps

    NASA Astrophysics Data System (ADS)

    Stephens, T.; Bledsoe, B. P.; Miller, A. J.; Lee, G.

    2017-12-01

    Changing precipitation, rapid urbanization, and population growth interact to create unprecedented challenges for flood mitigation and management. Standard methods for estimating risk from flood inundation maps generally involve simulations of floodplain hydraulics for an established regulatory discharge of specified frequency. Hydraulic model results are then geospatially mapped and depicted as a discrete boundary of flood extents and a binary representation of the probability of inundation (in or out) that is assumed constant over a project's lifetime. Consequently, existing methods utilized to define flood hazards and assess risk management are hindered by deterministic approaches that assume stationarity in a nonstationary world, failing to account for spatio-temporal variability of climate and land use as they translate to hydraulic models. This presentation outlines novel techniques for portraying flood hazards and the results of multiple flood inundation maps spanning hydroclimatic regions. Flood inundation maps generated through modeling of floodplain hydraulics are probabilistic reflecting uncertainty quantified through Monte-Carlo analyses of model inputs and parameters under current and future scenarios. The likelihood of inundation and range of variability in flood extents resulting from Monte-Carlo simulations are then compared with deterministic evaluations of flood hazards from current regulatory flood hazard maps. By facilitating alternative approaches of portraying flood hazards, the novel techniques described in this presentation can contribute to a shifting paradigm in flood management that acknowledges the inherent uncertainty in model estimates and the nonstationary behavior of land use and climate.

  20. Development of method for evaluating estimated inundation area by using river flood analysis based on multiple flood scenarios

    NASA Astrophysics Data System (ADS)

    Ono, T.; Takahashi, T.

    2017-12-01

    Non-structural mitigation measures such as flood hazard map based on estimated inundation area have been more important because heavy rains exceeding the design rainfall frequently occur in recent years. However, conventional method may lead to an underestimation of the area because assumed locations of dike breach in river flood analysis are limited to the cases exceeding the high-water level. The objective of this study is to consider the uncertainty of estimated inundation area with difference of the location of dike breach in river flood analysis. This study proposed multiple flood scenarios which can set automatically multiple locations of dike breach in river flood analysis. The major premise of adopting this method is not to be able to predict the location of dike breach correctly. The proposed method utilized interval of dike breach which is distance of dike breaches placed next to each other. That is, multiple locations of dike breach were set every interval of dike breach. The 2D shallow water equations was adopted as the governing equation of river flood analysis, and the leap-frog scheme with staggered grid was used. The river flood analysis was verified by applying for the 2015 Kinugawa river flooding, and the proposed multiple flood scenarios was applied for the Akutagawa river in Takatsuki city. As the result of computation in the Akutagawa river, a comparison with each computed maximum inundation depth of dike breaches placed next to each other proved that the proposed method enabled to prevent underestimation of estimated inundation area. Further, the analyses on spatial distribution of inundation class and maximum inundation depth in each of the measurement points also proved that the optimum interval of dike breach which can evaluate the maximum inundation area using the minimum assumed locations of dike breach. In brief, this study found the optimum interval of dike breach in the Akutagawa river, which enabled estimated maximum inundation area to predict efficiently and accurately. The river flood analysis by using this proposed method will contribute to mitigate flood disaster by improving the accuracy of estimated inundation area.

  1. Analysis and Mapping of Flood Line and Flood Zones within the Godavari River in Nasik Municipal Corporation

    NASA Astrophysics Data System (ADS)

    Thakre, Deepak

    2010-05-01

    Analysis and Mapping of Flood Line within the Godavari River in Nasik(Municipal Corporation Area) Dr.Deepak N.Thakre Lecturer in Geography L.V.H.College, Nasik-3, Maharashtra, India A flood is an overflow or accumulation of an expanse of water that submerges land when the discharge of a river can not be accommodated within the margins of its normal channel so that water spreads over adjoining area and creates havoc. Problem: Since last few years there has been a sudden increase in rainfall,quite intense during a certain period in monsoon,as a result of which the discharge in river Godavari increases and creates problems in low lying areas on the banks of river Godavari like: submergence of houses,major loss of lives,management failure(due to unexpected dimension of floods)and the disruption of normal life. This paper attempts to analyse and draw an averege flood zone and sudden flood zone on the basis of : 1) Actual field work and survey with the help of Dumpy level and GPS 2) Field interviews of affected people 3) Data available from Meteorological and Irrigation department Among several districts that have flourished in the soils of Indian subcontinent the name of Nashik has drawn the attention of people all over the world. Geographical location of Nashik is 20° 01' to 20° 02' North and 73° 30' to 73° 50'East. Nashik city is situated on the banks of river Godavari and tributaries namely Nasardi, Waghadi, Darna and Walvadi.The total area of Nasik is 264.23 Sq.km (102 Sq.mt) and height from M.S.L is 3284 feet (1001 Mt). River Godavari originates in Western mountain range and flows towards East up to Bay of Bengal. On the upstream of Nasik city dams like Gangapur, Darna, Alandi, Kasyapi and Gautami-Godavari are constructed on river Godavari and its tributaries. Gangapur dam is the nearest storage dam constructed 15km away from Nasik city at source area in the year 1965. Due to moderation of floods and construction of dam there is encroachment in low lying areas of the river. If the discharge from Gangapur dam crosses 25000 cusecs then the flow affects low lying areas during recurring floods causing difficulty in rescue and evacuation operations. Heavy rains in 2005, 2006, 2007, 2008 and 2009 have created problems in the Municipal area of Nasik city due to large discharge which was around 35000, 18000,29000,42000,33000 cusecs respectively. Though the discharge is low than the discharge of 1976 which was around 48000 cusecs, thousands of people living in low lying area of the river are shifted each year as many houses are under water at least once in a year. In this paper an attempt has been made to trace the factors responsible for creating sudden flood situation in the areas of Nasik Municipal Corporation and to divide the river channel into two zones namely: a) Average Flood Zone b) Sudden Flood Zone

  2. Flood modelling with global precipitation measurement (GPM) satellite rainfall data: a case study of Dehradun, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Sai Krishna, V. V.; Dikshit, Anil Kumar; Pandey, Kamal

    2016-05-01

    Urban expansion, water bodies and climate change are inextricably linked with each other. The macro and micro level climate changes are leading to extreme precipitation events which have severe consequences on flooding in urban areas. Flood simulations shall be helpful in demarcation of flooded areas and effective flood planning and preparedness. The temporal availability of satellite rainfall data at varying spatial scale of 0.10 to 0.50 is helpful in near real time flood simulations. The present research aims at analysing stream flow and runoff to monitor flood condition using satellite rainfall data in a hydrologic model. The satellite rainfall data used in the research was NASA's Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG), which is available at 30 minutes temporal resolution. Landsat data was used for mapping the water bodies in the study area. Land use land cover (LULC) data was prepared using Landsat 8 data with maximum likelihood technique that was provided as an input to the HEC-HMS hydrological model. The research was applied to one of the urbanized cities of India, viz. Dehradun, which is the capital of Uttarakhand State. The research helped in identifying the flood vulnerability at the basin level on the basis of the runoff and various socio economic parameters using multi criteria analysis.

  3. 75 FR 6600 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... upstream of the of Moniteau County, Cole County boundary. City of Lupus. Approximately 375 feet +588 +587... Emergency Management Agency, 500 C Street, SW., Washington, DC 20472. ADDRESSES City of Lupus Maps are available for inspection at 3750 Main Street, Lupus, MO 65046. Unincorporated Areas of Moniteau County Maps...

  4. 75 FR 23608 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... Jewett +88 Town of White Springs Street. Approximately 600 feet +109 upstream of 1st Street. Timber Lake... Hamilton Avenue, Jennings, FL 32053 Town of White Springs Maps are available for inspection at the Town Hall, 10363 Bridge Street, White Springs, FL 32096 Unincorporated Areas of Hamilton County Maps are...

  5. 44 CFR 65.13 - Mapping and map revisions for areas subject to alluvial fan flooding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... sound engineering analyses which demonstrate that the measures will effectively eliminate alluvial fan... necessarily limited to, the following: (1) Engineering analyses that quantify the discharges and volumes of... movement must be assessed using an engineering method acceptable to FEMA. The assessment should consider...

  6. Exposure and vulnerability assessment of buildings extracted from lidar derived datasets in Bucao River floodplains, Zambales, Philippines

    NASA Astrophysics Data System (ADS)

    Paz-Alberto, Annie Melinda; Ramos, Gloria N.; Espiritu, Jo Adrianne; Mapanao, Kathrina M.; Lao, Ranilo B.

    2017-09-01

    The Philippines has a geographic and geological setting that make it prone to various hazards including weather and climate-related. It is usually strongly affected by monsoon and typhoon occurrences that cause floods due to torrential rains that causes great risks in man's life and properties, resulting in a significant national loss. Strategies for disaster prevention to protect human lives, properties and social infrastructure is therefore necessary. Different important parameters in disaster risk management such as earth observations, Light Detection and Ranging and Geographic Information System were integrated and utilized in this study. This study dealt with mapping and assessment of buildings that might possibly be exposed and vulnerable to flooding based on the simulated flood maps at different rainfall scenarios in Bucao River Basin. The assessment was done through GIS overlay analysis of the CLSU PHIL-LiDAR 1 Project outputs, the 3D building GIS database and flood hazard maps. Results of this study were series of maps with statistics at different rainfall scenarios. From 23,097 building features extracted, 10,118 buildings, 4,258 buildings and 7,433 buildings were the identified highest number of buildings exposed to flooding and a total of 2,427 buildings, 3,914 buildings and 7,204 buildings from the exposed were identified that had high vulnerabilities in terms of height at low, medium and high hazards of 100 year return period, respectively. Through these maps, it is easier to disseminate information that is more realistic to the residents about the hazardous areas and to help them act on warning and evacuating measures.

  7. 78 FR 36217 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... sciences established to review conflicting scientific and technical data and provide recommendations for... Shop Road, Wetumpka, AL 36092. Lowndes County, Alabama, and Incorporated Areas Maps Available for...

  8. Reconstruction of sa Cabana's creek flash flood(Manacor, Mallorca) from documentary sources, oral and graphic. Episodes from 1850, 1932 and 1961

    NASA Astrophysics Data System (ADS)

    Caldentey Brunet, J.; Grimalt Gelabert, M.; Sansó Vanrell, S.

    2009-09-01

    We have studied the different episodes of the flash floods on their way to Manacor, the second largest town in Mallorca. Floods are caused by the passing of an occasional short course in the middle of the city center. The town has been affected by three episodes of flooding during the nineteenth and twentieth centuries. The first one was in 1850, the second in 1932 and the third in the early 60s. The main sources used were different but emphasizing the oral ones, the newspaper and the documentary. Some detailed maps have been made reconstructing the flooded area in each episode, the level of water and several notes about the suffered destructions Keywords Flash flood, flooded city, Manacor

  9. Analyzing Future Flooding under Climate Change Scenario using CMIP5 Streamflow Data

    NASA Astrophysics Data System (ADS)

    Parajuli, Ranjan; Nyaupane, Narayan; Kalra, Ajay

    2017-12-01

    Flooding is a severe and costlier natural hazard. The effect of climate change has intensified the scenario in recent years. Flood prevention practice along with a proper understanding of flooding event can mitigate the risk of such hazard. The floodplain mapping is one of the technique to quantify the severity of the flooding. Carson City, which is one of the agricultural areas in the desert of Nevada has experienced peak flood in the recent year. The underlying probability distribution for the area, latest Coupled Model Intercomparison Project (CMIP5) streamflow data of Carson River were analyzed for 27 different statistical distributions. The best-fitted distribution underlying was used to forecast the 100yr flood (design flood). The data from 1950-2099 derived from 31 model and total 97 projections were used to predict the future streamflow. Delta change method is adopted to quantify the amount of future (2050-2099) flood. To determine the extent of flooding 3 scenarios (i) historic design flood, (ii) 500yr flood and (iii) future 100yr flood were routed on an HEC-RAS model, prepared using available terrain data. Some of the climate projection shows an extreme increase in future design flood. This study suggests an approach to quantify the future flood and floodplain using climate model projections. The study would provide helpful information to the facility manager, design engineer, and stakeholders.

  10. Hydraulic model and flood-inundation maps developed for the Pee Dee National Wildlife Refuge, North Carolina

    USGS Publications Warehouse

    Smith, Douglas G.; Wagner, Chad R.

    2016-04-08

    A series of digital flood-inundation maps were developed on the basis of the water-surface profiles produced by the model. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Program Web site at http://water.usgs.gov/osw/flood_inundation, depict estimates of the areal extent and depth of flooding corresponding to selected water levels at the USGS streamgage Pee Dee River at Pee Dee Refuge near Ansonville, N.C. These maps, when combined with real-time water-level information from USGS streamgages, provide managers with critical information to help plan flood-response activities and resource protection efforts.

  11. Improving Flood Predictions in Data-Scarce Basins

    NASA Astrophysics Data System (ADS)

    Vimal, Solomon; Zanardo, Stefano; Rafique, Farhat; Hilberts, Arno

    2017-04-01

    Flood modeling methodology at Risk Management Solutions Ltd. has evolved over several years with the development of continental scale flood risk models spanning most of Europe, the United States and Japan. Pluvial (rain fed) and fluvial (river fed) flood maps represent the basis for the assessment of regional flood risk. These maps are derived by solving the 1D energy balance equation for river routing and 2D shallow water equation (SWE) for overland flow. The models are run with high performance computing and GPU based solvers as the time taken for simulation is large in such continental scale modeling. These results are validated with data from authorities and business partners, and have been used in the insurance industry for many years. While this methodology has been proven extremely effective in regions where the quality and availability of data are high, its application is very challenging in other regions where data are scarce. This is generally the case for low and middle income countries, where simpler approaches are needed for flood risk modeling and assessment. In this study we explore new methods to make use of modeling results obtained in data-rich contexts to improve predictive ability in data-scarce contexts. As an example, based on our modeled flood maps in data-rich countries, we identify statistical relationships between flood characteristics and topographic and climatic indicators, and test their generalization across physical domains. Moreover, we apply the Height Above Nearest Drainage (HAND)approach to estimate "probable" saturated areas for different return period flood events as functions of basin characteristics. This work falls into the well-established research field of Predictions in Ungauged Basins.

  12. Integrating heterogeneous earth observation data for assessment of high-resolution inundation boundaries generated during flood emergencies.

    NASA Astrophysics Data System (ADS)

    Sava, E.; Cervone, G.; Kalyanapu, A. J.; Sampson, K. M.

    2017-12-01

    The increasing trend in flooding events, paired with rapid urbanization and an aging infrastructure is projected to enhance the risk of catastrophic losses and increase the frequency of both flash and large area floods. During such events, it is critical for decision makers and emergency responders to have access to timely actionable knowledge regarding preparedness, emergency response, and recovery before, during and after a disaster. Large volumes of data sets derived from sophisticated sensors, mobile phones, and social media feeds are increasingly being used to improve citizen services and provide clues to the best way to respond to emergencies through the use of visualization and GIS mapping. Such data, coupled with recent advancements in data fusion techniques of remote sensing with near real time heterogeneous datasets have allowed decision makers to more efficiently extract precise and relevant knowledge and better understand how damage caused by disasters have real time effects on urban population. This research assesses the feasibility of integrating multiple sources of contributed data into hydrodynamic models for flood inundation simulation and estimating damage assessment. It integrates multiple sources of high-resolution physiographic data such as satellite remote sensing imagery coupled with non-authoritative data such as Civil Air Patrol (CAP) and `during-event' social media observations of flood inundation in order to improve the identification of flood mapping. The goal is to augment remote sensing imagery with new open-source datasets to generate flood extend maps at higher temporal and spatial resolution. The proposed methodology is applied on two test cases, relative to the 2013 Boulder Colorado flood and the 2015 floods in Texas.

  13. Evaluation of urban flood damages in climate and land use changes: Case Studies from Southeast Asia

    NASA Astrophysics Data System (ADS)

    Kefi, M.; Binaya, M. K.; Kumar, P.; Fukushi, K.

    2017-12-01

    Urbanization, changes in land use and global warming increase the threat of natural disasters such as flooding. In recent decades, it was observed a rise of intensity and frequency of flood events. The exposure both of people and the national economy to flood hazards is amplified and can induce serious economic and social damages. For this reason, local governments adopted several strategies to cope with flood risk in urban areas in particular, but a better comprehension of the flood hazard factors may enhance the efficiency of mitigating measures overall. For this research, a spatial analysis is applied to estimate future direct flood damage for 2030 in three Southeast Asian megacities: Jakarta (Indonesia), Metro-Manila (Philippines) and Hanoi (Vietnam). This comprehensive method combined flood characteristics (flood depth) obtained from flood simulation using FLO-2D, land use generated from supervised classification and remote sensing products, property value of affected buildings and flood damage rate derived from flood depth function. This function is established based on field surveys with local people affected by past flood events. Additionally, two scenarios were analyzed to simulate the future conditions. The first one is related to climate change and it is based on several General Circulation Models (GCMs). However, the second one is establish to point out the effect of adaptation strategies. The findings shows that the climate change combined with the expansion of built-up areas increase the vulnerability of urban areas to flooding and the economic damage. About 16%, 8% and 19% of flood inundation areas are expected to increase respectively in Metro-Manila, Jakarta and Hanoi. However, appropriate flood control measures can be helpful to reduce the impact of natural disaster. Furthermore, flood damage maps are generated at a large scale, which can be helpful to local stakeholders when prioritizing their mitigation strategies on urban disaster resilience.

  14. Flood-inundation maps for Lake Champlain in Vermont and in northern Clinton County, New York

    USGS Publications Warehouse

    Flynn, Robert H.; Hayes, Laura

    2016-06-30

    Digital flood-inundation maps for an approximately100-mile length of Lake Champlain in Addison, Chittenden, Franklin, and Grand Isle Counties in Vermont and northern Clinton County in New York were created by the U.S. Geological Survey (USGS) in cooperation with the International Joint Commission (IJC). The flood-inundationmaps, which can be accessed through the International Joint Commission (IJC) Web site at http://www.ijc.org/en_/, depict estimates of the areal extent flooding correspondingto selected water levels (stages) at the USGS lake gage on the Richelieu River (Lake Champlain) at Rouses Point, N.Y. (station number 04295000). In this study, wind and seiche effects (standing oscillating wave with a long wavelength) were not taken into account and the flood-inundation mapsreflect 11 stages (elevations) for Lake Champlain that are static for the study length of the lake. Near-real-time stages at this lake gage, and others on Lake Champlain, may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at the Richelieu River (Lake Champlain) at Rouses Point.Static flood boundary extents were determined for LakeChamplain in Addison, Chittenden, Franklin, and Grand Isle Counties in Vermont and northern Clinton County in New York using recently acquired (2013–2014) lidar (light detection and ranging) and may be referenced to any of the five USGS lake gages on Lake Champlain. Of these five lakgages, USGS lake gage 04295000, Richelieu River (Lake Champlain) at Rouses Point, N.Y., is the only USGS lake gage that is also a National Weather Service prediction location. Flood boundary extents for the Lake Champlain static flood-inundation map corresponding to the May 201 flood(103.2 feet [ft], National Geodetic Vertical Datum [NGVD] 29) were evaluated by comparing these boundary extents against the inundation area extents determined for the May 2011 flood (which incorporated documented high-water marksfrom the flood of May 201) (Bjerklie and others, 2014).A digital elevation model (DEM) was created by USGS, within a geographic information system (GIS), from the recently flown and processed light detection and ranging(lidar) data (2013–2014) in Vermont and the lake shore area of northern Clinton County in New York. The lidar data have a vertical accuracy of 0.3 to 0.6-ft (9.6 to 18.0-centimeters [cm]) and a horizontal resolution of 2.3 to 4.6 ft (0.7 to 1.4 meters). This DEM was used in determining the floodboundary for 11 flood stages at 0.5-ft intervals from 100.0 to104.0 ft (NGVD 29) and 1-ft intervals from 104.0 to 106.0 ft (NGVD 29) as referenced to the USGS lake gage 04295000, Richelieu River (Lake Champlain) at Rouses Point, N.Y. In addition, the May 2011 flood-inundation area for elevation103.20 ft (NGVD 29) (102.77 ft, North American Vertical Datum [NAVD] 88) was determined from this DEM. The May 2011 flood is the highest recorded lake water level (stage)at the Rouses Point, N.Y., lake gage. Flood stages greater than 101.5 ft (NGVD 29) exceed the “major flood stage”as defined by the NationalWeather Service for USGS lake gage 04295000.The availability of these maps, along with Internet information regarding current stage from the USGS lake gage and forecasted high-flow stages from the NationalWeather Service, will provide emergency management personnel and residents with information that is critical for flood responseactivities such as evacuations and road closures, as well as for post-flood recovery eforts.

  15. Analysis of the French insurance market exposure to floods: a stochastic model combining river overflow and surface runoff

    NASA Astrophysics Data System (ADS)

    Moncoulon, D.; Labat, D.; Ardon, J.; Leblois, E.; Onfroy, T.; Poulard, C.; Aji, S.; Rémy, A.; Quantin, A.

    2014-09-01

    The analysis of flood exposure at a national scale for the French insurance market must combine the generation of a probabilistic event set of all possible (but which have not yet occurred) flood situations with hazard and damage modeling. In this study, hazard and damage models are calibrated on a 1995-2010 historical event set, both for hazard results (river flow, flooded areas) and loss estimations. Thus, uncertainties in the deterministic estimation of a single event loss are known before simulating a probabilistic event set. To take into account at least 90 % of the insured flood losses, the probabilistic event set must combine the river overflow (small and large catchments) with the surface runoff, due to heavy rainfall, on the slopes of the watershed. Indeed, internal studies of the CCR (Caisse Centrale de Reassurance) claim database have shown that approximately 45 % of the insured flood losses are located inside the floodplains and 45 % outside. Another 10 % is due to sea surge floods and groundwater rise. In this approach, two independent probabilistic methods are combined to create a single flood loss distribution: a generation of fictive river flows based on the historical records of the river gauge network and a generation of fictive rain fields on small catchments, calibrated on the 1958-2010 Météo-France rain database SAFRAN. All the events in the probabilistic event sets are simulated with the deterministic model. This hazard and damage distribution is used to simulate the flood losses at the national scale for an insurance company (Macif) and to generate flood areas associated with hazard return periods. The flood maps concern river overflow and surface water runoff. Validation of these maps is conducted by comparison with the address located claim data on a small catchment (downstream Argens).

  16. A Bayesian framework based on a Gaussian mixture model and radial-basis-function Fisher discriminant analysis (BayGmmKda V1.1) for spatial prediction of floods

    NASA Astrophysics Data System (ADS)

    Tien Bui, Dieu; Hoang, Nhat-Duc

    2017-09-01

    In this study, a probabilistic model, named as BayGmmKda, is proposed for flood susceptibility assessment in a study area in central Vietnam. The new model is a Bayesian framework constructed by a combination of a Gaussian mixture model (GMM), radial-basis-function Fisher discriminant analysis (RBFDA), and a geographic information system (GIS) database. In the Bayesian framework, GMM is used for modeling the data distribution of flood-influencing factors in the GIS database, whereas RBFDA is utilized to construct a latent variable that aims at enhancing the model performance. As a result, the posterior probabilistic output of the BayGmmKda model is used as flood susceptibility index. Experiment results showed that the proposed hybrid framework is superior to other benchmark models, including the adaptive neuro-fuzzy inference system and the support vector machine. To facilitate the model implementation, a software program of BayGmmKda has been developed in MATLAB. The BayGmmKda program can accurately establish a flood susceptibility map for the study region. Accordingly, local authorities can overlay this susceptibility map onto various land-use maps for the purpose of land-use planning or management.

  17. From Big Data to Small Transportable Products for Decision Support for Floods in Namibia

    NASA Astrophysics Data System (ADS)

    Mandl, D.; Frye, S.; Cappelaere, P.; Policelli, F.; Handy, M.; Sohlberg, R. A.; Grossman, R.

    2013-12-01

    During the past four years, a team from NASA, Oklahoma University, University of Maryland and University of Chicago in collaboration with the Namibia Hydrological Services (NHS) has explored ways to provide decision support products for floods. The products include a variety of data including a hydrological model, ground measurements such as river gauges, and earth remote sensing data. This poster or presentation highlights the lessons learned in acquiring, storing, managing big data on the cloud and turning it into relevant products for GEOSS users. Technology that has been explored includes the use of Hadoop/MapReduce and Accumulo to process and manage the large data sets. OpenStreetMap was explored for use in cataloging water boundaries and enabling collaborative mapping of the base water mask and floods. A Flood Dashboard was created to customize displays of various data products. Finally, a higher level Geo-Social Application Processing Interface (API) was developed so that users can discover, generate products dynamically for their specific needs/societal benefit areas and then share them with their Community of Practice over social networks. Results of this experiment have included 100x reduction in size of some flood products, making it possible to distribute these products to mobile platforms and/or bandwidth-limited users.

  18. Space geodesy: subsidence and flooding in New Orleans.

    PubMed

    Dixon, Timothy H; Amelung, Falk; Ferretti, Alessandro; Novali, Fabrizio; Rocca, Fabio; Dokka, Roy; Sella, Giovanni; Kim, Sang-Wan; Wdowinski, Shimon; Whitman, Dean

    2006-06-01

    It has long been recognized that New Orleans is subsiding and is therefore susceptible to catastrophic flooding. Here we present a new subsidence map for the city, generated from space-based synthetic-aperture radar measurements, which reveals that parts of New Orleans underwent rapid subsidence in the three years before Hurricane Katrina struck in August 2005. One such area is next to the Mississippi River-Gulf Outlet (MRGO) canal, where levees failed during the peak storm surge: the map indicates that this weakness could be explained by subsidence of a metre or more since their construction.

  19. Improving the extraction of crisis information in the context of flood, fire, and landslide rapid mapping using SAR and optical remote sensing data

    NASA Astrophysics Data System (ADS)

    Martinis, Sandro; Clandillon, Stephen; Twele, André; Huber, Claire; Plank, Simon; Maxant, Jérôme; Cao, Wenxi; Caspard, Mathilde; May, Stéphane

    2016-04-01

    Optical and radar satellite remote sensing have proven to provide essential crisis information in case of natural disasters, humanitarian relief activities and civil security issues in a growing number of cases through mechanisms such as the Copernicus Emergency Management Service (EMS) of the European Commission or the International Charter 'Space and Major Disasters'. The aforementioned programs and initiatives make use of satellite-based rapid mapping services aimed at delivering reliable and accurate crisis information after natural hazards. Although these services are increasingly operational, they need to be continuously updated and improved through research and development (R&D) activities. The principal objective of ASAPTERRA (Advancing SAR and Optical Methods for Rapid Mapping), the ESA-funded R&D project being described here, is to improve, automate and, hence, speed-up geo-information extraction procedures in the context of natural hazards response. This is performed through the development, implementation, testing and validation of novel image processing methods using optical and Synthetic Aperture Radar (SAR) data. The methods are mainly developed based on data of the German radar satellites TerraSAR-X and TanDEM-X, the French satellite missions Pléiades-1A/1B as well as the ESA missions Sentinel-1/2 with the aim to better characterize the potential and limitations of these sensors and their synergy. The resulting algorithms and techniques are evaluated in real case applications during rapid mapping activities. The project is focussed on three types of natural hazards: floods, landslides and fires. Within this presentation an overview of the main methodological developments in each topic is given and demonstrated in selected test areas. The following developments are presented in the context of flood mapping: a fully automated Sentinel-1 based processing chain for detecting open flood surfaces, a method for the improved detection of flooded vegetation in Sentinel-1data using Entropy/Alpha decomposition, unsupervised Wishart Classification, and object-based post-classification as well as semi-automatic approaches for extracting inundated areas and flood traces in rural and urban areas from VHR and HR optical imagery using machine learning techniques. Methodological developments related to fires are the implementation of fast and robust methods for mapping burnt scars using change detection procedures using SAR (Sentinel-1, TerraSAR-X) and HR optical (e.g. SPOT, Sentinel-2) data as well as the extraction of 3D surface and volume change information from Pléiades stereo-pairs. In the context of landslides, fast and transferable change detection procedures based on SAR (TerraSAR-X) and optical (SPOT) data as well methods for extracting the extent of landslides only based on polarimetric VHR SAR (TerraSAR-X) data are presented.

  20. Comparative Performance Analysis of a Hyper-Temporal Ndvi Analysis Approach and a Landscape-Ecological Mapping Approach

    NASA Astrophysics Data System (ADS)

    Ali, A.; de Bie, C. A. J. M.; Scarrott, R. G.; Ha, N. T. T.; Skidmore, A. K.

    2012-07-01

    Both agricultural area expansion and intensification are necessary to cope with the growing demand for food, and the growing threat of food insecurity which is rapidly engulfing poor and under-privileged sections of the global population. Therefore, it is of paramount importance to have the ability to accurately estimate crop area and spatial distribution. Remote sensing has become a valuable tool for estimating and mapping cropland areas, useful in food security monitoring. This work contributes to addressing this broad issue, focusing on the comparative performance analysis of two mapping approaches (i) a hyper-temporal Normalized Difference Vegetation Index (NDVI) analysis approach and (ii) a Landscape-ecological approach. The hyper-temporal NDVI analysis approach utilized SPOT 10-day NDVI imagery from April 1998-December 2008, whilst the Landscape-ecological approach used multitemporal Landsat-7 ETM+ imagery acquired intermittently between 1992 and 2002. Pixels in the time-series NDVI dataset were clustered using an ISODATA clustering algorithm adapted to determine the optimal number of pixel clusters to successfully generalize hyper-temporal datasets. Clusters were then characterized with crop cycle information, and flooding information to produce an NDVI unit map of rice classes with flood regime and NDVI profile information. A Landscape-ecological map was generated using a combination of digitized homogenous map units in the Landsat-7 ETM+ imagery, a Land use map 2005 of the Mekong delta, and supplementary datasets on the regions terrain, geo-morphology and flooding depths. The output maps were validated using reported crop statistics, and regression analyses were used to ascertain the relationship between land use area estimated from maps, and those reported in district crop statistics. The regression analysis showed that the hyper-temporal NDVI analysis approach explained 74% and 76% of the variability in reported crop statistics in two rice crop and three rice crop land use systems respectively. In contrast, 64% and 63% of the variability was explained respectively by the Landscape-ecological map. Overall, the results indicate the hyper-temporal NDVI analysis approach is more accurate and more useful in exploring when, why and how agricultural land use manifests itself in space and time. Furthermore, the NDVI analysis approach was found to be easier to implement, was more cost effective, and involved less subjective user intervention than the landscape-ecological approach.

  1. 44 CFR 65.12 - Revision of flood insurance rate maps to reflect base flood elevations caused by proposed...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Revision of flood insurance rate maps to reflect base flood elevations caused by proposed encroachments. 65.12 Section 65.12... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL...

  2. Evaluation of flood hazard maps in print and web mapping services as information tools in flood risk communication

    NASA Astrophysics Data System (ADS)

    Hagemeier-Klose, M.; Wagner, K.

    2009-04-01

    Flood risk communication with the general public and the population at risk is getting increasingly important for flood risk management, especially as a precautionary measure. This is also underlined by the EU Flood Directive. The flood related authorities therefore have to develop adjusted information tools which meet the demands of different user groups. This article presents the formative evaluation of flood hazard maps and web mapping services according to the specific requirements and needs of the general public using the dynamic-transactional approach as a theoretical framework. The evaluation was done by a mixture of different methods; an analysis of existing tools, a creative workshop with experts and laymen and an online survey. The currently existing flood hazard maps or web mapping services or web GIS still lack a good balance between simplicity and complexity with adequate readability and usability for the public. Well designed and associative maps (e.g. using blue colours for water depths) which can be compared with past local flood events and which can create empathy in viewers, can help to raise awareness, to heighten the activity and knowledge level or can lead to further information seeking. Concerning web mapping services, a linkage between general flood information like flood extents of different scenarios and corresponding water depths and real time information like gauge levels is an important demand by users. Gauge levels of these scenarios are easier to understand than the scientifically correct return periods or annualities. The recently developed Bavarian web mapping service tries to integrate these requirements.

  3. The European flood risk directive: challenges for research

    NASA Astrophysics Data System (ADS)

    Mostert, E.; Junier, S. J.

    2009-07-01

    In recent years, flood management has shifted from protection against floods to managing the risks of floods. In Europe, this shift is reflected in the Flood risk directive of October 2007 (2007/60/EC; FRD). The FRD requires EU Member States to undertake a preliminary assessment of flood risks and, for areas with a significant flood risk, to prepare flood hazard and flood risk maps and flood risk management plans. The purpose of this paper is to introduce the FRD and discuss the challenges that the FRD poses to research. These challenges include the issue how to define and measure ''flood risk'', the selection of alternatives to be assessed, coping with uncertainty, risk communication, nurturing trust and promoting collaboration. These research challenges cannot be addressed properly within any single discipline and without involving the flood risk managers and other stakeholders. The paper therefore concludes that there is a large need for interdisciplinary and participatory research. This constitutes in fact the biggest research challenge.

  4. Flood-inundation maps for the Tippecanoe River at Winamac, Indiana

    USGS Publications Warehouse

    Menke, Chad D.; Bunch, Aubrey R.

    2015-09-25

    For this study, flood profiles were computed for the Tippecanoe River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at the Tippecanoe River streamgage, in combination with the current (2014) Federal Emergency Management Agency flood-insurance study for Pulaski County. The calibrated hydraulic model was then used to determine nine water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The 1-percent annual exceedance probability (AEP) flood stage (flood with recurrence intervals within 100 years) has not been determined yet for this streamgage location. The rating has not been developed for the 1-percent AEP because the streamgage dates to only 2001. The simulated water-surface profiles were then used with a geographic information system (GIS) digital elevation model (DEM, derived from Light Detection and Ranging [lidar]) in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage 03331753, Tippecanoe River at Winamac, Ind., and forecast stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  5. 78 FR 36215 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... Cloud County, Kansas, and Incorporated Areas Maps Available for Inspection Online at: www.fema.gov.... City of Miltonvale City Hall, 107 Starr Avenue, Miltonvale, KS 67466. Unincorporated Areas of Cloud County... Cloud County Courthouse, 811 Washington Street, Concordia, KS 66901. (Catalog of Federal...

  6. 76 FR 21664 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ... from the requirements of 44 CFR part 10, Environmental Consideration. An environmental impact... Unincorporated Areas of Walnut Creek. Franklin County. Approximately 800 feet +1038 downstream of Hedge Road... 97502. Unincorporated Areas of Jackson County Maps are available for inspection at City Hall, 10 South...

  7. Daily High-Resolution Flood Maps of Africa: 1992-present with Near Real Time Updates

    NASA Astrophysics Data System (ADS)

    Picton, J.; Galantowicz, J. F.; Root, B.

    2016-12-01

    The ability to characterize past and current flood extents frequently, accurately, and at high resolution is needed for many applications including risk assessment, wetlands monitoring, and emergency management. However, remote sensing methods have not been capable of meeting all of these requirements simultaneously. Cloud cover too often obscures the surface for visual and infrared sensors and observations from radar sensors are too infrequent to create consistent historical databases or monitor evolving events. Lower-resolution (10-50 km) passive microwave sensors, such as SSM/I, AMSR-E, and AMSR2, are sensitive to water cover, acquire useful data during clear and cloudy conditions, have revisit periods of up to twice daily, and provide a continuous record of data from 1992 to the present. What they lack most is the resolution needed to map flood extent. We will present results from a flood mapping system capable of producing high-resolution (90-m) flood extent depictions from lower resolution microwave data. The system uses the strong sensitivity of microwave data to surface water coverage combined with land surface and atmospheric data to derive daily flooded fraction estimates on a sensor-footprint basis. The system downscales flooded fraction to make high-resolution Boolean flood extent depictions that are spatially continuous and consistent with the lower resolution data. The downscaling step is based on a relative floodability (RF) index derived from higher-resolution topographic and hydrological data. We process RF to create a flooded fraction threshold map that relates each 90-m grid point to the surrounding terrain at the microwave scale. We have derived daily, 90-m resolution flood maps for Africa covering 1992-present using SSM/I, AMSR-E, and AMSR2 data and we are now producing new daily maps in near real time. The flood maps are being used by the African Risk Capacity (ARC) Agency to underpin an intergovernmental river flood insurance program in Africa. We will present results showing daily flood extents during major events and discuss: validation of the flood maps against MODIS-derived maps; analyses of minimum detectable flood size; aggregate analyses of flood extent over time; flood map use in ARC's insurance model; and results applying the system to the Americas.

  8. Flood-inundation maps for the St. Marys River at Decatur, Indiana

    USGS Publications Warehouse

    Strauch, Kellan R.

    2015-08-24

    The availability of these maps and associated Web mapping tools, along with the current river stage from USGS streamgages and forecasted flood stages from the NWS, provides emergency managers and residents with information that may be critical for flood-emergency planning and flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  9. Improving risk models for avian influenza: the role of intensive poultry farming and flooded land during the 2004 Thailand epidemic.

    PubMed

    Van Boeckel, Thomas P; Thanapongtharm, Weerapong; Robinson, Timothy; Biradar, Chandrashekhar M; Xiao, Xiangming; Gilbert, Marius

    2012-01-01

    Since 1996 when Highly Pathogenic Avian Influenza type H5N1 first emerged in southern China, numerous studies sought risk factors and produced risk maps based on environmental and anthropogenic predictors. However little attention has been paid to the link between the level of intensification of poultry production and the risk of outbreak. This study revised H5N1 risk mapping in Central and Western Thailand during the second wave of the 2004 epidemic. Production structure was quantified using a disaggregation methodology based on the number of poultry per holding. Population densities of extensively- and intensively-raised ducks and chickens were derived both at the sub-district and at the village levels. LandSat images were used to derive another previously neglected potential predictor of HPAI H5N1 risk: the proportion of water in the landscape resulting from floods. We used Monte Carlo simulation of Boosted Regression Trees models of predictor variables to characterize the risk of HPAI H5N1. Maps of mean risk and uncertainty were derived both at the sub-district and the village levels. The overall accuracy of Boosted Regression Trees models was comparable to that of logistic regression approaches. The proportion of area flooded made the highest contribution to predicting the risk of outbreak, followed by the densities of intensively-raised ducks, extensively-raised ducks and human population. Our results showed that as little as 15% of flooded land in villages is sufficient to reach the maximum level of risk associated with this variable. The spatial pattern of predicted risk is similar to previous work: areas at risk are mainly located along the flood plain of the Chao Phraya river and to the south-east of Bangkok. Using high-resolution village-level poultry census data, rather than sub-district data, the spatial accuracy of predictions was enhanced to highlight local variations in risk. Such maps provide useful information to guide intervention.

  10. Improving Risk Models for Avian Influenza: The Role of Intensive Poultry Farming and Flooded Land during the 2004 Thailand Epidemic

    PubMed Central

    Van Boeckel, Thomas P.; Thanapongtharm, Weerapong; Robinson, Timothy; Biradar, Chandrashekhar M.; Xiao, Xiangming; Gilbert, Marius

    2012-01-01

    Since 1996 when Highly Pathogenic Avian Influenza type H5N1 first emerged in southern China, numerous studies sought risk factors and produced risk maps based on environmental and anthropogenic predictors. However little attention has been paid to the link between the level of intensification of poultry production and the risk of outbreak. This study revised H5N1 risk mapping in Central and Western Thailand during the second wave of the 2004 epidemic. Production structure was quantified using a disaggregation methodology based on the number of poultry per holding. Population densities of extensively- and intensively-raised ducks and chickens were derived both at the sub-district and at the village levels. LandSat images were used to derive another previously neglected potential predictor of HPAI H5N1 risk: the proportion of water in the landscape resulting from floods. We used Monte Carlo simulation of Boosted Regression Trees models of predictor variables to characterize the risk of HPAI H5N1. Maps of mean risk and uncertainty were derived both at the sub-district and the village levels. The overall accuracy of Boosted Regression Trees models was comparable to that of logistic regression approaches. The proportion of area flooded made the highest contribution to predicting the risk of outbreak, followed by the densities of intensively-raised ducks, extensively-raised ducks and human population. Our results showed that as little as 15% of flooded land in villages is sufficient to reach the maximum level of risk associated with this variable. The spatial pattern of predicted risk is similar to previous work: areas at risk are mainly located along the flood plain of the Chao Phraya river and to the south-east of Bangkok. Using high-resolution village-level poultry census data, rather than sub-district data, the spatial accuracy of predictions was enhanced to highlight local variations in risk. Such maps provide useful information to guide intervention. PMID:23185352

  11. Leveraging North Carolina's QL2 Lidar to Quantify Sensitivity of National Water Model Derived Flood Inundation Extent to DEM Resolution

    NASA Astrophysics Data System (ADS)

    Lovette, J. P.; Lenhardt, W. C.; Blanton, B.; Duncan, J. M.; Stillwell, L.

    2017-12-01

    The National Water Model (NWM) has provided a novel framework for near real time flood inundation mapping across CONUS at a 10m resolution. In many regions, this spatial scale is quickly being surpassed through the collection of high resolution lidar (1 - 3m). As one of the leading states in data collection for flood inundation mapping, North Carolina is currently improving their previously available 20 ft statewide elevation product to a Quality Level 2 (QL2) product with a nominal point spacing of 0.7 meters. This QL2 elevation product increases the ground points by roughly ten times over the previous statewide lidar product, and by over 250 times when compared to the 10m NED elevation grid. When combining these new lidar data with the discharge estimates from the NWM, we can further improve statewide flood inundation maps and predictions of at-risk areas. In the context of flood risk management, these improved predictions with higher resolution elevation models consistently represent an improvement on coarser products. Additionally, the QL2 lidar also includes coarse land cover classification data for each point return, opening the possibility for expanding analysis beyond the use of only digital elevation models (e.g. improving estimates of surface roughness, identifying anthropogenic features in floodplains, characterizing riparian zones, etc.). Using the NWM Height Above Nearest Drainage approach, we compare flood inundation extents derived from multiple lidar-derived grid resolutions to assess the tradeoff between precision and computational load in North Carolina's coastal river basins. The elevation data distributed through the state's new lidar collection program provide spatial resolutions ranging from 5-50 feet, with most inland areas also including a 3 ft product. Data storage increases by almost two orders of magnitude across this range, as does processing load. In order to further assess the validity of the higher resolution elevation products on flood inundation, we examine the NWM outputs from Hurricane Matthew, which devastated southeastern North Carolina in October 2016. When compared with numerous surveyed high water marks across the coastal plain, this assessment provides insight on the impacts of grid resolution on flood inundation extent.

  12. Hydrologic and Hydraulic Analyses of Selected Streams in Lorain County, Ohio, 2003

    USGS Publications Warehouse

    Jackson, K. Scott; Ostheimer, Chad J.; Whitehead, Matthew T.

    2003-01-01

    Hydrologic and hydraulic analyses were done for selected reaches of nine streams in Lorain County Ohio. To assess the alternatives for flood-damage mitigation, the Lorain County Engineer and the U.S. Geological Survey (USGS) initiated a cooperative study to investigate aspects of the hydrology and hydraulics of the nine streams. Historical streamflow data and regional regression equations were used to estimate instantaneous peak discharges for floods having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Explanatory variables used in the regression equations were drainage area, main-channel slope, and storage area. Drainage areas of the nine stream reaches studied ranged from 1.80 to 19.3 square miles. The step-backwater model HEC-RAS was used to determine water-surface-elevation profiles for the 10-year-recurrence-interval (10-year) flood along a selected reach of each stream. The water-surface pro-file information was used then to generate digital mapping of flood-plain boundaries. The analyses indicate that at the 10-year flood elevation, road overflow results at numerous hydraulic structures along the nine streams.

  13. Mapping Socio-Economic Vulnerability During Extreme Events (flash floods) in The Himalayan Region: A Case Study Of Bhagirathi Basin, Uttarakhand

    NASA Astrophysics Data System (ADS)

    Nisha, N.; Punia, M.

    2016-12-01

    Mountain stratigraphic system cannot be claimed as the extraordinarily fragile but a greater range of vulnerability to disturbance than many landscape, in the physical space leading to disturbance in social space, makes it special eco-sensitive zone with greater degree of fragility. The present study furnishes socio-economic vulnerability mapping of the Bhagirathi basin through computation of the Socio vulnerability Index (SoVI). SoVI correlates vulnerability to natural or anthropogenic disasters to socio - economic development and illustrates how developmental parameters alter equation of potential effect and recovery in event of a natural catastrophe in the study region. Use of time-series datasets from different sources, including the optical remote sensing data and the use of social and/or economic data to quantify the vulnerabilities during extreme events is attempted. From the analysis it has been found that the areas with high social vulnerability index are might prone to disaster than low index area. However, the analysis of social vulnerability not only helps to identify flood risk area but also raises the question how the key drivers trigger flood and controlled by the governments and local authorities.

  14. 78 FR 7441 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Online at:'' Link is corrected to read as follows: http://riskmap6.com/Community.aspx?cid=208&sid=4 3. On... ``Maps Available for Inspection Online at:'' Link is corrected to read as follows: http://riskmap6.com... Areas,'' the entry for the ``Maps Available for Inspection Online at:'' Link is corrected to read as...

  15. Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Inundation for Categories 2 and 4

    EPA Pesticide Factsheets

    The file geodatabase (fgdb) contains the Sea, Lake, and Overland Surge from Hurricanes (SLOSH) Maximum of Maximums (MOM) model for hurricane categories 2 and 4. The EPA Office of Research & Development (ORD) modified the original model from NOAA to fit the model parameters for the Buzzards Bay region. The models show storm surge extent for the Mattapoisett area and therefore the flooding area was reduced to the study area. Areas of flooding that were not connected to the main water body were removed. The files in the geodatabase are:Cat2_SLR0_Int_Feet_dissolve_Mattapoisett: Current Category 2 hurricane with 0 ft sea level riseCat4_SLR0_Int_Feet_dissolve_Mattapoisett: Current Category 4 hurricane with 0 ft sea level riseCat4_SLR4_Int_Feet_dissolve_Mattapoisett: Future Category 4 hurricane with 4 feet sea level riseThe features support the Weather Ready Mattapoisett story map, which can be accessed via the following link:https://epa.maps.arcgis.com/apps/MapJournal/index.html?appid=1ff4f1d28a254cb689334799d94b74e2

  16. New Jersey StreamStats: A web application for streamflow statistics and basin characteristics

    USGS Publications Warehouse

    Watson, Kara M.; Janowicz, Jon A.

    2017-08-02

    StreamStats is an interactive, map-based web application from the U.S. Geological Survey (USGS) that allows users to easily obtain streamflow statistics and watershed characteristics for both gaged and ungaged sites on streams throughout New Jersey. Users can determine flood magnitude and frequency, monthly flow-duration, monthly low-flow frequency statistics, and watershed characteristics for ungaged sites by selecting a point along a stream, or they can obtain this information for streamgages by selecting a streamgage location on the map. StreamStats provides several additional tools useful for water-resources planning and management, as well as for engineering purposes. StreamStats is available for most states and some river basins through a single web portal.Streamflow statistics for water resources professionals include the 1-percent annual chance flood flow (100-year peak flow) used to define flood plain areas and the monthly 7-day, 10-year low flow (M7D10Y) used in water supply management and studies of recreation, wildlife conservation, and wastewater dilution. Additionally, watershed or basin characteristics, including drainage area, percent area forested, and average percent of impervious areas, are commonly used in land-use planning and environmental assessments. These characteristics are easily derived through StreamStats.

  17. Flood of December 25, 1987, in Millington, Tennessee and vicinity

    USGS Publications Warehouse

    Lewis, James G.; Gamble, Charles R.

    1989-01-01

    Intense rainfall totaling 9.2 in. in a 12-hour period on December 24-25, 1987, and 14.8 in for the period December 24-27 caused record floods in Millington, Tennessee and vicinity. The peak discharge of Big Creek at Raleigh-Millington Road was almost twice the discharge of the 100-year flood discharge and that of Loosahatchie River near Arlington was about equal to the 50-year flood discharge. The inundated area and flood elevations are depicted on a map of Millington, Tennessee and vicinity. Water surface profiles for the peak of December 25, 1987, for Loosahatchie River, Big Creek, Royster Creek, North Fork Creek, Casper Creek, and an unnamed tributary to Big Creek are shown. Flood damages and cleanup costs for this record flood have been estimated at about $9.2 million. (USGS)

  18. Geospatial Analysis for Flood-Risk Management, Resilience, and US Policy

    NASA Astrophysics Data System (ADS)

    Pinter, N.; Hui, R.; Conrad, D. R.; Schaefer, K.

    2016-12-01

    The National Flood Insurance Program (NFIP) was established in 1968 to curtail unfettered development on US floodplains and spiraling taxpayer expenditures for disaster relief. Currently NFIP underwrites >5 million policies, providing >1.25 trillion in coverage, and taking in >3.5 billion in annual premiums. Cumulative flood-damage payouts to date exceed premiums collected by >$20 billion. Our group has obtained nationwide databases of NFIP flood-damage claims back to 1972, annual policies since 1994, and selective Federal Emergency Management Agency (FEMA) repetitive losses. Attributes include property, claims, and loss characteristics. Other attributes were stripped to maintain policyholder anonymity. At present, locations are to the nearest 0.1° lat/long, zip code, and by community. We combine NFIP data with GIS information from a variety of other sources. Over the past 44 years, 1,625,470 non-zero flood claims are documented. Numbers of claims and losses have increased over time, even with extreme events (Hurricanes Katrina and Sandy) excluded. Flood losses have occurred within 100-year floodplains (1% annual exceedance), in coastal hazard zones, and 25% of claims occur outside of mapped flood-hazard areas. We hypothesize that a many losses outside of FEMA's designated Special Flood Hazard Area (SFHA) correlate with (1) outdated map panels, (2) contrasting levels of enforcement and mitigation by state. Other distributed flood losses represent stormwater/drainage damage. Claim rates substantially exceed 1%, both in and outside the SFHA, and for "pre-FIRM" and "post-FIRM" structures. This suggests that ≥100-year floods are occurring more frequently than statutory frequencies suggest. For US homeowners, this suggests that flood insurance is a good deal in a variety of settings. The NFIP data analyzed here contrasts with our group's previous, largely model-driven research. Such empirical flood data exclude model assumptions, but add dizzying array of human and political factors into the resulting spatial and temporal patterns. Parsing out the hydrologic, climatic, social, and political factors influencing flood risk and resilience is crucial for sound management of NFIP and other programs. The US Congress will debate reauthorization and possible revision of NFIP in 2017.

  19. Analyzing Future Flooding under Climate Change Scenario using CMIP5 Streamflow Data

    NASA Astrophysics Data System (ADS)

    Nyaupane, Narayan; Parajuli, Ranjan; Kalra, Ajay

    2017-12-01

    Flooding is the most severe and costlier natural hazard in US. The effect of climate change has intensified the scenario in recent years. Flood prevention practice along with proper understanding of flooding event can mitigate the risk of such hazard. The flood plain mapping is one of the technique to quantify the severity of the flooding. Carson City, which is one of the agricultural area in the desert of Nevada has experienced peak flood in recent year. The underlying probability distribution for the area, latest Coupled Model Intercomparison Project (CMIP5) streamflow data of Carson River were analyzed for 27 different statistical distributions. The best fitted distribution underlying was used to forecast the 100yr flood (design flood). The data from 1950-2099 derived from 31 model and total 97 projections were used to predict the future streamflow. Delta change method is adopted to quantify the amount of future (2050-2099) flood. To determine the extent of flooding 3 scenarios (i) historic design flood, (ii) 500yr flood and (iii) future 100yr flood were routed on a HEC-RAS model, prepared using available terrain data. Some of the climate projection shows extreme increase in future design flood. The future design flood could be more than the historic 500yr flood. At the same time, the extent of flooding could go beyond the historic flood of 0.2% annual probability. This study suggests an approach to quantify the future flood and floodplain using climate model projections. The study would provide helpful information to the facility manager, design engineer and stake holders.

  20. Differences in flood hazard projections in Europe – their causes and consequences for decision making

    USGS Publications Warehouse

    Kundzewicz, Z. W.; Krysanova, V.; Dankers, R.; Hirabayashi, Y.; Kanae, S.; Hattermann, F. F.; Huang, S.; Milly, Paul C.D.; Stoffel, M.; Driessen, P.P.J.; Matczak, P.; Quevauviller, P.; Schellnhuber, H.-J.

    2017-01-01

    This paper interprets differences in flood hazard projections over Europe and identifies likely sources of discrepancy. Further, it discusses potential implications of these differences for flood risk reduction and adaptation to climate change. The discrepancy in flood hazard projections raises caution, especially among decision makers in charge of water resources management, flood risk reduction, and climate change adaptation at regional to local scales. Because it is naïve to expect availability of trustworthy quantitative projections of future flood hazard, in order to reduce flood risk one should focus attention on mapping of current and future risks and vulnerability hotspots and improve the situation there. Although an intercomparison of flood hazard projections is done in this paper and differences are identified and interpreted, it does not seems possible to recommend which large-scale studies may be considered most credible in particular areas of Europe.

Top