Sample records for floodplain trapping factor

  1. The Rhine Delta - a record of sediment trapping over time scales from millennia to decades

    NASA Astrophysics Data System (ADS)

    Middelkoop, Hans; Erkens, Gilles; van der Perk, Marcel

    2010-05-01

    At the land-ocean interface, large river deltas are major sinks of sediments and associated matter. Over the past decennia, many studies have been conducted on the palaeogeographic, historic and sub-recent overbank deposition on the Rhine floodplains. In this study these research results are synthesises with special focus on the amounts and changes of overbank fines trapped in the Rhine delta at different time scales in the past, present, and future. This contribution forms an update of the results presented at the EGU 2009 in session HS11.3 (Sediment response to catchment disturbances). Sediment trapping in the Rhine delta throughout the Holocene was quantified using a detailed database of the Holocene delta architecture. Additional historic data allowed the reconstruction of the development of the river floodplains during the period of direct human interference on the river. Using heavy metals as tracers, overbank deposition rates over the past century were determined. Measurements of overbank deposition and channel bed sediment transport in recent years, together with modelling studies of sediment transport and deposition have provided detailed insight in the present-day sediment deposition on the floodplains, as well as their controls. Estimated annual suspended sediment delivery rates were about 1.4 Mton (million tons) yr-1 between 6000-3000 yr BP and increased to about 2.1 Mton yr-1 between 3000-1000 yr BP. After embankment between 1100 and 1350 AD the amount of sediment trapped in the floodplains reduced to about 0.92 Mton yr-1. However, when accounting for sediment reworking, the actual sediment trapping of the embanked floodplains was about 1.6 Mton yr-1. Downstream of the lower Waal branch an inland delta developed that trapped another 0.4 Mton yr-1 of overbank fines. Since channel normalisation around 1850, the average deposition amounts on the embanked floodplains have been 1.15 Mton yr-1. Scenario studies show that the future sediment trapping in the lower Rhine floodplains might double. The variations in sediment deposited in the Rhine delta during the Holocene are largely attributed to changes in land use in the upstream basin. At present, the sediment trapping is low and heavily influenced by river regulation and engineering works. Upstream changes in climate and land use, and particularly direct measures for flood reduction in the lower floodplains may again change the amounts of sediments trapped by the lower floodplains in the forthcoming decennia.

  2. A geomorphological assessments of the distribution of sediment sinks along the lower Amazon River

    NASA Astrophysics Data System (ADS)

    Park, E.; Latrubesse, E. M.

    2017-12-01

    Floodplain sediment storage budget is examined along the 1,000 km reach of the lower Amazon River based on extensive sets of remote sensing data and field measurements. Incorporating the washload discharges at gauge stations at the main channel and major tributaries, we analyzed the roles of vast floodplain on the Amazon River seasonal variability in sediment discharges. Annual washload accumulation rate on floodplain along the reach in between Manacapuru and Obidos of is estimated to be 79 Mt over inter-annual average. Period that the net loss over to the floodplain of washload coincide with discharge rising phase of the Amazon River at Obidos, when the river water level rises to make hydrologic connections to floodplain. Only during the early falling phase (July-August), 3.6 Mt of washload net gain occurred in a year, which was less than 5% of the annual net loss to the floodplain. To assess the spatial distribution of sediment sinks along the lower Amazon, we incorporated various hydro-geomorphic factors regarding floodplain geomorphic styles and morphometric parameters, such floodplain width, levee heights, water-saturated area, suspended sediment distribution over floodplain and distribution of impeded floodplain. Impeded floodplain that contains numerous large rounded lakes is the definition of active sediment sinks along the lower Amazon, which seasonally stores most of the water and traps sediment from the river. The results of these hydro-geomorphic factors collectively indicate that the extent and magnitudes of sediment sinks becomes larger downstream (from Manacapuru to Monte Alegre), which is proportionally related to the development of the water-saturated floodplain. This indicates the nonlinear geomorphic evolution of the Amazon floodplain through its longitudinal profile since the late Holocene that downstream reaches are still to be infilled with sediments (incomplete floodplain) thus acting as sediment sinks.

  3. Floodplain trapping and cycling compared to streambank erosion of sediment and nutrients in an agricultural watershed

    USGS Publications Warehouse

    Gillespie, Jaimie; Noe, Gregory; Hupp, Cliff R.; Gellis, Allen; Schenk, Edward R.

    2018-01-01

    Floodplains and streambanks can positively and negatively influence downstream water quality through interacting geomorphic and biogeochemical processes. Few studies have measured those processes in agricultural watersheds. We measured inputs (floodplain sedimentation and dissolved inorganic loading), cycling (floodplain soil nitrogen [N] and phosphorus [P] mineralization), and losses (bank erosion) of sediment, N, and P longitudinally in stream reaches of Smith Creek, an agricultural watershed in the Valley and Ridge physiographic province. All study reaches were net depositional (floodplain deposition > bank erosion), had high N and P sedimentation and loading rates to the floodplain, high soil concentrations of N and P, and high rates of floodplain soil N and P mineralization. High sediment, N, and P inputs to floodplains are attributed to agricultural activity in the region. Rates of P mineralization were much greater than those measured in other studies of nontidal floodplains that used the same method. Floodplain connectivity and sediment deposition decreased longitudinally, contrary to patterns in most watersheds. The net trapping function of Smith Creek floodplains indicates a benefit to water quality. Further research is needed to determine if future decreases in floodplain deposition, continued bank erosion, and the potential for nitrate leaching from nutrient-enriched floodplain soils could pose a long-term source of sediment and nutrients to downstream rivers.

  4. Spatial variation in population dynamics of Sitka mice in floodplain forests.

    Treesearch

    T.A. Hanley; J.C. Barnard

    1999-01-01

    Population dynamics and demography of the Sitka mouse, Peromyscus keeni sitkensis, were studied by mark-recapture live-trapping over a 4-year period in four floodplain and upland forest habitats: old-growth Sitka spruce (Picea sitchensis) floodplain; red alder (Alnus rubra) floodplain; beaver-pond...

  5. Vegetation composition, nutrient, and sediment dynamics along a floodplain landscape

    USGS Publications Warehouse

    Rybicki, Nancy B.; Noe, Gregory; Hupp, Cliff R.; Robinson, Myles

    2015-01-01

    Forested floodplains are important landscape features for retaining river nutrients and sediment loads but there is uncertainty in how vegetation influences nutrient and sediment retention. In order to understand the role of vegetation in nutrient and sediment trapping, we quantified species composition and the uptake of nutrients in plant material relative to landscape position and ecosystem attributes in an urban, Piedmont watershed in Virginia, USA. We investigated in situ interactions among vegetative composition, abundance, carbon (C), nitrogen (N) and phosphorus (P) fluxes and ecosystem attributes such as water level, shading, soil nutrient mineralization, and sediment deposition. This study revealed strong associations between vegetation and nutrient and sediment cycling processes at the plot scale and in the longitudinal dimension, but there were few strong patterns between these aspects at the scale of geomorphic features (levee, backswamp, and toe-slope). Patterns reflected the nature of the valley setting rather than a simple downstream continuum. Plant nutrient uptake and sediment trapping were greatest at downstream sites with the widest floodplain and lowest gradient where the hydrologic connection between the floodplain and stream is greater. Sediment trapping increased in association with higher herbaceous plant coverage and lower tree canopy density that, in turn, was associated with a more water tolerant tree community found in the lower watershed but not at the most downstream site in the watershed. Despite urbanization effects on the hydrology, this floodplain functioned as an efficient nutrient trap. N and P flux rates of herbaceous biomass and total litterfall more than accounted for the N and P mineralization flux rate, indicating that vegetation incorporated nearly all mineralized nutrients into biomass.

  6. Importance of floodplain connectivity to fish populations in the Apalachicola River, Florida

    USGS Publications Warehouse

    Burgess, O.T.; Pine, William E.; Walsh, S.J.

    2013-01-01

    Floodplain habitats provide critical spawning and rearing habitats for many large-river fishes. The paradigm that floodplains are essential habitats is often a key reason for restoring altered rivers to natural flow regimes. However, few studies have documented spatial and temporal utilization of floodplain habitats by adult fish of sport or commercial management interest or assessed obligatory access to floodplain habitats for species' persistence. In this study, we applied telemetry techniques to examine adult fish movements between floodplain and mainstem habitats, paired with intensive light trap sampling of larval fish in these same habitats, to assess the relationships between riverine flows and fish movement and spawning patterns in restored and unmodified floodplain distributaries of the Apalachicola River, Florida. Our intent is to inform resource managers on the relationships between the timing, magnitude and duration of flow events and fish spawning as part of river management actions. Our results demonstrate spawning by all study species in floodplain and mainstem river habitat types, apparent migratory movements of some species between these habitats, and distinct spawning events for each study species on the basis of fish movement patterns and light trap catches. Additionally, Micropterus spp., Lepomis spp. and, to a lesser degree, Minytrema melanops used floodplain channel habitat that was experimentally reconnected to the mainstem within a few weeks of completing the restoration. This result is of interest to managers assessing restoration activities to reconnect these habitats as part of riverine restoration programmes globally.

  7. Increasing floodplain connectivity through urban stream restoration increases nutrient and sediment retention

    USGS Publications Warehouse

    McMillan, Sara K.; Noe, Gregory

    2017-01-01

    Stream restoration practices frequently aim to increase connectivity between the stream channel and its floodplain to improve channel stability and enhance water quality through sediment trapping and nutrient retention. To measure the effectiveness of restoration and to understand the drivers of these functional responses, we monitored five restored urban streams that represent a range of channel morphology and restoration ages. High and low elevation floodplain plots were established in triplicate in each stream to capture variation in floodplain connectivity. We measured ecosystem geomorphic and soil attributes, sediment and nutrient loading, and rates of soil nutrient biogeochemistry processes (denitrification; N and P mineralization) then used boosted regression trees (BRT) to identify controls on sedimentation and nutrient processing. Local channel and floodplain morphology and position within the river network controlled connectivity with increased sedimentation at sites downstream of impaired reaches and at floodplain plots near the stream channel and at low elevations. We observed that nitrogen loading (both dissolved and particulate) was positively correlated with denitrification and N mineralization and dissolved phosphate loading positively influenced P mineralization; however, none of these input rates or transformations differed between floodplain elevation categories. Instead, continuous gradients of connectivity were observed rather than categorical shifts between inset and high floodplains. Organic matter and nutrient content in floodplain soils increased with the time since restoration, which highlights the importance of recovery time after construction that is needed for restored systems to increase ecosystem functions. Our results highlight the importance of restoring floodplains downstream of sources of impairment and building them at lower elevations so they flood frequently, not just during bankfull events. This integrated approach has the greatest potential for increasing trapping of sediment, nutrients, and associated pollutants in restored streams and thereby improving water quality in urban watersheds.

  8. Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream

    NASA Astrophysics Data System (ADS)

    Hupp, Cliff R.; Noe, Gregory B.; Schenk, Edward R.; Benthem, Adam J.

    2013-01-01

    Suspended sediment is one of the major concerns regarding the quality of water entering the Chesapeake Bay. Some of the highest suspended-sediment concentrations occur on Piedmont streams, including Difficult Run, a tributary of the Potomac River draining urban and suburban parts of northern Virginia. Accurate information on catchment level sediment budgets is rare and difficult to determine. Further, the sediment trapping portion of sediment budget represents an important ecosystem service that profoundly affects downstream water quality. Our objectives, with special reference to human alterations to the landscape, include the documentation and estimation of floodplain sediment trapping (present and historic) and bank erosion along an urbanized Piedmont stream, the construction of a preliminary sediment balance, and the estimation of legacy sediment and recent development impacts. We used white feldspar markers to measure floodplain sedimentation rates and steel pins to measure erosion rates on floodplains and banks, respectively. Additional data were collected for/from legacy sediment thickness and characteristics, mill pond impacts, stream gaging station records, topographic surveying, and sediment density, texture, and organic content. Data were analyzed using GIS and various statistical programs. Results are interpreted relative to stream equilibrium affected by both post-colonial bottomland sedimentation (legacy) and modern watershed hardening associated with urbanization. Six floodplain/channel sites, from high to low in the watershed, were selected for intensive study. Bank erosion ranges from 0 to 470 kg/m/y and floodplain sedimentation ranges from 18 to 1369 kg/m/y (m refers to meters of stream reach). Upstream reaches are net erosional, while downstream reaches have a distinctly net depositional flux providing a watershed sediment balance of 2184 kg/m/y trapped within the system. The amounts of both deposition and erosion are large and suggest nonequilibrium channel conditions. Both peak discharge and number of peaks above base have substantially increased since the mid-1960s when urbanization of the watershed began. Deposition patterns are most closely correlated with channel gradient, sinuosity, and channel width/floodplain width for recent and historic periods. The substantial amounts of fine grained sediment deposited on the floodplain over the past two centuries or so do not appear to be closely related to historic mill pond presence or location. The floodplain continues to provide the critical ecosystem service of sediment trapping in the face of multiple human alterations. Trends in sediment deposition/erosion may react rapidly to land use practices within the watershed and offer a valuable barometer of the effects of management actions.

  9. Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream

    USGS Publications Warehouse

    Hupp, Cliff R.; Noe, Gregory B.; Schenk, Edward R.; Bentham, Adam J.

    2012-01-01

    Suspended sediment is one of the major concerns regarding the quality of water entering the Chesapeake Bay. Some of the highest suspended-sediment concentrations occur on Piedmont streams, including Difficult Run, a tributary of the Potomac River draining urban and suburban parts of northern Virginia. Accurate information on catchment level sediment budgets is rare and difficult to determine. Further, the sediment trapping portion of sediment budget represents an important ecosystem service that profoundly affects downstream water quality. Our objectives, with special reference to human alterations to the landscape, include the documentation and estimation of floodplain sediment trapping (present and historic) and bank erosion along an urbanized Piedmont stream, the construction of a preliminary sediment balance, and the estimation of legacy sediment and recent development impacts. We used white feldspar markers to measure floodplain sedimentation rates and steel pins to measure erosion rates on floodplains and banks, respectively. Additional data were collected for/from legacy sediment thickness and characteristics, mill pond impacts, stream gaging station records, topographic surveying, and sediment density, texture, and organic content. Data were analyzed using GIS and various statistical programs. Results are interpreted relative to stream equilibrium affected by both post-colonial bottomland sedimentation (legacy) and modern watershed hardening associated with urbanization. Six floodplain/channel sites, from high to low in the watershed, were selected for intensive study. Bank erosion ranges from 0 to 470 kg/m/y and floodplain sedimentation ranges from 18 to 1369 kg/m/y (m refers to meters of stream reach). Upstream reaches are net erosional, while downstream reaches have a distinctly net depositional flux providing a watershed sediment balance of 2184 kg/m/y trapped within the system. The amounts of both deposition and erosion are large and suggest nonequilibrium channel conditions. Both peak discharge and number of peaks above base have substantially increased since the mid-1960s when urbanization of the watershed began. Deposition patterns are most closely correlated with channel gradient, sinuosity, and channel width/floodplain width for recent and historic periods. The substantial amounts of fine grained sediment deposited on the floodplain over the past two centuries or so do not appear to be closely related to historic mill pond presence or location. The floodplain continues to provide the critical ecosystem service of sediment trapping in the face of multiple human alterations. Trends in sediment deposition/erosion may react rapidly to land use practices within the watershed and offer a valuable barometer of the effects of management actions.

  10. A method to quantify and value floodplain sediment and nutrient retention ecosystem services

    USGS Publications Warehouse

    Hopkins, Kristina G.; Noe, Gregory; Franco, Fabiano; Pindilli, Emily J.; Gordon, Stephanie; Metes, Marina J.; Claggett, Peter; Gellis, Allen; Hupp, Cliff R.; Hogan, Dianna

    2018-01-01

    Floodplains provide critical ecosystem services to local and downstream communities by retaining floodwaters, sediments, and nutrients. The dynamic nature of floodplains is such that these areas can both accumulate sediment and nutrients through deposition, and export material downstream through erosion. Therefore, estimating floodplain sediment and nutrient retention should consider the net flux of both depositional and erosive processes. An ecosystem services framework was used to quantify and value the sediment and nutrient ecosystem service provided by floodplains in the Difficult Run watershed, a small (151 km2) suburban watershed located in the Piedmont of Virginia (USA). A sediment balance was developed for Difficult Run and two nested watersheds. The balance included upland sediment delivery to streams, stream bank flux, floodplain flux, and stream load. Upland sediment delivery was estimated using geospatial datasets and a modified Revised Universal Soil Loss Equation. Predictive models were developed to extrapolate field measurements of the flux of sediment, sediment-bound nitrogen (N), and sediment-bound phosphorus (P) from stream banks and floodplains to 3232 delineated stream segments in the study area. A replacement cost approach was used to estimate the economic value of the sediment and nutrient retention ecosystem service based on estimated net stream bank and floodplain flux of sediment-bound N for all streams in the study area. Results indicated the net fluvial fluxes of sediment, sediment-bound N, and sediment-bound P were −10,439 Mg yr−1 (net export), 57,300 kg-N yr−1(net trapping), and 98 kg-P yr−1(net trapping), respectively. For sediment, floodplain retention was offset by substantial losses from stream bank erosion, particularly in headwater catchments, resulting in a net export of sediment. Nutrient retention in the floodplain exceeded that lost through stream bank erosion resulting in net retention of nutrients (TN and TP). Using a conservative cost estimate of $12.69 (USD) per kilogram of nitrogen, derived from wastewater treatment costs, the estimated annual value for sediment and nutrient retention on Difficult Run floodplains was $727,226 ± 194,220 USD/yr. Values and differences in floodplain nitrogen retention among stream reaches can be used to target areas for floodplain conservation and stream restoration. The methods presented are scalable and transferable to other areas if appropriate datasets are available for validation.

  11. Heavy-metal concentrations in small mammals from a diffusely polluted floodplain: importance of species- and location-specific characteristics.

    PubMed

    Wijnhoven, S; Leuven, R S E W; van der Velde, G; Jungheim, G; Koelemij, E I; de Vries, F T; Eijsackers, H J P; Smits, A J M

    2007-05-01

    The soil of several floodplain areas along large European rivers shows increased levels of heavy metals as a relict from past sedimentation of contaminants. These levels may pose risks of accumulation in food webs and toxicologic effects on flora and fauna. However, for floodplains, data on heavy-metal concentrations in vertebrates are scarce. Moreover, these environments are characterised by periodical flooding cycles influencing ecologic processes and patterns. To investigate whether the suggested differences in accumulation risks for insectivores and carnivores, omnivores, and herbivores are reflected in the actual heavy-metal concentrations in the species, we measured the current levels of Zn, Cu, Pb, and Cd in 199 specimens of 7 small mammal species (voles, mice, and shrews) and in their habitats in a diffusely polluted floodplain. The highest metal concentrations were found in the insectivorous and carnivorous shrew, Sorex araneus. Significant differences between the other shrew species, Crocidura russula, and the vole and mouse species was only found for Cd. The Cu concentration in Clethrionomys glareolus, however, was significantly higher than in several other vole and mouse species. To explain the metal concentrations found in the specimens, we related them to environmental variables at the trapping locations and to certain characteristics of the mammals. Variables taken into account were soil total and CaCl(2)-extractable metal concentrations at the trapping locations; whether locations were flooded or nonflooded; the trapping season; and the life stage; sex; and fresh weight of the specimens. Correlations between body and soil concentrations and location or specimen characteristics were weak. Therefore; we assumed that exposure of small mammals to heavy-metal contamination in floodplains is significantly influenced by exposure time, which is age related, as well as by dispersal and changes in foraging and feeding patterns under influence of periodic flooding.

  12. Types of stratigraphic traps in Lower Cretaceous Muddy Formation, northern Powder River Basin, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovekin, J.R.; Odland, S.K.; Quartarone, T.S. Gardner, M.H.

    1986-08-01

    Stratigraphic traps account for most of the oil produced from the Muddy Sandstone in the northern Powder River basin. Two categories of traps exist. The first trap type is the result of lateral and vertical facies changes. Reservoir facies include tidal channels, point bars, bayhead deltas, barrier islands, and strand-plain sandstones; trapping facies include bay-fill and estuarine sediments, mud-filled tidal channels, and flood-plain deposits. The second of the two categories of traps results from an unconformity that juxtaposes permeable and impermeable sediments of quite different ages. Structural and diagenetic factors often modify and locally enhance reservoir quality within both categoriesmore » of stratigraphic traps. The various types of traps are demonstrated by studies of six field areas: (1) barrier-island sandstones, sealed updip by back-barrier shales, produce at Ute and Kitty fields; (2) tidal channels produce at Collums and Kitty fields; (3) bayhead deltas, encased in estuarine sediments, form traps at Oedekoven and Kitty fields; (4) fluvial point-bar sandstones form traps at Oedekoven, Store, and Kitty fields; (5) unconformity-related traps exist where Muddy fluvial valley-fill sediments lap out against impermeable valley walls of Skull Creek Shale on the updip side at Store, Oedekoven, and Kitty fields; and (6) the clay-rich weathered zone, directly beneath an intraformational unconformity, forms the seal to the reservoirs at Amos Draw field.« less

  13. Field evaluation of four widely used mosquito traps in Central Europe

    PubMed Central

    2014-01-01

    Background To monitor adult mosquitoes several trapping devices are available. These are differently constructed and use various mechanisms for mosquito attraction, thus resulting in different trapping sensitivities and efficacies for the various species. Mosquito monitoring and surveillance programs in Europe use various types of mosquito traps, but only a few comparisons have been conducted so far. This study compared the performance of four commercial trapping devices, which are commonly used in Europe. Methods Four different traps, Biogents Sentinel trap (BG trap), Heavy Duty Encephalitis Vector Survey trap (EVS trap), Centres for Disease Control miniature light trap (CDC trap) and Mosquito Magnet Patriot Mosquito trap (MM trap) were compared in a 4 × 4 latin square study. In the years 2012 and 2013, more than seventy 24-hour trap comparisons were conducted at ten different locations in northern and southern Germany, representing urban, forest and floodplain biotopes. Results Per 24-hour trapping period, the BG trap caught the widest range of mosquito species, the highest number of individuals of the genus Culex as well as the highest number of individuals of the species Ochlerotatus cantans, Aedes cinereus/geminus, Oc. communis and Culex pipiens/torrentium. The CDC trap revealed best performance for Aedes vexans, whereas the MM trap was most efficient for mosquitoes of the genus Anopheles and the species Oc. geniculatus. The EVS trap did not catch more individuals of any genus or species compared to the other three trapping devices. The BG trap caught the highest number of individuals per trapping period in urban environments as well as in wet forest, while the CDC trap caught the highest number of individuals in the floodplain biotopes. Additionally, the BG trap was most efficient for the number of mosquito species in urban locations. Conclusion The BG trap showed a significantly better or similar performance compared to the CDC, EVS or MM trap with regard to trapping efficacy for most common mosquito species in Germany, including diversity of mosquito species and number of mosquitoes per trapping period. Thus, the BG trap is probably the best solution for general monitoring or surveillance programs of adult mosquitoes in Central Europe. PMID:24924481

  14. Response of beetles (Coleoptera) at three heights to the experimental removal of an invasive shrub, Chinese privet (Lingustrum sinense), from floodplain forests

    Treesearch

    Michael D. Ulyshen; Scott Horn; James L. Hanula

    2010-01-01

    Chinese privet (Ligustrum sinense Lour.), an invasive shrub from Asia, is well established in the southeastern United States where it dominates many floodplain forests. We used flight intercept traps to sample beetles at three heights (0.5, 5 and 15 m) in *2 ha plots in which L. sinense had (by chainsaws or mulching machine) or had not been removed...

  15. Radioactive contamination of the Balchug (Upper Yenisey) floodplain, Russia in relation to sedimentation processes and geomorphology.

    PubMed

    Linnik, V G; Brown, J E; Dowdall, M; Potapov, V N; Surkov, V V; Korobova, E M; Volosov, A G; Vakulovsky, S M; Tertyshnik, E G

    2005-03-01

    The radioactive contamination of a riverine floodplain, heavily influenced by discharges from Krasnoyarsk-26, has been studied with respect to sedimentation processes and the geomorphology of the Upper Yenisey floodplain. The study was effected by implementation of a regime of in situ observations and measurements, sampling, and the interpretation of satellite images. The results of the study indicate that on the Balchug Bypass Floodplain, radionuclide contamination is primarily influenced by the thickness of the deposited sediments, and the area can be considered as two depositional environments. The Balchug floodplain area was contaminated due to sedimentation of radionuclide-contaminated alluvium, whose depositional regime significantly changed after the construction of a hydroelectric power station in 1967. Contamination levels are lower on the upstream part of the floodplain where sediment depth is less than 0.2-0.3 m, and this contamination started to accumulate in 1967, while the downstream part of the floodplain, exhibiting deeper deposits, displays higher levels of radionuclide contamination because radionuclides began to deposit here in 1958 when the Krasnoyarsk-26 Mining and Chemical Combine (KMCC) commenced operation. Radionuclide contamination of the floodplain is also related to the elevation of the floodplain, higher regions of the floodplain typically having lower contamination than low-lying areas, which tend to be frequently inundated with sediments being deposited during such inundations. Local relief, its orientation, and vegetation cover have also combined to form sediment traps with significantly higher radionuclide contamination. Lithological analysis combined with radiometric assay indicates a total 137Cs floodplain inventory of 33.7 GBq.

  16. Patterns of floodplain sediment deposition along the regulated lower Roanoke River, North Carolina: annual, decadal, centennial scales

    USGS Publications Warehouse

    Hupp, Cliff R.; Schenk, Edward R.; Kroes, Daniel; Willard, Debra A.; Townsend, Phil A.; Peet, Robert K.

    2015-01-01

    The lower Roanoke River on the Coastal Plain of North Carolina is not embayed and maintains a floodplain that is among the largest on the mid-Atlantic Coast. This floodplain has been impacted by substantial aggradation in response to upstream colonial and post-colonial agriculture between the mid-eighteenth and mid-nineteenth centuries. Additionally, since the mid-twentieth century stream flow has been regulated by a series of high dams. We used artificial markers (clay pads), tree-ring (dendrogeomorphic) techniques, and pollen analyses to document sedimentation rates/amounts over short-, intermediate-, and long-term temporal scales, respectively. These analyses occurred along 58 transects at 378 stations throughout the lower river floodplain from near the Fall Line to the Albemarle Sound. Present sediment deposition rates ranged from 0.5 to 3.4 mm/y and 0.3 to 5.9 mm/y from clay pad and dendrogeomorphic analyses, respectively. Deposition rates systematically increased from upstream (high banks and floodplain) to downstream (low banks) reaches, except the lowest reaches. Conversely, legacy sediment deposition (A.D. 1725 to 1850) ranged from 5 to about 40 mm/y, downstream to upstream, respectively, and is apparently responsible for high banks upstream and large/wide levees along some of the middle stream reaches. Dam operations have selectively reduced levee deposition while facilitating continued backswamp deposition. A GIS-based model predicts 453,000 Mg of sediment is trapped annually on the floodplain and that little watershed-derived sediment reaches the Albemarle Sound. Nearly all sediment in transport and deposited is derived from the channel bed and banks. Legacy deposits (sources) and regulated discharges affect most aspects of present fluvial sedimentation dynamics. The lower river reflects complex relaxation conditions following both major human alterations, yet continues to provide the ecosystem service of sediment trapping.

  17. Edge Effects Are Important in Supporting Beetle Biodiversity in a Gravel-Bed River Floodplain

    PubMed Central

    Langhans, Simone D.; Tockner, Klement

    2014-01-01

    Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60–100 m, and 5 m within the riparian forest), and time of the year (February–November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct – yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity. PMID:25545280

  18. Edge effects are important in supporting beetle biodiversity in a gravel-bed river floodplain.

    PubMed

    Langhans, Simone D; Tockner, Klement

    2014-01-01

    Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60-100 m, and 5 m within the riparian forest), and time of the year (February-November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct--yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity.

  19. Composition of Age-0 Fish Assemblages in the Apalachicola River, River Styx, and Battle Bend, Florida

    USGS Publications Warehouse

    Walsh, Stephen J.; Buttermore, Elissa N.; Burgess, O. Towns; Pine, William E.

    2009-01-01

    Light traps were used to sample the age-0 year class of fish communities in the Apalachicola River and associated floodplain water bodies of River Styx and Battle Bend, Florida, in 2006-2007. A total of 629 light traps were deployed during the spring and early summer months (341 between March 15 and June 6, 2006; 288 between March 9 and July 3, 2007). For combined years, 13.8 percent of traps were empty and a total of 20,813 age-0 fish were captured representing at least 40 taxa of 29 genera and 16 families. Trap catches were dominated by relatively few species, with the most abundant groups represented by cyprinids, centrarchids, percids, and catostomids. Six taxa accounted for about 80 percent of all fish collected: Micropterus spp. (28.9 percent), Notropis texanus (28.9 percent), Lepomis macrochirus (7.9 percent), Carpiodes cyprinus (6.2 percent), Cyprinidae sp. (4.6 percent), and Minytrema melanops (4.2 percent). Based on chronological appearance in light traps and catch-per-unit effort, including data from previous years of sampling, peak spawning periods for most species occurred between early March and mid-June. A complementary telemetry study of pre-reproductive adults of select target species (Micropterus spp., Lepomis spp., and M. melanops) revealed distinct patterns of habitat use, with some individual fish exclusively utilizing mainstem river habitat or floodplain habitat during spawning and post-spawning periods, and other individuals migrating between habitats. A comparison of light-trap catches between a pre-enhancement, high-water year (2003) and post-enhancement, low-water year (2007) for the oxbow at Battle Bend revealed some difference in community composition, with slightly greater values of diversity and evenness indices in 2007. Two dominant species, Lepomis macrochirus and Micropterus salmoides, were substantially greater in relative abundance among all age-0 fish collected in 2007 in comparison to 2003. Excavation of sediments at the mouth of Battle Bend improved river-floodplain connectivity during low flows such as occurred in 2007 and likely provided greater access and availability of fish spawning and nursery habitats.

  20. Floodplains as an Achilles’ heel of Amazonian forest resilience

    PubMed Central

    Flores, Bernardo M.; Holmgren, Milena; van Nes, Egbert H.; Jakovac, Catarina C.; Mesquita, Rita C. G.; Scheffer, Marten

    2017-01-01

    The massive forests of central Amazonia are often considered relatively resilient against climatic variation, but this view is challenged by the wildfires invoked by recent droughts. The impact of such fires that spread from pervasive sources of ignition may reveal where forests are less likely to persist in a drier future. Here we combine field observations with remotely sensed information for the whole Amazon to show that the annually inundated lowland forests that run through the heart of the system may be trapped relatively easily into a fire-dominated savanna state. This lower forest resilience on floodplains is suggested by patterns of tree cover distribution across the basin, and supported by our field and remote sensing studies showing that floodplain fires have a stronger and longer-lasting impact on forest structure as well as soil fertility. Although floodplains cover only 14% of the Amazon basin, their fires can have substantial cascading effects because forests and peatlands may release large amounts of carbon, and wildfires can spread to adjacent uplands. Floodplains are thus an Achilles’ heel of the Amazon system when it comes to the risk of large-scale climate-driven transitions. PMID:28396440

  1. Environmental Baseline Survey for Proposed Land Use Permit Modification for Expansion of the Dynamic Explosive Test Site (DETS) 9940 Main Complex Parking Lot.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peek, Dennis W.

    The approach was to perform a document search, supplemented by a visual site inspection, to identify potential environmental contamination associated with the property. Factors evaluated included hazardous substances; petroleum products and derivatives; environmental restoration sites; areas of concern; storage tanks; oil/water separators; grease traps; wash racks; waste tanks; pesticides; military munitions/ordnance; medical or bio-hazardous waste; radioactive waste; solid/municipal waste; indoor air quality; groundwater; wastewater treatment, collection, and disposal/discharge; drinking water quality; utilities; asbestos; polychlorinated biphenyls (PCBs); radon; lead-based paint; cultural resources; floodplains; and natural/biological resources.

  2. Trapping Efficiency of Agricultural Runoff in a Modified Riverine Backwater Wetland

    USDA-ARS?s Scientific Manuscript database

    Riverine backwater wetlands within river floodplains have important economic and ecological functions such as acting as filters for suspended sediment, nutrients and pesticides entering from adjacent agricultural fields. These wetlands hydrology can be modified to increase the efficiency of their n...

  3. Ord's kangaroo rats living in floodplain habitats: Factors contributing to habitat attraction

    USGS Publications Warehouse

    Miller, M.S.; Wilson, K.R.; Andersen, D.C.

    2003-01-01

    High densities of an aridland granivore, Ord's kangaroo rat (Dipodomys ordii), have been documented in floodplain habitats along the Yampa River in northwestern Colorado. Despite a high probability of inundation and attendant high mortality during the spring flood period, the habitat is consistently recolonized. To understand factors that potentially make riparian habitats attractive to D. ordii, we compared density and spatial pattern of seeds, density of a competitor (western harvester ant, Pogonomyrmex occidentalis), and digging energetics within floodplain habitats and between floodplain and adjacent upland habitats. Seed density within the floodplain was greatest in the topographically high (rarely flooded) floodplain and lowest immediately after a spring flood in the topographically low (frequently flooded) floodplain. Seed densities in adjacent upland habitat that never floods were higher than the lowest floodplain habitat. In the low floodplain prior to flooding, seeds had a clumped spatial pattern, which D. ordii is adept at exploiting; after spring flooding, a more random pattern resulted. Populations of the western harvester ant were low in the floodplain relative to the upland. Digging by D. ordii was energetically less expensive in floodplain areas than in upland areas. Despite the potential for mortality due to annual spring flooding, the combination of less competition from harvester ants and lower energetic costs of digging might promote the use of floodplain habitat by D. ordii.

  4. Floodplain geomorphic processes and environmental impacts of human alteration along coastal plain rivers, USA

    USGS Publications Warehouse

    Hupp, C.R.; Pierce, Aaron R.; Noe, G.B.

    2009-01-01

    Human alterations along stream channels and within catchments have affected fluvial geomorphic processes worldwide. Typically these alterations reduce the ecosystem services that functioning floodplains provide; in this paper we are concerned with the sediment and associated material trapping service. Similarly, these alterations may negatively impact the natural ecology of floodplains through reductions in suitable habitats, biodiversity, and nutrient cycling. Dams, stream channelization, and levee/canal construction are common human alterations along Coastal Plain fluvial systems. We use three case studies to illustrate these alterations and their impacts on floodplain geomorphic and ecological processes. They include: 1) dams along the lower Roanoke River, North Carolina, 2) stream channelization in west Tennessee, and 3) multiple impacts including canal and artificial levee construction in the central Atchafalaya Basin, Louisiana. Human alterations typically shift affected streams away from natural dynamic equilibrium where net sediment deposition is, approximately, in balance with net erosion. Identification and understanding of critical fluvial parameters (e.g., stream gradient, grain-size, and hydrography) and spatial and temporal sediment deposition/erosion process trajectories should facilitate management efforts to retain and/or regain important ecosystem services. ?? 2009, The Society of Wetland Scientists.

  5. Organic carbon and nitrogen export from a tropical dam-impacted floodplain system

    NASA Astrophysics Data System (ADS)

    Zurbrügg, R.; Suter, S.; Lehmann, M. F.; Wehrli, B.; Senn, D. B.

    2012-06-01

    Tropical floodplains play an important role in organic matter transport, storage, and transformation between headwaters and oceans. However, the fluxes and quality of organic carbon (OC) and organic nitrogen (ON) in tropical river-floodplain systems are not well constrained. We explored the quantity and characteristics of dissolved and particulate organic matter (DOM and POM) in the Kafue River flowing through the Kafue Flats (Zambia). The Kafue Flats are a tropical dam-impacted river-floodplain system in the Zambezi River basin. During the flooding season, >80% of the Kafue River water passed through the floodplain, mobilizing large quantities of OC and ON, which resulted in a net export of 75 kg OC km-2 d-1 and 2.9 kg ON km-2 d-1, 80% of which was in the dissolved form. Mass budget estimates showed that ON export, denitrification, and burial caused an annual deficit of ~21 000 t N yr-1 in the Kafue Flats. A N isotope balance and the δ15N of DON and PON suggest that N-fixation must level out the large N losses. The elemental C:N ratio of ~20, the δ13C values of higher than -24‰, and spectroscopic properties (excitation-emission matrices) showed that DOM in the river was mainly of terrestrial origin. Despite a threefold increase in OC loads due to inputs from the floodplain, the river DOM characteristics remained relatively constant along the sampled 400-km river reach. This suggested that floodplain DOM had similar properties than DOM from the upstream reservoir. In contrast, based on its low δ13C of -29‰ and the C:N ratio of ~8, POM originated from phytoplankton production in the upstream reservoir and in the floodplain. While the reservoir had little impact on DOM properties, terrestrial POM was efficiently trapped and, instead, phytoplankton-derived POM was discharged to the downstream Kafue Flats.

  6. Episodic sediment delivery and landscape connectivity in the Mancos Shale badlands and Fremont River system, Utah, USA

    NASA Astrophysics Data System (ADS)

    Godfrey, Andrew E.; Everitt, Benjamin L.; Duque, José F. Martín

    2008-12-01

    The Fremont River drains about 1000 km 2 of Mancos Shale badlands, which provide a large percentage of the total sediment load of its middle and lower reaches. Factors controlling sediment movement include: weathering that produces thin paralithic soils, mass movement events that move the soil onto locations susceptible to fluvial transport, intense precipitation events that move the sediment along rills and across local pediments, and finally Fremont River floods that move the sediment to the main-stem Colorado River. A forty-year erosion-pin study has shown that down-slope creep moves the weathered shale crust an average of 5.9 cm/yr. Weather records and our monitoring show that wet winters add large slab failures and mudflows. Recent sediment-trap studies show that about 95% of sediment movement across pediments is accomplished by high-intensity summer convective storms. Between 1890 and 1910, a series of large autumn floods swept down the Fremont River, eroding its floodplain and transforming it from a narrow and meandering channel to a broad, braided one. Beginning about 1940, the Fremont's channel began to narrow. Sequential aerial photos and cross-sections suggest that floodplain construction since about 1966 has stored about 4000 to 8000 m 3 of sediment per kilometer per year. These data suggest that it will take two centuries to restore the floodplain to its pre-1890 condition, which is in line with geologic studies elsewhere on the Colorado Plateau. The various landscape elements of slope, pediment, and floodplain are semi-independent actors in sediment delivery, each with its own style. Accelerated mass movement on the slopes has an approximate 20-year recurrence. Sediment movement from slope across pediments to master stream is episodic and recurs more frequently. The slope-to-pediment portion of the system appears well connected. However, sediment transport through the floodplain is not well connected in the decadal time scale, but increases in the century and millennial time scales, and changes over time depending on the cycle of arroyo cutting and filling.

  7. Present-day African analogue of a pre-European Amazonian floodplain fishery shows convergence in cultural niche construction.

    PubMed

    McKey, Doyle B; Durécu, Mélisse; Pouilly, Marc; Béarez, Philippe; Ovando, Alex; Kalebe, Mashuta; Huchzermeyer, Carl F

    2016-12-27

    Erickson [Erickson CL (2000) Nature 408 (6809):190-193] interpreted features in seasonal floodplains in Bolivia's Beni savannas as vestiges of pre-European earthen fish weirs, postulating that they supported a productive, sustainable fishery that warranted cooperation in the construction and maintenance of perennial structures. His inferences were bold, because no close ethnographic analogues were known. A similar present-day Zambian fishery, documented here, appears strikingly convergent. The Zambian fishery supports Erickson's key inferences about the pre-European fishery: It allows sustained high harvest levels; weir construction and operation require cooperation; and weirs are inherited across generations. However, our comparison suggests that the pre-European system may not have entailed intensive management, as Erickson postulated. The Zambian fishery's sustainability is based on exploiting an assemblage dominated by species with life histories combining high fecundity, multiple reproductive cycles, and seasonal use of floodplains. As water rises, adults migrate from permanent watercourses into floodplains, through gaps in weirs, to feed and spawn. Juveniles grow and then migrate back to dry-season refuges as water falls. At that moment fishermen set traps in the gaps, harvesting large numbers of fish, mostly juveniles. In nature, most juveniles die during the first dry season, so that their harvest just before migration has limited impact on future populations, facilitating sustainability and the adoption of a fishery based on inherited perennial structures. South American floodplain fishes with similar life histories were the likely targets of the pre-European fishery. Convergence in floodplain fish strategies in these two regions in turn drove convergence in cultural niche construction.

  8. Using Stream Classification to Prioritize Riparian Rehabilitation After Extreme Events

    Treesearch

    Sherman Swanson

    1989-01-01

    Historic use of many stream riparian areas and associated watersheds has impaired the capacity of riparian vegetation and floodplains to reduce stream energy and trap sediments. As low-gradient streams with erodible banks increase in width and change their pattern, they approach a threshold of instability. Once a stream exceeds a threshold, it must proceed through a...

  9. Present-day African analogue of a pre-European Amazonian floodplain fishery shows convergence in cultural niche construction

    PubMed Central

    McKey, Doyle B.; Durécu, Mélisse; Pouilly, Marc; Béarez, Philippe; Ovando, Alex; Kalebe, Mashuta; Huchzermeyer, Carl F.

    2016-01-01

    Erickson [Erickson CL (2000) Nature 408 (6809):190–193] interpreted features in seasonal floodplains in Bolivia’s Beni savannas as vestiges of pre-European earthen fish weirs, postulating that they supported a productive, sustainable fishery that warranted cooperation in the construction and maintenance of perennial structures. His inferences were bold, because no close ethnographic analogues were known. A similar present-day Zambian fishery, documented here, appears strikingly convergent. The Zambian fishery supports Erickson’s key inferences about the pre-European fishery: It allows sustained high harvest levels; weir construction and operation require cooperation; and weirs are inherited across generations. However, our comparison suggests that the pre-European system may not have entailed intensive management, as Erickson postulated. The Zambian fishery’s sustainability is based on exploiting an assemblage dominated by species with life histories combining high fecundity, multiple reproductive cycles, and seasonal use of floodplains. As water rises, adults migrate from permanent watercourses into floodplains, through gaps in weirs, to feed and spawn. Juveniles grow and then migrate back to dry-season refuges as water falls. At that moment fishermen set traps in the gaps, harvesting large numbers of fish, mostly juveniles. In nature, most juveniles die during the first dry season, so that their harvest just before migration has limited impact on future populations, facilitating sustainability and the adoption of a fishery based on inherited perennial structures. South American floodplain fishes with similar life histories were the likely targets of the pre-European fishery. Convergence in floodplain fish strategies in these two regions in turn drove convergence in cultural niche construction. PMID:27980030

  10. Sediment management and renewability of floodplain clay for structural ceramics

    NASA Astrophysics Data System (ADS)

    van der Meulen, M. J.; Wiersma, A. P.; Middelkoop, H.; van der Perk, M.; Bakker, M.; Maljers, D.; Hobo, N.; Makaske, B.

    2009-04-01

    The Netherlands have vast resources of clay that are exploited for the fabrication of structural ceramic products such as bricks and roof tiles. The extraction of clay creates land surface lowerings of about 1.5 m, of which the majority are located in the embanked floodplains of the rivers Rhine and Meuse. At these surface lowerings, clay is replenished within several decades. This study explores to which extent the clay can be regarded as a renewable resource, with potential for sustainable use. For this purpose, first the current and past clay consumption is calculated. Subsequently, clay deposition in the floodplains is estimated from literature data on clay accumulation using sediment traps, heavy metal and radionuclide distribution in soil profiles, and from morphological modelling studies. These estimates of clay-deposition and consumption are then compared following three approaches that consider various temporal and spatial scales of clay deposition. This allows us to establish the extent to which man determines sedimentary processes in the Dutch floodplains. Consequently, using the sediment response to the land surface lowering resulting from clay extraction, we explore sediment management options for the Dutch Rhine and Meuse. Altogether we argue that clay has been, probably is, and certainly can be managed as a renewable mineral resource.

  11. The importance of streamside sandbars to ground beetle (Coleoptera, Carabidae) communities in a deciduous forest.

    Treesearch

    S. Horn; M.D. Ulyshen

    2009-01-01

    We used pitfall traps to sample ground beetles on sandbars along a small woodland stream and in the adjacent floodplain forest (Oglethorpe Co., GA, USA). We captured a total of 1,477 ground beetles representing 41 species. Twenty-two species were exclusive to sandbars, while eight were found only in the forested habitat. Ground beetles...

  12. A floodplain continuum for Atlantic coast rivers of the Southeastern US: Predictable changes in floodplain biota along a river's length

    USGS Publications Warehouse

    Batzer, Darold P.; Noe, Gregory; Lee, Linda; Galatowitsch, Mark

    2018-01-01

    Floodplains are among the world’s economically-most-valuable, environmentally-most-threatened, and yet conceptually-least-understood ecosystems. Drawing on concepts from existing riverine and wetland models, and empirical data from floodplains of Atlantic Coast rivers in the Southeastern US (and elsewhere when possible), we introduce a conceptual model to explain a continuum of longitudinal variation in floodplain ecosystem functions with a particular focus on biotic change. Our hypothesis maintains that major controls on floodplain ecology are either external (ecotonal interactions with uplands or stream/river channels) or internal (wetland-specific functions), and the relative importance of these controls changes progressively from headwater to mid-river to lower-river floodplains. Inputs of water, sediments, nutrients, flora, and fauna from uplands-to-floodplains decrease, while the impacts of wetland biogeochemistry and obligate wetland plants and animals within-floodplains increase, along the length of a river floodplain. Inputs of water, sediment, nutrients, and fauna from river/stream channels to floodplains are greatest mid-river, and lower either up- or down-stream. While the floodplain continuum we develop is regional in scope, we review how aspects may apply more broadly. Management of coupled floodplain-river ecosystems would be improved by accounting for how factors controlling the floodplain ecosystem progressively change along longitudinal riverine gradients.

  13. Relationships between environmental conditions and the morphological variability of planktonic testate amoeba in four neotropical floodplains.

    PubMed

    Arrieira, Rodrigo Leite; Schwind, Leilane Talita Fatoreto; Joko, Ciro Yoshio; Alves, Geziele Mucio; Velho, Luiz Felipe Machado; Lansac-Tôha, Fábio Amodêo

    2016-10-01

    Planktonic testate amoebae in floodplains exhibit a broad-range of morphological variability. The variation size is already known, but it is necessary to know how this is for morphological variables. This study aimed to identify the relationships between testate amoebae morphology and environmental factors in four neotropical floodplains. We conducted detailed morphometric analyses on 27 common species of planktonic testate amoebae from genera Arcella, Centropyxis, Cucurbitella, Suiadifflugia, Difflugia, Lesquereusia and Netzelia. We sampled subsurface water from each lake in 72 lakes in four Brazilian floodplain lakes. Our goals were to assess: (1) the range of their morphological variability (a) over space within each floodplain, and (b) among the four floodplains, and (c) over time, and (2) which environmental factors explained this variation. Mean shell height and breadth varied considerably among the different floodplain lakes, especially in the Pantanal and Amazonian floodplains. The morphological variability of testate amoeba was correlated to environmental conditions (ammonia, nitrate, phosphate, chlorophyll-a, turbidity, temperature, and depth). Thus, understanding the morphological variation of the testate amoeba species can elucidate many questions involving the ecology of these organisms. Furthermore, could help molecular studies, bioindicator role of these organisations, environmental reconstruction, among others. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Constructed impoundments in the floodplain: A source or sink for native prairie fishes, in particular the endangered Topeka shiner (Notropis topeka)?

    USGS Publications Warehouse

    Thomson, S.K.; Berry, C.R.; Niehus, C.A.; Wall, S.S.; ,

    2005-01-01

    Livestock watering holes (i.e., dugouts) are typically constructed in floodplains, yet the influence of dugouts on native prairie fishes is unknown. Such information is necessary for the effective management of native fishes, especially species of concern such as the endangered Topeka shiner (Notropis topeka). The goal of our study was to suggest technical guidelines for constructing floodplain wetlands that are compatible with stream fish resources. Specific objectives were to: determine the flood frequencies of the connection between streams and dugouts; determine fish community characteristics in floodplain dugouts; and, associate dugout characteristics with fish assemblages. A total of 20 dugouts within Six Mile Creek watershed, South Dakota, were surveyed seasonally (excluding winter) from fall of 2003 to fall of 2004. Dugouts were categorized according to their lateral floodplain placement (connectivity with the stream and flood frequency of the stream-dugout connection) and longitudinal placement across the watershed. Fishes were sampled in dugouts and adjacent stream reaches with seines and traps. The 21 species making up the stream and dugout fish assemblages were similar. Fish inhabited 65% of the dugouts; 30% contained Topeka shiners. Most fish inhabitance, and all Topeka shiner occurrences, were in dugouts that were headwater sites and were either directly connected to the stream or disconnected and frequently flooded (average 1 in 2 year event). Two dugouts in this latter category contained the most abundant, self-sustaining Topeka shiner populations. Constructing dugouts separate from the stream within frequently inundated zones can provide off-channel habitat for fishes.

  15. Changes in 137Cs concentrations in soil and vegetation on the floodplain of the Savannah River over a 30 year period.

    PubMed

    Paller, M H; Jannik, G T; Fledderman, P D

    2008-08-01

    (137)Cs released during 1954-1974 from nuclear production reactors on the Savannah River Site, a US Department of Energy nuclear materials production site in South Carolina, contaminated a portion of the Savannah River floodplain known as Creek Plantation. (137)Cs activity concentrations have been measured in Creek Plantation since 1974 making it possible to calculate effective half-lives for (137)Cs in soil and vegetation and assess the spatial distribution of contaminants on the floodplain. Activity concentrations in soil and vegetation were higher near the center of the floodplain than near the edges as a result of frequent inundation coupled with the presence of low areas that trapped contaminated sediments. (137)Cs activity was highest near the soil surface, but depth related differences diminished with time as a likely result of downward diffusion or leaching. Activity concentrations in vegetation were significantly related to concentrations in soil. The plant to soil concentration ratio (dry weight) averaged 0.49 and exhibited a slight but significant tendency to decrease with time. The effective half-lives for (137)Cs in shallow (0-7.6 cm) soil and in vegetation were 14.9 (95% CI=12.5-17.3) years and 11.6 (95% CI=9.1-14.1) years, respectively, and rates of (137)Cs removal from shallow soil and vegetation did not differ significantly among sampling locations. Potential health risks on the Creek Plantation floodplain have declined more rapidly than expected on the basis of radioactive decay alone because of the relatively short effective half-life of (137)Cs.

  16. The importance of streamside sandbars to ground beetle (Coleoptera, Carabidae) communities in a deciduous forest

    Treesearch

    Scott Horn; Michael Ulyshen

    2009-01-01

    We used pitfall traps to sample ground beetles on sandbars along a small woodland stream and in the adjacent floodplain forest (Oglethorpe Co., GA, USA). We captured a total of 1,477 ground beetles representing 41 species. Twenty-two species were exclusive to sandbars, while eight were found only in the forested habitat. Ground beetles were captured in significantly...

  17. Survival results of a biomass planting in the Missouri River floodplain

    Treesearch

    W. D. ' Dusty' Walter; John P. Dwyer

    2003-01-01

    A factor essential to successful tree planting in unprotected floodplain environments is survival. Two-year survival results from tree planting in an unprotected floodplain adjacent to the Missouri River are presented. Species planted included silver maple, locally collected cottonwood, and a superior cottonwood selection from Westvaco Corporation. Two spacings, 4 x 4...

  18. Fluvial wood function downstream of beaver versus man-made dams in headwater streams in Massachusetts, USA

    NASA Astrophysics Data System (ADS)

    David, G. C.; DeVito, L. F.; Munz, K. T.; Lisius, G.

    2014-12-01

    Fluvial wood is an essential component of stream ecosystems by providing habitat, increasing accumulation of organic matter, and increasing the processing of nutrients and other materials. However, years of channel alterations in Massachusetts have resulted in low wood loads despite the afforestation that has occurred since the early 1900s. Streams have also been impacted by a large density of dams, built during industrialization, and reduction of the beaver population. Beavers were reintroduced to Massachusetts in the 1940s and they have since migrated throughout the state. Beaver dams impound water, which traps sediment and results in the development of complex channel patterns and more ecologically productive and diverse habitats than those found adjacent to man-made dams. To develop better management practices for dam removal it is essential that we understand the geomorphic and ecologic function of wood in these channels and the interconnections with floodplain dynamics and stream water chemistry. We investigate the connections among fluvial wood, channel morphology, floodplain soil moisture dynamics, and stream water chemistry in six watersheds in Massachusetts that have been impacted by either beaver or man-made dams. We hypothesize that wood load will be significantly higher below beaver dams, subsequently altering channel morphology, water chemistry, and floodplain soil moisture. Reaches are surveyed up- and downstream of each type of dam to better understand the impact dams have on the fluvial system. Surveys include a longitudinal profile, paired with dissolved oxygen and ammonium measurements, cross-section and fluvial wood surveys, hydraulic measurements, and floodplain soil moisture mapping. We found that dissolved oxygen mirrored the channel morphology, but did not vary significantly between reaches. Wood loads were significantly larger downstream of beaver dams, which resulted in significant changes to the ammonium levels. Floodplain soil moisture dynamics revealed that wood loads increased the channel complexity and strengthened connections between the stream channel and floodplain. Future work will continue to explore the complex interconnections between beaver dams, channel morphology, hydraulics, floodplain dynamics and water chemistry.

  19. CHANGES IN 137 CS CONCENTRATIONS IN SOIL AND VEGETATION ON THE FLOODPLAIN OF THE SAVANNAH RIVER OVER A 30 YEAR PERIOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paller, M.; Jannik, T.; Fledderman, P.

    2007-12-12

    {sup 137}Cs released during 1954-1974 from nuclear production reactors on the Savannah River Site, a US Department of Energy nuclear materials production site in South Carolina, contaminated a portion of the Savannah River floodplain known as Creek Plantation. {sup 137}Cs activity concentrations have been measured in Creek Plantation since 1974 making it possible to calculate effective half-lives for {sup 137}Cs in soil and vegetation and assess the spatial distribution of contaminants on the floodplain. Activity concentrations in soil and vegetation were higher near the center of the floodplain than near the edges as a result of frequent inundation coupled withmore » the presence of low areas that trapped contaminated sediments. {sup 137}Cs activity was highest near the soil surface, but depth related differences diminished with time as a likely result of downward diffusion or leaching. Activity concentrations in vegetation were significantly related to concentrations in soil. The plant to soil concentration ratio (dry weight) averaged 0.49 and exhibited a slight but significant tendency to decrease with time. The effective half-lives for {sup 137}Cs in shallow (0-7.6 cm) soil and in vegetation were 14.9 (95% CI = 12.5-17.3) years and 11.6 (95% CI = 9.1-14.1) years, respectively, and rates of {sup 137}Cs removal from shallow soil and vegetation did not differ significantly among sampling locations. Potential health risks on the Creek Plantation floodplain have declined more rapidly than expected on the basis of radioactive decay alone because of the relatively short effective half-life of {sup 137}Cs.« less

  20. Hierarchy in factors affecting fish biodiversity in floodplain lakes of the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Dembkowski, D.J.; Miranda, L.E.

    2012-01-01

    River-floodplain ecosystems offer some of the most diverse and dynamic environments in the world. Accordingly, floodplain habitats harbor diverse fish assemblages. Fish biodiversity in floodplain lakes may be influenced by multiple variables operating on disparate scales, and these variables may exhibit a hierarchical organization depending on whether one variable governs another. In this study, we examined the interaction between primary variables descriptive of floodplain lake large-scale features, suites of secondary variables descriptive of water quality and primary productivity, and a set of tertiary variables descriptive of fish biodiversity across a range of floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas (USA). Lakes varied considerably in their representation of primary, secondary, and tertiary variables. Multivariate direct gradient analyses indicated that lake maximum depth and the percentage of agricultural land surrounding a lake were the most important factors controlling variation in suites of secondary and tertiary variables, followed to a lesser extent by lake surface area. Fish biodiversity was generally greatest in large, deep lakes with lower proportions of watershed agricultural land. Our results may help foster a holistic approach to floodplain lake management and suggest the framework for a feedback model wherein primary variables can be manipulated for conservation and restoration purposes and secondary and tertiary variables can be used to monitor the success of such efforts. ?? 2011 Springer Science+Business Media B.V.

  1. Factors affecting fish biodiversity in floodplain lakes of the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Miranda, Leandro E.; Dembkowski, Daniel J.

    2012-01-01

    River-floodplain ecosystems offer some of the most diverse and dynamic environments in the world. Accordingly, floodplain habitats harbor diverse fish assemblages. Fish biodiversity in floodplain lakes may be influenced by multiple variables operating on disparate scales, and these variables may exhibit a hierarchical organization depending on whether one variable governs another. In this study, we examined the interaction between primary variables descriptive of floodplain lake large-scale features, suites of secondary variables descriptive of water quality and primary productivity, and a set of tertiary variables descriptive of fish biodiversity across a range of floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas (USA). Lakes varied considerably in their representation of primary, secondary, and tertiary variables. Multivariate direct gradient analyses indicated that lake maximum depth and the percentage of agricultural land surrounding a lake were the most important factors controlling variation in suites of secondary and tertiary variables, followed to a lesser extent by lake surface area. Fish biodiversity was generally greatest in large, deep lakes with lower proportions of watershed agricultural land. Our results may help foster a holistic approach to floodplain lake management and suggest the framework for a feedback model wherein primary variables can be manipulated for conservation and restoration purposes and secondary and tertiary variables can be used to monitor the success of such efforts.

  2. Evaluating the effects of local floodplain management policies on property owner behavior

    NASA Astrophysics Data System (ADS)

    Bollens, Scott A.; Kaiser, Edward J.; Burby, Raymond J.

    1988-05-01

    Floodplain management programs have been adopted by more than 85% of local governments in the nation with designated flood hazard areas. Yet, there has been little evaluation of the influence of floodplain policies on private sector decisions. This article examines the degree to which riverine floodplain management affects purchase and mitigation decisions made by owners of developed floodplain property in ten selected cities in the United States. We find that the stringency of such policies does not lessen floodplain property buying because of the overriding importance of site amenity factors. Indeed, flood protection measures incorporated into development projects appear to add to the attractiveness of floodplain location by increasing the perceived safety from the hazard. Property owner responses to the flood hazard after occupancy involve political action more often than individual on-site mitigation. Floodplain programs only minimally encourage on-site mitigation by the owner because most owners have not experienced a flood and many are unaware of the flood threat. It is suggested that floodplain programs will be more effective in meeting their objectives if they are directed at intervention points earlier in the land conversion process.

  3. Deltas as Ecomorphodynamic Systems: Effects of Vegetation Gradients on Sediment Trapping and Channel Dynamics

    NASA Astrophysics Data System (ADS)

    Piliouras, A.; Kim, W.; Goggin, H.

    2014-12-01

    Understanding the feedbacks between water, sediment, and vegetation in deltas is an important part of understanding deltas as ecomorphodynamic systems. We conducted a set of laboratory experiments using alfalfa (Medicago sativa) as a proxy for delta vegetation to determine (1) the effects of plants on delta growth and channel dynamics and (2) the influence of fine material on delta evolution. Vegetated experiments were compared to a control run without plants to isolate the effects of vegetation, and experiments with fine sediment were compared to a set of similar experiments with only sand. We found that alfalfa increased sediment trapping on the delta topset, and that the plants were especially effective at retaining fine material. Compared to the control run, the vegetated experiments showed an increased retention of fine sediment on the floodplain that resulted in increased delta relief and stronger pulses of shoreline progradation when channel avulsion and migration occurred. In other words, a higher amount of sediment storage with the addition of vegetation corresponded to a higher amount of sediment excavation during channelization events. In natural systems, dense bank vegetation is typically expected to help confine flow. We seeded our delta uniformly, which eliminated typical vegetation density gradients from riverbank to island center and therefore diminished the gradient in overbank sedimentation that best confines channels by creating levees. Dense clusters of alfalfa throughout the interior of the floodplain and delta islands were therefore able to induce flow splitting, where channels diverged around a stand of plants. This created several smaller channels that were then able to more widely distribute sediment at the delta front compared to unvegetated experiments. We conclude that plants are efficient sediment trappers that change the rate and amount of sediment storage in the delta topset, and that gradients in vegetation density are an important factor in determining how channel behavior may change.

  4. Planning practice in support of economically and environmentally sustainable roads in floodplains: the case of the Mekong delta floodplains.

    PubMed

    Douven, Wim; Buurman, Joost

    2013-10-15

    Road development in relatively undisturbed floodplain systems, such as the floodplains of the Mekong River, will impact hydraulics and interrupt the natural flow of water. This affects the ecology and environment, and the livelihoods of people who depend on fishing and agriculture. On the other hand, floods can severely damage road infrastructure in years with large floods and can cause high annual maintenance costs. Improving road development practices in floodplains is a complex, multidimensional task involving hydraulic and geotechnical analysis, ecosystem analysis, socio-economic analysis, policy analysis, etc. This paper analyses the planning practice of road development and rehabilitation and how this practice can be improved in support of economically and environmentally sustainable roads in floodplains. It is concluded that although ample technical, planning and environmental assessment guidelines exist, guidelines need updating to address cumulative impacts at floodplain level and factors hampering the implementation in guidelines should be addressed in the guideline design (process). Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Hydrologic connectivity of floodplains, northern Missouri: implications for management and restoration of floodplain forest communities in disturbed landscapes

    USGS Publications Warehouse

    Jacobson, R.; Faust, T.

    2014-01-01

    Hydrologic connectivity between the channel and floodplain is thought to be a dominant factor determining floodplain processes and characteristics of floodplain forests. We explored the role of hydrologic connectivity in explaining floodplain forest community composition along streams in northern Missouri, USA. Hydrologic analyses at 20 streamgages (207–5827 km2 area) document that magnitudes of 2-year return floods increase systematically with increasing drainage area whereas the average annual number and durations of floodplain-connecting events decrease. Flow durations above the active-channel shelf vary little with increasing drainage area, indicating that the active-channel shelf is in quasi-equilibrium with prevailing conditions. The downstream decrease in connectivity is associated with downstream increase in channel incision. These relations at streamflow gaging stations are consistent with regional channel disturbance patterns: channel incision increases downstream, whereas upstream reaches have either not incised or adjusted to incision by forming new equilibrium floodplains. These results provide a framework to explain landscape-scale variations in composition of floodplain forest communities in northern Missouri. Faust (2006) had tentatively explained increases of flood-dependent tree species, and decreases of species diversity, with a downstream increase in flood magnitude and duration. Because frequency and duration of floodplain-connecting events do not increase downstream, we hypothesize instead that increases in relative abundance of flood-dependent trees at larger drainage area result from increasing size of disturbance patches. Bank-overtopping floods at larger drainage area create large, open, depositional landforms that promoted the regeneration of shade-intolerant species. Higher tree species diversity in floodplains with small drainage areas is associated with non-incised floodplains that are frequently connected to their channels and therefore subject to greater effective hydrologic variability compared with downstream floodplains. Understanding the landscape-scale geomorphic and hydrologic controls on floodplain connectivity provides a basis for more effective management and restoration of floodplain forest communities.

  6. Characteristics and causal factors of hysteresis in the hydrodynamics of a large floodplain system: Poyang Lake (China)

    NASA Astrophysics Data System (ADS)

    Zhang, X. L.; Zhang, Q.; Werner, A. D.; Tan, Z. Q.

    2017-10-01

    A previous modeling study of the lake-floodplain system of Poyang Lake (China) revealed complex hysteretic relationships between stage, storage volume and surface area. However, only hypothetical causal factors were presented, and the reasons for the occurrence of both clockwise and counterclockwise hysteretic functions were unclear. The current study aims to address this by exploring further Poyang Lake's hysteretic behavior, including consideration of stage-flow relationships. Remotely sensed imagery is used to validate the water surface areas produced by hydrodynamic modeling. Stage-area relationships obtained using the two methods are in strong agreement. The new results reveal a three-phase hydrological regime in stage-flow relationships, which assists in developing improved physical interpretation of hysteretic stage-area relationships for the lake-floodplain system. For stage-area relationships, clockwise hysteresis is the result of classic floodplain hysteretic processes (e.g., restricted drainage of the floodplain during recession), whereas counterclockwise hysteresis derives from the river hysteresis effect (i.e., caused by backwater effects). The river hysteresis effect is enhanced by the time lag between the peaks of catchment inflow and Yangtze discharge (i.e., the so-called Yangtze River blocking effect). The time lag also leads to clockwise hysteresis in the relationship between Yangtze River discharge and lake stage. Thus, factors leading to hysteresis in other rivers, lakes and floodplains act in combination within Poyang Lake to create spatial variability in hydrological hysteresis. These effects dominate at different times, in different parts of the lake, and during different phases of the lake's water level fluctuations, creating the unique hysteretic hydrological behavior of Poyang Lake.

  7. Agriculture and the promotion of insect pests: rice cultivation in river floodplains and malaria vectors in The Gambia.

    PubMed

    Jarju, Lamin B S; Fillinger, Ulrike; Green, Clare; Louca, Vasilis; Majambere, Silas; Lindsay, Steven W

    2009-07-27

    Anthropogenic modification of natural habitats can create conditions in which pest species associated with humans can thrive. In order to mitigate for these changes, it is necessary to determine which aspects of human management are associated with the promotion of those pests. Anopheles gambiae, the main Africa malaria vector, often breeds in rice fields. Here the impact of the ancient practice of 'swamp rice' cultivation, on the floodplains of the Gambia River, on the production of anopheline mosquitoes was investigated. Routine surveys were carried out along 500 m transects crossing rice fields from the landward edge of the floodplains to the river during the 2006 rainy season. Aquatic invertebrates were sampled using area samplers and emergence traps and fish sampled using nets. Semi-field experiments were used to investigate whether nutrients used for swamp rice cultivation affected mosquito larval abundance. At the beginning of the rainy season rice is grown on the landward edge of the floodplain; the first area to flood with fresh water and one rich in cattle dung. Later, rice plants are transplanted close to the river, the last area to dry out on the floodplain. Nearly all larval and adult stages of malaria vectors were collected 0-100 m from the landward edge of the floodplains, where immature rice plants were grown. These paddies contained stagnant freshwater with high quantities of cattle faeces. Semi-field studies demonstrated that cattle faeces nearly doubled the number of anopheline larvae compared with untreated water. Swamp rice cultivation creates ideal breeding sites for malaria vectors. However, only those close to the landward edge harboured vectors. These sites were productive since they were large areas of standing freshwater, rich in nutrients, protected from fish, and situated close to human habitation, where egg-laying mosquitoes from the villages had short distances to fly. The traditional practice of 'swamp rice' cultivation uses different bodies of water on the floodplains to cultivate rice during the rainy season. A consequence of this cultivation is the provizion of ideal conditions for malaria vectors to thrive. As the demand for locally-produced rice grows, increased rice farming will generate great numbers of vectors; emphasizing the need to protect local communities against malaria.

  8. Trace metal dynamics in floodplain soils of the river Elbe: a review.

    PubMed

    Schulz-Zunkel, Christiane; Krueger, Frank

    2009-01-01

    This paper reviews trace metal dynamics in floodplain soils using the Elbe floodplains in Germany as an example of extraordinary importance because of the pollution level of its sediments and soils. Trace metal dynamics are determined by processes of retention and release, which are influenced by a number of soil properties including pH value, redox potential, organic matter, type and amount of clay minerals, iron-, manganese- and aluminum-oxides. Today floodplains act as important sinks for contaminants but under changing hydraulic and geochemical conditions they may also act as sources for pollutants. In floodplains such changes may be extremes in flooding or dry periods that particularly lead to altered redox potentials and that in turn influence the pH value, the mineralization of organic matter as well as the charge of the pedogenic oxides. Such reactions may affect the bioavailability of trace metals in soils and it can be clearly seen that the bioavailability of metals is an important factor for estimating trace metal remobilization in floodplain soils. However as bioavailability is not a constant factor, there is still a lack of quantification of metal mobilization particularly on the basis of changing geochemical conditions. Moreover, mobile amounts of metals in the soil solution do not indicate to which extent remobilized metals will be transported to water bodies or plants and therefore potentially have toxicological effects. Consequently, floodplain areas still need to be taken into consideration when studying the role and behavior of sediments and soils for transporting pollutants within river systems, particularly concerning the Water Framework Directive.

  9. Ordination of breeding birds in relation to environmental gradients in three southeastern United States floodplain forests

    Treesearch

    James S. Wakeley; Michael P. Guilfoyle; Terry J. Antrobus; Richard A. Fischer; Wylie C. Jr. Barrow; Paul B. Hamel

    2007-01-01

    We used an ordination approach to identify factors important to the organization of breeding bird communities in three floodplains: Cache River, Arkansas (AR), Iatt Creek, Louisiana '(LA), and the Coosawhatchie River, South Carolina (SC), USA.

  10. Crevasse Splays Versus Avulsions: A Recipe for Land Building With Levee Breaches

    NASA Astrophysics Data System (ADS)

    Nienhuis, Jaap H.; Törnqvist, Torbjörn E.; Esposito, Christopher R.

    2018-05-01

    Natural-levee breaches can not only initiate an avulsion but also, under the right circumstances, lead to crevasse splay formation and overbank sedimentation. The formative conditions for crevasse splays are not well understood, yet such river sediment diversions form an integral part of billion-dollar coastal restoration projects. Here we use Delft3D to investigate the influence of vegetation and soil consolidation on the evolution of a natural-levee breach. Model simulations show that crevasse splays heal because floodplain aggradation reduces the water surface slope, decreasing water discharge into the flood basin. Easily erodible and unvegetated floodplains increase the likelihood for channel avulsions. Denser vegetation and less potential for soil consolidation result in small crevasse splays that are not only efficient sediment traps but also short-lived. Successful crevasse splays that generate the largest land area gain for the imported sediment require a delicate balance between water and sediment discharge, vegetation root strength, and soil consolidation.

  11. Movement patterns of riparian small mammals during predictable floodplain inundation

    USGS Publications Warehouse

    Andersen, D.C.; Wilson, K.R.; Miller, M.S.; Falck, M.

    2000-01-01

    We monitored movements of small mammals resident on floodplains susceptible to spring floods to assess whether and how these animals respond to habitat inundation. The 2 floodplains were associated with 6th order river segments in a semiarid landscape; each was predictably inundated each year as snowmelt progressed in headwater areas of the Rocky Mountains. Data from live trapping, radiotelemetry, and microtopographic surveys indicated that Peromyscus maniculatus, Microtus montanus, and Dipodomys ordii showed different responses to inundation, but all reflected a common tendency to remain in the original home range until “forced” to leave. The reluctance of Dipodomys ordii to abandon the home burrow often resulted in death in situ, whereas individual P. maniculatus and M. montanus moved to nearby higher ground but not necessarily toward upland. This behavior could lead to occupancy of an island that disappeared as floodwaters rose. Peromyscus maniculatus climbed into sapling cottonwood, but the quality of such arboreal refuges was unclear. We found only weak support for the hypothesis that displacement was temporary; most floodplain residents, including P. maniculatus, disappeared over the flood period. No secondary effect from flooding on adjacent upland small-mammal assemblages was detected. Our data suggest populations of facultatively riparian, nonarboreal small mammals such as M. montanus and D. ordii generally experience habitat inundation as a catastrophy. Terrestrial species capable of using an arboreal refuge, such as P. maniculatus, face a more variable risk, determined in part by timing and duration of the flood event. River regulation can affect both sets of risks.

  12. CHANGES IN LOWLAND FLOODPLAIN SEDIMENTATION PROCESSES: PRE-DISTURBANCE TO POST-REHABILITATION, COSUMNES RIVER, CA. (R825433)

    EPA Science Inventory

    During the late Holocene, sediment deposition on the lowland Cosumnes River floodplain, CA has depended on factors that varied temporally and spatially, such as basin subsidence, sea level rise, flow, and sediment supply from both the Sacramento River system and from the Cosum...

  13. Denitrification mitigates N flux through the stream-floodplain complex of a desert city.

    PubMed

    Roach, W John; Grimm, Nancy B

    2011-10-01

    The Indian Bend Wash (IBW) flood-control project relies on a greenbelt to carry floods through Scottsdale, Arizona, USA. The greenbelt is characterized by a chain of shallow artificial lakes in a larger floodplain of irrigated turf, which has been protected from encroaching urban development. As such, this urban stream-floodplain complex can be divided into three subsystems: artificial lakes, channelized stream segments, and floodplain. We conducted experiments to evaluate which, if any, of these subsystems were important sites of denitrification, and to explore factors controlling denitrification rates. Denitrification enzyme activity (DEA) bioassays were conducted on sediments from eight lake and six stream segments as well as soil samples from eight floodplain transects. Mass-specific potential denitrification rates were significantly higher in lakes than in streams or floodplains. Nutrient limitation bioassays revealed that nitrate (NO3-) limited denitrification in lake sediments, a surprising finding given that NO3(-)-rich groundwater additions frequently raised lake NO3(-) concentration above 1 mg N/L. Experiments on intact lake cores suggested that denitrification was limited by the rate NO3(-) diffused into sediments, rather than its availability in overlying water. Floodplain denitrification was limited by water content, not NO3(-) or C, and irrigation of soils stimulated denitrification. We constructed a N budget for the IBW stream-floodplain complex based on our experimental results. We found that both lakes and floodplains removed large quantities of N, with denitrification removing 261 and 133 kg N ha(-1) yr(-1) from lake sediments and floodplain soils, respectively, indicating that lakes are hotspots for denitrification. Nevertheless, because floodplain area was >4.5 times that of lakes, floodplain soils removed nearly 2.5 times as much N as lake sediments. Given the desert's low annual precipitation, a finding that floodplain soils are active sites of denitrification might seem implausible; however, irrigation is common in urban landscapes, and it elevated annual denitrification in IBW. Based on our results, we conclude that construction of artificial lakes created hotspots while application of irrigation water created hot moments for denitrification in the stream-floodplain complex, demonstrating that management decisions can improve the ability of urban streams to provide critical ecosystem services like N retention.

  14. Groundwater salinity in a floodplain forest impacted by saltwater intrusion

    NASA Astrophysics Data System (ADS)

    Kaplan, David A.; Muñoz-Carpena, Rafael

    2014-11-01

    Coastal wetlands occupy a delicate position at the intersection of fresh and saline waters. Changing climate and watershed hydrology can lead to saltwater intrusion into historically freshwater systems, causing plant mortality and loss of freshwater habitat. Understanding the hydrological functioning of tidally influenced floodplain forests is essential for advancing ecosystem protection and restoration goals, however finding direct relationships between hydrological inputs and floodplain hydrology is complicated by interactions between surface water, groundwater, and atmospheric fluxes in variably saturated soils with heterogeneous vegetation and topography. Thus, an alternative method for identifying common trends and causal factors is required. Dynamic factor analysis (DFA), a time series dimension reduction technique, models temporal variation in observed data as linear combinations of common trends, which represent unexplained common variability, and explanatory variables. DFA was applied to model shallow groundwater salinity in the forested floodplain wetlands of the Loxahatchee River (Florida, USA), where altered watershed hydrology has led to changing hydroperiod and salinity regimes and undesired vegetative changes. Long-term, high-resolution groundwater salinity datasets revealed dynamics over seasonal and yearly time periods as well as over tidal cycles and storm events. DFA identified shared trends among salinity time series and a full dynamic factor model simulated observed series well (overall coefficient of efficiency, Ceff = 0.85; 0.52 ≤ Ceff ≤ 0.99). A reduced multilinear model based solely on explanatory variables identified in the DFA had fair to good results (Ceff = 0.58; 0.38 ≤ Ceff ≤ 0.75) and may be used to assess the effects of restoration and management scenarios on shallow groundwater salinity in the Loxahatchee River floodplain.

  15. Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs.

    PubMed

    Roberto, M C; Santana, N N; Thomaz, S M

    2009-06-01

    Knowledge of abiotic limnological factors is important to monitor changes caused by humans, and to explain the structure and dynamics of populations and communities in a variety of inland water ecosystems. In this study, we used a long term data-set (eight years) collected in 10 habitats with different features (river channels, and connected and isolated lakes) to describe the spatial and temporal patterns of some of the principal limnological factors. In general, the degree of connectivity of the lakes, together with the rivers to which the lakes are connected, were important determinants of their limnological characteristics. These differences are expected, because rivers entering the floodplain come from different geological regions and are subject to different human impacts. At large spatial scales, these differences contribute to the increased habitat diversity of the floodplain and thus to its high biodiversity. With regard to temporal variation, Secchi-disk transparency increased, and total phosphorus decreased in the Paraná River main channel during the last 20 years. Although these changes are directly attributed to the several reservoir cascades located upstream, the closing of the Porto Primavera dam in 1998 enhanced this effect. The increase in water transparency explains biotic changes within the floodplain. The lower-phosphorus Paraná River water probably dilutes concentrations of this element in the floodplain waterbodies during major floods, with future consequences for their productivity.

  16. An ecological economics approach to estimate the value of a fragmented wetland in Brazil (Mato Grosso do Sul state).

    PubMed

    Carvalho, A R

    2007-11-01

    The Upper Paraná River floodplain is the last lotic stretch of an ecosystem seriously threatened given that circa 50% of the original ecosystem has been converted into reservoirs. To assess the recreational value of the Upper Paraná River floodplain, 174 tourists were interviewed using the Willingness to Pay--WTP and Travel Cost--TC methods. The annual aggregated WTP attributed by tourists was US$ 122.50 million and the variables which determine the decision in willingness to pay for the Floodplain are: 'consider oneself as a Floodplain natural resources consumer' and 'marital state'. If the single person considers her/himself as a consumer of floodplain natural resources, the WTP increases by a multiplicative factor of 38.8. The value aggregated by the TC method was US$ 234 millions and decreased by zone as the distance increases. Higher income and traveling farther increases the travel cost, which is inversely related to annual trip frequency. The total recreational value (356.5 millions per year) is high and representative since it refers to an environment fragmented by dams and with many anthropogenic effects. Therefore, the progressive changes on the landscape are a threat to local tourism, since half of the visitors are attracted solely by the scenic beauty, thereby overtaking those factors considered more important by public decision makers and managers, such as recreational fishery or boating.

  17. Soil Biogeochemical and Microbial Feedbacks along a Snowmelt-Dominated Hillslope-to-Floodplain Transect in Colorado.

    NASA Astrophysics Data System (ADS)

    Sorensen, P.; Beller, H. R.; Bill, M.; Bouskill, N.; Brodie, E.; Chakraborty, R.; Conrad, M. E.; Karaoz, U.; Polussa, A.; Steltzer, H.; Wang, S.; Williams, K. H.; Wilmer, C.; Wu, Y.

    2017-12-01

    Nitrogen export from mountainous watersheds is a product of multiple interactions among hydrological processes and soil-microbial-plant feedbacks along the continuum from terrestrial to aquatic environments. In snow-dominated systems, like the East River Watershed (CO), seasonal processes such as snowmelt exert significant influence on the annual hydrologic cycle and may also link spatially distinct catchment subsystems, such as hillslope and adjoining riparian floodplains. Further, snowmelt is occurring earlier each year and this is predicted to result in a temporal asynchrony between historically coupled microbial nutrient release and plant nutrient demand in spring, with the potential to increase N export from the East River Watershed. Here we summarize biogeochemical data collected along a hillslope-to-riparian floodplain transect at the East River site. Starting in Fall 2016, we sampled soils at 3 depths and measured dissolved pools of soil nutrients (e.g., NH4+, NO3-, DOC, P), microbial biomass CN, and microbial community composition over a seasonal time course, through periods of snow accumulation, snowmelt, and plant senescence. Soil moisture content in the top 5 cm of floodplain soils was nearly 4X greater across sampling dates, coinciding with 2X greater microbial biomass C, larger extractable pools of NH4+, and smaller pools of NO3- in floodplain vs. hillslope soils. These results suggest that microbially mediated redox processes played an important role in N cycling along the transect. Hillslope vs. floodplain location also appeared to be a key factor that differentiated soil microbial communities (e.g., a more important factor than seasonality or soil depth or type). Snow accumulation and snowmelt exerted substantial influence on soil biogeochemistry. For example, microbial biomass accumulation increased about 2X beneath the winter snowpack. Snowmelt resulted in a precipitous crash in the microbial population, with 2.5X reductions in floodplain and 2X reductions in hillslope soils. Immediately following snowmelt, NO3- concentrations in soil porewater and soil extracts increased dramatically. Overall, these results suggest that N export is strongly influenced by distinct soil biogeochemical and microbiological patterns along hillslope-to-floodplain transects at East River.

  18. Impact of a large tropical reservoir on riverine transport of sediment, carbon, and nutrients to downstream wetlands

    NASA Astrophysics Data System (ADS)

    Kunz, Manuel J.; Wüest, Alfred; Wehrli, Bernhard; Landert, Jan; Senn, David B.

    2011-12-01

    Large dams can have major ecological and biogeochemical impacts on downstream ecosystems such as wetlands and riparian habitats. We examined sediment removal and carbon (C), nitrogen (N), and phosphorus (P) cycling in Itezhi-Tezhi Reservoir (ITT; area = 364 km2, hydraulic residence time = 0.7 yr), which is located directly upstream of a high ecological value floodplain ecosystem (Kafue Flats) in the Zambezi River Basin. Field investigations (sediment cores, sediment traps, water column samples), mass balance estimates, and a numerical biogeochemical reservoir model were combined to estimate N, P, C, and sediment removal, organic C mineralization, primary production, and N fixation. Since dam completion in 1978, 330 × 103 tons (t) of sediment and 16 × 103, 1.5 × 103, 200 t of C, N, and P, respectively, have accumulated annually in ITT sediments. Approximately 50% of N inputs and 60% of P inputs are removed by the reservoir, illustrating its potential in decreasing nutrients to the downstream Kafue Flats floodplain. The biogeochemical model predicted substantial primary production in ITT (˜280 g C m-2 yr-1), and significant N-fixation (˜30% for the total primary production) was required to support primary production due to marginal inputs of inorganic N. Model simulations indicate that future hydropower development in the reservoir, involving the installation of turbines driven by hypolimnetic water, will likely result in the delivery of low-oxygen waters to downstream ecosystems and increased outputs of dissolved inorganic N and P by a factor of ˜4 and ˜2 compared to current dam management, respectively.

  19. Invertabrates Associated with Woody Debris in a Southeastern U.S. Forested Floodplain Wetland

    Treesearch

    Amy Braccia; Darold P. Batzer

    2001-01-01

    Woody debris is an ecologically important resource in upland forests and stream ecosystems. Although much is known about invertebrate-woody debris interactions in forests and streams, little information exists for forested wetlands. In this study, invertebrates associated with woody debris in a Southeastern U. S. forested floodplain are described and factors that shape...

  20. Long-term dynamics of a floodplain shallow lake in the Pantanal wetland: Is it all about climate?

    PubMed

    Silio-Calzada, Ana; Barquín, José; Huszar, Vera L M; Mazzeo, Nestor; Méndez, Fernando; Álvarez-Martínez, Jose Manuel

    2017-12-15

    Hydrological variability over seasonal and multi-annual timescales strongly shapes the ecological structure and functioning of floodplain ecosystems. The current IPCC climate scenario foresees an increase in the frequency of extreme events. This, in conjunction with other anthropogenic disturbances (e.g., river regulation or land-use changes) poses a serious threat to the natural functioning of these ecosystems. In this study we aimed to i) evaluate the long-term variability of the flooded area of the third largest floodplain lake in the Brazilian Pantanal using remote sensing techniques, and ii) analyze the possible factors influencing this variability. Changes in open-water and riparian floodplain-wetland vegetation areas were mapped by applying an ad hoc-developed remote-sensing method (including a newly developed normalized water index, NWI) to 221 Landsat-Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+) images, acquired between 1984 and 2011. Added to the lake's natural swing between riparian floodplain-wetland vegetation expansion and retraction, our analyses revealed large interannual changes, grouped into three main periods within the studied time interval. Moreover, our results indicate that this floodplain-lake system is losing open-water area, paired with an increase in riparian floodplain-wetland vegetation. The system's long-term dynamics are not all climate related, but are the result of a combination of drivers. The start of the Manso dam's operation upstream of the studied system, and the subsequent river regulation because of the dam operation, coupled with climatic oscillation appear to be responsible for the observed changes. However, other factors which were not considered in this study might also be important in this process and contributing to the reduction of the system's resilience to droughts (e.g., land-use changes). This study illustrates the serious conservation risks that the Pantanal faces in the near future, given the current climate-change scenario and the accumulation of dam building projects in this region. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Floodplain inundation response to climate, valley form, and flow regulation on a gravel-bed river in a Mediterranean-climate region

    NASA Astrophysics Data System (ADS)

    Cienciala, P.; Pasternack, G. B.

    2017-04-01

    Floodplain inundation regime defines hydrological connectivity between river channel and floodplain and thus strongly controls structure and function of these highly diverse and productive ecosystems. We combined an extensive LiDAR data set on topography and vegetation, long-term hydrological records, as well as the outputs of hydrological and two-dimensional hydraulic models to examine how floodplain inundation regimes in a dynamic, regulated, gravel-cobble river in a Mediterranean-climate region are controlled by reach-scale valley morphology, hydroclimatic conditions, and flow regulation. Estimated relative differences in the extent, duration, and cumulative duration of inundation events were often as large as an order of magnitude and generally greatest for large and long duration events. The relative impact of flow regulation was greatest under dry hydroclimatic conditions. Although the effects of hydroclimate and flow impairment are larger than that of valley floor topography, the latter controls sensitivity of floodplain hydroperiod to flow regime changes and should not be ignored. These quantitative estimates of the relative importance of factors that control floodplain processes in Mediterranean, semiarid rivers contributes to better understanding of hydrology and geomorphology of this important class of channels. We also discuss implications of our findings for processes that shape floodplain habitat for riparian vegetation and salmonid fish, especially in the context of ecological restoration.

  2. Environmental and Anthropogenic Factors Influencing Mercury Dynamics During the Past Century in Floodplain Lakes of the Tapajós River, Brazilian Amazon.

    PubMed

    Oestreicher, Jordan Sky; Lucotte, Marc; Moingt, Matthieu; Bélanger, Émilie; Rozon, Christine; Davidson, Robert; Mertens, Frédéric; Romaña, Christina A

    2017-01-01

    In the Tapajós River region of the Brazilian Amazon, mercury (Hg) is a prevalent contaminant in the aquatic ecosystem. Few studies have used comprehensive chronological analyses to examine the combined effects of environmental and anthropogenic factors on Hg accumulation in sediments. Total mercury (THg) content was measured in sediments from eight floodplain lakes and Pb 210 isotope analysis was used to develop a timeline of THg accumulation. Secondary data representing environmental and anthropogenic factors were analyzed using geo-spatial analyses. These include land-cover change, hydrometeorological time-series data, lake morphology, and watershed biophysical characteristics. The results indicate that THg accumulation and sedimentation rates have increased significantly at the surface of most sediment cores, sometimes doubling since the 1970s. Human-driven land-cover changes in the watershed correspond closely to these shifts. Tropical deforestation enhances erosion, thereby mobilizing the heavy metal that naturally occurs in soils. Environmental factors also contribute to increased THg content in lacustrine sediments. Climate shifts since the 1980s are further compounding erosion and THg accumulation in surface sediments. Furthermore, variations in topography, soil types, and the level of hydrological connectivity between lakes and the river explain observed variations in THg fluxes and sedimentation. Although connectivity naturally varies among sampled lakes, deforestation of sensitive floodplain vegetation has changed lake-river hydrology in several sites. In conclusion, the results point to a combination of anthropogenic and environmental factors as determinants of increased THg accumulation in tropical floodplain sediments in the Tapajós region.

  3. Floodplains as a source of fine sediment in grazed landscapes: Tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape

    NASA Astrophysics Data System (ADS)

    Yu, Mingjing; Rhoads, Bruce L.

    2018-05-01

    The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five sources: croplands, forested floodplains, grasslands, upper grazed floodplains, and lower grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from the five sources to the suspended sediment loads. To account for possible effects of small sample sizes, the analysis was repeated with only two sources: grazed floodplains and croplands/grasslands/forested floodplains. Results based on mean values of tracers indicate that the vast majority of suspended sediment within the stream (>95%) is derived from erosion of channel banks and the soil surface within areas of grazed floodplains. Uncertainty analysis based on Monte Carlo simulations indicates that mean values of tracer properties, which do not account for sampling variability in these properties, probably overestimate contributions from the two major sources. Nevertheless, this analysis still supports the conclusion that floodplain erosion accounts for the largest percentage of instream sediment (≈55-75%). Although grazing occurs over only a small portion of the total watershed area, grazed floodplains, which lie in close proximity to the stream channel, are an important source of sediment in this headwater steam system. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on eroding floodplain surfaces and channel banks within heavily grazed reaches of the stream.

  4. Head-of-tide bottleneck of particulate material transport from watersheds to estuaries

    NASA Astrophysics Data System (ADS)

    Ensign, Scott H.; Noe, Gregory B.; Hupp, Cliff R.; Skalak, Katherine J.

    2015-12-01

    We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of tide on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of tide, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of tide stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.

  5. Head-of-tide bottleneck of particulate material transport from watersheds to estuaries

    USGS Publications Warehouse

    Ensign, Scott H.; Noe, Gregory; Hupp, Cliff R.; Skalak, Katherine

    2015-01-01

    We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of tide on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of tide, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of tide stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.

  6. Vegetation, soil, and flooding relationships in a blackwater floodplain forest

    USGS Publications Warehouse

    Burke, M.K.; King, S.L.; Gartner, D.; Eisenbies, M.H.

    2003-01-01

    Hydroperiod is considered the primary determinant of plant species distribution in temperate floodplain forests, but most studies have focused on alluvial (sediment-laden) river systems. Few studies have evaluated plant community relationships in blackwater river systems of the South Atlantic Coastal Plain of North America. In this study, we characterized the soils, hydroperiod, and vegetation communities and evaluated relationships between the physical and chemical environment and plant community structure on the floodplain of the Coosawhatchie River, a blackwater river in South Carolina, USA. The soils were similar to previous descriptions of blackwater floodplain soils but had greater soil N and P availability, substantially greater clay content, and lower soil silt content than was previously reported for other blackwater river floodplains. Results of a cluster analysis showed there were five forest communities on the site, and both short-term (4 years) and long-term (50 years) flooding records documented a flooding gradient: water tupelo community > swamp tupelo > laurel oak = overcup oak > mixed oak. The long-term hydrologic record showed that the floodplain has flooded less frequently from 1994 to present than in previous decades. Detrended correspondence analysis of environmental and relative basal area values showed that 27% of the variation in overstory community structure could be explained by the first two axes; however, fitting the species distributions to the DCA axes using Gaussian regression explained 67% of the variation. Axes were correlated with elevation (flooding intensity) and soil characteristics related to rooting volume and cation nutrient availability. Our study suggests that flooding is the major factor affecting community structure, but soil characteristics also may be factors in community structure in blackwater systems. ?? 2003, The Society of Wetland Scientists.

  7. Complementary effects of surface water and groundwater on soil moisture dynamics in a degraded coastal floodplain forest

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Muñoz-Carpena, R.

    2011-02-01

    SummaryRestoration of degraded floodplain forests requires a robust understanding of surface water, groundwater, and vadose zone hydrology. Soil moisture is of particular importance for seed germination and seedling survival, but is difficult to monitor and often overlooked in wetland restoration studies. This research hypothesizes that the complex effects of surface water and shallow groundwater on the soil moisture dynamics of floodplain wetlands are spatially complementary. To test this hypothesis, 31 long-term (4-year) hydrological time series were collected in the floodplain of the Loxahatchee River (Florida, USA), where watershed modifications have led to reduced freshwater flow, altered hydroperiod and salinity, and a degraded ecosystem. Dynamic factor analysis (DFA), a time series dimension reduction technique, was applied to model temporal and spatial variation in 12 soil moisture time series as linear combinations of common trends (representing shared, but unexplained, variability) and explanatory variables (selected from 19 additional candidate hydrological time series). The resulting dynamic factor models yielded good predictions of observed soil moisture series (overall coefficient of efficiency = 0.90) by identifying surface water elevation, groundwater elevation, and net recharge (cumulative rainfall-cumulative evapotranspiration) as important explanatory variables. Strong and complementary linear relationships were found between floodplain elevation and surface water effects (slope = 0.72, R2 = 0.86, p < 0.001), and between elevation and groundwater effects (slope = -0.71, R2 = 0.71, p = 0.001), while the effect of net recharge was homogenous across the experimental transect (slope = 0.03, R2 = 0.05, p = 0.242). This study provides a quantitative insight into the spatial structure of groundwater and surface water effects on soil moisture that will be useful for refining monitoring plans and developing ecosystem restoration and management scenarios in degraded coastal floodplains.

  8. Hydrologic variability, water chemistry, and phytoplankton biomass in a large flood plain of the Sacramento River, CA, U.S.A.

    USGS Publications Warehouse

    Schemel, L.E.; Sommer, T.R.; Muller-Solger, A. B.; Harrell, W.C.

    2004-01-01

    The Yolo Bypass, a large, managed floodplain that discharges to the headwaters of the San Francisco Estuary, was studied before, during, and after a single, month-long inundation by the Sacramento River in winter and spring 2000. The primary objective was to identify hydrologic conditions and other factors that enhance production of phytoplankton biomass in the floodplain waters. Recent reductions in phytoplankton have limited secondary production in the river and estuary, and increased phytoplankton biomass is a restoration objective for this system. Chlorophyll a was used as a measure of phytoplankton biomass in this study. Chlorophyll a concentrations were low (<4 ??g l -1) during inundation by the river when flow through the floodplain was high, but concentrations rapidly increased as river inflow decreased and the floodplain drained. Therefore, hydrologic conditions in the weeks following inundation by river inflow appeared most important for producing phytoplankton biomass in the floodplain. Discharges from local streams were important sources of water to the floodplain before and after inundation by the river, and they supplied dissolved inorganic nutrients while chlorophyll a was increasing. Discharge from the floodplain was enriched in chlorophyll a relative to downstream locations in the river and estuary during the initial draining and later when local stream inflows produced brief discharge pulses. Based on the observation that phytoplankton biomass peaks during drainage events, we suggest that phytoplankton production in the floodplain and biomass transport to downstream locations would be higher in years with multiple inundation and draining sequences.

  9. Determinism in fish assemblages of floodplain lakes of the vastly disturbed Mississippi Alluvial Valley

    USGS Publications Warehouse

    Miranda, L.E.; Lucas, G.M.

    2004-01-01

    The Mississippi Alluvial Valley between southern Illinois and southern Louisiana contains hundreds of floodplain lakes, most of which have been adversely affected by landscape modifications used to control flooding and support agriculture. We examined fish assemblages in lakes of this region to determine whether deterministic patterns developed in relation to prominent abiotic lake characteristics and to explore whether relevant abiotic factors could be linked to specific assemblage structuring mechanisms. The distributions of 14 taxa in 29 lakes were governed primarily by two gradients that contrasted assemblages in terms of lake area, lake elongation, and water clarity. The knowledge of whether a lake was clear or turbid, large or small, and long or short helped determine fish assemblage characteristics. Abiotic factors influenced fish assemblage structures, plausibly through limitations on foraging and physiological tolerances. Determinism in assemblage organization of floodplain lakes relative to recurrence in physicochemical features has been documented for unaltered rivers. Whereas the Mississippi Alluvial Valley has been subjected to vast anthropogenic disturbances and is not a fully functional floodplain river, fish assemblages in its floodplain lakes remain deterministic and organized by the underlying factors that also dictate assemblages in unaltered rivers. In advanced stages of lake aging, fish assemblages in these lakes are expected to largely include species that thrive in turbid, shallow systems with few predators and low oxygen concentrations. The observed patterns related to physical characteristics of these lakes suggest three general conservation foci, including (1) watershed management to control erosion, (2) removal of sediments or increases in water level to alleviate depth reductions and derived detriments to water physicochemistry, and (3) management of fish populations through stockings, removals, and harvest regulations.

  10. Groundwater salinity in a floodplain forest impacted by saltwater intrusion.

    PubMed

    Kaplan, David A; Muñoz-Carpena, Rafael

    2014-11-15

    Coastal wetlands occupy a delicate position at the intersection of fresh and saline waters. Changing climate and watershed hydrology can lead to saltwater intrusion into historically freshwater systems, causing plant mortality and loss of freshwater habitat. Understanding the hydrological functioning of tidally influenced floodplain forests is essential for advancing ecosystem protection and restoration goals, however finding direct relationships between hydrological inputs and floodplain hydrology is complicated by interactions between surface water, groundwater, and atmospheric fluxes in variably saturated soils with heterogeneous vegetation and topography. Thus, an alternative method for identifying common trends and causal factors is required. Dynamic factor analysis (DFA), a time series dimension reduction technique, models temporal variation in observed data as linear combinations of common trends, which represent unexplained common variability, and explanatory variables. DFA was applied to model shallow groundwater salinity in the forested floodplain wetlands of the Loxahatchee River (Florida, USA), where altered watershed hydrology has led to changing hydroperiod and salinity regimes and undesired vegetative changes. Long-term, high-resolution groundwater salinity datasets revealed dynamics over seasonal and yearly time periods as well as over tidal cycles and storm events. DFA identified shared trends among salinity time series and a full dynamic factor model simulated observed series well (overall coefficient of efficiency, Ceff=0.85; 0.52≤Ceff≤0.99). A reduced multilinear model based solely on explanatory variables identified in the DFA had fair to good results (Ceff=0.58; 0.38≤Ceff≤0.75) and may be used to assess the effects of restoration and management scenarios on shallow groundwater salinity in the Loxahatchee River floodplain. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?

    PubMed

    Malison, Rachel L; Kuzishchin, Kirill V; Stanford, Jack A

    2016-01-01

    Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3-12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99-1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically could produce 2× the biomass (between June-August, 1,174 vs. 667 kg) and rear 3× the number of salmon (370,000 vs. 140,000) compared to the existing condition with dams present. The highly productive Kol river produces an order of magnitude more salmon biomass and rears 40× the individuals compared to the Kwethluk. If beavers were introduced to the Kol River, we estimate that off-channel habitats would produce half as much biomass (2,705 vs. 5,404 kg) and 3× fewer individuals (1,482,346 vs. 4,856,956) owing to conversion of inter-connected, productive springbrooks into inaccessible pond complexes. We concluded that beaver dams may limit the total amount of floodplain habitat available for salmon rearing in the Kwethluk river and that the introduction of beavers to the Kol river could be detrimental to salmon populations. The introduction of beavers to other large alluvial rivers like those found in Kamchatka could have negative consequences for salmon production.

  12. Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?

    PubMed Central

    Kuzishchin, Kirill V.; Stanford, Jack A.

    2016-01-01

    Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3–12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99–1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically could produce 2× the biomass (between June–August, 1,174 vs. 667 kg) and rear 3× the number of salmon (370,000 vs. 140,000) compared to the existing condition with dams present. The highly productive Kol river produces an order of magnitude more salmon biomass and rears 40× the individuals compared to the Kwethluk. If beavers were introduced to the Kol River, we estimate that off-channel habitats would produce half as much biomass (2,705 vs. 5,404 kg) and 3× fewer individuals (1,482,346 vs. 4,856,956) owing to conversion of inter-connected, productive springbrooks into inaccessible pond complexes. We concluded that beaver dams may limit the total amount of floodplain habitat available for salmon rearing in the Kwethluk river and that the introduction of beavers to the Kol river could be detrimental to salmon populations. The introduction of beavers to other large alluvial rivers like those found in Kamchatka could have negative consequences for salmon production. PMID:27635357

  13. Banking carbon: A review of organic carbon storage and physical factors influencing retention in floodplains and riparian ecosystems

    Treesearch

    Nicholas A. Sutfin; Ellen E. Wohl; Kathleen A. Dwire

    2016-01-01

    Rivers are dynamic components of the terrestrial carbon cycle and provide important functions in ecosystem processes. Although rivers act as conveyers of carbon to the oceans, rivers also retain carbon within riparian ecosystems along floodplains, with potential for long-term (> 102 years) storage. Research in ecosystem processing emphasizes the...

  14. Modelling highly variable environmental factors to assess potential microbial respiration in complex floodplain landscapes

    PubMed Central

    Tritthart, Michael; Welti, Nina; Bondar-Kunze, Elisabeth; Pinay, Gilles; Hein, Thomas; Habersack, Helmut

    2011-01-01

    The hydrological exchange conditions strongly determine the biogeochemical dynamics in river systems. More specifically, the connectivity of surface waters between main channels and floodplains is directly controlling the delivery of organic matter and nutrients into the floodplains, where biogeochemical processes recycle them with high rates of activity. Hence, an in-depth understanding of the connectivity patterns between main channel and floodplains is important for the modelling of potential gas emissions in floodplain landscapes. A modelling framework that combines steady-state hydrodynamic simulations with long-term discharge hydrographs was developed to calculate water depths as well as statistical probabilities and event durations for every node of a computation mesh being connected to the main river. The modelling framework was applied to two study sites in the floodplains of the Austrian Danube River, East of Vienna. Validation of modelled flood events showed good agreement with gauge readings. Together with measured sediment properties, results of the validated connectivity model were used as basis for a predictive model yielding patterns of potential microbial respiration based on the best fit between characteristics of a number of sampling sites and the corresponding modelled parameters. Hot spots of potential microbial respiration were found in areas of lower connectivity if connected during higher discharges and areas of high water depths. PMID:27667961

  15. The Geomorphic Role of Large Woody Debris in River Avulsions

    NASA Astrophysics Data System (ADS)

    Stout, J. C.; Grove, J. R.; Rutherfurd, I.; Marren, P.

    2014-12-01

    The avulsion or abandonment of a river channel in favor of a new course on the floodplain is integral to the development and maintenance of anabranching planforms. Avulsions tend to occur on rivers where the rate of vertical aggradation outpaces lateral migration. In fine cohesive floodplain sediments, avulsions evolve through five stages dependent on the amount of flow and sediment being captured by the new channel. There is limited data available to allow the prediction of autogenic and allogenic controls on: the time over which an avulsion is active; its likely location; the frequency of occurrence; and the length of the interavulsion period. The delivery of wood to the river channel is an autogenic process which has received much attention over the last three decades. Surprisingly it has not previously been considered in anabranch avulsions, apart from where log-jams entirely block channels. The presence of large woody debris in the channel acts as a roughness element, trapping, and impeding the movement of sediments and deflecting flow onto the floodplain. We hypothesize that the delivery rates of wood to the channel, and its subsequent configuration (i.e. dimension, amount, volume, spatial arrangement and blockage ratio), alters flow and sediment routing through the channel. These changes directly influence the stages of avulsion development. To test this conceptual model we have used eleven floodplain cores to reconstruct the timing of a Holocene avulsion. The morphology of the channel in each evolutionary stage was used to estimate the relative role of wood as a roughness element. This was done by coupling a mass balance wood delivery model, run in a Monte Carlo simulation, to the geomorphic processes of each evolutionary stage of the avulsion. Our results allow us to quantify the importance of in-channel wood during each stage of the avulsion. These data highlight that there are critical points in the evolution of anabranching channels when large wood influences the avulsion rate and location.

  16. Sediment size of surface floodplain sediments along a large lowland river

    NASA Astrophysics Data System (ADS)

    Swanson, K. M.; Day, G.; Dietrich, W. E.

    2007-12-01

    Data on size distribution of surface sediment across a floodplain should place important constraints of modeling of floodplain deposition. Diffusive or advective models would predict that, generally, grain size should decrease away from channel banks. Variations in grain size downstream along floodplains may depend on downstream fining of river bed material, exchange rate with river banks and net deposition onto the floodplain. Here we report detailed grain size analyses taken from 17 floodplain transects along 450 km (along channel distance) reach of the middle Fly River, Papua New Guinea. Field studies have documented a systematic change in floodplain characteristics downstream from forested, more topographically elevated and topography bounded by an actively shifting mainstem channel to a downstream swamp grass, low elevation topography along which the river meanders are currently stagnant. Frequency and duration of flooding increase downstream. Flooding occurs both by overbank flows and by injections of floodwaters up tributary and tie channels connected to the mainstem. Previous studies show that about 40% of the total discharge of water passes across the floodplain, and, correspondingly, about 40% of the total load is deposited on the plain - decreasing exponentially from channel bank. We find that floodplain sediment is most sandy at the channel bank. Grain size rapidly declines away from the bank, but surprisingly two trends were also observed. A relatively short distance from the bank the surface material is finest, but with further distance from the bank (out to greater than 1 km from the 250 m wide channel) clay content decreases and silt content increases. The changes are small but repeated at most of the transects. The second trend is that bank material fines downstream, corresponding to a downstream finding bed material, but once away from the bank, there is a weak tendency for a given distance away from the bank the floodplain surface deposits to slightly coarsen downstream. We also find that sand is present (about 4%) in these surface sediments out to 1 km from the channel bank. These trends are not consistent with simple lateral transport models, and other factors, including effects of flocculation, local flow patterns, and possibly dry season wind effects may matter.

  17. The effect of inundation frequency on ground beetle communities in a channelized mountain stream

    NASA Astrophysics Data System (ADS)

    Skalski, T.; Kedzior, R.; Radecki-Pawlik, A.

    2012-04-01

    Under natural conditions, river channels and floodplains are shaped by flow and sediment regime and are one of the most dynamic ecosystems. At present, European river floodplains are among the most endangered landscapes due to human modifications to river systems, including channel regulation and floodplain urbanization, and land use changes in the catchments. Situated in a transition zone between terrestrial and aquatic environments, exposed riverine sediments (ERS) play a key role in the functioning of riverine ecosystems. This study aimed to verify whether the bare granular substrate is the only factor responsible for sustaining the biota associated with ERS or the inundation frequency also plays a role, modifying the potential of particular species to colonize these habitats. Ground beetles (Col. Carabidae) were selected as the investigated group of organisms and the study was carried out in Porębianka, a Polish Carpathian stream flowing through both unconstrained channel sections and sections with varied channelization schemes (rapid hydraulic structures, concrete revetments or rip-rap of various age). In each of the distinguished channel types, four replicates of 10 pitfall traps were established in three rows varying in distance to the mean water level (at three different benches). Almost 7000 individuals belonging to 102 species were collected on 60 plots. Forward selection of redundancy analysis revealed four factors significantly describing the variation in ground beetle species data: bank modification, potential bankfull discharge, frequency of inundation and plant height. Most of the biggest species were ordered at the positive site of first axis having the highest values of periods between floods. Total biomass of ground beetles and mean biomass of individuals differed significantly between sites of various frequency of inundation, whereas the variation in abundance and species richness of ground beetles was independent of the river dynamics. The body size distribution of ground beetles is significantly right skewed on more frequently flooded areas whereas on more stable localities it becomes left skewed. Our results also demonstrated that the presence of ERS does not changes the structure of ground beetle communities if the frequency of inundation of river banks is reduced. This study indicated that not only habitat parameters but also biotic interactions between competing species from a regional pool are important for the conservation of riverine communities. Vulnerable beetles characteristic of riverine habitats are small and usually weak competitors. A reduced frequency of bank inundation creates possibilities for the colonization of ERS by species from surrounding habitats and elimination of the species well adapted to the dynamic flow conditions typifying unmodified stream sections.

  18. Numerical simulation of streamflow distribution, sediment transport, and sediment deposition along Long Beach Creek in Northeast Missouri

    USGS Publications Warehouse

    Heimann, David C.

    2001-01-01

    This report presents the results of a study conducted by the U.S. Geological Survey in cooperation with the Missouri Department of Conservation to describe the hydrology, sediment transport, and sediment deposition along a selected reach of Long Branch Creek in Macon County, Missouri. The study was designed to investigate spatial and temporal characteristics of sediment deposition in a remnant forested riparian area and compare these factors by magnitude of discharge events both within and outside the measured range of flood magnitudes. The two-dimensional finite-element numerical models RMA2-WES and SED2D-WES were used in conjunction with measured data to simulate streamflow and sediment transport/deposition characteristics during 2-, 5-, 10-, and 25-year recurrence interval floods. Spatial analysis of simulated sediment deposition results indicated that mean deposition in oxbows and secondary channels exceeded that of the remaining floodplain areas during the 2-, 5-, 10-, and 25-year recurrence interval floods. The simulatedmass deposition per area for oxbows and secondary channels was 1.1 to 1.4 centimeters per square meter compared with 0.1 to 0.60 centimeters per square meter for the remaining floodplain. The temporal variability of total incremental floodplain deposition during a flood was found to be strongly tied to sediment inflowconcentrations. Most floodplain deposition, therefore, occurred at the beginning of the streamflow events and corresponded to peaks in sediment discharge. Simulated total sediment deposition in oxbows and secondary channels increased in the 2-year through 10-year floods and decreased in the 25- year flood while remaining floodplain deposition was highest for the 25-year flood. Despite increases in sediment inflows from the 2-year through 25-year floods, the retention ratio of sediments (the ratio of floodplain deposition to inflow load) was greatest for the 5-year flood and least for the 25-year flood. The decrease in retention ratio at greater flows is likely the result of higher velocities on the floodplain, resulting in higher bed shear stress, greater suspension time of deposited material, and greater sediment transport through the system. Simulated sediment deposition was most sensitive to sediment inflow concentrations and modification of floodplain roughness?factors that can be controlled through management practices. The increase in floodplain sediment deposition resulting from a simulated increase in vegetation density (increase in floodplain roughness from a Manning?s n of 0.11 to 0.12) was 142,000 kilograms, or 6.5 percent for a 10-year recurrence interval flood. This increase was comparable to total oxbow and secondary channel depositionmass in the simulations, but would result in amean increase in floodplain deposition thickness of only 0.025 centimeter. The hydrodynamic model results show the importance of the secondary channels and meander cutoff channels in this system because these areas quickly bring floodwaters and sediment to areas not close to the main channel. The meander cutoff channels in the simulation also effectively decrease flow and velocities in somemain channel sections thereby affecting sediment deposition in the vicinity of these features.

  19. Assessment of coastal flood risk in a changing climate along the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Bilskie, M. V.; Hagen, S. C.; Passeri, D. L.; Alizad, K.

    2014-12-01

    Coastal regions around the world are susceptible to a variety of natural disasters causing extreme inundation. It is anticipated that the vulnerability of coastal cities will increase due to the effects of climate change, and in particular sea level rise (SLR). We have developed a novel framework to construct a physics-based storm surge model that includes projections of coastal floodplain dynamics under climate change scenarios. Numerous experiments were conducted and it was concluded that a number of influencing factors, other than SLR, should be included in future assessments of coastal flooding under climate change; e.g., shoreline changes, barrier island morphology, salt marsh migration, and population dynamics. These factors can significantly affect the path, pattern, and magnitude of flooding depths and inundation along the coastline (Bilskie et al., 2014; Passeri et al., 2014). Using these factors, a storm surge model of the northern Gulf of Mexico (NGOM) representing present day conditions is modified to characterize the future outlook of the landscape. This adapted model is then used to assess flood risk in terms of the 100-year floodplain surface under SLR scenarios. A suite of hundreds of synthetic storms, derived by JPM-OS (Joint Probability Method - Optimum Sampling), are filtered to obtain the storms necessary to represent the statistically determined 100-year floodplain. The NGOM storm surge model is applied to simulate the synthetic storms and determine, for each storm, the flooding surface and depth, for four SLR scenarios for the year 2100 as prescribed by Parris et al. (2012). The collection of results facilitate the estimation of water surface elevation vs. frequency curves across the floodplain and the statistically defined 100-year floodplain is extracted. This novel method to assess coastal flooding under climate change can be performed across any coastal region worldwide, and results provide awareness of regions vulnerable to extreme flooding in the future.

  20. Floodplains as a source of fine sediment in grazed landscapes: tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape

    NASA Astrophysics Data System (ADS)

    Yu, M.; Rhoads, B. L.; Stumpf, A.

    2017-12-01

    The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five potential sources: streambanks, forested floodplain, grassland, and grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from five potential sources to the suspended sediment loads. Organic matter content, trace elements, and fallout radionuclides were used as potential tracers. Principal Component analysis was employed to complement the results and Monte Carlo random sampling routine was used to test the uncertainty in estimated contributions of sources to in-stream sediment loads. Results indicate that the majority of suspended sediment is derived from streambanks and grazed floodplains. Erosion of the floodplain both by surface runoff and by streambank erosion from lateral channel migration contributes to the production of fine sediment within the stream system. These results suggest that human activities, in this case grazing, have converted portions of floodplains, normally net depositional environments, into sources of fine sediments. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on degraded floodplain surfaces and eroding channel banks within heavily grazed reaches of the stream.

  1. A data driven approach using Takagi-Sugeno models for computationally efficient lumped floodplain modelling

    NASA Astrophysics Data System (ADS)

    Wolfs, Vincent; Willems, Patrick

    2013-10-01

    Many applications in support of water management decisions require hydrodynamic models with limited calculation time, including real time control of river flooding, uncertainty and sensitivity analyses by Monte-Carlo simulations, and long term simulations in support of the statistical analysis of the model simulation results (e.g. flood frequency analysis). Several computationally efficient hydrodynamic models exist, but little attention is given to the modelling of floodplains. This paper presents a methodology that can emulate output from a full hydrodynamic model by predicting one or several levels in a floodplain, together with the flow rate between river and floodplain. The overtopping of the embankment is modelled as an overflow at a weir. Adaptive neuro fuzzy inference systems (ANFIS) are exploited to cope with the varying factors affecting the flow. Different input sets and identification methods are considered in model construction. Because of the dual use of simplified physically based equations and data-driven techniques, the ANFIS consist of very few rules with a low number of input variables. A second calculation scheme can be followed for exceptionally large floods. The obtained nominal emulation model was tested for four floodplains along the river Dender in Belgium. Results show that the obtained models are accurate with low computational cost.

  2. Changes of floodplain morphology by water mills: Legacy sediments stored behind mill dams as archive and source for pollution - Examples from the Wurm River, Lower Rhine Embayment, Germany

    NASA Astrophysics Data System (ADS)

    Buchty-Lemke, Michael; Frings, Roy; Hagemann, Lukas; Lehmkuhl, Frank; Maaß, Anna-Lisa; Schwarzbauer, Jan

    2016-04-01

    The Wurm River (Lower Rhine Embayment, Germany) is a small stream in a low mountain area near the Dutch-German border that has seen a lot of anthropogenic changes of its morphology since medieval times. Among other influencing factors, water mills, in particular, had an early impact on the sediment dynamics and created sediment traps. Several knickpoints in the long profile may represent the legacy of mill damming - or founded mill building at these spots. The knickpoints may also represent the aftermath of the colliery history. A study site in the upper reaches of the Wurm River features erosion terraces, incised following the demise of a mill dam in the early 20th century. The mill pond most likely collected sediment and additives e.g. used in agricultural and industrial processes. These legacy sediments from behind former mill dams provide information about anthropogenic pollution, particularly for the era of industrialization in the vicinity of the old industrial area of the city of Aachen. Along with the demise of the mill dam and the increased incision tendency, the sediments are also a secondary source for pollution in case of remobilization of contaminated sediments. Two major research questions are addressed. A) Which individual hydrological and geomorphological processes, both upstream and downstream, triggered the incision and the construction of the erosion terraces, which are preserved in the mill pond sediments? Is either the demised mill dam, or subsidence effects, or a combination of both the determining factor? B) Which contaminants are retained in the sediments? Is there a detectable point source for the pollutants or is it a mixture of diffuse anthropogenic (industry, agriculture, traffic, wastewater) and natural origin? To tackle these questions, sedimentological data are combined with geomorphological mapping and evaluation of historical data. A soil profile provides insight into the architecture of the floodplain, which is built of riverbed sediments overlain by stratified fine clastic and organic-rich material, representing the sediment being trapped when the mill dam existed. X-ray fluorescence and grain size analysis are used to determine the depositional process, provenance and chemostratigraphy. Knowledge about the distribution and fate of pollutants in sediments is valuable for river management purposes. Measures within the scope of the EU Water Framework Directive have been implemented at several breaches at the Wurm River, and further ones are planned. Potential risks due to remobilization of polluted alluvial sediments must thereby be taken into account. Furthermore, e.g. dismantling of transverse structures to improve passage for fish might trigger similar erosion processes and affects the sediment continuity.

  3. Integrated loessite-paleokarst depositional system, early Pennsylvanian Molas Formation, Paradox Basin, southwestern Colorado, U.S.A.

    NASA Astrophysics Data System (ADS)

    Evans, James E.; Reed, Jason M.

    2007-03-01

    Mississippian paleokarst served as a dust trap for the oldest known Paleozoic loessite in North America. The early Pennsylvanian Molas Formation consists of loessite facies (sorted, angular, coarse-grained quartz siltstone), infiltration facies (loess redeposited as cave sediments within paleokarst features of the underlying Mississippian Leadville Limestone), colluvium facies (loess infiltrated into colluvium surrounding paleokarst towers) and fluvial facies (siltstone-rich, fluvial channel and floodplain deposits with paleosols). The depositional system evolved from an initial phase of infiltration and colluvium facies that were spatially and temporally related to the paleokarst surface, to loessite facies that mantled the paleotopography, and to fluvial facies that were intercalated with marine-deltaic rocks of the overlying Pennsylvanian Hermosa Formation. This sequence is interpreted as a response to the modification of the dust-trapping ability of the paleokarst surface. Loess was initially eroded from the surface, transported and redeposited in the subsurface by the karst paleohydrologic system, maintaining the dust-trapping ability of the paleotopographic surface. Later, the paleotopographic surface was buried when loess accumulation rates exceeded the transport capacity of the karst paleohydrologic system. These changes could have occurred because of (1) increased dust input rates in western Pangaea, (2) rising base levels and/or (3) porosity loss due to deposition within paleokarst passageways.

  4. Spatial patterns of water-dispersed seed deposition along stream riparian gradients

    PubMed Central

    Moinier, Sophie; van Gogh, Iris; Timmers, Robert; van Deelen, Joost J.; Verhoeven, Jos T. A.; Soons, Merel B.

    2017-01-01

    Riparian ecosystems along streams naturally harbour a high plant diversity with many increasingly endangered species. In our current heavily modified and fragmented catchments, many of these species are sensitive to dispersal limitation. Better understanding of riparian plant dispersal pathways is required to predict species (re-)colonization potential and improve success rates of stream and riparian zone conservation and restoration. Dispersal by water (hydrochory) is an important mechanism for longitudinal and lateral dispersal of riparian species. Crucially for recruitment potential, it also influences the elevation along the riparian hydrological gradient where seeds become deposited. Due to the complex interplay between abiotic and biotic factors, however, it remains unclear how exactly patterns in seed deposition are formed. We compared hydrochorous and non-hydrochorous seed deposition, and quantified patterns of seed deposition along the bare substrate of newly created stream riparian gradients. Water levels were monitored and seed deposition was measured with seed traps along the full range of riparian hydrological conditions (from permanently flooded to never flooded). Average seed numbers and species richness were significantly higher in flooded than in non-flooded seed traps (5.7 and 1.5 times higher, respectively). Community-weighted trait means indicated that typically water-dispersed seeds were more dominant in flooded than in non-flooded seed traps and gradually decreased in concentration from the channel to the upland. Moreover, highly buoyant seeds accumulated at the average water line, and clear elevational sorting of non-buoyant seeds occurred within the floodplain. These results establish a critical role of flooding in shaping patterns of seed deposition along the riparian gradient, delivering many seeds of typical riparian species to riparian zones and depositing them at species-specific elevations as influenced by seed traits, suggesting species-specific dispersal pathways. This shows that hydrochory likely has important consequences for riparian vegetation development and that flooding forms a key process for successful restoration. PMID:28957365

  5. Relating Demographic Characteristics of a Small Mammal to Remotely Sensed Forest-Stand Condition

    PubMed Central

    Lada, Hania; Thomson, James R.; Cunningham, Shaun C.; Mac Nally, Ralph

    2014-01-01

    Many ecological systems around the world are changing rapidly in response to direct (land-use change) and indirect (climate change) human actions. We need tools to assess dynamically, and over appropriate management scales, condition of ecosystems and their responses to potential mitigation of pressures. Using a validated model, we determined whether stand condition of floodplain forests is related to densities of a small mammal (a carnivorous marsupial, Antechinus flavipes) in 60 000 ha of extant river red gum (Eucalyptus camaldulensis) forests in south-eastern Australia in 2004, 2005 and 2011. Stand condition was assessed remotely using models built from ground assessments of stand condition and satellite-derived reflectance. Other covariates, such as volumes of fallen timber, distances to floods, rainfall and life stages were included in the model. Trapping of animals was conducted at 272 plots (0.25 ha) across the region. Densities of second-year females (i.e. females that had survived to a second breeding year) and of second-year females with suckled teats (i.e. inferred to have been successful mothers) were higher in stands with the highest condition. There was no evidence of a relationship with stand condition for males or all females. These outcomes show that remotely-sensed estimates of stand condition (here floodplain forests) are relatable to some demographic characteristics of a small mammal species, and may provide useful information about the capacity of ecosystems to support animal populations. Over-regulation of large, lowland rivers has led to declines in many facets of floodplain function. If management of water resources continues as it has in recent decades, then our results suggest that there will be further deterioration in stand condition and a decreased capacity for female yellow-footed antechinuses to breed multiple times. PMID:24621967

  6. Insect emergence in relation to floods in wet meadows and swamps in the River Dalälven floodplain.

    PubMed

    Vinnersten, T Z Persson; Östman, Ö; Schäfer, M L; Lundström, J O

    2014-08-01

    Annual variation in flood frequency and hydroperiod during the vegetation season has ecological impacts on the floodplain biota. Although many insect groups may have a lower emergence during a flood event, it is poorly known how annual emergence of insects in temporary wetlands is related to the variation in hydrology. Between May and September, we studied the weekly emergence of 18 insect taxa over six consecutive years, 2002-2007, in six temporary flooded wetlands (four wet meadows and two forest swamps) in the River Dalälven floodplains, Central Sweden. We used emergence traps to collect emerging insects from terrestrial and aquatic parts of wet meadows and swamp forests. In all wetlands, the insect fauna was numerically dominated by the orders Diptera, Hymenoptera, Coleoptera and Homoptera. On a weekly basis, 9 out of the 18 insect taxa had lower emergence in weeks with flood than in weeks with no flood, whereas no taxon had a higher emergence in weeks with flood. Over the seasons, we related insect emergence to seasonal flood frequency and length of hydroperiod. The emergence of most studied taxa decreased with increasing hydroperiod, which suggests that emergence after floods do not compensate for the reduced emergence during floods. Only Culicidae and the aquatic Chironomidae sub-families Tanypodinae and Chironominae showed an increase in emergence with increasing hydroperiod, whereas Staphylinidae peaked at intermediate hydroperiod. We conclude that a hydroperiod covering up to 40% of the vegetation season has a significant negative effect on the emergence of most taxa and that only a few taxa occurring in the temporary wetlands are actually favoured by a flood regime with recurrent and unpredictable floods.

  7. Sediment tracing in the upper Hunter catchment using elemental and mineralogical compositions: Implications for catchment-scale suspended sediment (dis)connectivity and management

    NASA Astrophysics Data System (ADS)

    Fryirs, Kirstie; Gore, Damian

    2013-07-01

    River bed colmation layers clog the interstices of gravel-bed rivers, impeding the vertical exchange of water and nutrients that drives ecosystem function in the hyporheic zone. In catchments where fine-grained sediment supply has increased since human disturbance, understanding sediment provenance and the (dis)connectivity of supply allows practitioners to target sediment source problems and treat them within catchment management plans. Release of alluvial fine-grained sediment from channel bank erosion since European settlement has resulted in the formation of a colmation layer along the upper Hunter River at Muswellbrook, eastern Australia. X-ray fluorescence spectrometry (XRF) and X-ray diffractometry (XRD) are used to determine the elemental and mineralogical signatures of colmation layer and floodplain sediment sources across this 4480 km2 catchment. This sediment tracing technique is used to construct a picture of how suspended sediment supply and (dis)connectivity operates in this catchment. In this system, the primary source areas are subcatchments in which sediments are stored largely in partly confined floodplain pockets, but from which sediment supply is unimpeded and directly connected to the receiving reach. Subcatchments in which alluvial sediment storage is significant — and which contain large, laterally unconfined valleys — are essentially 'switched off' or disconnected from the receiving reach. This is because large sediment sinks act to trap fine-grained sediment before it reaches the receiving reach, forming a buffer along the sediment conveyor belt. Given the age structure of floodplains in the receiving reach, this pattern of source area contributions and (dis)connectivity must have occurred throughout the Holocene.

  8. Prioritising the placement of riparian vegetation to reduce flood risk and end-of-catchment sediment yields: Important considerations in hydrologically-variable regions.

    PubMed

    Croke, Jacky; Thompson, Chris; Fryirs, Kirstie

    2017-04-01

    In perennial stream settings, there is abundant literature confirming that riparian vegetation affects flood hydrology by attenuating the flood wave, enhancing deposition and reducing bank erosion. In contrast, relatively little is known about the effectiveness of riparian vegetation during floods in hydrologically-variable regions. The dominant channel form in these settings is often referred to as a 'macrochannel' or compound channel-in-channel which displays multiple inundation surfaces where it is often difficult to identify the active channel bank and bank top. This study uses the inundation pattern of recent flood events in the Lockyer Valley of South East Queensland (SEQ), Australia to present a framework which specifically considers the interaction between inundation frequency and trapping potential on a range of inundation surfaces. Using hydrological modelling and a consistent definition of floodplains and within-channel features, it outlines five key priority areas for the placement of riparian vegetation to alleviate common flood problems within the catchment. The highest priority for the placement of riparian vegetation to ameliorate the effects of small-moderate floods is on within-channel benches. For out-of-macrochannel flows, riparian vegetation is most effective on genetic floodplains which occupy the largest spatial extent within the valley. In particular, it identifies the need for, and benefits of, revegetation in spill out zones (SOZ) which occur where upstream channel capacity is larger and flow is funnelled at high velocity onto the floodplain downstream. This study highlights the importance of understanding the key geomorphic processes occurring within a catchment and developing effective catchment management plans to suit these conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Sedimentation and contamination patterns of dike systems along the Rhône River (France)

    NASA Astrophysics Data System (ADS)

    Seignemartin, Gabrielle; Tena, Alvaro; Piégay, Hervé; Roux, Gwenaelle; Winiarski, Thierry

    2017-04-01

    Humans have historically modified the Rhône River, especially in the last centuries. In the 19th century, the river was systematically embanked for flood protection purposes, and works continued along the 20th century with dike system engineering work for navigation. The Rhône was canalised and its historical course by-passed by a series of hydroelectric dams. Besides, industrial activity polluted the river. For example, high levels of PCB's were attributed to the inputs of the heavily industrialized zone downstream from Lyon. During floods, these contaminants, associated with the suspended sediment, were trapped by the engineering works and the floodplain. Currently, a master plan to reactivate the river dynamics in the alluvial margins by removing the groyne-fields and dikes in the by-passed sections is being implemented. Within this context, this work aims to assess historical dynamics of sediment and associated contaminants in the floodplain (e.g. trace metal elements), notably in the dike system, in order to evaluate the contamination risk related to bank protection removal. With this objective, a transversal methodology has been applied coupling GIS diachronic analysis (old maps, bathymetric data, Orthophotos, LIDAR, etc.) to understand the historical floodplain evolution, sediment survey to obtain sediment thickness (metal rod and Ground Penetrating Radar), and sediment sampling (manual auger and core sampling) to obtain the metal element concentrations (X-Ray Fluorescence and Inductively Coupled Plasma Mass Spectrometry). By this way, metal element patterns were defined and used as contamination tracing indicators to apprehend the contamination history but also as geochemical background indicators to define the sediment source influence. We found that sediment temporal patterns are directly related with the by-pass construction year. Spatially, fine sediment deposition predominates in the dike systems, being lower in the floodplain already disconnected in the 20th century. Sediment thickness tends to increase in the dike systems following downstream direction. Coupling trace elements (Cu, Zn, Pb) and sediment patterns, metal pollution is mainly observed in the 1970's deposits, similarly to previous studies focused on PCB. These results constitute basic information to inform managers and improve restoration actions that are currently implemented in the Rhône River.

  10. Prediction and uncertainty analysis of surface and groundwater exchange in a Rhine floodplain in south-west Germany

    NASA Astrophysics Data System (ADS)

    Maier, Nadine; Breuer, Lutz; Kraft, Philipp

    2017-04-01

    Inundations and the resulting exchange between surface water and groundwater are of importance for all floodplain ecosystems. Because of the high groundwater level in floodplains and the groundwater dependence of floodplain vegetation habitat models of floodplains should include detailed information of groundwater and surface water dynamics. Such models can, for example, serve as a basis for restoration measures, focusing on the re-establishment of rare species. To capture these groundwater and surface water dynamics we use a distributed model approach to simulate the groundwater levels in a floodplain stream section of the Rhine in Hesse, Germany (14.8 km2). This area is part of the large nature reserve "Kühkopf-Knoblochsaue" and hosts rare and endangered flora and fauna. We developed a physical-deterministic model of a floodplain to simulate the groundwater situation and the flooding events in the floodplain. The model is built with the Catchment Modeling Framework (CMF) and includes the interaction of groundwater and surface water flow. To reduce the computation time of the model, we used a simple flood distribution scheme instead of solving the St. Venant equation for surface water fluxes. The floodplain is split into two sub-regions, according to the two nature reserve regions with the same model setup. Each model divides the study area laterally into irregular polygonal cells (270 - 400) with different sizes (114 - 480'000 m2), based on similar elevation and land use. For each sub-region the water level of the Rhine and the groundwater levels of three monitoring wells at the boundary of the model area are used as driving factors. As predictor variables we use observation data from four to six different groundwater monitoring wells in the sub-regions. For each model we run 5,000 simulations following a Latin Hypercube sampling procedure to investigate parameter uncertainty and derive behavioral model runs. We received RMSEs between 0.18 and 0.28 m for the different groundwater wells for the calibration period of 2.5 years and RMSEs between 0.16 and 0.23 m for the validation period of 9.5 years. Finally, we derived hydrological predictors (e.g. longest flooding period, amount of flooding days during the vegetation period, etc) from the model runs for following habitat models.

  11. Measuring spatial patterns in floodplains: A step towards understanding the complexity of floodplain ecosystems: Chapter 6

    USGS Publications Warehouse

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.; Gilvear, David J.; Greenwood, Malcolm T.; Thoms, Martin C.; Wood, Paul J.

    2016-01-01

    Floodplains can be viewed as complex adaptive systems (Levin, 1998) because they are comprised of many different biophysical components, such as morphological features, soil groups and vegetation communities as well as being sites of key biogeochemical processing (Stanford et al., 2005). Interactions and feedbacks among the biophysical components often result in additional phenomena occuring over a range of scales, often in the absence of any controlling factors (sensu Hallet, 1990). This emergence of new biophysical features and rates of processing can lead to alternative stable states which feed back into floodplain adaptive cycles (cf. Hughes, 1997; Stanford et al., 2005). Interactions between different biophysical components, feedbacks, self emergence and scale are all key properties of complex adaptive systems (Levin, 1998; Phillips, 2003; Murray et al., 2014) and therefore will influence the manner in which we study and view spatial patterns. Measuring the spatial patterns of floodplain biophysical components is a prerequisite to examining and understanding these ecosystems as complex adaptive systems. Elucidating relationships between pattern and process, which are intrinsically linked within floodplains (Ward et al., 2002), is dependent upon an understanding of spatial pattern. This knowledge can help river scientists determine the major drivers, controllers and responses of floodplain structure and function, as well as the consequences of altering those drivers and controllers (Hughes and Cass, 1997; Whited et al., 2007). Interactions and feedbacks between physical, chemical and biological components of floodplain ecosystems create and maintain a structurally diverse and dynamic template (Stanford et al., 2005). This template influences subsequent interactions between components that consequently affect system trajectories within floodplains (sensu Bak et al., 1988). Constructing and evaluating models used to predict floodplain ecosystem responses to natural and anthropogenic disturbances therefore require quantification of spatial pattern (Asselman and Middelkoop, 1995; Walling and He, 1998). Quantifying these patterns also provides insights into the spatial and temporal domains of structuring processes as well as enabling the detection of self-emergent phenomena, environmental constraints or anthropogenic interference (Turner et al., 1990; Holling, 1992; De Jager and Rohweder, 2012). Thus, quantifying spatial pattern is an important building block on which to examine floodplains as complex adaptive systems (Levin, 1998). Approaches to measuring spatial pattern in floodplains must be cognisant of scale, self-emergent phenomena, spatial organisation, and location. Fundamental problems may arise when patterns observed at a site or transect scale are scaled-up to infer processes and patterns over entire floodplain surfaces (Wiens, 2002; Thorp et al., 2008). Likewise, patterns observed over the entire spatial extent of a landscape can mask important variation and detail at finer scales (Riitters et al., 2002). Indeed, different patterns often emerge at different scales (Turner et al., 1990) because of hierarchical structuring processes (O'Neill et al., 1991). Categorising data into discrete, homogeneous and predefined spatial units at a particular scale (e.g. polygons) creates issues and errors associated with scale and subjective classification (McGarigal et al., 2009; Cushman et al., 2010). These include, loss of information within classified ‘patches’, as well as the ability to detect the emergence of new features that do not fit the original classification scheme. Many of these issues arise because floodplains are highly heterogeneous and have complex spatial organizations (Carbonneau et al., 2012; Legleiter, 2013). As a result, the scale and location at which measurements are made can influence the observed spatial patterns; and patterns may not be scale independent or applicable in different geomorp

  12. Hydrodynamics and Connectivity of Channelized Floodplains: Insights from the Meandering East Fork White River, Indiana, USA

    NASA Astrophysics Data System (ADS)

    Czuba, J. A.; David, S. R.; Edmonds, D. A.

    2017-12-01

    High resolution topography reveals that meandering river floodplains in Indiana commonly have networks of channels. These floodplain channel networks are most prevalent in agricultural, low-gradient, wide floodplains. It appears that these networks are formed when floodplain channels connect oxbows to each other and the main river channel. Collectively, the channels in the floodplain create an interconnected network of pathways that convey water beginning at flows less than bankfull, and as stage increases, more of the floodplain becomes dissected by floodplain channels. In this work, we quantify the hydrodynamics and connectivity of the flow on the floodplain and in the main channel of the East Fork White River near Seymour, Indiana, USA. We constructed a two-dimensional numerical model using HECRAS of the river-floodplain system from LiDAR data and from main-channel river bathymetry to elucidate the behaviour of these floodplain channels across a range of flows. Model calibration and verification data included stage from a USGS gage, high-water marks at a high and medium flow, and an aerial photograph of inundation in the floodplain channels. The numerical model simulated flow depth and velocity, which was used to quantify connectivity of the floodplain channels, exchange between the main channel and floodplain channels, and residence time of water on the floodplain. Model simulations suggest that the floodplain channels convey roughly 50% of the total flow at what is typically considered "bankfull" flow. Overall, we present a process-based approach for analyzing complex floodplain-river systems where an individual floodplain-river system can be distilled down to a set of characteristic curves. Notably, we map the East Fork White River system to exchange-residence time space and argue that this characterization forms the basis for thinking about morphologic evolution (e.g., sediment deposition and erosion) and biogeochemistry (e.g., nitrate removal) in floodplain-river systems.

  13. Effect of Floodplain Inundation on River Pollution in Taiwan's Strong Monsoonal Climate

    NASA Astrophysics Data System (ADS)

    Hester, E. T.; Lin, A. Y. C.

    2017-12-01

    River-floodplain interaction provides important benefits such as flood mitigation, provision of ecological habitat, and improved water quality. Human actions have historically reduced such interaction and associated benefits by diking, floodplain fill, and river regulation. In response, floodplain restoration has become popular in North America and Europe, but is less practiced in Asia. In Taiwan, unusually strong monsoons and steep terrain alter floodplain dynamics relative to elsewhere around the world, and provide a unique environment for floodplain management. We used numerical models of flow, transport, and reaction in river channels and floodplains to quantify the effect of river-floodplain interaction on water quality in Taiwan's strong monsoon and high topographic relief. We conducted sensitivity analyses of parameters such as river slope, monsoon severity, reservoir operation mode, degree of floodplain reconnection, contaminant reaction rate, and contaminant reaction type on floodplain connectivity and contaminant mitigation. We found significant differences in floodplain hydraulics and residence times in Taiwan's steep monsoonal environment relative to the shallower non-monsoonal environment typical of the eastern USA, with significant implications for water quality. For example, greater flashiness of floodplain inundation in Taiwan provides greater challenges for reconnecting sufficient floodplain volume to handle monsoonal runoff. Yet longer periods when floodplains are reliably dry means that such lands may have greater value for seasonal use such as parks or agriculture. The potential for floodplain restoration in Taiwan is thus significant, but qualitatively different than in the eastern USA.

  14. Floodplain ecohydrology: Climatic, anthropogenic, and local physical controls on partitioning of water sources to riparian trees.

    PubMed

    Singer, Michael Bliss; Sargeant, Christopher I; Piégay, Hervé; Riquier, Jérémie; Wilson, Rob J S; Evans, Cristina M

    2014-05-01

    Seasonal and annual partitioning of water within river floodplains has important implications for ecohydrologic links between the water cycle and tree growth. Climatic and hydrologic shifts alter water distribution between floodplain storage reservoirs (e.g., vadose, phreatic), affecting water availability to tree roots. Water partitioning is also dependent on the physical conditions that control tree rooting depth (e.g., gravel layers that impede root growth), the sources of contributing water, the rate of water drainage, and water residence times within particular storage reservoirs. We employ instrumental climate records alongside oxygen isotopes within tree rings and regional source waters, as well as topographic data and soil depth measurements, to infer the water sources used over several decades by two co-occurring tree species within a riparian floodplain along the Rhône River in France. We find that water partitioning to riparian trees is influenced by annual (wet versus dry years) and seasonal (spring snowmelt versus spring rainfall) fluctuations in climate. This influence depends strongly on local (tree level) conditions including floodplain surface elevation and subsurface gravel layer elevation. The latter represents the upper limit of the phreatic zone and therefore controls access to shallow groundwater. The difference between them, the thickness of the vadose zone, controls total soil moisture retention capacity. These factors thus modulate the climatic influence on tree ring isotopes. Additionally, we identified growth signatures and tree ring isotope changes associated with recent restoration of minimum streamflows in the Rhône, which made new phreatic water sources available to some trees in otherwise dry years. Water shifts due to climatic fluctuations between floodplain storage reservoirsAnthropogenic changes to hydrology directly impact water available to treesEcohydrologic approaches to integration of hydrology afford new possibilities.

  15. Floodplain ecohydrology: Climatic, anthropogenic, and local physical controls on partitioning of water sources to riparian trees

    PubMed Central

    Singer, Michael Bliss; Sargeant, Christopher I; Piégay, Hervé; Riquier, Jérémie; Wilson, Rob J S; Evans, Cristina M

    2014-01-01

    Seasonal and annual partitioning of water within river floodplains has important implications for ecohydrologic links between the water cycle and tree growth. Climatic and hydrologic shifts alter water distribution between floodplain storage reservoirs (e.g., vadose, phreatic), affecting water availability to tree roots. Water partitioning is also dependent on the physical conditions that control tree rooting depth (e.g., gravel layers that impede root growth), the sources of contributing water, the rate of water drainage, and water residence times within particular storage reservoirs. We employ instrumental climate records alongside oxygen isotopes within tree rings and regional source waters, as well as topographic data and soil depth measurements, to infer the water sources used over several decades by two co-occurring tree species within a riparian floodplain along the Rhône River in France. We find that water partitioning to riparian trees is influenced by annual (wet versus dry years) and seasonal (spring snowmelt versus spring rainfall) fluctuations in climate. This influence depends strongly on local (tree level) conditions including floodplain surface elevation and subsurface gravel layer elevation. The latter represents the upper limit of the phreatic zone and therefore controls access to shallow groundwater. The difference between them, the thickness of the vadose zone, controls total soil moisture retention capacity. These factors thus modulate the climatic influence on tree ring isotopes. Additionally, we identified growth signatures and tree ring isotope changes associated with recent restoration of minimum streamflows in the Rhône, which made new phreatic water sources available to some trees in otherwise dry years. Key Points Water shifts due to climatic fluctuations between floodplain storage reservoirs Anthropogenic changes to hydrology directly impact water available to trees Ecohydrologic approaches to integration of hydrology afford new possibilities PMID:25506099

  16. Use of seasonal freshwater wetlands by fishes in a temperate river floodplain

    USGS Publications Warehouse

    Henning, Julie A.; Gresswell, Robert E.; Fleming, Ian A.

    2007-01-01

    This study examined the use of freshwater wetland restoration and enhancement projects (i.e. non-estuarine wetlands subject to seasonal drying) by fish populations. To quantify fish use of freshwater emergent wetlands and assess the effect of wetland enhancement (i.e. addition of water control structures), two enhanced and two unenhanced emergent wetlands were compared, as well as two oxbow habitats within the Chehalis River floodplain. Eighteen fish species were captured using fyke nets and emigrant traps from January to the beginning of June, with the most abundant being three-spined stickleback Gasterosteus aculeatus and Olympic mudminnow Novumbra hubbsi. Coho salmon Oncorhynchus kisutch was the dominant salmonid at all sites. Enhanced wetlands, with their extended hydroperiods, had significantly higher abundances of yearling coho salmon than unenhanced wetlands. Both enhanced and unenhanced emergent wetlands yielded higher abundances of non-game native fishes than oxbow habitats. Oxbow habitats, however, were dominated by coho salmon. Fish survival in the wetland habitats was dependent on emigration to the river before dissolved oxygen concentrations decreased and wetlands became isolated and stranding occurred. This study suggests that wetland enhancement projects with an outlet to the river channel appear to provide fishes with important temporary habitats if they have the opportunity to leave the wetland as dissolved oxygen levels deteriorate.

  17. Water dispersal of vegetative bulbils of the invasive exotic Dioscorea oppositifolia L. in southern Illinois

    USGS Publications Warehouse

    Thomas, J.R.; Gibson, D.J.; Middleton, B.A.

    2005-01-01

    Riparian corridors promote dispersal of several species of exotic invasives worldwide. Dispersal plays a role in the colonization of exotic invasive species into new areas and this study was conducted to determine if the invasiveness of Dioscorea oppositifolia L. (Chinese yam) is facilitated by secondary dispersal of vegetative diaspores (bulbils) by water. Since seed production of this plant has not been observed in the United States, bulbils represent the only means of dispersal to new habitats. Dispersal was monitored by placing aquatic traps, tethered bulbils, and painted bulbil caches in a tributary of Drury Creek, Giant City State Park, Illinois. Results indicate that high-energy flow in the creek accelerated secondary dispersal of bulbils downstream and onto the floodplain. The longest recorded dispersal distance was 206.2 m downstream. Dispersal distance of tethered bulbils was not related to rainfall or flow velocity in the creek; however the total number of bulbils trapped was positively related to flow velocity. We conclude that secondary dispersal by water in streams can facilitate dispersal of vegetative bulbils of this exotic species.

  18. Ordination of breeding birds in relation to environmental gradients in three southeastern United States floodplain forests

    USGS Publications Warehouse

    Wakeley, J.S.; Guilfoyle, M.P.; Antrobus, T.J.; Fischer, R.A.; Barrow, W.C.; Hamel, P.B.

    2007-01-01

    We used an ordination approach to identify factors important to the organization of breeding bird communities in three floodplains: Cache River, Arkansas (AR), Iatt Creek, Louisiana (LA), and the Coosawhatchie River, South Carolina (SC), USA. We used 5-min point counts to sample birds in each study area each spring from 1995 to 1998, and measured ground-surface elevations and a suite of other habitat variables to investigate bird distributions and community characteristics in relation to important environmental gradients. In both AR and SC, the average number of Neotropical migrant species detected was lowest in semipermanently flooded Nyssa aquatica Linnaeus habitats and greatest in the highest elevation floodplain zone. Melanerpes carolinus Linnaeus, Protonotaria citrea Boddaert, Quiscalus quiscula Linnaeus, and other species were more abundant in N. aquatica habitats, whereas Wilsonia citrina Boddaert, Oporornis formosus Wilson, Vireo griseus Boddaert, and others were more abundant in drier floodplain zones. In LA, there were no significant differences in community metrics or bird species abundances among forest types. Canonical correspondence analyses revealed that structural development of understory vegetation was the most important factor affecting bird distributions in all three study areas; however, potential causes of these structural gradients differed. In AR and SC, differences in habitat structure were related to the hydrologic gradient, as indexed by ground-surface elevation. In LA, structural variations were related mainly to the frequency of canopy gaps. Thus, bird communities in all three areas appeared to be organized primarily in response to repeated localized disturbance. Our results suggest that regular disturbance due to flooding plays an important role in structuring breeding bird communities in floodplains subject to prolonged inundation, whereas other agents of disturbance (e.g., canopy gaps) may be more important in headwater systems subject to only short-duration flooding. Management for avian community integrity in these systems should strive to maintain forest zonation and natural disturbance regimes. ?? 2007 Springer Science+Business Media B.V.

  19. Reductive solubilization of arsenic in a mining-impacted river floodplain: Influence of soil properties and temperature.

    PubMed

    Simmler, Michael; Bommer, Jérôme; Frischknecht, Sarah; Christl, Iso; Kotsev, Tsvetan; Kretzschmar, Ruben

    2017-12-01

    Mining activities have contaminated many riverine floodplains with arsenic (As). When floodplain soils become anoxic under water-saturated conditions, As can be released from the solid phase. Several microbially-driven As solubilization processes and numerous influential factors were recognized in the past. However, the interplay and relative importance of soil properties and the influence of environmental factors such as temperature remain poorly understood, especially considering the (co)variation of soil properties in a floodplain. We conducted anoxic microcosm experiments at 10, 17.5, and 25 °C using 65 representative soils from the mining-impacted Ogosta River floodplain in Bulgaria. To investigate the processes of As solubilization and its quantitative variation we followed the As and Fe redox dynamics in the solid and the dissolved phase and monitored a range of other solution parameters including pH, Eh, dissolved organic C, and dissolved Mn. We related soil properties to dissolved As observed after 20 days of microcosm incubation to identify key soil properties for As solubilization. Our results evidenced reductive dissolution of As-bearing Fe(III)-oxyhydroxides as the main cause for high solubilization. The availability of nutrients, most likely organic C as the source of energy for microorganisms, was found to limit this process. Following the vertical nutrient gradient common in vegetated soil, we observed several hundred μM dissolved As after 1-2 weeks for some topsoils (0-20 cm), while for subsoils (20-40 cm) with comparable total As levels only minor solubilization was observed. While high Mn contents were found to inhibit As solubilization, the opposite applied for higher temperature (Q 10 2.3-6.1 for range 10-25 °C). Our results suggest that flooding of nutrient-rich surface layers might be more problematic than water-saturation of nutrient-poor subsoil layers, especially in summer floodings when soil temperature is higher than in winter or spring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Assemblage patterns of fish functional groups relative to habitat connectivity and conditions in floodplain lakes

    USGS Publications Warehouse

    Miyazono, S.; Aycock, J.N.; Miranda, L.E.; Tietjen, T.E.

    2010-01-01

    We evaluated the influences of habitat connectivity and local environmental factors on the distribution and abundance patterns of fish functional groups in 17 floodplain lakes in the Yazoo River Basin, USA. The results of univariate and multivariate analyses showed that species-environmental relationships varied with the functional groups. Species richness and assemblage structure of periodic strategists showed strong and positive correlations with habitat connectivity. Densities of most equilibrium and opportunistic strategists decreased with habitat connectivity. Densities of certain equilibrium and opportunistic strategists increased with turbidity. Forested wetlands around the lakes were positively related to the densities of periodic and equilibrium strategists. These results suggest that decreases in habitat connectivity, forested wetland buffers and water quality resulting from environmental manipulations may cause local extinction of certain fish taxa and accelerate the dominance of tolerant fishes in floodplain lakes. ?? 2010 John Wiley & Sons A/S.

  1. Effects of physical disturbance and granivory on establishment of native and alien riparian trees in Colorado, USA

    USGS Publications Warehouse

    Katz, G.L.; Friedman, J.M.; Beatty, S.W.

    2001-01-01

    In western North America, the alien Elaeagnus angustifolia L. invades riparian habitats usually dominated by pioneer woody species such as Populus deltoides Marshall ssp. monilifera (Aiton) Eckenwalder. We conducted manipulative field experiments to compare the importance of physical disturbance and granivory for seedling establishment of these two species. We planted seeds of both species in disturbed and undisturbed study plots, and used exclosures, seed dish trials and live-trapping to assess the role of granivory. Seedling establishment of both species was increased by physical disturbance and seeds of both species were subject to granivory. However, the relative importance of these two factors differed between species. For P. deltoides, lack of physical disturbance prevented seedling establishment in uncleared subplots, but granivory did not prevent seedling establishment outside of exclosures. For E. angustifolia, granivory prevented seedling establishment outside of exclosures, but lack of physical disturbance did not prevent establishment in uncleared subplots. The lesser dependence on disturbance may enable E. angustifolia to invade areas characterized by low levels of fluvial disturbance, such as floodplains along regulated rivers, where P. deltoides recruitment does not occur. Populations of granivorous rodents may affect the susceptibility of riparian ecosystems to invasion by E. angustifolia.

  2. An index of floodplain surface complexity

    USGS Publications Warehouse

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2016-01-01

    Floodplain surface topography is an important component of floodplain ecosystems. It is the primary physical template upon which ecosystem processes are acted out, and complexity in this template can contribute to the high biodiversity and productivity of floodplain ecosystems. There has been a limited appreciation of floodplain surface complexity because of the traditional focus on temporal variability in floodplains as well as limitations to quantifying spatial complexity. An index of floodplain surface complexity (FSC) is developed in this paper and applied to eight floodplains from different geographic settings. The index is based on two key indicators of complexity, variability in surface geometry (VSG) and the spatial organisation of surface conditions (SPO), and was determined at three sampling scales. FSC, VSG, and SPO varied between the eight floodplains and these differences depended upon sampling scale. Relationships between these measures of spatial complexity and seven geomorphological and hydrological drivers were investigated. There was a significant decline in all complexity measures with increasing floodplain width, which was explained by either a power, logarithmic, or exponential function. There was an initial rapid decline in surface complexity as floodplain width increased from 1.5 to 5 km, followed by little change in floodplains wider than 10 km. VSG also increased significantly with increasing sediment yield. No significant relationships were determined between any of the four hydrological variables and floodplain surface complexity.

  3. Sediment Flux and Storage in a Rural Southeastern Piedmont River System

    NASA Astrophysics Data System (ADS)

    Jackson, C. R.; Martin, J. K.

    2001-12-01

    A sediment budget was developed for a representative rural southeastern Piedmont watershed to provide information on the relative importance of sediment sources. Sediment issues in the southeastern Piedmont are complicated by the so-called legacy sediment produced by poor farming practices during the cotton-farming era, approximately 1810-1930. The Murder Creek basin near Monticello, GA was chosen because: it featured forestry and agriculture as the principal land uses; a USGS gage provided a flow record; and the creek deposited in a reservoir built in 1948. Suspended load export was calculated using a sediment rating curve and the USGS flow time series. Bed load export was determined by estimating the volume of sediment deposited in the reservoir since construction. Unpaved road erosion was estimated using the WEPP model, and other surface erosion was estimated using USLE and delivery ratios. Historical floodplain storage was determined by coring floodplain deposits, measuring the depth to the pre-historic/historic sediment interface, and multiplying by the area of the floodplain. Recent accretion rates were estimated using dendrogeomorphology. Results showed that the practices of the cotton farming era deposited an average of 1.6 meters of sediment on the floodplains. This depth was relatively uniform across the watershed. The cotton-farming sediment in storage exceeds the current annual export by a factor of about 5000. Approximately half of the current export comes from current inputs, and half comes from remobilized floodplain sediments.

  4. 10 CFR 1022.11 - Floodplain or wetland determination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Floodplain or wetland determination. 1022.11 Section 1022.11 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) COMPLIANCE WITH FLOODPLAIN AND WETLAND ENVIRONMENTAL REVIEW REQUIREMENTS Procedures for Floodplain and Wetland Reviews § 1022.11 Floodplain or wetland determination. (a) Concurrent with its review...

  5. 10 CFR 1022.11 - Floodplain or wetland determination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Floodplain or wetland determination. 1022.11 Section 1022.11 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) COMPLIANCE WITH FLOODPLAIN AND WETLAND ENVIRONMENTAL REVIEW REQUIREMENTS Procedures for Floodplain and Wetland Reviews § 1022.11 Floodplain or wetland determination. (a) Concurrent with its review...

  6. 10 CFR 1022.11 - Floodplain or wetland determination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Floodplain or wetland determination. 1022.11 Section 1022.11 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) COMPLIANCE WITH FLOODPLAIN AND WETLAND ENVIRONMENTAL REVIEW REQUIREMENTS Procedures for Floodplain and Wetland Reviews § 1022.11 Floodplain or wetland determination. (a) Concurrent with its review...

  7. 10 CFR 1022.11 - Floodplain or wetland determination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Floodplain or wetland determination. 1022.11 Section 1022.11 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) COMPLIANCE WITH FLOODPLAIN AND WETLAND ENVIRONMENTAL REVIEW REQUIREMENTS Procedures for Floodplain and Wetland Reviews § 1022.11 Floodplain or wetland determination. (a) Concurrent with its review...

  8. Floodplains within reservoirs promote earlier spawning of white crappies Pomoxis annularis

    USGS Publications Warehouse

    Miranda, Leandro E.; Dagel, Jonah D.; Kaczka, Levi J.; Mower, Ethan; Wigen, S. L.

    2015-01-01

    Reservoirs impounded over floodplain rivers are unique because they may include within their upper reaches extensive shallow water stored over preexistent floodplains. Because of their relatively flat topography and riverine origin, floodplains in the upper reaches of reservoirs provide broad expanses of vegetation within a narrow range of reservoir water levels. Elsewhere in the reservoir, topography creates a band of shallow water along the contour of the reservoir where vegetation often does not grow. Thus, as water levels rise, floodplains may be the first vegetated habitats inundated within the reservoir. We hypothesized that shallow water in reservoir floodplains would attract spawning white crappies Pomoxis annularis earlier than reservoir embayments. Crappie relative abundance over five years in floodplains and embayments of four reservoirs increased as spawning season approached, peaked, and decreased as fish exited shallow water. Relative abundance peaked earlier in floodplains than embayments, and the difference was magnified with higher water levels. Early access to suitable spawning habitat promotes earlier spawning and may increase population fitness. Recognition of the importance of reservoir floodplains, an understanding of how reservoir water levels can be managed to provide timely connectivity to floodplains, and conservation of reservoir floodplains may be focal points of environmental management in reservoirs.

  9. Multi-objective sustainable river management: balancing flood control, bio-pysical restoration and socio-economic factors in a Scottish river

    NASA Astrophysics Data System (ADS)

    Moir, H.; Bowles, C.; Campbell, C.; Sawyer, A.; Comins, L.; Werritty, A.

    2010-12-01

    The sustainable management of river corridors requires an understanding of the linkages between geomorphic, hydrologic, ecologic and socio-economic factors across a hierarchy of spatial and temporal scales. Therefore, in order to be genuinely sustainable, management must ideally be set within a catchment/watershed context. However, in practice, this rarely occurs due to obstacles imposed by fragmented land ownership/governance and an incomplete understanding of bio-physical process linkages. We present our experience on a project with the goal of optimising physical objectives at the catchment scale within a framework influenced by environmental legislation and conflicting land-use pressures. The project was carried out on the Eddleston Water in the Scottish Borders and had the primary objective of providing sustainable flood risk management to settlements on the water course while also providing ecological benefit to the river corridor. These co-objectives had to be met while considering the constraints imposed by land-use (predominantly arable agriculture) and transport infrastructure on the floodplain. The Eddleston Water has been heavily impacted by many human activities for over 200 years although a modified upland drainage, markedly canalised main-stem channel and floodplain disconnection are most significant to present-day physical and ecological processes. Catchment-scale restoration plans aim to restore broad-scale hydrological processes in conjunction with re-naturalisation of the river corridor at the reach-scale (including floodbank set-back, floodplain reconnection, regeneration of riparian vegetation, large wood placement). In addition, these measures also had to accommodate the objective of sustainable flood risk management, through the combination of a re-naturalised run-off regime and the encouragement of floodplain water storage. We present the output from 1D and 2D hydraulic models of a 1km stretch of the Eddleston Water that jointly assesses the benefit to flood hydrograph attenuation and bio-physical processes of a suite of restoration designs within the floodplain. Although the models produced an optimised design based on these environmental objectives, the ‘real world’ situation of constraints imposed by ‘socio-economic’ factors (particularly agricultural and urban infrastructure pressures) subsequently modified this. In this way the project demonstrated the compromises that have to be made in implementing these type of idealised physical objectives.

  10. A Limnological Examination of the Southwestern Amazon, Madre de Dios, Peru

    NASA Astrophysics Data System (ADS)

    Belcon, Alana Urnesha

    This dissertation investigates the limnology of the southwestern Peruvian Amazon centered on the Madre de Dios department by examining first the geomorphology and then the ecology and biogeochemistry of the region's fluvial systems. Madre de Dios, Peru is world renowned for its prolific biodiversity and its location within the Andes biodiversity hotspot. It is also a site of study regarding the development of the Fitzcarrald Arch and that feature's geomorphological importance as the drainage center for the headwaters of the Madeira River---the Amazon's largest tributary and as well as its role as a physical divider of genetic evolution in the Amazon. Though each of these has been studied by a variety of prominent researchers, the ability to investigate all the aspects of this unique region is hampered by the lack of a regional geomorphological map. This study aims to fill that gap by using remote sensing techniques on digital elevation models, satellite imagery and soil, geology and geoecological maps already in publication to create a geomorphological map. The resulting map contains ten distinct landform types that exemplify the dominance of fluvial processes in shaping this landscape. The river terraces of the Madre de Dios River are delineated in their entirety as well as the various dissected relief units and previously undefined units. The demarcation of the boundaries of these geomorphic units will provide invaluable assistance to the selection of field sites by future researchers as well as insights into the origin of the high biodiversity indices of this region and aid in planning for biodiversity conservation. Secondly this study examines 25 tropical floodplain lakes along 300 km of the Manu River within the Manu National Park in the Madre de Dios department. Alternative stable state and regime shifts in shallow lakes typically have been examined in lakes in temperate and boreal regions and within anthropogenically disturbed basins but have rarely been studied in tropical or in undisturbed regions. In contrast this study focuses on a tropical region of virtually no human disturbance and evaluates the effects of hydrological variability on ecosystem structure and dynamics. Using satellite imagery a 23 yr timeline of ecological regime shifts in Amazon oxbow lakes or "cochas" is reconstructed. The study shows that almost 25% of the river's floodplain lakes experience periodic abrupt vegetative changes with an average 3.4% existing in an alternative stable state in any given year. State changes typically occur from a stable phytoplankton-dominated state to a short lived, <3 yr, floating macrophytic state and often occur independent of regional flooding. We theorize that multiple dynamics, both internal and external, drive vegetative regime shifts in the Manu but insufficient data yet exists in this remote region to identify the key processes. To complete the investigation of tropical limnology the third study compares and contrasts the nutrient-productivity ration of floodplain and non-floodplain lakes globally and regionally. For over 70 years a strong positive relationship between sestonic chlorophyll-a (Chl-a) and total phosphorus (TP) has been established with phosphorus generally viewed as the most limiting factor to productivity. Most of these studies, however, have focused on northern, temperate regions where the lakes are typically postglacial, isolated and fed by small streams. Relatively little work has been done on floodplain lakes which are semi or permanently connected to the river. This study examines the relationship between nutrients and productivity in floodplain lakes globally through an extensive literature synthesis. Values for total phosphorus, total nitrogen and chlorophyll-a were collected for 523 floodplain lakes, represented by 288 data points while 551 data points were collected for 5444 non-floodplain lakes. Analysis revealed that globally, floodplain lakes do not show any significant difference in the total phosphorus/chlorophyll-a relationship from that found in non-floodplain lakes but significant differences are seen between tropical and temperate lakes. We propose that the term 'floodplain' lake should serve as purely a geographical descriptor and that it is lacking as an ecological indicator. Instead factors such as precipitation seasonality, hydrological connectivity and regional flooding regimes are better indicators of high or low productivity in floodplain lakes.

  11. Assessing Human Modifications to Floodplains using Large-Scale Hydrogeomorphic Floodplain Modeling

    NASA Astrophysics Data System (ADS)

    Morrison, R. R.; Scheel, K.; Nardi, F.; Annis, A.

    2017-12-01

    Human modifications to floodplains for water resource and flood management purposes have significantly transformed river-floodplain connectivity dynamics in many watersheds. Bridges, levees, reservoirs, shifts in land use, and other hydraulic engineering works have altered flow patterns and caused changes in the timing and extent of floodplain inundation processes. These hydrogeomorphic changes have likely resulted in negative impacts to aquatic habitat and ecological processes. The availability of large-scale topographic datasets at high resolution provide an opportunity for detecting anthropogenic impacts by means of geomorphic mapping. We have developed and are implementing a methodology for comparing a hydrogeomorphic floodplain mapping technique to hydraulically-modeled floodplain boundaries to estimate floodplain loss due to human activities. Our hydrogeomorphic mapping methodology assumes that river valley morphology intrinsically includes information on flood-driven erosion and depositional phenomena. We use a digital elevation model-based algorithm to identify the floodplain as the area of the fluvial corridor laying below water reference levels, which are estimated using a simplified hydrologic model. Results from our hydrogeomorphic method are compared to hydraulically-derived flood zone maps and spatial datasets of levee protected-areas to explore where water management features, such as levees, have changed floodplain dynamics and landscape features. Parameters associated with commonly used F-index functions are quantified and analyzed to better understand how floodplain areas have been reduced within a basin. Preliminary results indicate that the hydrogeomorphic floodplain model is useful for quickly delineating floodplains at large watershed scales, but further analyses are needed to understand the caveats for using the model in determining floodplain loss due to levees. We plan to continue this work by exploring the spatial dependencies of the F-index function. Results from this work have implications for loss of aquatic habitat and ecological functions, and can inform management and restoration activities by highlighting regions with significant floodplain loss.

  12. The role of floodplain restoration in mitigating flood risk, Lower Missouri River, USA

    USGS Publications Warehouse

    Jacobson, Robert B.; Lindner, Garth; Bitner, Chance; Hudson, Paul F.; Middelkoop, Hans

    2015-01-01

    Recent extreme floods on the Lower Missouri River have reinvigorated public policy debate about the potential role of floodplain restoration in decreasing costs of floods and possibly increasing other ecosystem service benefits. The first step to addressing the benefits of floodplain restoration is to understand the interactions of flow, floodplain morphology, and land cover that together determine the biophysical capacity of the floodplain. In this article we address interactions between ecological restoration of floodplains and flood-risk reduction at 3 scales. At the scale of the Lower Missouri River corridor (1300 km) floodplain elevation datasets and flow models provide first-order calculations of the potential for Missouri River floodplains to store floods of varying magnitude and duration. At this same scale assessment of floodplain sand deposition from the 2011 Missouri River flood indicates the magnitude of flood damage that could potentially be limited by floodplain restoration. At the segment scale (85 km), 1-dimensional hydraulic modeling predicts substantial stage reductions with increasing area of floodplain restoration; mean stage reductions range from 0.12 to 0.66 m. This analysis also indicates that channel widening may contribute substantially to stage reductions as part of a comprehensive strategy to restore floodplain and channel habitats. Unsteady 1-dimensional flow modeling of restoration scenarios at this scale indicates that attenuation of peak discharges of an observed hydrograph from May 2007, of similar magnitude to a 10 % annual exceedance probability flood, would be minimal, ranging from 0.04 % (with 16 % floodplain restoration) to 0.13 % (with 100 % restoration). At the reach scale (15–20 km) 2-dimensional hydraulic models of alternative levee setbacks and floodplain roughness indicate complex processes and patterns of flooding including substantial variation in stage reductions across floodplains depending on topographic complexity and hydraulic roughness. Detailed flow patterns captured in the 2-dimensional model indicate that most floodplain storage occurs on the rising limb of the flood as water flows into floodplain bottoms from downstream; at a later time during the rising limb this pattern is reversed and the entire bottom conveys discharge down the valley. These results indicate that flood-risk reduction by attenuation is likely to be small on a large river like the Missouri and design strategies to optimize attenuation and ecological restoration should focus on frequent floods (20–50 % annual exceedance probability). Local stage reductions are a more certain benefit of floodplain restoration but local effects are highly dependent on magnitude of flood discharge and how floodplain vegetation communities contribute to hydraulic roughness. The most certain flood risk reduction benefit of floodplain restoration is avoidance of flood damages to crops and infrastructure.

  13. Characterizing the impacts of the 2006 New Year's flood in the Laguna de Santa Rosa floodplain, Sonoma County, CA

    NASA Astrophysics Data System (ADS)

    Flint, L. E.; Curtis, J. A.; Flint, A. L.

    2006-12-01

    The Laguna de Santa Rosa (Laguna), the largest tributary to the Russian River located in Sonoma County, California, occupies a relatively flat low-lying area west of the Santa Rosa Plain. From December 12, 2005 to January 6, 2006 the Laguna experienced heavy flooding, with peak flows on New Year's Day of over 185 m3/s, at a location that experiences median flows of less than 14 m3/s. The objectives of this study were to (1) analyze precipitation intensities and amounts for the region to establish the conditions under which flooding occurred, (2) measure and map inundation areas and floodplain sediment deposition, and (3) compare field data with a GIS sediment deposition potential map. Spatial variations in intensities and total volumes of precipitation correlate well with evidence of local flooding throughout the region, particularly in the mountains to the east and southeast of Santa Rosa. Total precipitation for the month of December was 200 percent of normal, and maximum hourly intensities reached 20 mm/hour during the storm. High water marks and floodplain deposition sites were mapped using kinematic GPS surveying with post-processed differential correction, and sediment deposition was measured. The surveyed data were superimposed on an available two-foot-interval contour map to create an inundation map and a GIS point coverage of sediment deposition. Landscape attributes relevant to floodplain sedimentation were assessed and a sediment deposition potential map was created at the 30-m scale using a matrix of landscape characteristics that included: land use; roughness (influenced by vegetation type and density); channel and hillslope sediment sources (influenced by soils, geology, and cutbank erosion); slope and topography; and geomorphic terrain type. A calculation of sediment deposition potential was developed within a GIS that accounts for all contributing factors and illustrates that floodplain deposition is dominated by localized sedimentation, reflecting the importance of sediment point sources, rather than extensive sedimentation throughout the floodplain. The data collected in this study will be used to constrain model simulations of recurrence-interval floods and provide information on patterns of hydrology and sedimentation for extreme events that will help refine conceptual models of floodplain processes.

  14. Earthquake site response in Santa Cruz, California

    USGS Publications Warehouse

    Carver, D.; Hartzell, S.H.

    1996-01-01

    Aftershocks of the 1989 Loma Prieta, California, earthquake are used to estimate site response in a 12-km2 area centered on downtown Santa Cruz. A total of 258 S-wave records from 36 aftershocks recorded at 33 sites are used in a linear inversion for site-response spectra. The inversion scheme takes advantage of the redundancy of the large data set for which several aftershocks are recorded at each site. The scheme decomposes the observed spectra into source, path, and site terms. The path term is specified before the inversion. The undetermined degree of freedom in the decomposition into source and site spectra is removed by specifying the site-response factor to be approximately 1.0 at two sites on crystalline bedrock. The S-wave site responses correlate well with the surficial geology and observed damage pattern of the mainshock. The site-response spectra of the floodplain sites, which include the heavily damaged downtown area, exhibit significant peaks. The largest peaks are between 1 and 4 Hz. Five floodplain sites have amplification factors of 10 or greater. Most of the floodplain site-response spectra also have a smaller secondary peak between 6 and 8 Hz. Residential areas built on marine terraces above the flood-plain experienced much less severe damage. Site-response spectra for these areas also have their largest peaks between 1 and 4 Hz, but the amplification is generally below 6. Several of these sites also have a secondary peak between 6 and 8 Hz. The response peaks seen at nearly all sites between 1 and 4 Hz are probably caused by the natural resonance of the sedimentary rock column. The higher amplifications at floodplain sites may be caused by surface waves generated at the basin margins. The secondary peak between 6 and 8 Hz at many sites may be a harmonic of the 1- to 4-Hz peaks. We used waveforms from a seven-station approximately linear array located on the floodplain to calculate the apparent velocity and azimuth of propagation of coherent arrivals within moving windows of the S-wave codas. The initial windows give results that are consistent with direct S-wave arrivals. The apparent velocities are high (greater than 4.0 km/sec), and azimuths are from the source. Waves arriving later than 2 sec after the direct S waves have apparent velocities of less than 1 km/ sec, indicating that they are surface waves, and arrive from divergent azimuths. This analysis indicates that after the direct S-wave arrival, long-duration shaking comes from surface waves that are generated at the basin margin and reverberate in the floodplain sediments.

  15. The depositional web on the floodplain of the Fly River, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Day, Geoff; Dietrich, William E.; Rowland, Joel C.; Marshall, Andrew

    2008-03-01

    Floodplain deposition on lowland meandering rivers is usually interpreted as either lateral accretion during channel migration or overbank deposition. Previous studies on the Fly River in Papua New Guinea suggest, however, that floodplain channels (consisting of tie channel and tributary channels) play an important role in conveying sediment out across the floodplain. Here we report the results of an intensive field study conducted from 1990 to 1998 that documents the discharge of main stem water from the Fly River onto its floodplain and maps the spatial pattern of sediment deposition on the floodplain (using as a tracer elevated particulate copper introduced into the system by upstream mining). An extensive network of water level recorders demonstrates significant hydraulic heads from the main stem out the floodplain channels. For the monitoring period 1995-1998, net water discharge into the floodplain channels was about 20% of the flow. Another 20% is estimated to spill overbank from the main stem in wet years. Annual floodplain coring from 1990 to 1994 obtained over 800 samples across the 3500 km2 Middle Fly floodplain for use in documenting temporal and spatial patterns of sediment deposition. Early samples record the rapid spread of sediment up to 10 km away from the main stem via floodplain channels. Later, more intensive coring samples documented a well-defined exponential decline in sediment deposition from the nearest channel (which differed little between floodplain and main stem channels). Deposition, averaging about 6-9 mm/a, occurred in a 1 km corridor either side of these channels and effectively ceased beyond that distance. About 40% of the total sediment load was deposited on the floodplain, with half of that being conveyed by the over 900 km of floodplain channels (equal to about 0.09% sediment deposition/km of main stem channel length). Levee topographies along the main stem and floodplain channels are similar but cannot be explained by the observed exponential functions. Channel margin shear flow during extended periods of flooding may give rise to the localized levee deposition. Our study demonstrates that tie and tributary floodplain channels can inject large volumes of sediment-laden main stem waters great distances across the floodplain where they spill overbank, forming a narrow band of deposition, thereby creating a depositional web.

  16. Methane emissions from floodplains in the Amazon Basin: challenges in developing a process-based model for global applications

    NASA Astrophysics Data System (ADS)

    Ringeval, B.; Houweling, S.; van Bodegom, P. M.; Spahni, R.; van Beek, R.; Joos, F.; Röckmann, T.

    2014-03-01

    Tropical wetlands are estimated to represent about 50% of the natural wetland methane (CH4) emissions and explain a large fraction of the observed CH4 variability on timescales ranging from glacial-interglacial cycles to the currently observed year-to-year variability. Despite their importance, however, tropical wetlands are poorly represented in global models aiming to predict global CH4 emissions. This publication documents a first step in the development of a process-based model of CH4 emissions from tropical floodplains for global applications. For this purpose, the LPX-Bern Dynamic Global Vegetation Model (LPX hereafter) was slightly modified to represent floodplain hydrology, vegetation and associated CH4 emissions. The extent of tropical floodplains was prescribed using output from the spatially explicit hydrology model PCR-GLOBWB. We introduced new plant functional types (PFTs) that explicitly represent floodplain vegetation. The PFT parameterizations were evaluated against available remote-sensing data sets (GLC2000 land cover and MODIS Net Primary Productivity). Simulated CH4 flux densities were evaluated against field observations and regional flux inventories. Simulated CH4 emissions at Amazon Basin scale were compared to model simulations performed in the WETCHIMP intercomparison project. We found that LPX reproduces the average magnitude of observed net CH4 flux densities for the Amazon Basin. However, the model does not reproduce the variability between sites or between years within a site. Unfortunately, site information is too limited to attest or disprove some model features. At the Amazon Basin scale, our results underline the large uncertainty in the magnitude of wetland CH4 emissions. Sensitivity analyses gave insights into the main drivers of floodplain CH4 emission and their associated uncertainties. In particular, uncertainties in floodplain extent (i.e., difference between GLC2000 and PCR-GLOBWB output) modulate the simulated emissions by a factor of about 2. Our best estimates, using PCR-GLOBWB in combination with GLC2000, lead to simulated Amazon-integrated emissions of 44.4 ± 4.8 Tg yr-1. Additionally, the LPX emissions are highly sensitive to vegetation distribution. Two simulations with the same mean PFT cover, but different spatial distributions of grasslands within the basin, modulated emissions by about 20%. Correcting the LPX-simulated NPP using MODIS reduces the Amazon emissions by 11.3%. Finally, due to an intrinsic limitation of LPX to account for seasonality in floodplain extent, the model failed to reproduce the full dynamics in CH4 emissions but we proposed solutions to this issue. The interannual variability (IAV) of the emissions increases by 90% if the IAV in floodplain extent is accounted for, but still remains lower than in most of the WETCHIMP models. While our model includes more mechanisms specific to tropical floodplains, we were unable to reduce the uncertainty in the magnitude of wetland CH4 emissions of the Amazon Basin. Our results helped identify and prioritize directions towards more accurate estimates of tropical CH4 emissions, and they stress the need for more research to constrain floodplain CH4 emissions and their temporal variability, even before including other fundamental mechanisms such as floating macrophytes or lateral water fluxes.

  17. The importance of floodplain forests in the conservation and management of neotropical migratory birds in the Midwest

    USGS Publications Warehouse

    Knutson, M.G.; Hoover, J.P.; Klaas, E.E.; Thompson, Frank R.

    1996-01-01

    Bottomland forests of the Central Forest Region of the Upper Midwest are found primarily on the floodplains of large rivers and include at least six types of forest communities. Birds breeding in bottomland forests are affected by extensive variation in latitude, climate, hydrology, forest succession, and change caused by anthropogenic disturbances. The floodplain forest bird community differs in species composition and in relative abundance from adjacent upland habitats. High abundances of some species are found in the floodplain and some species, such as the prothonotary warbler, brown creeper, yellow-billed cuckoo, yellow-bellied sapsucker, and great crested flycatcher, show a clear preference for floodplain forests. Studies of nesting success indicate that, for some species, nest success may be higher in the floodplain than in the uplands. Floodplain birds face threats due to large-scale loss of floodplain forest habitat. Conservation efforts should focus on restoring degraded floodplains by maintaining high tree species diversity and wide corridors. To accomplish this, the underlying hydrodynamics which support a diverse floodplain forest habitat may need to be restored. Large, contiguous tracts of floodplain and upland forests should be maintained where they exist and restored in other locations. This will provide some high quality habitat for area-sensitive neotropical migratory birds (NTMBs) in agricultural landscapes where small, scattered forest fragments are the rule. Future research efforts should examine the importance of floodplain forests in maintaining populations of neotropical migrants, especially birds experiencing population declines in adjacent uplands.

  18. Reservoir floodplains support distinct fish assemblages

    USGS Publications Warehouse

    Miranda, Leandro E.; Wigen, S. L.; Dagel, Jonah D.

    2014-01-01

    Reservoirs constructed on floodplain rivers are unique because the upper reaches of the impoundment may include extensive floodplain environments. Moreover, reservoirs that experience large periodic water level fluctuations as part of their operational objectives seasonally inundate and dewater floodplains in their upper reaches, partly mimicking natural inundations of river floodplains. In four flood control reservoirs in Mississippi, USA, we explored the dynamics of connectivity between reservoirs and adjacent floodplains and the characteristics of fish assemblages that develop in reservoir floodplains relative to those that develop in reservoir bays. Although fish species richness in floodplains and bays were similar, species composition differed. Floodplains emphasized fish species largely associated with backwater shallow environments, often resistant to harsh environmental conditions. Conversely, dominant species in bays represented mainly generalists that benefit from the continuous connectivity between the bay and the main reservoir. Floodplains in the study reservoirs provided desirable vegetated habitats at lower water level elevations, earlier in the year, and more frequently than in bays. Inundating dense vegetation in bays requires raising reservoir water levels above the levels required to reach floodplains. Therefore, aside from promoting distinct fish assemblages within reservoirs and helping promote diversity in regulated rivers, reservoir floodplains are valued because they can provide suitable vegetated habitats for fish species at elevations below the normal pool, precluding the need to annually flood upland vegetation that would inevitably be impaired by regular flooding. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  19. Inventory and Comparison of Floodplain Embankment along Large Rivers

    NASA Astrophysics Data System (ADS)

    Hudson, Paul

    2016-04-01

    Flood control is a fundamental human response to flood risk, and floodplain embankment by dike (levee) construction is among the oldest forms of societal impacts to natural systems. Large lowland alluvial valleys are some of Earth's most distinctive environments and represent high levels of geodiversity and biodiversity. Embankment of large lowland alluvial river valleys alters fundamental processes related to floodplain hydrology, sedimentation, and ecology and eventually results in a transformation of the embanked floodplain environment. Since embankment, many large lowland floodplains have been heaviliy modified for floodplain agriculture and include high population densities, increasing flood risk. While there is much discussion about the pros and cons of dike construction and the impact to floodplain environments there is no systematic inventory which documents the magnitude and intensity of floodplain embankment to lowland rivers. In this study we characterize and inventory floodplain embankment along large lowland alluvial valleys. The review includes some of Earth's largest embanked fluvial systems, and primarilly focuses on northern hemisphere rivers in the United States, Europe and Asia. Data sources includes the U.S. National Levee Database, SRTM DEM, recently obtained high resolution satellite imagery, various national topographic map series, and hydrologic data from the published literature. These data are integrated into a GIS framework to facilitate the measurement and characterisation of floodplain embankment. Spatial indices of floodplain embankment are constructed, including the intensity of embankment and how it relates to the natural floodplain and constriction of flooding.

  20. Amazon floodplain channels regulate channel-floodplain water exchange

    NASA Astrophysics Data System (ADS)

    Bates, P. D.; Baugh, C.; Trigg, M.

    2017-12-01

    We examine the role of floodplain channels in regulating the exchange of water between the Amazon main stem and its extensive floodplains using a combination of field survey, remote sensing and numerical modelling for a 30,000 km2 area around the confluence of the Solimões and Purus rivers. From Landsat imagery we identified 1762 individual floodplain channel reaches with total length of nearly 9300 line km that range in width from 900m to 20m. Using a boat survey we measured width and depth along 509 line km of floodplain channels in 45 separate reaches and used these data to develop geomorphic relationships between width and depth. This enabled reconstruction of the depth of all other channels in the Landsat survey to an RMSE of 2.5m. We then constructed a 2D hydraulic model of this site which included all 9300km of floodplain channels as sub-grid scale features using a recently developed version of the LISFLOOD-FP code. The DEM for the model was derived from a version of the SRTM Digital Elevation Model that was processed to remove vegetation artefacts. The model was run at 270m resolution over the entire 30,000 km2 domain for the period from 2002-2009. Simulations were run with and without floodplain channels to examine the impact of these features on floodplain flow dynamics and storage. Simulated floodplain channel hydraulics were validated against a combination of in-situ and remotely sensed data. Our results show that approximately 100 km3 of water is exchanged between the channel and the floodplain during a typical annual cycle, and 8.5±2.1% of mainstem flows is routed through the floodplain. The overall effect of floodplains channels was to increase the duration of connections between the Amazon River and the floodplain. Inclusion of floodplain channels in the model increased inundation volume by 7.3% - 11.3% at high water, and decreased it at low water by 4.0% - 16.6%, with the range in these estimates due to potential errors in floodplain channel geometry. Inundation extent in the model did not increase at high water, but low water flood extents declined by 8.8% - 29.7% due to increased connectivity between the floodplain and the mainstem. The wide range of flow decrease estimates demonstrates that the results are sensitive to errors in the estimation of floodplain channel geometries, particularly bed elevations.

  1. The post-larval and juvenile fish assemblage in the Sukhothai floodplain, Thailand

    NASA Astrophysics Data System (ADS)

    Siriwan, Suksri; Boonsatien, Boonsoong

    2017-06-01

    This study investigated abundance, species composition and spatial and temporal distributions of fish larvae and their relationship with some environmental variables in the Sukhothai floodplain in northern Thailand. Fish larvae were collected from 33 sampling stations on 8 occasions between August 2010 and October 2013. The study collected and identified 149 296 individuals, representing 32 families and 165 taxa. The species composition of larval fish was dominated by the Cyprinidae (47.27%), Cobitidae (7.88%), Siluridae (6.67%), Bagridae (6.06%) and Mastacembelidae (3.33%) families. The most-abundant larval species were the Striped flying barb Esomus metallicus (16.90%), the Siamese mud carp Henicorhynchus siamensis (8.48%) and the Sumatran river sprat Clupeichthys goniognathus (8.31%). The greatest abundance and species diversity of larvae were found when the river flow runs onto the floodplain. PCA and nMDS analysis revealed that the samples plot is associated with temporal distribution among years. The discharge was a major factor determining fish larvae assemblage and environmental variables in the Sukhothai floodplain. Four fish larval species were positively correlated with the samples for 2013. The result of the CCA ordination plot showed that only the discharge variable was strongly correlated with fish larvae abundance, especially two cyprinid Rasbora species.

  2. Methane emissions from floodplains in the Amazon Basin: towards a process-based model for global applications

    NASA Astrophysics Data System (ADS)

    Ringeval, B.; Houweling, S.; van Bodegom, P. M.; Spahni, R.; van Beek, R.; Joos, F.; Röckmann, T.

    2013-10-01

    Tropical wetlands are estimated to represent about 50% of the natural wetland emissions and explain a large fraction of the observed CH4 variability on time scales ranging from glacial-interglacial cycles to the currently observed year-to-year variability. Despite their importance, however, tropical wetlands are poorly represented in global models aiming to predict global CH4 emissions. This study documents the first regional-scale, process-based model of CH4 emissions from tropical floodplains. The LPX-Bern Dynamic Global Vegetation Model (LPX hereafter) was modified to represent floodplain hydrology, vegetation and associated CH4 emissions. The extent of tropical floodplains was prescribed using output from the spatially-explicit hydrology model PCR-GLOBWB. We introduced new Plant Functional Types (PFTs) that explicitly represent floodplain vegetation. The PFT parameterizations were evaluated against available remote sensing datasets (GLC2000 land cover and MODIS Net Primary Productivity). Simulated CH4 flux densities were evaluated against field observations and regional flux inventories. Simulated CH4 emissions at Amazon Basin scale were compared to model simulations performed in the WETCHIMP intercomparison project. We found that LPX simulated CH4 flux densities are in reasonable agreement with observations at the field scale but with a~tendency to overestimate the flux observed at specific sites. In addition, the model did not reproduce between-site variations or between-year variations within a site. Unfortunately, site informations are too limited to attest or disprove some model features. At the Amazon Basin scale, our results underline the large uncertainty in the magnitude of wetland CH4 emissions. In particular, uncertainties in floodplain extent (i.e., difference between GLC2000 and PCR-GLOBWB output) modulate the simulated emissions by a factor of about 2. Our best estimates, using PCR-GLOBWB in combination with GLC2000, lead to simulated Amazon-integrated emissions of 44.4 ± 4.8 Tg yr-1. Additionally, the LPX emissions are highly sensitive to vegetation distribution. Two simulations with the same mean PFT cover, but different spatial distributions of grasslands within the basin modulated emissions by about 20%. Correcting the LPX simulated NPP using MODIS reduces the Amazon emissions by 11.3%. Finally, due to an intrinsic limitation of LPX to account for seasonality in floodplain extent, the model failed to reproduce the seasonality in CH4 emissions. The Inter Annual Variability (IAV) of the emissions increases by 90% if the IAV in floodplain extent is account for, but still remains lower than in most of WETCHIMP models. While our model includes more mechanisms specific to tropical floodplains, we were unable to reduce the uncertainty in the magnitude of wetland CH4 emissions of the Amazon Basin. Our results stress the need for more research to constrain floodplain CH4 emissions and their temporal variability.

  3. Floodplain Backwater Restoration: A Case Study

    USDA-ARS?s Scientific Manuscript database

    Current thinking in stream ecology emphasizes the importance of floodplain backwaters within lowland riverine ecosystems. However, these types of habitat are becoming increasingly rare as development is transforming floodplain landscapes in fundamental ways. Two floodplain backwaters (severed mean...

  4. Effects of loss of lateral hydrological connectivity on fish functional diversity.

    PubMed

    Liu, Xueqin; Wang, Hongzhu

    2018-05-26

    Loss of lateral hydrological connectivity (LHC) is a major cause of biodiversity decline in river floodplains, yet little is known about its effects on aquatic functional diversity in these ecosystems. We quantified functional alpha and beta diversity of fish assemblages in Yangtze River floodplain lakes, and explored their responses to loss of LHC using generalized linear mixed models. Functional richness was much lower in river disconnected lakes where functional evenness and divergence were higher. LHC was the most important factor shaping fish diversity patterns in this region. The predicted reduction due to loss of LHC was higher in functional richness (0.47-0.82) than in taxonomic richness (0.32) of all species assemblages in contrast to non-migratory species assemblages. It seemed that functional strategies were highly unevenly distributed between migratory and non-migratory fishes in the floodplain. Taxonomic beta diversity was much higher than functional beta diversity. The former was contributed mainly by spatial turnover component (73.6-83.8%) suggesting that dissimilarity among fish assemblages was largely induced by species replacement, while the latter was induced by nestedness-resultant component (70.7-86.0%) indicating a stronger role of function loss without replacement. Both taxonomic and functional beta diversity were higher in disconnected lakes, where they were significantly correlated with fishing activity and water quality. Our study determined for the first time the effects of loss of LHC on fish functional diversity in large river floodplains. We highlight the serious decline of fish functional richness in a large floodplain, and functional diversity remained highly vulnerable to loss of LHC even in such a species rich ecosystem. Our results provide important implications regarding biodiversity conservation and LHC restoration in large river floodplains. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Seasonal variation in nutrient retention during inundation of a short-hydroperiod floodplain

    USGS Publications Warehouse

    Noe, G.B.; Hupp, C.R.

    2007-01-01

    Floodplains are generally considered to be important locations for nutrient retention or inorganic-to-organic nutrient conversions in riverine ecosystems. However, little is known about nutrient processing in short-hydroperiod floodplains or seasonal variation in floodplain nutrient retention. Therefore, we quantified the net uptake, release or transformation of nitrogen (N), phosphorus (P) and suspended sediment species during brief periods (1-2 days) of overbank flooding through a 250-m floodplain flowpath on the fourth-order Mattawoman Creek, Maryland U.S.A. Sampling occurred during a winter, two spring and a summer flood in this largely forested watershed with low nutrient and sediment loading. Concentrations of NO3- increased significantly in surface water flowing over the floodplain in three of the four floods, suggesting the floodplain was a source of NO3-. The upper portion of the floodplain flowpath consistently exported NH4+, most likely due to the hyporheic: flushing of floodplain soil NH4+, which was then likely nitrified to NO3- in floodwaters. The floodplain was a sink for particulate organic P (POP) during two floods and particulate organic N and inorganic suspended sediment (ISS) during one flood. Large releases of all dissolved inorganic N and P species occurred following a snowmelt and subsequent cold winter flood. Although there was little consistency in most patterns of nutrient processing among the different floods, this floodplain, characterized by brief inundation, low residence time and low nutrient loading, behaved oppositely from the conceptual model for most floodplains in that it generally exported inorganic nutrients and imported organic nutrients.

  6. Cahokia's emergence and decline coincided with shifts of flood frequency on the Mississippi River

    NASA Astrophysics Data System (ADS)

    Munoz, Samuel E.; Gruley, Kristine E.; Massie, Ashtin; Fike, David A.; Schroeder, Sissel; Williams, John W.

    2015-05-01

    Here we establish the timing of major flood events of the central Mississippi River over the last 1,800 y, using floodwater sediments deposited in two floodplain lakes. Shifts in the frequency of high-magnitude floods are mediated by moisture availability over midcontinental North America and correspond to the emergence and decline of Cahokia-a major late prehistoric settlement in the Mississippi River floodplain. The absence of large floods from A.D. 600 to A.D. 1200 facilitated agricultural intensification, population growth, and settlement expansion across the floodplain that are associated with the emergence of Cahokia as a regional center around A.D. 1050. The return of large floods after A.D. 1200, driven by waning midcontinental aridity, marks the onset of sociopolitical reorganization and depopulation that culminate in the abandonment of Cahokia and the surrounding region by A.D. 1350. Shifts in the frequency and magnitude of flooding may be an underappreciated but critical factor in the formation and dissolution of social complexity in early agricultural societies.

  7. Large-scale suspended sediment transport and sediment deposition in the Mekong Delta

    NASA Astrophysics Data System (ADS)

    Manh, N. V.; Dung, N. V.; Hung, N. N.; Merz, B.; Apel, H.

    2014-08-01

    Sediment dynamics play a major role in the agricultural and fishery productivity of the Mekong Delta. However, the understanding of sediment dynamics in the delta, one of the most complex river deltas in the world, is very limited. This is a consequence of its large extent, the intricate system of rivers, channels and floodplains, and the scarcity of observations. This study quantifies, for the first time, the suspended sediment transport and sediment deposition in the whole Mekong Delta. To this end, a quasi-2D hydrodynamic model is combined with a cohesive sediment transport model. The combined model is calibrated using six objective functions to represent the different aspects of the hydraulic and sediment transport components. The model is calibrated for the extreme flood season in 2011 and shows good performance for 2 validation years with very different flood characteristics. It is shown how sediment transport and sediment deposition is differentiated from Kratie at the entrance of the delta on its way to the coast. The main factors influencing the spatial sediment dynamics are the river and channel system, dike rings, sluice gate operations, the magnitude of the floods, and tidal influences. The superposition of these factors leads to high spatial variability of sediment transport, in particular in the Vietnamese floodplains. Depending on the flood magnitude, annual sediment loads reaching the coast vary from 48 to 60% of the sediment load at Kratie. Deposited sediment varies from 19 to 23% of the annual load at Kratie in Cambodian floodplains, and from 1 to 6% in the compartmented and diked floodplains in Vietnam. Annual deposited nutrients (N, P, K), which are associated with the sediment deposition, provide on average more than 50% of mineral fertilizers typically applied for rice crops in non-flooded ring dike floodplains in Vietnam. Through the quantification of sediment and related nutrient input, the presented study provides a quantitative basis for estimating the benefits of annual Mekong floods for agriculture and fishery, and is an important piece of information with regard to the assessment of the impacts of deltaic subsidence and climate-change-related sea level rise on delta morphology.

  8. Strategy to Conduct Quantitative Ecohydrologic Analysis of a UNESCO World Heritage Site: the Peace-Athabasca Delta, Canada

    NASA Astrophysics Data System (ADS)

    Ward, E. M.; Gorelick, S.; Hadly, E. A.

    2016-12-01

    The 6000 km2 Peace-Athabasca Delta ("Delta") in northeastern Alberta, Canada, is a Ramsar Convention Wetland and UNESCO World Heritage Site ("in Danger" status pending) where hydropower development and climate change are creating ecological impacts through desiccation and reduction in Delta shoreline habitat. We focus on ecohydrologic changes and mitigation and adaptation options to advance the field of ecohydrology using interdisciplinary technology by combining, for the first time, satellite remote sensing and hydrologic simulation with individual-based population modeling of muskrat (Ondatra zibethicus), a species native to the Delta whose population dynamics are strongly controlled by the hydrology of floodplain lakes. We are building a conceptual and quantitative modeling framework linking climate change, upstream water demand, and hydrologic change in the floodplain to muskrat population dynamics with the objective of exploring the impacts of these stressors on this ecosystem. We explicitly account for cultural and humanistic influences and are committed to effective communication with the regional subsistence community that depends on muskrat for food and income. Our modeling framework can ultimately serve as the basis for improved stewardship and sustainable development upstream of stressed freshwater deltaic, coastal and lake systems worldwide affected by climate change, providing a predictive tool to quantify population changes of animals relevant to regional subsistence food security and commercial trapping.

  9. Spatial extent of mercury contamination in birds and their prey on the floodplain of a contaminated river.

    PubMed

    Howie, Mikaela G; Jackson, Allyson K; Cristol, Daniel A

    2018-07-15

    Mercury (Hg) exposure has been extensively studied in aquatic and piscivorous wildlife, but, historically, less attention has been directed towards terrestrial species. However, it has become apparent that aquatic Hg crosses ecosystem boundaries along with beneficial subsidies, thereby entering the terrestrial food chain. It is still not known how far from contaminated waterways Hg exposure remains a risk. We examined the spatial extent of exposure in terrestrial songbirds breeding in the floodplain along a 40-km stretch of Hg-contaminated river in Virginia, USA. Four songbird species were chosen that readily occupied artificial nest cavities placed at known distances from the river; Carolina chickadees (Poecile carolinensis), Carolina wrens (Thryothorus ludovicianus), eastern bluebirds (Sialia sialis), and house wrens (Troglodytes aedon). We examined Hg exposure at varying distances from the edge of the river for three endpoints: 1) adult bird blood, 2) nestling bird feather and 3) spider whole body (collected in pitfall traps and directly from the mouths of nestling birds). We used mixed effects models to understand 1) how total Hg (i.e., inorganic and organic, THg) concentrations differed between contaminated and reference sites and 2) how THg concentrations declined with distance away from the river on contaminated sites. Adult bird blood THg indicated that a species-by-distance interaction was significant, after accounting for site and year. Importantly, despite the decline with distance, we found that THg levels in some songbird species and their invertebrate prey remained elevated above reference levels for up to 400m away from the river. Our results predict a spatial extent of contamination that is an order of magnitude greater than similar studies investigating the lateral impact of other aquatically derived contaminants. To our knowledge, this study is the first to indicate that exposure to legacy aquatic Hg is possible for terrestrial wildlife across the entire floodplain, rather than being confined to narrow riparian corridors. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. The potential for dams to impact lowland meandering river floodplain geomorphology.

    PubMed

    Marren, Philip M; Grove, James R; Webb, J Angus; Stewardson, Michael J

    2014-01-01

    The majority of the world's floodplains are dammed. Although some implications of dams for riverine ecology and for river channel morphology are well understood, there is less research on the impacts of dams on floodplain geomorphology. We review studies from dammed and undammed rivers and include influences on vertical and lateral accretion, meander migration and cutoff formation, avulsion, and interactions with floodplain vegetation. The results are synthesized into a conceptual model of the effects of dams on the major geomorphic influences on floodplain development. This model is used to assess the likely consequences of eight dam and flow regulation scenarios for floodplain geomorphology. Sediment starvation downstream of dams has perhaps the greatest potential to impact on floodplain development. Such effects will persist further downstream where tributary sediment inputs are relatively low and there is minimal buffering by alluvial sediment stores. We can identify several ways in which floodplains might potentially be affected by dams, with varying degrees of confidence, including a distinction between passive impacts (floodplain disconnection) and active impacts (changes in geomorphological processes and functioning). These active processes are likely to have more serious implications for floodplain function and emphasize both the need for future research and the need for an "environmental sediment regime" to operate alongside environmental flows.

  11. The Potential for Dams to Impact Lowland Meandering River Floodplain Geomorphology

    PubMed Central

    Marren, Philip M.; Grove, James R.; Webb, J. Angus; Stewardson, Michael J.

    2014-01-01

    The majority of the world's floodplains are dammed. Although some implications of dams for riverine ecology and for river channel morphology are well understood, there is less research on the impacts of dams on floodplain geomorphology. We review studies from dammed and undammed rivers and include influences on vertical and lateral accretion, meander migration and cutoff formation, avulsion, and interactions with floodplain vegetation. The results are synthesized into a conceptual model of the effects of dams on the major geomorphic influences on floodplain development. This model is used to assess the likely consequences of eight dam and flow regulation scenarios for floodplain geomorphology. Sediment starvation downstream of dams has perhaps the greatest potential to impact on floodplain development. Such effects will persist further downstream where tributary sediment inputs are relatively low and there is minimal buffering by alluvial sediment stores. We can identify several ways in which floodplains might potentially be affected by dams, with varying degrees of confidence, including a distinction between passive impacts (floodplain disconnection) and active impacts (changes in geomorphological processes and functioning). These active processes are likely to have more serious implications for floodplain function and emphasize both the need for future research and the need for an “environmental sediment regime” to operate alongside environmental flows. PMID:24587718

  12. Quantitative model of the growth of floodplains by vertical accretion

    USGS Publications Warehouse

    Moody, J.A.; Troutman, B.M.

    2000-01-01

    A simple one-dimensional model is developed to quantitatively predict the change in elevation, over a period of decades, for vertically accreting floodplains. This unsteady model approximates the monotonic growth of a floodplain as an incremental but constant increase of net sediment deposition per flood for those floods of a partial duration series that exceed a threshold discharge corresponding to the elevation of the floodplain. Sediment deposition from each flood increases the elevation of the floodplain and consequently the magnitude of the threshold discharge resulting in a decrease in the number of floods and growth rate of the floodplain. Floodplain growth curves predicted by this model are compared to empirical growth curves based on dendrochronology and to direct field measurements at five floodplain sites. The model was used to predict the value of net sediment deposition per flood which best fits (in a least squares sense) the empirical and field measurements; these values fall within the range of independent estimates of the net sediment deposition per flood based on empirical equations. These empirical equations permit the application of the model to estimate of floodplain growth for other floodplains throughout the world which do not have detailed data of sediment deposition during individual floods. Copyright (C) 2000 John Wiley and Sons, Ltd.

  13. Aquatic methane dynamics in a human-impacted river-floodplain of the Danube.

    PubMed

    Sieczko, Anna Katarzyna; Demeter, Katalin; Singer, Gabriel Andreas; Tritthart, Michael; Preiner, Stefan; Mayr, Magdalena; Meisterl, Karin; Peduzzi, Peter

    2016-11-01

    River-floodplain systems are characterized by changing hydrological connectivity and variability of resources delivered to floodplain water bodies. Although the importance of hydrological events has been recognized, the effect of flooding on CH 4 concentrations and emissions from European, human-impacted river-floodplains is largely unknown. This study evaluates aquatic concentrations and emissions of CH 4 from a highly modified, yet partly restored river-floodplain system of the Danube near Vienna (Austria). We covered a broad range of hydrological conditions, including a 1-yr flood event in 2012 and a 100-yr flood in 2013. Our findings demonstrate that river-floodplain waters were supersaturated with CH 4 , hence always serving as a source of CH 4 to the atmosphere. Hydrologically isolated habitats in general have higher concentrations and produce higher fluxes despite lower physically defined velocities. During surface connection, however, CH 4 is exported from the floodplain to the river, suggesting that the main channel serves as an "exhaust pipe" for the floodplain. This mechanism was especially important during the 100-yr flood, when a clear pulse of CH 4 was flushed from the floodplain with surface floodwaters. Our results emphasize the importance of floods differing in magnitude for methane evasion from river-floodplains; 34% more CH 4 was emitted from the entire system during the year with the 100-yr flood compared to a hydrologically "normal" year. Compared to the main river channel, semiisolated floodplain waters were particularly strong sources of CH 4 . Our findings also imply that the predicted increased frequency of extreme flooding events will have significant consequences for methane emission from river-floodplain systems.

  14. Measuring floodplain spatial patterns using continuous surface metrics at multiple scales

    USGS Publications Warehouse

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2015-01-01

    Interactions between fluvial processes and floodplain ecosystems occur upon a floodplain surface that is often physically complex. Spatial patterns in floodplain topography have only recently been quantified over multiple scales, and discrepancies exist in how floodplain surfaces are perceived to be spatially organised. We measured spatial patterns in floodplain topography for pool 9 of the Upper Mississippi River, USA, using moving window analyses of eight surface metrics applied to a 1 × 1 m2 DEM over multiple scales. The metrics used were Range, SD, Skewness, Kurtosis, CV, SDCURV,Rugosity, and Vol:Area, and window sizes ranged from 10 to 1000 m in radius. Surface metric values were highly variable across the floodplain and revealed a high degree of spatial organisation in floodplain topography. Moran's I correlograms fit to the landscape of each metric at each window size revealed that patchiness existed at nearly all window sizes, but the strength and scale of patchiness changed within window size, suggesting that multiple scales of patchiness and patch structure exist in the topography of this floodplain. Scale thresholds in the spatial patterns were observed, particularly between the 50 and 100 m window sizes for all surface metrics and between the 500 and 750 m window sizes for most metrics. These threshold scales are ~ 15–20% and 150% of the main channel width (1–2% and 10–15% of the floodplain width), respectively. These thresholds may be related to structuring processes operating across distinct scale ranges. By coupling surface metrics, multi-scale analyses, and correlograms, quantifying floodplain topographic complexity is possible in ways that should assist in clarifying how floodplain ecosystems are structured.

  15. Hydroecological factors governing surface water flow on a low-gradient floodplain

    USGS Publications Warehouse

    Harvey, J.W.; Schaffranek, R.W.; Noe, G.B.; Larsen, L.G.; Nowacki, D.J.; O'Connor, B.L.

    2009-01-01

    Interrelationships between hydrology and aquatic ecosystems are better understood in streams and rivers compared to their surrounding floodplains. Our goal was to characterize the hydrology of the Everglades ridge and slough floodplain ecosystem, which is valued for the comparatively high biodiversity and connectivity of its parallel-drainage features but which has been degraded over the past century in response to flow reductions associated with flood control. We measured flow velocity, water depth, and wind velocity continuously for 3 years in an area of the Everglades with well-preserved parallel-drainage features (i.e., 200-m wide sloughs interspersed with slightly higher elevation and more densely vegetated ridges). Mean daily flow velocity averaged 0.32 cm s-1 and ranged between 0.02 and 0.79 cm s-1. Highest sustained velocities were associated with flow pulses caused by water releases from upstream hydraulic control structures that increased flow velocity by a factor of 2-3 on the floodplain for weeks at a time. The highest instantaneous measurements of flow velocity were associated with the passage of Hurricane Wilma in 2005 when the inverse barometric pressure effect increased flow velocity up to 5 cm s-1 for several hours. Time-averaged flow velocities were 29% greater in sloughs compared to ridges because of marginally higher vegetative drag in ridges compared to sloughs, which contributed modestly (relative to greater water depth and flow duration in sloughs compared to ridges) to the predominant fraction (86%) of total discharge through the landscape occurring in sloughs. Univariate scaling relationships developed from theory of flow through vegetation, and our field data indicated that flow velocity increases with the square of water surface slope and the fourth power of stem diameter, decreases in direct proportion with increasing frontal area of vegetation, and is unrelated to water depth except for the influence that water depth has in controlling the submergence height of vegetation that varies vertically in its architectural characteristics. In the Everglades the result of interactions among controlling variables was that flow velocity was dominantly controlled by water surface slope variations responding to flow pulses more than spatial variation in vegetation characteristics or fluctuating water depth. Our findings indicate that floodplain managers could, in addition to managing water depth, manipulate the frequency and duration of inflow pulses to manage water surface slope, which would add further control over flow velocities, water residence times, sediment settling, biogeochemical transformations, and other processes that are important to floodplain function. ?? 2009 by American Geophysical Union.

  16. CH4 emissions from two floodplain fens of differing nutrient status

    NASA Astrophysics Data System (ADS)

    Stanley, Kieran; Heppell, Catherine; Belyea, Lisa; Baird, Andrew

    2014-05-01

    Floodplain fens emit large amounts of CH4 in comparison with ombrotrophic bogs. Little is known about the effect of fluvial nitrogen (N) and phosphorus (P) on CH4 dynamics in fens, although N and P affect carbon (C) dynamics indirectly in other environments by controlling plant growth and root exudate release, as well as by altering microbial biomass and decomposition rates. This study aimed to compare CH4 emissions from two floodplain fen sites which differ in nutrient status, Sutton Fen (52°45'N 001°30'E) and Strumpshaw Fen (52°36'N 001°27'E), in the Norfolk Broadland of England. Sutton and Strumpshaw Fen are under conservation management and both sites have water levels that vary within a few decimetres above and below the surface. The sites are dominated by reed (Phragmites australis). Areas within the fens where the reed was cut in 2009 were chosen for this study. Average plant height and mean aboveground biomass were significantly greater at Strumpshaw (107.2 ± 7.8 cm and 1578 ± 169 g m-2, respectively) than Sutton (56.5 ± 5.1 cm and 435 ± 42 g m-2) as were mean foliar N and P contents (21.8 ± 1.5 g kg-1 and 2.0 ± 0.2 g kg-1 at Strumpshaw, versus 16.3 ± 1.5 g kg-1 and 1.1 ± 0.1 g kg-1 at Sutton). Foliar NPK ratios showed Strumpshaw to be N limited, whereas Sutton was both N and P limited, depending on microsite. Surface peat N and P contents were also greater at Strumpshaw (28.3 ± 0.35 g kg-1 and 0.78 ± 0.02 g kg-1, respectively) than Sutton (18.32 ± 0.87 g kg-1 and 0.43 ± 0.1 g kg-1). These results indicate clear differences in nutrient status between the two sites despite their geographical proximity and other similarities. CH4 emissions were monitored monthly between 19th June 2012 and 2nd September 2013 using tall static chambers and glass funnel-traps, the latter for ebullition. Steady fluxes did not follow a clear seasonal pattern; however, emission was greatest in the summer months. Strumpshaw had a greater range in efflux (0.25 to 134.2 mg CH4 m-2 h-1) than Sutton (0.17 to 29.82 mg CH4 m-2 h-1). Ebullition was generally greater at Sutton throughout the study period, with rates ranging from 0 to 62.09 mg CH4 m-2 h-1 and 0 to 19.30 mg CH4 m-2 h-1 for Sutton and Strumpshaw, respectively. Fluxes were generally within the range of values reported in the literature for ebullition (0 to 466 mg CH4 m-2 h-1) and steady fluxes (0 to 76.83 mg CH4 m-2 h-1). Results show the importance of floodplain fens for CH4 emission, and more research needs to be undertaken to fully understand the factors controlling CH4 fluxes from these systems.

  17. Influence of flow variability on floodplain formation and destruction, Little Missouri River, North Dakota

    USGS Publications Warehouse

    Miller, J.R.; Friedman, J.M.

    2009-01-01

    Resolving observations of channel change into separate planimetric measurements of floodplain formation and destruction reveals distinct relations between these processes and the flow regime. We analyzed a time sequence of eight bottomland images from 1939 to 2003 along the Little Missouri River, North Dakota, to relate geomorphic floodplain change to flow along this largely unregulated river. At the decadal scale, floodplain formation and destruction varied independently. Destruction was strongly positively correlated with the magnitude of infrequent high flows that recur every 5-10 yr, whereas floodplain formation was negatively correlated with the magnitude of frequent low flows exceeded 80% of the time. At the century scale, however, a climatically induced decrease in peak flows has reduced the destruction rate, limiting the area made available for floodplain formation. The rate of destruction was not uniform across the floodplain. Younger surfaces were consistently destroyed at a higher rate than older surfaces, suggesting that throughput of contaminants would have occurred more rapidly than predicted by models that assume uniform residence time of sediment across the floodplain. Maps of floodplain ages produced by analysis of sequential floodplain images are similar to maps of forest ages produced through dendrochronology, confirming the assumption of dendrogeomorphic studies that riparian tree establishment in this system is limited to recent channel locations. ?? 2009 Geological Society of America.

  18. Climate change, urbanization, and optimal long-term floodplain protection

    NASA Astrophysics Data System (ADS)

    Zhu, Tingju; Lund, Jay R.; Jenkins, Marion W.; Marques, Guilherme F.; Ritzema, Randall S.

    2007-06-01

    This paper examines levee-protected floodplains and economic aspects of adaptation to increasing long-term flood risk due to urbanization and climate change. The lower American River floodplain in the Sacramento, California, metropolitan area is used as an illustration to explore the course of optimal floodplain protection decisions over long periods. A dynamic programming model is developed and suggests economically desirable adaptations for floodplain levee systems given simultaneous changes in flood climate and urban land values. Economic engineering optimization analyses of several climate change and urbanization scenarios are made. Sensitivity analyses consider assumptions about future values of floodplain land and damageable property along with the discount rate. Methodological insights and policy lessons are drawn from modeling results, reflecting the joint effects and relationships that climate, economic costs, and regional economic growth can have on floodplain levee planning decisions.

  19. Tidal-Fluvial and Estuarine Processes in the Lower Columbia River: II. Water Level Models, Floodplain Wetland Inundation, and System Zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jay, David A.; Borde, Amy B.; Diefenderfer, Heida L.

    Spatially varying water-level regimes are a factor controlling estuarine and tidal-fluvial wetland vegetation patterns. As described in Part I, water levels in the Lower Columbia River and estuary (LCRE) are influenced by tides, river flow, hydropower operations, and coastal processes. In Part II, regression models based on tidal theory are used to quantify the role of these processes in determining water levels in the mainstem river and floodplain wetlands, and to provide 21-year inundation hindcasts. Analyses are conducted at 19 LCRE mainstem channel stations and 23 tidally exposed floodplain wetland stations. Sum exceedance values (SEVs) are used to compare wetlandmore » hydrologic regimes at different locations on the river floodplain. A new predictive tool is introduced and validated, the potential SEV (pSEV), which can reduce the need for extensive new data collection in wetland restoration planning. Models of water levels and inundation frequency distinguish four zones encompassing eight reaches. The system zones are the wave- and current-dominated Entrance to river kilometer (rkm) 5; the Estuary (rkm-5 to 87), comprised of a lower reach with salinity, the energy minimum (where the turbidity maximum normally occurs), and an upper estuary reach without salinity; the Tidal River (rkm-87 to 229), with lower, middle, and upper reaches in which river flow becomes increasingly dominant over tides in determining water levels; and the steep and weakly tidal Cascade (rkm-229 to 234) immediately downstream from Bonneville Dam. The same zonation is seen in the water levels of floodplain stations, with considerable modification of tidal properties. The system zones and reaches defined here reflect geological features and their boundaries are congruent with five wetland vegetation zones« less

  20. Dams, floodplain land use, and riparian forest conservation in the semiarid Upper Colorado River Basin, USA

    USGS Publications Warehouse

    Andersen, D.C.; Cooper, D.J.; Northcott, K.

    2007-01-01

    Land and water resource development can independently eliminate riparian plant communities, including Fremont cottonwood forest (CF), a major contributor to ecosystem structure and functioning in semiarid portions of the American Southwest. We tested whether floodplain development was linked to river regulation in the Upper Colorado River Basin (UCRB) by relating the extent of five developed land-cover categories as well as CF and other natural vegetation to catchment reservoir capacity, changes in total annual and annual peak discharge, and overall level of mainstem hydrologic alteration (small, moderate, or large) in 26 fourth-order subbasins. We also asked whether CF appeared to be in jeopardy at a regional level. We classified 51% of the 57,000 ha of alluvial floodplain examined along >2600 km of mainstem rivers as CF and 36% as developed. The proportion developed was unrelated to the level of mainstem hydrologic alteration. The proportion classified as CF was also independent of the level of hydrologic alteration, a result we attribute to confounding effects from development, the presence of time lags, and contrasting effects from flow alteration in different subbasins. Most CF (68% by area) had a sparse canopy (???5% cover), and stands with >50% canopy cover occupied <1% of the floodplain in 15 subbasins. We suggest that CF extent in the UCRB will decline markedly in the future, when the old trees on floodplains now disconnected from the river die and large areas change from CF to non-CF categories. Attention at a basinwide scale to the multiple factors affecting cottonwood patch dynamics is needed to assure conservation of these riparian forests. ?? 2007 Springer Science+Business Media, LLC.

  1. Characterising the Geomorphology of Forested Floodplains Using High Resolution Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Sear, D. A.; Brasington, J.; Darby, S. E.

    2007-12-01

    Forested floodplain environments represent the undisturbed land cover of most temperate and tropical river systems, but they are under threat from human resource management (Hughes et al., 2005, FLOBAR II Project report). A scientific understanding of forest floodplain processes therefore has relevance to ecosystem conservation and restoration, and the interpretation of pre-historic river and floodplain evolution. Empirical research has highlighted how overbank flows are relatively shallow and strongly modified by floodplain topography and the presence of vegetation and organic debris on the woodland floor [Jeffries et al., 2003, Geomorphology, 51, 61-80; Millington and Sear, 2007, Earth. Surf. Proc. Landforms, 32, doi: 10.1002/esp.1552]. In such instances flow blockage and diversions are common, and there is the possibility of frequent switches from sub-critical to locally super-critical flow. Such conditions also favour turbulence generation, both by wakes and by shear. Consequently, the floodplain terrain (where we take 'terrain' to include the underlying topography, root structures, and organic debris) plays a key role in modulating the processes of erosion and sedimentation that underpin the physical habitat diversity and hydraulic characteristics of complex wooded floodplain surfaces. However, despite the importance of these issues, as yet there are no formal, quantitative, descriptions of the highly complex and spatially diverse micro- and meso-topography that appears to be characteristic of forested floodplain surfaces. To address this gap, we have undertaken detailed surveys on a small floodplain reach within the Highland Water Research Catchment (HWRC: see http://www.geog.soton.ac.uk/research/nfrc/default.asp), which is a UK national reference site for lowland floodplain forest streams. This involved the deployment of a Leica ScanStation terrestrial laser-scanner from 14 setups and ranges of less than 30 m to acquire an extremely high resolution, accurate (185 million xyz observations, with absolute mean registration errors of 2 mm) 3-d point cloud model of the floodplain. These raw data were processed using a combination of Leica CYCLONE and bespoke filtering algorithms to construct a multi-resolution DTM of the forested floodplain at hitherto unprecedented detail (median point density ~4500 pts m-2). A key point is that the extreme precision and point density permit relevant features of the terrain (micro-topography, protruding roots, branches and stems, and surficial debris) that contribute to the floodplain roughness, to be readily and directly be incorporated in the DTM as topographic features. To characterise the morphology of the floodplain surface we have used the DTM to analyse a range of floodplain morphometric indices, in particular focusing on derivative surface roughness metrics (including roughness height) which are relevant in the parameterization of flow resistance. These are analysed at the floodplain scale to show the spatial distribution of roughness, and at a patch scale selected from a simple classification of floodplain surface. The analysis demonstrates spatial variability in roughness metrics at both scales, which have implications for parameterising flow resistance in models of wooded floodplains.

  2. Songbird use of floodplain and upland forests along the Upper Mississippi River corridor during spring migration

    USGS Publications Warehouse

    Kirsch, Eileen M.; Heglund, Patricia J.; Gray, Brian R.; Mckann, Patrick

    2013-01-01

    The Upper Mississippi River is thought to provide important stopover habitat for migrating landbirds because of its north-south orientation and floodplain forests. The river flows through the Driftless Area of southwestern Wisconsin and southeastern Minnesota where forests are plentiful, yet forests of the floodplain and Driftless Area uplands differ greatly in landscape setting, tree species composition, and topography. We compared landbird assemblages in these upland and floodplain forests over three springs, 2005–2007, using line-transect surveys at randomly selected areas in and within 16 km of the floodplain. We found more species of both transient and locally breeding migrants per survey in floodplain than in upland forest. Detections of transient neotropical migrants did not differ statistically by habitat. Detections of locally breeding neotropical and temperate-zone migrants and transient temperate-zone migrants were greater in floodplain than in upland forest. Between floodplain and upland forest, assemblages of locally breeding species, including neotropical and temperate-zone migrants (of which some individuals were in transit), differed substantially, but assemblages of transients (including both neotropical and temperate-zone migrants) did not differ as much. Only two species of transient migrants had clear affinities for floodplain forest, and none had an affinity for upland forest, whereas most locally breeding migrants had an affinity for either upland or floodplain forest. Within each spring, however, detections of transient neotropical migrants shifted from being greater in floodplain to greater in upland forests. This intraseasonal shift may be related to the phenology of certain tree species.

  3. 7 CFR 650.25 - Flood-plain management.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Flood-plain management. 650.25 Section 650.25... Flood-plain management. Through proper planning, flood plains can be managed to reduce the threat to... encourages sound flood-plain management decisions by land users. (a) Policy—(1) General. NRCS provides...

  4. 32 CFR 644.320 - Floodplain management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Floodplain management. 644.320 Section 644.320... ESTATE HANDBOOK Disposal § 644.320 Floodplain management. The requirements of Executive Order 11988, Floodplain Management, 42 FR 26951, (24 May 1977) and its implementation will be outlined in subpart H (to be...

  5. 32 CFR 644.320 - Floodplain management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Floodplain management. 644.320 Section 644.320... ESTATE HANDBOOK Disposal § 644.320 Floodplain management. The requirements of Executive Order 11988, Floodplain Management, 42 FR 26951, (24 May 1977) and its implementation will be outlined in subpart H (to be...

  6. 32 CFR 644.320 - Floodplain management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Floodplain management. 644.320 Section 644.320... ESTATE HANDBOOK Disposal § 644.320 Floodplain management. The requirements of Executive Order 11988, Floodplain Management, 42 FR 26951, (24 May 1977) and its implementation will be outlined in subpart H (to be...

  7. 77 FR 22774 - Estes to Flatiron Substation Transmission Lines Rebuild Project, Larimer County, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... Floodplain and Wetlands Involvement. SUMMARY: Western Area Power Administration currently owns and operates... floodplains and wetlands, so this Notice of Intent (NOI) also serves as a notice of proposed floodplain or wetland action in accordance with DOE floodplain and wetland environmental review requirements. DATES...

  8. 32 CFR 644.320 - Floodplain management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Floodplain management. 644.320 Section 644.320... ESTATE HANDBOOK Disposal § 644.320 Floodplain management. The requirements of Executive Order 11988, Floodplain Management, 42 FR 26951, (24 May 1977) and its implementation will be outlined in subpart H (to be...

  9. 7 CFR 650.25 - Flood-plain management.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Flood-plain management. 650.25 Section 650.25... Flood-plain management. Through proper planning, flood plains can be managed to reduce the threat to... encourages sound flood-plain management decisions by land users. (a) Policy—(1) General. NRCS provides...

  10. A Geomorphic Analysis of Floodplain Lakes along the Embanked Lower Mississippi River for Managing Hydrologic Connectivity

    NASA Astrophysics Data System (ADS)

    Hudson, Paul; Boot, Dax; Sounny-Slitinne, M. Anwar; Kristensen, Kristiaan

    2015-04-01

    A Geomorphic Analysis of Floodplain Lakes along the Embanked Lower Mississippi River for Managing Hydrologic Connectivity Floodplain lakes are vital to the environmental integrity of lowland rivers. Embankment by levees (dikes) for flood control greatly reduces the size of lowland floodplains and is detrimental to the quality and functioning of floodplain water bodies, presenting a challenge to government agencies charged with environmental management. The embanked floodplain of the Lower Mississippi River is an enormous surface which includes a variety of lake types formed by geomorphic and anthropogenic processes. While much is known about the channel and hydrologic regime, very little is known about the physical structure and functioning of the embanked floodplain of the lower Mississippi. Importantly, management agencies do not have an inventory of the basic characteristics (e.g., type, frequency, location, size, shape) of water bodies within the lower Mississippi embanked floodplain. An analysis of lakes along the Lower Mississippi River embanked floodplain is performed by utilizing the National Hydrographic Dataset (NHD) from the U.S. Geological Survey, a LiDAR digital elevation model (DEM), as well as streamflow data from the USGS. The vector NHD data includes every official mapped water body (blue line polygons) on USGS topographic maps at scales of 1:100,000 and 1:24,000. Collectively, we identify thousands of discreet water bodies within the embanked floodplain. Utilizing planimetric properties the water bodies were classified into the following lake types: cutoffs (neck and chute), sloughs, crevasse (scour), local drainage (topographic), and borrow pits. The data is then statistically analyzed to examine significant differences in the spatial variability in lake types along the entire lower Mississippi embanked floodplain in association with geomorphic divisions and hydrologic regime. The total embanked floodplain area of the LMR is 7,303 km2,. The total area of floodplain lakes within the embanked floodplain is 382 km2, or 5.2% of the embanked floodplain surface area. Considerable variability in embanked floodplain area along the lower Mississippi, however, results in spatial variability in the frequency of specific lake types. Meander cutoff lakes represent the largest proportion of lake area, at 49%, with approximately half of this area comprised of artificial cutoff lakes. The next largest class of lakes are borrow pit lakes (at 16%), which are anthropogenic water bodies created for the process of levee (dike) construction and maintenance, but which represent valuable environmental habitat. Meander cutoff lakes are especially dominant in the upper reaches of the Lower Mississippi and diminish moving downstream, where the area of embanked floodplain also decreases. Interestingly, anthropogenic lakes (borrow pits) become increasingly prevalent further downstream and dominate over natural formed lakes. The location of lake types along the Lower Mississippi does not correspond with recent historic geomorphic and hydrologic activity. The highest frequency of meander cutoff and crevasse lakes are not located within floodplain sections which historically had the highest rates of lateral migration (m/yr) and flooding (duration). Although overbank hydrologic connectivity varies along the river, it does not vary necessarily where it would be most advantageous to the connectivity of specific types of lakes. The research results provide government agencies with a spatial inventory and methodological approach to improve the management of floodplain water bodies for sustaining valuable aquatic habitat, whether by artificially restricting or enhancing hydrologic connectivity. Key words: floodplain lakes, fluvial geomorphology, hydrologic connectivity, anthropogenic impacts, Lower Mississippi River

  11. Aftermath of Uranium Ore Processing on Floodplains: Lasting Effects of Uranium on Soil and Microbes

    NASA Astrophysics Data System (ADS)

    Tang, H.; Boye, K.; Bargar, J.; Fendorf, S. E.

    2016-12-01

    A former uranium ore processing site located between the Wind River and the Little Wind River near the city of Riverton, Wyoming, has generated a uranium plume in the groundwater within the floodplain. Uranium is toxic and poses a threat to human health. Thus, controlling and containing the spread of uranium will benefit the human population. The primary source of uranium was removed from the processing site, but a uranium plume still exists in the groundwater. Uranium in its reduced form is relatively insoluble in water and therefore is retained in organic rich, anoxic layers in the subsurface. However, with the aid of microbes uranium becomes soluble in water which could expose people and the environment to this toxin, if it enters the groundwater and ultimately the river. In order to better understand the mechanisms controlling uranium behavior in the floodplains, we examined sediments from three sediment cores (soil surface to aquifer). We determined the soil elemental concentrations and measured microbial activity through the use of several instruments (e.g. Elemental Analyzer, X-ray Fluorescence, MicroResp System). Through the data collected, we aim to obtain a better understanding of how the interaction of geochemical factors and microbial metabolism affect uranium mobility. This knowledge will inform models used to predict uranium behavior in response to land use or climate change in floodplain environments.

  12. Comparison of fish assemblages in two disjoined segments of an oxbow lake in relation to connectivity

    USGS Publications Warehouse

    Dembkowski, Daniel J.; Miranda, Leandro E.

    2011-01-01

    Disconnection between adjacent habitat patches is one of the most notable factors contributing to the decreased biotic integrity of global ecosystems. Connectivity is especially threatened in river–floodplain ecosystems in which channel modifications have disrupted the lateral links between the main river channel and floodplain lakes. In this study, we examined the interaction between the interconnectedness of floodplain lakes and main river channels and fish assemblage descriptors. Fish assemblages in two segments of an oxbow lake, one connected to and the other isolated from the Yazoo River, Mississippi, were estimated with daytime boat electrofishing during 2007–2010. The frequency of connection for the connected segment ranged from zero to seven individual events per year (mean, ∼2). The timing of most connection events reflected regional precipitation patterns. Greater species richness, diversity, and evenness were observed in the connected segment. Additionally, the connected segment had a greater abundance of piscivores and periodic life history strategists. All fishes collected solely in the connected segment were typically riverine in nature, whereas fishes collected only in the disconnected segment were more lacustrine adapted. These results suggest that periodic connection and the associated habitat heterogeneity that it provides are important for maintaining fish species richness and diversity in large-river floodplain lakes. We suggest that maintenance or restoration of connection be an integral part of fluvial ecosystem management plans.

  13. 78 FR 70035 - Notice of Intent To Prepare an Environmental Impact Statement for the San Luis Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... Floodplain and Wetlands Involvement. SUMMARY: Western Area Power Administration (Western) is a power... floodplains and wetlands, so this Notice of Intent (NOI) also serves as a notice of proposed floodplain or wetland action in accordance with DOE floodplain and wetland environmental review requirements. DATES...

  14. Response of fishes to floodplain connectivity during and following a 500-year flood event in the unimpounded upper Mississippi River

    USGS Publications Warehouse

    Barko, V.A.; Herzog, D.P.; O'Connell, M. T.

    2006-01-01

    We examined data collected on fish assemblage structure among three differing floodplain types (broad, moderate, and narrow) during the 1993 flood in the unimpounded reach of the upper Mississippi River. This 500 year flood event provided a unique opportunity to investigate fish-floodplain function because the main river channel is otherwise typically disjunct from approximately 82% of its floodplain by an extensive levee system. Fishes were sampled during three separate periods, and 42 species of adult and young-of-the-year (YOY) fishes were captured. Analysis of similarity (ANOSIM) revealed a significant and distinguishable difference between both adult and YOY assemblage structure among the three floodplain types. Analysis of variance revealed that Secchi transparency, turbidity, water velocity, and dissolved oxygen were significantly different among the floodplain types. However, only depth of gear deployment and Secchi transparency were significantly correlated with adult assemblage structure. None of these variables were significantly correlated with YOY assemblage structure. The numerically abundant families (adult and YOY catches combined) on the floodplain included Centrarchidae, Ictularidae, and Cyprinidae. Both native and non-native fishes were captured on the floodplain, and several of the numerically abundant species that were captured on the floodplain peaked in catch-per-unit-effort 1-3 years after the 1993 flood event. This suggests that some species may have used flooded terrestrial habitat for spawning, feeding, or both. The findings from our study provide much needed insight into fish-floodplain function in a temperate, channelized river system and suggest that lateral connectivity of the main river channel to less degraded reaches of its floodplain should become a management priority not only to maintain faunal biodiversity but also potentially reduce the impacts of non-native species in large river systems.

  15. Quantifying Spatially Integrated Floodplain and Wetland Systems for the Conterminous US

    NASA Astrophysics Data System (ADS)

    Lane, C.; D'Amico, E.; Wing, O.; Bates, P. D.

    2017-12-01

    Wetlands interact with other waters across a variable connectivity continuum, from permanent to transient, from fast to slow, and from primarily surface water to exclusively groundwater flows. Floodplain wetlands typically experience fast and frequent surface and near-surface groundwater interactions with their river networks, leading to an increasing effort to tailor management strategies for these wetlands. Management of floodplain wetlands is contingent on accurate floodplain delineation, and though this has proven challenging, multiple efforts are being made to alleviate this data gap at the conterminous scale using spatial, physical, and hydrological floodplain proxies. In this study, we derived and contrasted floodplain extents using the following nationally available approaches: 1) a geospatial-buffer floodplain proxy (Lane and D'Amico 2016, JAWRA 52(3):705-722, 2) a regionalized flood frequency analysis coupled to a 30m resolution continental-scale hydraulic model (RFFA; Smith et al. 2015, WRR 51:539-553), and 3) a soils-based floodplain analysis (Sangwan and Merwade 2015, JAWRA 51(5):1286-1304). The geospatial approach uses National Wetlands Inventory and buffered National Hydrography Datasets. RFFA estimates extreme flows based on catchment size, regional climatology and upstream annual rainfall and routes these flows through a hydraulic model built with data from USGS HydroSHEDS, NOAA, and the National Elevation Dataset. Soil-based analyses define floodplains based on attributes within the USDA soil-survey data (SSURGO). Nearly 30% (by count) of U.S. freshwater wetlands are located within floodplains with geospatial analyses, contrasted with 37% (soils-based), and 53% (RFFA-based). The dichotomies between approaches are mainly a function of input data-layer resolution, accuracy, coverage, and extent, further discussed in this presentation. Ultimately, these spatial analyses and findings will improve floodplain and integrated wetland system extent assessment. This will lead to better management of the physically, chemically, and biologically integrated floodplain wetlands affecting the integrity of downstream waterbodies at multiple scales.

  16. Biogeochemical and metabolic responses to the flood pulse in a semiarid floodplain

    USGS Publications Warehouse

    Valett, H.M.; Baker, M.A.; Morrice, J.A.; Crawford, C.S.; Molles, M.C.; Dahm, Clifford N.; Moyer, D.L.; Thibault, J.R.; Ellis, L.M.

    2005-01-01

    Flood pulse inundation of riparian forests alters rates of nutrient retention and organic matter processing in the aquatic ecosystems formed in the forest interior. Along the Middle Rio Grande (New Mexico, USA), impoundment and levee construction have created riparian forests that differ in their inter-flood intervals (IFIs) because some floodplains are still regularly inundated by the flood pulse (i.e., connected), while other floodplains remain isolated from flooding (i.e., disconnected). This research investigates how ecosystem responses to the flood pulse relate to forest IFI by quantifying nutrient and organic matter dynamics in the Rio Grande floodplain during three years of experimental flooding of the disconnected floodplain and during a single year of natural flooding of the connected floodplain. Surface and subsurface conditions in paired sites (control, flood) established in the two floodplain types were monitored to address metabolic and biogeochemical responses. Compared to dry controls, rates of respiration in the flooded sites increased by up to three orders of magnitude during the flood pulse. In the disconnected forest, month-long experimental floods produced widespread anoxia of four-week duration during each of the three years of flooding. In contrast, water in the connected floodplain remained well oxygenated (3-8 ppm). Material budgets for experimental floods showed the disconnected floodplain to be a sink for inorganic nitrogen and suspended solids, but a potential source of dissolved organic carbon (DOC). Compared to the main stem of the Rio Grande, flood-water on the connected floodplain contained less nitrate, but comparable concentrations of DOC, phosphate-phosphorus, and ammonium-nitrogen. Results suggest that floodplain IFI drives metabolic and biogeochemical responses during the flood pulse. Impoundment and fragmentation have altered floodplains from a mosaic of patches with variable IFI to a bimodal distribution. Relatively predictable flooding occurs in the connected forest, while inundation of the disconnected forest occurs only as the result of managed application of water. In semiarid floodplains, water is scarce except during the flood pulse. Ecosystem responses to the flood pulse are related to the IFI and other measures of flooding history that help describe spatial variation in ecosystem function.

  17. Deep soil dynamics of floodplain carbon in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Steger, Kristin; Kim, Amy T.; Viers, Joshua H.; Fiener, Peter; Smart, David R.

    2017-04-01

    Active floodplains can putatively store large amounts of organic carbon (SOC) in subsoils originating from catchment erosion processes with subsequent floodplain deposition. Changes in catchment land use patterns and river management to optimize agricultural use of the floodplain or to restore the floodplain back to natural systems may alter SOC stocks in these soils. Our study focussed on the assessment of SOC pools associated with alluvial floodplain soils converting from conventional arable use to restored flooding and floodplain vegetation. We evaluated depth-dependent SOC contents using 21 drillings down to 3m and 10 drillings down to 7m along a transect through a floodplain area of the lower Cosumnes River, a non-constrained tributary to the Sacramento - San Joaquin Delta in California. In general, our data underline the importance of carbon stocks in subsoils >1m, which represent up to 19 and 6% of SOC stocks at the different sampling locations accounting for drillings down to 3 and 7m, respectively. All of our sampling sites revealed a SOC-rich buried A horizon between 70 and 130cm with SOC concentrations between 11 and 17g/kg, representative of the functioning floodplain system pre-disturbance. Radiocarbon dating showed that the 14C age in the buried horizon was younger than in the overlaying soils, indicating a substantial sedimentation phase with sediments of low SOC concentrations and higher carbon age. This sedimentation phase was probably associated with the huge upstream sediment production resulting from the hydraulic gold mining at the Cosumnes River starting around 1860. Apart from larger SOC contents in the buried horizon compared to the recent topsoil, its 13C and 15N isotopic signature also differed suggesting a change in long-term input of plant organic matter as well as different fertilization regimes during the agricultural use of the area from approx. 1890 onwards. In summary, deep alluvial soils in floodplains store large amounts of SOC not yet accounted for in global models. Intensive agricultural use of these floodplains often combined with river regulation and embanking of floodplain areas may lead to a slow but continuous release of the buried SOC to the atmosphere. However, restoration of floodplains may promote the stabilization of alluvial SOC in floodplains and hence contribute to more sustainable soils.

  18. Improved Calibration of Modeled Discharge and Storage Change in the Atchafalaya Floodplain Using SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Jung, Hahn Chul; Jasinski, Michael; Kim, Jin-Woo; Shum, C. K.; Bates, Paul; Neal, Jeffrey; Lee, Hyongki; Alsdorf, Doug

    2011-01-01

    This study focuses on the feasibility of using SAR interferometry to support 2D hydrodynamic model calibration and provide water storage change in the floodplain. Two-dimensional (2D) flood inundation modeling has been widely studied using storage cell approaches with the availability of high resolution, remotely sensed floodplain topography. The development of coupled 1D/2D flood modeling has shown improved calculation of 2D floodplain inundation as well as channel water elevation. Most floodplain model results have been validated using remote sensing methods for inundation extent. However, few studies show the quantitative validation of spatial variations in floodplain water elevations in the 2D modeling since most of the gauges are located along main river channels and traditional single track satellite altimetry over the floodplain are limited. Synthetic Aperture Radar (SAR) interferometry recently has been proven to be useful for measuring centimeter-scale water elevation changes over the floodplain. In the current study, we apply the LISFLOOD hydrodynamic model to the central Atchafalaya River Basin, Louisiana, during a 62 day period from 1 April to 1 June 2008 using two different calibration schemes for Manning's n. First, the model is calibrated in terms of water elevations from a single in situ gauge that represents a more traditional approach. Due to the gauge location in the channel, the calibration shows more sensitivity to channel roughness relative to floodplain roughness. Second, the model is calibrated in terms of water elevation changes calculated from ALOS PALSAR interferometry during 46 days of the image acquisition interval from 16 April 2008 to 1 June 2009. Since SAR interferometry receives strongly scatters in floodplain due to double bounce effect as compared to specular scattering of open water, the calibration shows more dependency to floodplain roughness. An iterative approach is used to determine the best-fit Manning's n for the two different calibration approaches. Results suggest similar floodplain roughness but slightly different channel roughness. However, application of SAR interferometry provides a unique view of the floodplain flow gradients, not possible with a single gauge calibration. These gradients, allow improved computation of water storage change over the 46-day simulation period. Overall, the results suggest that the use of 2D SAR water elevation changes in the Atchafalaya basin offers improved understanding and modeling of floodplain hydrodynamics.

  19. Non-linearities in Holocene floodplain sediment storage

    NASA Astrophysics Data System (ADS)

    Notebaert, Bastiaan; Nils, Broothaerts; Jean-François, Berger; Gert, Verstraeten

    2013-04-01

    Floodplain sediment storage is an important part of the sediment cascade model, buffering sediment delivery between hillslopes and oceans, which is hitherto not fully quantified in contrast to other global sediment budget components. Quantification and dating of floodplain sediment storage is data and financially demanding, limiting contemporary estimates for larger spatial units to simple linear extrapolations from a number of smaller catchments. In this paper we will present non-linearities in both space and time for floodplain sediment budgets in three different catchments. Holocene floodplain sediments of the Dijle catchment in the Belgian loess region, show a clear distinction between morphological stages: early Holocene peat accumulation, followed by mineral floodplain aggradation from the start of the agricultural period on. Contrary to previous assumptions, detailed dating of this morphological change at different shows an important non-linearity in geomorphologic changes of the floodplain, both between and within cross sections. A second example comes from the Pre-Alpine French Valdaine region, where non-linearities and complex system behavior exists between (temporal) patterns of soil erosion and floodplain sediment deposition. In this region Holocene floodplain deposition is characterized by different cut-and-fill phases. The quantification of these different phases shows a complicated image of increasing and decreasing floodplain sediment storage, which hampers the image of increasing sediment accumulation over time. Although fill stages may correspond with large quantities of deposited sediment and traditionally calculated sedimentation rates for such stages are high, they do not necessary correspond with a long-term net increase in floodplain deposition. A third example is based on the floodplain sediment storage in the Amblève catchment, located in the Belgian Ardennes uplands. Detailed floodplain sediment quantification for this catchments shows that a strong multifractality is present in the scaling relationship between sediment storage and catchment area, depending on geomorphic landscape properties. Extrapolation of data from one spatial scale to another inevitably leads to large errors: when only the data of the upper floodplains are considered, a regression analysis results in an overestimation of total floodplain deposition for the entire catchment of circa 115%. This example demonstrates multifractality and related non-linearity in scaling relationships, which influences extrapolations beyond the initial range of measurements. These different examples indicate how traditional extrapolation techniques and assumptions in sediment budget studies can be challenged by field data, further complicating our understanding of these systems. Although simplifications are often necessary when working on large spatial scale, such non-linearities may form challenges for a better understanding of system behavior.

  20. 14 CFR 1216.307 - Scoping.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... addressed in environmental impact statements and for identifying the significant issues related to a... process must include considerations of the range of actions, alternatives, and impacts discussed in § 1508...; (i) Historical, archeological, and recreational factors; (j) Wetlands and floodplains; and (k...

  1. 14 CFR 1216.307 - Scoping.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... addressed in environmental impact statements and for identifying the significant issues related to a... process must include considerations of the range of actions, alternatives, and impacts discussed in § 1508...; (i) Historical, archeological, and recreational factors; (j) Wetlands and floodplains; and (k...

  2. 14 CFR 1216.307 - Scoping.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... addressed in environmental impact statements and for identifying the significant issues related to a... process must include considerations of the range of actions, alternatives, and impacts discussed in § 1508...; (i) Historical, archeological, and recreational factors; (j) Wetlands and floodplains; and (k...

  3. Cahokia’s emergence and decline coincided with shifts of flood frequency on the Mississippi River

    PubMed Central

    Munoz, Samuel E.; Gruley, Kristine E.; Massie, Ashtin; Fike, David A.; Schroeder, Sissel; Williams, John W.

    2015-01-01

    Here we establish the timing of major flood events of the central Mississippi River over the last 1,800 y, using floodwater sediments deposited in two floodplain lakes. Shifts in the frequency of high-magnitude floods are mediated by moisture availability over midcontinental North America and correspond to the emergence and decline of Cahokia—a major late prehistoric settlement in the Mississippi River floodplain. The absence of large floods from A.D. 600 to A.D. 1200 facilitated agricultural intensification, population growth, and settlement expansion across the floodplain that are associated with the emergence of Cahokia as a regional center around A.D. 1050. The return of large floods after A.D. 1200, driven by waning midcontinental aridity, marks the onset of sociopolitical reorganization and depopulation that culminate in the abandonment of Cahokia and the surrounding region by A.D. 1350. Shifts in the frequency and magnitude of flooding may be an underappreciated but critical factor in the formation and dissolution of social complexity in early agricultural societies. PMID:25941363

  4. Continuous earlywood vessels chronologies in floodplain ring-porous species can improve dendrohydrological reconstructions of spring high flows and flood levels

    NASA Astrophysics Data System (ADS)

    Kames, S.; Tardif, J. C.; Bergeron, Y.

    2016-03-01

    Plants respond to environmental stimuli through changes in growth and development. Characteristics of wood cells such as the cross-sectional area of vessel elements (hereafter referred to as vessels) may store information about environmental factors present at the time of vessel differentiation. The analysis of vessel characteristics therefore offers a different time resolution than annual ring width because vessels in tree rings differentiate within days to a few weeks. Little research has been conducted on the sensitivity of earlywood vessels in ring-porous species in response to flooding. The general objectives of this study were to determine the plasticity of earlywood vessel to high flows and spring flooding in floodplain black ash (Fraxinus nigra Marsh.) trees and to assess the utility of developing continuous earlywood vessel chronologies in dendrohydrological reconstruction. In contrast, most dendrohydrological studies until now have mainly used vessel anomalies (flood rings) as discrete variables to identify exceptional flood events. The study area is located in the boreal region of northwestern Québec. Vessel and ring-width chronologies were generated from F. nigra trees growing on the floodplain of Lake Duparquet. Spring discharge had among all hydro-climatic variables the strongest impact on vessel formation and this signal was coherent spatially and in the frequency domain. The mean vessel area chronology was significantly and negatively correlated to discharge and both the linearity and the strength of this association were unique. In floodplain F. nigra trees, spring flooding promoted the formation of more abundant but smaller earlywood vessels. Earlywood vessels chronologies were also significantly associated with other hydrological indicators like Lake Duparquet's ice break-up date and both ice-scar frequency and height chronologies. These significant relationships stress the utility of developing continuous vessels chronologies for hydrological reconstructions prior to instrumental data. Continuous earlywood vessel chronologies may also be useful in determining the impact of altered hydrological regime in floodplain habitat regulated by spring floods. Future research should involve quantifying the impact of high flows and flooding on other cell constituents and also determining the plasticity and utility of continuous anatomical series in floodplain diffuse-porous species.

  5. Spatial Modeling of Flood Duration in Amazonian Floodplains Through Radar Remote Sensing and Generalized Linear Models

    NASA Astrophysics Data System (ADS)

    Ferreira-Ferreira, J.; Francisco, M. S.; Silva, T. S. F.

    2017-12-01

    Amazon floodplains play an important role in biodiversity maintenance and provide important ecosystem services. Flood duration is the prime factor modulating biogeochemical cycling in Amazonian floodplain systems, as well as influencing ecosystem structure and function. However, due to the absence of accurate terrain information, fine-scale hydrological modeling is still not possible for most of the Amazon floodplains, and little is known regarding the spatio-temporal behavior of flooding in these environments. Our study presents an new approach for spatial modeling of flood duration, using Synthetic Aperture Radar (SAR) and Generalized Linear Modeling. Our focal study site was Mamirauá Sustainable Development Reserve, in the Central Amazon. We acquired a series of L-band ALOS-1/PALSAR Fine-Beam mosaics, chosen to capture the widest possible range of river stage heights at regular intervals. We then mapped flooded area on each image, and used the resulting binary maps as the response variable (flooded/non-flooded) for multiple logistic regression. Explanatory variables were accumulated precipitation 15 days prior and the water stage height recorded in the Mamirauá lake gauging station observed for each image acquisition date, Euclidean distance from the nearest drainage, and slope, terrain curvature, profile curvature, planform curvature and Height Above the Nearest Drainage (HAND) derived from the 30-m SRTM DEM. Model results were validated with water levels recorded by ten pressure transducers installed within the floodplains, from 2014 to 2016. The most accurate model included water stage height and HAND as explanatory variables, yielding a RMSE of ±38.73 days of flooding per year when compared to the ground validation sites. The largest disagreements were 57 days and 83 days for two validation sites, while remaining locations achieved absolute errors lower than 38 days. In five out of nine validation sites, the model predicted flood durations with disagreements lower than 20 days. The method extends our current capability to answer relevant scientific questions regarding floodplain ecological structure and functioning, and allows forecasting of ecological and biogeochemical alterations under climate change scenarios, using readily available datasets.

  6. Floodwater Chemistry in the Yolo Bypass during Winter and Spring 1998

    USGS Publications Warehouse

    Schemel, Laurence E.; Cox, Marisa H.

    2007-01-01

    A preliminary investigation of temporal and spatial variations in floodwater chemistry was conducted during winter and spring 1998 in the Yolo Bypass floodplain of the Sacramento River system. Samples were collected at locations along the eastern margin of the floodplain over the duration of the study and across the floodplain during major periods of inundation. Specific conductance and dissolved organic carbon concentrations along the eastern margin of the Yolo Bypass varied inversely with discharge. The Sacramento River was the greatest source of discharge to the floodplain during major periods of inundation. Increases in specific conductance and dissolved organic carbon were observed along the eastern margin during periods of lower discharge, when local streams accounted for a significant fraction of the total discharge through the Yolo Bypass. Apparent influences of local stream discharges also were observed in surface waters near the western margin of the floodplain during major periods of inundation. Although river and local stream sources of suspended particulate matter appeared important, in-floodplain processes were likely contributors to temporal and spatial variability in concentrations. Values for the C:N ratio of the particulate matter were lowest during periods of decreasing and low discharge through the floodplain, indicating production of phytoplankton in floodplain waters or supply to the floodplain by local stream sources. Phytoplankton discharged from the Yolo Bypass was detected by chlorophyll a monitors downstream in the Sacramento River during this study.

  7. Estimating floodplain sedimentation in the Laguna de Santa Rosa, Sonoma County, CA

    USGS Publications Warehouse

    Curtis, Jennifer A.; Flint, Lorraine E.; Hupp, Cliff R.

    2013-01-01

    We present a conceptual and analytical framework for predicting the spatial distribution of floodplain sedimentation for the Laguna de Santa Rosa, Sonoma County, CA. We assess the role of the floodplain as a sink for fine-grained sediment and investigate concerns regarding the potential loss of flood storage capacity due to historic sedimentation. We characterized the spatial distribution of sedimentation during a post-flood survey and developed a spatially distributed sediment deposition potential map that highlights zones of floodplain sedimentation. The sediment deposition potential map, built using raster files that describe the spatial distribution of relevant hydrologic and landscape variables, was calibrated using 2 years of measured overbank sedimentation data and verified using longer-term rates determined using dendrochronology. The calibrated floodplain deposition potential relation was used to estimate an average annual floodplain sedimentation rate (3.6 mm/year) for the ~11 km2 floodplain. This study documents the development of a conceptual model of overbank sedimentation, describes a methodology to estimate the potential for various parts of a floodplain complex to accumulate sediment over time, and provides estimates of short and long-term overbank sedimentation rates that can be used for ecosystem management and prioritization of restoration activities.

  8. Cosmogenic nuclide budgeting of floodplain sediment transfer

    NASA Astrophysics Data System (ADS)

    Wittmann, H.; von Blanckenburg, F.

    2009-08-01

    Cosmogenic nuclides produced in quartz may either decay or accumulate while sediment is moved through a river basin. A change in nuclide concentration resulting from storage in a floodplain is potentially important in large drainage basins in which sediment is prone to repeated burial and remobilization as a river migrates through its floodplain. We have modeled depth- and time-dependent cosmogenic nuclide concentration changes for 10Be, 26Al, and 14C during sediment storage and mixing in various active floodplain settings ranging from confined, shallow rivers with small floodplains to foreland-basin scale floodplains traversed by deep rivers. Floodplain storage time, estimated from channel migration rates, ranges from 0.4 kyr for the Beni River basin (Bolivia) to 7 kyr for the Amazon River basin, while floodplain storage depth, estimated from channel depth, ranges from 1 to 25 m. For all modeled active floodplain settings, the long-lived nuclides 10Be and 26Al show neither significant increase in nuclide concentration from irradiation nor decrease from decay. We predict a hypothetical response time after which changes in 10Be or 26Al concentrations become analytically resolvable. This interval ranges from 0.07 to 2 Myr and exceeds in all cases the typical residence time of sediment in a floodplain. Due to the much shorter half life of 14C, nuclide concentrations modeled for the in situ-produced variety of this nuclide are, however, sensitive to floodplain storage on residence times of < 20 kyr. The cosmogenic nuclide composition of old deposits in currently inactive floodplains that have been isolated for periods of millions of years from the river that once deposited them is predicted to either increase or decrease in 10Be and 26Al concentration, depending on the depositional depth. These conditions can be evaluated using the 26Al/ 10Be ratio that readily discloses the depth and duration of storage. We illustrate these models with examples from the Amazon basin. As predicted, modern bedload collected from an Amazon tributary, the Bolivian Beni River, shows no systematic change in nuclide concentration as sediment is moved through 500 km of floodplain by river meandering. In contrast, in the central Amazon floodplain currently untouched by the modern river system, low 26Al/ 10Be ratios account for minimum burial depths of 5 to 10 m for a duration of > 5 Myr. The important result of this analysis is that in all likely cases of active floodplains, cosmogenic 10Be and 26Al concentrations remain virtually unchanged over the interval sediment usually spends in the basin. Thus, spatially-averaged denudation rates of the sediment-producing area can be inferred throughout the entire basin, provided that nuclide production rates are scaled for the altitudes of the sediment-producing area only, because floodplain storage does not modify nuclide concentrations introduced from the sediment source area.

  9. Heterogeneity of soil carbon pools and fluxes in a channelized and a restored floodplain section (Thur River, Switzerland)

    NASA Astrophysics Data System (ADS)

    Samaritani, E.; Shrestha, J.; Fournier, B.; Frossard, E.; Gillet, F.; Guenat, C.; Niklaus, P. A.; Pasquale, N.; Tockner, K.; Mitchell, E. A. D.; Luster, J.

    2011-06-01

    Due to their spatial complexity and dynamic nature, floodplains provide a wide range of ecosystem functions. However, because of flow regulation, many riverine floodplains have lost their characteristic heterogeneity. Restoration of floodplain habitats and the rehabilitation of key ecosystem functions, many of them linked to organic carbon (C) dynamics in riparian soils, has therefore become a major goal of environmental policy. The fundamental understanding of the factors that drive the processes involved in C cycling in heterogeneous and dynamic systems such as floodplains is however only fragmentary. We quantified soil organic C pools (microbial C and water extractable organic C) and fluxes (soil respiration and net methane production) in functional process zones of adjacent channelized and widened sections of the Thur River, NE Switzerland, on a seasonal basis. The objective was to assess how spatial heterogeneity and temporal variability of these pools and fluxes relate to physicochemical soil properties on one hand, and to soil environmental conditions and flood disturbance on the other hand. Overall, factors related to seasonality and flooding (temperature, water content, organic matter input) affected soil C dynamics more than soil properties did. Coarse-textured soils on gravel bars in the restored section were characterized by low base-levels of organic C pools due to low TOC contents. However, frequent disturbance by flood pulses led to high heterogeneity with temporarily and locally increased C pools and soil respiration. By contrast, in stable riparian forests, the finer texture of the soils and corresponding higher TOC contents and water retention capacity led to high base-levels of C pools. Spatial heterogeneity was low, but major floods and seasonal differences in temperature had additional impacts on both pools and fluxes. Soil properties and base levels of C pools in the dam foreland of the channelized section were similar to the gravel bars of the restored section. By contrast, spatial heterogeneity, seasonal effects and flood disturbance were similar to the forests, except for indications of high CH4 production that are explained by long travel times of infiltrating water favoring reducing conditions. Overall, the restored section exhibited both a larger range and a higher heterogeneity of organic C pools and fluxes as well as a higher plant biodiversity than the channelized section. This suggests that restoration has indeed led to an increase in functional diversity.

  10. Heterogeneity of soil carbon pools and fluxes in a channelized and a restored floodplain section (Thur River, Switzerland)

    NASA Astrophysics Data System (ADS)

    Samaritani, E.; Shrestha, J.; Fournier, B.; Frossard, E.; Gillet, F.; Guenat, C.; Niklaus, P. A.; Tockner, K.; Mitchell, E. A. D.; Luster, J.

    2011-01-01

    Due to their spatial complexity and dynamic nature, floodplains provide a wide range of ecosystem functions. However, because of flow regulation, many riverine floodplains have lost their characteristic heterogeneity. Restoration of floodplain habitats and the rehabilitation of key ecosystem functions has therefore become a major goal of environmental policy. Many important ecosystem functions are linked to organic carbon (C) dynamics in riparian soils. The fundamental understanding of the factors that drive the processes involved in C cycling in heterogeneous and dynamic systems such as floodplains is however only fragmentary. We quantified soil organic C pools (microbial C and water extractable organic C) and fluxes (soil respiration and net methane production) in functional process zones of adjacent channelized and widened sections of the Thur River, NE Switzerland, on a seasonal basis. The objective was to assess how spatial heterogeneity and temporal variability of these pools and fluxes relate to physicochemical soil properties on one hand, and to soil environmental conditions and flood disturbance on the other hand. Overall, factors related to seasonality and flooding (temperature, water content, organic matter input) affected soil C dynamics more than soil properties did. Coarse-textured soils on gravel bars in the restored section were characterized by low base-levels of organic C pools due to low TOC contents. However, frequent disturbance by flood pulses led to high heterogeneity with temporarily and locally increased pools and soil respiration. By contrast, in stable riparian forests, the finer texture of the soils and corresponding higher TOC contents and water retention capacity led to high base-levels of C pools. Spatial heterogeneity was low, but major floods and seasonal differences in temperature had additional impacts on both pools and fluxes. Soil properties and base levels of C pools in the dam foreland of the channelized section were similar to the gravel bars of the restored section. By contrast, spatial heterogeneity, seasonal effects and flood disturbance were similar to the forests, except for indications of high CH4 production that are explained by long travel times of infiltrating water favouring reducing conditions. Overall, the restored section exhibited both a larger range and a higher heterogeneity of organic C pools and fluxes as well as a higher plant biodiversity than the channelized section. This suggests that restoration has indeed led to an increase in functional diversity.

  11. Geomorphic floodplain with organic matter (biomass) estimates for Fanno Creek, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2011-01-01

    Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff and shows characteristic flashy streamflow and poor water quality commonly associated with urban streams. This data set represents the geomorphic floodplain as derived from light detection and ranging (LiDAR) data and aerial photographic imagery. The floodplain represents current conditions including both anthropogenic alterations and natural historic floodplain features. The floodplain dataset is divided into 13 reach segments and attributed with corresponding organic material load estimates for each reach.

  12. Active overbank deposition during the last century, South River, Virginia

    NASA Astrophysics Data System (ADS)

    Pizzuto, Jim; Skalak, Katherine; Pearson, Adam; Benthem, Adam

    2016-03-01

    We quantify rates of overbank deposition over decadal to centennial timescales along the South River in Virginia using four independent methods. Detailed mercury profiles sampled adjacent to the stream channel preserve the peak historic mercury concentration on suspended sediment dating from 1955 to 1961 and suggest sedimentation rates of 8 to 50 cm/100 years. Sediment accumulation over the roots of trees suggest rates of 0 to 100 cm/100 years, with significantly higher values on levees and lower values on floodplains farther from the channel. Profiles of 137Cs and 210Pb from two eroding streambanks are fit with an advection-diffusion model calibrated at an upland reference site; these methods suggest sedimentation rates of 44 to 73 cm/100 years. Mercury inventories from 107 floodplain cores, combined with a previously published reconstruction of the history of mercury concentration on suspended sediment, provide spatially comprehensive estimates of floodplain sedimentation: median sedimentation rates are 3.8 cm/100 years for the < 0.3-year floodplain, 1.37 cm/100 years for the 0.3- to 2-year floodplain, 0.4 cm/100 years for the 2- to 5-year floodplain, and 0.1 cm/100 years for the 5- to 62-year floodplain. While these sedimentation rates are relatively low, the total mass of sediment stored from 1930 to 2007 is 4.9 ± 1.7 (95% confidence interval) × 107 kg, corresponding to an average thickness of 2.5 cm (3.2 cm/100 years). These results demonstrate that floodplains of our 4.5-km-long study reach have stored 8 to 12% of the total suspended sediment supplied to the study reach of the South River. Hydrologic Engineering Center-River Analysis System (HEC-RAS) modeling demonstrates that the floodplain of the South River remains hydraulically connected to the channel: 56% of the 100-year floodplain is inundated every two years, and 83% of the floodplain is inundated every five years. These results, combined with previously published data, provide the basis for a regional synthesis of floodplain deposition rates since European settlement. Floodplain sedimentation rates were high following European settlement, with published estimates ranging from 50 to 200 cm/100 years. Sedimentation rates decreased by 1 to 2 orders of magnitude during the twentieth and twenty-first centuries; but despite these lower sedimentation rates, floodplains continue to store a significant fraction of total suspended sediment load. Many floodplains of the mid-Atlantic region are active landforms fully connected to the rivers that flow within them and should not be considered terraces isolated from contemporary fluvial processes by post-settlement aggradation.

  13. Effects of river-floodplain exchange on water quality and nutrient export in the dam-impacted Kafue River (Zambia)

    NASA Astrophysics Data System (ADS)

    Zurbrugg, R.; Wamulume, J.; Blank, N.; Nyambe, I.; Wehrli, B.; Senn, D. B.

    2010-12-01

    Biogeochemical processes in river-floodplain ecosystems are strongly influenced by hydrology and, in particular, river-floodplain exchange. In tropical systems, where the hydrology is dominated by distinct dry and rainy seasons, annual flood waters trigger organic matter mineralization within and nutrient export from the dried and rewetted floodplain, and the magnitude of hydrological exchange between a river and its floodplain has the potential to substantially influence nutrient and carbon exports and water quality in the river. In this study we examined the extent and the effects of hydrological river-floodplain exchange in the Kafue River and its floodplain, the Kafue Flats, in Zambia. The Kafue Flats is a 7000 km2 seasonal wetland whose hydrological regime has been impacted by upstream and downstream large dams constructed in the 1970s, leading to changes in the flooding pattern in this high-biodiversity ecosystem. Field campaigns, carried out during flood recession (May 2008, 2009, 2010) and covering a ~400 km river stretch, revealed a steep decline in dissolved oxygen from 6 mg/L to 1 mg/L over a ~20 km stretch of river beginning approximately 200 km downstream from the first dam, with low oxygen persisting for an additional 150 km downstream. To further explore this phenomenon discharge measurements (ADCP) were conducted in May 2009 and May 2010. River discharge decreased from ~600 m3/s at the upstream dam to 100 m3/s midway through the Kafue Flats, and increased to >800 m3/s towards the end of the floodplain (400 km downstream). River cross section data indicate that the dramatic decrease in discharge occured primarily because of variations in channel area and channel carrying capacity, with channel constrictions forcing ~85% of the discharge out of the river channel and into the floodplain. Using specific conductivity and δ18O-H2O as tracers for floodplain water, we estimate that the downstream increases in flow occur through lateral inflows of receding floodplain waters, induced by an expansion of the river channel, and that 80% of the downstream flow came from the floodplain. Model calculations indicate that intense exchange between river and floodplain and the introduction of low-oxygen floodplain water into the river was the primary cause of the low dissolved oxygen levels observed in the river during flood recession in May 2008-2010. This exchange also appears to play an important role in nutrient and carbon export, with the floodplain acting as a net source of phosphate (220 tons/yr), total nitrogen (1300 tons/yr, of which ~90% was organic nitrogen) and total organic carbon (50,000 tons/yr) to downstream systems.

  14. Variable role of aquatic macroinvertebrates in initial breakdown of seasonal leaf litter inputs to a cold-desert river

    USGS Publications Warehouse

    Nelson, S.M.; Andersen, D.C.

    2007-01-01

    We used coarse-mesh and fine-mesh leafpacks to examine the importance of aquatic macroinvertebrates in the breakdown of floodplain tree leaf litter that seasonally entered a sand-bedded reach of the sixth-order Yampa River in semiarid Colorado. Leafpacks were positioned off the easily mobilized channel bed, mimicking litter trapped in debris piles. Organic matter (OM) loss was fastest for leaves collected from the floodplain and placed in the river in spring (k = 0.029/day) and slowest for leaves collected and placed in the river in winter (0.006/day). Macroinvertebrates were most abundant in winter and spring leaves, but seemed important to processing only in spring, when exclusion by fine mesh reduced OM loss by 25% and nitrogen loss by 65% in spring leaves. Macroinvertebrates seemed to have little role in processing of autumn, winter, or summer leaves over the 50-day to 104-day monitoring periods. Desiccation during bouts of low discharge and sediment deposition on leaves limited invertebrate processing in summer and autumn, whereas processing of winter leaves, which supported relatively large numbers of shredders, might have been restricted by ice formation and low water temperatures. These results were consistent with the concept that microbial processing dominates in higher-order rivers, but suggested that macroinvertebrate processing can be locally important in higher-order desert rivers in seasons or years with favorable discharge and water quality conditions.

  15. Influence of riparian vegetation on channel widening and subsequent contraction on a sand-bed stream since European settlement: Widden Brook, Australia

    NASA Astrophysics Data System (ADS)

    Erskine, Wayne; Keene, Annabelle; Bush, Richard; Cheetham, Michael; Chalmers, Anita

    2012-04-01

    Widden Brook in the Hunter Valley, Australia, was first settled by Europeans in 1831 and had widened substantially by the 1870s due to frequent floods during a flood-dominated regime impacting on highly disturbed banks whose riparian trees had been either ringbarked or cleared, and whose understorey had been grazed. Catastrophic floods in 1950 (many), two in August 1952 and one in February 1955 effected the final phase of channel widening at the onset of a second flood-dominated regime more than half a century after the initial widening. Contraction has been active since 1963 by a combination of five biogeomorphic processes. Firstly, rapid channel widening, migration and cutoffs totally reworked the pre-European floodplain and were followed by active floodplain formation. Initial bar formation was replaced by sand splay and overbank deposition which constructed a new floodplain and narrower channel. Secondly, overwidened channel segments that were produced by the catastrophic 1955 flood have contracted since 1963 by the formation of up to four bank-attached, discontinuous benches below the floodplain. Each bench has a bar nucleus of pebbly coarse sand overlain by stratified fine-medium sand and mud. Colonisation by River Sheoaks (Casuarina cunninghamiana subsp. cunninghamiana) or grasses (Cynodon dactylon, Paspalum distichum, Pennisetum clandestinum) is important in converting bars to benches. Thirdly, narrower segments which developed since 1963 have contracted by small-scale accretion on both banks. These deposits are steeply dipping, interbedded sand and mud trapped by stoloniferous and rhizomatous grasses (C. dactylon, P. distichum, P. clandestinum) which also rapidly stabilise the deposits. Fourthly, rare laterally migrating, small radius bends have contracted by recent point bar formation greatly exceeding cutbank recession rates. Point bar formation is controlled by secondary currents producing inclined stratified coarse sands without the influence of vegetation. Lastly, rare, overwidened, non-migrating, large radius bends have greatly contracted by the infilling of dissecting chutes across the convex bank. Establishment of stoloniferous and rhizomatous clonal grasses (Phragmites australis, C. dactylon, P. distichum, P. clandestinum) is important in inducing sedimentation of the chutes. Contraction has produced a much narrower channel than the design width between river training fences which were installed progressively between the 1960s and 1990s. The recent flood history of Widden Brook has not included any catastrophic floods of a size similar to February 1955. Our work demonstrates that both trees and grasses can be associated with narrower channel widths and that the causal link between width and vegetation type is more complex than usually acknowledged.

  16. Managing the Mississippi River floodplain: Achieving ecological benefits requires more than hydrological connection to the river: Chapter

    USGS Publications Warehouse

    Schramm, Harold; Richardson, William B.; Knights, Brent C.

    2015-01-01

    Floodplains are vital to the structure and function of river-floodplain ecosystems. Among the many ecological services provided by floodplains are nutrient cycling and seasonal habitats for fish, including spawning, nursery, foraging and wintering habitats. Connections between the river channel and floodplain habitats are essential to realize these ecological services, but spatial and temporal aspects of the connection and contemporary geomorphology must also be considered in restoration efforts. This chapter synthesizes available information to compare floodplain function and needed management strategies in two extensive reaches (upper impounded and lower free-flowing) of the Mississippi River, USA. The upper impounded reach is the 523-km reach from about Minneapolis, Minnesota to Clinton, Iowa. This reach has been impounded and channelized for navigation. Mean annual water-level fluctuation ranges from 1 to 2 m in the navigation pools in this reach. Floodplain environmental conditions that affect nitrogen cycling and fish production vary seasonally and longitudinally within and among navigation pools. Significant issues affecting ecological services include sedimentation, constrained water level fluctuations, island erosion and seasonal hypoxia. The lower free-flowing reach, the 1570-km reach from the confluence of the Ohio and Mississippi rivers to the Gulf of Mexico, has no dams and average annual fluctuations of 7 m throughout most of the reach. Despite the substantial flood pulse, floodplain inundation is often brief and may not occur annually. Significant issues affecting floodplain ecological function are the short duration and thermal asynchrony of the flood pulse, sedimentation and loss of connection between the river channel and permanent/semi-permanent floodplain water bodies due to channel incision. Needs and strategies for floodplain enhancement to increase ecological services, particularly nitrogen cycling and fish production, differ along the longitudinal gradient of the Mississippi River and provide informative contrasts to guide floodplain management. Prediction of the effects of climate change on this system will be complicated by the magnitude of the watershed that encompasses 41 % of the continental USA and multiple climatic regions.

  17. Carbon, nitrogen, and phosphorus accumulation in floodplains of Atlantic Coastal Plain rivers, USA

    USGS Publications Warehouse

    Noe, G.B.; Hupp, C.R.

    2005-01-01

    Net nutrient accumulation rates were measured in riverine floodplains of the Atlantic Coastal Plain in Virginia, Maryland, and Delaware, USA. The floodplains were located in watersheds with different land use and included two sites on the Chickahominy River (urban), one site on the Mattaponi River (forested), and five sites on the Pocomoke River (agricultural). The Pocomoke River floodplains lie along reaches with natural hydrogeomorphology and on reaches with restricted flooding due to channelization and levees. A network of feldspar clay marker horizons was placed on the sediment surface of each floodplain site 3-6 years prior to sampling. Sediment cores were collected from the material deposited over the feldspar clay pads. This overlying sediment was separated from the clay layer and then dried, weighed, and analyzed for its total carbon (C), nitrogen (N), and phosphorus (P) content. Mean C accumulation rates ranged from 61 to 212 g??m-2??yr-1, N accumulation rates ranged from 3.5 to 13.4 g??m -2??yr-1, and P accumulation rates ranged from 0.2 to 4.1 g??m-2??yr-1 among the eight floodplains. Patterns of intersite variation in mineral sediment and P accumulation rates were similar to each other, as was variation in organic sediment and C and N accumulation rates. The greatest sediment and C, N, and P accumulation rates were observed on Chickahominy River floodplains downstream from the growing metropolitan area of Richmond, Virginia. Nutrient accumulation rates were lowest on Pocomoke River floodplains that have been hydraulically disconnected from the main channel by channelization and levees. Sediment P concentrations and P accumulation rates were much greater on the hydraulically connected floodplain immediately downstream of the limit of channelization and dense chicken agriculture of the upper Pocomoke River watershed. These findings indicate that (1) watershed land use has a large effect on sediment and nutrient retention in floodplains, and (2) limiting the hydraulic connectivity between river channels and floodplains minimizes material retention by floodplains in fluvial hydroscapes. ?? 2005 by the Ecological Society of America.

  18. Tradeoffs of strategically reconnecting rivers to their floodplains: The case of the Lower Illinois River (USA).

    PubMed

    Guida, Ross J; Remo, Jonathan W F; Secchi, Silvia

    2016-12-01

    During the latter half of the 19th Century and first half of the 20th Century, the Illinois River was heavily altered through leveeing off large portions of its floodplain, draining wetlands, and the construction of dams and river-training structures that facilitated navigation. As a result of these alterations, flood stages continue to rise, increasing flood risk and threatening to overtop levees along the La Grange Segment (LGS) of the Illinois River. Over the last two decades, more emphasis has been placed on reconnecting portions of floodplains to rivers in order to solve the long-term problem of rising flood heights attributed to continual heightening of levees to provide flood protection. Multiple studies have suggested that strategically reconnecting larger portions of the LGS could result in more sustainable floodplain management. However, the true costs and benefits of reconnecting the floodplain are not known. We use a novel hydrodynamic, geospatial, economic, and habitat suitability framework to assess the tradeoffs of strategically reconnecting the Illinois River to its floodplain in order to decrease flood risk, improve floodplain habitats, and limit the costs of reconnection. Costs include building-associated losses, lost agricultural profits, and levee removal and construction costs. Tested scenarios demonstrate that while flood heights and environmental benefits are maximized through the most aggressive levee setbacks and removals, these scenarios also have the highest costs. However, the tradeoff of implementing lower-cost scenarios is that there is less flood-height reduction and less floodplain habitat available. Several individual levee districts have high potential for reconnection based on limiting potential damages as well as providing floodplain habitat. To implement large-scale strategic floodplain reconnection, costs range from $1.2-$4.3 billion. As such, payments for ecosystem services will likely be necessary to compensate landowners for decreased long-term agricultural production and building losses that result in flood-reduction benefits and increased floodplain habitat. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Managing Floodplain Expectations on the Lower Missouri River, USA.

    NASA Astrophysics Data System (ADS)

    Bulliner, E. A., IV; Jacobson, R. B.; Lindner, G. A.; Paukert, C.; Bouska, K.

    2017-12-01

    The Missouri River is an archetype of the challenges of managing large rivers and their floodplains for multiple objectives. At 1.3 million km2 drainage area, the Missouri boasts the largest reservoir system in North America with 91 km3 of total storage; in an average year the system generates 10 billion kilowatt hours of electricity. The Lower Missouri River floodplain extends 1,300 km downstream from the reservoir system and encompasses approximately 9,200 km2. For the past 150 years, the floodplain has been predominantly used for agriculture much of which is protected from flooding by private and Federal levees. Reservoir system operating policies prioritize flood-hazard reduction but in recent years, large, damaging floods have demonstrated system limitations. These large floods and changing societal values have created new expectations about how conversion of floodplain agricultural lands to conservation lands might increase ecosystem services, in particular decreasing flood risk and mitigating fluxes of nutrients to the Gulf of Mexico. Our research addresses these expectations at multiple spatial scales by starting with hydrologic and hydraulic models to understand controls on floodplain hydrodynamics. The results document the substantial regional spatial variability in floodplain connectivity that exists because of multi-decadal channel adjustments to channelization and sediment budgets. Exploration of levee setback scenarios with 1- and 2-dimensional hydrodynamic models indicates modest and spatially variable gains in flood-hazard reduction are possible if substantial land areas (50% or more) are converted from agricultural production. Estimates of potential denitrification benefits of connecting floodplains indicate that the floodplain has the capacity to remove 100's to 1,000's of metric tons of N each year, but amounts to a maximum of about 5% the existing load of 200,000 ton*y-1. The results indicate that in this river-floodplain system, the ecosystem services associated with floodplain conversion can be substantial, but the sum of benefits needed to justify land conversion over broad areas remains uncertain.

  20. Influences of Altered River Geomorphology on Channel-Floodplain Mass and Momentum Transfer

    NASA Astrophysics Data System (ADS)

    Byrne, C. F.; Stone, M. C.

    2017-12-01

    River management strategies, including both river engineering and restoration, have altered river geomorphology and associated lateral channel-floodplain connectivity throughout the world. This altered connectivity is known to drive changes in ecologic and geomorphic processes during floods, however, quantification of altered connectivity is difficult due to the highly dynamic spatial and temporal nature of flood wave conditions. The objective of this research was to quantify the physical processes of lateral mass and momentum transfer at the channel-floodplain interface. The objective was achieved with the implementation of novel scripting and high-resolution, two-dimensional hydrodynamic modeling techniques under unsteady flow conditions. The process-based analysis focused on three geomorphic feature types within the Middle Rio Grande, New Mexico, USA: (1) historical floodplain surfaces, (2) inset floodplain surfaces formed as a result of channel training and hydrologic alteration, and (3) mechanically restored floodplain surfaces. Results suggest that inset floodplain feature types are not only subject to greater mass and momentum transfer magnitudes, but those connections are also more heterogeneous in nature compared with historical feature types. While restored floodplain feature types exhibit transfer magnitudes and heterogeneity comparable to inset feature types, the surfaces are not of great enough spatial extent to substantially influence total channel-floodplain mass and momentum transfer. Mass and momentum transfer also displayed differing characteristic changes as a result of increased flood magnitude, indicating that linked hydrodynamic processes can be altered differently as a result of geomorphic and hydrologic change. The results display the potential of high-resolution modeling strategies in capturing the spatial and temporal complexities of river processes. In addition, the results have implications for other fields of river science including biogeochemical exchange at the channel-floodplain interface and quantification of process associated with environmental flow and river restoration strategies.

  1. Floodplain-wide coupling of flooding and vegetation patterns in the Tonle Sap of the Mekong River

    NASA Astrophysics Data System (ADS)

    Arias, M. E.; Haberstroh, C.

    2017-12-01

    Floodplain vegetation is one of the prime drivers of ecosystem productivity, thus floodplain-wide monitoring is critical to ensure the well-being of these ecosystems and the important services they provide to riparian societies. Therefore, the objective of this presentation is to introduce a novel methodology to monitor long-term and large-scale patterns of rooted vegetation in seasonally inundated floodplains. We applied this methodology to an floodplain area of ac. 18,000 km2 in the Tonle Sap (Cambodia), a complex hydro-ecological system directly connected to the Mekong River. The overall hypothesis of this study is that floodplain vegetation condition is dictated by gradients of disturbance from the uplands and from the flood-pulse itself. We first demonstrate that spatial vegetation patterns represented by the normalized difference vegetation index (NDVI) during the dry season -when interference from cloud cover and partial inundation is minimal- correspond well to meaningful land use/land cover groups as well as canopy cover data collected in the field. Annual trends (2000-2016) in NDVI spatial distribution showed that the modality of dry season NDVI is largely governed by the magnitude of flooding in the antecedent hydrological year. Indeed, we found a significant relationship between flood duration -defined as the number of months annually a floodplain pixel remains flooded- and floodplain-wide NDVI. We also determined that ac. 115 km2 yr-1 of the highest quality vegetation, were replaced by fallow land during the period of study. This research has important insights on the main drivers of floodplain vegetation in the Tonle Sap, and the proposed methodology, using data from freely available worldwide satellite imagery (MODIS), promises to be an effective method to monitor ecosystem change in large floodplains across the world.

  2. Floodplain complexity and surface metrics: influences of scale and geomorphology

    USGS Publications Warehouse

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2015-01-01

    Many studies of fluvial geomorphology and landscape ecology examine a single river or landscape, thus lack generality, making it difficult to develop a general understanding of the linkages between landscape patterns and larger-scale driving variables. We examined the spatial complexity of eight floodplain surfaces in widely different geographic settings and determined how patterns measured at different scales relate to different environmental drivers. Floodplain surface complexity is defined as having highly variable surface conditions that are also highly organised in space. These two components of floodplain surface complexity were measured across multiple sampling scales from LiDAR-derived DEMs. The surface character and variability of each floodplain were measured using four surface metrics; namely, standard deviation, skewness, coefficient of variation, and standard deviation of curvature from a series of moving window analyses ranging from 50 to 1000 m in radius. The spatial organisation of each floodplain surface was measured using spatial correlograms of the four surface metrics. Surface character, variability, and spatial organisation differed among the eight floodplains; and random, fragmented, highly patchy, and simple gradient spatial patterns were exhibited, depending upon the metric and window size. Differences in surface character and variability among the floodplains became statistically stronger with increasing sampling scale (window size), as did their associations with environmental variables. Sediment yield was consistently associated with differences in surface character and variability, as were flow discharge and variability at smaller sampling scales. Floodplain width was associated with differences in the spatial organization of surface conditions at smaller sampling scales, while valley slope was weakly associated with differences in spatial organisation at larger scales. A comparison of floodplain landscape patterns measured at different scales would improve our understanding of the role that different environmental variables play at different scales and in different geomorphic settings.

  3. Absolute water storages in the Congo River floodplains from integration of InSAR and satellite radar altimetry

    NASA Astrophysics Data System (ADS)

    Lee, H.; Yuan, T.; Jung, H. C.; Aierken, A.; Beighley, E.; Alsdorf, D. E.; Tshimanga, R.; Kim, D.

    2017-12-01

    Floodplains delay the transport of water, dissolved matter and sediments by storing water during flood peak seasons. Estimation of water storage over the floodplains is essential to understand the water balances in the fluvial systems and the role of floodplains in nutrient and sediment transport. However, spatio-temporal variations of water storages over floodplains are not well known due to their remoteness, vastness, and high temporal variability. In this study, we propose a new method to estimate absolute water storages over the floodplains by establishing relations between water depths (d) and water volumes (V) using 2-D water depth maps from the integration of Interferometric Synthetic Aperture Radar (InSAR) and altimetry measurements. We applied this method over the Congo River floodplains and modeled the d-V relation using a power function (note that d-V indicates relation between d and V, not d minus V), which revealed the cross-section geometry of the floodplains as a convex curve. Then, we combined this relation and Envisat altimetry measurements to construct time series of floodplain's absolute water storages from 2002 to 2011. Its mean annual amplitude over the floodplains ( 7,777 km2) is 3.860.59 km3 with peaks in December, which lags behind total water storage (TWS) changes from the Gravity Recovery and Climate Experiment (GRACE) and precipitation changes from Tropical Rainfall Measuring Mission (TRMM) by about one month. The results also exhibit inter-annual variability, with maximum water volume to be 5.9 +- 0.72 km3 in the wet year of 2002 and minimum volume to be 2.01 +- 0.63 km3 in the dry year of 2005. The inter-annual variation of water storages can be explained by the changes of precipitation from TRMM.

  4. Effects of food availability and habitat features on the Ephemeroptera species composition at seasonal and spatial scales from neotropical floodplain rivers.

    PubMed

    Melo, S M; Ragonha, F H; Pinha, G D; Takeda, A M

    2018-02-01

    Brazilian floodplains have suffered great changes in their natural characteristics in recent decades, mainly in the flood pulse. The Upper Paraná River floodplain is one of the few places where are found remained areas in which such peculiar characteristics keep reflecting on its high biodiversity. Ephemeroptera nymphs are one of the higher density groups among benthic community, occurring in many water bodies like large rivers and secondary channels. We sought to understand which factors are needed for the species establishment and how much important is the species colonization, especially in environments with anthropogenic changes. The marginal areas, which are more structured with presence of macrophytes, showed the highest density and richness even in the Paraná River that has great human impact. We verified dominance of Americabaetis alphus, Tricorythopsis araponga, Tricorythopsis artigas on the Parana River, correlated with transparency, depth and electric conductivity, while the dominance of Traverella sp. was correlated with water temperature, especially in marginal areas. Consequently, the increasing transparency and electric conductivity due to the Porto Primavera dam in Parana River can be favoring those Ephemeroptera species. We demonstrated the importance of preserving the wetlands of Ivinhema River State Park mainly for Guajirolus sp., which was only registered in this region. Therefore, our study provides support for understanding gaps from previously studies using artificial substrates in three large rivers which are of great importance to the upper Paraná River floodplain.

  5. Soil-to-plant transfer of arsenic and phosphorus along a contamination gradient in the mining-impacted Ogosta River floodplain.

    PubMed

    Simmler, Michael; Suess, Elke; Christl, Iso; Kotsev, Tsvetan; Kretzschmar, Ruben

    2016-12-01

    Riverine floodplains downstream of active or former metal sulfide mines are in many cases contaminated with trace metals and metalloids, including arsenic (As). Since decontamination of such floodplains on a large scale is unfeasible, management of contaminated land must focus on providing land use guidelines or even restrictions. This should be based on knowledge about how contaminants enter the food chain. For As, uptake by plants may be an important pathway, but the As soil-to-plant transfer under field conditions is poorly understood. Here, we investigated the soil-to-shoot transfer of As and phosphorus (P) in wild populations of herbaceous species growing along an As contamination gradient across an extensive pasture in the mining-impacted Ogosta River floodplain. The As concentrations in the shoots of Trifolium repens and Holcus lanatus reflected the soil contamination gradient. However, the soil-to-shoot transfer factors (TF) were fairly low, with values mostly below 0.07 (TF=As shoot /As soil ). We found no evidence for interference of As with P uptake by plants, despite extremely high molar As:P ratios (up to 2.6) in Olsen soil extracts of the most contaminated topsoils (0-20cm). Considering the restricted soil-to-shoot transfer, we estimated that for grazing livestock As intake via soil ingestion is likely more important than intake via pasture herbage. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Fish assemblage dynamics in a Neotropical floodplain relative to aquatic macrophytes and the homogenizing effect of a flood pulse

    USGS Publications Warehouse

    Gomes, L.C.; Bulla, C. K.; Agostinho, A. A.; Vasconcelos, L. P.; Miranda, Leandro E.

    2012-01-01

    The presence of aquatic macrophytes is a key factor in the selection of habitats by fish in floodplain lakes because these plants enhance the physical and biological complexities of aquatic habitats. The seasonal flood pulse may influence this interaction, but there is no information in the literature about the effects that flood events may have on macrophytes assemblages and its associated effects on fish assemblages. Thus, this article aimed to investigate whether species richness, evenness and similarities in fish assemblage composition differed between littoral areas vegetated with macrophytes and unvegetated areas, before and after a flood. We sampled three lakes in the floodplain of the upper Paraná River basin. Sampling was conducted before (December 2004 and January 2005) and after (early March, late March and May 2005) a flood event. Overall, species richness and evenness were higher in macrophytes-covered areas. Before the flood, the composition of fish assemblages was distinct when comparing vegetated and unvegetated areas. After the flood, the similarity in fish assemblage composition was higher, indicating a homogenization effect of floods for fish inhabiting littoral areas of floodplain lakes. After the flood, opportunistic species dominated the fish assemblages in aquatic macrophytes, apparently restructuring assemblages in the littoral, restarting a succession process. Thus, the observed homogenization effect of the flood could minimize biological interactions and could induce fish assemblages to begin a new process of structurization.

  7. Effects of N and P fertilisation on greenhouse gas (GHG) production in floodplain fen peat: A microcosm fertilisation experiment.

    NASA Astrophysics Data System (ADS)

    Stanley, Kieran; Heppell, Catherine; Belyea, Lisa; Baird, Andrew

    2016-04-01

    Biogeochemical and hydrological cycles are being significantly perturbed by anthropic activities altering atmospheric mole fractions of greenhouse gases (GHG) and increasing global temperatures. With the intensification of the hydrological cycle, lowland areas, such as floodplain fens, may be inundated more frequently. Rivers in agricultural catchments have the potential to pollute floodplain fens with significant amounts of nitrogen (N) and phosphorus (P); however, the effects of short-term (< 15 days) N and P fertilisation via fluvial inundation on GHG emissions from floodplain fens are poorly understood. The aim of this research was to determine how N (51 mg L-1 NO3-N) and P (1.4 mg L-1 PO43--P) additions may alter GHG (CO2, CH4, and N2O) production in floodplain fens of contrasting nutrient status under anaerobic conditions. A five-level (control, glucose (G), N+G, P+G, and N+P+G), fully-factorial microcosm experiment was designed and undertaken in Spring 2013 with peat from two floodplain fens under conservation management with similar vegetation (from Norfolk, United Kingdom). One site receives a higher nutrient load than the other and has a historical legacy of higher N and P contents within the peat. Results from the experiment showed no significant difference in CO2 production between the control and fertilised treatments from 0 to 96 hours, but a significant difference between treatments (ANCOVA, between factors: treatment and site; covariate: time; F4,419 = 11.844, p < 0.001) and site (F1,149 = 5.721, p = 0.017) from 96 hours to in the end of the experiment due to fermentation. N2O production only occurred in samples fertilised with N (N+G and N+P+G) due to denitrification. Rates of N2O production were significantly greater in samples from the lower-nutrient site in comparison to the nutrient-rich site (t12= 6.539, p < 0.001 and t12= 7.273, p < 0.001 for N+G and N+P+G fertilised samples, respectively). Fertilisation with N and P had different effects on CH4 production. Samples fertilised with P+G had the highest CH4 production (ANCOVA, between factors: treatment and site; covariate: time; F4,120= 15.026, p < 0.001). Samples fertilised with N (N+G and N+P+G) showed CH4 inhibition in comparison to G and P+G additions. CH4 production was significantly greater from the nutrient-rich peat than from the lower-nutrient peat (ANCOVA, between factors: treatment and site; covariate: time; F1,120= 38.646, p < 0.01). However, a decline in CH4 concentration in the microcosms suggests that CH4 oxidation occurred after 150 hours at the lower-nutrient site. Owing to the anaerobic conditions within the microcosms, aerobic methanotrophy cannot occur, suggesting anaerobic CH4 oxidation occurred along with denitrification. However, NO and N2 concentrations were not measured in this study, so this suggestion requires examination in future work.

  8. Flood effects on efflux and net production of nitrous oxide in river floodplain soils

    NASA Astrophysics Data System (ADS)

    Riaz, Muhammad; Bruderer, Christian; Niklaus, Pascal A.; Luster, Jörg

    2016-04-01

    Floodplain soils are often rich in nutrients and exhibit high spatial heterogeneity in terms of geomorphology, soil environmental conditions and substrate availability for processes involved in carbon and nutrient cycling. In addition, fluctuating water tables lead to temporally changing redox conditions. In such systems, there are ideal conditions for the occurrence of hot spots and moments of nitrous oxide emissions, a potent greenhouse gas. The factors that govern the spatial heterogeneity and dynamics of N2O formation in floodplain soils and the surface efflux of this gas are not fully understood. A particular issue is the contribution of N2O formation in the subsoil to surface efflux. We studied this question in the floodplain of a restored section of the Thur river (NE Switzerland) which is characterized by a flashy flow regime. As a consequence, the floodplain soils are unsaturated most of the time. We showed earlier that saturation during flood pulses leads to short phases of generally anoxic conditions followed by a drying phase with anoxic conditions within aggregates and oxic conditions in larger soil pores. The latter conditions are conducive for spatially closely-coupled nitrification-denitrification and related hot moments of nitrous oxide formation. In a floodplain zone characterized by about one meter of young, sandy sediments, that are mostly covered by the tall grass Phalaris arundinacea, we measured at several time points before and after a small flood event N2O surface efflux with the closed-chamber method, and assessed N2O concentrations in the soil air at four different depths using gas-permeable tubings. In addition, we calculated the N2O diffusivity in the soil from Radon diffusivity. The latter was estimated in-situ from the recovery of Radon concentration in the gas-permeable tubings after purging with ambient air. All these data were then used to calculate net N2O production rates at different soil depths with the gradient method. In addition, temperature, volumetric water content, as well as ammonium, nitrate and dissolved organic carbon in the soil solution were monitored at different depths in the observation plots. During not flood-affected conditions we observed weak diffusive gradients between subsoil and top soil, and net N2O production was maximum in the top soil. During the drying phase after a flood, diffusive gradients between subsoil and topsoil were more pronounced, and net N2O production in the subsoil increased. At all conditions, N2O efflux was more strongly correlated with N2O concentrations in the subsoil than those in the top soil. The complex interactions between soil moisture on one hand, and C and N substrate limitation on the other hand in determining N2O production at different soil depths will be discussed. Finally, the results will be put into the context of our earlier and ongoing studies that aim at elucidating the governing factors of spatial heterogeneity and dynamics of N2O emissions in floodplain soils.

  9. Hydrological Signature From River-Floodplain Interactions

    NASA Astrophysics Data System (ADS)

    Paiva, R. C. D.; Fleischmann, A. S.; Collischonn, W.; Sorribas, M.; Pontes, P. R.

    2015-12-01

    Understanding river-floodplain hydraulic processes is fundamental to promote comprehension of related water paths, biogeochemicalcyclesand ecosystems. Large river basins around the globe present enormous developed floodplains, which strongly affect flood waves and water dynamics. Since most of these river-floodplain interactions are not monitored, it is interesting to develop strategies to understand such processes through characteristic hydrological signatures, e.g. hydrographs. We studied observed hydrographs from large South American rivers and found that in several cases rivers with extensive wetlands present a particular hydrograph shape, with slower rising limb in relation to the receding one, due to storage effects and the associated decrease of wave celerity with stage. A negative asymmetry in the hydrograph is generated, which is higher when more water flows through floodplains upstream of the observed point. Finally, we studied the Amazon basin using gauged information and simulation results from the MGB-IPH regional hydrological model. Major rivers with larger wetland areas (e.g. Purus, Madeira and Juruá) were identified with higher negative asymmetry in their hydrographs. The hydrodynamic model was run in scenarios with and without floodplains, and results supported that floodplain storage affects hydrographs in creating a negative asymmetry, besides attenuating peaks, increasing hydrograph smoothness and increasing minimum flows. Finally, different wetland types could be distinguished with hydrograph shape, e.g. differing wetlands fed by local rainfall from wetlands due to overbank flow (floodplains). These metrics and concepts on hydrograph features have great potential to infer about river-floodplain processes from large rivers and wetland systems.

  10. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes

    USGS Publications Warehouse

    Hauer, F. Richard; Locke, Harvey; Dreitz, Victoria; Hebblewhite, Mark; Lowe, Winsor; Muhlfeld, Clint C.; Nelson, Cara; Proctor, Michael F.; Rood, Stewart B.

    2016-01-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologicaltering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.

  11. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes.

    PubMed

    Hauer, F Richard; Locke, Harvey; Dreitz, Victoria J; Hebblewhite, Mark; Lowe, Winsor H; Muhlfeld, Clint C; Nelson, Cara R; Proctor, Michael F; Rood, Stewart B

    2016-06-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologic-altering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.

  12. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes

    PubMed Central

    Hauer, F. Richard; Locke, Harvey; Dreitz, Victoria J.; Hebblewhite, Mark; Lowe, Winsor H.; Muhlfeld, Clint C.; Nelson, Cara R.; Proctor, Michael F.; Rood, Stewart B.

    2016-01-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologic-altering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth. PMID:27386570

  13. Contribution of manipulable and non-manipulable environmental factors to trapping efficiency of invasive sea lamprey

    USGS Publications Warehouse

    Dawson, Heather A.; Bravener, Gale; Beaulaurier, Joshua; Johnson, Nicholas S.; Twohey, Michael; McLaughlin, Robert L.; Brenden, Travis O.

    2017-01-01

    We identified aspects of the trapping process that afforded opportunities for improving trap efficiency of invasive sea lamprey (Petromyzon marinus) in a Great Lake's tributary. Capturing a sea lamprey requires it to encounter the trap, enter, and be retained until removed. Probabilities of these events depend on the interplay between sea lamprey behavior, environmental conditions, and trap design. We first tested how strongly seasonal patterns in daily trap catches (a measure of trapping success) were related to nightly rates of trap encounter, entry, and retention (outcomes of sea lamprey behavior). We then tested the degree to which variation in rates of trap encounter, entry, and retention were related to environmental features that control agents can manipulate (attractant pheromone addition, discharge) and features agents cannot manipulate (water temperature, season), but could be used as indicators for when to increase trapping effort. Daily trap catch was most strongly associated with rate of encounter. Relative and absolute measures of predictive strength for environmental factors that managers could potentially manipulate were low, suggesting that opportunities to improve trapping success by manipulating factors that affect rates of encounter, entry, and retention are limited. According to results at this trap, more sea lamprey would be captured by increasing trapping effort early in the season when sea lamprey encounter rates with traps are high. The approach used in this study could be applied to trapping of other invasive or valued species.

  14. Channelization and floodplain forests: impacts of accelerated sedimentation and valley plug formation on floodplain forests of the Middle Fork Forked Deer River, Tennessee, USA

    Treesearch

    Sonja N. Oswalt; Sammy L. King

    2005-01-01

    We evaluated the severe degradation of floodplain habitats resulting from channelization and concomitant excessive coarse sedimentation on the Middle Fork Forked Deer River in west Tennessee from 2000 to 2003. Land use practices have resulted in excessive sediment in the tributaries and river system eventually resulting in sand deposition on the floodplain, increased...

  15. 2014 Reassessment of Floodplain Wetland Connections in the Middle Green River, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaGory, K. E.; Walston, L. J.; Weber, C. C.

    This report presents the results of floodplain wetland connection surveys conducted in 2014 at six priority floodplain wetland sites along the middle Green River between Jensen and Ouray, Utah. Surveys were conducted at levee breaches and within channels leading from the breaches to the wetlands (referred to here as connection channels) to characterize the flows needed to connect the river’s main channel with the floodplain wetlands.

  16. 2012 Reassessment of Floodplain Wetland Connections in the Middle Green River, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaGory, Kirk E.; Walston, Leroy J.; Weber, Cory C.

    This report presents the results of floodplain wetland connection surveys conducted in 2012 at eight priority floodplain wetlands along the middle Green River between Jensen and Ouray, Utah. Surveys were conducted at levee breaches and within channels leading from the breaches to the wetlands (referred to here as connection channels) to characterize the flows needed to connect the river's main channel with the floodplain wetlands.

  17. Feedbacks between Reservoir Operation and Floodplain Development

    NASA Astrophysics Data System (ADS)

    Wallington, K.; Cai, X.

    2017-12-01

    The increased connectedness of socioeconomic and natural systems warrants the study of them jointly as Coupled Natural-Human Systems (CNHS) (Liu et al., 2007). One such CNHS given significant attention in recent years has been the coupled sociological-hydrological system of floodplains. Di Baldassarre et al. (2015) developed a model coupling floodplain development and levee heightening, a flood control measure, which demonstrated the "levee effect" and "adaptation effect" seen in observations. Here, we adapt the concepts discussed by Di Baldassarre et al. (2015) and apply them to floodplains in which the primary flood control measure is reservoir storage, rather than levee construction, to study the role of feedbacks between reservoir operation and floodplain development. Specifically, we investigate the feedback between floodplain development and optimal management of trade-offs between flood water conservation and flood control. By coupling a socio-economic model based on that of Di Baldassarre et al. (2015) with a reservoir optimization model based on that discussed in Ding et al. (2017), we show that reservoir operation rules can co-evolve with floodplain development. Furthermore, we intend to demonstrate that the model results are consistent with real-world data for reservoir operating curves and floodplain development. This model will help explain why some reservoirs are currently operated for purposes which they were not originally intended and thus inform reservoir design and construction.

  18. Abandoned floodplain plant communities along a regulated dryland river

    USGS Publications Warehouse

    Reynolds, L. V.; Shafroth, Patrick B.; House, P. K.

    2014-01-01

    Rivers and their floodplains worldwide have changed dramatically over the last century because of regulation by dams, flow diversions and channel stabilization. Floodplains no longer inundated by river flows following dam-induced flood reduction comprise large areas of bottomland habitat, but the effects of abandonment on plant communities are not well understood. Using a hydraulic flow model, geomorphic mapping and field surveys, we addressed the following questions along the Bill Williams River, Arizona: (i) What per cent of the bottomland do abandoned floodplains comprise? and (ii) Are abandoned floodplains quantitatively different from adjacent xeric and riparian surfaces in terms of vegetation composition and surface sediment? We found that nearly 70% of active channel and floodplain area was abandoned following dam installation. Abandoned floodplains along the Bill Williams River tend to be similar to each other yet distinct from neighbouring habitats: they have been altered physically from their historic state, leading to distinct combinations of surface sediments, hydrology and plant communities. Abandoned floodplains may transition to xeric communities over time but are likely to retain some riparian qualities as long as there is access to relatively shallow ground water. With expected increases in water demand and drying climatic conditions in many regions, these surfaces and associated vegetation will continue to be extensive in riparian landscapes worldwide

  19. Manning’s equation and two-dimensional flow analogs

    NASA Astrophysics Data System (ADS)

    Hromadka, T. V., II; Whitley, R. J.; Jordan, N.; Meyer, T.

    2010-07-01

    SummaryTwo-dimensional (2D) flow models based on the well-known governing 2D flow equations are applied to floodplain analysis purposes. These 2D models numerically solve the governing flow equations simultaneously or explicitly on a discretization of the floodplain using grid tiles or similar tile cell geometry, called "elements". By use of automated information systems such as digital terrain modeling, digital elevation models, and GIS, large-scale topographic floodplain maps can be readily discretized into thousands of elements that densely cover the floodplain in an edge-to-edge form. However, the assumed principal flow directions of the flow model analog, as applied across an array of elements, typically do not align with the floodplain flow streamlines. This paper examines the mathematical underpinnings of a four-direction flow analog using an array of square elements with respect to floodplain flow streamlines that are not in alignment with the analog's principal flow directions. It is determined that application of Manning's equation to estimate the friction slope terms of the governing flow equations, in directions that are not coincident with the flow streamlines, may introduce a bias in modeling results, in the form of slight underestimation of flow depths. It is also determined that the maximum theoretical bias, occurs when a single square element is rotated by about 13°, and not 45° as would be intuitively thought. The bias as a function of rotation angle for an array of square elements follows approximately the bias for a single square element. For both the theoretical single square element and an array of square elements, the bias as a function of alignment angle follows a relatively constant value from about 5° to about 85°, centered at about 45°. This bias was first noted about a decade prior to the present paper, and the magnitude of this bias was estimated then to be about 20% at about 10° misalignment. An adjustment of Manning's n is investigated based on a considered steady state uniform flow problem, but the magnitude of the adjustment (about 20%) is on the order of the magnitude of the accepted ranges of friction factors. For usual cases where random streamline trajectory variability within the floodplain flow is greater than a few degrees from perfect alignment, the apparent bias appears to be implicitly included in the Manning's n values. It can be concluded that the array of square elements may be applied over the digital terrain model without respect to topographic flow directions.

  20. Floodplain Assessment for the Upper Cañon de Valle Watershed Enhancement Project in Technical Area 16 at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles Dean; Keller, David Charles; Sartor, Karla A.

    This floodplain assessment was prepared in accordance with 10 Code of Federal Regulations (CFR) 1022 Compliance with Floodplain and Wetland Environmental Review Requirements, which was promulgated to implement the U.S. Department of Energy (DOE) requirements under Executive Order 11988 Floodplain Management and Executive Order 11990 Wetlands Protection. According to 10 CFR 1022, a 100-year floodplain is defined as “the lowlands adjoining inland and coastal waters and relatively flat areas and flood prone areas of offshore islands.” In this action, DOE is proposing to control the run-on of storm water by slowing water velocity and managing sediments from the upper portionsmore » of the Cañon de Valle watershed on Los Alamos National Laboratory (LANL) property with a number of new watershed controls near and within the 100-year floodplain (hereafter floodplain). The proposed work will comply with requirements under the Settlement Agreement and Stipulated Final Compliance Order (Settlement Agreement) Number HWB-14-20.« less

  1. Geospatial assessment of ecological functions and flood-related risks on floodplains along major rivers in the Puget Sound Basin, Washington

    USGS Publications Warehouse

    Konrad, Christopher P.

    2015-01-01

    Ecological functions and flood-related risks were assessed for floodplains along the 17 major rivers flowing into Puget Sound Basin, Washington. The assessment addresses five ecological functions, five components of flood-related risks at two spatial resolutions—fine and coarse. The fine-resolution assessment compiled spatial attributes of floodplains from existing, publically available sources and integrated the attributes into 10-meter rasters for each function, hazard, or exposure. The raster values generally represent different types of floodplains with regard to each function, hazard, or exposure rather than the degree of function, hazard, or exposure. The coarse-resolution assessment tabulates attributes from the fine-resolution assessment for larger floodplain units, which are floodplains associated with 0.1 to 21-kilometer long segments of major rivers. The coarse-resolution assessment also derives indices that can be used to compare function or risk among different floodplain units and to develop normative (based on observed distributions) standards. The products of the assessment are available online as geospatial datasets (Konrad, 2015; http://dx.doi.org/10.5066/F7DR2SJC).

  2. Using Random Forests to Map Floodplains for the Conterminous USA

    EPA Science Inventory

    Floodplains perform several important ecosystem services, including storing water during precipitation events and reducing peak flows, thereby reducing flooding of adjacent communities. Understanding the relationship between flood inundation and floodplains is critical for ecosys...

  3. Floodplain Assessment for the North Ancho Canyon Aggregate Area Cleanup in Technical Area 39 at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles Dean

    This floodplain assessment was prepared in accordance with 10 Code of Federal Regulations (CFR) 1022 Compliance with Floodplain and Wetland Environmental Review Requirements, which was promulgated to implement the U.S. Department of Energy (DOE) requirements under Executive Order 11988 Floodplain Management and Executive Order 11990 Wetlands Protection. According to 10 CFR 1022, a 100-year floodplain is defined as “the lowlands adjoining inland and coastal waters and relatively flat areas and flood prone areas of offshore islands.” In this action, DOE is proposing to collect soil investigation samples and remove contaminated soil within and around selected solid waste management units (SWMUs)more » near and within the 100-year floodplain (hereafter “floodplain”) in north Ancho Canyon at Los Alamos National Laboratory (LANL). The work is being performed to comply with corrective action requirements under the 2016 Compliance Order on Consent.« less

  4. Water table and overbank flow frequency changes due to suburbanization-induced channel incision, Virginia Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Hancock, G.; Mattell, N.; Christianson, E.; Wacksman, J.

    2004-12-01

    Channel incision is a widely observed response to increased flow in urbanized watersheds, but the effects of channel lowering on riparian water tables is not well documented. In a rapidly incising suburban stream in the Virginia Coastal Plain, we hypothesize that incision has lowered floodplain water tables and decreased the overbank flow frequency, and suggest these changes impact vegetation distribution in a diverse, protected riparian habitat. The monitored stream is a tributary to the James River draining 1.3 km2, of which 15% is impervious cover. Incision has occurred largely through upstream migration of a one m high knickpoint at a rate of 1-2 m/yr, primarily during high flow events. We installed 33 wells in six floodplain transects to assess water table elevations beneath the floodplain adjacent to the incising stream. To document the impacts of incision, two transects are located 30 and 50 m upstream of the knickpoint in unincised floodplain, and the remainder are 5, 30, 70, and 100 m downstream of the knickpoint in incised floodplain. In one transect above and two below, pressure transducers attached to dataloggers provide a high-resolution record of water table response to storm events. Significant differences have been observed in the water table above and below the knickpoint. Above the knickpoint, the water table is relatively flat and is 0.2-0.4 m below the floodplain surface. Water table response to precipitation events is nearly immediate, with the water table rising to the floodplain surface in significant rainfall events. In the transect immediately downstream of the knickpoint, the water table possesses a steep gradient, rising from ~1 m below the floodplain at the stream to 0.3 m below the surface within 20 m. In the most downstream transects, the water table is relatively flat, but is one m below the floodplain surface, equivalent to the depth of incision generated by knickpoint passage. Upstream of the knickpoint, overbank flooding occurs frequently, while below the knickpoint the majority of storm flow is contained within the incised channel and occupation of the floodplain is rare. Plant diversity surveys reveal differences in the total density of herbaceous growth and species distribution between the floodplain above and below the knickpoint. Results from >100 plots show that there is more leaf litter, less exposed ground, and a decrease in floodplain species cover in the incised portion of the floodplain. The changes in flood frequency and water table elevation appear to have allowed one invasive species, Japanese stilt grass (Microstegium vimineum), to become dominant in the floodplain understory, displacing native wetland species.

  5. Floods, floodplains, delta plains — A satellite imaging approach

    NASA Astrophysics Data System (ADS)

    Syvitski, James P. M.; Overeem, Irina; Brakenridge, G. Robert; Hannon, Mark

    2012-08-01

    Thirty-three lowland floodplains and their associated delta plains are characterized with data from three remote sensing systems (AMSR-E, SRTM and MODIS). These data provide new quantitative information to characterize Late Quaternary floodplain landscapes and their penchant for flooding over the last decade. Daily proxy records for discharge since 2002 and for each of the 33 river systems can be derived with novel Advanced Microwave Scanning Radiometer (AMSR-E) methods. A descriptive framework based on analysis of Shuttle Radar Topography Mission (SRTM) data is used to capture the major landscape-scale floodplain elements or zones: 1) container valleys with their long and narrow pathways of largely sediment transit and bypass, 2) floodplain depressions that act as loci for frequent flooding and sediment storage, 3) zones of nodal avulsions common to many continental scale rivers, and often located seaward of container valleys, and 4) coastal floodplains and delta plains that offer both sediment bypass and storage but under the influence of marine processes. The SRTM data allow mapping of smaller-scale architectural elements in unprecedented systematic manner. Floodplain depressions were found to play a major role, which may largely be overlooked in conceptual floodplain models. Lastly, MODIS data (independently and combined with AMSR-E) allows the tracking of flood hydrographs and pathways and sedimentation patterns on a near-daily timescale worldwide. These remote-sensing data show that 85% of the studied major river systems experienced extensive flooding in the last decade. A new quantitative paradigm of floodplain processes, honoring the frequency and extent of floods, can be develop by careful analysis of these new remotely sensed data.

  6. Hydrodynamic modeling of hydrologic surface connectivity within a coastal river-floodplain system

    NASA Astrophysics Data System (ADS)

    Castillo, C. R.; Guneralp, I.

    2017-12-01

    Hydrologic surface connectivity (HSC) within river-floodplain environments is a useful indicator of the overall health of riparian habitats because it allows connections amongst components/landforms of the riverine landscape system to be quantified. Overbank flows have traditionally been the focus for analyses concerned with river-floodplain connectivity, but recent works have identified the large significance from sub-bankfull streamflows. Through the use of morphometric analysis and a digital elevation model that is relative to the river water surface, we previously determined that >50% of the floodplain for Mission River on the Coastal Bend of Texas becomes connected to the river at streamflows well-below bankfull conditions. Guided by streamflow records, field-based inundation data, and morphometric analysis; we develop a two-dimensional hydrodynamic model for lower portions of Mission River Floodplain system. This model not only allows us to analyze connections induced by surface water inundation, but also other aspects of the hydrologic connectivity concept such as exchanges of sediment and energy between the river and its floodplain. We also aggregate hydrodynamic model outputs to an object/landform level in order to analyze HSC and associated attributes using measures from graph/network theory. Combining physically-based hydrodynamic models with object-based and graph theoretical analyses allow river-floodplain connectivity to be quantified in a consistent manner with measures/indicators commonly used in landscape analysis. Analyzes similar to ours build towards the establishment of a formal framework for analyzing river-floodplain interaction that will ultimately serve to inform the management of riverine/floodplain environments.

  7. Fully integrated physically-based numerical modelling of impacts of groundwater extraction on surface and irrigation-induced groundwater interactions: case study Lower River Murray, Australia

    NASA Astrophysics Data System (ADS)

    Alaghmand, S.; Beecham, S.; Hassanli, A.

    2013-07-01

    Combination of reduction in the frequency, duration and magnitude of natural floods, rising saline water-table in floodplains and excessive evapotranspiration have led to an irrigation-induced groundwater mound forced the naturally saline groundwater onto the floodplain in the Lower River Murray. It is during the attenuation phase of floods that these large salt accumulations are likely to be mobilised and will discharge into the river. The Independent Audit Group for Salinity highlighted this as the most significant risk in the Murray-Darling Basin. South Australian government and catchment management authorities have developed salt interception schemes (SIS). This is to pump the highly saline groundwater from the floodplain aquifer to evaporation basins in order to reduce the hydraulic gradient that drives the regional saline groundwater towards the River Murray. This paper investigates the interactions between a river (River Murray in South Australia) and a saline semi-arid floodplain (Clarks Floodplain) significantly influenced by groundwater lowering (Bookpurnong SIS). Results confirm that groundwater extraction maintain a lower water-table and more fresh river water flux to the saline floodplain aquifer. In term of salinity, this may lead to less amount of solute stored in the floodplain aquifer. This occurs through two mechanisms; extracting some of the solute mass from the system and changing the floodplain groundwater regime from a losing to gaining one. Finally, it is shown that groundwater extraction is able to remove some amount of solute stored in the unsaturated zone and mitigate the floodplain salinity risk.

  8. Cambrian rivers and floodplains: the significance of microbial cementation, groundwater and aeolian sediment transport

    NASA Astrophysics Data System (ADS)

    Reesink, A. J. H.; Best, J.; Freiburg, J. T.; Nathan, W.

    2016-12-01

    Rivers that existed before land plants colonized the Earth are commonly considered to be unaffected by microbial activity on their floodplains, because the limited cementation produced by microbial activity is insufficient to stabilize the river banks. Although this assumption is likely correct, such emphasis on channel dynamics ignores the potential role of floodplain dynamics as an integral component of the river system. Detailed analysis of cores from the Cambrian Mount Simon Sandstone, Illinois, suggests that a significant proportion of the terrestrial sequence is composed of flat-bedded `crinkly' structures that provide evidence of cementation by soil crusts and microbial biofilms, and that promoted the adhesion of sediment to sticky surfaces. Wind ripples and local desert pavements were abundant. These findings highlight that sediment deposition on Cambrian floodplains was often dominated by wind in locations where the ground water table reached the surface, and was thus likely independent of sediment transport within the river channel. Erosion by wind would thus have been hindered by surface cementation and the formation of desert pavements. Such ground water control on deposition, and resistance to erosion by floodplain surface hardening, appear to have been the primary controls on Cambrian floodplain topography. Because floodplain topography poses a key control on channel and floodplain flow, these processes may have affected patterns of erosion and deposition, as well as reach-scale dynamics such as channel avulsions. The autonomous operation of wind-and-groundwater controlled floodplains makes pre-vegetated river systems more sensitive to climatic conditions such as precipitation and evaporation, and strikingly different from those that occurred after the development of land plants.

  9. Legacy effects of colonial millponds on floodplain sedimentation, bank erosion, and channel morphology, MID-Atlantic, USA

    USGS Publications Warehouse

    Schenk, E.R.; Hupp, C.R.

    2009-01-01

    Many rivers and streams of the Mid-Atlantic Region, United States (U.S.) have been altered by postcolonial floodplain sedimentation (legacy sediment) associated with numerous milldams. Little Conestoga Creek, Pennsylvania, a tributary to the Susquehanna River and the Chesapeake Bay, is one of these streams. Floodplain sedimentation rates, bank erosion rates, and channel morphology were measured annually during 2004-2007 at five sites along a 28-km length of Little Conestoga Creek with nine colonial era milldams (one dam was still in place in 2007). This study was part of a larger cooperative effort to quantify floodplain sedimentation, bank erosion, and channel morphology in a high sediment yielding region of the Chesapeake Bay watershed. Data from the five sites were used to estimate the annual volume and mass of sediment stored on the floodplain and eroded from the banks for 14 segments along the 28-km length of creek. A bank and floodplain reach based sediment budget (sediment budget) was constructed for the 28 km by summing the net volume of sediment deposited and eroded from each segment. Mean floodplain sedimentation rates for Little Conestoga Creek were variable, with erosion at one upstream site (-5 mm/year) to deposition at the other four sites (highest = 11 mm/year) despite over a meter of floodplain aggradation from postcolonial sedimentation. Mean bank erosion rates range between 29 and 163 mm/year among the five sites. Bank height increased 1 m for every 10.6 m of channel width, from upstream to downstream (R2 = 0.79, p < 0.0001) resulting in progressively lowered hydraulic connectivity between the channel and the floodplain. Floodplain sedimentation and bank erosion rates also appear to be affected by the proximity of the segments to one existing milldam, which promotes deposition upstream and scouring downstream. The floodplain and bank along the 28-km reach produced a net mean sediment loss of 5,634 Mg/year for 2004-2007, indicating that bank erosion was exceeding floodplain sedimentation. In particular, the three segments between the existing dam and the confluence with the Conestoga River (32% of the studied reach) account for 97% of the measured net sediment budget. Future research directed at understanding channel equilibria should facilitate efforts to reduce the sediment impacts of dam removal and legacy sediment. ?? 2009 American Water Resources Association.

  10. Plant-herbivore-hydroperiod interactions: effects of native mammals on floodplain tree recruitment

    USGS Publications Warehouse

    Andersen, D.C.; Cooper, D.J.

    2000-01-01

    Floodplain plant–herbivore–hydroperiod interactions have received little attention despite their potential as determinants of floodplain structure and functioning. We used five types of exclosures to differentially exclude small-, medium-, and large-sized mammals from accessing Fremont cottonwood (Populus deltoides Marshall subsp. wizlizenii (Watson) Eckenwalder) seedlings and saplings growing naturally on four landform types at an alluvial reach on each of two rivers, the Green and Yampa, in Colorado and Utah. The two study reaches differed primarily as a result of flow regulation on the Green River, which began in 1962. Landforms were a rarely flooded portion of the alluvial plain, geomorphically active slow- and fast-water channel margin sites on the Yampa reach, and an aggrading side channel on the Green. Small-mammal live-trapping and observational data indicated that, with minor exceptions, the kinds of mammals eating cottonwood within each reach were identical. We monitored condition and fates of individual cottonwood plants from October 1993 through the 1997 growing season. Differences in survival and growth were noted both within and between reaches, and both due to, and independent of, mammalian herbivory. Comparisons of cottonwood growth and survivorship among exclosures and between exclosures and controls indicated that a small mammal, Microtus montanus, reduced seedling and sapling survivorship at the Green River reach, but to a lesser extent (seedlings) or not at all (saplings) on the Yampa reach. In contrast, reductions in sapling height increment attributable to medium- and large-sized herbivores were detected only at the Yampa site. We suggest that these differences are a result of (1) flow regulation allowing Microtus populations to escape the mortality normally accompanying the large, snowmelt-driven spring flood, as well as regulation promoting a herbaceous understory favorable to voles, and (2) greater browsing pressure from overwintering deer and elk at the Yampa reach, unrelated to flow regulation. Within areas used by foraging beaver, the probability of a sapling being cut by beaver was similar on the two reaches. This study suggests that changes in riparian plant–herbivore relationships due to shifts in river hydrology may be a common and important consequence of river regulation.

  11. A Model of Beaver Meadow Complex Evolution in the Silvies River Basin, Oregon.

    NASA Astrophysics Data System (ADS)

    Nash, C.; Grant, G.; Campbell, S. D.

    2014-12-01

    There is increasing evidence to suggest that the pervasive incision seen in the American West is due, in part, to the removal of beaver (Castor canadensis) in the first half of the 19th century. New restoration strategies for these systems focus on the reintroduction of beaver and construction of beaver dam analogs. Such dams locally raise streams beds and water tables, reconnect incised channels to their former floodplains, trap sediment, increase hydraulic diversity, and promote riparian vegetation. However, the geomorphic and hydrologic impacts of both the original beaver dams and their analogs are poorly understood. Observations in the Silvies River basin in Oregon, USA - an upland, semi-arid catchment with extremely high historic beaver populations and a presently recovering population, inform a conceptual model for valley floor evolution with beaver dams. The evolution of the beaver dam complex is characterized by eight stages of morphologic adjustment: water impoundment, sediment deposition, pond filling, multi-thread meadow creation, dam breaching, channel incision, channel widening, and floodplain development. Well-constructed beaver dams, given sufficient time and sediment flux, will evolve from a series of ponds to a multi-threaded channel flowing through a wet meadow complex. If a dam in the system fails, due to overtopping, undercutting, lack of maintenance, or abandonment, the upstream channel will concentrate into a single channel and incise, followed over time by widening once critical bank heights are exceeded. From stratigraphic, dendrochronologic, and geomorphic measurements, we are constraining average timescales associated with each stage's duration and transitional period. Measured sedimentation rates behind modern beaver dam analogs on five stream systems permit calculation of sediment flux over recent time periods, and aid in developing regional rates of sediment deposition over a range of drainage areas and gradients. Stratigraphic and dendrochronologic records provide insight into rates of incision, widening, and floodplain development. These measurements are leading to an understanding of the timescales associated with each morphologic stage and transition period, as well as the long-term implications of reintroducing beaver into a wide range of stream systems.

  12. Spatial and temporal use of floodplain habitats by lentic and lotic species of aquatic turtles.

    PubMed

    Bodie, J R; Semlitsch, R D

    2000-01-01

    We investigated the use of aquatic and terrestrial floodplain habitats by lentic and lotic turtles inhabiting the Missouri River, a contemporary, regulated large river. Specifically, we tested whether habitats were used differentially by turtle species, sexes, and life stages over biologically determined spatial and temporal scales. We monitored female and male false map turtles (Graptemys pseudogeographica) and slider turtles (Trachemys scripta) for 14 months, using radiotelemetry. In addition, over a 3-year period we trapped G. pseudogeographica (n=591) and T. scripta (n=129) to supplement data on habitat use. Movements based on radiotelemetry and recaptures were summarized for each individual. Both species of turtles displayed dynamic annual activity patterns and used diverse habitats including those typically considered terrestrial. Although G. pseudogeographica and T. scripta spent a substantial portion of the year in the Missouri River (primarily in the cool months), newly created scour habitats also appeared to attract turtles during the cool season. However, in the warm months, habitat use became much more diverse, with turtles occupying all identified habitats including flooded agriculture and forest. Relative to their proportions, slough and scour habitats appeared to be highly favored while forests older than 4 years and agricultural habitats were proportionally less favored. We found few differences between species. However, males of both species were consistently more sedentary, used half as many habitats, and moved half as far from the river as did females, especially during May through July. Juveniles of both species were captured on average farther from the river than were adults, perhaps reflecting the close proximity of both nesting areas and shallow, productive habitats free of aquatic predators. We estimate a riparian zone of 449 m that encompasses 95% of the population movements away from the river and discuss the quality of habitats important to reproduction and survival of lentic and lotic floodplain turtles. These spatial and temporal movement patterns, in light of their potential adaptive costs and benefits to G. pseudogeographica and T. scripta, are critical to understanding the ecology of long-lived vertebrates that depend on contemporary large rivers.

  13. The influence of floodplain geomorphology and hydrologic connectivity on alligator gar (Atractosteus spatula) habitat along the embanked floodplain of the Lower Mississippi River

    NASA Astrophysics Data System (ADS)

    van der Most, Merel; Hudson, Paul F.

    2018-02-01

    The floodplain geomorphology of large lowland rivers is intricately related to aquatic ecosystems dependent upon flood pulse dynamics. The alligator gar (Atractosteus spatula) is native to the Lower Mississippi River and dependent upon floodplain backwater areas for spawning. In this study we utilize a geospatial approach to develop a habitat suitability index for alligator gar that explicitly considers hydrologic connectivity and the floodplain geomorphology along a frequently inundated segment of the Lower Mississippi River. The data sets include Landsat imagery, a high-resolution LiDAR digital elevation model (DEM), National Hydrography Dataset (NHD), and hydrologic and geomorphic data. A habitat suitability index is created based on the extent and frequency of inundation, water depth, temperature, and vegetation. A comparison between the remote sensing approach and the NHD revealed substantial differences in the area and location of water bodies available for alligator gar spawning. The final habitat suitability index indicates that a modest proportion (19%) of the overall embanked floodplain is available for alligator gar spawning. Opportunities exist for management efforts to utilize engineered and natural geomorphic features to facilitate hydrologic connectivity at flow levels below flood stage that would expand the habitat of alligator gar across the floodplain. The study results have direct implications regarding environmental restoration of the Lower Mississippi, an iconic example of an embanked meandering river floodplain.

  14. Substantial soil organic carbon retention along floodplains of mountain streams

    NASA Astrophysics Data System (ADS)

    Sutfin, Nicholas A.; Wohl, Ellen

    2017-07-01

    Small, snowmelt-dominated mountain streams have the potential to store substantial organic carbon in floodplain sediment because of high inputs of particulate organic matter, relatively lower temperatures compared with lowland regions, and potential for increased moisture conditions. This work (i) quantifies mean soil organic carbon (OC) content along 24 study reaches in the Colorado Rocky Mountains using 660 soil samples, (ii) identifies potential controls of OC content based on soil properties and spatial position with respect to the channel, and (iii) and examines soil properties and OC across various floodplain geomorphic features in the study area. Stepwise multiple linear regression (adjusted r2 = 0.48, p < 0.001) indicates that percentage of silt and clay, sample depth, percent sand, distance from the channel, and relative elevation from the channel are significant predictors of OC content in the study area. Principle component analysis indicates limited separation between geomorphic floodplain features based on predictors of OC content. A lack of significant differences among floodplain features suggests that the systematic random sampling employed in this study can capture the variability of OC across floodplains in the study area. Mean floodplain OC (6.3 ± 0.3%) is more variable but on average greater than values in uplands (1.5 ± 0.08% to 2.2 ± 0.14%) of the Colorado Front Range and higher than published values from floodplains in other regions, particularly those of larger rivers.

  15. Multiple effects of hydrological connectivity on floodplain processes in human modified river systems

    NASA Astrophysics Data System (ADS)

    Hein, Thomas; Bondar-Kunze, Elisabeth; Preiner, Stefan; Reckendorfer, Walter; Tritthart, Michael; Weigelhofer, Gabriele; Welti, Nina

    2014-05-01

    Floodplain and riparian ecosystems provide multiple functions and services of importance for human well-being and are of strategic importance for different sectors at catchment scale. Especially floodplains in the vicinity of urban areas can be areas of conflicting interests ranging from different land use types, flood water retention, drinking water production and recreation to conservation of last remnants of former riverine landscape, as it is the case in floodplains in the Danube Nationalpark downstream Vienna. Many of these ecosystem functions and services are controlled by the exchange conditions between river main channel and floodplain systems, the hydrological connectivity. At the same time these systems have been highly altered and especially the connectivity has been severely impaired. Thus, far ranging effects of changes in hydrological connectivity at various levels can be expected in altered floodplain systems. The aim of this presentation is to explore the complex control of different ecosystem functions and associated services by different parameters of hydrological connectivity, ranging from nutrient, sediment and matter dynamics and biodiversity aspects. Increasing connectivity will be shown to impact microbial dynamics, sediment-water interactions, carbon dynamics and trophic conditions, thus affecting the fundamental functions of particular floodplain systems at various spatial and temporal scales. Based on these changes also the provision of ecosystem services of floodplains is affected. The results clearly show that hydrological connectivity needs to be considered in a sustainable management approach.

  16. Oxidation and reduction rates for organic carbon in the Amazon mainstream tributary and floodplain, inferred from distributions of dissolved gases

    NASA Technical Reports Server (NTRS)

    Richey, Jeffrey E.; Devol, Allan H.; Wofsy, Steven C.; Victoria, Reynaldo; Riberio, Maria N. G.

    1986-01-01

    Concentrations of CO2, O2, CH4, and N2O in the Amazon River system reflect an oxidation-reduction sequence in combination with physical mixing between the floodplain and the mainstem. Concentrations of CO2 ranged from 150 microM in the Amazon mainstem to 200 to 300 microM in aerobic waters of the floodplain, and up to 1000 microM in oxygen-depleted environments. Apparent oxygen utilization (AOU) ranged from 80 to 250 microM. Methane was highly supersaturated, with concentrations ranging from 0.06 microM in the mainstem to 100 microM on the floodplain. Concentrations of N2O were slightly supersaturated in the mainstem, but were undersaturated on the floodplain. Fluxes calculated from these concentrations indicated decomposition of 1600 g C sq m y(-1) of organic carbon in Amazon floodplain waters. Analysis of relationships between CH4, O2, and CO2 concentrations indicated that approximately 50 percent of carbon mineralization on the floodplain is anaerobic, with 20 percent lost to the atmoshphere as CH4. The predominance of anaerobic metabolism leads to consumption of N2O on the flood plane. Elevated concentrations of CH4 in the mainstem probably reflect imput from the floodplain, while high levels of CO2 in the mainstem are derived from a combination of varzea drainage and in situ respiration.

  17. Coupling MAST-1D, a sediment routing model for channel-floodplain complexes, with channel migration relationships to predict reach-averaged river morphodynamics. Preliminary results

    NASA Astrophysics Data System (ADS)

    Viparelli, E.; Eke, E. C.; Lauer, J. W.

    2017-12-01

    Sediment exchange between the channel and floodplain can occur via meander migration, overbank deposition or erosion, and changes in channel geometry. Depending on channel and floodplain history, floodplains can act either as sources or sinks of bed material and/or wash load. Here we present preliminary modeling results that explicitly account for the feedbacks between the changes in floodplain geometry and sediment size distribution and the changes in channel geometry and migration. These results are obtained by coupling the Morphodynamics And Sediment Tracers in 1D (MAST-1D) program with the results of meander migration studies linking the bankfull flow depth and mean velocity to channel migration, sinuosity and channel geometry. MAST-1D is a numerical model built to describe grain size specific transport of sediment and tracers and the long-term - i.e. decadal and longer - evolution of channel floodplain complexes. MAST-1D differs from other 1D numerical models because it allows for 1) uneven exchange of sediment and tracers between the river channel and the floodplain, 2) temporal changes in channel geometry, bed elevation and floodplain thickness, which result in changes in the channel hydraulic capacity, and 3) temporal changes of size distribution and tracer content in the floodplain, in the load and in the underlying substrate. Under conditions of constant base level, water and sediment supply, the system evolves toward a steady state wherein the amount of sediment deposited through point bar deposition and overbank sedimentation is balanced by the erosion of sediment from the floodplain through lateral migration. The current formulation couples MAST-1D with empirical channel migration relationships that link bankfull flow depth and mean velocity to channel migration, sinuosity and channel geometry. Future development of this preliminary work will involve a fully coupled MAST-1D model with a standard meander migration model that will allow for the building of floodplain stratigraphy and tracking of the position of the meandering channel in space and time.

  18. Forecasting the Cumulative Impacts of Dams on the Mekong Delta: Certainties and Uncertainties

    NASA Astrophysics Data System (ADS)

    Kondolf, G. M.; Rubin, Z.; Schmitt, R. J. P.

    2016-12-01

    The Mekong River basin is undergoing rapid hydroelectric development, with 7 large mainstem dams on the upper Mekong (Lancang) River in China and 133 dams planned for the Lower Mekong River basin (Laos, Cambodia, Thailand, Vietnam), 11 of which are on the mainstem. Prior analyses have shown that all these dams built as initially proposed would trap 96% of the natural sediment load to the Mekong Delta. Such a reduction in sediment supply would compromise the sustainability of the delta itself, but there are many uncertainties in the timing and pattern of land loss. The river will first erode in-channel sediment deposits, partly compensating for upstream sediment trapping until these deposits are exhausted. Other complicating factors include basin-wide accelerated land-use change, road construction, instream sand mining, dyking-off floodplains, and changing climate, accelerated subsidence from groundwater extraction, and sea level rise. It is certain that the Mekong Delta will undergo large changes in the coming decades, changes that will threaten its very existence. However, the multiplicity of compounding drivers and lack of good data lead to large uncertainties in forecasting changes in the sediment balance on the scale of a very large network. We quantify uncertainties in available data and consider changes due to additional, poorly quantified drivers (e.g., road construction), putting these drivers in perspective with the overall sediment budget. We developed a set of most-likely scenarios and their implications for the delta's future. Uncertainties are large, but there are certainties about the delta's future. If its sediment supply is nearly completely cut off (as would be the case with `business-as-usual' ongoing dam construction and sediment extraction), the Delta is certainly doomed to disappear in the face of rising seas, subsidence, and coastal erosion. The uncertainty is only when and how precisely the loss will progress.

  19. Optimizing the Use of LiDAR for Hydraulic and Sediment Transport Model Development: Case Studies from Marin and Sonoma Counties, CA

    NASA Astrophysics Data System (ADS)

    Kobor, J. S.; O'Connor, M. D.; Sherwood, M. N.

    2013-12-01

    Effective floodplain management and restoration requires a detailed understanding of floodplain processes not readily achieved using standard one-dimensional hydraulic modeling approaches. The application of more advanced numerical models is, however, often limited by the relatively high costs of acquiring the high-resolution topographic data needed for model development using traditional surveying methods. The increasing availability of LiDAR data has the potential to significantly reduce these costs and thus facilitate application of multi-dimensional hydraulic models where budget constraints would have otherwise prohibited their use. The accuracy and suitability of LiDAR data for supporting model development can vary widely depending on the resolution of channel and floodplain features, the data collection density, and the degree of vegetation canopy interference among other factors. More work is needed to develop guidelines for evaluating LiDAR accuracy and determining when and how best the data can be used to support numerical modeling activities. Here we present two recent case studies where LiDAR datasets were used to support floodplain and sediment transport modeling efforts. One LiDAR dataset was collected with a relatively low point density and used to study a small stream channel in coastal Marin County and a second dataset was collected with a higher point density and applied to a larger stream channel in western Sonoma County. Traditional topographic surveying was performed at both sites which provided a quantitative means of evaluating the LiDAR accuracy. We found that with the lower point density dataset, the accuracy of the LiDAR varied significantly between the active stream channel and floodplain whereas the accuracy across the channel/floodplain interface was more uniform with the higher density dataset. Accuracy also varied widely as a function of the density of the riparian vegetation canopy. We found that coupled 1- and 2-dimensional hydraulic models whereby the active channel is simulated in 1-dimension and the floodplain in 2-dimensions provided the best means of utilizing the LiDAR data to evaluate existing conditions and develop alternative flood hazard mitigation and habitat restoration strategies. Such an approach recognizes the limitations of the LiDAR data within active channel areas with dense riparian cover and is cost-effective in that it allows field survey efforts to focus primarily on characterizing active stream channel areas. The multi-dimensional modeling approach also conforms well to the physical realties of the stream system whereby in-channel flows can generally be well-described as a one-dimensional flow problem and floodplain flows are often characterized by multiple and often poorly understood flowpaths. The multi-dimensional modeling approach has the additional advantages of allowing for accurate simulation of the effects of hydraulic structures using well-tested one-dimensional formulae and minimizing the computational burden of the models by not requiring the small spatial resolutions necessary to resolve the geometries of small stream channels in two-dimensions.

  20. 7 CFR 624.10 - Floodplain easements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Floodplain easements. 624.10 Section 624.10 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES EMERGENCY WATERSHED PROTECTION § 624.10 Floodplain easements. (a...

  1. 7 CFR 624.10 - Floodplain easements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Floodplain easements. 624.10 Section 624.10 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES EMERGENCY WATERSHED PROTECTION § 624.10 Floodplain easements. (a...

  2. 7 CFR 624.10 - Floodplain easements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Floodplain easements. 624.10 Section 624.10 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES EMERGENCY WATERSHED PROTECTION § 624.10 Floodplain easements. (a...

  3. 7 CFR 624.10 - Floodplain easements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Floodplain easements. 624.10 Section 624.10 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES EMERGENCY WATERSHED PROTECTION § 624.10 Floodplain easements. (a...

  4. Identifying spatially integrated floodplains/riparian areas and wetlands

    EPA Science Inventory

    Floodplain delineation may play an important role in managing wetlands and riparian areas at multiple scales - local, state, and federal. This poster demonstrates multiple GIS-based approaches to delimiting floodplains and contrasts these with observed flooding events from a majo...

  5. 18 CFR 725.2 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ORDERS 11988, FLOODPLAIN MANAGEMENT AND 11990, PROTECTION OF WETLANDS Introduction § 725.2 Policy. It is the policy of the Council to provide leadership in floodplain management and the protection of... wetlands; (i) Involve the public throughout the floodplain management and wetlands protection...

  6. 40 CFR 258.11 - Floodplains.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Floodplains. 258.11 Section 258.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL...: (1) Floodplain means the lowland and relatively flat areas adjoining inland and coastal waters...

  7. 40 CFR 258.11 - Floodplains.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Floodplains. 258.11 Section 258.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL...: (1) Floodplain means the lowland and relatively flat areas adjoining inland and coastal waters...

  8. 40 CFR 258.11 - Floodplains.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Floodplains. 258.11 Section 258.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL...: (1) Floodplain means the lowland and relatively flat areas adjoining inland and coastal waters...

  9. 40 CFR 258.11 - Floodplains.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Floodplains. 258.11 Section 258.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL...: (1) Floodplain means the lowland and relatively flat areas adjoining inland and coastal waters...

  10. 40 CFR 258.11 - Floodplains.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Floodplains. 258.11 Section 258.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL...: (1) Floodplain means the lowland and relatively flat areas adjoining inland and coastal waters...

  11. 18 CFR 725.2 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ORDERS 11988, FLOODPLAIN MANAGEMENT AND 11990, PROTECTION OF WETLANDS Introduction § 725.2 Policy. It is the policy of the Council to provide leadership in floodplain management and the protection of... wetlands; (i) Involve the public throughout the floodplain management and wetlands protection...

  12. 18 CFR 725.2 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ORDERS 11988, FLOODPLAIN MANAGEMENT AND 11990, PROTECTION OF WETLANDS Introduction § 725.2 Policy. It is the policy of the Council to provide leadership in floodplain management and the protection of... wetlands; (i) Involve the public throughout the floodplain management and wetlands protection...

  13. The long oasis: understanding and managing saline floodplains in southeastern Australia

    NASA Astrophysics Data System (ADS)

    Woods, J.; Green, G.; Laattoe, T.; Purczel, C.; Riches, V.; Li, C.; Denny, M.

    2017-12-01

    In a semi-arid region of southeastern Australia, the River Murray is the predominant source of freshwater for town water supply, irrigation, and floodplain ecosystems. The river interacts with aquifers where the salinity routinely exceeds 18,000 mg/l. River regulation, extraction, land clearance, and irrigation have reduced the size and frequency of floods while moving more salt into the floodplain. Floodplain ecosystem health has declined. Management options to improve floodplain health under these modified conditions include environmental watering, weirpool manipulation, and groundwater pumping. To benefit long-lived tree species, floodplain management needs to increase soil moisture availability. A conceptual model was developed of floodplain processes impacting soil moisture availability. The implications and limitations of the conceptualization were investigated using a series of numerical models, each of which simulated a subset of the processes under current and managed conditions. The aim was to determine what range of behaviors the models predicted, and to identify which parameters were key to accurately predicting the success of management options. Soil moisture availability was found to depend strongly on the properties of the floodplain clay, which controls vertical recharge during inundation. Groundwater freshening near surface water features depended on the riverbed conductivity and the penetration of the river into the floodplain sediments. Evapotranspiration is another critical process, and simulations revealed the limitations of standard numerical codes in environments where both evaporation and transpiration depend on salinity. Finally, maintenance of viable populations of floodplain trees is conceptually understood to rely on the persistence of adequate soil moisture availability over time, but thresholds for duration of exposure to low moisture availability that lead to decline and irreversible decline in tree condition are a major knowledge gap. The work identified critical data gaps which will be addressed in monitoring guidelines to improve management. This includes: hydrogeochemical sampling; in situ soil monitoring combined with tree health observations; monitoring of actual evapotranspiration; and monitoring of bores close to surface water sources.

  14. Effects of Large Wood on River-Floodplain Connectivity in a Headwater Appalachian Stream

    NASA Astrophysics Data System (ADS)

    Keys, T.; Govenor, H.; Jones, C. N.; Hession, W. C.; Scott, D.; Hester, E. T.

    2017-12-01

    Large wood (LW) plays an important, yet often undervalued role in stream ecosystems. Traditionally, LW has been removed from streams for aesthetic, navigational, and flood mitigation purposes. However, extensive research over the last three decades has directly linked LW to critical ecosystem functions including habitat provisioning, stream geomorphic stability, and water quality improvements; and as such, LW has increasingly been implemented in stream restoration activities. One of the proposed benefits to this restoration approach is that LW increases river-floodplain connectivity, potentially decreasing downstream flood peaks and improving water quality. Here, we conducted two experiential floods (i.e., one with and one without LW) in a headwater, agricultural stream to explore the effect of LW on river-floodplain connectivity and resulting hydrodynamic processes. During each flood, we released an equal amount of water to the stream channel, measured stream discharge at upstream and downstream boundaries, and measured inundation depth at multiple locations across the floodplain. We then utilized a 2-dimensional hydrodynamic model (HEC-RAS) to simulate floodplain hydrodynamics. We first calibrated the model using observations from the two experimental floods. Then, we utilized the calibrated model to evaluate differing LW placement strategies and effects under various flow conditions. Results show that the addition of LW to the channel decreased channel velocity and increased inundation extent, inundation depth, and floodplain velocity. Differential placement of LW along the stream impacted the levels of floodplain discharge, primarily due to the geomorphic characteristics of the stream. Finally, we examined the effects of LW on floodplain hydrodynamics across a synthetic flow record, and found that the magnitude of river-floodplain connectivity decreased as recurrence interval increased, with limited impacts on storm events with a recurrence interval of 25 years or greater. These findings suggest that LW plays a substantial role in river-floodplain connectivity of headwater streams and associated ecosystem services.

  15. Testing the skill of numerical hydraulic modeling to simulate spatiotemporal flooding patterns in the Logone floodplain, Cameroon

    NASA Astrophysics Data System (ADS)

    Fernández, Alfonso; Najafi, Mohammad Reza; Durand, Michael; Mark, Bryan G.; Moritz, Mark; Jung, Hahn Chul; Neal, Jeffrey; Shastry, Apoorva; Laborde, Sarah; Phang, Sui Chian; Hamilton, Ian M.; Xiao, Ningchuan

    2016-08-01

    Recent innovations in hydraulic modeling have enabled global simulation of rivers, including simulation of their coupled wetlands and floodplains. Accurate simulations of floodplains using these approaches may imply tremendous advances in global hydrologic studies and in biogeochemical cycling. One such innovation is to explicitly treat sub-grid channels within two-dimensional models, given only remotely sensed data in areas with limited data availability. However, predicting inundated area in floodplains using a sub-grid model has not been rigorously validated. In this study, we applied the LISFLOOD-FP hydraulic model using a sub-grid channel parameterization to simulate inundation dynamics on the Logone River floodplain, in northern Cameroon, from 2001 to 2007. Our goal was to determine whether floodplain dynamics could be simulated with sufficient accuracy to understand human and natural contributions to current and future inundation patterns. Model inputs in this data-sparse region include in situ river discharge, satellite-derived rainfall, and the shuttle radar topography mission (SRTM) floodplain elevation. We found that the model accurately simulated total floodplain inundation, with a Pearson correlation coefficient greater than 0.9, and RMSE less than 700 km2, compared to peak inundation greater than 6000 km2. Predicted discharge downstream of the floodplain matched measurements (Nash-Sutcliffe efficiency of 0.81), and indicated that net flow from the channel to the floodplain was modeled accurately. However, the spatial pattern of inundation was not well simulated, apparently due to uncertainties in SRTM elevations. We evaluated model results at 250, 500 and 1000-m spatial resolutions, and found that results are insensitive to spatial resolution. We also compared the model output against results from a run of LISFLOOD-FP in which the sub-grid channel parameterization was disabled, finding that the sub-grid parameterization simulated more realistic dynamics. These results suggest that analysis of global inundation is feasible using a sub-grid model, but that spatial patterns at sub-kilometer resolutions still need to be adequately predicted.

  16. Spatial patterns of aquatic habitat richness in the Upper Mississippi River floodplain, USA

    USGS Publications Warehouse

    De Jager, Nathan R.; Rohweder, Jason J.

    2012-01-01

    Interactions among hydrology and geomorphology create shifting mosaics of aquatic habitat patches in large river floodplains (e.g., main and side channels, floodplain lakes, and shallow backwater areas) and the connectivity among these habitat patches underpins high levels of biotic diversity and productivity. However, the diversity and connectivity among the habitats of most floodplain rivers have been negatively impacted by hydrologic and structural modifications that support commercial navigation and control flooding. We therefore tested the hypothesis that the rate of increase in patch richness (# of types) with increasing scale reflects anthropogenic modifications to habitat diversity and connectivity in a large floodplain river, the Upper Mississippi River (UMR). To do this, we calculated the number of aquatic habitat patch types within neighborhoods surrounding each of the ≈19 million 5-m aquatic pixels of the UMR for multiple neighborhood sizes (1–100 ha). For all of the 87 river-reach focal areas we examined, changes in habitat richness (R) with increasing neighborhood length (L, # pixels) were characterized by a fractal-like power function R = Lz (R2 > 0.92 (P z) measures the rate of increase in habitat richness with neighborhood size and is related to a fractal dimension. Variation in z reflected fundamental changes to spatial patterns of aquatic habitat richness in this river system. With only a few exceptions, z exceeded the river-wide average of 0.18 in focal areas where side channels, contiguous floodplain lakes, and contiguous shallow-water areas exceeded 5%, 5%, and 10% of the floodplain respectively. In contrast, z was always less than 0.18 for focal areas where impounded water exceeded 40% of floodplain area. Our results suggest that rehabilitation efforts that target areas with <5% of the floodplain in side channels, <5% in floodplain lakes, and/or <10% in shallow-water areas could improve habitat diversity across multiple scales in the UMR.

  17. Water Storage Changes using Floodplain Bathymetry from InSAR and satellite altimetry in the Congo River Basin

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Lee, H.; Jung, H. C.; Beighley, E.; Alsdorf, D. E.

    2016-12-01

    Extensive wetlands and swamps expand along the Congo River and its tributaries. These wetlands store water and attenuate flood wave during high water season. Substantial dissolved and solid substances are also transported with the water flux, influencing geochemical environment and biogeochemistry processes both in the wetlands and the river. To understand the role of the wetlands in partitioning the surface water and the accompanied material movement, water storage change is one of the most fundamental observations. The water flow through the wetlands is complex, affected by topography, vegetation resistance, and hydraulic variations. Interferometric Synthetic Aperture Radar (InSAR) has been successfully used to map relative water level changes in the vegetated wetlands with high spatial resolution. By examining interferograms generated from ALOS PALSAR along the middle reach of the Congo River floodplain, we found greater water level changes near the Congo mainstem. Integrated analysis of InSAR and Envisat altimetry data has shown that proximal floodplain with higher water level change has lower elevation during dry season. This indicates that the spatial variation of water level change in the Congo floodplain is mostly controlled by floodplain bathymetry. A method based on water level and bathymetry model is proposed to estimate water storage change. The bathymetry model is composed of (1) elevation at the intersection of the floodplain and the river and (2) floodplain bathymetry slope. We first constructed the floodplain bathymetry by selecting an Envisat altimetry profile during low water season to estimate elevation at the intersection of the floodplain and the river. Floodplain bathymetry slope was estimated using InSAR measurements. It is expected that our new method can estimate water storage change with higher temporal resolution corresponding to altimeter's repeat cycle. In addition, given the multi-decadal archive of satellite altimetry measurements, our method suggests a way to estimate interannual water storage change over a long time span in Congo.

  18. Geomorphic controls on floodplain organic carbon storage in sediment along five rivers in interior Alaska

    NASA Astrophysics Data System (ADS)

    Lininger, K.; Wohl, E.; Rose, J. R.

    2016-12-01

    High latitude permafrost regions contain large amounts of organic carbon (OC) in the subsurface, but little work has quantified OC storage in floodplain sediment in the high latitudes. Floodplains influence the export of OC to the ocean by temporarily storing OC at timescales of 101 to 103 years. To fully understand terrestrial carbon cycling, the storage and residence time of OC in floodplains, and the geomorphic controls on OC storage, must be taken into account. Small-scale spatial variations in OC storage within floodplains likely reflect geomorphic processes of deposition and floodplain development. We present results of floodplain OC storage and residence time in sediment along 5 rivers in the Yukon Flats National Wildlife Refuge in interior Alaska, a region with discontinuous permafrost. We collected sediment samples within the active layer along tributaries to the Yukon River and the mainstem Yukon River and analyzed the sediment samples for OC content. We classified sample locations by geomorphic type (filled secondary channels, levees, point bars) and vegetation type (herbaceous, deciduous/shrub, white spruce, and black spruce wetlands), and found that both geomorphology and vegetation influence OC concentration and OC mass per area. Preliminary results suggest that filled secondary channels contain more OC per area compared to other geomorphic types. We present results of radiocarbon dates from river cutbanks associated with our sampling sites, which give a maximum age for residence times of OC in sediment before erosion and transport. The radiocarbon dates also provide estimates of long-term OC accretion within the Yukon Flats floodplains. Small-scale variations within floodplains as a result of floodplain depositional processes and vegetation communities shed light on the geomorphic controls on OC storage. This work will help constrain the spatial variation in OC storage and OC residence time across the landscape in a region experiencing rapid climate change and permafrost thaw.

  19. Spatial relationships of levees and wetland systems within floodplains of the Wabash Basin, USA

    NASA Astrophysics Data System (ADS)

    Bray, E. N.; Morrison, R. R.; Nardi, F.; Annis, A.; Dong, Q.

    2017-12-01

    Given the unique biogeochemical, physical, and hydrologic services provided by floodplain wetlands, proper management of river systems should include an understanding of how floodplain modifications influences wetland ecosystems. The construction of levees can reduce river-floodplain connectivity, yet it is unclear how levees affect wetlands within a river system, let alone the cumulative impacts within an entire watershed. This paper explores spatial relationships between levee and floodplain wetland systems in the Wabash basin, United States. We used a hydrogeomorphic floodplain delineation technique to map floodplain extents and identify wetlands that may be hydrologically connected to river networks. We then spatially examined the relationship between levee presence, wetland area, and other river network attributes within discrete HUC-12 sub-basins. Our results show that cumulative wetland area is relatively constant in sub-basins that contain levees, regardless of maximum stream order within the sub-basin. In sub-basins that do not contain levees, cumulative wetland area increases with maximum stream order. However, we found that wetland distributions around levees can be complex, and further studies on the influence of levees on wetland habitat may need to be evaluated at finer-resolution spatial scales.

  20. Floodplain Connectivity and implications for flooding and floodplain function

    NASA Astrophysics Data System (ADS)

    Barrow, E.

    2017-12-01

    Regime theory suggests that floodplains should be inundated on average once every two years to maintain form and function of both the river and the floodplain. Natural disconnection along non-alluvial reaches and where the river has moved to flow against terrace edges is to be expected, however, disconnectivity caused by river management is now affecting increasing lengths of watercourses. This study utilises aerial Lidar data to determine the relative height difference between the watercourse and adjacent valley bottoms to assess the degree of disconnectivity along main river systems across Cumbria in the UK. The results reveal that many rivers are now poorly connected to their floodplains which are now largely non-functional. Floodplain geomorphic units, although often present, are currently inactive and water table levels are reduced resulting in a loss of wetland in favour of ruderal species tolerant of drier conditions. The causes of such widespread disconnectivity may be attributed to historic dredging and straightening of these rivers and revetment and riparian tree planting has further exacerbated the problem restricting lateral activity and the subsequent development of new areas of connected floodplain. The high degree of disconnection has implications for future river management and river restoration and these are discussed.

  1. An evaluation of tracer dilution techniques for gauging of rivers in flood

    NASA Astrophysics Data System (ADS)

    Airey, P. L.; Calf, G. E.; Davison, A.; Easey, J. F.; Morley, A. W.

    1984-10-01

    The use of the tracer dilution technique to gauge flow over broad shallow floodplains is examined. Because of the long mixing lengths, it sometimes takes several days for the passage of the laterally dispersed pulse. Tracer methods can be used if the flow rates vary linearly during the passage of the pulse. The measured flow rate is related to the time at which the first moment of the concentration profile (∫ tc( z, t)d t) is zero. An experimental verification is presented. By analysing the tracer pulse shapes before the establishment of complete mixing, it was demonstrated that the effective dispersion coefficients were independent of the scale of turbulence over the range 10 m to ˜1 km. This is consistent with the establishment of isotropic turbulence on the floodplain in contrast to oceanic surfaces. The velocity of the tracer is a factor of 2 less than that of an advancing wave front, which is in acceptable agreement with prediction. It is concluded that the transport of a non-interacting contaminant across the floodplain can be predicted from the wave front velocity and the dispersion coefficients measured close to the release point.

  2. Projected Hg dietary exposure of 3 bird species nesting on a contaminated floodplain (South River, Virginia, USA).

    PubMed

    Wang, Jincheng; Newman, Michael C

    2013-04-01

    Dietary Hg exposure was modeled for Carolina wren (Thryothorus ludovicianus), Eastern song sparrow (Melospiza melodia), and Eastern screech owl (Otus asio) nesting on the contaminated South River floodplain (Virginia, USA). Parameterization of Monte-Carlo models required formal expert elicitation to define bird body weight and feeding ecology characteristics because specific information was either unavailable in the published literature or too difficult to collect reliably by field survey. Mercury concentrations and weights for candidate food items were obtained directly by field survey. Simulations predicted the probability that an adult bird during breeding season would ingest specific amounts of Hg during daily foraging and the probability that the average Hg ingestion rate for the breeding season of an adult bird would exceed published rates reported to cause harm to other birds (>100 ng total Hg/g body weight per day). Despite the extensive floodplain contamination, the probabilities that these species' average ingestion rates exceeded the threshold value were all <0.01. Sensitivity analysis indicated that overall food ingestion rate was the most important factor determining projected Hg ingestion rates. Expert elicitation was useful in providing sufficiently reliable information for Monte-Carlo simulation. Copyright © 2013 SETAC.

  3. 28 CFR 63.2 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Administration DEPARTMENT OF JUSTICE (CONTINUED) FLOODPLAIN MANAGEMENT AND WETLAND PROTECTION PROCEDURES § 63.2... term adverse impacts associated with the destruction or modification of wetlands and floodplains and to avoid direct or indirect support of new construction in floodplains and wetlands whenever there is a...

  4. 28 CFR 63.2 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Administration DEPARTMENT OF JUSTICE (CONTINUED) FLOODPLAIN MANAGEMENT AND WETLAND PROTECTION PROCEDURES § 63.2... term adverse impacts associated with the destruction or modification of wetlands and floodplains and to avoid direct or indirect support of new construction in floodplains and wetlands whenever there is a...

  5. 28 CFR 63.2 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Administration DEPARTMENT OF JUSTICE (CONTINUED) FLOODPLAIN MANAGEMENT AND WETLAND PROTECTION PROCEDURES § 63.2... term adverse impacts associated with the destruction or modification of wetlands and floodplains and to avoid direct or indirect support of new construction in floodplains and wetlands whenever there is a...

  6. 28 CFR 63.2 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Administration DEPARTMENT OF JUSTICE (CONTINUED) FLOODPLAIN MANAGEMENT AND WETLAND PROTECTION PROCEDURES § 63.2... term adverse impacts associated with the destruction or modification of wetlands and floodplains and to avoid direct or indirect support of new construction in floodplains and wetlands whenever there is a...

  7. 18 CFR 725.7 - Regional or river basin planning.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... preservation and restoration of natural and beneficial floodplain values; (4) Where avoidance of wetlands... IMPLEMENTATION OF EXECUTIVE ORDERS 11988, FLOODPLAIN MANAGEMENT AND 11990, PROTECTION OF WETLANDS... whether proposed activities would be located in floodplains or wetlands, or, even if located outside of...

  8. Low elevation inland habitats of the Willamette River floodplain support enhanced denitrification

    EPA Science Inventory

    Floodplain nitrate removal via denitrification in sediment provides an important ecosystem service that may be a valuable sink for nitrate pollution. At this time, much floodplain restoration is taking place with little consideration for in-situ nutrient processing, necessitating...

  9. Low Elevation Old Channel Features of the Willamette River Floodplain Support High Subsurface Denitrification Rates

    EPA Science Inventory

    Background/Question/Methods: Large river floodplains are poor nitrate pollution buffers when polluted groundwater moves beneath biogeochemically retentive zones prior to entering the main channel. However, in floodplain regions with extensive backwaters and organic carbon acc...

  10. Inventory of Rare or Endangered Non-Vascular Plants and Ferns Occurring in the Floodplain of the Mississippi River between Cairo, Illinois, and St. Paul, Minnesota, and in the Floodplain of the Illinois River between Grafton, Illinois, and Chicago,

    DTIC Science & Technology

    1975-02-03

    3 Liverworts and Horworts ------------------ 4 Lichens -------------------------------- 4 Ferns ------------------------------- 5 Algae of the...Mississippi River and Illinois River Floodplains ----- 6 Mosses of the Mississippi River and Illinois River Floodplains--- 35 Liverworts and Hornworts...any alga, hornwort, liverwort , moss, or lichen in the study area. Missouri (1974) lists some mosses which are designated 0 rare or endangered, but

  11. 13 CFR 400.206 - Environmental requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... “normally” is stressed; there may be individual cases in which specific factors require contrary action. (ii... other cases, potentially affect: (A) A floodplain; (B) A wetland; (C) Important farmlands, or prime... supportive studies have been conducted to assure that such studies are objective and comprehensive in scope...

  12. 13 CFR 500.206 - Environmental requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... categorically excluded. The word “normally” is stressed; there may be individual cases in which specific factors..., or in other cases, potentially affect: (A) A floodplain; (B) A wetland; (C) Important farmlands, or..., consulting at his discretion with CEQ, shall examine carefully the basis on which supportive studies have...

  13. 13 CFR 400.206 - Environmental requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... “normally” is stressed; there may be individual cases in which specific factors require contrary action. (ii... other cases, potentially affect: (A) A floodplain; (B) A wetland; (C) Important farmlands, or prime... supportive studies have been conducted to assure that such studies are objective and comprehensive in scope...

  14. 7 CFR 2201.16 - Environmental requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... excluded. The word “normally” is stressed; there may be individual cases in which specific factors require..., or in other cases, potentially affect: (A) A floodplain; (B) A wetland; (C) Important farmlands, or... with CEQ, shall examine carefully the basis on which supportive studies have been conducted to assure...

  15. 7 CFR 2201.16 - Environmental requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... excluded. The word “normally” is stressed; there may be individual cases in which specific factors require..., or in other cases, potentially affect: (A) A floodplain; (B) A wetland; (C) Important farmlands, or... with CEQ, shall examine carefully the basis on which supportive studies have been conducted to assure...

  16. 13 CFR 500.206 - Environmental requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... categorically excluded. The word “normally” is stressed; there may be individual cases in which specific factors..., or in other cases, potentially affect: (A) A floodplain; (B) A wetland; (C) Important farmlands, or..., consulting at his discretion with CEQ, shall examine carefully the basis on which supportive studies have...

  17. 13 CFR 500.206 - Environmental requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... categorically excluded. The word “normally” is stressed; there may be individual cases in which specific factors..., or in other cases, potentially affect: (A) A floodplain; (B) A wetland; (C) Important farmlands, or..., consulting at his discretion with CEQ, shall examine carefully the basis on which supportive studies have...

  18. 13 CFR 400.206 - Environmental requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... “normally” is stressed; there may be individual cases in which specific factors require contrary action. (ii... other cases, potentially affect: (A) A floodplain; (B) A wetland; (C) Important farmlands, or prime... supportive studies have been conducted to assure that such studies are objective and comprehensive in scope...

  19. Black Walnut Growth Better on Deep, Well-Drained BottomLand Soils

    Treesearch

    Craig K. Losche

    1973-01-01

    Site requirements of 25-year-old plantation-grown black walnut on floodplains in southern Illinois were studied. Depth to a gravel layer was the only soil factor that significantly influenced height growth. There was a relationship between internal soil drainage and height growth.

  20. Interactions among hydrogeomorphology, vegetation, and nutrient biogeochemistry in floodplain ecosystems

    USGS Publications Warehouse

    Noe, G.B.; Shroder, John F.

    2013-01-01

    Hydrogeomorphic, vegetative, and biogeochemical processes interact in floodplains resulting in great complexity that provides opportunities to better understand linkages among physical and biological processes in ecosystems. Floodplains and their associated river systems are structured by four-dimensional gradients of hydrogeomorphology: longitudinal, lateral, vertical, and temporal components. These four dimensions create dynamic hydrologic and geomorphologic mosaics that have a large imprint on the vegetation and nutrient biogeochemistry of floodplains. Plant physiology, population dynamics, community structure, and productivity are all very responsive to floodplain hydrogeomorphology. The strength of this relationship between vegetation and hydrogeomorphology is evident in the use of vegetation as an indicator of hydrogeomorphic processes. However, vegetation also influences hydrogeomorphology by modifying hydraulics and sediment entrainment and deposition that typically stabilize geomorphic patterns. Nitrogen and phosphorus biogeochemistry commonly influence plant productivity and community composition, although productivity is not limited by nutrient availability in all floodplains. Conversely, vegetation influences nutrient biogeochemistry through direct uptake and storage as well as production of organic matter that regulates microbial biogeochemical processes. The biogeochemistries of nitrogen and phosphorus cycling are very sensitive to spatial and temporal variation in hydrogeomorphology, in particular floodplain wetness and sedimentation. The least-studied interaction is the direct effect of biogeochemistry on hydrogeomorphology, but the control of nutrient availability over organic matter decomposition and thus soil permeability and elevation is likely important. Biogeochemistry also has the more documented but indirect control of hydrogeomorphology through regulation of plant biomass. In summary, the defining characteristics of floodplain ecosystems are determined by the many interactions among physical and biological processes. Conservation and restoration of the valuable ecosystem services that floodplains provide depend on improved understanding and predictive models of interactive system controls and behavior.

  1. A geomorphic approach to 100-year floodplain mapping for the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Jafarzadegan, Keighobad; Merwade, Venkatesh; Saksena, Siddharth

    2018-06-01

    Floodplain mapping using hydrodynamic models is difficult in data scarce regions. Additionally, using hydrodynamic models to map floodplain over large stream network can be computationally challenging. Some of these limitations of floodplain mapping using hydrodynamic modeling can be overcome by developing computationally efficient statistical methods to identify floodplains in large and ungauged watersheds using publicly available data. This paper proposes a geomorphic model to generate probabilistic 100-year floodplain maps for the Conterminous United States (CONUS). The proposed model first categorizes the watersheds in the CONUS into three classes based on the height of the water surface corresponding to the 100-year flood from the streambed. Next, the probability that any watershed in the CONUS belongs to one of these three classes is computed through supervised classification using watershed characteristics related to topography, hydrography, land use and climate. The result of this classification is then fed into a probabilistic threshold binary classifier (PTBC) to generate the probabilistic 100-year floodplain maps. The supervised classification algorithm is trained by using the 100-year Flood Insurance Rated Maps (FIRM) from the U.S. Federal Emergency Management Agency (FEMA). FEMA FIRMs are also used to validate the performance of the proposed model in areas not included in the training. Additionally, HEC-RAS model generated flood inundation extents are used to validate the model performance at fifteen sites that lack FEMA maps. Validation results show that the probabilistic 100-year floodplain maps, generated by proposed model, match well with both FEMA and HEC-RAS generated maps. On average, the error of predicted flood extents is around 14% across the CONUS. The high accuracy of the validation results shows the reliability of the geomorphic model as an alternative approach for fast and cost effective delineation of 100-year floodplains for the CONUS.

  2. Soil greenhouse gas emissions and carbon budgeting in a short-hydroperiod floodplain wetland

    NASA Astrophysics Data System (ADS)

    Batson, Jackie; Noe, Gregory B.; Hupp, Cliff R.; Krauss, Ken W.; Rybicki, Nancy B.; Schenk, Edward R.

    2015-01-01

    Understanding the controls on floodplain carbon (C) cycling is important for assessing greenhouse gas emissions and the potential for C sequestration in river-floodplain ecosystems. We hypothesized that greater hydrologic connectivity would increase C inputs to floodplains that would not only stimulate soil C gas emissions but also sequester more C in soils. In an urban Piedmont river (151 km2 watershed) with a floodplain that is dry most of the year, we quantified soil CO2, CH4, and N2O net emissions along gradients of floodplain hydrologic connectivity, identified controls on soil aerobic and anaerobic respiration, and developed a floodplain soil C budget. Sites were chosen along a longitudinal river gradient and across lateral floodplain geomorphic units (levee, backswamp, and toe slope). CO2 emissions decreased downstream in backswamps and toe slopes and were high on the levees. CH4 and N2O fluxes were near zero; however, CH4 emissions were highest in the backswamp. Annual CO2 emissions correlated negatively with soil water-filled pore space and positively with variables related to drier, coarser soil. Conversely, annual CH4 emissions had the opposite pattern of CO2. Spatial variation in aerobic and anaerobic respiration was thus controlled by oxygen availability but was not related to C inputs from sedimentation or vegetation. The annual mean soil CO2 emission rate was 1091 g C m-2 yr-1, the net sedimentation rate was 111 g C m-2 yr-1, and the vegetation production rate was 240 g C m-2 yr-1, with a soil C balance (loss) of -338 g C m-2 yr-1. This floodplain is losing C likely due to long-term drying from watershed urbanization.

  3. Interactions among hydrogeomorphology, vegetation, and nutrient biogeochemistry in floodplain ecosystems

    USGS Publications Warehouse

    Noe, G.B.

    2013-01-01

    Hydrogeomorphic, vegetative, and biogeochemical processes interact in floodplains resulting in great complexity that provides opportunities to better understand linkages among physical and biological processes in ecosystems. Floodplains and their associated river systems are structured by four dimensional gradients of hydrogeomorphology: longitudinal, lateral, vertical, and temporal components. These four dimensions create dynamic hydrologic and geomorphologic mosaics that have a large imprint on the vegetation and nutrient biogeochemistry of floodplains. Plant physiology, population dynamics, community structure, and productivity are all very responsive to floodplain hydrogeomorphology. The strength of this relationship between vegetation and hydrogeomorphology is evident in the use of vegetation as an indicator of hydrogeomorphic processes. However, vegetation also influences hydrogeomorphology by modifying hydraulics and sediment entrainment and deposition that typically stabilize geomorphic patterns. Nitrogen and phosphorus biogeochemistry commonly influence plant productivity and community composition, although productivity is not limited by nutrient availability in all floodplains. Conversely, vegetation influences nutrient biogeochemistry through direct uptake and storage as well as production of organic matter that regulates microbial biogeochemical processes. The biogeochemistries of nitrogen and phosphorus cycling are very sensitive to spatial and temporal variation in hydrogeomorphology, in particular floodplain wetness and sedimentation. The least studied interaction is the direct effect of biogeochemistry on hydrogeomorphology, but the control of nutrient availability over organic matter decomposition and thus soil permeability and elevation is likely important. Biogeochemistry also has the more documented but indirect control of hydrogeomorphology through regulation of plant biomass. In summary, the defining characteristics of floodplain ecosystems are determined by the many interactions among physical and biological processes. Conservation and restoration of the valuable ecosystem services that floodplains provide depends on improved understanding and predictive models of interactive system controls and behavior.

  4. Sediment Retention Dynamics and Vegetation Along Three Tributaries of the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Ross, K.; Ross, K.; Hupp, C.; Alexander, L.; Alexander, L.

    2001-12-01

    Coastal Plain riparian wetlands in the Mid-Atlantic United States are the last place for sediment and contaminant storage before reaching critical estuarine and marine environments. The deteriorating health of the Chesapeake Bay has been attributed in part to elevated sediment loads. The purpose of this study is to investigate the effects of channelization and urbanization on sediment deposition and geomorphic processes along the Pocomoke and Chickahominy Rivers and Dragon Run, three Coastal Plain tributaries. Floodplain microtopography was surveyed in 100 x 100 m grids at three characteristic reaches along each river and woody vegetation analyses were conducted. Floodplain suspended sediment concentrations and short and long-term sedimentation rates were estimated at each reach using single stage sediment sampler arrays, clay pads and dendrogeomorphic techniques, respectively. Site hydroperiod and flow characteristics were determined from USGS gaging station records, floodplain water level recorders, and field observations. Channelized floodplain reaches along the Pocomoke River are flooded less frequently, have lower mineral sedimentation rates (2 mm/yr to 6 mm/yr) and woody species diversity than the unchannelized reaches. Along the Chickahominy River, floodplain wetlands close to urban centers are flooded more frequently, but have shorter hydroperiods (3.5 days/yr compared to more than 45 days/yr), lower sedimentation rates (1.8 mm/yr to 6.8 mm/yr), and lower woody species diversity (0.51 to 1.95 on the Shannon-Weiner diversity index) than floodplains further downstream. Suspended sediment delivery and deposition rates are significantly influenced by floodplain hydroperiod duration and channel-floodplain connectivity. These results suggest that understanding floodplain sediment dynamics and geomorphic processes with respect to dominant watershed landuse patterns is critical for effective water quality management and restoration efforts.

  5. Connectivity of Secondary Channels in the Floodplain of a Low-Gradient Midwestern U.S. Agricultural River

    NASA Astrophysics Data System (ADS)

    Czuba, J. A.; David, S. R.; Edmonds, D. A.

    2016-12-01

    Floodplains of low-gradient Midwestern U.S. agricultural rivers are commonly dissected by a network of secondary channels that convey flow only during flood events. These networks of secondary channels have only recently been revealed by high resolution digital elevation models. Secondary channels, as referred to here, span multiple meander wavelengths and appear fundamentally different from chute channels. While secondary channels have been described to some extent in other river systems, our focus here is on those found in Indiana, which are revealed by state-wide LiDAR data acquired in 2011. In this work, we quantify how the network connectivity of the secondary channels in the floodplain develops as a function of flow stage. Secondary channels begin conveying water at stages just below bankfull, become an interconnected web of flow pathways above bankfull stage, and are completely inundated at higher stages. We construct a two-dimensional numerical model of the river/floodplain system from LiDAR data and from main-channel river bathymetry in order to obtain the extent of floodplain inundation at various flows. The inundated area within the secondary channels is then converted into a river/floodplain flow-channel network and quantified using various network metrics. Future work will explore the morphodynamics of this river/floodplain system extended to 100-1,000 year timescales. The goal is to develop a simple model to test hypotheses about how these floodplain channels evolve. Relevant research questions include: do secondary channels serve as preferential avulsion pathways? Or could secondary channels evolve to create a multi-channeled anabranching system? Furthermore, under what hydrologic and sedimentologic conditions would a river/floodplain system evolve to one state or another?

  6. Depth as an organizer of fish assemblages in floodplain lakes

    USGS Publications Warehouse

    Miranda, L.E.

    2011-01-01

    Depth reduction is a natural process in floodplain lakes, but in many basins has been accelerated by anthropogenic disturbances. A diverse set of 42 floodplain lakes in the Yazoo River Basin (Mississippi, USA) was examined to test the hypothesis of whether depth reduction was a key determinant of water quality and fish assemblage structure. Single and multiple variable analyses were applied to 10 commonly monitored water variables and 54 fish species. Results showed strong associations between depth and water characteristics, and between depth and fish assemblages. Deep lakes provided less variable environments, clearer water, and a wider range of microhabitats than shallow lakes. The greater environmental stability was reflected by the dominant species in the assemblages, which included a broader representation of large-body species, species less tolerant of extreme water quality, and more predators. Stability in deep lakes was further reflected by reduced among-lake variability in taxa representation. Fish assemblages in shallow lakes were more variable than deep lakes, and commonly dominated by opportunistic species that have early maturity, extended breeding seasons, small adult size, and short lifespan. Depth is a causal factor that drives many physical and chemical variables that contribute to organizing fish assemblages in floodplain lakes. Thus, correlations between fish and water transparency, temperature, oxygen, trophic state, habitat structure, and other environmental descriptors may ultimately be totally or partly regulated by depth. In basins undergoing rapid anthropogenic modifications, local changes forced by depth reductions may be expected to eliminate species available from the regional pool and could have considerable ecological implications. ?? 2010 Springer Basel AG (outside the USA).

  7. The effects of flooding and sedimentation on seed germination of two bottomland hardwood tree species

    USGS Publications Warehouse

    Pierce, Aaron R.; King, S.L.

    2007-01-01

    Flooding and sedimentation are two of the dominant disturbances that influence tree species composition and succession in floodplain forests. The importance of these disturbances may be most notable during the germination and establishment phases of plant succession. Channelization of most alluvial systems in the southeastern United States has caused dramatic and systematic alterations to both hydrologic and sedimentation processes of floodplain systems. We determined the influence of these altered abiotic processes on the germination and growth of two common floodplain tree species: swamp chestnut oak (Quercus michauxii Nutt.) and overcup oak (Q. lyrata Walt.). Flood durations of 0 days, 15 days, and 30 days prior to germination was a factor in germination, but the effect varied by species. For instance, ovcrcup oak, which has a higher tolerance to flooding than swamp chestnut oak, had higher germination rates in the flooded treatments (15-day x?? = 78% and 30-day x?? = 85%) compared to the non-flooded treatment (x?? = 54%). In contrast, germination rates of swamp chestnut oak were negatively affected by the 30-day flood treatment. Sediment deposition rates of 2 cm of top soil, 2 cm of sand, and 8 cm of sand also affected germination, but were secondary to flood duration. The main effect of the sediment treatment in this experiment was a reduction in above-ground height of seedlings. Our study provides evidence for the importance of both flooding and sedimentation in determining tree species composition in floodplain systems, and that tolerance levels to such stressors vary by species. ?? 2007, The Society of Wetland Scientists.

  8. Levee Presence and Wetland Areas within the 100-Year Floodplain of the Wabash Basin

    NASA Astrophysics Data System (ADS)

    Morrison, R. R.; Dong, Q.; Nardi, F.; Grantham, T.; Annis, A.

    2016-12-01

    Wetlands have declined over the past century due to land use changes and water management activities in the United States. Levees have been extensively built to provide protection against flooding events, and can fundamentally alter the water distribution and hydrologic dynamics within floodplains. Although levees can reduce wetlands in many places, it is unclear how much wetland areas are impacted at a basin-scale. This study explores the relationship between wetlands, levee presence, and other important hydrologic metrics within a 100-year floodplain. We estimated total wetland area, levee length, floodplain area and other variables, in discrete 12-digit hydrologic units (HUC-12) of the Wabash Basin (n=854) and examined the relationship between these variables using non-parametric statistical tests. We found greater areas of wetland habitat in HUC12 units that contain levees compared to those without levees when we aggregated the results across the entire basin. Factors such as stream order, mean annual flow, and HUC12 area are not correlated with the wetland area in HUC-12 units that contain levees. In addition, median wetland area in HUC12 units with levees is surprisingly consistent regardless of maximum stream order. Visual observations of wetland distributions indicate that wetland presence may be dependent on its location relative to levees. These results indicate that refined geospatial analyses may be necessary to explore the complex influence of levees on wetland habitat, and that additional basins should be explored to develop more generalized trends. This information is preliminary and subject to revision.

  9. Does the Lagoa do peixe sandbar opening influence the macrophyte richness and composition in Southern Brazil wetlands?

    PubMed

    Rolon, Ana Silvia; Rocha, Odete; Maltchik, Leonardo

    2013-03-01

    The Lagoa do Peixe has its connection with the sea artificially opened every year at the end of winter. However, this management has been carried out without the evaluation of the impact of this opening in the aquatic biodiversity. This information is crucial for the management of the natural resources of the Lagoa do Peixe National Park, the unique Ramsar site in Southern Brazil. The following questions were analyzed: (1) Do richness and composition of aquatic macrophytes from Lagoa do Peixe floodplain varies temporarily according to the sandbar opening and closing? (2) Does the variation pattern of the macrophyte community changed according to the sandbar opening and closing? A set of eight sampling sites of 1ha were selected over the Lagoa do Peixe floodplain: four sites not influenced by the artificial sandbar opening and four sites influenced by this event, being two sites closer to the sandbar opening and the two sites distant to the sandbar opening. The samplings were carried out between November 2007 and October 2009. The results show that although the artificial sandbar breaching does not affect the aquatic macrophyte richness at the floodplain, it affects the dynamics of species composition. The hydrological variation related to this management can be the main factor of the continuous change in the species composition in the floodplain, especially in the Southern portion. In order to avoid impacts in the macrophyte conservation, the artificial sandbar opening should be considered carefully, since the area of study is one of the most important conservation units to wetland systems in Southern Brazil.

  10. Hydrological, Physical, and Chemical Functions and Connectivity of Non‐Floodplain Wetlands to Downstream Waters: A Review

    EPA Science Inventory

    We reviewed the scientific literature on non‐floodplain wetlands (NFWs), freshwater wetlands typically located distal to riparian and floodplain systems, to determine hydrological, physical, and chemical functioning and stream and river network connectivity. We assayed the ...

  11. 10 CFR 1022.4 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENERGY (GENERAL PROVISIONS) COMPLIANCE WITH FLOODPLAIN AND WETLAND ENVIRONMENTAL REVIEW REQUIREMENTS... DOE action in a wetland that is also within the floodplain, subject to the exclusions specified at § 1022.5(c) and (d) of this part. Floodplain and wetland values means the qualities of or functions...

  12. Floodplain restoration increases hyporheic flow in the Yakima River Watershed, Washington

    EPA Science Inventory

    Hyporheic exchange between a river channel and its floodplain region assists in mediating processes such as nutrient removal and temperature regulation. Floodplain restoration in the form of levee setbacks are often carried out to improve the hyporheic exchange. In this study Lig...

  13. 24 CFR 55.27 - Documentation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FLOODPLAIN MANAGEMENT Procedures for Making Determinations on Floodplain Management § 55.27 Documentation. (a... outside the floodplain, but within the local housing market area, the local public utility service area..., documentation of compliance with this part must be included as a part of the record of decision (or...

  14. How does floodplain width affect floodplain river ecology? A preliminary exploration using simulations

    NASA Astrophysics Data System (ADS)

    Power, Mary E.; Parker, Gary; Dietrich, William E.; Sun, Adrian

    1995-09-01

    Hydraulic food chain models allow us to explore the linkages of river discharge regimes and river-floodplain morphology to the structure and dynamics of modeled food webs. Physical conditions (e.g. depth, width, velocity) that vary with river discharge affect the performance (birth, growth, feeding, movement, or death rates) of organisms or trophic groups. Their performances in turn affect their impacts on food webs and ecosystems in channel and floodplain habitats. Here we explore the impact of floodplain width (modeled as 1 ×, 10× and 40× the channel width) on a food web with two energy sources (detritus and vegetation), invertebrates that consume these, a size structured fish population which consumes invertebrates and in which larger fish cannibalize small fish, and birds which feed on large fish. Hydraulic linkages to trophic dynamics are assumed to be mediated in three ways: birds feed efficiently only in shallow water; plant carrying capacity varies non-linearly with water velocity, and mobile and drifting organisms are diluted and concentrated with spillover of river discharge to the floodplain, and its reconfinement to the channel. Aspects of this model are based on field observations of Junk and Bailey from the Amazon, of Sparks from the Mississippi, and on our observations of the Fly River in Papua New Guinea. The model produced several counter-intuitive results. Biomass of invertebrates and fish increased with floodplain width, but much more rapidly from 1 × to 10 × floodplains than from 10 × to 40 × floodplains. For birds, maximum biomass occurred on the 10× floodplain. Initially high bird biomass on the 40 × floodplain declined to extinction over time, because although favorable fishing conditions (shallow water) were most prolonged on the widest floodplain, this advantage was more than offset by the greater dilution of prey after spillover. Bird predation on large fish sometimes increased their biomass, by reducing cannibalism and thereby increasing the abundance of small fish available to grow into the larger size class. Sensitivity analyses indicated that model results were relatively robust to variation in parameter values that we chose, but much more exploration and calibration with field data are needed before we know how specific our results are to the structure and other assumptions of this model. We share with others the opinion that progress towards understanding complex dynamic systems like floodplain river ecosystems requires frequent feedback between modeling and field observations and experimentation. This understanding is crucial for river management and restoration. Organisms in real rivers have adapted to track and quickly exploit favorable conditions, and to avoid or endure adverse conditions. It is when we engineer away this environmental variability that we threaten the long term persistence of river-adapted biota.

  15. A numerical investigation of the impacts of river and floodplain restoration on the process of floodwave attenuation

    NASA Astrophysics Data System (ADS)

    Stone, M. C.; Byrne, C.; Morrison, R.

    2015-12-01

    It is widely recognized that past river engineering, flood control, and floodplain development activities have tended to work against nature rather than with it. The consequence in many cases has been severe degradation of our natural ecosystems. This, combined with an increased appreciation for the benefits of properly functioning ecosystems, has prompted efforts to restore rivers to a more natural state. However, most restoration projects currently focus on a narrow set of goals, such as endangered species recovery or channel stabilization. In order to shift the restoration community towards more holistic perspectives and approaches, it is necessary to improve understanding of river and floodplain hydrogeomorphic processes and their role in supporting healthy ecosystems. The goal of this research was to investigate the impacts of river engineering and restoration practices on the process of floodwave attenuation. This goal was addressed through numerical investigations that allowed us to: (1) quantify mass and momentum fluxes between river channels and floodplains; (2) investigate the influence of mass and momentum fluxes on floodwave attenuation processes; and (3) evaluate the impacts of river and floodplain restoration on floodwave attenuation. Two-dimensional hydrodynamic models were applied to the Rio Grande, San Joaquin, and Gila rivers in the Southwestern United States using novel modeling approaches to describe dynamic floodplain roughness, fluxes at channel/floodplain interfaces, and attenuation along river corridors. The results provide important insights into the role of floodplain characteristics on floodwave movement and the potential for enhancing floodwave attenuation through river restoration.

  16. Flooding dynamics on the lower Amazon floodplain

    NASA Astrophysics Data System (ADS)

    Rudorff, C.; Melack, J. M.; Bates, P. D.

    2013-05-01

    We analyzed flooding dynamics of a large floodplain lake in the lower reach of the Amazon River for the period between 1995 through 2010. Floodplain inundation was simulated using the LISFLOOD-FP model, which combines one-dimensional river routing with two-dimensional overland flow, and a local hydrological model. Accurate representation of floodplain flows and inundation extent depends on the quality of the digital elevation model (DEM). We combined digital topography (derived from the Shuttle Radar Topography Mission) with extensive floodplain echo-sounding data to generate a hydraulically sound DEM. Analysis of daily water balances revealed that the dominant source of inflow alternated seasonally among direct rain and local runoff (October through January), Amazon River (March through August), and seepage (September). As inflows from the Amazon River increase during the rising limb of the hydrograph, regional floodwaters encounter the floodplain partially inundated from local hydrological inputs. At peak flow the floodplain routes, on average, 2.5% of the total discharge for this reach. The falling limb of the hydrograph coincides with the locally dry period, allowing seepage of water stored in sediments to become a dominant source. The average annual inflow from the Amazon River was 58.8 km3 (SD = 33.5), representing more than three thirds (80%) of inputs from all sources, with substantial inter-annual variability. The average annual net export of water from the floodplain to the Amazon River was 7.9 km3 (SD = 2.7).

  17. Advancing towards functional environmental flows for temperate floodplain rivers.

    PubMed

    Hayes, Daniel S; Brändle, Julia M; Seliger, Carina; Zeiringer, Bernhard; Ferreira, Teresa; Schmutz, Stefan

    2018-08-15

    Abstraction, diversion, and storage of flow alter rivers worldwide. In this context, minimum flow regulations are applied to mitigate adverse impacts and to protect affected river reaches from environmental deterioration. Mostly, however, only selected instream criteria are considered, neglecting the floodplain as an indispensable part of the fluvial ecosystem. Based on essential functions and processes of unimpaired temperate floodplain rivers, we identify fundamental principles to which we must adhere to determine truly ecologically-relevant environmental flows. Literature reveals that the natural flow regime and its seasonal components are primary drivers for functions and processes of abiotic and biotic elements such as morphology, water quality, floodplain, groundwater, riparian vegetation, fish, macroinvertebrates, and amphibians, thus preserving the integrity of floodplain river ecosystems. Based on the relationship between key flow regime elements and associated environmental components within as well as adjacent to the river, we formulate a process-oriented functional floodplain flow (ff-flow) approach which offers a holistic conceptual framework for environmental flow assessment in temperate floodplain river systems. The ff-flow approach underlines the importance of emulating the natural flow regime with its seasonal variability, flow magnitude, frequency, event duration, and rise and fall of the hydrograph. We conclude that the ecological principles presented in the ff-flow approach ensure the protection of floodplain rivers impacted by flow regulation by establishing ecologically relevant environmental flows and guiding flow restoration measures. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Coho Salmon Habitat in a Changing Environment-Green Valley Creek, Graton, California

    NASA Astrophysics Data System (ADS)

    O'Connor, M. D.; Kobor, J. S.; Sherwood, M. N.

    2013-12-01

    Green Valley Creek (GVC) is a small (101 sq km) aquatic habitat refugium in the Russian River watershed (3,840 sq km) in coastal northern California. Coho salmon (Onchorhynchus kisutch) is endangered per the Federal Endangered Species Act, and GVC is one stream where coho have persisted. Fish surveys in GVC have found high species diversity, growth rates, and over-summer survival. The upper portion of GVC comprises a principal tributary (20 sq km) that provides spawning and rearing habitat for coho. The second principal tributary, Atascadero Creek, is comparable in size, but has few fish. Atascadero Creek and lower GVC have broad, densely vegetated floodplains. A Recovery Plan for the Central Coastal California coho Evolutionarily Significant Unit has been developed by the National Marine Fisheries Service (NMFS), which applies to the Russian River and its tributaries. Cooperative research regarding fish populations and habitat, a captive breeding and release program for native coho salmon, and efforts to plan for and restore habitat are ongoing. These regional efforts are particularly active in GVC, and participants include NMFS, the California Department of Fish and Wildlife, the Gold Ridge Resource Conservation District, the California Coastal Conservancy, the University of California Cooperative Extension, and the National Fish and Wildlife Foundation, among others. Our research focuses on hydrologic, geomorphic and hydrogeologic characteristics of the watershed in relation to aquatic habitat. Natural watershed factors contributing to habitat for coho include proximity to the coastal summer fog belt with cool temperatures, the Wilson Grove Formation aquifer that maintains dry season stream flow, and structural geology favorable for active floodplain morphology. Human impacts include water use and agriculture and rural residential development. Historic human impacts include stream clearing and draining of wetlands and floodplain for agriculture, which likely induced a cycle of channel incision in upper GVC, deepening and widening channels. The headward extent of incision is identified, and upstream remnant valley surfaces remain undissected. Remnant valleys preserve a substantial alluvial aquifer that may be another source of summer stream flow. Sedimentation has occurred downstream, caused or compounded by the dense growth of riparian vegetation on the lower floodplain which we believe has significantly altered the base level of the valley. The evidence of rapid ongoing environmental change is significant, and could affect coho salmon both positively and negatively. Our research using spatially-distributed, physically-based hydrologic and hydraulic models incorporating the interaction of surface water with ground water (MIKE FLOOD and MIKE SHE) seeks to identify controlling factors and predict the trajectory of environmental change. LiDAR topographic data have enabled modeling floodplain flows in two-dimensions and is used to evaluate over-winter habitat for coho in the floodplain. As we learn more about current and future habitat conditions we will be investigating whether on-going environmental change represents a reversion to prior conditions or a shift to new conditions that may or may not prove favorable to native fish populations in the long term.

  19. 24 CFR 55.11 - Applicability of Subpart C decisionmaking process.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Housing and Urban Development FLOODPLAIN MANAGEMENT AND PROTECTION OF WETLANDS Application of Executive Orders on Floodplain Management and Protection of Wetlands § 55.11 Applicability of Subpart C... amendment) 1 Type of proposed action Floodways Coastal high hazard areas Wetlands or 100-year floodplain...

  20. 75 FR 82041 - Notice of Proposed Information Collection: Comment Request; Floodplain Management and Protection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... Information Collection: Comment Request; Floodplain Management and Protection of Wetlands AGENCY: Office of... following information: Title of Proposal: Floodplain Management and Protection of Wetlands. OMB Control... Executive Order 11990, ``Protection of Wetlands.'' Each respondent that proposes to use HUD assistance to...

  1. EXPLOITATION OF FLOODPLAIN RESOURCES BY ADULT LARGESCALE SUCKER OF THE WILLAMETTE RIVER, OREGON

    EPA Science Inventory

    We tested two predictions of the flood-pulse concept on a large, temperate alluvial river that historically flooded an extensive fringing floodplain. We predicted adult largescale sucker, Catostomus macrocheilus, would: (1) migrate onto the floodplain during high water; and (2) e...

  2. 7 CFR 624.10 - Floodplain easements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) General. NRCS may purchase floodplain easements as an emergency measure. NRCS will only purchase easements... of NRCS, of the floodplain's functions and values; or (iii) The purchase of an easement would not... the right not to purchase an easement if the easement compensation for a particular easement would be...

  3. Sediment accumulation and net storage determined by field observation and numerical modelling for an extensive tropical floodplain: Beni River, Bolivian Llanos

    NASA Astrophysics Data System (ADS)

    Schwendel, Arved; Aalto, Rolf; Nicholas, Andrew

    2014-05-01

    Lowland floodplains in subsiding basins form major depocentres responsible for the storage and cycling of large quantities of fine sediment and associated nutrients and contaminants. Obtaining reliable estimates of sediment storage in such environments is problematic due to the high degree of spatial and temporal variability exhibited by overbank sediment accumulation rates, combined with the logistical difficulties inherent in sampling locations far away from the channel. Further complexity is added by the high channel mobility, which recycles sediment and reconfigures the relationships between channel and floodplain morphology, sediment transport and overbank sedimentation. Estimates of floodplain accretion can be derived using a range of numerical sedimentation models of varying complexity. However, data required for model calibration are rarely available for the vast floodplains associated with tropical rivers. We present results from a study of channel-floodplain sediment exchange fluxes on the Rio Beni, a highly dynamic, tropical sand-bed tributary of the Amazon in northern Bolivia. The Beni transports high concentrations of suspended sediment, generated in the river's Andean headwaters, and disperses this material across an extensive floodplain wetland that experiences annual inundation over an area of up to 40000 km2. We utilise estimates of overbank sedimentation rates over the past century derived from 210Pb analysis of floodplain sediment cores collected along a 375 km length of channel, including sampling a range of channel-floodplain configurations within the channel belt and on the distal floodplain (up to 60 km from the channel). These data are used to investigate spatial and temporal variations in rates of floodplain sediment accumulation for a range of grain sizes. Specifically, we examine relationships between sedimentation rate and distance from the channel, and characterise within channel belt variability in sedimentation linked to patterns of channel migration and associated levee reworking. Field data are used to inform a hydrodynamically-driven model of overbank sedimentation and to derive uncertainty-bounded estimates of total floodplain sediment accumulation. Sediment exchange due to planform channel mobility is quantified using a numerical model of meander migration, calibrated using analysis of remote sensing imagery to determine rates and geometry of channel migration. Our combined data and model analysis allows the construction of a mean annual sediment budget for the Beni, which suggests channel-sediment exchange fluxes in the order of 100 Mt a-1, equivalent to 10% of the sediment load of the mainstem Amazon.

  4. Role of production intensification on water use efficiency in catfish pond aquaculture

    USDA-ARS?s Scientific Manuscript database

    Availability of fresh water is sometimes considered to be a limiting factor for future aquaculture development. This is certainly true at specific local levels where aquaculture may conflict with other water uses. A good example is the Yazoo-Mississippi River floodplain in northwest Mississippi, whe...

  5. 78 FR 68719 - Floodplain Management and Protection of Wetlands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... advisory base flood elevations in post-disaster situations where the FEMA has determined that the official... chosen if all other factors are considered to be equal. For a full discussion of the proposed rule... modify the Categorical Exclusion (CatEx) from environmental review under NEPA for minor rehabilitation of...

  6. Morphodynamic Responses of a River-Floodplain System to a Chute Cutoff: Numerical Experiments to Investigate the Role of Multiple Active Factors

    NASA Astrophysics Data System (ADS)

    Li, Z.; Garcia, M. H.

    2017-12-01

    Unlike neck cutoffs, which are caused by meander migration to an over-mature stage, a chute cutoff is governed by many more factors. A chute cutoff always occurs when there is over-bank flow caused by floods. During this process, the river-floodplain system characteristics will determine the newly formed cutoff channel location and extent. Hence, a comprehensive study of the influence which different active factors have on a cutoff channel is necessary. Numerical experiments are well suited in this case because of the possibility of studying a large number of scenarios and also the practical and econocmical challenges of collecting high quality data during floods in the field. Numerical simulations were performed using the open TELEMAC-MASCARET modeling suite, which can solve the two-dimensional Shallow Water Equations, the three-dimensional, Reynolds-averaged Navier-Stokes equations (RANS). It can also be coupled with sediment transport equations. It is implemented on unstructured meshes using the Finite Element Method (FEM). The modeling results show the great detail the morphodynamic response attributed to each active factor (flow magnitude, sediment erosive properties, channel sinuosity, etc.), as well as paving the way and showing how to use the dimensionless relations obtained with the numerical experiments.

  7. 76 FR 77162 - Floodplain Management and Protection of Wetlands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ...] RIN 2501-AD51 Floodplain Management and Protection of Wetlands AGENCY: Office of the Secretary, HUD... the protection of wetlands and floodplains. With respect to wetlands, the proposed rule would codify existing procedures for Executive Order 11990 (E.O. 11990), Protection of Wetlands. HUD's current policy is...

  8. 76 FR 17427 - Notice of Submission of Proposed Information Collection to OMB; Floodplain Management and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ... Proposed Information Collection to OMB; Floodplain Management and Protection of Wetlands AGENCY: Office of... proposal. HUD grant recipients proposing to use HUD funds for projects within floodplains or wetlands... Building, Washington, DC 20503; e-mail [email protected] , fax: 202-395- 5806. FOR FURTHER...

  9. 44 CFR 9.9 - Analysis and reevaluation of practicable alternatives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AGENCY, DEPARTMENT OF HOMELAND SECURITY GENERAL FLOODPLAIN MANAGEMENT AND PROTECTION OF WETLANDS § 9.9... alternative, or the floodplain or wetland is itself not a practicable location, FEMA shall then act on that...' key requirements to avoid floodplains and wetlands unless there is no practicable alternative. (2...

  10. 44 CFR 9.6 - Decision-making process.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HOMELAND SECURITY GENERAL FLOODPLAIN MANAGEMENT AND PROTECTION OF WETLANDS § 9.6 Decision-making process. (a) Purpose. The purpose of this section is to set out the floodplain management and wetlands... light of the information gained in Steps 4 and 5. FEMA shall not act in a floodplain or wetland unless...

  11. 44 CFR 9.6 - Decision-making process.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HOMELAND SECURITY GENERAL FLOODPLAIN MANAGEMENT AND PROTECTION OF WETLANDS § 9.6 Decision-making process. (a) Purpose. The purpose of this section is to set out the floodplain management and wetlands... light of the information gained in Steps 4 and 5. FEMA shall not act in a floodplain or wetland unless...

  12. 44 CFR 9.9 - Analysis and reevaluation of practicable alternatives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... AGENCY, DEPARTMENT OF HOMELAND SECURITY GENERAL FLOODPLAIN MANAGEMENT AND PROTECTION OF WETLANDS § 9.9... alternative, or the floodplain or wetland is itself not a practicable location, FEMA shall then act on that...' key requirements to avoid floodplains and wetlands unless there is no practicable alternative. (2...

  13. 44 CFR 9.6 - Decision-making process.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HOMELAND SECURITY GENERAL FLOODPLAIN MANAGEMENT AND PROTECTION OF WETLANDS § 9.6 Decision-making process. (a) Purpose. The purpose of this section is to set out the floodplain management and wetlands... light of the information gained in Steps 4 and 5. FEMA shall not act in a floodplain or wetland unless...

  14. 44 CFR 9.6 - Decision-making process.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HOMELAND SECURITY GENERAL FLOODPLAIN MANAGEMENT AND PROTECTION OF WETLANDS § 9.6 Decision-making process. (a) Purpose. The purpose of this section is to set out the floodplain management and wetlands... light of the information gained in Steps 4 and 5. FEMA shall not act in a floodplain or wetland unless...

  15. 44 CFR 9.9 - Analysis and reevaluation of practicable alternatives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AGENCY, DEPARTMENT OF HOMELAND SECURITY GENERAL FLOODPLAIN MANAGEMENT AND PROTECTION OF WETLANDS § 9.9... alternative, or the floodplain or wetland is itself not a practicable location, FEMA shall then act on that...' key requirements to avoid floodplains and wetlands unless there is no practicable alternative. (2...

  16. 10 CFR 1022.14 - Findings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Findings. 1022.14 Section 1022.14 Energy DEPARTMENT OF... Procedures for Floodplain and Wetland Reviews § 1022.14 Findings. (a) If DOE finds that no practicable... that will be located in a floodplain, DOE shall issue a floodplain statement of findings, normally not...

  17. 78 FR 74009 - Floodplain Management and Protection of Wetlands; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ...] RIN 2501-AD51 Floodplain Management and Protection of Wetlands; Correction AGENCY: Office of the... governing the protection of wetlands and floodplains. Upon publication, HUD discovered that it inadvertently... by calling the Federal Relay Service at 800-877-8339 (this is a toll-free number). SUPPLEMENTARY...

  18. A geologic approach to field methods in fluvial geomorphology

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Thornbush, Mary J; Allen, Casey D; Fitzpatrick, Faith A.

    2014-01-01

    A geologic approach to field methods in fluvial geomorphology is useful for understanding causes and consequences of past, present, and possible future perturbations in river behavior and floodplain dynamics. Field methods include characterizing river planform and morphology changes and floodplain sedimentary sequences over long periods of time along a longitudinal river continuum. Techniques include topographic and bathymetric surveying of fluvial landforms in valley bottoms and describing floodplain sedimentary sequences through coring, trenching, and examining pits and exposures. Historical sediment budgets that include floodplain sedimentary records can characterize past and present sources and sinks of sediment along a longitudinal river continuum. Describing paleochannels and floodplain vertical accretion deposits, estimating long-term sedimentation rates, and constructing historical sediment budgets can assist in management of aquatic resources, habitat, sedimentation, and flooding issues.

  19. Ecology of bottomland hardwood swamps of the southeast: a community profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wharton, C.H.; Kitchens, W.M.; Pendleton, E.C.

    1982-03-01

    This report synthesizes extant literature detailing the ecology of bottomland hardwood swamps in the Southeast. The geographic scope focuses the report to the hardwoods occupying the floodplains of the rivers whose drainages originate in the Appalachian Mountains/Piedmont and Coastal Plain (NC, SC, GA, and FL). The origin and dynamics of the floodplains are described and related to hydrology and physiographic provinces. Further, the biogeochemistry and interactions between the riverine and floodplain environments are discussed in conjunction with floodplain biology. Plant and animal community structure and ecological processes (productivity) are detailed and organized by ecological zones. The final chapter discusses themore » ecological value of the floodplain ecosystems and the nature of their relationships to adjacent uplands, downstream coastal estuaries and the atmosphere.« less

  20. Linking Domain-Specific Models to Describe the Complex Dynamics and Management Options of a Saline Floodplain

    NASA Astrophysics Data System (ADS)

    Woods, J.; Laattoe, T.

    2016-12-01

    Complex hydrological environments present management challenges where surface water-groundwater interactions involve interlinked processes at multiple scales. One example is Australia's River Murray, which flows through a semi-arid landscape with highly saline groundwater. In this region, the floodplain ecology depends on freshwater provided from the main river channel, anabranches, and floodwaters. However, in the past century access to freshwater has been further limited due to river regulation, land clearance, and irrigation. A programme to improve ecosystem health at Pike Floodplain, South Australia, is evaluating management options such as environmental watering and groundwater pumping. Due to the complicated interdependencies between processes moving water and salt within the floodplain, a series of inter-linked models were developed to assist with management decisions. The models differ by hydrological domain, scale, and dimensionality. Together they simulate surface water, the unsaturated zone, and groundwater on regional, floodplain, and local scales. Outputs from regional models provide boundary conditions for floodplain models, which in turn provide inputs for the local scale models. The results are interpreted based on (i) ecohydrological requirements for key species of tree and fish, and (ii) impacts on river salinity for downstream users. When combined, the models provide an integrated and interdiscplinary understanding of the hydrology and management of saline floodplains.

  1. Hydrodynamic controls on the long-term construction of large river floodplains and alluvial ridges

    NASA Astrophysics Data System (ADS)

    Nicholas, Andrew; Aalto, Rolf; Sambrook Smith, Gregory; Schwendel, Arved

    2017-04-01

    Floodplain construction involves the interplay between channel belt sedimentation and avulsion, overbank deposition of fines, and sediment reworking by channel migration. Each of these processes is controlled, in part, by within-channel and/or overbank hydraulics. However, while spatially-distributed hydrodynamic models are used routinely to simulate floodplain inundation and overbank sedimentation during individual floods, most existing models of long-term floodplain construction and alluvial architecture do not account for flood hydraulics explicitly. Instead, floodplain sedimentation is typically modelled as an exponential function of distance from the river, and avulsion thresholds are defined using topographic indices that quantify alluvial ridge morphology (e.g., lateral:downstream slope ratios or metrics of channel belt super-elevation). Herein, we apply a hydraulically driven model of floodplain evolution, in order to quantify the controls on alluvial ridge construction and avulsion likelihood in large lowland rivers. We combine a simple model of meander migration and cutoff with a 2D grid-based model of flood hydrodynamics and overbank sedimentation. The latter involves a finite volume solution of the shallow water equations and an advection-diffusion model for suspended sediment transport. The model is used to carry out a series of numerical experiments to investigate floodplain construction for a range of flood regimes and sediment supply scenarios, and results are compared to field data from the Rio Beni system, northern Bolivia. Model results, supported by field data, illustrate that floodplain sedimentation is characterised by a high degree of intermittency that is driven by autogenic mechanisms (i.e. even in the absence of temporal variations in flood magnitude and sediment supply). Intermittency in overbank deposits occurs over a range of temporal and spatial scales, and is associated with the interaction between channel migration dynamics and crevasse splay formation. Moreover, alluvial ridge construction, by splay deposition, is controlled by the balance between in-channel and overbank sedimentation rates, and by ridge reworking linked to channel migration. The resulting relationship between sedimentation rates, ridge morphology and avulsion likelihood is more complex than that which is incorporated with existing models of long-term floodplain construction that neglect flood hydraulics. These results have implications for the interpretation of floodplain deposits as records of past flood regimes, and for the controls on the alluvial architecture of large river floodplains.

  2. The land morphology approach to flood risk mapping: An application to Portugal.

    PubMed

    Cunha, N S; Magalhães, M R; Domingos, T; Abreu, M M; Küpfer, C

    2017-05-15

    In the last decades, the increasing vulnerability of floodplains is linked to societal changes such as population density growth, land use changes, water use patterns, among other factors. Land morphology directly influences surface water flow, transport of sediments, soil genesis, local climate and vegetation distribution. Therefore, the land morphology, the land used and management directly influences flood risks genesis. However, attention is not always given to the underlying geomorphological and ecological processes that influence the dynamic of rivers and their floodplains. Floodplains are considered a part of a larger system called Wet System (WS). The WS includes permanent and temporary streams, water bodies, wetlands and valley bottoms. Valley bottom is a broad concept which comprehends not only floodplains but also flat and concave areas, contiguous to streams, in which slope is less than 5%. This will be addressed through a consistent method based on a land morphology approach that classifies landforms according to their hydrological position in the watershed. This method is based on flat areas (slopes less than 5%), surface curvature and hydrological features. The comparison between WS and flood risk data from the Portuguese Environmental Agency for the main rivers of mainland Portugal showed that in downstream areas of watersheds, valley bottoms are coincident with floodplains modelled by hydrological methods. Mapping WS has a particular interest in analysing river ecosystems position and function in the landscape, from upstream to downstream areas in the watershed. This morphological approach is less demanding data and time-consuming than hydrological methods and can be used as the preliminary delimitation of floodplains and potential flood risk areas in situations where there is no hydrological data available. The results were also compared with the land use/cover map at a national level and detailed in Trancão river basin, located in Lisbon metropolitan area, an urbanized basin that suffered heavy flooding in the last decades. This study also contributes to a better understanding of the basin morphology at a local-scale and the effects of soil sealing in downstream flood risks. This work will contribute to the understanding of the morphology, ecology and land use of watersheds that could be used to reduce runoff and downstream flood risk. This can be accomplished by using natural water retention and infiltration methods or higher-level based planning instead of a reaction to local decisions on flood hazards. This morphological approach to map landforms, including wet system, is a valuable tool to assist policy makers and planners in flood risk and land use management, floodplain restoration, agricultural land management practices, and location of human activities according to ecological suitability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Long-term Sediment Accumulation in Mid-channel Bars of the Upper Reach of the Lower Mississippi River.

    NASA Astrophysics Data System (ADS)

    Wang, B.; Xu, Y. J.

    2016-02-01

    A recent study reported that about 44% of the total Mississippi River suspended load reaching the Old River Control Structure (ORCS) was trapped upstream of the Gulf of Mexico by overbank storage and channel bed aggradation. Considering an average annual sediment load of 120 million metric tons passing ORCS to the Mississippi River main channel, the trapped sediment load would be equivalent to annually rebuilding 44-km2 coastal land of 1 meter in depth, assuming a sedimentation bulk density of 1.2 tons m-3. No study has yet demonstrated such a high sediment accumulation rate within the confined river channel or on a floodplain area that surrounds the only unleeved stretch ( 30-km long) of the Lower Mississippi River downstream of ORCS. In this study, we utilized satellite images taken from 1983 to 2013 and analyzed changes in surface area of nine major mid-channel and point bars over a 130-km river reach from ORCS to Baton Rouge. Using river stage records and the estimated surface areas, we developed a stage - surface area rating curve for each of the bars and estimated changes in bar volume over time. We found that more than half of the bars have grown, while the others have shrunken in the past three decades. As a whole, there was a substantial net gain of surface area and volume accretion. Sediment trapping was most prevalent during the spring floods, especially during the period from 2007 to 2011 when two large floods occurred. This paper presents the channel morphological change and sediment accumulation rates under different flow conditions, and discusses their implications for the current understanding and practices of the Mississippi River sediment diversion.

  4. Increasing Polymer Solar Cell Fill Factor by Trap-Filling with F4-TCNQ at Parts Per Thousand Concentration.

    PubMed

    Yan, Han; Manion, Joseph G; Yuan, Mingjian; García de Arquer, F Pelayo; McKeown, George R; Beaupré, Serge; Leclerc, Mario; Sargent, Edward H; Seferos, Dwight S

    2016-08-01

    Intrinsic traps in organic semiconductors can be eliminated by trap-filling with F4-TCNQ. Photovoltaic tests show that devices with F4-TCNQ at parts per thousand concentration outperform control devices due to an improved fill factor. Further studies confirm the trap-filling pathway and demonstrate the general nature of this finding. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Trap-assisted and Langevin-type recombination in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Wetzelaer, G. A. H.; Kuik, M.; Nicolai, H. T.; Blom, P. W. M.

    2011-04-01

    Trapping of charges is known to play an important role in the charge transport of organic semiconductors, but the role of traps in the recombination process has not been addressed. Here we show that the ideality factor of the current of organic light-emitting diodes (OLEDs) in the diffusion-dominated regime has a temperature-independent value of 2, which reveals that nonradiative trap-assisted recombination dominates the current. In contrast, the ideality factor of the light output approaches unity, demonstrating that luminance is governed by recombination of the bimolecular Langevin type. This apparent contradiction can be resolved by measuring the current and luminance ideality factor for a white-emitting polymer, where both free and trapped charge carriers recombine radiatively. With increasing bias voltage, Langevin recombination becomes dominant over trap-assisted recombination due to its stronger dependence on carrier density, leading to an enhancement in OLED efficiency.

  6. Evaluating shading bias in malaise and intercept traps

    USGS Publications Warehouse

    Irvine, Kathryn M.; Woods, Stephen A.

    2007-01-01

    Foresters are increasingly focusing on landscape level management regimes. At the landscape level, managed acreage may differ substantially in structure and micro-climatic conditions. Trapping is a commonly used method to evaluate changes in insect communities across landscapes. Among those trapping techniques, Malaise and window-pane traps are conveniently deployed to collect large numbers of insects for relative estimates of density. However, the catch within traps may be affected by a wide range of environmental variables including trap location, height, and factors such as exposure to sunlight and temperature. Seven experiments were conducted from 1996 through 2000 to evaluate the effects of shading on trap catch of a variety of Malaise trap designs and one window-pane trap design. Overall, differences in shading effects on trap catch were detected across different traps and taxa and suggested that, in general, more insects are collected in traps that were in direct sunlight. The effect of shading varied from a reduction in trap catch of 10 % to an increase of 7%, the results depended on trap color. Diptera, Coleoptera, and Homoptera were most likely to exhibit this bias. In contrast, trap catch of the Hymenoptera was the most variable and appeared to be sensitive to factors that might interact with sun/shade conditions

  7. Anatomy and dynamics of a floodplain, Powder River, Montana, U.S.A.

    USGS Publications Warehouse

    Pizzuto, J.E.; Moody, J.A.; Meade, R.H.

    2008-01-01

    Centimeter-scale measurements on several Powder River floodplains provide insights into the nature of overbank depositional processes that created the floodplains; during a 20-year period after a major flood in 1978. Rising stages initially entered across a sill at the downriver end of the floodplains. Later, as stages continued to rise, water entered the floodplains through distinct low saddles along natural levees. The annual maximum depth of water over the levee crest averaged 0.19 in from 1983 through 1996, and the estimated flow velocities were approximately 0.15 m s-1. Water ponded in the floodplain trough, a topographic low between the natural levee and the pre-flood riverbank, and mud settled as thin layers of nearly constant thickness. Mud layers alternated with sand layers, which were relatively thick near the channel. Together, these beds created a distinctive natural levee. In some locations, individual flood deposits began as a thin mud layer that gradually coarsened upwards to medium-grained sand. Coarsening-upwards sequences form initially as mud because only the uppermost layers of water in the channel supply the first overbank flows, which are rich in mud but starved of sand. At successively higher stages, fine sands and then medium sands increase in concentration in the floodwater and are deposited as fine- and medium-sand layers overlying the initial mud layer. Theoretical predictions from mathematical models of sediment transport by advection and diffusion indicate that these processes acting alone are unlikely to create the observed sand layers of nearly uniform thickness that extend across much of the floodplain. We infer that other transport processes, notably bedload transport, must be important along Powder River. Even with the centimeter-scale measurements of floodplain deposits, daily hydraulic data, and precise annual surface topographic surveys, we were unable to determine any clear correspondence between the gauged flow record of overbank floods and the depositional layers mapped in the floodplain. These results provide a detailed example of floodplain deposits and depositional processes that should prove useful for interpreting natural levee deposits in a variety of geologic settings. Copyright ?? 2008, SEPM (Society for Sedimentary Geology).

  8. The application of Caesium-137 and Plutonium-239+240 measurements to investigate floodplain deposition in a semi-arid, low-fallout environment

    NASA Astrophysics Data System (ADS)

    Amos, K. J.; Croke, J. C.; Timmers, H.; Owens, P. N.

    2009-04-01

    Floodplains comprise geomorphologically important sources and sinks for sediments and associated pollutants, yet the sedimentology of large dryland floodplains is not well understood. Processes occurring on such floodplains are often difficult to observe, and techniques used to investigate smaller perennial floodplains are often not practical in these environments. This study assesses the utility of Cs-137 inventory and depth-profile techniques for determining relative amounts of floodplain sedimentation in the Fitzroy River, north-eastern Australia; a 143 000 km2 semi-arid river system. Caesium-137 inventories were calculated for floodplain and reference location bulk soil cores collected from four sites. Depth profiles of Cs-137 concentration from each floodplain site and a reference location were recorded. The areal density of Cs-137 at reference locations ranged from 13-978 Bq m-2 (0-1367 Bq m-2 at the 95% confidence interval), and the mean value ± 2(standard error of the mean) was 436±264 Bq m-2, similar to published data from other southern hemisphere locations. Floodplain inventories ranged from 68-1142 Bq m-2 (0-1692 Bq m-2 at the 95% confidence interval), essentially falling within the range of reference inventory values, thus preventing calculation of erosion or deposition. Depth-profiles of Cs-137 concentration indicate erosion at one site and over 66 cm of deposition at another since 1954. Analysis of 239+240Pu concentrations in a depositional core substantiated the interpretation made from Cs-137 data, and depict a more tightly constrained peak in concentration. Average annual deposition rates range from 0-15 mm. The similarity between floodplain and reference bulk inventories does not necessarily indicate a lack of erosion or deposition, due to low Cs-137 fallout in the region and associated high measurement uncertainties, and a likely influence of gully and bank eroded sediments with no or limited adsorbed Cs-137. In this low-fallout environment, detailed depth-profile data are necessary for investigating sedimentation using Cs-137.

  9. Algal extracellular release in river-floodplain dissolved organic matter: response of extracellular enzymatic activity during a post-flood period

    PubMed Central

    Sieczko, Anna; Maschek, Maria; Peduzzi, Peter

    2015-01-01

    River-floodplain systems are susceptible to rapid hydrological events. Changing hydrological connectivity of the floodplain generates a broad range of conditions, from lentic to lotic. This creates a mixture of allochthonously and autochthonously derived dissolved organic matter (DOM). Autochthonous DOM, including photosynthetic extracellular release (PER), is an important source supporting bacterial secondary production (BSP). Nonetheless, no details are available regarding microbial extracellular enzymatic activity (EEA) as a response to PER under variable hydrological settings in river-floodplain systems. To investigate the relationship between bacterial and phytoplankton components, we therefore used EEA as a tool to track the microbial response to non-chromophoric, but reactive and ecologically important DOM. The study was conducted in three floodplain subsystems with distinct hydrological regimes (Danube Floodplain National Park, Austria). The focus was on the post-flood period. Enhanced %PER (up to 48% of primary production) in a hydrologically isolated subsystem was strongly correlated with β-glucosidase, which was related to BSP. This shows that—in disconnected floodplain backwaters with high terrestrial input—BSP can also be driven by autochthonous carbon sources (PER). In a semi-isolated section, in the presence of fresh labile material from primary producers, enhanced activity of phenol oxidase was observed. In frequently flooded river-floodplain systems, BSP was mainly driven by enzymatic degradation of particulate primary production. Our research demonstrates that EEA measurements are an excellent tool to describe the coupling between bacteria and phytoplankton, which cannot be deciphered when focusing solely on chromophoric DOM. PMID:25741326

  10. Geomorphic Controls on Floodplain Soil Organic Carbon in the Yukon Flats, Interior Alaska, From Reach to River Basin Scales

    NASA Astrophysics Data System (ADS)

    Lininger, K. B.; Wohl, E.; Rose, J. R.

    2018-03-01

    Floodplains accumulate and store organic carbon (OC) and release OC to rivers, but studies of floodplain soil OC come from small rivers or small spatial extents on larger rivers in temperate latitudes. Warming climate is causing substantial change in geomorphic process and OC fluxes in high latitude rivers. We investigate geomorphic controls on floodplain soil OC concentrations in active-layer mineral sediment in the Yukon Flats, interior Alaska. We characterize OC along the Yukon River and four tributaries in relation to geomorphic controls at the river basin, segment, and reach scales. Average OC concentration within floodplain soil is 2.8% (median = 2.2%). Statistical analyses indicate that OC varies among river basins, among planform types along a river depending on the geomorphic unit, and among geomorphic units. OC decreases with sample depth, suggesting that most OC accumulates via autochthonous inputs from floodplain vegetation. Floodplain and river characteristics, such as grain size, soil moisture, planform, migration rate, and riverine DOC concentrations, likely influence differences among rivers. Grain size, soil moisture, and age of surface likely influence differences among geomorphic units. Mean OC concentrations vary more among geomorphic units (wetlands = 5.1% versus bars = 2.0%) than among study rivers (Dall River = 3.8% versus Teedrinjik River = 2.3%), suggesting that reach-scale geomorphic processes more strongly control the spatial distribution of OC than basin-scale processes. Investigating differences at the basin and reach scale is necessary to accurately assess the amount and distribution of floodplain soil OC, as well as the geomorphic controls on OC.

  11. Flood effects on an Alaskan stream restoration project: the value of long-term monitoring

    USGS Publications Warehouse

    Densmore, Roseann V.; Karle, Kenneth F.

    2009-01-01

    On a nationwide basis, few stream restoration projects have long-term programs in place to monitor the effects of floods on channel and floodplain configuration and floodplain vegetation, but long-term and event-based monitoring is required to measure the effects of these stochastic events and to use the knowledge for adaptive management and the design of future projects. This paper describes a long-term monitoring effort (15 years) on a stream restoration project in Glen Creek in Denali National Park and Preserve in Alaska. The stream channel and floodplain of Glen Creek had been severely degraded over a period of 80 years by placer mining for gold, which left many reaches with unstable and incised streambeds without functioning vegetated floodplains. The objectives of the original project, initiated in 1991, were to develop and test methods for the hydraulic design of channel and floodplain morphology and for floodplain stabilization and riparian habitat recovery, and to conduct research and monitoring to provide information for future projects in similar degraded watersheds. Monitoring methods included surveyed stream cross-sections, vegetation plots, and aerial, ground, and satellite photos. In this paper we address the immediate and outlying effects of a 25-year flood on the stream and floodplain geometry and riparian vegetation. The long-term monitoring revealed that significant channel widening occurred following the flood, likely caused by excessive upstream sediment loading and the fairly slow development of floodplain vegetation in this climate. Our results illustrated design flaws, particularly in regard to identification and analysis of sediment sources and the dominant processes of channel adjustment.

  12. Abiotic variability among different aquatic systems of the central Amazon floodplain during drought and flood events.

    PubMed

    Affonso, A G; Queiroz, H L; Novo, E M L M

    2015-11-01

    This paper examines water properties from lakes, (depression lakes, sensu Junk et al., 2012), channels (scroll lakes with high connectivity, sensu Junk et al., 2012) and paleo-channels (scroll lakes with low connectivity-sensu Junk et al., 2012, locally called ressacas) located in Mamirauá Sustainable Development Reserve, in Central Amazon floodplain, Amazonas, Brazil. We analysed surface temperature, conductivity, pH, dissolved oxygen, turbidity, transparency, suspended inorganic and organic matter, chlorophyll-a, pheophytin, total nitrogen, total phosphorus, organic and inorganic carbon in 2009 high water phase, 2009 and 2010 low water phases. Multivariate statistical analyses of 24 aquatic systems (6 ressacas, 12 lakes and 6 channels, 142 samples) were applied to the variables in order to: 1) quantify differences among aquatic system types; 2) assess how those differences are affected in the different phases of the hydrological year. First, we analysed the entire set of variables to test for differences among phases of the hydrological year and types of aquatic systems using a PERMANOVA two-way crossed design. The results showed that the all measured limnological variables are distinct regarding both factors: types of aquatic systems and hydrological phases. In general, the magnitude and amplitude of all variables were higher in the low water phase than in the high water phase, except for water transparency in all aquatic system's types. PERMANOVA showed that the differences between aquatic system's types and hydrological phases of all variables were highly significant for both main factors (type and phase) and for the type x phase interaction. Limnological patterns of Amazon floodplain aquatic systems are highly dynamic, dependent on the surrounding environment, flood pulse, main river input and system type. These patterns show how undisturbed systems respond to natural variability in such a diverse environment, and how distinct are those aquatic systems, especially during the low water phase. Aquatic systems in Mamirauá floodplain represent limnological patterns of almost undisturbed areas and can be used as future reference for comparison with disturbed areas, such as those of the Lower Amazon, and as a baseline for studies on the effects of anthropogenic influences and climate change and on Amazon aquatic ecosystem.

  13. Assessing the performance of multi-purpose channel management measures at increasing scales

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Addy, Steve

    2016-04-01

    In addition to hydroclimatic drivers, sediment deposition from high energy river systems can reduce channel conveyance capacity and lead to significant increases in flood risk. There is an increasing recognition that we need to work with the interplay of natural hydrological and morphological processes in order to attenuate flood flows and manage sediment (both coarse and fine). This typically includes both catchment (e.g. woodland planting, wetlands) and river (e.g. wood placement, floodplain reconnection) restoration approaches. The aim of this work was to assess at which scales channel management measures (notably wood placement and flood embankment removal) are most appropriate for flood and sediment management in high energy upland river systems. We present research findings from two densely instrumented research sites in Scotland which regularly experience flood events and have associated coarse sediment problems. We assessed the performance of a range of novel trial measures for three different scales: wooded flow restrictors and gully tree planting at the small scale (<1 km2), floodplain tree planting and engineered log jams at the intermediate scale (5-60 km2), and flood embankment lowering at the large scale (350 km2). Our results suggest that at the smallest scale, care is needed in the installation of flow restrictors. It was found for some restrictors that vertical erosion can occur if the tributary channel bed is disturbed. Preliminary model evidence suggested they have a very limited impact on channel discharge and flood peak delay owing to the small storage areas behind the structures. At intermediate scales, the ability to trap sediment by engineered log jams was limited. Of the 45 engineered log jams installed, around half created a small geomorphic response and only 5 captured a significant amount of coarse material (during one large flood event). As scale increases, the chance of damage or loss of wood placement is greatest. Monitoring highlights the importance of structure design (porosity and degree of channel blockage) and placement in zones of high sediment transport to optimise performance. At the large scale, well designed flood embankment lowering can improve connectivity to the floodplain during low to medium return period events. However, ancillary works to stabilise the bank failed thus emphasising the importance of letting natural processes readjust channel morphology and hydrological connections to the floodplain. Although these trial measures demonstrated limited effects, this may be in part owing to restrictions in the range of hydroclimatological conditions during the study period and further work is needed to assess the performance under more extreme conditions. This work will contribute to refining guidance for managing channel coarse sediment problems in the future which in turn could help mitigate flooding using natural approaches.

  14. 76 FR 79145 - Floodplain Management and Protection of Wetlands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ...] RIN 2501-AD51 Floodplain Management and Protection of Wetlands Correction In proposed rule document... action or an year floodplain outside of the amendment) \\1\\ Floodways Coastal high hazard outside coastal... existing structure; (2) is designed for a Coastal High Hazard Area under Sec. 55.1(c)(3); and (3) is...

  15. 44 CFR 9.14 - Disposal of Agency property.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY GENERAL FLOODPLAIN MANAGEMENT AND PROTECTION OF WETLANDS § 9.14 Disposal of... provisions of § 9.7 to determine if it affects or is affected by a floodplain or wetland; (2) The public... alternative use that is more consistent with the floodplain management and wetland protection policies set out...

  16. Monitoring height and greenness of non-woody floodplain vegetation with UAV time series

    NASA Astrophysics Data System (ADS)

    van Iersel, Wimala; Straatsma, Menno; Addink, Elisabeth; Middelkoop, Hans

    2018-07-01

    Vegetation in river floodplains has important functions for biodiversity, but can also have a negative influence on flood safety. Floodplain vegetation is becoming increasingly heterogeneous in space and time as a result of river restoration projects. To document the spatio-temporal patterns of the floodplain vegetation, the need arises for efficient monitoring techniques. Monitoring is commonly performed by mapping floodplains based on single-epoch remote sensing data, thereby not considering seasonal dynamics of vegetation. The rising availability of unmanned airborne vehicles (UAV) increases monitoring frequency potential. Therefore, we aimed to evaluate the performance of multi-temporal high-spatial-resolution imagery, collected with a UAV, to record the dynamics in floodplain vegetation height and greenness over a growing season. Since the classification accuracy of current airborne surveys remains insufficient for low vegetation types, we focussed on seasonal variation of herbaceous and grassy vegetation with a height up to 3 m. Field reference data on vegetation height were collected six times during one year in 28 field plots within a single floodplain along the Waal River, the main distributary of the Rhine River in the Netherlands. Simultaneously with each field survey, we recorded UAV true-colour and false-colour imagery from which normalized digital surface models (nDSMs) and a consumer-grade camera vegetation index (CGCVI) were calculated. We observed that: (1) the accuracy of a UAV-derived digital terrain model (DTM) varies over the growing season and is most accurate during winter when the vegetation is dormant, (2) vegetation height can be determined from the nDSMs in leaf-on conditions via linear regression (RSME = 0.17-0.33 m), (3) the multitemporal nDSMs yielded meaningful temporal profiles of greenness and vegetation height and (4) herbaceous vegetation shows hysteresis for greenness and vegetation height, but no clear hysteresis was observed for grassland vegetation. These results show the high potential of using UAV-borne sensors for increasing the classification accuracy of low floodplain vegetation within the framework of floodplain monitoring.

  17. Contribution of geophysical methods in the study of the floodplain structure (the Litavka River, the Czech Republic)

    NASA Astrophysics Data System (ADS)

    Kotková, Kristýna; Matys Grygar, Tomáš; Tůmová, Štěpánka; Elznicová, Jitka

    2017-04-01

    Mining and processing of polymetallic ores near the city of Příbram (the Czech Republic) have strongly impacted the fluvial system of the Litavka River. Beside of polymetallic mining during several hundred years with a peak between 1850 and 1950, the Litavka River was also influenced by uranium ore mining between 1948 and 1989. Severe contamination of the Litavka River system is known, but the alluvial architecture and specific distribution of contamination has not yet been satisfactorily described. However, such pieces of information are necessary for the predictions of the future behaviour of contaminants in the river system. We used geophysical methods for visualisation of subsurface layers of sediments and we have proved them very useful for the survey of the floodplain structure. It is especially advantageous when the surface topography of the floodplain does not reveal its internal structure, e.g. due to floodplain levelling by aggradation. Specifically, dipole electromagnetic profiling, also denoted electromagnetic induction sensing (DEMP) was used for quick detection of major heterogeneities in the floodplain structure. In addition, electrical resistivity tomography (ERT) was used for the exploration of lines across the heterogeneities shown by DEMP. This approach allows to choose the appropriate plan for the subsequent sampling in the floodplain to include all its structural (lithogenetic) units. Such rational strategy allows for reducing total amount of sampled sites without the risk of losing important information and production of false images. Both used geophysical tools and manual drill coring and the elemental analysis by handheld X-ray fluorescence spectrometry produced clear images of floodplain architecture and pollutant distribution. The internal structure of the Litavka River floodplain shows that lateral deposition and reworking of sediments played the main roles in the floodplain building. In the next centuries the lateral channel movement will rework contamination which is maximal in the current channel belt.

  18. Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin)

    NASA Astrophysics Data System (ADS)

    Lupker, Maarten; France-Lanord, Christian; Galy, Valier; Lavé, Jérôme; Gaillardet, Jérôme; Gajurel, Ananta Prasad; Guilmette, Caroline; Rahman, Mustafizur; Singh, Sunil Kumar; Sinha, Rajiv

    2012-05-01

    We present an extensive river sediment dataset covering the Ganga basin from the Himalayan front downstream to the Ganga mainstream in Bangladesh. These sediments were mainly collected over several monsoon seasons and include depth profiles of suspended particles in the river water column. Mineral sorting is the first order control on the chemical composition of river sediments. Taking into account this variability we show that sediments become significantly depleted in mobile elements during their transit through the floodplain. By comparing sediments sampled at the Himalayan front with sediments from the Ganga mainstream in Bangladesh it is possible to budget weathering in the floodplain. Assuming a steady state weathering regime in the floodplain, the weathering of Himalayan sediments in the Gangetic floodplain releases ca. (189 ± 92) × 109 and (69 ± 22) × 109 mol/yr of carbonate bound Ca and Mg to the dissolved load, respectively. Silicate weathering releases (53 ± 18) × 109 and (42 ± 13) × 109 mol/yr of Na and K while the release of silicate Mg and Ca is substantially lower, between ca. 0 and 20 × 109 mol/yr. Additionally, we show that sediment hydration, [H2O+], is a sensitive tracer of silicate weathering that can be used in continental detrital environments, such as the Ganga basin. Both [H2O+] content and the D/H isotopic composition of sediments increases during floodplain transfer in response to mineral hydrolysis and neoformations associated to weathering reactions. By comparing the chemical composition of river sediments across the floodplain with the composition of the eroded Himalayan source rocks, we suggest that the floodplain is the dominant location of silicate weathering for Na, K and [H2O+]. Overall this work emphasizes the role of the Gangetic floodplain in weathering Himalayan sediments. It also demonstrates how detrital sediments can be used as weathering tracers if mineralogical and chemical sorting effects are properly taken into account.

  19. Evaluating the role of river-floodplain connectivity in providing beneficial hydrologic services in mountain landscapes

    NASA Astrophysics Data System (ADS)

    Covino, T. P.; Wegener, P.; Weiss, T.; Wohl, E.; Rhoades, C.

    2017-12-01

    River networks of mountain landscapes tend to be dominated by steep, valley-confined channels that have limited floodplain area and low hydrologic buffering capacity. Interspersed between the narrow segments are wide, low-gradient segments where extensive floodplains, wetlands, and riparian areas can develop. Although they tend to be limited in their frequency relative to the narrow valley segments, the low-gradient, wide portions of mountain channel networks can be particularly important to hydrologic buffering and can be sites of high nutrient retention and ecosystem productivity. Hydrologic buffering along the wide valley segments is dependent on lateral hydrologic connectivity between the river and floodplain, however these connections have been increasingly severed as a result of various land and water management practices. We evaluated the role of river-floodplain connectivity in influencing water, dissolved organic carbon (DOC), and nutrient flux in river networks of the Colorado Rockies. We found that disconnected segments with limited floodplain/riparian area had limited buffering capacity, while connected segments exhibited variable source-sink dynamics as a function of flow. Specifically, connected segments were typically a sink for water, DOC, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along connected relative to disconnected segments. Our data suggest that lateral hydrologic connectivity in wide valleys can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. While hydrologic disconnection in one river-floodplain system is unlikely to influence water resources at larger scales, the cumulative effects of widespread disconnection may be substantial. Because intact river-floodplain (i.e., connected) systems provide numerous hydrologic and ecologic benefits, understanding the dynamics and cumulative effects of disconnection is an important step toward improved water resource and ecosystem management.

  20. Soil greenhouse gas emissions and carbon budgeting in a short-hydroperiod floodplain wetland

    USGS Publications Warehouse

    Batson, Jackie; Noe, Gregory B.; Hupp, Cliff R.; Krauss, Ken W.; Rybicki, Nancy B.; Schenk, Edward R.

    2015-01-01

    Understanding the controls on floodplain carbon (C) cycling is important for assessing greenhouse gas emissions and the potential for C sequestration in river-floodplain ecosystems. We hypothesized that greater hydrologic connectivity would increase C inputs to floodplains that would not only stimulate soil C gas emissions but also sequester more C in soils. In an urban Piedmont river (151 km2 watershed) with a floodplain that is dry most of the year, we quantified soil CO2, CH4, and N2O net emissions along gradients of floodplain hydrologic connectivity, identified controls on soil aerobic and anaerobic respiration, and developed a floodplain soil C budget. Sites were chosen along a longitudinal river gradient and across lateral floodplain geomorphic units (levee, backswamp, and toe slope). CO2 emissions decreased downstream in backswamps and toe slopes and were high on the levees. CH4 and N2O fluxes were near zero; however, CH4emissions were highest in the backswamp. Annual CO2 emissions correlated negatively with soil water-filled pore space and positively with variables related to drier, coarser soil. Conversely, annual CH4 emissions had the opposite pattern of CO2. Spatial variation in aerobic and anaerobic respiration was thus controlled by oxygen availability but was not related to C inputs from sedimentation or vegetation. The annual mean soil CO2 emission rate was 1091 g C m−2 yr−1, the net sedimentation rate was 111 g C m−2 yr−1, and the vegetation production rate was 240 g C m−2 yr−1, with a soil C balance (loss) of −338 g C m−2 yr−1. This floodplain is losing C likely due to long-term drying from watershed urbanization.

  1. On river-floodplain interaction and hydrograph skewness

    NASA Astrophysics Data System (ADS)

    Fleischmann, Ayan S.; Paiva, Rodrigo C. D.; Collischonn, Walter; Sorribas, Mino V.; Pontes, Paulo R. M.

    2016-10-01

    Understanding hydrological processes occurring within a basin by looking at its outlet hydrograph can improve and foster comprehension of ungauged regions. In this context, we present an extensive examination of the roles that floodplains play on driving hydrograph shapes. Observations of many river hydrographs with large floodplain influence are carried out and indicate that a negative skewness of the hydrographs is present among many of them. Through a series of numerical experiments and analytical reasoning, we show how the relationship between flood wave celerity and discharge in such systems is responsible for determining the hydrograph shapes. The more water inundates the floodplains upstream of the observed point, the more negatively skewed is the observed hydrograph. A case study is performed in the Amazon River Basin, where major rivers with large floodplain attenuation (e.g., Purus, Madeira, and Juruá) are identified with higher negative skewness in the respective hydrographs. Finally, different wetland types could be distinguished by using this feature, e.g., wetlands maintained by endogenous processes, from wetlands governed by overbank flow (along river floodplains). A metric of hydrograph skewness was developed to quantify this effect, based on the time derivative of discharge. Together with the skewness concept, it may be used in other studies concerning the relevance of floodplain attenuation in large, ungauged rivers, where remote sensing data (e.g., satellite altimetry) can be very useful.

  2. Influence of dams on river-floodplain dynamics in the Elwha River, Washington

    USGS Publications Warehouse

    Kloehn, K.K.; Beechie, T.J.; Morley, S.A.; Coe, H.J.; Duda, J.J.

    2008-01-01

    The Elwha dam removal project presents an ideal opportunity to study how historic reduction and subsequent restoration of sediment supply alter river-floodplain dynamics in a large, forested river floodplain. We used remote sensing and onsite data collection to establish a historical record of floodplain dynamics and a baseline of current conditions. Analysis was based on four river reaches, three from the Elwha River and the fourth from the East Fork of the Quinault River. We found that the percentage of floodplain surfaces between 25 and 75 years old decreased and the percentage of surfaces >75 years increased in reaches below the Elwha dams. We also found that particle size decreased as downstream distance from dams increased. This trend was evident in both mainstem and side channels. Previous studies have found that removal of the two Elwha dams will initially release fine sediment stored in the reservoirs, then in subsequent decades gravel bed load supply will increase and gradually return to natural levels, aggrading river beds up to 1 m in some areas. We predict the release of fine sediments will initially create bi-modal grain size distributions in reaches downstream of the dams, and eventual recovery of natural sediment supply will significantly increase lateral channel migration and erosion of floodplain surfaces, gradually shifting floodplain age distributions towards younger age classes.

  3. Complexity of Bacterial Communities in a River-Floodplain System (Danube, Austria)

    PubMed Central

    Besemer, Katharina; Moeseneder, Markus M.; Arrieta, Jesus M.; Herndl, Gerhard J.; Peduzzi, Peter

    2005-01-01

    Natural floodplains play an essential role in the processing and decomposition of organic matter and in the self-purification ability of rivers, largely due to the activity of bacteria. Knowledge about the composition of bacterial communities and its impact on organic-matter cycling is crucial for the understanding of ecological processes in river-floodplain systems. Particle-associated and free-living bacterial assemblages from the Danube River and various floodplain pools with different hydrological characteristics were investigated using terminal restriction fragment length polymorphism analysis. The particle-associated bacterial community exhibited a higher number of operational taxonomic units (OTUs) and was more heterogeneous in time and space than the free-living community. The temporal dynamics of the community structure were generally higher in isolated floodplain pools. The community structures of the river and the various floodplain pools, as well as those of the particle-associated and free-living bacteria, differed significantly. The compositional dynamics of the planktonic bacterial communities were related to changes in the algal biomass, temperature, and concentrations of organic and inorganic nutrients. The OTU richness of the free-living community was correlated with the concentration and origin of organic matter and the concentration of inorganic nutrients, while no correlation with the OTU richness of the particle-associated assemblage was found. Our results demonstrate the importance of the river-floodplain interactions and the influence of damming and regulation on the bacterial-community composition. PMID:15691909

  4. Floodplain Mapping for the Continental United States Using Machine Learning Techniques and Watershed Characteristics

    NASA Astrophysics Data System (ADS)

    Jafarzadegan, K.; Merwade, V.; Saksena, S.

    2017-12-01

    Using conventional hydrodynamic methods for floodplain mapping in large-scale and data-scarce regions is problematic due to the high cost of these methods, lack of reliable data and uncertainty propagation. In this study a new framework is proposed to generate 100-year floodplains for any gauged or ungauged watershed across the United States (U.S.). This framework uses Flood Insurance Rate Maps (FIRMs), topographic, climatic and land use data which are freely available for entire U.S. for floodplain mapping. The framework consists of three components, including a Random Forest classifier for watershed classification, a Probabilistic Threshold Binary Classifier (PTBC) for generating the floodplains, and a lookup table for linking the Random Forest classifier to the PTBC. The effectiveness and reliability of the proposed framework is tested on 145 watersheds from various geographical locations in the U.S. The validation results show that around 80 percent of total watersheds are predicted well, 14 percent have acceptable fit and less than five percent are predicted poorly compared to FIRMs. Another advantage of this framework is its ability in generating floodplains for all small rivers and tributaries. Due to the high accuracy and efficiency of this framework, it can be used as a preliminary decision making tool to generate 100-year floodplain maps for data-scarce regions and all tributaries where hydrodynamic methods are difficult to use.

  5. Floodplain soil organic carbon storage in the central Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Lininger, K.; Wohl, E.

    2017-12-01

    As rivers transport sediment, organic matter, and large wood, they can deposit those materials in their floodplains, storing carbon. One aspect of the carbon cycle that isn't well understood is how much carbon is stored in rivers and floodplains. There may be more carbon in rivers and floodplains than previously thought. This is important for accounting for all aspects of the carbon cycle, which is the movement of carbon among the land, ocean, and atmosphere. We are quantifying that storage in high latitude floodplains through fieldwork along five rivers in the central Yukon River Basin within the Yukon Flats National Wildlife Refuge in interior Alaska. We find that the geomorphic environment and geomorphic characteristics of rivers influence the spatial distribution of carbon on the landscape, and that floodplains may be disproportionally important for carbon storage compared to other areas. Our study area contains discontinuous permafrost, which is soil that is perennially frozen, and is warming quickly due to climate change, as in other high latitude regions. The large amount of carbon stored in the subsurface and in permafrost in the high latitudes highlights the importance of understanding where carbon is stored within rivers and floodplains in these regions and how long that carbon remains in storage. Our research helps inform how river systems influence the carbon cycle in a region undergoing rapid change.

  6. Neotectonic effects on sinuosity and channel migration, Belle Fourche River, Western South Dakota

    USGS Publications Warehouse

    Gomez, Basil; Marron, Donna C.

    1991-01-01

    Short-term instability in the behaviour of a small, meandering alluvial channel is identified from the relation between sinuosity and either floodplain slope or channel slope within 17 reaches along an 81-kilometre section of the Belle Fourche River in western South Dakota. In reaches 1 to 4 and 11 to 17 the channel is relatively stable and sinuosity varies inversely with channel slope. In reaches 5 to 10, sinuosity is positively related to floodplain slope. Sinuosity increases markedly in reaches 5, 6, and 7 (which are immediately downstream from a discontinuity in the long profile of the floodplain) in association with an increase in floodplain slope. Immediately upstream from the discontinuity, bankfull channel depth and sinuosity decrease and the area of the floodplain reworked by meander migration between 1939 and 1981 increases, in association with a decrease in floodplain slope. Channel behaviour in reaches 5 to 10 is best explained as a consequence of neotectonic activity, as indicated by changes in elevation recorded along geodetic survey lines that cross lineaments that may delimit the eastern boundary of the Black Hills uplift. Sinuosity acts as a barometer of the effects of neotectonic activity on alluvial channels. Initial indications of channel and floodplain instability due to neotectonic activity may be derived from evidence of anomalously active channel migration, as documented from photographic or topographic sources.

  7. Effects of river flow regime on cottonwood leaf litter dynamics in semi-arid northwestern Colorado

    USGS Publications Warehouse

    Andersen, D.C.; Nelson, S.M.

    2003-01-01

    We compared production and breakdown of Fremont cottonwood (Populus deltoides wislizenii) leaf litter at matched floodplain sites on the regulated Green River and unregulated Yampa River in semi-arid northwestern Colorado. Litter production under trees was similar at sites in 1999 (250 g/m2, oven-dry) but lower in 2000 (215 and 130 g/m2), a drought year that also featured an outbreak of defoliating beetles at the Yampa River site. Our production values were similar to the few others reported for riparian forests within semi-arid or arid areas. Leaf litter in portions of the floodplain not inundated during the spring flood lost organic matter at the same rate as leaves placed in upland sites in 1998 and 2000: 35 to 50% of organic matter during an approximately 160-day spring and summer period. Inundated litter lost 55 to 90% of its organic matter during the same period. Organic matter loss from inundated leaves increased with duration of inundation and with deposition of fine sediment. Pooled across locations, leafpack data suggested that nitrogen concentration (mg N/kg organic matter) increased until about 65% of the initial organic matter was lost. This increase likely reflected the buildup of microbial decomposer populations. The role of insects and other macroinvertebrates in litter breakdown apparently was minor at both sites. Large spatial and temporal variation in litter dynamics in aridland floodplain settings is ensured by microtopographic variation in the alluvial surface coupled with year-to-year variation associated with most natural flood regimes. Factors reducing flood flow frequency or magnitude will reduce overall breakdown rates on the floodplain towards those found in drier upland environments.

  8. Geomorphic and hydrologic assessment of erosion hazards at the Norman municipal landfill, Canadian River floodplain, central Oklahoma

    USGS Publications Warehouse

    Curtis, Jennifer A.; Whitney, John W.

    2003-01-01

    The Norman, Oklahoma, municipal landfill closed in 1985 after 63 years of operation, because it was identified as a point source of hazardous leachate composed of organic and inorganic compounds. The landfill is located on the floodplain of the Canadian River, a sand-bed river characterized by erodible channel boundaries and by large variation in mean monthly discharges. In 1986, floodwaters eroded riprap protection at the southern end of the landfill and penetrated the landfill's clay cap, thereby exposing the landfill contents. The impact of this moderate-magnitude flood event (Q12) was the catalyst to investigate erosion hazards at the Norman landfill. This geomorphic investigation analyzed floodplain geomorphology and historical channel changes, flood-frequency distributions, an erosion threshold, the geomorphic effectiveness of discharge events, and other factors that influence erosion hazards at the landfill site. The erosion hazard at the Norman landfill is a function of the location of the landfill with respect to the channel thalweg, erosional resistance of the channel margins, magnitude and duration of discrete discharge events, channel form and hydraulic geometry, and cumulative effects related to a series of discharge events. Based on current climatic conditions and historical channel changes, a minimum erosion threshold is set at bankfull discharge (Q = 572 m3/s). The annual probability of exceeding this threshold is 0.53. In addition, this analysis indicates that peak stream power is less informative than total energy expenditures when estimating the erosion potential or geomorphic effectiveness of discrete discharge events. On the Canadian River, long-duration, moderate-magnitude floods can have larger total energy expenditures than shorter-duration, high-magnitude floods and therefore represent the most serious erosion hazard to floodplain structures.

  9. Consistent negative temperature sensitivity and positive influence of precipitation on growth of floodplain Picea glauca in Interior Alaska

    Treesearch

    Glenn Patrick Juday; Claire. Alix

    2012-01-01

    This paper calibrates climate controls over radial growth of floodplain white spruce (Picea glauca (Moench) Voss) and examines whether growth in these populations responds similarly to climate as upland trees in Interior Alaska. Floodplain white spruce trees hold previously unrecognized potential for long-term climate reconstruction because they...

  10. 77 FR 75623 - Notice of Intent To Prepare an Environmental Impact Statement for the Plains and Eastern Clean...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... and Eastern Clean Line Transmission Project and Notice of Potential Floodplain and Wetland Involvement... and Notice of Potential Floodplain and Wetland Involvement. SUMMARY: The U.S. Department of Energy... of the proposed project may affect floodplains and/or wetlands. This NOI, therefore, also serves as a...

  11. Soil organic matter formation and sequestration across a forested floodplain chronosequence

    Treesearch

    John D. Wigginton; B. Graeme Lockaby; Carl C. Trettin

    2000-01-01

    Successional changes in soil organic matter formation and carbon sequestration across a forested floodplain chronosequence were studied at the Savannah river site, National Environmental Research Park, SC, US. Four floodplain sites were selected for study, three of which are in various stages of recovery from impact due to thermal effluent discharge. The fourth is a...

  12. The story of the creation and monitoring of the Russian Desman (Desmana moschata L.) population reintroduced of in the Kerzhenets river floodplain in the Nizhny Novgorod region

    NASA Astrophysics Data System (ADS)

    Bakka, S. V.; Kiseleva, N. Yu; Pankratov, I. I.; Tarasov, I. A.; Shukov, P. M.

    2018-01-01

    The article summarizes the results of creating the reintroduced population of the Russian desman (Desmana moschata L.) in the Nizhny Novgorod region in the floodplain of the Kerzhenets river (the left tributary of the Volga) and monitoring of its status in 2005-2017. In 2001-2002, a total of 51 individuals were released in the Kerzhenskiy State Nature Reserve. In subsequent years, the desman iinhabited the floodplain of the Kerzhenets river 20 km upstream and 60 km downstream of the river. The number of reintroduced population was 35-40 individuals in 2012, 17 individuals - in 2013. Probably from 30 to 50% of the reintroduced population of desmans inhabit the territory of the Kerzhenskiy State Nature Reserve. Population numbers of desmans in the Reserve varied from 25 individuals in 2005 to 3 in 2015. The positive population trend was recored in 2016-17. Also the paper discusses the limiting factors, the relationship between desmans and muskrats. Now the number of reintroduced population is at a critically low level. However, it is essential for conservation of this endangered species. Recommendations for continued monitoring of the desman status in the valley of the Kerzhenets river are presented.

  13. The spatial and temporal trends of Cd, Cu, Hg, Pb and Zn in Seine River floodplain deposits (1994-2000)

    USGS Publications Warehouse

    Grosbois, C.; Meybeck, Michel; Horowitz, A.; Ficht, A.

    2006-01-01

    Fresh floodplain deposits (FD), from 11 key stations, covering the Seine mainstem and its major tributaries (Yonne, Marne and Oise Rivers), were sampled from 1994 to 2000. Background levels for Cd, Cu, Hg, Pb, and Zn were established using prehistoric FD and actual bed sediments collected in small forested sub-basins in the most upstream part of the basin. Throughout the Seine River Basin, FD contain elevated concentrations of Cd, Cu, Hg, Pb and Zn compared to local background values (by factors > twofold). In the Seine River Basin, trace element concentrations display substantial downstream increases as a result of increasing population densities, particularly from Greater Paris (10 million inhabitants), and reach their maxima at the river mouth (Poses). These elevated levels make the Seine one of the most heavily impacted rivers in the world. On the other hand, floodplain-associated trace element levels have declined over the past 7 years. This mirrors results from contemporaneous suspended sediment surveys at the river mouth for the 1984-1999 period. Most of these temporal declines appear to reflect reductions in industrial and domestic solid wastes discharged from the main Parisian sewage plant (Seine Aval). ?? 2005 Elsevier B.V. All rights reserved.

  14. Effect of conservation efforts and ecological variables on waterbird population sizes in wetlands of the Yangtze River

    PubMed Central

    Zhang, Yong; Jia, Qiang; Prins, Herbert H. T.; Cao, Lei; de Boer, Willem Frederik

    2015-01-01

    Forage quality and availability, climatic factors, and a wetland’s conservation status are expected to affect the densities of wetland birds. However, the conservation effectiveness is often poorly studied. Here, using twelve years’ census data collected from 78 wetlands in the Yangtze River floodplain, we aimed to understand the effect of these variables on five Anatidae species, and evaluate the effectiveness of the conservation measures by comparing population trends of these species among wetlands that differ in conservations status. We showed that the slope angle of a wetland and the variation thereof best explain the differences in densities of four species. We also found that the population abundances of the Anatidae species generally declined in wetlands along the Yangtze River floodplain over time, with a steeper decline in wetlands with a lower protection status, indicating that current conservation policies might deliver benefits for wintering Anatidae species in China, as population sizes of the species were buffered to some extent against decline in numbers in wetlands with a higher level protection status. We recommend several protection measures to stop the decline of these Anatidae species in wetlands along the Yangtze River floodplain, which are of great importance for the East Asian-Australasian Flyway. PMID:26601785

  15. Effect of conservation efforts and ecological variables on waterbird population sizes in wetlands of the Yangtze River

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Jia, Qiang; Prins, Herbert H. T.; Cao, Lei; de Boer, Willem Frederik

    2015-11-01

    Forage quality and availability, climatic factors, and a wetland’s conservation status are expected to affect the densities of wetland birds. However, the conservation effectiveness is often poorly studied. Here, using twelve years’ census data collected from 78 wetlands in the Yangtze River floodplain, we aimed to understand the effect of these variables on five Anatidae species, and evaluate the effectiveness of the conservation measures by comparing population trends of these species among wetlands that differ in conservations status. We showed that the slope angle of a wetland and the variation thereof best explain the differences in densities of four species. We also found that the population abundances of the Anatidae species generally declined in wetlands along the Yangtze River floodplain over time, with a steeper decline in wetlands with a lower protection status, indicating that current conservation policies might deliver benefits for wintering Anatidae species in China, as population sizes of the species were buffered to some extent against decline in numbers in wetlands with a higher level protection status. We recommend several protection measures to stop the decline of these Anatidae species in wetlands along the Yangtze River floodplain, which are of great importance for the East Asian-Australasian Flyway.

  16. Effect of conservation efforts and ecological variables on waterbird population sizes in wetlands of the Yangtze River.

    PubMed

    Zhang, Yong; Jia, Qiang; Prins, Herbert H T; Cao, Lei; de Boer, Willem Frederik

    2015-11-25

    Forage quality and availability, climatic factors, and a wetland's conservation status are expected to affect the densities of wetland birds. However, the conservation effectiveness is often poorly studied. Here, using twelve years' census data collected from 78 wetlands in the Yangtze River floodplain, we aimed to understand the effect of these variables on five Anatidae species, and evaluate the effectiveness of the conservation measures by comparing population trends of these species among wetlands that differ in conservations status. We showed that the slope angle of a wetland and the variation thereof best explain the differences in densities of four species. We also found that the population abundances of the Anatidae species generally declined in wetlands along the Yangtze River floodplain over time, with a steeper decline in wetlands with a lower protection status, indicating that current conservation policies might deliver benefits for wintering Anatidae species in China, as population sizes of the species were buffered to some extent against decline in numbers in wetlands with a higher level protection status. We recommend several protection measures to stop the decline of these Anatidae species in wetlands along the Yangtze River floodplain, which are of great importance for the East Asian-Australasian Flyway.

  17. The response of zooplankton communities to the 2016 extreme hydrological cycle in floodplain lakes connected to the Yangtze River in China.

    PubMed

    Zhang, Kun; Xu, Mei; Wu, Qili; Lin, Zhi; Jiang, Fangyuan; Chen, Huan; Zhou, Zhongze

    2018-06-04

    The Huayanghe Lakes play an important role in the Yangtze floodplain in China and had extremely high water levels during the summer of 2016. Monitoring data was collected in an effort to understand the impact of this change on the crustacean zooplankton composition and abundance and the biomass variation in the Huayanghe Lakes between a regular hydrological cycle (RHC) and an extreme hydrological cycle (EHC). The crustacean zooplankton community composition, abundance, and biomass in the floodplain lakes were markedly affected by the water-level disturbance. The number of species was lower in the RHC, but the mean density and biomass decreased from 93.84 ± 13.29 ind./L and 6.11 ± 0.89 mg/L, respectively, in the RHC to 66.62 ± 10.88 ind./L and 1.22 ± 0.26 mg/L, respectively, in the EHC. Pearson correlations and redundancy analyses revealed the environmental factors with the most significant impact on the crustacean zooplankton community differed between the RHC and EHC cycles. Little previous information exists on the zooplankton in these lakes, and the present study provides data on the zooplankton composition, abundance, and biomass, both at baseline and in response to hydrological changes.

  18. Geochemical mapping in polluted floodplains using handheld XRF, geophysical imaging, and geostatistics

    NASA Astrophysics Data System (ADS)

    Hošek, Michal; Matys Grygar, Tomáš; Popelka, Jan; Kiss, Timea; Elznicová, Jitka; Faměra, Martin

    2017-04-01

    In the recent years researchers have enjoyed noticeable improvements of portable analytical and geophysical methods, which allow studying floodplain architecture and deciphering pollutant distribution more easily than ever before. Our area of interest was floodplain of the Ploučnice River, particularly a pollution hotspot in Boreček, severely impacted by U mining between the 1970s and late 1980s, in particular a "radioactive flood" in 1981. In the area, we used hand drill coring and in situ (field) analysis of so acquired sediments by handheld X-ray fluorescence spectrometer (XRF), which gave us information about depth profiles of pollutants (Ba, U, Zn) and the Al/Si and Zr/Rb ratios, i.e., proxies for sediment lithology. We found that spatial distribution of pollutants (control by depth and position in the floodplain) is apparently complex and discontinuous. In some places, contamination is buried by a couple decimetres of less polluted sediments, while in other places the peak pollution is near surface, apparently without a straightforward connection with the surface topography and the distance to the river channel. We thus examined the floodplain architecture, the internal structure of the floodplain using two geophysical methods. First of them, dipole electromagnetic profiling (DEMP, also denoted EMP, MP, or Slingram) quickly acquires average electric resistivity in top strata in selected areas, which was actually top 3 m with our particular instrument. Second, electric resistivity tomography (ERT) produces much more detailed information on resistivity with depth resolution of ca 0.5 m to the depth of ca 5 m in selected lines. ERT thus allows identifying boundaries of electric resistivity domains (sediment bodies) and DEMP their spatial distribution. Based on the obtained data, we divided the floodplain to five segments with specific topography, pollution characteristics, and electric resistivity. We suppose that those segments are lithogenetic floodplain units. Those findings must, however, be checked by sediment examination and analysis in selected points. We processed the crucial characteristics obtained by geochemical mapping, namely depth of maximum pollution, amount of contamination, and lithology (Al/Si and Zr/Rb ratios), using geostatistics. Moreover, some parts of floodplain were dated by optically stimulated luminescence (OSL) which revealed, that recycling of top decimetres of floodplain fine fill (silts) in Boreček site has proceeded relatively recently (in decades and centuries) as compared to deeper lying coarser (sandy) strata (millennia). The results of geochemical mapping show complexity of pollution hotspots and need of their integrated interpretation. Key words: Dipole electromagneting profilling, electric resistivity tomography, floodplain contamination, geochemical mapping

  19. The Characteristics of Turbulent Flows on Forested Floodplains

    NASA Astrophysics Data System (ADS)

    Darby, S. E.; Richardson, K.; Sear, D. A.

    2008-12-01

    Forested floodplain environments represent the undisturbed land cover of most river systems, but they are under threat from human activities. An understanding of forest floodplain processes therefore has relevance to ecosystem conservation and restoration, and the interpretation of pre-historic river and floodplain evolution. However, relatively little research has been undertaken within forested floodplain environments, a particular limitation being an absence of empirical data regarding the hydraulic characteristics of over bank flows, which inhibits the development of flow, sediment and solute transport models. Forest floodplain flows are strongly modified by floodplain topography and the presence of vegetation and organic debris on the woodland floor. In such instances flow blockage and diversions are common, and there is the possibility of intense turbulence generation, both by wakes and by shear. To address this gap we have undertaken a study based on a floodplain reach located in the Highland Water Research Catchment (southern England), a UK national reference site for lowland floodplain forest streams. Given the difficulties of acquiring spatially-distributed hydraulic data sets during floods, our methodological approach has been to attempt to replicate over bank flow observed at the study site within a laboratory flume. This is necessary to acquire flow velocity data at sufficiently high spatial resolution to evaluate the underlying flow mechanics and has been achieved using (i) a large (21m) flume to achieve 1:1 hydraulic scaling and (ii) a novel method of precisely replicating the floodplain topography within the flume. Specifically, accurate replication of a representative floodplain patch was achieved by creating a 1:1 scale Physical Terrain Model (PTM) from high-density polyurethane using a computer-controlled milling process based on Digital Terrain Model (DTM) data, the latter acquired via terrestrial laser scanning (TLS) survey. The PTM was deployed within the flume immediately downstream of a 8m long hydraulically smooth 'run-in' section with a steady discharge replicating an over bank flow observed in the field, thus achieving 1:1 hydraulic scaling. Above the PTM 3D flow velocity time-series were acquired at each node on a dense (5-10cm horizontal spatial resolution) sampling grid using Acoustic Doppler Velocimeters (ADVs). The data were analysed by visualising the 3D structure of flow velocity and derivative statistics (turbulent intensity, turbulent kinetic energy, Reynolds stresses, etc), combined with quadrant analysis to identify the spatial variation of each quadrant's contribution to the turbulence intensity. These analyses have been used to delineate flow regions dominated by different structures, and construct an empirical model that will be helpful in defining relevant modelling strategies in future research.

  20. Meander morphodynamics over self-formed floodplains: can the migration history affect the future morphology of the river?

    NASA Astrophysics Data System (ADS)

    Bogoni, M.; Lanzoni, S.; Putti, M.

    2017-12-01

    Floodplains, and rivers therein, constitute complex systems whose simulation involves modeling of hydrodynamic, morphodynamic, chemical, and biological processes which act over a wide range of time scales (from days to centuries) and affect each other. Self-formed floodplains are produced by the sedimentary processes associated with the migration of river bends and the formation of abandoned oxbow lakes consequent to the cutoff of mature meanders. The erosion and deposition processes at the banks lead to heterogeneities in the surface composition, thus the river may experience faster or slower migration rates depending on the spatial distribution of the erosional resistance. As a consequence, the past spatial configurations of the river (i.e. the migration history) play a key role in shaping the successive river paths.We recently published a paper addressing the modeling of meander morphodynamics over self-formed heterogeneous floodplain. Results show that the heterogeneity in floodplain composition associated with the formation of geomorphic units (i.e., scroll bars and oxbow lakes) and the choice of a reliable flow field model to drive channel migration are two fundamental ingredients for reproducing correctly the long-term morphodynamics of alluvial meanders. We compare numerically generated planforms obtained for different scenarios of floodplain heterogeneity to natural meandering paths, through half meander metrics and spatial distribution of channel curvatures. Statistical and spectral tools disclose the complexity embedded in meandering geometry and the crucial differences between apparently similar configurations.Floodplain heterogeneity affects both the temporal and spatial distributions of meander geometry, and eventually leads to a closer statistical similarity between simulated and natural planform shapes when scroll bars and oxbow lakes left behind are harder to erode than the surrounding floodplain.

  1. Delineating Floodplain in North Korea using Remote Sensing and Geographic Information System

    NASA Astrophysics Data System (ADS)

    Lim, J.; Lee, K. S.

    2015-12-01

    Korea has been divided into two countries after World War II. So environmental studies about North Korean are not easy and very limited. There were several flood damages every summer in North Korea since 1995, which induces lots of economic loss and agricultural production decrease. Delineating floodplain is indispensable to estimate the magnitude of flood damage and restore the flooded paddy field after unification. Remote Sensing (RS) can provide opportunity to study inaccessible area. In addition, flooding detection is possible. Several research groups study about flooding disaster using RS. Optical images and microwave images have been used in that field. Also, Digital topographic data have been used for flooding detection. Therefore, the purpose of this study is to investigate the land characteristics of floodplain by delineating floodplain in inaccessible North Korea using Landsat and digital topographic data. Landsat TM 5 images were used in this study. North Korea had severe flooding disaster since 1995. Among them 1995, 2007 and 2012 flooding are known for serious damages. Two Landsat images before and after flooding of each year were used to delineate floodplain. Study areas are Pyongyang City, Nampo City, North and South Hwanghae Province and South Pyongan Province. Floodplain are derived from overlaid classification image and flood-depth map. 1:25,000 scale digital topographic data were used to make flood-depth map. For land cover classification image enhancement and supervised classification with maximum likelihood classifier were used. Training areas were selected by visual interpretation using Daum-map which provides high resolution image of whole North Korea. The spatial characteristics of the floodplain were discussed based on floodplain map delineated in this study.

  2. Agricultural conversion of floodplain ecosystems: implications for groundwater quality.

    PubMed

    Schilling, Keith E; Jacobson, Peter J; Vogelgesang, Jason A

    2015-04-15

    With current trends of converting grasslands to row crop agriculture in vulnerable areas, there is a critical need to evaluate the effects of land use on groundwater quality in large river floodplain systems. In this study, groundwater hydrology and nutrient dynamics associated with three land cover types (grassland, floodplain forest and cropland) were assessed at the Cedar River floodplain in southeastern Iowa. The cropland site consisted of newly-converted grassland, done specifically for our study. Our objectives were to evaluate spatial and temporal variations in groundwater hydrology and quality, and quantify changes in groundwater quality following land conversion from grassland to row crop in a floodplain. We installed five shallow and one deep monitoring wells in each of the three land cover types and recorded water levels and quality over a three year period. Crop rotations included soybeans in year 1, corn in year 2 and fallow with cover crops during year 3 due to river flooding. Water table levels behaved nearly identically among the sites but during the second and third years of our study, NO₃-N concentrations in shallow floodplain groundwater beneath the cropped site increased from 0.5 mg/l to more than 25 mg/l (maximum of 70 mg/l). The increase in concentration was primarily associated with application of liquid N during June of the second year (corn rotation), although site flooding may have exacerbated NO₃-N leaching. Geophysical investigation revealed differences in ground conductivity among the land cover sites that related significantly to variations in groundwater quality. Study results provide much-needed information on the effects of different land covers on floodplain groundwater and point to challenges ahead for meeting nutrient reduction goals if row crop land use expands into floodplains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Stratigraphic, sedimentologic, and dendrogeomorphic analyses of rapid floodplain formation along the Rio Grande in Big Bend National Park, Texas

    USGS Publications Warehouse

    Dean, D.J.; Scott, M.L.; Shafroth, P.B.; Schmidt, J.C.

    2011-01-01

    The channel of the lower Rio Grande in the Big Bend region rapidly narrows during years of low mean and peak flow. We conducted stratigraphic, sedimentologic, and dendrogeomorphic analyses within two long floodplain trenches to precisely reconstruct the timing and processes of recent floodplain formation. We show that the channel of the Rio Grande narrowed through the oblique and vertical accretion of inset floodplains following channel-widening floods in 1978 and 1990-1991. Vertical accretion occurred at high rates, ranging from 16 to 35 cm/yr. Dendrogeomorphic analyses show that the onset of channel narrowing occurred during low-flow years when channel bars obliquely and vertically accreted fine sediment. This initial stage of accretion occurred by both bedload and suspended-load deposition within the active channel. Vegetation became established on top of these fine-grained deposits during years of low peak flow and stabilized these developing surfaces. Subsequent deposition by moderate floods (between 1.5 and 7 yr recurrence intervals) caused additional accretion at rapid rates. Suspended-sediment deposition was dominant in the upper deposits, resulting in the formation of natural levees at the channel margins and the deposition of horizontally bedded, fining-upward deposits in the floodplain trough. Overall, channel narrowing and floodplain formation occurred through an evolution from active-channel to floodplain depositional processes. High-resolution dendrogeomorphic analyses provide the ability to specifically correlate the flow record to the onset of narrowing, the establishment of riparian vegetation, the formation of natural levees, and ultimately, the conversion of portions of the active channel to floodplains. ?? 2011 Geological Society of America.

  4. Exploring applications of GPR methodology and uses in determining floodplain function of restored streams in the Gulf Coastal Plain, Alabama

    NASA Astrophysics Data System (ADS)

    Eckes, S. W.; Shepherd, S. L.

    2017-12-01

    Accurately characterizing subsurface structure and function of remediated floodplains is indispensable in understanding the success of stream restoration projects. Although many of these projects are designed to address increased storm water runoff due to urbanization, long term monitoring and assessment are often limited in scope and methodology. Common monitoring practices include geomorphic surveys, stream discharge, and suspended sediment loads. These data are comprehensive for stream monitoring but they do not address floodplain function in terms of infiltration and through flow. Developing noninvasive methods for monitoring floodplain moisture transfer and distribution will aid in current and future stream restoration endeavors. Ground penetrating radar (GPR) has been successfully used in other physiographic regions for noninvasive and continuous monitoring of (1) natural geomorphic environments including subsurface structure and landform change and (2) soil and turf management to monitor subsurface moisture content. We are testing the viability of these existing methods to expand upon the broad capabilities of GPR. Determining suitability will be done in three parts using GPR to (1) find known buried objects of typical materials used in remediation at measured depths, (2) understand GPR functionality in varying soil moisture content thresholds on turf plots, and (3) model reference, remediated, and impacted floodplains in a case study in the D'Olive Creek watershed located in Baldwin County, Alabama. We hypothesize that these methods will allow us to characterize moisture transfer from precipitation and runoff to the floodplain which is a direct function of floodplain health. The need for a methodology to monitor floodplains is widespread and with increased resolution and mobility, expanding GPR applications may help streamline remediation and monitoring practices.

  5. Modeling small-scale and large-scale flood wave processes as indicators of channel-floodplain connectivity

    NASA Astrophysics Data System (ADS)

    Byrne, C. F.; Stone, M. C.

    2016-12-01

    Anthropogenic alterations to rivers and floodplains, either in the context of river engineering or river restoration efforts, have no doubt impacted channel-floodplain connectivity in the majority of developed river systems. River management strategies now often strive to retain or improve ecological integrity of floodplains. Therefore, there is a need to quantify the hydrodynamic processes that have implications for river geomorphology and ecology within the channel-floodplain interface. Because field quantification of these processes is extremely difficult, new methods in hydrodynamic modeling can help to inform river science. This research focused on the assessment of channel-floodplain flow dynamics using two-dimensional hydrodynamic modeling and presents various methods of hydrodynamic process quantification in unsteady flow scenarios. The objectives of this research were to: (1) quantify the small-scale processes of mass and momentum transfer from the main channel to the floodplain; and (2) assess how these processes accrue to meaningful levels to affect the large-scale process of flood wave attenuation. This was achieved by modeling the heavily manipulated Albuquerque Reach of the Rio Grande in New Mexico. Results are presented as mass and momentum fluxes along the channel-floodplain boundaries with a focus on the application of these methods to unsteady flood wave modeling. In addition, quantification of downstream flood wave attenuation is presented as attenuation ratios of discharge and stage, as well as wave celerity. Mass and momentum fluxes during flood waves are shown to be highly variable over spatial and temporal scales and demonstrate the implications of lateral surface connectivity. Results from this research and further application of the methods presented here can help river scientists better understand the dynamics of flood processes especially in the context of process-based river restoration.

  6. Large wood, sediment, and flow regimes: Their interactions and temporal changes caused by human impacts in Japan

    NASA Astrophysics Data System (ADS)

    Nakamura, Futoshi; Seo, Jung Il; Akasaka, Takumi; Swanson, Frederick J.

    2017-02-01

    Water, sediment, and large wood (LW) are the three key components of dynamic river-floodplain ecosystems. We examined variations in sediment and LW discharge with respect to precipitation, the presence of dams, land and river use change, and related channel incision and forest expansion on gravel bars and floodplains across Japan. The results indicated that unit sediment discharge and unit LW discharge were smaller in southern Japan where precipitation intensity is generally much greater. Effective precipitation, an index that takes current and antecedent precipitation into account, was a strong predictor of discharge in small watersheds, but not in larger watersheds. However, precipitation intensities related to unit sediment discharge in intermediate and large watersheds were smaller than those associated with unit LW discharge, which we attribute to differences in particle shape and size and also transport mechanisms. The relationship between river flow and discharge of sediment and LW lead us to posit that discharges of these components are supply limited in southern Japan and transport limited in northern Japan. The cross-sectional mean low-flow bed elevation of gravel-bed and sand-bed rivers in Japan decreased by 0.71 and 0.74 m on average, respectively, over the period 1960-2000. Forest expansion on bars and floodplains has been prominent since the 1990s, and trees apparently began to colonize gravel bars 10 to 20 years after riverbed degradation began. Forest recovery in headwater basins, dam construction, gravel mining, and channelization over the past half century are likely the dominant factors that significantly reduced downstream sediment delivery, thereby promoting channel incision and forest expansion. Changes in rivers and floodplains associated with channel incision and forest expansion alter the assemblages of aquatic and terrestrial organisms in riverine landscapes of Japan, and climate change may contribute to this change by intensified precipitation. Additionally, regime shifts of water, sediment, and LW may continue or they may reach a dynamic state of quasi-equilibrium in the future. Continued monitoring of these three components, taking into account their geographic variation, is critical for anticipating and managing future changes in river-floodplain systems in Japan and around the world.

  7. The environmental and geomorphological impacts of historical gold mining in the Ohinemuri and Waihou river catchments, Coromandel, New Zealand

    NASA Astrophysics Data System (ADS)

    Clement, Alastair J. H.; Nováková, Tereza; Hudson-Edwards, Karen A.; Fuller, Ian C.; Macklin, Mark G.; Fox, Elizabeth G.; Zapico, Ignacio

    2017-10-01

    Between 1875 and 1955 approximately 250,000 Mg yr- 1 of mercury-, arsenic-, and cyanide-contaminated mine tailings were discharged directly into the Ohinemuri River and its tributaries, in the Coromandel Region, North Island, New Zealand. A devastating flood on 14 January 1907 deposited large amounts of mine waste across the floodplain of the Ohinemuri and Waihou rivers in the vicinity of the township of Paeroa. The 1907 mine-waste flood deposit was located as a dirty yellow silt in cores and floodplain profiles, with a thickness ranging from 0.15-0.50 m. Geochemical analysis of the mine waste shows elevated concentrations of Pb ( 200-570 mg kg- 1) and As ( 30-80 mg kg- 1), compared to early Holocene background concentrations (Pb < 30 mg kg- 1; As < 17 mg kg- 1). Bulk sediment samples recovered from the river channel and overbank deposits also show elevated concentrations of Pb ( 110 mg kg- 1), Zn ( 140-320 mg kg- 1), Ag ( 3 mg kg- 1), and Hg ( 0.4 mg kg- 1). Using the mine-waste deposit as a chronological marker shows that sedimentation rates increased from 0.2 mm yr- 1 in the early Holocene, to 5.5-26.8 mm yr- 1 following the 1907 flood. Downstream trends in the thickness of the flood deposit show that local-scale geomorphic factors are a significant influence on the deposition of mine waste in such events. Storage of mine waste is greatest in the upstream reaches of the floodplain. The volume of mine waste estimated to be stored in the Ohinemuri floodplain is 1.13 M m3, an order of magnitude larger than recent well-publicised tailings-dam failures, such as the 1996 South America Porco, 2000 Romanian Baia Mare and Baia Borsa accidents, and constituted, and was recognised at the time, a significant geomorphological and environmental event. The mine-waste material remains in the floodplain today, representing a sizable legacy store of contaminant metals and metalloids that pose a long-term risk to the Ohinemuri and Waihou ecosystems.

  8. Landscape Vulnerability Analysis from Historic Lower Mississippi River Flood in 2011

    NASA Astrophysics Data System (ADS)

    Goodwell, A. E.; Zhu, Z.; Dutta, D.; Greenberg, J.; Kumar, P.; Garcia, M. H.; Rhoads, B. L.; Parker, G.; Berretta, D.; Holmes, R. R.

    2012-12-01

    This study presents the results of a landscape vulnerability analysis of the Birds Point New Madrid Floodway in southeastern Missouri. The U.S. Army Corps of Engineers intentionally inundated 500 square kilometers of agricultural floodplain in May of 2011 as an emergency flood control measure. We use pre-flood (2005) and post-flood (2011) high resolution Lidar data to establish the landscape impact of the levee breach on the floodplain. The Lidar DEMs were corrected for flight line errors using a Fourier filtering technique, and then subtracted to obtain a differential DEM of erosion and deposition patterns. We use soil erosion characteristics, AVIRIS remote sensing data, and 2D floodplain modeling to analyze the three components of vulnerability: sensitivity, exposure, and adaptive capacity. HydroSed2D (Liu, Landry and García 2008), a 2D flow model, is implemented to simulate flow depths and speeds, or flood exposure, over the entire floodway, as well as smaller sections at increased resolution using a nested grid. We classify woody vegetation based on AVIRIS remote sensing data, and represent vegetated regions in the model as varied values of the Manning's n coefficient. Soil erodibility, vegetation, topography, and flow characteristics are compared to observed landscape changes within the floodplain. Overall, the floodway showed a remarkable resilience to an extreme flood event. When compared to levee breaches on similar rivers in other floods, the lack of newly deposited sediment is noticeable and likely attributable to the presence of a substantial riparian corridor between the main channel of the Mississippi River and the floodway. Although many meander scars indicating former channels of the Mississippi River are apparent in the topography, only one, known as O'Bryan Ridge, experienced high volumes of erosion and deposition due to the flooding. The vulnerability analysis supports the hypothesis this high impact is due to a combination of vulnerability factors such as high flow speed, few localized patches of vegetation, and high soil erodibility at this ridge compared to other similar meander scars. The methodology of this analysis can be used to locate regions of high vulnerability in future floodplain management and flood control, and mitigate potentially catastrophic landscape change.

  9. Selecting reconnaissance strategies for floodplain surveys

    NASA Technical Reports Server (NTRS)

    Sollers, S. C.; Rango, A.; Henninger, D. L.

    1977-01-01

    Multispectral aircraft and satellite data over the West Branch of the Susquehanna River were analyzed to evaluate potential contributions of remote sensing to flood-plain surveys. Multispectral digital classifications of land cover features indicative of floodplain areas were used by interpreters to locate various floodprone area boundaries. The digital approach permitted LANDSAT results to be displayed at 1:24,000 scale and aircraft results at even larger scales. Results indicate that remote sensing techniques can delineate floodprone areas more easily in agricultural and limited development areas as opposed to areas covered by a heavy forest canopy. At this time it appears that the remote sensing data would be best used as a form of preliminary planning information or as an internal check on previous or ongoing floodplain studies. In addition, the remote sensing techniques can assist in effectively monitoring floodplain activities after a community enters into the National Flood Insurance Program.

  10. [Diversity of soil mesofauna in Northern Taiga biogeocenosises of the Kamennaya river basin (Karelia)].

    PubMed

    Rybalov, L B; Kamaev, I O

    2011-01-01

    The population of soil mesofauna in the basin of the small river subzone of the northern taiga (Karelia) has been investigated. It was shown that indexes of the number and mass of soil mesofauna in the landscape-ecological row ofbiogeocenosises are maximal in floodplain soils. The taxonomic composition and structure of domination of the soil mesofauna population depends on the location of biogeocenosis in the landscape: earthworms are dominants in riverine floodplain biogeocenosises, and larvae of elaterids and spiders prevail in the places outside of floodplains. The abundance of saprophytic invertebrates in floodplain biogeocenosises results in formation of humus of the mull type. A group of animals with mixed type of nutrition dominates in the places outside of floodplain soils that are related with humus of the moder-mor type. The population of rove beetles (Staphylinidae) allows the division of biogeocenosises into two groups according to their position in the landscape.

  11. Habitat conservation and creation: Invoking the flood-pulse concept to enhance fisheries in the lower Mississippi River

    USGS Publications Warehouse

    Schramm, H.L.; Eggleton, M.A.; Mayo, R.M.

    2000-01-01

    Analysis of four years of growth data failed to identify a single temperature or hydrologic variable that consistently accounted for variation in annual growth of catfishes (Ictaluridae). Instead, a composite variable that measured duration of floodplain inundation when water temperature exceeded minima for active feeding was directly related to growth. Results indicated that floodplain inundation have provided little direct energetic benefit to fishes when water temperatures were sub-optimal for active feeding, but floodplain resources were exploited when thermal conditions were sufficient for active feeding and growth. Thus, the flood-pulse concept applies to the lower Mississippi River (LMR) when modified to consider temperature. Managing the existing leveed floodplain to prolong inundation, increase water temperatures during spring flooding, and maintain connectivity of floodplain habitats with the main river channel should benefit fish production in the LMR.

  12. Floodplain biogeochemical processing of floodwaters in the Atchafalaya River Basin during the Mississippi River flood of 2011

    USGS Publications Warehouse

    Scott, Durelle T.; Keim, Richard F.; Edwards, Brandon L.; Jones, C. Nathan; Kroes, Daniel E.

    2014-01-01

    The 2011 flood in the Lower Mississippi resulted in the second highest recorded river flow diverted into the Atchafalaya River Basin (ARB). The higher water levels during the flood peak resulted in high hydrologic connectivity between the Atchafalaya River and floodplain, with up to 50% of the Atchafalaya River water moving off channel. Water quality samples were collected throughout the ARB over the course of the flood event. Significant nitrate (NO3-) reduction (75%) occurred within the floodplain, resulting in a total NO3- reduction of 16.6% over the flood. The floodplain was a small but measurable source of dissolved reactive phosphorus (SRP) and ammonium (NH4+). Collectively, these results from this large flood event suggest that enhancing river-floodplain connectivity through freshwater diversions will reduce NO3- loads to the Gulf of Mexico during large annual floods.

  13. The role of floods in particulate organic matter dynamics of a southern Appalachian river-floodplain ecosystem

    Treesearch

    Mattew A. Neatrour; Jackson R. Webster; Ernest F. Benfield

    2004-01-01

    We investigated the etfect of a flood on particulate organic matter (POM) dynamics in the floodplain and active channel of the Little Tennessee River In western North Carolina We measured litterfall, leaf breakdown, and floodplain litter (before and after the flood) at 12 sites Annual litterfall (256-562 g m-2 y-1 ) was...

  14. 7 CFR Exhibit C to Subpart G of... - Implementation Procedures for the Farmland Protection Policy Act; Executive Order 11988...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... designated by a unit of State or local government to be of statewide or local importance and such designation... floodplain whenever either (a) the action or its related activities would be located within a floodplain, or... floodplains and wetlands. Such methods may be either physical or managerial in character. Nonstructural flood...

  15. Using Landsat Thematic Mapper and SPOT Satellite Imagery to inventory wetland plants of the Coeur d'Alene Floodplain

    Treesearch

    F. M. Roberts; P. E. Gessler

    2000-01-01

    Landsat Thematic Mapper (TM) and SPOT Satellite Imagery were used to map wetland plant species in thc Coeur d'Alene floodplain in northern Idaho. This paper discusses the methodology used to create a wetland plant species map for the floodplain. Species mapped included common cattail (Typha latifolia); water horse-tail (Equisetum...

  16. Simulation of Rio Grande floodplain inundation Using FLO-2D

    Treesearch

    J. S. O' Brien; W. T. Fullerton

    1999-01-01

    Spring floodplain inundation is important to the natural functions of the Rio Grande bosque biological community including cottonwood tree germination and recruitment. To predict floodplain inundation, a two-dimensional flood routing model FLO-2D will be applied to various reaches of the Rio Grande. FLO-2D will assess overbank flooding in terms of the area of...

  17. Risk-based zoning for urbanizing floodplains.

    PubMed

    Porse, Erik

    2014-01-01

    Urban floodplain development brings economic benefits and enhanced flood risks. Rapidly growing cities must often balance the economic benefits and increased risks of floodplain settlement. Planning can provide multiple flood mitigation and environmental benefits by combining traditional structural measures such as levees, increasingly popular landscape and design features (green infrastructure), and non-structural measures such as zoning. Flexibility in both structural and non-structural options, including zoning procedures, can reduce flood risks. This paper presents a linear programming formulation to assess cost-effective urban floodplain development decisions that consider benefits and costs of development along with expected flood damages. It uses a probabilistic approach to identify combinations of land-use allocations (residential and commercial development, flood channels, distributed runoff management) and zoning regulations (development zones in channel) to maximize benefits. The model is applied to a floodplain planning analysis for an urbanizing region in the Baja Sur peninsula of Mexico. The analysis demonstrates how (1) economic benefits drive floodplain development, (2) flexible zoning can improve economic returns, and (3) cities can use landscapes, enhanced by technology and design, to manage floods. The framework can incorporate additional green infrastructure benefits, and bridges typical disciplinary gaps for planning and engineering.

  18. California's Yolo Bypass: Evidence that flood control can be compatible with fisheries, wetlands, wildlife, and agriculture

    USGS Publications Warehouse

    Sommer, T.; Harrell, B.; Nobriga, M.; Brown, R.; Moyle, P.B.; Kimmerer, W.; Schemel, Laurence E.

    2001-01-01

    Unlike conventional flood control systems that frequently isolate rivers from ecologically-essential floodplain habitat, California's Yolo Bypass has been engineered to allow Sacramento Valley floodwaters to inundate a broad floodplain. From a flood control standpoint, the 24,000 ha leveed floodplain has been exceptionally successful based on its ability to convey up to 80% of the flow of the Sacramento River basin during high water events. Agricultural lands and seasonal and permanent wetlands within the bypass provide key habitat for waterfowl migrating through the Pacific Flyway. Our field studies demonstrate that the bypass seasonally supports 42 fish species, 15 of which are native. The floodplain appears to be particularly valuable spawning and rearing habitat for the splittail (Pogonichthys macrolepidotus), a federally-listed cyprinid, and for young chinook salmon (Oncorhynchus tshawytscha), which use the Yolo Bypass as a nursery area. The system may also be an important source to the downstream food web of the San Francisco Estuary as a result of enhanced production of phytoplankton and detrital material. These results suggest that alternative flood control systems can be designed without eliminating floodplain function and processes, key goals of the 1996 Draft AFS Floodplain Management Position Statement.

  19. The ecology, restoration, and management of southeastern floodplain ecosystems: a synthesis

    USGS Publications Warehouse

    King, Sammy L.; Sharitz, Rebecca R.; Groninger, John W.; Battaglia, Loretta L.

    2009-01-01

    Floodplain ecosystems of the southeastern United States provide numerous services to society, but hydrologic and geomorphic alterations, agricultural practices, water quality and availability, and urban development continue to challenge restorationists and managers at multiple spatial and temporal scales. These challenges are further exacerbated by tremendous uncertainty regarding climate and land use patterns and natural variability in these systems. The symposium from which the papers in 2009 ensued was organized to provide a critical evaluation of current natural resource restoration and management practices to support the sustainability of floodplain ecosystem functions in the southeastern United States. In this paper we synthesize these concepts and evaluate restoration and conservation techniques in light of our understanding of these ecosystems. We also discuss current and future challenges and attempt to identify new approaches that may facilitate the long-term sustainability of southeastern floodplain systems. We conclude thatintegration of disciplines and approaches is necessary to meet the floodplain conservation challenges of the coming century. Integration will not only include purposeful dialogue between interdisciplinary natural resource professionals, but it also is necessary to sincerely engage the public about goals, objectives, and desirable outcomes of floodplain ecosystem restoration.

  20. The ecology, restoration, and management of southeastern floodplain ecosystems: A synthesis

    USGS Publications Warehouse

    King, S.L.; Sharitz, R.R.; Groninger, John W.; Battaglia, Loretta L.

    2009-01-01

    Floodplain ecosystems of the southeastern United States provide numerous services to society, but hydrologic and geomorphic alterations, agricultural practices, water quality and availability, and urban development continue to challenge restorationists and managers at multiple spatial and temporal scales. These challenges are further exacerbated by tremendous uncertainty regarding climate and land use patterns and natural variability in these systems. The symposium from which the papers in 2009 ensued was organized to provide a critical evaluation of current natural resource restoration and management practices to support the sustainability of floodplain ecosystem functions in the southeastern United States. In this paper we synthesize these concepts and evaluate restoration and conservation techniques in light of our understanding of these ecosystems. We also discuss current and future challenges and attempt to identify new approaches that may facilitate the long-term sustainability of southeastern floodplain systems. We conclude that integration of disciplines and approaches is necessary to meet the floodplain conservation challenges of the coming century. Integration will not only include purposeful dialogue between interdisciplinary natural resource professionals, but it also is necessary to sincerely engage the public about goals, objectives, and desirable outcomes of floodplain ecosystem restoration. ?? 2009, The Society of Wetland Scientists.

  1. Stream and floodplain restoration in a riparian ecosystem disturbed by placer mining

    USGS Publications Warehouse

    Karle, Kenneth F.; Densmore, Roseann V.

    1994-01-01

    Techniques for the hydrologic restoration of placer-mined streams and floodplains were developed in Denali National Park and Preserve Alaska, USA. The hydrologic study focused on a design of stream and floodplain geometry using hydraulic capacity and shear stress equations. Slope and sinuosity values were based on regional relationships. Design requirements include a channel capacity for a 1.5-year (bankfull) discharge and a floodplain capacity for a 1.5- to 100-year discharge. Concern for potential damage to the project from annual flooding before natural revegetation occurs led to development of alder (Alnus crispa) brush bars to dissipate floodwater energy and encourage sediment deposition. The brush bars, constructed of alder bundles tied together and anchored laterally adjacent to the channel, were installed on the floodplain in several configurations to test their effectiveness. A moderate flood near the end of the two-year construction phase of the project provided data on channel design, stability, floodplain erosion, and brush bar effectiveness. The brush bars provided substantial protection, but unconsolidated bank material and a lack of bed armour for a new channel segment led to some bank erosion, slope changes and an increase in sinuosity in several reaches of the study area.

  2. The influence of the Amazonian floodplain ecosystems on the trace element dynamics of the Amazon River mainstem (Brazil).

    PubMed

    Viers, Jérôme; Barroux, Guénaël; Pinelli, Marcello; Seyler, Patrick; Oliva, Priscia; Dupré, Bernard; Boaventura, Geraldo Resende

    2005-03-01

    The purpose of this paper is to forecast the role of riverine wetlands in the transfer of trace elements. One of the largest riverine wetlands in the world is the floodplain (várzea) of the Amazon River and its tributaries (Junk and Piedade, 1997). The central Amazon wetlands are constituted by a complex network of lakes and floodplains, named várzeas, that extend over more than 300,000 km2 (Junk, W.J., The Amazon floodplain--a sink or source for organic carbon? In Transport of Carbon and Minerals in Major World Rivers, edited by E.T. Degens, S. Kempe, R. Herrera, SCOPE/UNEP; 267-283, 1985.) and are among the most productive ecosystems in the world due to the regular enrichment in nutrients by river waters In order to understand if the adjacent floodplain of Amazon River have a significant influence on the trace element concentrations and fluxes of the mainstem, the concentrations of selected elements (i.e., Al, Mn, Fe, Co, Cu, Mo, Rb, Sr, Ba, and U) have been measured in the Amazon River water (Manacapuru Station, Amazonas State, Brazil) and in lake waters and plants (leaves) from a várzea(Ilha de Marchantaria, Amazonas State, Brazil) during different periods of the hydrological cycle. Four plant species (two perennial species: Pseudobombax munguba and Salix humboldtiana, and two annual herbaceous plants: Echinochloa polystachya and Eichhornia crassipes) were selected to represent the ecological functioning of the site. Time series obtained for dissolved Mn and Cu (<0.20 microm) in Amazon River water could not be explained by tributary mixing or instream processes only. Therefore, the contribution of the waters transiting the floodplains should be considered. These results suggest that the chemical composition of the waters draining these floodplains is controlled by reactions occurring at sediment-water and plant-water interfaces. Trace elements concentrations in the plants (leaves) vary strongly with hydrological seasonality. Based on the concentration data and the biological productivity of floodplain ecosystems, a first order approximation of trace element storage (permanent or temporary) in the vegetation of these floodplains was made. It was found that floodplain-mainstem elemental fluxes make a significant contribution to the dissolved flux of the Amazon River. This study is part of the Brazilian_French joint research program Hybam (Hydrology and Geochemistry of the Amazonian Basin).

  3. Influence of trap modifications and environmental predictors on capture success of southern flying squirrels

    USGS Publications Warehouse

    Jacques, Christopher N.; Zweep, James S.; Scheihing, Mary E.; Rechkemmer, Will T.; Jenkins, Sean E.; Klaver, Robert W.; Dubay, Shelli A.

    2017-01-01

    Sherman traps are the most commonly used live traps in studies of small mammals and have been successfully used in the capture of arboreal species such as the southern flying squirrel (Glaucomys volans). However, southern flying squirrels spend proportionately less time foraging on the ground, which necessitates above-ground trapping methods and modifications of capture protocols. Further, quantitative estimates of the factors affecting capture success of flying squirrel populations have focused solely on effects of trapping methodologies. We developed and evaluated the efficacy of a portable Sherman trap design for capturing southern flying squirrels during 2015–2016 at the Alice L. Kibbe Field Station, Illinois, USA. Additionally, we used logistic regression to quantify potential effects of time-dependent (e.g., weather) and time-independent (e.g., habitat, extrinsic) factors on capture success of southern flying squirrels. We recorded 165 capture events (119 F, 44 M, 2 unknown) using our modified Sherman trap design. Probability of capture success decreased 0.10/1° C increase in daily maximum temperature and by 0.09/unit increase (km/hr) in wind speed. Conversely, probability of capture success increased by 1.2/1° C increase in daily minimum temperature. The probability of capturing flying squirrels was negatively associated with trap orientation. When tree-mounted traps are required, our modified trap design is a safe, efficient, and cost-effective method of capturing animals when moderate weather (temp and wind speed) conditions prevail. Further, we believe that strategic placement of traps (e.g., northeast side of tree) and quantitative information on site-specific (e.g., trap location) characteristics (e.g., topographical features, slope, aspect, climatologic factors) could increase southern flying squirrel capture success. © 2017 The Wildlife Society.

  4. Floodplain Condition and Water Framework Directive River Classification in England: Evidence of a Disconnect.

    NASA Astrophysics Data System (ADS)

    Bentley, S.

    2017-12-01

    The European Union Water Framework Directive came into force in October 2000 committing European Union member states to achieve Good Ecological Status for all water bodies. By 2015 29% of rivers across England had achieved this level suggesting that these watercourse units are now functioning well. This study utilises recently published land cover data for England clipped to the floodplain boundary as defined by the 100 year return period discharge to examine the state of valley bottom vegetation and function for these Good Status rivers. Agricultural use of floodplain areas is high with cereal and horticulture covering an average of 24% and pasture accounting for some 37% of the area. Maximum values increase to 77% and 92% respectively. In all cases wetland accounts for less than 2% of the floodplain and rough grassland averages 7%. Such significant and widespread alteration to floodplain vegetation character suggests that the ecological functioning of this component of the fluvial system has been severely negatively impacted calling into question the Water Framework Directive status level. This is a fault of the Water Framework Directive process which only explicitly evaluates the hydromorphological component of the fluvial system for high status rivers preferring to infer functioning from biological indicators that are focused on in-channel assessments. The fundamental omission of floodplain condition in the Water Framework Directive process will result in only partial achievement of the original goals of the Directive with the majority of Europe's floodplains remaining in a highly degraded, non-functional state.

  5. Urban Infrastructure, Channel-Floodplain Morphology and Flood Flow Patterns

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Smith, J. A.; Nelson, C. B.

    2006-12-01

    The relationship between the channel and the floodplain in urban settings is heavily influenced by (1) altered watershed hydrologic response and frequency distribution of flows, (2) channel enlargement resulting from altered hydrology under conditions of limited sediment supply, (3) direct modification of channels and floodplains for purposes of erosion mitigation, flood protection, commercial development and creation of public amenities, (4) valley constrictions and flow obstructions associated with bridges, culverts, road embankments and other types of floodplain encroachment causing fragmentation or longitudinal segmentation of the riparian corridor. Field observation of inundation patterns associated with recurring floods in the Baltimore metropolitan area is used in combination with 2-dimensional hydraulic modeling to simulate patterns of floodplain inundation and to explore the relationships between magnitude and shape of the flood hydrograph, morphology of the urban channel-floodplain system, and the frequency and extent of floodplain inundation. Case studies include a July 2004 flood associated with a 300-year 2-hour rainfall in a small (14.2 km2) urban watershed, as well as several other events caused by summer thunderstorms with shorter recurrence intervals that generated an extraordinary flood response. The influence of urban infrastructure on flood inundation and flow patterns is expressed in terms of altered (and hysteretic) stage-discharge relationships, stepped flood profiles, rapid longitudinal attenuation of flood waves, and transient flow reversals at confluences and constrictions. Given the current level of interest in restoration measures these patterns merit consideration in planning future development and mitigation efforts.

  6. Condition factor variations over time and trophic position among four species of Characidae from Amazonian floodplain lakes: effects of an anomalous drought.

    PubMed

    Tribuzy-Neto, I A; Conceição, K G; Siqueira-Souza, F K; Hurd, L E; Freitas, C E C

    2018-05-01

    The effects of extreme droughts on freshwater fish remain unknown worldwide. In this paper, we estimated the condition factor, a measure of relative fitness based on the relationship of body weight to length, in four fish species representing two trophic levels (omnivores and piscivores) from Amazonian floodplain lakes for three consecutive years: 2004, 2005 (an anomalous drought year), and 2006. The two omnivores, Colossoma macropomum and Mylossoma duriventre, exhibited trends consistent with their life cycles in 2004 and 2006: high values during the hydrologic seasons of high water, receding water, and low water, with a drop following reproduction following the onset of rising water. However during the drought year of 2005 the condition factor was much lower than normal during receding and low water seasons, probably as a result of an abnormal reduction in resource availability in a reduced habitat. The two piscivorous piranhas, Serrasalmus spilopleura and S. elongatus, maintained relatively stable values of condition factor over the hydrologic cycles of all three years, with no apparent effect of the drought, probably because the reduction in habitat is counterbalanced by the resulting increase in relative prey density. We suggest that if predictions of increasing drought in the Amazon are correct, predatory species may benefit, at least in the short run, while omnivores may be negatively affected.

  7. Formation and tectonic evolution of the Pattani Basin, Gulf of Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bustin, R.M.; Chonchawalit, A.

    The stratigraphic and structural evolution of the Pattani Basin, the most prolific petroleum basin in Thailand, reflects the extensional tectonic regime of continental Southeast Asia. E-W extension resulting from the northward collision of India with Eurasia since the Early Tertiary resulted in the formation of a series of N-S-trending sedimentary basins, which include the Pattani Basin. The sedimentary succession in the Pattani Basin is divisible into synrift and postrift sequences. Deposition of the synrift sequence accompanied rifting and extension, with episodic block faulting and rapid subsidence. The synrift sequence comprises three stratigraphic units: (1) Upper Eocene to Lower Olikgocene alluvial-fan,more » braided-river, and floodplain deposits; (2) Upper oligocene to Lowe Miocene floodplain and channel deposits; and (3) a Lower Miocene regressive package consisting of marine to nonmarine sediments. Post-rift succession comprises: (1) a Lower to Middle Miocene regressive package of shallow marine sediments through floodplain and channel deposits; (2) an upper Lower Miocene transgressive sequence; and (3) and Upper Miocene to Pleistocene transgressive succession. The post-rift phase is characterized by slower subsidence and decreased sediment influx. The present-day shallow-marine condition in the Gulf of Thailand is the continuation of this latest transgressive phase. The subsidence and thermal history of the Pattani Basin is consistent with a nonuniform lithospheric-stretching model. The amount of extension as well as surface heat flow generally increases from the margin to the basin center. The crustal stretching factor ({beta}) varies form 1.3 at the basin margin to 2.8 in the center. The subcrustal stretching factor ({delta}) ranges from 1.3 at the basin margin to more than 3.0 in the basin center. 31 refs., 13 figs., 4 tabs.« less

  8. Main predictors of periphyton species richness depend on adherence strategy and cell size

    PubMed Central

    Siqueira, Tadeu; Landeiro, Victor Lemes; Rodrigues, Liliana; Bonecker, Claudia Costa; Rodrigues, Luzia Cleide; Santana, Natália Fernanda; Thomaz, Sidinei Magela; Bini, Luis Mauricio

    2017-01-01

    Periphytic algae are important components of aquatic ecosystems. However, the factors driving periphyton species richness variation remain largely unexplored. Here, we used data from a subtropical floodplain (Upper Paraná River floodplain, Brazil) to quantify the influence of environmental variables (total suspended matter, temperature, conductivity, nutrient concentrations, hydrology, phytoplankton biomass, phytoplankton species richness, aquatic macrophyte species richness and zooplankton density) on overall periphytic algal species richness and on the richness of different algal groups defined by morphological traits (cell size and adherence strategy). We expected that the coefficients of determination of the models estimated for different trait-based groups would be higher than the model coefficient of determination of the entire algal community. We also expected that the relative importance of explanatory variables in predicting species richness would differ among algal groups. The coefficient of determination for the model used to predict overall periphytic algal species richness was higher than the ones obtained for models used to predict the species richness of the different groups. Thus, our first prediction was not supported. Species richness of aquatic macrophytes was the main predictor of periphyton species richness of the entire community and a significant predictor of the species richness of small mobile, large mobile and small-loosely attached algae. Abiotic variables, phytoplankton species richness, chlorophyll-a concentration, and hydrology were also significant predictors, depending on the group. These results suggest that habitat heterogeneity (as proxied by aquatic macrophytes richness) is important for maintaining periphyton species richness in floodplain environments. However, other factors played a role, suggesting that the analysis of species richness of different trait-based groups unveils relationships that were not detectable when the entire community was analysed together. PMID:28742122

  9. Effects of moisture limitation on tree growth in upland and floodplain forest ecosystems in interior Alaska

    Treesearch

    John. Yarie

    2008-01-01

    The objective of this study was to examine the impact of summer throughfall on the growth of trees, at upland and floodplain locations, in the vicinity of Fairbanks, Alaska. Corrugated clear plastic covers were installed under the canopy of floodplain balsam poplar/white spruce stands and upland hardwood/white spruce stands to control soil moisture recharge as a result...

  10. Present status and approaches for the sustainable development of community based fish culture in seasonal floodplains of Bangladesh.

    PubMed

    Rahman, M F; Jalal, K C A; Jahan, Nasrin; Kamaruzzaman, B Y; Ara, R; Arshad, A

    2012-06-15

    Coordination among the different stakeholders at policy planning, implementation and target beneficiary level, particularly among the agencies responsible for development and management of water resources, agriculture and fisheries, is essential for overall sustainable development. Stocking of larger fingerlings at suitable stocking densities of endemic (rohu, catla, mrigal) and exotic (silver carp, bighead carp, common carp/mirror carp) species should be stocked at varying proportion. Floodplain fish production depends only on the natural fertility of the water bodies. Technological interventions should include the installation of low cost bamboo fencing at water inlet and outlet points and setting of ring culverts for maintaining suitable levels of water for fish culture without hampering the production of rice and other crops in the intervention areas, selective stocking with native and exotic carps, restricted fishing for certain period of time and guarding. It is expected to exert positive influences in enhancing the standing crop and biodiversity of non-stocked species of fishes in the intervention seasonal floodplain. Entry of fish larvae, hatchlings and young fry of wild non-stocked fishes into the seasonal floodplains because of large fence spacing (approximately 1.0 cm), could restrict fishing for certain period, undisturbed habitat and guarding could contribute to higher productivity and enhancement of fish biodiversity in the seasonal floodplains. Proper motivation and effective cooperation of the beneficiaries are extremely important to culture fish in the seasonal floodplains under community based management system. Institutional support and constant vigilance from the Department of Fisheries (DoF) and local administrations are indispensable to ensure the sustainability of fish culture initiatives in the seasonal floodplains. Active participation and involvement of the local community people in all stages of fish culture operation beginning from selection of floodplains, formation of floodplain management committee, planning of fish culture activities, exercise of technical intervention, selective stocking with large fingerlings, guarding, monitoring and supervision, adopting harvesting strategies, marketing and distribution of benefits are extremely essential to ensure sustainability of the program. Mutual trust, sense of respect and good working relationship among the committee members are the basic social elements required for the success of community based fish culture initiatives.

  11. Interactive Mapping of Inundation Metrics Using Cloud Computing for Improved Floodplain Conservation and Management

    NASA Astrophysics Data System (ADS)

    Bulliner, E. A., IV; Lindner, G. A.; Bouska, K.; Paukert, C.; Jacobson, R. B.

    2017-12-01

    Within large-river ecosystems, floodplains serve a variety of important ecological functions. A recent survey of 80 managers of floodplain conservation lands along the Upper and Middle Mississippi and Lower Missouri Rivers in the central United States found that the most critical information needed to improve floodplain management centered on metrics for characterizing depth, extent, frequency, duration, and timing of inundation. These metrics can be delivered to managers efficiently through cloud-based interactive maps. To calculate these metrics, we interpolated an existing one-dimensional hydraulic model for the Lower Missouri River, which simulated water surface elevations at cross sections spaced (<1 km) to sufficiently characterize water surface profiles along an approximately 800 km stretch upstream from the confluence with the Mississippi River over an 80-year record at a daily time step. To translate these water surface elevations to inundation depths, we subtracted a merged terrain model consisting of floodplain LIDAR and bathymetric surveys of the river channel. This approach resulted in a 29000+ day time series of inundation depths across the floodplain using grid cells with 30 m spatial resolution. Initially, we used these data on a local workstation to calculate a suite of nine spatially distributed inundation metrics for the entire model domain. These metrics are calculated on a per pixel basis and encompass a variety of temporal criteria generally relevant to flora and fauna of interest to floodplain managers, including, for example, the average number of days inundated per year within a growing season. Using a local workstation, calculating these metrics for the entire model domain requires several hours. However, for the needs of individual floodplain managers working at site scales, these metrics may be too general and inflexible. Instead of creating a priori a suite of inundation metrics able to satisfy all user needs, we present the usage of Google's cloud-based Earth Engine API to allow users to define and query their own inundation metrics from our dataset and produce maps nearly instantaneously. This approach allows users to select the time periods and inundation depths germane to managing local species, potentially facilitating conservation of floodplain ecosystems.

  12. Hydrologic conditions, habitat characteristics, and occurrence of fishes in the Apalachicola River floodplain, Florida; second annual report of progress, October 1993-September 1994

    USGS Publications Warehouse

    Light, Helen M.; Darst, Melanie R.; Grubbs, J.W.

    1995-01-01

    This report describes progress and interim results of the second year of a 4-year study. The purpose of the 4-year study is to describe aquatic habitat types in the Apalachicola River floodplain and quantify the amount of habitat inundated by the river at various stages. Final results will be used to determine possible effects of altered flows on floodplain habitats and their associated fish communities. The study is being conducted by the U.S. Geological Survey in cooperation with the Northwest Florida Water Management District as part of a comprehensive study of water needs throughout two large river basins in Florida, Georgia, and Alabama. By the end of the second year, approxi- mately 80 to 90 percent of field data collection was completed. Water levels at 56 floodplain and main channel locations at study sites were read numerous times during low water and once or twice during high water. Rating curves estimating the relationship between stage at a floodplain site and flow of the Apalachicola River at Chattahoochee are presented for 3 sites in the upper river. Elevation, substrate type, and amount of vegetative structure were described at 27 cross sections representing eight different floodplain tributary types at upper, middle, and lower river study sites. A summary of substrate and structure information from all cross sections is presented. Substrate and structure characteristics of floodplain habitats inundated when river flow was at record low flow, mean annual low flow, and mean flow are described for 3 cross sections in the upper river. Digital coverage of high-altitude infra-red aerial photography was processed for use in a Geographic Information System which will be used to map aquatic habitats in the third year of the study. A summary of the literature on fish utilization of floodplain habitats is described. Eighty-one percent of the species collected in the main channel of the Apalachicola River are known to occur in floodplain habitats of eastern rivers.

  13. Floodplain construction of the Rio Grande at El Paso, Texas, USA: response to Holocene climate change

    NASA Astrophysics Data System (ADS)

    Hall, Stephen A.; Peterson, John A.

    2013-04-01

    The Rio Grande is one of the larger rivers in North America, and the development of its floodplain is related to Holocene climate and climate change. The late Pleistocene through early Holocene channel is characterized by a meander or braided system with lateral cutting and backfilling, resulting in the valley-wide deposition of massive to cross-bedded, fine-to-medium textured sand. The late Pleistocene-early Holocene floodplain is also the sand source for the adjacent Bolson sand sheet. The sand sheet stopped accumulating new sand 5000 yrs ago, an event directly related to the shutting off of the sand supply caused by the deposition of overbank muds that covered and sealed the floodplain surface. During the middle Holocene, the river may have dried intermittently with the floodplain becoming deflated and local sand dunes forming on the floodplain. After 5000 yrs the climate was less arid and the river shifted to a regime of increased flooding and overbank deposition of silt and clay. By 2500 yrs, a late Holocene period of wet climate resulted in further overbank deposition and the formation of a cumulic Mollisol across the floodplain, the Socorro paleosol. The period of wet climate corresponds to the Audubon Neoglacial and active rock glaciers in the southern Rocky Mountains, speleothem growth in nearby caves, and other evidence for wet-cool conditions in the region. After 1000 yrs, the climate became drier, and the deposition and accumulation of overbank muds by the flooding Rio Grande came to a halt. Even though the river has flooded often in historic times, and presumably during late prehistoric times as well, there is little evidence for deposition of overbank sediments on the floodplain since A.D. 1000. Accordingly, the present-day surface of the Lower Valley is ten centuries old. Three channels occur on the US side of the Lower Valley floodplain, and during the past 2500 yrs stream flow has shifted from one to the other by the avulsion process of channel reoccupation, although most flow has been in the Rio Grande channel, the largest of the three.

  14. Flood tolerance of oak seedlings from bottomland and upland sites

    Treesearch

    Michael P. Walsh; Jerry Van Sambeek; Mark Coggeshall; David Gwaze

    2009-01-01

    Artificial regeneration of oak species in floodplains presents numerous challenges because of the seasonal flooding associated with these areas. Utilizing not only flood-tolerant oak species, but also flood tolerant seed sources of the oak species, may serve to enhance seedling survival and growth rates. Despite the importance of these factors to hardwood forest...

  15. Records of transient avulsion-related river patterns in ancient deposits: evidence for different styles of channel-floodplain coupling

    NASA Astrophysics Data System (ADS)

    Hajek, E. A.; Edmonds, D.; Millard, C.; Toms, L.; Fogaren, C.

    2012-12-01

    River mobility and avulsion are important controls on how course and fine sediment are distributed across alluvial basins. In some systems, broad distributary channel networks that form during channel avulsions contribute significantly to overbank aggradation within the basin and help transport relatively coarse sediment from the channel out onto the floodplain. In contrast, avulsion-related deposits are virtually absent in other systems, which primarily avulse either through incision or with no significant aggradational phase preceding channel relocation; in these systems, overbank sedimentation primarily comprises relatively fine floodplain deposits. In order to constrain the conditions under which distributary-channel networks develop during avulsions, we evaluate channel, avulsion, and floodplain deposits in several ancient units including the Ferris (Maastrichtian/Paleocene, Wyoming), Fort Union (Paleocene, Wyoming), Wasatch (Paleocene/Eocene, Colorado), and Willwood (Paleocene/Eocene, Wyoming) formations. Ancient deposits afford the opportunity to observe multiple (tens to hundreds) channel-avulsion realizations and evaluate characteristic spatial and temporal variability in channel, avulsion, and floodplain deposits within a basin. In each formation, spatial relationships and grain-size distributions of channel, proximal-overbank, distal-overbank, and, where present, avulsion deposits are compared. The thickness, width, and stratigraphic frequency of crevasse-splay and avulsion deposits are characterized in each formation, and paleosol development is documented in order to provide information about relative differences in floodplain conditions (particularly sedimentation rate and floodplain drainage) throughout each unit. We compare these results to modern systems and numerical models. Several formations contain abundant and distinctive evidence of prograding sediment wedges preceding avulsed channels (Willwood Formation and some members of the Wasatch formation), while others contain virtually no avulsion-associated deposits (Ferris Formation). The Fort Union Formation and one member of the Wasatch Formation show a mix of both. These results largely reflect depositional processes and not preservation bias within ancient deposits. Evidence from ancient deposits also suggests sediment partitioning between channels and floodplains was mediated by crevasse-splay production and avulsion, where some systems were "tuned" to produce large splay deposits and other systems produced only infrequent, small splays. Systems that readily produced splay deposits are associated with more prominent avulsion deposits, and splay production seems to be influenced by the particle-size distribution of sediment carried in the channel and floodplain drainage conditions (where abundant fine-sand and coarse-silt sediment and relatively well-drained floodplain conditions promote crevasse-splay production). Avulsion deposits reflect a transient distributary phase associated with a marked increase in local overbank sedimentation rates, but this phase is not ubiquitous to all avulsive systems. The persistence of conditions that promote or inhibit crevasse-splay and avulsion-deposit production may strongly influence channel-floodplain coupling in aggrading fluvial systems.

  16. Retention of contaminants in constructed and semi-natural wetland soils in urban river systems

    NASA Astrophysics Data System (ADS)

    Kalinski, Kira; Gröngröft, Alexander; Eschenbach, Annette

    2017-04-01

    The retention of floods is one of the most relevant ecosystem function of urban floodplains, which is often improved by the construction of retention ponds and other water management measures. Retention ponds are connected to the river in a direct or a parallel arrangement and can be constructed as dry or wet retention pond under normal run-off conditions. Further important ecosystem functions provided by the floodplains soils are carbon sequestration, nutrient and contaminant regulation and recreation. However, with ongoing urbanization these ecosystem functions are significantly endangered. In our study we analyze the soil-based ecosystem functions of two river catchments in the City of Hamburg. The presentation will focus on the retention of contaminants in soils and sediments of eleven retention ponds within one catchment. The amount and concentrations of contaminants will be analyzed for controlling factors like grain size distribution, land-use within the headwaters and others.

  17. Temporal Vulnerability and the Post-Disaster 'Window of Opportunity to Woo:' a Case Study of an African-American Floodplain Neighborhood after Hurricane Floyd in North Carolina.

    PubMed

    de Vries, Daniel H

    2017-01-01

    After major flooding associated with Hurricane Floyd (1999) in North Carolina, mitigation managers seized upon the "window of opportunity" to woo residents to accept residential buyout offers despite sizable community resistance. I present a theoretical explanation of how post-crisis periods turn into "opportunities" based on a temporal referential theory that complements alternative explanations based on temporal coincidence, panarchy, and shock-doctrine theories. Results from fieldwork conducted from 2002 to 2004 illustrate how several temporal influences compromised collective calibration of "normalcy" in local cultural models, leading to an especially heightened vulnerability to collective surprise. Four factors particularly influenced this temporal vulnerability: 1) epistemological uncertainty of floodplain dynamics due to colonization; 2) cultural practices that maintained a casual amnesia; 3) meaning attributed to stochastic timing of floods; and 4) competitive impact of referential flood baseline attractors.

  18. A project optimization for small watercourses restoration in the northern part of the Volga-Akhtuba floodplain by the geoinformation and hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Voronin, Alexander; Vasilchenko, Ann; Khoperskov, Alexander

    2018-03-01

    The project of small watercourses restoration in the northern part of the Volga-Akhtuba floodplain is considered together with the aim of increasing the watering of the territory during small and medium floods. The topography irregularity, the complex structure of the floodplain valley consisting of large number of small watercourses, the presence of urbanized and agricultural areas require careful preliminary analysis of the hydrological safety and efficiency of geographically distributed project activities. Using the digital terrain and watercourses structure models of the floodplain, the hydrodynamic flood model, the analysis of the hydrological safety and efficiency of several project implementation strategies has been conducted. The objective function values have been obtained from the hydrodynamic calculations of the floodplain territory flooding for virtual digital terrain models simulating alternatives for the geographically distributed project activities. The comparative efficiency of several empirical strategies for the geographically distributed project activities, as well as a two-stage exact solution method for the optimization problem has been studied.

  19. Impacts of Hurricane Katrina on floodplain forests of the Pearl River: Chapter 6A in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Faulkner, Stephen; Barrow, Wylie; Couvillion, Brady R.; Conner, William; Randall, Lori; Baldwin, Michael

    2007-01-01

    Floodplain forests are an important habitat for Neotropical migratory birds. Hurricane Katrina passed through the Pearl River flood plain shortly after making landfall. Field measurements on historical plots and remotely sensed data were used to assess the impact of Hurricane Katrina on the structure of floodplain forests of the Pearl River.

  20. Impact of Dike Structures on Sediment Transport in the Alluvial Rivers

    DTIC Science & Technology

    2012-09-05

    recognize their accomplishments. • Arizona Floodplain Management Scholarship —One graduate student (Mary Yeager) working on the project received the...Arizona Floodplain Management Scholarship ($2000), which is to award outstanding graduate students in the area of water resource and floodplain... scholarships or fellowships for further studies in science, mathematics, engineering or technology fields: 3.00 1.00 2.00 0.00 3.00 1.00

  1. Freshwater recharge into a shallow saline groundwater system, Cooper Creek floodplain, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Cendón, Dioni I.; Larsen, Joshua R.; Jones, Brian G.; Nanson, Gerald C.; Rickleman, Daniel; Hankin, Stuart I.; Pueyo, Juan J.; Maroulis, Jerry

    2010-10-01

    SummaryFreshwater lenses have been identified as having penetrated the shallow regional saline groundwater beneath the Cooper Creek floodplain near Ballera (south-west Queensland). Piezometers were installed to evaluate the major-element chemistry along a floodplain transect from a major waterhole (Goonbabinna) to a smaller waterhole (Chookoo) associated with a sand dune complex. The floodplain consists of 2-7 m of impermeable mud underlain by unconsolidated fluvial sands with a saline watertable. Waterholes have in places scoured into the floodplain. The transect reveals that groundwater recharge takes place through the base of the waterholes at times of flood scour, but not through the floodplain mud. Total dissolved solids rise with distance from the waterhole and independently of the presence of sand dunes. Stable water isotopes (δ 2H and δ 18O) confirm that recharge is consistent with, and dependant on, monsoonal flooding events. Following floods, the waterholes self-seal and retain water for extended periods, with sulfate-δ 34S and δ 18O isotopes suggesting bacterial reduction processes within the hyporheic zone, and limited interaction between the surface water and groundwater during no-flow conditions. The area occupied by the freshwater lenses (TDS < 5000 mg/L) is locally asymmetrical with respect to the channel flow direction, extending down gradient along distances of ˜300 m.

  2. Floodplain forest loss and changes in forest community composition and structure in the upper Mississippi River: a wildlife habitat at risk

    USGS Publications Warehouse

    Knutson, M.G.; Klaas, E.E.

    1998-01-01

    Large floodplain forests represent a threatened and endangered type of ecosystem in the United States. Estimates of cumulative losses of floodplain forest range from 57% to 95% at different locations within the continental United Stales. Floodplain forests of the Upper Mississippi River (UMR) have significantly declined in extent due to agriculture, lock and dam construction, and urban development since European settlement. We collected data on shrubs, herbs, and trees from 56 floodplain forest plots in 1992 and compared our results with a previous analysis of historical tree data from the same area recorded by the General Land Office Survey in the 1840s. Acer saccharinum strongly dominates among mature trees and its relative dominance has increased over time. Salix spp. And Betula nigra have declined in relative dominance. Tree sizes are similar to those of presettlement forests, but present forests have fewer trees. The lack of early successional tree species and a trend toward an increasing monoculture of A. Saccharinum in the mature stages indicate problems with regeneration. Because floodplain forests represent a rare habitat type, losses and changes in habitat quality could pose serious problems for wildlife that depend upon these habitats, especially birds.

  3. Wetland tree transpiration modified by river-floodplain connectivity

    USGS Publications Warehouse

    Allen, Scott T.; Krauss, Ken W.; Cochran, J. Wesley; King, Sammy L.; Keim, Richard F.

    2016-01-01

    Hydrologic connectivity provisions water and nutrient subsidies to floodplain wetlands and may be particularly important in floodplains with seasonal water deficits through its effects on soil moisture. In this study, we measured sapflow in 26 trees of two dominant floodplain forest species (Celtis laevigata and Quercus lyrata) at two hydrologically distinct sites in the lower White River floodplain in Arkansas, USA. Our objective was to investigate how connectivity-driven water table variations affected water use, an indicator of tree function. Meteorological variables (photosynthetically active radiation and vapor pressure deficit) were the dominant controls over water use at both sites; however, water table variations explained some site differences. At the wetter site, highest sapflow rates were during a late-season overbank flooding event, and no flood stress was apparent. At the drier site, sapflow decreased as the water table receded. The late-season flood pulse that resulted in flooding at the wetter site did not affect the water table at the drier site; accordingly, higher water use was not observed at the drier site. The species generally associated with wetter conditions (Q. lyrata) was more positively responsive to the flood pulse. Flood water subsidy lengthened the effective growing season, demonstrating ecological implications of hydrologic connectivity for alleviating water deficits that otherwise reduce function in this humid floodplain wetland.

  4. Deriving Flood-Mediated Connectivity between River Channels and Floodplains: Data-Driven Approaches

    NASA Astrophysics Data System (ADS)

    Zhao, Tongtiegang; Shao, Quanxi; Zhang, Yongyong

    2017-03-01

    The flood-mediated connectivity between river channels and floodplains plays a fundamental role in flood hazard mapping and exerts profound ecological effects. The classic nearest neighbor search (NNS) fails to derive this connectivity because of spatial heterogeneity and continuity. We develop two novel data-driven connectivity-deriving approaches, namely, progressive nearest neighbor search (PNNS) and progressive iterative nearest neighbor search (PiNNS). These approaches are illustrated through a case study in Northern Australia. First, PNNS and PiNNS are employed to identify flood pathways on floodplains through forward tracking. That is, progressive search is performed to associate newly inundated cells in each time step to previously inundated cells. In particular, iterations in PiNNS ensure that the connectivity is continuous - the connection between any two cells along the pathway is built through intermediate inundated cells. Second, inundated floodplain cells are collectively connected to river channel cells through backward tracing. Certain river channel sections are identified to connect to a large number of inundated floodplain cells. That is, the floodwater from these sections causes widespread floodplain inundation. Our proposed approaches take advantage of spatial-temporal data. They can be applied to achieve connectivity from hydro-dynamic and remote sensing data and assist in river basin planning and management.

  5. Zoogeography, taxonomy, and conservation of West Virginia’s Ohio River floodplain crayfishes (Decapoda, Cambaridae)

    PubMed Central

    Loughman, Zachary J.; Simon, Thomas P.

    2011-01-01

    Abstract The crayfish fauna of West Virginia consists of 23 species and several undescribed taxa. Most survey efforts documenting this fauna have been conducted in lotic waterways throughout the Appalachian plateau, Allegheny Mountains, and Ridge and Valley physiographic provinces. Bottomland forests, swamps, and marshes associated with large river floodplain such as the Ohio River floodplain historically have been under-surveyed in the state. These habitats harbor the richest primary burrowing crayfish fauna in West Virginia, and are worthy of survey efforts. In an effort to fill this void, the crayfish fauna of West Virginia’s Ohio River floodplain was surveyed from 2004 through 2009. From this survey, nine species from four genera were documented inhabiting the floodplain. Zoogeography, biology, and conservation status is provided for all nine crayfishes. The dominant genus along the floodplain is Cambarus, which includes Cambarus (Cambarus) carinirostris, Cambarus (Cambarus) bartonii cavatus, Cambarus (Procambarus) robustus and Cambarus (Tubericambarus) thomai. Cambarus (Tubericambarus) thomai is the most prevalent burrowing species occurring along the floodplain. The genus Orconectes consists of two native species, Orconectes (Cambarus) obscurus and Orconectes (Cambarus) sanbornii; and two invasive taxa, Orconectes (Gremicambarus) virilis and Orconectes (Procambarus) rusticus. Orconectes (Cambarus) obscurus has experienced a range extension to the south and occupies streams formerly occupied by Orconectes (Cambarus) sanbornii. Both invasive taxa were allied with anthropogenic habitats and disturbance gradients. The genera Fallicambarus and Procambarus are represented by a single species. Both Fallicambarus (Cambarus) fodiens and Procambarus (Orconectes) acutus are limited to the historic preglacial Marietta River Valley. PMID:21594135

  6. Predicting the fate of sediment and pollutants in river floodplains.

    PubMed

    Malmon, Daniel V; Dunne, Thomas; Reneau, Steven L

    2002-05-01

    Geological processes such as erosion and sedimentation redistribute toxic pollutants introduced to the landscape by mining, agriculture, weapons development, and other human activities. A significant portion of these contaminants is insoluble, adsorbing to soils and sediments after being released. Geologists have long understood that much of this sediment is stored in river floodplains, which are increasingly recognized as important nonpoint sources of pollution in rivers. However, the fate of contaminated sediment has generally been analyzed using hydrodynamic models of in-channel processes, ignoring particle exchange with the floodplain. Here, we present a stochastic theory of sediment redistribution in alluvial valley floors that tracks particle-bound pollutants and explicitly considers sediment storage within floodplains. We use the theory to model the future redistribution and radioactive decay of 137Cs currently stored on sediment in floodplains at the Los Alamos National Laboratory (LANL) in New Mexico. Model results indicate that floodplain storage significantly reduces the rate of sediment delivery from upper Los Alamos Canyon, allowing 50% of the 137Cs currently residing in the valley floor to decay radioactively before leaving LANL. A sensitivity analysis shows that the rate of sediment overturn in the valley (and hence, the total amount of radioactive 137Cs predicted to leave LANL) is significantly controlled by the rate of sediment exchange with the floodplain. Our results emphasize that flood plain sedimentation and erosion processes can strongly influence the redistribution of anthropogenic pollutants in fluvial environments. We introduce a new theoretical framework for examining this interaction, which can provide a scientific basis for decision-making in a wide range of river basin management scenarios.

  7. Earth Observations taken by Expedition 30 crewmember

    NASA Image and Video Library

    2012-02-05

    ISS030-E-090012 (5 Feb. 2012) --- The Parana River floodplain along the Mato Grosso–Sao Paulo border, Brazil is featured in this image photographed by an Expedition 30 crew member on the International Space Station. The Parana River appears as a wide, blue strip across this photograph, with muddy brown water of the smaller Verde River entering from the northwest (top left). An extensive wetland (dark green) occupies most of the left half of the image, where the floodplain of the river reaches a width of 11 kilometers. The thin line of a road crossing the floodplain also gives a sense of scale. Above the Parana–Verde confluence (center) the floodplain is much narrower. The floodplain is generated by sediments delivered by both rivers. Evidence for this is that the entire surface of the floodplain is crisscrossed by the wider traces of former Parana R. channels as well as numerous narrower traces of the Verde R. The floodplains along both rivers are bordered by numerous rectangular agricultural fields. Dominant crops along this part of the Parana River are coffee, corn and cotton. Turbid water, such as that in the Verde River, is common in most rivers that drain plowed agricultural land as some topsoil is washed into local rivers after rains. A long tendril of brown water extends from the Verde R. into the main channel of the Parana River where it hugs the west bank, remaining unmixed for many kilometers. This effectively shows the direction of river flow from orbit (right to left for the Parana, upper left to center for the Verde).

  8. Past and predicted future changes in the land cover of the Upper Mississippi River floodplain, USA

    USGS Publications Warehouse

    De Jager, N. R.; Rohweder, J.J.; Nelson, J.C.

    2013-01-01

    This study provides one historical and two alternative future contexts for evaluating land cover modifications within the Upper Mississippi River (UMR) floodplain. Given previously documented changes in land use, river engineering, restoration efforts and hydro-climatic changes within the UMR basin and floodplain, we wanted to know which of these changes are the most important determinants of current and projected future floodplain land cover. We used Geographic Information System data covering approximately 37% of the UMR floodplain (3232 km2) for ca 1890 (pre-lock and dam) and three contemporary periods (1975, 1989 and 2000) across which river restoration actions have increased and hydro-climatic changes have occurred. We further developed two 50-year future scenarios from the spatially dependent land cover transitions that occurred from 1975 to 1989 (scenario A) and from 1989 to 2000 (scenario B) using Markov models.Land cover composition of the UMR did not change significantly from 1975 to 2000, indicating that current land cover continues to reflect historical modifications that support agricultural production and commercial navigation despite some floodplain restoration efforts and variation in river discharge. Projected future land cover composition based on scenario A was not significantly different from the land cover for 1975, 1989 or 2000 but was different from the land cover of scenario B, which was also different from all other periods. Scenario B forecasts transition of some forest and marsh habitat to open water by the year 2050 for some portions of the northern river and projects that some agricultural lands will transition to open water in the southern portion of the river. Future floodplain management and restoration planning efforts in the UMR should consider the potential consequences of continued shifts in hydro-climatic conditions that may occur as a result of climate change and the potential effects on floodplain land cover.

  9. Solid-Phase Fe Speciation along the Vertical Redox Gradients in Floodplains using XAS and Mössbauer Spectroscopies.

    PubMed

    Chen, Chunmei; Kukkadapu, Ravi K; Lazareva, Olesya; Sparks, Donald L

    2017-07-18

    Properties of Fe minerals are poorly understood in natural soils and sediments with variable redox conditions. In this study, we combined 57 Fe Mössbauer and Fe K-edge X-ray absorption spectroscopic (XAS) techniques to assess solid-phase Fe speciation along the vertical redox gradients of floodplains, which exhibited a succession of oxic, anoxic, and suboxic-oxic zones with increasing depth along the vertical profiles. The incised stream channel is bounded on the east by a narrow floodplain and a steep hillslope, and on the west by a broad floodplain. In the eastern floodplain, the anoxic conditions at the intermediate horizon (55-80 cm) coincided with lower Fe(III)-oxides (particularly ferrihydrite), in concurrence with a greater reduction of phyllosilicates(PS)-Fe(III) to PS-Fe(II), relative to the oxic near-surface and sandy gravel layers. In addition, the anoxic conditions in the eastern floodplain coincided with increased crystallinity of goethite, relative to the oxic layers. In the most reduced intermediate sediments at 80-120 cm of the western floodplain, no Fe(III)-oxides were detected, concurrent with the greatest PS-Fe(III) reduction (PS-Fe(II)/Fe(III) ratio ≈ 1.2 (Mössbauer) or 0.8 (XAS)). In both oxic near-surface horizon and oxic-suboxic gravel aquifers beneath the soil horizons, Fe(III)-oxides were mainly present as ferrihydrite with a much less amount of goethite, which preferentially occurred as nanogoethite or Al/Si-substituted goethite. Ferrihydrite with varying crystallinity or impurities such as organic matter, Al or Si, persisted under suboxic-oxic conditions in the floodplain. This study indicates that vertical redox gradients exert a major control on the quantity and speciation of Fe(III) oxides as well as the oxidation state of structural Fe in PS, which could significantly affect nutrient cycling and carbon (de)stabilization.

  10. Stakeholder-led science: engaging resource managers to identify science needs for long-term management of floodplain conservation lands

    USGS Publications Warehouse

    Bouska, Kristin L.; Lindner, Garth; Paukert, Craig P.; Jacobson, Robert B.

    2016-01-01

    Floodplains pose challenges to managers of conservation lands because of constantly changing interactions with their rivers. Although scientific knowledge and understanding of the dynamics and drivers of river-floodplain systems can provide guidance to floodplain managers, the scientific process often occurs in isolation from management. Further, communication barriers between scientists and managers can be obstacles to appropriate application of scientific knowledge. With the coproduction of science in mind, our objectives were the following: (1) to document management priorities of floodplain conservation lands, and (2) identify science needs required to better manage the identified management priorities under nonstationary conditions, i.e., climate change, through stakeholder queries and interactions. We conducted an online survey with 80 resource managers of floodplain conservation lands along the Upper and Middle Mississippi River and Lower Missouri River, USA, to evaluate management priority, management intensity, and available scientific information for management objectives and conservation targets. Management objectives with the least information available relative to priority included controlling invasive species, maintaining respectful relationships with neighbors, and managing native, nongame species. Conservation targets with the least information available to manage relative to management priority included pollinators, marsh birds, reptiles, and shore birds. A follow-up workshop and survey focused on clarifying science needs to achieve management objectives under nonstationary conditions. Managers agreed that metrics of inundation, including depth and extent of inundation, and frequency, duration, and timing of inundation would be the most useful metrics for management of floodplain conservation lands with multiple objectives. This assessment provides guidance for developing relevant and accessible science products to inform management of highly dynamic floodplain environments. Although the problems facing managers of these lands are complex, products focused on a small suite of inundation metrics were determined to be the most useful to guide the decision making process.

  11. Understanding the value of local ecological knowledge and practices for habitat restoration in human-altered floodplain systems: a case from Bangladesh.

    PubMed

    Mamun, Abdullah-Al

    2010-05-01

    Worldwide there is a declining trend in natural fish catch (FAO, The state of world fisheries and aquaculture. http://www.fao.org/documents/show_cdr.asp?url_file=/docrep/007/y5600e/y5600e00.htm , 2002) and Bangladesh is no exception. The vast inland fisheries of Bangladesh have been declining over the years, largely a result of human alteration of the aquatic habitats arising from human interventions in the floodplain systems such as the establishment of water control structures which favor agricultural production but reduce fish habitats. It can be assumed that conventional management measures are not adequate to conserve natural fisheries and exploring alternative knowledge systems to complement existing management is warranted. This paper focuses on local ecological knowledge and several other local practices held by fishers engaging directly with floodplain ecosystems. These knowledge systems and practices may be valuable tools for understanding ecosystems processes and related changes and developing local level responses to avert negative consequences of such changes. This may help in devising alternatives to ecosystem management and the conservation of floodplain fish habitats of Bangladesh and elsewhere in the world. This study was conducted in a natural depression (locally called beel) and its surrounding floodplain system located in north central Bangladesh which has become highly degraded. The results of the study indicate that the fishers and local users of the floodplain ecosystems are rich in local ecological knowledge concerning the hydrology of the floodplains and small lakes, the habitat preferences of fish, the role of agricultural crops on fish habitats, and the impact of habitat human interventions in aquatic ecosystems. Given the apparent inadequacy of the present management regime, this article argues for an inclusion of local knowledge and practices into habitat management as a more holistic approach to floodplain habitat restoration and conservation that encourages multi-level cooperation and which builds on diversified knowledge systems.

  12. Sedimentation patterns in floodplains of the Mekong Delta - Vietnam

    NASA Astrophysics Data System (ADS)

    Van Manh, Nguyen; Merz, Bruno; Viet Dung, Nguyen; Apel, Heiko

    2013-04-01

    Quantification of floodplain sedimentation during the flood season in the Mekong Delta (MD) plays a very important role in the assessment of flood deposits for a sustainable agro-economic development. Recent studies on floodplain sedimentation in the region are restricted to small pilot sites because of the large extend of the Delta, and the complex channel. This research aims at a quantification of the sediment deposition in floodplains of the whole Mekong Delta, and to access the impacts of the upstream basin development on the sedimentation in the Delta quantitatively. To achieve this, a suspended sediment transport model is developed based on the quasi-2D hydrodynamic model of the whole Mekong Delta developed by Dung et al. (2011). The model is calibrated and validated using observed data derived from several sediment measurement campaigns in channel networks and floodplains. Measured sediment data and hydrodynamic model quantify the spatio-temporal variability of sediment depositions in different spatial units: individual dyke compartments, and the sub-regions Plain of Reeds, Long Xuyen Quadrangle and the area between Tien River and Hau River. It is shown that the distribution of sediment deposition over the delta is highly depended on the flood magnitude, that in turn drives the operation policy of flood control systems in floodplains of the Mekong Delta. Thus, the sedimentation distribution is influenced by the protection level of the dyke systems in place and the distance to the Tien River and Hau River, the main branches of the Mekong in the Delta. This corroborates the main findings derived from data analysis obtained from a small scale test site by Hung et al, (2011, 2012a). Moreover, the results obtained here underlines the importance of the main channels for the sediment transport into the floodplains, and the deposition rate in floodplains is strongly driven by the intake locations and the distance from these to the main channels as well.

  13. Tipping points in Anthropocene fluvial dynamics

    NASA Astrophysics Data System (ADS)

    Notebaert, Bastiaan; Broothaerts, Nils; Verstraeten, Gert; Berger, Jean-François; Houbrechts, Geoffrey

    2016-04-01

    Many rivers have undergone dramatic changes over the last millennia due to anthropogenic on- and offsite impacts. These changes have important implications for the geomorphic and hydrological functioning of the river. In this study we compare the influence of large-scaled off-site anthropogenic impact on three European river systems. We do this using traditional geomorphological methods, combined with palynological and archaeological data; for each catchment a Holocene sediment budget was constructed. The Dijle catchment is located in the central Belgian loess belt, and has undergone intense agriculture for at least the last 2000 year. Pre-Anthropocene floodplain are big marshes lacking a well-established river channel. Anthropogenic deforestation in the headwaters resulted in a sediment pulse from the Bronze Age on. In the main floodplain sediments gradually covered the peat layer, starting near a newly formed river channel and expanding over time towards the floodplain edges. In contrast, this transition is abrupt in the smaller tributary floodplains. Comparison with palynological data shows that this abrupt transition occurs when human impact reaches a certain threshold. The Valdaine region is located in the French Pre-Alps. Floodplain deposition increased over time since the Neolithic time period due to human induced and fire related soil erosion. This general aggradation trend is however interrupted by three major river incision phases which are caused by human land abandonment and dry periods. A second major change in floodplain geomorphology occurs during the High Roman Period and the last 800 year: the fine-grained meandering river changes to a gravel loaded braided river. During this period the upstream mountain reaches became a major sediment source due to deforestation, possibly combined with climate change. During the last century reforestation and land abandonment has led to a new incision phases, and floodplain are now a major source of gravel while the river partially maintains its braided pattern. The Amblève River in the Belgian Ardennes uplands underwent less dramatic changes. Large parts of the catchment are deforested during the last 700 years, leading to an increase in floodplain sedimentation. Despite this major sediment pulse, change in floodplain morphology remained limited to an increase in bank height. We argue that a combination of floodplain and channel morphology, the fine texture of supplied sediment and the high stream power of channel forming events result is a system that is less sensitive to change. Also the relative short time of impact may play a role. These three examples demonstrate the varying impact of human deforestation on floodplain geomorphology. For the Dijle and Valdaine region this lead to dramatic changes once a certain tipping point is reached. In contrast the Amblève river is more resilient to human impact due to its specific morphological setting. The morphology of the catchments and the nature of supplied sediments plays a major role in the sensitivity of fluvial systems to environmental impact. Once the tipping points are reached, it is difficult for the river to revert to its original state and floodplains remain highly impacted.

  14. Organic matter compositions and loadings in soils and sediments along the Fly River, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Moore, Eric; Kurtz, Andrew; Portier, Evan; Alleau, Yvan; Merrell, David

    2014-09-01

    The compositions and loadings of organic matter in soils and sediments from a diverse range of environments along the Fly River system were determined to investigate carbon transport and sequestration in this region. Soil horizons from highland sites representative of upland sources have organic carbon contents (%OC) that range from 0.3 to 25 wt%, carbon:nitrogen ratios (OC/N) that range from 7 to 25 mol/mol, highly negative stable carbon isotopic compositions (δ13Corg < -26‰) and variable concentrations of lignin phenols (1 < LP < 5 mg/100 mg OC). These compositions reflect inputs from local vegetation, with contributions from bedrock carbon in the deeper mineral horizons. Soils developed on the levees of active floodplains receive inputs of allochthonous materials by overbank deposition as well as autochthonous inputs from local vegetation. In the forested upper floodplain reaches, %OC contents are lower than upland soils (0.8-1.5 wt%) as are OC/N ratios (9-15 mol/mol) while δ13Corg (-25 to -28‰) and LP (2-6 mg/100 mg OC) values are comparable to upland soils. These results indicate that organic matter present in these active floodplain soils reflect local (primarily C3) vegetation inputs mixed with allochthonous organic matter derived from eroded bedrock. In the lower reaches of the floodplain, which are dominated by swamp grass vegetation, isotopic compositions were less negative (δ13Corg > -25‰) and non-woody vegetation biomarkers (cinnamyl phenols and cutin acids) more abundant relative to upper floodplain sites. Soils developed on relict Pleistocene floodplain terraces, which are typically not flooded and receive little sediment from the river, were characterized by low %OC contents (<0.6 wt%), low OC/N ratios (<9 mol/mol), more positive δ13Corg signatures (>-21‰) and low LP concentrations (∼3 mg/100 mg OC). These relict floodplain soils contain modern carbon that reflects primarily local (C3 or C4) vegetation sources. Total suspended solids collected along the river varied widely in overall concentrations (1 < TSS < 9000 mg/L), %OC contents (0.1-60 wt%), OC/N ratios (7-17 mol/mol) and δ13Corg signatures (-26 to -32‰). These compositions reflect a mixture of C3 vascular plants and freshwater algae. However, little of this algal production appears to be preserved in floodplain soils. A comparison of organic carbon loadings of active floodplain soils (0.2 and 0.5 mg C/m2) with previous studies of actively depositing sediments in the adjacent delta-clinoform system (0.4-0.7 mg C/m2) indicates that Fly River floodplain sediments are less effective at sequestering organic carbon than deltaic sediments. Furthermore, relict Pleistocene floodplain sites with low or negligible modern sediment accumulation rates display significantly lower loadings (0.1-0.2 mg C/m2). This deficit in organic carbon likely reflects mineralization of sedimentary organic carbon during long term oxidative weathering, further reducing floodplain carbon storage.

  15. Foraging decisions and behavioural flexibility in trap-building predators: a review.

    PubMed

    Scharf, Inon; Lubin, Yael; Ovadia, Ofer

    2011-08-01

    Foraging theory was first developed to predict the behaviour of widely-foraging animals that actively search for prey. Although the behaviour of sit-and-wait predators often follows predictions derived from foraging theory, the similarity between these two distinct groups of predators is not always obvious. In this review, we compare foraging activities of trap-building predators (mainly pit-building antlions and web-building spiders), a specific group of sit-and-wait predators that construct traps as a foraging device, with those of widely-foraging predators. We refer to modifications of the trap characteristics as analogous to changes in foraging intensity. Our review illustrates that the responses of trap-building and widely-foraging predators to different internal and external factors, such as hunger level, conspecific density and predation threat are quite similar, calling for additional studies of foraging theory using trap-building predators. In each chapter of this review, we summarize the response of trap-building predators to a different factor, while contrasting it with the equivalent response characterizing widely-foraging predators. We provide here evidence that the behaviour of trap-building predators is not stereotypic or fixed as was once commonly accepted, rather it can vary greatly, depending on the individual's internal state and its interactions with external environmental factors. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.

  16. Spatial variation in abiotic and biotic factors in a floodplain determine anuran body size and growth rate at metamorphosis.

    PubMed

    Indermaur, Lukas; Schmidt, Benedikt R; Tockner, Klement; Schaub, Michael

    2010-07-01

    Body size at metamorphosis is a critical trait in the life history of amphibians. Despite the wide-spread use of amphibians as experimental model organisms, there is a limited understanding of how multiple abiotic and biotic factors affect the variation in metamorphic traits under natural conditions. The aim of our study was to quantify the effects of abiotic and biotic factors on spatial variation in the body size of tadpoles and size at metamorphosis of the European common toad (Bufo b. spinosus). Our study population was distributed over the riverbed (active tract) and the fringing riparian forest of a natural floodplain. The riverbed had warm ponds with variable hydroperiod and few predators, whereas the forest had ponds with the opposite characteristics. Spatial variation in body size at metamorphosis was governed by the interactive effects of abiotic and biotic factors. The particular form of the interaction between water temperature and intraspecific tadpole density suggests that abiotic factors laid the foundation for biotic factors: intraspecific density decreased growth only at high temperature. Predation and intraspecific density jointly reduced metamorphic size. Interspecific density had a negligible affect on body size at metamorphosis, suggesting weak inter-anuran interactions in the larval stage. Population density at metamorphosis was about one to two orders of magnitudes higher in the riverbed ponds than in the forest ponds, mainly because of lower tadpole mortality. Based on our results, we conclude that ponds in the riverbed appear to play a pivotal role for the population because tadpole growth and survival is best in this habitat.

  17. Impact of trap architecture, adjacent habitats, abiotic factors, and host plant phenology on captures of plum curculio (Coleoptera: Curculionidae) adults.

    PubMed

    Lafleur, Gérald; Chouinard, Gérald; Vincent, Charles; Cormier, Daniel

    2007-06-01

    Pyramid traps, 2.44 m and 3.66 m in height, were compared with standard-sized pyramid traps, 1.22 m in height, to assess the impact of trap architecture on captures of adult plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), in two apple (Malus spp.) orchards and a blueberry (Vaccinium spp.) planting. The effects of adjacent habitat (organic orchard versus wooded areas), abiotic factors, and phenological stages of apple also were assessed to determine whether these variables influenced trap captures. Standard-sized pyramidal traps captured significantly more adults than larger trap variants. In the apple orchards, most adults (70-80%) were captured before petal fall with the exception of blocks adjacent to the organic orchard (25%). Significantly more adults were captured along the edge of an apple orchard (managed using an integrated pest management strategy) facing an organic apple orchard (76%) than along the edge facing wooded areas (24%). There was a significant positive correlation between daily trap captures and mean daily temperatures before petal fall in apple orchards.

  18. Soil nitrogen dynamics in a river floodplain mosaic.

    PubMed

    Shrestha, J; Niklaus, P A; Frossard, E; Samaritani, E; Huber, B; Barnard, R L; Schleppi, P; Tockner, K; Luster, J

    2012-01-01

    In their natural state, river floodplains are heterogeneous and dynamic ecosystems that may retain and remove large quantities of nitrogen from surface waters. We compared the soil nitrogen dynamics in different types of habitat patches in a restored and a channelized section of a Thur River floodplain (northeast Switzerland). Our objective was to relate the spatiotemporal variability of selected nitrogen pools (ammonium, nitrate, microbial nitrogen), nitrogen transformations (mineralization, nitrification, denitrification), and gaseous nitrogen emission (NO) to soil properties and hydrological processes. Our study showed that soil water content and carbon availability, which depend on sedimentation and inundation dynamics, were the key factors controlling nitrogen pools and processes. High nitrogen turnover rates were measured on gravel bars, characterized by both frequent inundation and high sediment deposition rates, as well as in low-lying alluvial forest patches with a fine-textured, nutrient-rich soil where anaerobic microsites probably facilitated coupled nitrification-denitrification. In contrast, soils of the embankment in the channelized section had comparatively small inorganic nitrogen pools and low transformation rates, particularly those related to nitrate production. Environmental heterogeneity, characteristic of the restored section, favors nitrogen removal by creating sites of high sedimentation and denitrification. Of concern, however, are the locally high NO efflux and the possibility that nitrate could leach from nitrification hotspots. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Understory vegetation as an indicator for floodplain forest restoration in the Mississippi River Alluvial Valley, U.S.A.

    USGS Publications Warehouse

    De Steven, Diane; Faulkner, Stephen; Keeland, Bobby D.; Baldwin, Michael; McCoy, John W.; Hughes, Steven C.

    2015-01-01

    In the Mississippi River Alluvial Valley (MAV), complete alteration of river-floodplain hydrology allowed for widespreadconversion of forested bottomlands to intensive agriculture, resulting in nearly 80% forest loss. Governmental programs haveattempted to restore forest habitat and functions within this altered landscape by the methods of tree planting (afforestation)and local hydrologic enhancement on reclaimed croplands. Early assessments identified factors that influenced whetherplanting plus tree colonization could establish an overstory community similar to natural bottomland forests. The extentto which afforested sites develop typical understory vegetation has not been evaluated, yet understory composition may beindicative of restored site conditions. As part of a broad study quantifying the ecosystem services gained from restorationefforts, understory vegetation was compared between 37 afforested sites and 26 mature forest sites. Differences in vegetationattributes for species growth forms, wetland indicator classes, and native status were tested with univariate analyses;floristic composition data were analyzed by multivariate techniques. Understory vegetation of restoration sites was generallyhydrophytic, but species composition differed from that of mature bottomland forest because of young successional age anddiffering responses of plant growth forms. Attribute and floristic variation among restoration sites was related to variationin canopy development and local wetness conditions, which in turn reflected both intrinsic site features and outcomes ofrestoration practices. Thus, understory vegetation is a useful indicator of functional progress in floodplain forest restoration.

  20. Geomorphic and vegetation processes of the Willamette River floodplain, Oregon: current understanding and unanswered science questions

    USGS Publications Warehouse

    Wallick, J. Rose; Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Hulse, David; Gregory, Stanley V.

    2013-01-01

    4. How is the succession of native floodplain vegetation shaped by present-day flow and sediment conditions? Answering these questions will produce baseline data on the current distributions of landforms and habitats (question 1), the extent of the functional floodplain (question 2), and the effects of modern flow and sediment regimes on future floodplain landforms, habitats, and vegetation succession (questions 3 and 4). Addressing questions 1 and 2 is a logical next step because they underlie questions 3 and 4. Addressing these four questions would better characterize the modern Willamette Basin and help in implementing and setting realistic targets for ongoing management strategies, demonstrating their effectiveness at the site and basin scales, and anticipating future trends and conditions.

  1. Dynamical traps in Wang-Landau sampling of continuous systems: Mechanism and solution

    NASA Astrophysics Data System (ADS)

    Koh, Yang Wei; Sim, Adelene Y. L.; Lee, Hwee Kuan

    2015-08-01

    We study the mechanism behind dynamical trappings experienced during Wang-Landau sampling of continuous systems reported by several authors. Trapping is caused by the random walker coming close to a local energy extremum, although the mechanism is different from that of the critical slowing-down encountered in conventional molecular dynamics or Monte Carlo simulations. When trapped, the random walker misses the entire or even several stages of Wang-Landau modification factor reduction, leading to inadequate sampling of the configuration space and a rough density of states, even though the modification factor has been reduced to very small values. Trapping is dependent on specific systems, the choice of energy bins, and the Monte Carlo step size, making it highly unpredictable. A general, simple, and effective solution is proposed where the configurations of multiple parallel Wang-Landau trajectories are interswapped to prevent trapping. We also explain why swapping frees the random walker from such traps. The efficacy of the proposed algorithm is demonstrated.

  2. Improved Radio-Frequency Magneto-Optical Trap of SrF Molecules.

    PubMed

    Steinecker, Matthew H; McCarron, Daniel J; Zhu, Yuqi; DeMille, David

    2016-11-18

    We report the production of ultracold, trapped strontium monofluoride (SrF) molecules with number density and phase-space density significantly higher than previously achieved. These improvements are enabled by three distinct changes to our recently-demonstrated scheme for radio-frequency magneto-optical trapping of SrF: modification of the slowing laser beam geometry, addition of an optical pumping laser, and incorporation of a compression stage to the magneto-optical trap. With these improvements, we observe a trapped sample of SrF molecules at density 2.5×10 5  cm -3 and phase-space density 6×10 -14 , each a factor of 4 greater than in previous work. Under different experimental conditions, we observe trapping of up to 10 4 molecules, a factor of 5 greater than in previous work. Finally, by reducing the intensity of the applied trapping light, we observe molecular temperatures as low as 250 μK. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. How landscape scale changes affect ecological processes in conservation areas: external factors influence land use by zebra (Equus burchelli) in the Okavango Delta.

    PubMed

    Bartlam-Brooks, Hattie L A; Bonyongo, Mpaphi C; Harris, Stephen

    2013-09-01

    Most large-bodied wildlife populations in sub-Saharan Africa only survive in conservation areas, but are continuing to decline because external changes influence ecological processes within reserves, leading to a lack of functionality. However, failure to understand how landscape scale changes influence ecological processes limits our ability to manage protected areas. We used GPS movement data to calculate dry season home ranges for 14 zebra mares in the Okavango Delta and investigated the effects of a range of landscape characteristics (number of habitat patches, mean patch shape, mean index of juxtaposition, and interspersion) on home range size. Resource utilization functions (RUF) were calculated to investigate how specific landscape characteristics affected space use. Space use by all zebra was clustered. In the wetter (Central) parts of the Delta home range size was negatively correlated with the density of habitat patches, more complex patch shapes, low juxtaposition of habitats and an increased availability of floodplain and grassland habitats. In the drier (Peripheral) parts of the Delta, higher use by zebra was also associated with a greater availability of floodplain and grassland habitats, but a lower density of patches and simpler patch shapes. The most important landscape characteristic was not consistent between zebra within the same area of the Delta, suggesting that no single foraging strategy is substantially superior to others, and so animals using different foraging strategies may all thrive. The distribution and complexity of habitat patches are crucial in determining space use by zebra. The extent and duration of seasonal flooding is the principal process affecting habitat patch characteristics in the Okavango Delta, particularly the availability of floodplains, which are the habitat at greatest risk from climate change and anthropogenic disturbance to the Okavango's catchment basin. Understanding how the factors that determine habitat complexity may change in the future is critical to the conservation of large mammal populations. Our study shows the importance of maintaining flood levels in the Okavango Delta and how the loss of seasonal floodplains will be compounded by changes in habitat configuration, forcing zebra to change their relative space use and enlarge home ranges, leading to increased competition for key resources and population declines.

  4. Relations among floodplain water levels, instream dissolved-oxygen conditions, and streamflow in the lower Roanoke River, North Carolina, 1997-2001

    USGS Publications Warehouse

    Bales, Jerad D.; Walters, Douglas A.

    2004-01-01

    The lower Roanoke River corridor in North Carolina contains a floodplain of national significance. Data from a network of 1 streamflow-measurement site, 13 river-stage sites, 13 floodplain water-level sites located along 4 transects, and 5 in situ water-quality monitoring sites were used to characterize temporal and spatial variations of floodplain and river water levels during 1997-2000 and to describe dissolved-oxygen conditions in the lower Roanoke River for the period 1998-2001. Major differences in the relation of floodplain inundation to flow occurred both among sites at a given transect and among transects. Several floodplain sites were inundated for the full range of flow conditions measured during the study. These included one site on the Big Swash transect (at about river kilometer 119); one site on the Broadneck Swamp transect (river kilometer 97), which was inundated 91 percent of the time during the study; one site on the Devils Gut transect (river kilometer 44), which was inundated throughout the study; and three sites on the Cow Swamp transect (near river kilometer 10). The relation of floodplain inundation depth to Roanoke River flow was highly variable among sites. There was no relation between flow and inundation depth at one of the Big Swash sites or at any of the four Cow Swamp sites. At two of the Big Swash transect sites, there was some relation between inundation depth and 10-day mean flow for flows greater than 700 cubic meters per second. A relatively strong relation between inundation depth and 10-day mean flow occurred at two of the Broadneck Swamp sites and, to a lesser degree, at two of the Devils Gut transect sites. There was much greater interannual variability in floodplain water levels, as represented by the difference between the maximum and minimum daily water level for a given calendar date during January-May and September-October than during the summer and late fall months. If data from this study are representative of long-term conditions, then this means that there is less uncertainty about what future floodplain water levels will be during June-August and November-December than during other months. Rates of ground-water decline, primarily due to evapotranspiration, were fairly similar at all sites, ranging from about 3 to 4 centimeters per day. For a 10-day mean flow of 300 cubic meters per second, an evaporative loss of 2 centimeters per day is equal to about 56 cubic meters per second. Evapotranspiration rates are much lower during the fall and winter months, so losses of river flow to floodplain processes likely are much lower during those months. The ground-water gradient at most sites was from the floodplain to the river, indicating a potential for ground-water movement into the river from the floodplain. At two of the Devils Gut sites, however, the water level often was higher in the river than in the floodplain when floodplain sites were not inundated. This indicates that there is a potential for river water to move as ground water from the river into the floodplain. It seems likely that this feature observed at the Devils Gut transect occurs elsewhere in the lower Roanoke River corridor. Dissolved-oxygen concentrations typically decrease with increasing distance from Roanoke Rapids Dam. During the 1998-2001 study period, the median dissolved-oxygen concentration at Halifax (river kilometer 187), the upstream-most station, was 8.4 milligrams per liter, and the median concentration at the downstream-most station (NC-45, bottom sensor; river kilometer 2.6) was 6.6 milligrams per liter. Several synoptic measurements of dissolved-oxygen concentration down the river identified the presence of a dissolved-oxygen sag in the vicinity of Halifax, with some recovery of concentrations between Halifax and about Scotland Neck at river kilometer 156. Data from the synoptic measurements also indicated that the greatest rate of dissolved-oxygen change with distance along the riv

  5. Ecosystem-level consequences of symbiont partnerships in an N-fixing shrub from interior Alaskan floodplains

    Treesearch

    R.W. Ruess; M.D. Anderson; J.W. McFarland; K. Kielland; K. Olson; D.L. Taylor

    2013-01-01

    In long-lived N-fixing plants, environmental conditions affecting plant growth and N demand vary at multiple temporal and spatial scales, and symbiont assemblages on a given host and patterns of allocation to nodule activities have been shown to vary according to environmental factors, suggesting that hosts may alter partner choice and manipulate symbiont assemblages...

  6. Evaluation of CAESAR-Lisflood as a tool for modelling river channel change and floodplain sediment residence times.

    NASA Astrophysics Data System (ADS)

    Feeney, Christopher; Smith, Hugh; Chiverrell, Richard; Hooke, Janet; Cooper, James

    2017-04-01

    Sediment residence time represents the duration of particle storage, from initial deposition to remobilisation, within reservoirs such as floodplains. Residence time influences rates of downstream redistribution of sediment and associated contaminants and is a useful indicator of landform stability and hence, preservation potential of alluvial archives of environmental change. River channel change controls residence times, reworking sediments via lateral migration, avulsion and incision through floodplain deposits. As reworking progresses, the floodplain age distribution is 'updated', reflecting the time since 'older' sediments were removed and replaced with 'younger' ones. The relationship between ages and the spatial extents they occupy can be used to estimate the average floodplain sediment residence times. While dating techniques, historic maps and remote sensing can reconstruct age distributions from historic reworking, modelling provides advantages, including: i) capturing detailed river channel changes and resulting floodplain ages over longer timescales and higher resolutions than from historic mapping, and ii) control over inputs to simulate hypothetical scenarios to investigate the effects of different environmental drivers on residence times. CAESAR-Lisflood is a landform evolution model capable of simulating variable channel width, divergent flow, and both braided and meandering planforms. However, the model's ability to accurately simulate channel changes requires evaluation if it is to be useful for quantitative evaluation of floodplain sediment residence times. This study aims to simulate recent historic river channel changes along ten 1 km reaches in northern England. Simulation periods were defined by available overlapping historic map and mean daily flow datasets, ranging 27-39 years. LiDAR-derived 2 m DEMs were modified to smooth out present-day channels and burn in historic channel locations. To reduce run times, DEMs were resampled to coarser resolutions based on the size of the channel and historic rate of lateral channel migration. Separate pre-defined coarse and finer channel bed and floodplain grain size distributions were used, respectively, in combination with constructed reach DEMs for model simulations. Calibration was performed by modifying selected parameters to obtain best fits between observed and modelled channel planforms. Initial simulations suggest the model can broadly reproduce observed planform change and is comparable in terms of channel sinuosities and the mean radius of curvature. As such, CAESAR-Lisflood may provide a useful tool for evaluating floodplain sediment residence times under environmental change scenarios.

  7. The Role of Conjoining (Tie) Channels in Lowland Floodplain Development and Lake Infilling

    NASA Astrophysics Data System (ADS)

    Rowland, J. C.; Dietrich, W. E.; Day, G.; Lepper, K.; Wilson, C. J.

    2003-12-01

    In simple models of lowland river systems, water and sediment enter the main stem via tributary and secondary channels and are only redistributed to the floodplain during overbank and crevasse splay events. Along numerous river systems across the globe, however, water and sediment are regularly exchanged between the river and off river water bodies via stable, narrow channels. These channels, known as tie channels on the Fly River in Papua New Guinea and batture channels along the lower Mississippi, are largely overlooked but important components of floodplain sediment dispersal where they exist. These channels become pathways of sediment dispersal to the floodplain system when elevated river stages force sediment-laden flows into the off-river water bodies. On the Fly River, it is estimated that about 50% of the sediment delivery to the floodplain is via these channels, and along low gradient tributary channels during flood driven flow reversals. During low flow, tie channels serve to drain the floodplain. With the outgoing flows, large amounts sediment can be carried and lost to the floodplain; floodplain lakes progressively infill with sediment as the mouth of these channels steadily prograde lakeward. These lake deposits not only become significant stratigraphic components of floodplains (traditionally referred to as clay plugs), but are important local sinks recording hundreds to thousands of years of river history. As with all sinks, the proper interpretation of these stratigraphic records requires understanding the processes by which sediment is delivered to the sink and how these processes alter the paleohydraulic and climatic signals of interest. We have conducted field investigations of conjoining channels in Papua New Guinea (the Fly and Strickland Rivers), Louisiana (Raccourci Old River ~ 65 km upriver of Baton Rouge) and Alaska (Birch Creek). These field investigations include extensive surveys of both cross and along channel morphological trends, grain size characteristics, water levels and geochronological sampling using optically stimulated luminescence (OSL). Across all systems channel morphology is similar and exhibit scale independence, however, channel size and rates of progradation are directly related to the size of the main stem river. Through these studies and ongoing scaled modeling we are examining the morphodynamics that lead to the formation, advancement and stability of these unique self formed channels.

  8. Preferential flow paths in paraglacial catchments: first order controls on the long-term stability of 'biodiversity hotspots' in a changing climate

    NASA Astrophysics Data System (ADS)

    Grocott, Michael; Kettridge, Nick; Bradley, Chris; Milner, Alexander

    2016-04-01

    Groundwater (GW) -fed streams within paraglacial floodplains are considered 'biodiversity hotspots', given their importance as an aquatic ecosystem and role in supporting valuable riverine habitat patches within paraglacial environments. However, it is anticipated that throughout the 21st Century hydrologic regimes of paraglacial systems in arctic, sub-arctic, and alpine regions globally will experience substantial changes, as a consequence of anthropogenic climate change. Declining glacial coverage, shrinking winter snowpack, earlier spring melt, rising permafrost melt and increasing relative importance of groundwater will all cause major changes in the water balance of paraglacial catchments. This research explored the importance of preferential flow pathways (PFPs) as conduits of subsurface flow across paraglacial floodplains, and their role in sustaining 'biodiversity hotspots'. Furthermore, it considered the role of PFPs in hillslope-floodplain connectivity within paraglacial systems and the significance of colluvial deposits as a key water source to GW-fed streams on paraglacial floodplains. An intra-catchment scale field study within ungauged catchments was conducted in Denali National Park & Preserve, Alaska, during 2013 and 2014. The research utilised hydrogeomorphic and hydrochemical field techniques to address the aims outlined above. Surface infiltration and slug tests identified significant spatial heterogeneity in hydraulic conductivity (K) across the surface and subsurface of paraglacial floodplains, indicating the presence of PFPs. Furthermore, spatiotemporal variation in geochemical tracers (major ions) within surface and subsurface flow paths established the role of multiple, discrete flow paths (PFPs) in sustaining GW-fed streamflow on floodplains. Finally, hydrograph separations confirmed the significant contribution made by colluvial deposits (e.g. talus slopes) to sustaining GW-fed streamflow on paraglacial research. This research suggests PFPs are a fundamental first order control upon the occurrence of 'biodiversity hotspots' within paraglacial floodplains, and highlights their role as an important conduit for hillslope-floodplain connectivity. Given the expected changes in the hydrological dynamics of paraglacial catchments this research raises questions about the long-term stability of GW-fed streams, and whether the increasing relative importance of groundwater sources (e.g. from colluvium) can sustain flow of GW-fed streams. In addition glacial retreat and associated long-term declines in sediment yields could have negative implications for the development and renewal of PFPs across paraglacial floodplains, which would be detrimental to the persistence of 'biodiversity hotspots'.

  9. Organic carbon and nitrogen export from a tropical dam-impacted floodplain system

    NASA Astrophysics Data System (ADS)

    Zurbrügg, R.; Suter, S.; Lehmann, M. F.; Wehrli, B.; Senn, D. B.

    2013-01-01

    Tropical floodplains play an important role in organic matter transport, storage, and transformation between headwaters and oceans. However, the fluxes and quality of organic carbon (OC) and organic nitrogen (ON) in tropical river-floodplain systems are not well constrained. We explored the quantity and characteristics of dissolved and particulate organic matter (DOM and POM, respectively) in the Kafue River flowing through the Kafue Flats (Zambia), a tropical river-floodplain system in the Zambezi River basin. During the flooding season, > 80% of the Kafue River water passed through the floodplain, mobilizing large quantities of OC and ON, which resulted in a net export of 69-119 kg OC km-2 d-1 and 3.8-4.7 kg ON km-2 d-1, 80% of which was in the dissolved form. The elemental C : N ratio of ~ 20, the comparatively high δ13C values of -25‰ to -21‰, and its spectroscopic properties (excitation-emission matrices) showed that DOM in the river was mainly of terrestrial origin. Despite a threefold increase in OC loads due to inputs from the floodplain, the characteristics of the riverine DOM remained relatively constant along the sampled 410-km river reach. This suggests that floodplain DOM displayed properties similar to those of DOM leaving the upstream reservoir and implied that the DOM produced in the reservoir was relatively short-lived. In contrast, the particulate fraction was 13C-depleted (-29‰) and had a C : N ratio of ~ 8, which indicated that POM originated from phytoplankton production in the reservoir and in the floodplain, rather than from plant debris or resuspended sediments. While the upstream dam had little effect on the DOM pool, terrestrial particles were retained, and POM from algal and microbial sources was released to the river. A nitrogen mass balance over the 2200 km2 flooded area revealed an annual deficit of 15 500-22 100 t N in the Kafue Flats. The N isotope budget suggests that these N losses are balanced by intense N-fixation. Our study shows that the Kafue Flats are a significant local source of OC and ON to downstream ecosystems and illustrates how the composition of riverine OM can be altered by dams and floodplains in tropical catchments.

  10. Mimicking floodplain reconnection and disconnection using 15N mesocosm incubations

    NASA Astrophysics Data System (ADS)

    Welti, N.; Bondar-Kunze, E.; Mair, M.; Bonin, P.; Wanek, W.; Pinay, G.; Hein, T.

    2012-11-01

    Floodplain restoration changes the nitrate delivery pattern and dissolved organic matter pool in backwaters, though the effects these changes have are not yet well known. We performed two mesocosm experiments on floodplain sediments to quantify the nitrate metabolism in two types of floodplains. Rates of denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and anammox were measured using 15N-NO3 tracer additions in mesocosms of undisturbed floodplain sediments originating from (1) restored and (2) disconnected sites in the Alluvial Zone National Park on the Danube River downstream of Vienna, Austria. DNRA rates were an order of magnitude lower than denitrification and neither rate was affected by changes in nitrate delivery pattern or organic matter quality. Anammox was not detected at any of the sites. Denitrification was out-competed by assimilation, which was estimated to use up to 70% of the available nitrate. Overall, denitrification was higher in the restored sites, with mean rates of 5.7 ± 2.8 mmol N m-2 h-1 compared to the disconnected site (0.6 ± 0.5 mmol N m-2 h-1). In addition, ratios of N2O : N2 were lower in the restored site indicating a more complete denitrification. Nitrate addition had neither an effect on denitrification, nor on the N2O : N2 ratio. However, DOM (dissolved organic matter) quality significantly changed the N2O : N2 ratio in both sites. Addition of riverine-derived organic matter lowered the N2O : N2 ratio in the disconnected site, whereas addition of floodplain-derived organic matter increased the N2O : N2 ratio in the restored site. These results demonstrate that increasing floodplains hydrological connection to the main river channel increases nitrogen retention and decreases nitrous oxide emissions.

  11. Linking river, floodplain, and vadose zone hydrology to improve restoration of a coastal river affected by saltwater intrusion.

    PubMed

    Kaplan, D; Muñoz-Carpena, R; Wan, Y; Hedgepeth, M; Zheng, F; Roberts, R; Rossmanith, R

    2010-01-01

    Floodplain forests provide unique ecological structure and function, which are often degraded or lost when watershed hydrology is modified. Restoration of damaged ecosystems requires an understanding of surface water, groundwater, and vadose (unsaturated) zone hydrology in the floodplain. Soil moisture and porewater salinity are of particular importance for seed germination and seedling survival in systems affected by saltwater intrusion but are difficult to monitor and often overlooked. This study contributes to the understanding of floodplain hydrology in one of the last bald cypress [Taxodium distichum (L.) Rich.] floodplain swamps in southeast Florida. We investigated soil moisture and porewater salinity dynamics in the floodplain of the Loxahatchee River, where reduced freshwater flow has led to saltwater intrusion and a transition to salt-tolerant, mangrove-dominated communities. Twenty-four dielectric probes measuring soil moisture and porewater salinity every 30 min were installed along two transects-one in an upstream, freshwater location and one in a downstream tidal area. Complemented by surface water, groundwater, and meteorological data, these unique 4-yr datasets quantified the spatial variability and temporal dynamics of vadose zone hydrology. Results showed that soil moisture can be closely predicted based on river stage and topographic elevation (overall Nash-Sutcliffe coefficient of efficiency = 0.83). Porewater salinity rarely exceeded tolerance thresholds (0.3125 S m(-1)) for bald cypress upstream but did so in some downstream areas. This provided an explanation for observed vegetation changes that both surface water and groundwater salinity failed to explain. The results offer a methodological and analytical framework for floodplain monitoring in locations where restoration success depends on vadose zone hydrology and provide relationships for evaluating proposed restoration and management scenarios for the Loxahatchee River.

  12. Digital floodplain mapping and an analysis of errors involved

    USGS Publications Warehouse

    Hamblen, C.S.; Soong, D.T.; Cai, X.

    2007-01-01

    Mapping floodplain boundaries using geographical information system (GIS) and digital elevation models (DEMs) was completed in a recent study. However convenient this method may appear at first, the resulting maps potentially can have unaccounted errors. Mapping the floodplain using GIS is faster than mapping manually, and digital mapping is expected to be more common in the future. When mapping is done manually, the experience and judgment of the engineer or geographer completing the mapping and the contour resolution of the surface topography are critical in determining the flood-plain and floodway boundaries between cross sections. When mapping is done digitally, discrepancies can result from the use of the computing algorithm and digital topographic datasets. Understanding the possible sources of error and how the error accumulates through these processes is necessary for the validation of automated digital mapping. This study will evaluate the procedure of floodplain mapping using GIS and a 3 m by 3 m resolution DEM with a focus on the accumulated errors involved in the process. Within the GIS environment of this mapping method, the procedural steps of most interest, initially, include: (1) the accurate spatial representation of the stream centerline and cross sections, (2) properly using a triangulated irregular network (TIN) model for the flood elevations of the studied cross sections, the interpolated elevations between them and the extrapolated flood elevations beyond the cross sections, and (3) the comparison of the flood elevation TIN with the ground elevation DEM, from which the appropriate inundation boundaries are delineated. The study area involved is of relatively low topographic relief; thereby, making it representative of common suburban development and a prime setting for the need of accurately mapped floodplains. This paper emphasizes the impacts of integrating supplemental digital terrain data between cross sections on floodplain delineation. ?? 2007 ASCE.

  13. Hydrogeomorphology influences soil nitrogen and phosphorus mineralization in floodplain wetlands

    USGS Publications Warehouse

    Noe, Gregory B.; Hupp, Cliff R.; Rybicki, Nancy B.

    2013-01-01

    Conceptual models of river–floodplain systems and biogeochemical theory predict that floodplain soil nitrogen (N) and phosphorus (P) mineralization should increase with hydrologic connectivity to the river and thus increase with distance downstream (longitudinal dimension) and in lower geomorphic units within the floodplain (lateral dimension). We measured rates of in situ soil net ammonification, nitrification, N, and P mineralization using monthly incubations of modified resin cores for a year in the forested floodplain wetlands of Difficult Run, a fifth order urban Piedmont river in Virginia, USA. Mineralization rates were then related to potentially controlling ecosystem attributes associated with hydrologic connectivity, soil characteristics, and vegetative inputs. Ammonification and P mineralization were greatest in the wet backswamps, nitrification was greatest in the dry levees, and net N mineralization was greatest in the intermediately wet toe-slopes. Nitrification also was greater in the headwater sites than downstream sites, whereas ammonification was greater in downstream sites. Annual net N mineralization increased with spatial gradients of greater ammonium loading to the soil surface associated with flooding, soil organic and nutrient content, and herbaceous nutrient inputs. Annual net P mineralization was associated negatively with soil pH and coarser soil texture, and positively with ammonium and phosphate loading to the soil surface associated with flooding. Within an intensively sampled low elevation flowpath at one site, sediment deposition during individual incubations stimulated mineralization of N and P. However, the amount of N and P mineralized in soil was substantially less than the amount deposited with sedimentation. In summary, greater inputs of nutrients and water and storage of soil nutrients along gradients of river–floodplain hydrologic connectivity increased floodplain soil nutrient mineralization rates.

  14. Use of ALS data for digital terrain extraction and roughness parametrization in floodplain areas

    NASA Astrophysics Data System (ADS)

    Idda, B.; Nardinocchi, C.; Marsella, M.

    2009-04-01

    In order to undertake structural and land planning actions aimed at improving risk thresholds and vulnerability associated to floodplain inundation, the evaluation of the area concerning the channel overflowing from his natural embankments it is of essential importance. Floodplain models requires the analysis of historical floodplains extensions, ground's morphological structure and hydraulic measurements. Within this set of information, a more detailed characterization about the hydraulic roughness, which controls the velocity to the hydraulic flow, is a interesting challenge to achieve a 2D spatial distribution into the model. Remote sensing optical and radar sensors techniques can be applied to generate 2D and 3D map products useful to perimeter floodplains extension during the main event and extrapolate river cross-sections. Among these techniques, it is unquestionable the enhancement that the Airborne Laser Scanner (ALS) have brought for its capability to extract high resolution and accurate Digital Terrain Models. In hydraulic applications, a number of studies investigated the use of ALS for DTM generation and approached the quantitative estimations of the hydraulic roughness. The aim of this work is the generation of a digital terrain model and the estimation of hydraulic parameters useful for floodplains models from Airborne Laser Scanner data collected in a test area, which encloses a portion of a drainage basin of the Mela river (Sicily, Italy). From the Airborne Laser Scanner dataset, a high resolution Digital Elevation Model was first created, then after applying filtering and classification processes, a dedicated procedure was implemented to assess automatically a value for the hydraulic roughness coefficient (in Manning's formulation) per each point interested in the floodplain. The obtained results allowed to generate maps of equal roughness, hydraulic level depending, based on the application of empirical formulas for specific-type vegetation at each classified ALS point.

  15. Struggle in the flood: tree responses to flooding stress in four tropical floodplain systems

    PubMed Central

    Parolin, Pia; Wittmann, Florian

    2010-01-01

    Background and aims In the context of the 200th anniversary of Charles Darwin's birth in 1809, this study discusses the variation in structure and adaptation associated with survival and reproductive success in the face of environmental stresses in the trees of tropical floodplains. Scope We provide a comparative review on the responses to flooding stress in the trees of freshwater wetlands in tropical environments. The four large wetlands we evaluate are: (i) Central Amazonian floodplains in South America, (ii) the Okavango Delta in Africa, (iii) the Mekong floodplains of Asia and (iv) the floodplains of Northern Australia. They each have a predictable ‘flood pulse’. Although flooding height varies between the ecosystems, the annual pulse is a major driving force influencing all living organisms and a source of stress for which specialized adaptations for survival are required. Main points The need for trees to survive an annual flood pulse has given rise to a large variety of adaptations. However, phenological responses to the flood are similar in the four ecosystems. Deciduous and evergreen species respond with leaf shedding, although sap flow remains active for most of the year. Growth depends on adequate carbohydrate supply. Physiological adaptations (anaerobic metabolism, starch accumulation) are also required. Conclusions Data concerning the ecophysiology and adaptations of trees in floodplain forests worldwide are extremely scarce. For successful floodplain conservation, more information is needed, ideally through a globally co-ordinated study using reproducible comparative methods. In the light of climatic change, with increasing drought, decreased groundwater availability and flooding periodicities, this knowledge is needed ever more urgently to facilitate fast and appropriate management responses to large-scale environmental change. PMID:22476061

  16. The Two Edged Sword; Illinois' Risk Reduction Success Through Managed Retreat And Strong Regulations

    NASA Astrophysics Data System (ADS)

    Osman, P.

    2017-12-01

    Illinois has the nation's largest inland system of rivers, lakes, and streams. Two thirds of the continental US and two Canadian provinces drain thru Illinois. Although a blessing, these waterways also result in frequent flooding. Historically, Illinois ranked among the top five states in the nation for flood losses. However, using a combination of strong floodplain regulations and proactive flood mitigation programs, Illinois now ranks near the bottom of flood loss states. Following the 1993 flood, the State of Illinois began an aggressive program to remove flood prone structures from the floodplain. Using a combination of state, federal, and local funds, towns like Valmeyer and Grafton have largely been relocated outside of the floodplain. Likewise, in dozens of communities across the state, thousands of structures have been have purchased to create open space in the floodplain. In addition, new structures in the floodplain must meet strict state and local floodplain construction standards. Major floods now routinely pass Illinois unnoticed. Many communities once ravaged by flooding now pass large floods unscathed. Due largely to climate change, flood losses in many areas are evolving. The majority of flood losses in Illinois now occur outside of the mapped floodplain. The State of Illinois has recently completed a detailed analysis of the state's urban flood exposure. Flood risk is changing and methods to address that risk must evolve accordingly. Accurate climate change data on major inland waterways and urban areas remain elusive. This presentation will highlight simple steps any state or community can take to reduce existing flood losses and be better prepared to address changing impacts due to climate change.

  17. Modeling multidecadal surface water inundation dynamics and key drivers on large river basin scale using multiple time series of Earth-observation and river flow data

    NASA Astrophysics Data System (ADS)

    Heimhuber, V.; Tulbure, M. G.; Broich, M.

    2017-02-01

    Periodically inundated floodplain areas are hot spots of biodiversity and provide a broad range of ecosystem services but have suffered alarming declines in recent history. Despite their importance, their long-term surface water (SW) dynamics and hydroclimatic drivers remain poorly quantified on continental scales. In this study, we used a 26 year time series of Landsat-derived SW maps in combination with river flow data from 68 gauges and spatial time series of rainfall, evapotranspiration and soil moisture to statistically model SW dynamics as a function of key drivers across Australia's Murray-Darling Basin (˜1 million km2). We fitted generalized additive models for 18,521 individual modeling units made up of 10 × 10 km grid cells, each split into floodplain, floodplain-lake, and nonfloodplain area. Average goodness of fit of models was high across floodplains and floodplain-lakes (r2 > 0.65), which were primarily driven by river flow, and was lower for nonfloodplain areas (r2 > 0.24), which were primarily driven by rainfall. Local climate conditions were more relevant for SW dynamics in the northern compared to the southern basin and had the highest influence in the least regulated and most extended floodplains. We further applied the models of two contrasting floodplain areas to predict SW extents of cloud-affected time steps in the Landsat series during the large 2010 floods with high validated accuracy (r2 > 0.97). Our framework is applicable to other complex river basins across the world and enables a more detailed quantification of large floods and drivers of SW dynamics compared to existing methods.

  18. Provisioning of bioavailable carbon between the wet and dry phases in a semi-arid floodplain.

    PubMed

    Baldwin, Darren S; Rees, Gavin N; Wilson, Jessica S; Colloff, Matthew J; Whitworth, Kerry L; Pitman, Tara L; Wallace, Todd A

    2013-06-01

    Ecosystem functioning on arid and semi-arid floodplains may be described by two alternate traditional paradigms. The pulse-reserve model suggests that rainfall is the main driver of plant growth and subsequent carbon and energy reserve formation in the soil of arid and semi-arid regions. The flood pulse concept suggests that periodic flooding facilitates the two-way transfer of materials between a river and its adjacent floodplain, but focuses mainly on the period when the floodplain is inundated. We compared the effects of both rainfall and flooding on soil moisture and carbon in a semi-arid floodplain to determine the relative importance of each for soil moisture recharge and the generation of a bioavailable organic carbon reserve that can potentially be utilised during the dry phase. Flooding, not rainfall, made a substantial contribution to moisture in the soil profile. Furthermore, the growth of aquatic macrophytes during the wet phase produced at least an order of magnitude more organic material than rainfall-induced pulse-reserve responses during the dry phase, and remained as recognizable soil carbon for years following flood recession. These observations have led us to extend existing paradigms to encompass the reciprocal provisioning of carbon between the wet and dry phases on the floodplain, whereby, in addition to carbon fixed during the dry phase being important for driving biogeochemical transformations upon return of the next wet phase, aquatic macrophyte carbon fixed during the wet phase is recognized as an important source of energy for the dry phase. Reciprocal provisioning presents a conceptual framework on which to formulate questions about the resistance and ecosystem resilience of arid and semi-arid floodplains in the face of threats like climate change and alterations to flood regimes.

  19. Floodplain dynamics control the age distribution of organic carbon in large rivers

    NASA Astrophysics Data System (ADS)

    Torres, M. A.; Limaye, A. B. S.; Ganti, V.; West, A. J.; Fischer, W. W.; Lamb, M. P.

    2016-12-01

    As sediments transit through river systems, they are temporarily stored within floodplains. This storage is important for geochemical cycles because it imparts a certain cadence to weathering processes and organic carbon cycling. However, the time and length scales over which these processes operate are poorly known. To address this, we developed a model for the distribution of storage times in floodplains and used it to make predictions of the age distribution of riverine particulate organic carbon (POC) that can be compared with data from a range of rivers.Using statistics generated from a numerical model of river meandering that accounts for the rates of lateral channel migration and the lengths of channel needed to exchange the sediment flux with the floodplain, we estimated the distribution of sediment storage times. Importantly, this approach consistently yields a heavy-tailed distribution of storage times. This finding, based on comprehensive simulations of a wide range of river conditions, arises because of geometrical constraints that lead to the preferential erosion and reworking of young deposits. To benchmark our model, we compared our results with meteoric 10Be data (a storage time proxy) from Amazonian rivers. Our model correctly predicts observed 10Be concentrations, and consequently appears to capture the correct characteristic timescales associated with floodplain storage. By coupling a simple model of carbon cycling with our floodplain storage model, we are able to make predictions about the radiocarbon content of riverine POC. We observe that floodplains with greater storage times tend to have biospheric POC with a lower radiocarbon content (after correcting bulk ages for contribution from radiocarbon-dead petrogenic carbon). This result confirms that storage plays a key role in setting the age of POC transported by rivers with important implications for the dynamics of the global carbon cycle.

  20. Spectrometric analyses in comparison to the physiological condition of heavy metal stressed floodplain vegetation in a standardised experiment

    NASA Astrophysics Data System (ADS)

    Götze, Christian; Jung, András; Merbach, Ines; Wennrich, Rainer; Gläßer, Cornelia

    2010-06-01

    Floodplain ecosystems are affected by flood dynamics, nutrient supply as well as anthropogenic activities. Heavy metal pollution poses a serious environmental challenge. Pollution transfer from the soil to vegetation is still present at the central location of Elbe River, Germany. The goal of this study was to assess and separate the current heavy metal contamination of the floodplain ecosystem, using spectrometric field and laboratory measurements. A standardized pot experiment with floodplain vegetation in differently contaminated soils provided the basis for the measurements. The dominant plant types of the floodplains are: Urtica dioica, Phalaris arundinacea and Alopecurus pratensis, these were also chemically analysed. Various vegetation indices and methods were used to estimate the red edge position, to normalise the spectral curve of the vegetation and to investigate the potential of different methods for separating plant stress in floodplain vegetation. The main task was to compare spectral bands during phenological phases to find a method to detect heavy metal stress in plants. A multi-level algorithm for the curve parameterisation was developed. Chemo-analytical and ecophysiological parameters of plants were considered in the results and correlated with spectral data. The results of this study show the influence of heavy metals on the spectral characteristics of the focal plants. The developed method (depth CR1730) showed significant relationship between the plants and the contamination.

  1. Assessment of flood-induced changes of phytoplankton along a river-floodplain system using the morpho-functional approach.

    PubMed

    Mihaljević, Melita; Spoljarić, Dubravka; Stević, Filip; Zuna Pfeiffer, Tanja

    2013-10-01

    In this research, we aimed to find out how the differences in hydrological connectivity between the main river channel and adjacent floodplain influence the changes in phytoplankton community structure along a river-floodplain system. The research was performed in the River Danube floodplain (Croatian river section) in the period 2008-2009 characterised by different flooding pattern on an annual time scale. By utilising the morpho-functional approach and multivariate analyses, the flood-derived structural changes of phytoplankton were analysed. The lake stability during the isolation phase triggered the specific pattern of morpho-functional groups (MFG) which were characterised by cyanobacterial species achieving very high biomass. Adversely, the high water turbulence in the lake during the frequent and extreme flooding led to evident similarity between lake and river assemblages. Besides different diatom species (groups of small and large centrics and pennates), which are the most abundant representatives in the river phytoplankton, many other groups such as cryptophytes and colonial phytomonads appeared to indicate altered conditions in the floodplain driven by flooding. Having different functional properties, small centric diatom taxa sorted to only one MFG cannot clearly reflect environmental changes that are shown by the species-level pattern. Disadvantages in using the MFG approach highlight that it is still necessary to combine it with taxonomical approach in monitoring of phytoplankton in the river-floodplain ecosystems.

  2. Floodplain farm fields provide novel rearing habitat for Chinook salmon

    PubMed Central

    Jeffres, Carson; Conrad, J. Louise; Sommer, Ted R.; Martinez, Joshua; Brumbaugh, Steve; Corline, Nicholas; Moyle, Peter B.

    2017-01-01

    When inundated by floodwaters, river floodplains provide critical habitat for many species of fish and wildlife, but many river valleys have been extensively leveed and floodplain wetlands drained for flood control and agriculture. In the Central Valley of California, USA, where less than 5% of floodplain wetland habitats remain, a critical conservation question is how can farmland occupying the historical floodplains be better managed to improve benefits for native fish and wildlife. In this study fields on the Sacramento River floodplain were intentionally flooded after the autumn rice harvest to determine if they could provide shallow-water rearing habitat for Sacramento River fall-run Chinook salmon (Oncorhynchus tshawytscha). Approximately 10,000 juvenile fish (ca. 48 mm, 1.1 g) were reared on two hectares for six weeks (Feb-March) between the fall harvest and spring planting. A subsample of the fish were uniquely tagged to allow tracking of individual growth rates (average 0.76 mm/day) which were among the highest recorded in fresh water in California. Zooplankton sampled from the water column of the fields were compared to fish stomach contents. The primary prey was zooplankton in the order Cladocera, commonly called water fleas. The compatibility, on the same farm fields, of summer crop production and native fish habitat during winter demonstrates that land management combining agriculture with conservation ecology may benefit recovery of native fish species, such as endangered Chinook salmon. PMID:28591141

  3. Reoccupation of floodplains by rivers and its relation to the age structure of floodplain vegetation

    USGS Publications Warehouse

    Konrad, Christopher P.

    2012-01-01

    River channel dynamics over many decades provide a physical control on the age structure of floodplain vegetation as a river occupies and abandons locations. Floodplain reoccupation by a river, in particular, determines the interval of time during which vegetation can establish and mature. A general framework for analyzing floodplain reoccupation and a time series model are developed and applied to five alluvial rivers in the United States. Channel dynamics in these rivers demonstrate time-scale dependence with short-term oscillation in active channel area in response to floods and subsequent vegetation growth and progressive lateral movement that accounts for much of the cumulative area occupied by the rivers over decades. Rivers preferentially reoccupy locations recently abandoned causing a decreasing probability of reoccupation with time since abandonment. For a typical case, a river is 10 times more likely to reoccupy an area it abandoned in the past decade than it is to reoccupy an area it abandoned 30 yrs ago. The decreasing probability of reoccupation over time is consistent with observations of persistent stands of late seral stage floodplain forest. A power function provides a robust approach for estimating the cumulative area occupied by a river and the age structure of riparian forests resulting from a specific historical sequence of streamflow in comparison to either linear or exponential alternatives.

  4. Flood inundation mapping in the Logone floodplain from multi temporal Landsat ETM+ imagery

    NASA Astrophysics Data System (ADS)

    Jung, H.; Alsdorf, D. E.; Moritz, M.; Lee, H.; Vassolo, S.

    2011-12-01

    Yearly flooding in the Logone floodplain makes an impact on agricultural, pastoral, and fishery systems in the Lake Chad Basin. Since the flooding extent and depth are highly variable, flood inundation mapping helps us make better use of water resources and prevent flood hazards in the Logone floodplain. The flood maps are generated from 33 multi temporal Landsat Enhanced Thematic Mapper Plus (ETM+) during three years 2006 to 2008. Flooded area is classified using a short-wave infrared band whereas open water is classified by Iterative Self-organizing Data Analysis (ISODATA) clustering. The maximum flooding extent in the study area increases up to ~5.8K km2 in late October 2008. The study also provides strong correlation of the flooding extents with water height variations in both the floodplain and the river based on a second polynomial regression model. The water heights are from ENIVSAT altimetry in the floodplain and gauge measurements in the river. Coefficients of determination between flooding extents and water height variations are greater than 0.91 with 4 to 36 days in phase lag. Floodwater drains back to the river and to the northeast during the recession period in December and January. The study supports understanding of the Logone floodplain dynamics in detail of spatial pattern and size of the flooding extent and assists the flood monitoring and prediction systems in the catchment.

  5. Flood Inundation Mapping in the Logone Floodplain from Multi Temporal Landsat ETM+Imagery

    NASA Technical Reports Server (NTRS)

    Jung, Hahn Chul; Alsdorf, Douglas E.; Moritz, Mark; Lee, Hyongki; Vassolo, Sara

    2011-01-01

    Yearly flooding in the Logone floodplain makes an impact on agricultural, pastoral, and fishery systems in the Lake Chad Basin. Since the flooding extent and depth are highly variable, flood inundation mapping helps us make better use of water resources and prevent flood hazards in the Logone floodplain. The flood maps are generated from 33 multi temporal Landsat Enhanced Thematic Mapper Plus (ETM+) during three years 2006 to 2008. Flooded area is classified using a short-wave infrared band whereas open water is classified by Iterative Self-organizing Data Analysis (ISODATA) clustering. The maximum flooding extent in the study area increases up to approximately 5.8K km2 in late October 2008. The study also provides strong correlation of the flooding extents with water height variations in both the floodplain and the river based on a second polynomial regression model. The water heights are from ENIVSAT altimetry in the floodplain and gauge measurements in the river. Coefficients of determination between flooding extents and water height variations are greater than 0.91 with 4 to 36 days in phase lag. Floodwater drains back to the river and to the northeast during the recession period in December and January. The study supports understanding of the Logone floodplain dynamics in detail of spatial pattern and size of the flooding extent and assists the flood monitoring and prediction systems in the catchment.

  6. Perirheic mixing and biogeochemical processing in flow-through and backwater floodplain wetlands

    NASA Astrophysics Data System (ADS)

    Jones, C. Nathan; Scott, Durelle T.; Edwards, Brandon L.; Keim, Richard F.

    2014-09-01

    Inundation hydrology and associated processes control biogeochemical processing in floodplains. To better understand how hydrologic connectivity, residence time, and intrafloodplain mixing vary in floodplain wetlands, we examined how water quality of two contrasting areas in the floodplain of the Atchafalaya River—a flow-through and a backwater wetland—responded to an annual flood pulse. Large, synoptic sampling campaigns occurred in both wetlands during the rising limb, peak, and falling limb of the hydrograph. Using a combination of conservative and reactive tracers, we inferred three dominant processes that occurred over the course of the flood pulse: flushing (rising limb), advective transport (peak), and organic matter accumulation (falling limb). Biogeochemistry of the two wetlands was similar during the peak while the river overflowed into both. However, during the rising and falling limbs, flow in the backwater wetland experienced much greater residence time. This led to the accumulation of dissolved organic matter and dissolved phosphorus. There were also elevated ratios of dissolved organic carbon to nitrate in the backwater wetland, suggesting nitrogen removal was limited by nitrate transported into the floodplain there. Collectively, our results suggest inclusion of a temporal component into the perirheic concept more fully describes inundation hydrology and biogeochemistry in large river floodplain. This article was corrected on 6 OCT 2014. See the end of the full text for details

  7. Factors affecting captures of brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae) in baited pyramid traps

    USDA-ARS?s Scientific Manuscript database

    Trapping experiments targeting brown marmorated stink bug, Halyomorpha halys (Stal,) addressed the effects of; 1) a modification to the trap container of a commercial trap, 2) the age of methyl (2E,4E,6Z)-decatrienoate lures, and 3) the age of dichlorvos-impregnated kill strips on bug captures. In ...

  8. 24 CFR 55.24 - Aggregation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... approval under this section is subject to compliance with the decision making process in § 55.20. ... FLOODPLAIN MANAGEMENT Procedures for Making Determinations on Floodplain Management § 55.24 Aggregation...

  9. Spatial and temporal modelling of fluvial aggradation in the Hasli Valley (Swiss Alps) during the last 1300 years

    NASA Astrophysics Data System (ADS)

    Llorca, Jaime; Schulte, Lothar; Carvalho, Filipe

    2016-04-01

    The Haslital delta (upper Aare River catchment, Bernese Alps) progradated into the Lake Brienz after the retreat of the Aare Glacier (post-LGM). Present delta plain geomorphology and spatial distribution of sedimentary facies result from historical fluvial dynamics and aggradation. Over centuries, local communities have struggled to control the Aare floods and to mitigate their effects on the floodplain (by means of raising artificial levees, channelizing the course, creating an underground drainage network, constructing dams at the basin headwaters). This study focuses on the spatial and temporal evolution of sediment dynamics of the floodplain by analyzing fluvial sedimentary records . The internal variability of lithostratigraphic sequences is a key issue to understand hydrological processes in the basin under the effect of environmental and anthropogenic changes of the past. The floodplain lithostratigraphy was reconstructed by coring alongside four cross-sections; each one is composed of more than 25 shallow boreholes (2 m deep) and two long drillings (variable depth, up to 9 m). The chronostratigraphical models were obtained by AMS 14C dating, and information of paleofloods and channel migration were reconstructed from historical sources (Schulte et al., 2015). The identification of different sedimentary facies, associated with the fluvial architecture structures, provides information on variations of vertical and lateral accretion processes (Houben, 2007). The location and geometry of buried channel-levee facies (gravel and coarse sand layers) indicate a significant mobility of the riverbed of the Hasli-Aare river, following an oscillatory pattern during the last millennia. Furthermore, fine sedimentary deposits and peat layers represent the existence of stable areas where floods have a low incidence. Once the different types of deposits were identified, aggradation rates were estimated in order to determine the spatial variability of the accumulation process. Results suggest a longitudinal decrease of sedimentation rates from the apex towards the distal section of the delta plain. Differences in rates are also found within each cross-section (e.g. channel-levée: higher rates; interdistributary depression: lower rates), suggesting an asymmetric growth of the floodplain. A GIS paleosurfaces model was executed to calculate the fluvial sediment storage, which was subdivided in 300-year time slices, thus contributing to identify temporal trends in floodplain aggradation. The results were analyzed with regard to external drivers that control the sedimentation processes in the Haslital delta, such as climate and/or anthropogenic factors (land-use changes, hydraulic management), as well as the influence of the internal system settings. The facies-based approach provides an explanation of both the spatial and temporal components of delta plain formation; and produces valid information for local flood risk management, concerning the problem of alpine floodplains aggradation.

  10. Can market-based policies accomplish the optimal floodplain management? A gap between static and dynamic models.

    PubMed

    Mori, Koichiro

    2009-02-01

    The purpose of this short article is to set static and dynamic models for optimal floodplain management and to compare policy implications from the models. River floodplains are important multiple resources in that they provide various ecosystem services. It is fundamentally significant to consider environmental externalities that accrue from ecosystem services of natural floodplains. There is an interesting gap between static and dynamic models about policy implications for floodplain management, although they are based on the same assumptions. Essentially, we can derive the same optimal conditions, which imply that the marginal benefits must equal the sum of the marginal costs and the social external costs related to ecosystem services. Thus, we have to internalise the external costs by market-based policies. In this respect, market-based policies seem to be effective in a static model. However, they are not sufficient in the context of a dynamic model because the optimal steady state turns out to be unstable. Based on a dynamic model, we need more coercive regulation policies.

  11. 10 CFR 1022.11 - Floodplain or wetland determination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... within a base or critical action floodplain consistent with the most authoritative information available... consistent with the most authoritative information available relative to site conditions from the following...

  12. Global relationships between phosphorus and chlorophyll-a in oxbow lakes

    NASA Astrophysics Data System (ADS)

    Belcon, A. U.; Bernhardt, E. S.; Fritz, S. C.; Baker, P. A.

    2011-12-01

    Traditional limnological studies have focused on extant, large and deep bodies of fresh water. For over 70 years a strong positive relationship between sestonic chlorophyll-a (Chl-a) and total phosphorus (TP) has been established in temperate lakes with phosphorus generally viewed as the most limiting factor to productivity (Deevey 1940, Schindler 1977). Over the last few decades however, investigations have expanded to include the examination of shallow lakes, particularly in terms of water quality, nutrient content and regime shifts between stable alternate states. Most of these studies, however, have focused on northern, high latitude regions where the lakes are typically postglacial, isolated and fed by small streams. Relatively little work has been done on oxbow lakes which are floodplain lakes and are semi or permanently connected to the river. Oxbow lakes have been shown to serve several important ecologic and economic functions including nurseries for young fish, feeding grounds for top aquatic predators and increasing the biodiversity of the landscape particularly in tropical regions of the world where high precipitation and large rivers have produced thousands of oxbow lakes. In many developing countries oxbow lakes are an important source of revenue through fishing. This study examined the relationship between nutrients and productivity in oxbow lakes globally through a wide-spread literature synthesis. Four hundred and twenty nine oxbow lakes were represented by 205 data points while 285 data points represented 156 non-floodplain lakes. Despite differences in latitude, lake size and climate we find that oxbow lakes globally have a significantly less steep slope in their TP/Chl relationship than non-floodplain lakes do indicating that the same amount of sestonic phosphorus results in lower productivity. Oxbow lakes (TP/Chl): r = 0.7676, slope = 0.7257, Non-floodplain lakes (TP/Chl): r = 0.8096, slope = 1.1309. We theorize that their connection to the river allows for frequent inundation of turbid water and resuspension of lake sediment, increasing nutrient levels but decreasing light penetration and algae growth thus limiting productivity.

  13. Degradation of the Mitchell River fluvial megafan by alluvial gully erosion increased by post-European land use change, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Shellberg, J. G.; Spencer, J.; Brooks, A. P.; Pietsch, T. J.

    2016-08-01

    Along low gradient rivers in northern Australia, there is widespread gully erosion into unconfined alluvial deposits of active and inactive floodplains. On the Mitchell River fluvial megafan in northern Queensland, river incision and fan-head trenching into Pleistocene and Holocene megafan units with sodic soils created the potential energy for a secondary cycle of erosion. In this study, rates of alluvial gully erosion into incipiently-unstable channel banks and/or pre-existing floodplain features were quantified to assess the influence of land use change following European settlement. Alluvial gully scarp retreat rates were quantified at 18 sites across the megafan using recent GPS surveys and historic air photos, demonstrating rapid increases in gully area of 1.2 to 10 times their 1949 values. Extrapolation of gully area growth trends backward in time suggested that the current widespread phase of gullying initiated between 1880 and 1950, which is post-European settlement. This is supported by young optically stimulated luminescence (OSL) dates of gully inset-floodplain deposits, LiDAR terrain analysis, historic explorer accounts of earlier gully types, and archival records of cattle numbers and land management. It is deduced that intense cattle grazing and associated disturbance concentrated in the riparian zones during the dry season promoted gully erosion in the wet season along steep banks, adjacent floodplain hollows and precursor gullies. This is a result of reduced native grass cover, increased physical disturbance of soils, and the concentration of water runoff along cattle tracks, in addition to fire regime modifications, episodic drought, and the establishment of exotic weed and grass species. Geomorphic processes operating over geologic time across the fluvial megafan predisposed the landscape to being pushed by land used change across an intrinsically close geomorphic threshold towards instability. The evolution of these alluvial gullies is discussed in terms of their initiation, development, future growth, and stabilisation, and the numerous natural and anthropogenic factors influencing their erosion.

  14. Effects of flood control and other reservoir operations on the water quality of the lower Roanoke River, North Carolina

    USGS Publications Warehouse

    Garcia, Ana Maria

    2012-01-01

    The Roanoke River is an important natural resource for North Carolina, Virginia, and the Nation. Flood plains of the lower Roanoke River, which extend from Roanoke Rapids Dam to Batchelor Bay near Albemarle Sound, support a large and diverse population of nesting birds, waterfowl, freshwater and anadromous fish, and other wildlife, including threatened and endangered species. The flow regime of the lower Roanoke River is affected by a number of factors, including flood-management operations at the upstream John H. Kerr Dam and Reservoir. A three-dimensional, numerical water-quality model was developed to explore links between upstream flows and downstream water quality, specifically in-stream dissolved-oxygen dynamics. Calibration of the hydrodynamics and dissolved-oxygen concentrations emphasized the effect that flood-plain drainage has on water and oxygen levels, especially at locations more than 40 kilometers away from the Roanoke Rapids Dam. Model hydrodynamics were calibrated at three locations on the lower Roanoke River, yielding coefficients of determination between 0.5 and 0.9. Dissolved-oxygen concentrations were calibrated at the same sites, and coefficients of determination ranged between 0.6 and 0.8. The model has been used to quantify relations among river flow, flood-plain water level, and in-stream dissolved-oxygen concentrations in support of management of operations of the John H. Kerr Dam, which affects overall flows in the lower Roanoke River. Scenarios have been developed to mitigate the negative effects that timing, duration, and extent of flood-plain inundation may have on vegetation, wildlife, and fisheries in the lower Roanoke River corridor. Under specific scenarios, the model predicted that mean dissolved-oxygen concentrations could be increased by 15 percent by flow-release schedules that minimize the drainage of anoxic flood-plain waters. The model provides a tool for water-quality managers that can help identify options that improve water quality and protect the aquatic habitat of the Roanoke River.

  15. Attraction of acorn-infesting Cydia latiferreana (lepidoptera:tortricidae) to pheromone-baited traps

    Treesearch

    J.W. Peacock; S.L. Wright; J.R. Galford

    1988-01-01

    Males of acorn-infesting Cydia latiferreana are attracted to an equilibrium mixture of the four isomers of 8, I10-dodecadien-1-ol acetate, the virgin female-produced pheromone. Trap height relative to the height of trees in which traps are placed seems to be a significant factor influencing moth catches at attractant-baited traps. In an oak woodlot...

  16. Spatial relations between floodplain environments and land use - land cover of a large lowland tropical river valley: Pánuco basin, México.

    PubMed

    Hudson, Paul F; Colditz, René R; Aguilar-Robledo, Miguel

    2006-09-01

    Large lowland river valleys include a variety of floodplain environments that represent opportunities and constraints for human activities. This study integrates extensive field observations and geomorphic data with analysis of satellite remote sensing data to examine spatial relations between land use/land cover (LULC) and floodplain environments in the lower Pánuco basin of eastern Mexico. The floodplain of the lower Pánuco basin was delineated by combining a digital elevation model with a satellite image of a large flood event. The LULC was classified by combining a hybrid classification strategy with image stratification, applied to 15-m-resolution ASTER data. A geomorphic classification of floodplain environments was performed using a dry-stage image (ASTER data) and a 1993 Landsat image acquired during a large flood event. Accuracy assessment was based on aerial photographs (1:38,000), global positioning satellite ground-truthing, and a Landsat 7ETM(+) image from 2000, which resulted in an overall accuracy of 82.9% and a KHAT of 79.8% for the LULC classification. The geomorphic classification yielded 83.5% overall accuracy, whereas the KHAT was 81.5%. LULC analysis was performed for the entire floodplain and individually within four valley segments. The analysis indicates that the study area is primarily utilized for grazing and farming. Agriculture is primarily associated with coarse-grained (sandy/silty) natural levee and point bar units close to the river channel, whereas cattle grazing occurs in distal and lower-lying reaches dominated by cohesive fine-grained (clayey) deposits, such as backswamps. In the Pánuco valley, wetlands and lakes occur within backswamp environments, whereas in the Moctezuma segments, wetlands and lakes are associated with relict channels. This study reveals considerable variation in LULC related to spatial differences in floodplain environments and illustrates the importance of considering older anthropogenic influences on the landscape. The research design should be applicable for other large lowland coastal plain river valleys where agriculture is a major component of the floodplain landscape.

  17. Spatial dynamics of overbank sedimentation in floodplain systems

    USGS Publications Warehouse

    Pierce, Aaron R.; King, S.L.

    2008-01-01

    Floodplains provide valuable social and ecological functions, and understanding the rates and patterns of overbank sedimentation is critical for river basin management and rehabilitation. Channelization of alluvial systems throughout the world has altered hydrological and sedimentation processes within floodplain ecosystems. In the loess belt region of the Lower Mississippi Alluvial Valley of the United States, channelization, the geology of the region, and past land-use practices have resulted in the formation of dozens of valley plugs in stream channels and the formation of shoals at the confluence of stream systems. Valley plugs completely block stream channels with sediment and debris and can result in greater deposition rates on floodplain surfaces. Presently, however, information is lacking on the rates and variability of overbank sedimentation associated with valley plugs and shoals. We quantified deposition rates and textures in floodplains along channelized streams that contained valley plugs and shoals, in addition to floodplains occurring along an unchannelized stream, to improve our understanding of overbank sedimentation associated with channelized streams. Feldspar clay marker horizons and marker poles were used to measure floodplain deposition from 2002 to 2005 and data were analyzed with geospatial statistics to determine the spatial dynamics of sedimentation within the floodplains. Mean sediment deposition rates ranged from 0.09 to 0.67??cm/y at unchannelized sites, 0.16 to 2.27??cm/y at shoal sites, and 3.44 to 6.20??cm/y at valley plug sites. Valley plug sites had greater rates of deposition, and the deposited sediments contained more coarse sand material than either shoal or unchannelized sites. A total of 59 of 183 valley plug study plots had mean deposition rates > 5??cm/y. The geospatial analyses showed that the spatial dynamics of sedimentation can be influenced by the formation of valley plugs and shoals on channelized streams; however, responses can vary. Restoration efforts in the region need to have basinwide collaboration with landowners and address catchment-scale processes, including the geomorphic instability of the region, to be successful. ?? 2008 Elsevier B.V. All rights reserved.

  18. Floodplain and Wetland Assessment for the Mortandad Wetland Enhancement and the DP Dissipater Projects at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles Dean

    This floodplain and wetland assessment was prepared in accordance with 10 Code of Federal Regulations (CFR) 1022 Compliance with Floodplain and Wetland Environmental Review Requirements, which was promulgated to implement the U.S. Department of Energy (DOE) requirements under Executive Order 11988 Floodplain Management and Executive Order 11990 Wetlands Protection. According to 10 CFR 1022, a 100-year floodplain is defined as “the lowlands adjoining inland and coastal waters and relatively flat areas and flood prone areas of offshore islands” and a wetland is defined as “an area that is inundated or saturated by surface or groundwater at a frequency and durationmore » sufficient to support, and that under normal circumstances does support, a prevalence of vegetation typically adapted for life in saturated soil conditions, including swamps, marshes, bogs, and similar areas.” In this action, DOE is proposing two projects to improve wetland and floodplain function at Los Alamos National Laboratory (LANL). The proposed work will comply with corrective action requirements under the Settlement Agreement and Stipulated Final Compliance Order (Settlement Agreement)1 Number HWB-14-20. The first project is located in Technical Areas (TA)-03 in upper Mortandad Canyon. The upper Mortandad wetlands have existing stormwater controls that need to be rehabilitated. Head-cut formation is occurring at the downstream portion of the wetland. This project will repair damages to the wetland and reduce the future erosion potential. The second project is located in TA-21 in Delta Prime (DP) Canyon. The intent of the DP Dissipater Project in DP Canyon is to install stormwater control structures in DP Canyon to retain low channel flows and reduce downstream sediment transport as well as peak flows during low and moderate storm events. Due to increased erosion, the stream bank in this area has unstable vertical walls within the stream channel. The DOE prepared this floodplain and wetland assessment to evaluate the potential impacts of implementing the proposed actions within the wetland and floodplain, as required by 10 CFR 1022.« less

  19. Risk factors and consequences of unexpected trapping for ruptured anterior communicating artery aneurysms

    PubMed Central

    Fukuda, Hitoshi; Iwasaki, Koichi; Murao, Kenichi; Yamagata, Sen; Lo, Benjamin W.Y.; Macdonald, R. Loch

    2014-01-01

    Background: While clipping cerebral aneurysms at the neck is optimal, in some cases this is not possible and other strategies are necessary. The purpose of this study was to describe the incidence, risk factors, and outcomes for inability to clip reconstruct ruptured anterior communicating artery (ACoA) aneurysms. Methods: Of the 70 cases of ruptured ACoA aneurysms between January 2006 and December 2013, our institutional experience revealed four cases of small ACoA aneurysms that had been considered clippable prior to operation but required trapping. When a unilateral A2 segment of anterior cerebral artery (ACA) was compromised by trapping, revascularization was performed by bypass surgery. Clinical presentation, angiographic characteristics, operative approach, intraoperative findings, and treatment outcomes were assessed. Results: Very small aneurysm under 3 mm was a risk factor for unexpected trapping. The reason for unexpected trapping was laceration of the aneurysmal neck in two cases, and lack of clippaple component due to disintegration of entire aneurysmal wall at the time of rupture in the others. Aneurysms with bilateral A1 were treated with sole trapping through pterional approach in two cases. The other two cases had hypoplastic unilateral A1 segment of ACA and were treated with combination of aneurysm trapping and revascularization of A2 segment of ACA through interhemispheric approach. No patients had new cerebral infarctions of cortical ACA territory from surgery. Cognitive dysfunction was observed in three cases, but all patients became independent at 12-month follow up. Conclusions: Unexpected trapping was performed when ruptured ACoA aneurysms were unclippable. Trapping with or without bypass can result in reasonable outcomes, with acceptable risk of cognitive dysfunction. PMID:25101201

  20. Spatial and temporal patterns of carbon storage and species richness in three South Carolina coastal plain riparian forests

    Treesearch

    Laura A. Giese; W. Michael Aust; Carl C. Trettin; Randall K. Kolka

    2000-01-01

    The distribution of organic matter within a floodplain is a controlling factor affecting water quality, habitat, and food webs. Accordingly, developn~ent of vegetation in the riparian zone can be expected to influence ecosystem functions, and organic matter storage patterns are believed to be indicators of functional recovery in disturbed riparian zones. Our objective...

  1. 24 CFR 55.21 - Notification of floodplain hazard.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... § 55.21 Notification of floodplain hazard. For HUD programs under which a financial transaction for a..., regulated or insured, any private party participating in the transaction and any current or prospective...

  2. A replication of a factor analysis of motivations for trapping

    USGS Publications Warehouse

    Schroeder, Susan; Fulton, David C.

    2015-01-01

    Using a 2013 sample of Minnesota trappers, we employed confirmatory factor analysis to replicate an exploratory factor analysis of trapping motivations conducted by Daigle, Muth, Zwick, and Glass (1998).  We employed the same 25 items used by Daigle et al. and tested the same five-factor structure using a recent sample of Minnesota trappers. We also compared motivations in our sample to those reported by Daigle et el.

  3. Modern Pearl River Delta and Permian Huainan coalfield, China: A comparative sedimentary facies study

    USGS Publications Warehouse

    Suping, P.; Flores, R.M.

    1996-01-01

    Sedimentary facies types of the Pleistocene deposits of the Modern Pearl River Delta in Guangdong Province, China and Permian Member D deposits in Huainan coalfield in Anhui Province are exemplified by depositional facies of anastomosing fluvial systems. In both study areas, sand/sandstone and mud/mudstone-dominated facies types formed in diverging and converging, coeval fluvial channels laterally juxtaposed with floodplains containing ponds, lakes, and topogenous mires. The mires accumulated thin to thick peat/coal deposits that vary in vertical and lateral distribution between the two study areas. This difference is probably due to attendant sedimentary processes that affected the floodplain environments. The ancestral floodplains of the Modern Pearl River Delta were reworked by combined fluvial and tidal and estuarine processes. In contrast, the floodplains of the Permian Member D were mainly influenced by freshwater fluvial processes. In addition, the thick, laterally extensive coal zones of the Permian Member D may have formed in topogenous mires that developed on abandoned courses of anastomosing fluvial systems. This is typified by Seam 13-1, which is a blanket-like body that thickens to as much as 8 in but also splits into thinner beds. This seam overlies deposits of diverging and converging, coeval fluvial channels of the Sandstone D, and associated overbank-floodplain deposits. The limited areal extent of lenticular Pleistocene peat deposits of the Modern Pearl River Delta is due to their primary accumulation in topogenous mires in the central floodplains that were restricted by contemporaneous anastomosing channels.

  4. Hot Spots and Hot Moments of Nitrogen in a Riparian Corridor

    NASA Astrophysics Data System (ADS)

    Dwivedi, Dipankar; Arora, Bhavna; Steefel, Carl I.; Dafflon, Baptiste; Versteeg, Roelof

    2018-01-01

    We use 3-D high-resolution reactive transport modeling to investigate whether the spatial distribution of organic-carbon-rich and chemically reduced sediments located in the riparian zone and temporal variability in groundwater flow direction impact the formation and distribution of nitrogen hot spots (regions that exhibit higher reaction rates when compared to other locations nearby) and hot moments (times that exhibit high reaction rates as compared to longer intervening time periods) within the Rifle floodplain in Colorado. Groundwater flows primarily toward the Colorado River from the floodplain but changes direction at times of high river stage. The result is that oxic river water infiltrates the Rifle floodplain during these relatively short-term events. Simulation results indicate that episodic rainfall in the summer season leads to the formation of nitrogen hot moments associated with Colorado River rise and resulting river infiltration into the floodplain. The results further demonstrate that the naturally reduced zones (NRZs) present in sediments of the Rifle floodplain have a higher potential for nitrate removal, approximately 70% greater than non-NRZs for typical hydrological conditions. During river water infiltration, nitrate reduction capacity remains the same within the NRZs, however, these conditions impact non-NRZs to a greater extent (approximately 95% less nitrate removal). Model simulations indicate chemolithoautotrophs are primarily responsible for the removal of nitrate in the Rifle floodplain. These nitrogen hot spots and hot moments are sustained by microbial respiration and the chemolithoautotrophic oxidation of reduced minerals in the riparian zone.

  5. Dynamics of Murray-Darling floodplain forests under multiple stressors: The past, present, and future of an Australian icon

    NASA Astrophysics Data System (ADS)

    Mac Nally, Ralph; Cunningham, Shaun C.; Baker, Patrick J.; Horner, Gillis J.; Thomson, James R.

    2011-12-01

    We review the human actions, proximal stressors and ecological responses for floodplain forests Australia's largest river system—the Murray-Darling Basin. A conceptual model for the floodplain forests was built from extensive published information and some unpublished results for the system, which should provide a basis for understanding, studying and managing the ecology of floodplains that face similar environmental stresses. Since European settlement, lowlands areas of the basin have been extensively cleared for agriculture and remnant forests heavily harvested for timber. The most significant human intervention is modification of river flows, and the reduction in frequency, duration and timing of flooding, which are compounded by climate change (higher temperatures and reduced rainfall) and deteriorating groundwater conditions (depth and salinity). This has created unfavorable conditions for all life-history stages of the dominant floodplain tree (Eucalyptus camaldulensis Dehnh.). Lack of extensive flooding has led to widespread dieback across the Murray River floodplain (currently 79% by area). Management for timber resources has altered the structure of these forests from one dominated by large, widely spreading trees to mixed-aged stands of smaller pole trees. Reductions in numbers of birds and other vertebrates followed the decline in habitat quality (hollow-bearing trees, fallen timber). Restoration of these forests is dependent on substantial increases in the frequency and extent of flooding, improvements in groundwater conditions, re-establishing a diversity of forest structures, removal of grazing and consideration of these interacting stressors.

  6. Effects of flood inundation and invasion by Phalaris arundinacea on nitrogen cycling in an Upper Mississippi River floodplain forest

    USGS Publications Warehouse

    Swanson, Whitney; DeJager, Nathan R.; Strauss, Eric A.; Thomsen, Meredith

    2017-01-01

    Although floodplains are thought to serve as important buffers against nitrogen (N) transport to aquatic systems, frequent flooding and high levels of nutrient availability also make these systems prone to invasion by exotic plant species. Invasive plants could modify the cycling and availability of nutrients within floodplains, with effects that could feedback to promote the persistence of the invasive species and impact N export to riverine and coastal areas. We examined the effect of flooding on soil properties and N cycling at a floodplain site in Pool 8 of the Upper Mississippi River with 2 plant communities: mature native forest (Acer saccharinum) and patches of an invasive grass (Phalaris arundinacea). Plots were established within each vegetation type along an elevation gradient and sampled throughout the summers of 2013 and 2014. Spatial trends in flooding resulted in higher soil organic matter, porosity, and total nitrogen and carbon in low elevations. Nutrient processes and NH4+ and NO3− availability, however, were best explained by vegetation type and time after flooding. Phalaris plots maintained higher rates of nitrification and higher concentrations of available NH4+ and NO3−. These results suggest that invasion by Phalarismay make nitrogen more readily available and could help to reinforce this species' persistence in floodplain wetlands. They also raise the possibility that Phalaris may decrease floodplain N storage capacity and influence downstream transport of N to coastal zones.

  7. Extremely Low Loss Phonon-Trapping Cryogenic Acoustic Cavities for Future Physical Experiments

    PubMed Central

    Galliou, Serge; Goryachev, Maxim; Bourquin, Roger; Abbé, Philippe; Aubry, Jean Pierre; Tobar, Michael E.

    2013-01-01

    Low loss Bulk Acoustic Wave devices are considered from the point of view of the solid state approach as phonon-confining cavities. We demonstrate effective design of such acoustic cavities with phonon-trapping techniques exhibiting extremely high quality factors for trapped longitudinally-polarized phonons of various wavelengths. Quality factors of observed modes exceed 1 billion, with a maximum Q-factor of 8 billion and Q × f product of 1.6 · 1018 at liquid helium temperatures. Such high sensitivities allow analysis of intrinsic material losses in resonant phonon systems. Various mechanisms of phonon losses are discussed and estimated. PMID:23823569

  8. Hydrological responses to channelization and the formation of valley plugs and shoals

    USGS Publications Warehouse

    Pierce, Aaron R.; King, Sammy L.

    2017-01-01

    Rehabilitation of floodplain systems focuses on restoring interactions between the fluvial system and floodplain, however, there is a paucity of information on the effects of valley plugs and shoals on floodplain hydrological processes. We investigated hydrologic regimes in floodplains at three valley plug sites, two shoal sites, and three unchannelized sites. Valley plug sites had altered surface and sub-surface hydrology relative to unchannelized sites, while only sub-surface hydrology was affected at shoal sites. Some of the changes were unexpected, such as reduced flood duration and flood depth in floodplains associated with valley plugs. Our results emphasize the variability associated with hydrologic processes around valley plugs and our rudimentary understanding of the effects associated with these geomorphic features. Water table levels were lower at valley plug sites compared to unchannelized sites, however, valley plug sites had a greater proportion of days when water table inundation was above mean root collar depth than both shoal and unchannelized sites as a result of lower root collar depths and higher deposition rates. This study has provided evidence that valley plugs can affect both surface and sub-surface hydrology in different ways than previously thought and illustrates the variability in hydrological responses to valley plug formation.

  9. Modification of suburban carbon and nitrogen fluxes by a coupled channel/floodplain system assessed using in situ sensors

    NASA Astrophysics Data System (ADS)

    Wollheim, W. M.; Pellerin, B. A.; Saraceno, J.; Hopkinson, C.; Hope, A.; Morse, N.

    2010-12-01

    Biogeochemical fluxes in human dominated streams and rivers are highly impacted, but effects can be attenuated downstream through natural ecosystem processes. We deployed in situ nitrate, fdom, and chlorophyll sensors to characterize biogeochemical fluxes draining a suburban catchment, and modifications by a channel-floodplain system located immediately downstream. The upstream site reflects the suburban signal; the downstream site reflects the influence of the channel/floodplain on the suburban signal. FDOM showed a diurnal signal at both sites, but was stronger downstream, likely indicating new DOC production within the channel-floodplain system, which contained a small pond. In situ chlorophyll concentrations were also highly correlated with FDOM. FDOM showed a stronger storm response upstream than downstream, indicating terrestrial sources are mobilized by storms and subsequent dampening of the pulse by the floodplain. Nitrate concentrations consistently dropped from 0.6 to 0.7 mg/l upstream to less than 0.4 mg/l downstream, indicating likely nitrogen retention or removal over a relatively short distance (~500m). Use of in situ sensors is likely to greatly advance our understanding of biogeochemical processes in aquatic systems.

  10. Living with floods in the Jamuna floodplain (Bangladesh): fight or flight? Technological and societal responses

    NASA Astrophysics Data System (ADS)

    Ruknul Ferdous, Md; Wesselink, Anna; Brandimarte, Luigia; Slager, Kymo; Mynett, Arthur; Zwarteveen, Margreet

    2017-04-01

    Building onto the general theory introduced by Di Baldassarre, this paper uses a socio-hydrological approach to describe human-flood interactions in the Jamuna floodplain, Bangladesh. In this vast space (a braided river bed of 6-16 km; floodplains up to 50 km wide) the differences between land and water are temporary and shifting. Government flood defence structures were constructed on the west bank only, while community initiatives exist on the east bank. As a result, there are several kinds of socio-hydrological spaces along, but also in the river, with different livelihoods and flood characteristics. This variety gives rise to co-existence of 'living with floods' and 'fighting floods' approaches. The analysis is based on recent fieldwork, in which information on historical and current livelihoods, migration and the floodplain system was collected at household level. Our analysis enables us to tentatively confirm the levee effect described by Di Baldassarre et al. (2013); however, his hypothesis that people move away from unprotected floodplains is only true to some extent. Adaptation in Bangladesh means first of all literally 'living with floods': being flooded with greater or lesser frequency. Key words: Bangladesh; Jamuna River; river flooding; socio-hydrological dynamics

  11. A comparison of small-mammal communities in a desert riparian floodplain

    USGS Publications Warehouse

    Ellison, Laura E.; van Riper, Charles

    1998-01-01

    We compared small-mammal communities between inactive floodplain and actively flooded terraces of riparian habitat in the Verde Valley of central Arizona. We used species diversity, abundance, weight of adult males, number of juveniles, number of reproductively active individuals, longevity, residency status, and patterns of microhabitat use to compare the two communities. Although abundances of small mammals tended to be higher in the active floodplain, species diversity was greater in the inactive floodplain. Results were inconsistent with our initial prediction that actively flooded riparian habitat acts as a species source, whereas inactive floodplain acts as a sink or dispersal site for small mammals. Within each habitat type, we found evidence of significant microhabitat separation among the three most abundant small-mammal species (Peromyscus boylii, P. eremicus, and Neotoma albigula). Percent cover by annual and perennial grasses and shrubs, substrate, and frequency of shrubs, trees, and debris were significant determinants of small-mammal distribution within a habitat type. We found that the three most abundant species selected a nonrandom subset of available habitat. Nonrandom use of habitat and microhabitat separation were the two most important mechanisms structuring small-mammal communities in riparian habitat of central Arizona.

  12. Results From a Channel Restoration Project: Hydraulic Design Considerations

    USGS Publications Warehouse

    Karle, K.F.; Densmore, R.V.; ,

    2001-01-01

    Techniques for the hydraulic restoration of placer-mined streams and floodplains were developed in Denali National Park and Preserve, Alaska. The two-year study at Glen Creek focused on a design of stream and floodplain geometry using hydraulic capacity and shear stress equations. Slope and sinuosity values were based on regional relationships. Design requirements included a channel capacity for a bankfull discharge and a floodplain capacity for a 1.5- to 100-year discharge. Several bio-engineering techniques using alder and willow, including anchored brush bars, streambank hedge layering, seedlings, and cuttings, were tested to dissipate floodwater energy and encourage sediment deposition until natural revegetation stabilized the new floodplains. Permanently monumented cross-sections installed throughout the project site were surveyed every one to three years. Nine years after the project began, a summer flood caused substantial damage to the channel form, including a change in width/depth ratio, slope, and thalweg location. Many of the alder brush bars were heavily damaged or destroyed, resulting in significant bank erosion. This paper reviews the original hydraulic design process, and describes changes to the channel and floodplain geometry over time, based on nine years of cross-section surveys.

  13. Impurity Content Optimization to Maximize Q-Factors of Superconducting Resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinello, Martina; Checchin, Mattia; Grassellino, Anna

    2017-05-01

    Quality factor of superconducting radio-frequency (SRF) cavities is degraded whenever magnetic flux is trapped in the cavity walls during the cooldown. In this contribution we study how the trapped flux sensitivity, defined as the trapped flux surface resistance normalized for the amount of trapped flux, depends on the mean free path. A systematic study of a variety of 1.3 GHz cavities with different surface treatments (EP, 120 C bake and different N-doping) is carried out. A bell shaped trend appears for the range of mean free path studied. Over-doped cavities fall at the maximum of this curve defining the largestmore » values of sensitivity. In addition, we have studied the trend of the BCS surface resistance contribution as a function of mean free path, showing that N-doped cavities follow close to the theoretical minimum. Adding these results together we show that the 2/6 N-doping treatment gives the highest Q-factor values at 2 K and 16 MV/m, as long as the magnetic field fully trapped during the cavity cooldown is lower than 10 mG.« less

  14. Maintaining the Link to The Floodplain: Scour Dynamics in Crevasses

    NASA Astrophysics Data System (ADS)

    Esposito, C. R.; Liang, M.; Yuill, B. T.; Meselhe, E. A.

    2017-12-01

    In river deltas, crevasses are the primary geomorphic feature that traverse the levee, connecting the river to its floodplain and facilitating the transfer of water, sediment, and chemical constituents from the trunk channel. Despite their fundamental position linking river and floodplain, the factors that are important to crevasse evolution are not well understood, and their enumeration is the subject of active research across multiple earth surface process subfields. Crevasses are often associated with a zone of intense scour proximal to the trunk channel. Surprisingly little is known about the morphological dynamics in this zone, but there is evidence from studies of river avulsion that scour zone evolution plays an important role in determining crevasse sustainability. Here we use Delft3D to simulate the development of managed crevasse splays - river diversions - for the purpose of landscape management in the Mississippi River Delta. Our model runs vary the erodibility of the substrate in the receiving basin and the extent and location of erosion protection along the conveyance channel. We find that substrate erodibility in the basin plays a critical role in determining the long-term performance of sediment diversions. Crevasses that create large scours tend to maintain their performance over several decades, but those that only create small scours are subject to rapidly declining performance as the scour pit fills in with coarse sediments. Finally, we compare the evolution of our modeled scour zone to the West Bay Sediment Diversion, where regular bathymetric surveys have documented the evolution of the scour zone since 2004.

  15. Modeling the stratigraphy and preservation potential of meandering stream deposits

    NASA Astrophysics Data System (ADS)

    Tucker, G. E.; Clevis, Q.; Lock, G.; Lancaster, S.; Desitter, A.

    2003-12-01

    Both natural and human-induced modes of river and floodplain behavior have the potential to obscure, expose, or even destroy portions of the archaeological record. In valley systems with actively meandering channels much material can be lost to lateral bank erosion. Conversely, floodplain aggradation can bury and therefore obscure sites. In this study we aim to quantify the preservation potential of fluvial units containing archaeological sites as a function of the natural process of meandering, climate change and increased land-use during the Holocene. We used the CHILD simulation model of landscape evolution to explore alternative scenarios in which these three factors are both varied independently and combined. Boundary and initial conditions for the model scenarios are based on the Holocene evolution of the archaeologically-rich Upper Thames Valley, which is known to have witnessed variations in flood frequency, land-clearance, episodic alluviation and river entrenchment. The CHILD model is set up to combine four components that simulate the development of valley and floodplain system: hillslope and channel erosion, lateral stream meandering, overbank deposition, and the accumulation of a 3D stratigraphy. The landscape is represented by an adaptable triangular mesh of nodes, especially suited for simulating the gradual shifting of meander bends. The new stratigraphic layering routine recently added to the model in improves the resolution of the stratigraphic record accumulated by the model. Simulation results reveal systematic controls on preservation potential, and suggest potential sources of bias in the archaeological record.

  16. Diversity of parasites of fish from the Upper Paraná River floodplain, Brazil.

    PubMed

    Takemoto, R M; Pavanelli, G C; Lizama, M A P; Lacerda, A C F; Yamada, F H; Moreira, L H A; Ceschini, T L; Bellay, S

    2009-06-01

    The aim of the present study was to provide a current survey of the species of parasites found in the Upper Paraná River floodplain, as well as to investigate which strategies and mechanisms used by parasites, are favored and which environmental factors influence the parasite community in the studied environments. During a seven-year period from February 2000 to September 2007, 3,768 fish belonging to 72 species were collected and analyzed for the purpose of studying the parasite fauna. A total of 337 species of parasites were reported, including 12 new descriptions: one myxosporid, Henneguya paranaensis Eiras, Pavanelli and Takemoto, 2004; eight monogeneans, Kritskyia annakohnae Boeger, Tanaka and Pavanelli, 2001; Kritskyia boegeri Takemoto, Lizama and Pavanelli, 2002; Kritskyia eirasi Guidelli, Takemoto and Pavanelli, 2003; Demidospermus labrosi França, Isaac, Pavanelli and Takemoto, 2003; Demidospermus mandi França, Isaac, Pavanelli and Takemoto, 2003; Pseudovancleaveus paranaensis França, Isaac, Pavanelli and Takemoto, 2003; Tereancistrum curimba Lizama, Takemoto and Pavanelli, 2004 and Tereancistrum toksonum Lizama, Takemoto and Pavanelli, 2004; two digeneans, Sanguinicola platyrhynchi Guidelli, Isaac and Pavanelli, 2002 and Dadayius pacupeva Lacerda, Takemoto and Pavanelli, 2003 and one cestode, Nomimoscolex pertierrae Chambrier, Takemoto and Pavanelli, 2005. In addition, several other species were reported for the first time in new hosts or in the floodplain. Monogeneans presented the highest number of species, followed by digeneans. The infection site with the highest species richness was the intestine, with 127 species.

  17. [The role of the floodplain gradient in structuring of testate amoebae communities in the Ilych River].

    PubMed

    Mazeĭ, Iu A; Malysheva, E A; Lapteva, E M; Komarov, A A; Taskaeva, A A

    2012-01-01

    Forty-two testate amoebae taxa were identified in alluvial soils of floodplain islands in the Ilych River. Among the pedo- and eurybionts, there were aquatic rhizopods. Along the floodplain transect (willow --> meadow --> deciduous forest --> coniferous forest), the testate amoebae community changed directly. There are spatially homogeneous (low beta-diversity) testacean communities but species rich on the local level (high alpha-diversity) within forests. Within willows and meadows, communities are characterized by low alpha-diversity and high heterogeneity that leads to high gamma-diversity.

  18. Habitat use of the European mudminnow Umbra krameri and association with other fish species in a disconnected Danube side arm.

    PubMed

    Sehr, M; Keckeis, H

    2017-10-01

    Fish assemblages along the longitudinal course of an old, disconnected and modified side arm of the Danube floodplain downstream of Vienna, Austria, as well as habitat structure, hydro-morphological and hydro-chemical factors, were investigated in order to analyse the key environmental determinants of the European mudminnow Umbra krameri. Generally, U. krameri was the most abundant species in the system. It occurred in disconnected ditches, ponds and pools with dense reed belts and comparatively low nutrient content, indicating its natural association with marsh habitats. At infrequently disturbed sites it was associated with a small group of stagnophilious and highly specialized species with adaptations to strong oxygen fluctuations. At frequently flooded sites, the species was absent or occurred in low abundances, indicating its adaptation to water bodies in older successional stages and its low competitive power in permanently connected floodplain habitats. © 2017 The Fisheries Society of the British Isles.

  19. Abiotic factors and trap design modulate the performance of traps used to monitor the plum curculio.

    PubMed

    Lamothe, Steve; Chouinard, Gérald; Vincent, Charles

    2008-12-01

    All published studies on effects of abiotic factors on plum curculio, Conotrachelus nenuphar (Hersbt), adults have taken a retrospective approach. Here, we present the results of experiments where factors and their levels were determined and controlled a priori. We compared the effectiveness of miniature pyramidal traps (45 by 20 by 20 cm) constructed of four kind of materials--wood, geotextile, nylon screening, and corrugated plastic--to monitor overwintered and summer adults of univoltine plum curculio. We also studied the effects of photoperiod, temperature, wind, and rain on pyramidal trap effectiveness. The experiments, which were replicated over time, were done in two controlled chambers that were divided into four sections, corresponding to simulated combinations (wind or no wind/rain or no rain). The temperatures tested (15, 20, and 25 degrees C) were randomly assigned in the chambers. During scotophase, geotextile traps captured significantly more overwintered and summer adults than traps made of other materials. The maximum proportion of captures (for overwintered and summer adults) during photophase was obtained at 25 degrees C, and it was significantly different than captures at 15 and 20 degrees C. During scotophase, significantly more overwintered and summer plum curculios were caught at 20 and 25 degrees C than at 15 degrees C. Our experiments demonstrated that geotextile is a good alternative to wooden pyramidal trap. Our results suggest that captures were higher 1) at night, 2) during warmer periods (20 and 25 degrees C), 3) when wind velocity was low and 4) during or shortly after rainfall, and 5) that photoperiod is a factor having an important predictive value for plum curculio captures.

  20. Assessing floodplain restoration success using soil morphology indicators

    NASA Astrophysics Data System (ADS)

    Guenat, Claire; Fournier, Bertrand; Bullinger-Weber, Géraldine; Grin, Karin; Pfund, Simona; Mitchell, Edward

    2010-05-01

    Floodplains are complex ecological systems that fulfil different ecological, economic and social functions related to physical, chemical, and biological processes. The fluvial dynamics of most rivers in industrialized countries have been altered to such an extent that floodplains are now one of the most threatened ecosystems worldwide. This adverse impact has been widely recognized and, nowadays, extensive attempts are underway to return rivers to more natural conditions and restore their ecological quality and essential ecosystem functions. As a consequence, the number of restoration projects worldwide is rapidly increasing. However, despite an estimated global cost of more than 1 billion dollars annually, there is a crucial lack of monitoring and quantitative evaluations. Indeed, most projects are never monitored post-restoration (NRC 1992). In Switzerland, only 35% of the projects include a monitoring program mainly based on flora and fauna (BAFU). The design, selection and optimization of indicators for project monitoring are of major importance for sustainable management of riverine ecosystems. However, despite the growing body of literature on potential indicators and criteria for assessing the success of restoration projects no standardised or generally applicable method exists. Furthermore, soils are rarely considered among the possible indicators despite their crucial roles in ecosystems such as decomposition, supplying resources (habitats, gene pool, biomass, and raw materials), and environmental interactions (storage, filtering, transformation). We therefore hypothesized that soils may constitute an appropriate synthetic and functional indicator for the evaluation of river restoration success, especially in the framework of river widening aiming to increase the terrestrial biodiversity. In agreement with the current concepts of river restoration, we propose an assessment tool for floodplain restoration based on three soil morphology criteria (soil diversity, soil typicality, and soil dynamism) and their associated indicators (for example soil Shannon indexes, frequency of soils with specific characteristics, elevation variations due to the fluvial dynamic). The success of floodplain restoration is assessed through comparisons of these criteria between the restored river sector and a reference that could be a near natural floodplain or an embanked floodplain. As a test case, we used a near natural floodplain along the Rhine River as reference site. We then assessed the performance of the method by assessing how well the selected indicators explained a data set of soil physico-chemical characteristics in a principal component analysis. We applied this pedological tool to assess the efficiency of two rivers widening: the Thur (River Thur, CCES project RECORD: http://www.swiss-experiment.ch/index.php/Record:Home), and the Emme River restorations (http://www.bve.be.ch/site/bve_tba_dok_down_wasserbau_emme.pdf). In agreement with other studies, our results confirmed that these restoration projects were partial success. This study demonstrated that soil morphology presents multiple advantages as an indicator of floodplain restoration: ease of use, spatial delimitation of the floodplain, information on past events and fluvial dynamic, and different spatial levels of observation (topsoil horizons, deep horizons, and complete soil profiles).

  1. Sprague River geomorphology studies, Klamath Basin, Oregon

    NASA Astrophysics Data System (ADS)

    McDowell, P. F.; O'Connor, J. E.; Lind, P.

    2005-12-01

    The Sprague River drains 4050 square kilometers with a mean annual discharge of 16.3 m3/s before emptying into the Williamson River and then upper Klamath Lake in southcentral Oregon. The alternating wide alluvial segments and narrow canyon reaches of this 135-km-long westward flowing river provide for a variety of valued ecologic conditions and human uses along the river corridor, notably fisheries (including two endangered species of suckers, and formerly salmon), timber harvest, agriculture, and livestock grazing. The complex history of land ownership and landuse, water control and diversion structures, and fishery alterations, provides several targets for attributing historic changes to channel and floodplain conditions. Recently, evolving societal values (as well as much outside money) are inspiring efforts by many entities to 'restore' the Sprague River watershed. In cooperation with the U.S. Fish and Wildlife Service, the Klamath Tribes, and many local landowners, we are launching an analysis of Sprague River channel and floodplain processes. The overall objective is to guide restoration activities by providing sound understanding of local geomorphic processes and conditions. To do this we are identifying key floodplain and channel processes, and investigating how they have been affected by historic floodplain activites and changes to the watershed. This is being accomplished by analysis of historic aerial photographs and maps, stratigraphic analysis of floodplain soils and geologic units, mapping of riparian vegetation conditions and changes, and quantitative analysis of high resolution LiDAR topography acquired for the entire river course in December 2004. Preliminary results indicate (1) much of the coarser (and more erodible) floodplain soils are largely composed of pumice deposited in the basin by the 7700 year BP eruption of Mount Mazama; and (2) the LiDAR digital elevation models provide a ready means of subdividing the river into segments with quantifiably different characteristics of channel width, sinuosity, slope, and incision (relative to adjacent floodplain elevations).

  2. Quantifying the Influence of Urbanization on a Coastal Floodplain

    NASA Astrophysics Data System (ADS)

    Sebastian, A.; Juan, A.; Bedient, P. B.

    2016-12-01

    The U.S. Gulf Coast is the fastest growing region in the United States; between 1960 and 2010, the number of housing units along the Gulf of Mexico increased by 246%, vastly outpacing growth in other parts of the country (NOAA 2013). Numerous studies have shown that increases in impervious surface associated with urbanization reduce infiltration and increase surface runoff. While empirical evidence suggests that changes in land use are leading to increased flood damage in overland areas, earlier studies have largely focused on the impacts of urbanization on surface runoff and watershed hydrology, rather than quantifying its influence on the spatial extent of flooding. In this study, we conduct a longitudinal assessment of the evolution of flood risk since 1970 in an urbanizing coastal watershed. Utilizing the distributed hydrologic model, Vflo®, in combination with the hydraulic model, HEC-RAS, we quantify the impact of localized land use/land cover (LULC) change on the spatial extent of flooding in the watershed and the underlying flood hazard structure. The results demonstrate that increases in impervious cover between 1970 and 2010 (34%) and 2010 and 2040 (18%) increase the size of the floodplain by 26 and 17%, respectively. Furthermore, the results indicate that the depth and frequency of flooding in neighborhoods within the 1% floodplain have increased substantially (see attached figure). Finally, this analysis provides evidence that outdated FEMA floodplain maps could be underestimating the extent of the floodplain by upwards of 25%, depending on the rate of urbanization in the watershed; and, that by incorporating physics-based distributed hydrologic models into floodplain studies, floodplain maps can be easily updated to reflect the most recent LULC information available. The methods presented in this study have important implications for the development of mitigation strategies in coastal areas, such as deterring future development in flood prone areas and directing flood mitigation efforts in already flood prone communities. ReferencesNational Oceanic and Atmospheric Administration (NOAA). (2013). National Coastal Population Report: Population Trends from 1970 to 2020.

  3. Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin.

    PubMed

    Vidal-Diez de Ulzurrun, Guillermo; Hsueh, Yen-Ping

    2018-05-01

    Nematode-trapping fungi develop complex trapping devices to capture and consume nematodes. The dynamics of these organisms is especially important given the pathogenicity of nematodes and, consequently, the potential application of nematode-trapping fungi as biocontrol agents. Furthermore, both the nematodes and nematode-trapping fungi can be easily grown in laboratories, making them a unique manipulatable predator-prey system to study their coevolution. Several different aspects of these fungi have been studied, such as their genetics and the different factors triggering trap formation. In this review, we use the nematode-trapping fungus Arthrobotrys oligospora (which forms adhesive nets) as a model to describe the trapping process. We divide this process into several stages; namely attraction, recognition, trap formation, adhesion, penetration, and digestion. We summarize the latest findings in the field and current knowledge on the interactions between nematodes and nematode-trapping fungi, representing both sides of the predator-prey interaction.

  4. Varying effects of geomorphic change on floodplain inundation and forest communities

    NASA Astrophysics Data System (ADS)

    Keim, R.; Johnson, E. L.; Edwards, B. L.; King, S. L.; Hupp, C. R.

    2015-12-01

    Overbank flooding in floodplains is an important control on vegetation, but effects of changing flooding are difficult to predict because sensitivities of plant communities to multidimensional flooding (frequency, depth, duration, and timing) are not well understood. We used HEC-RAS to model the changing flooding regime in the lower White River floodplain, Arkansas, in response to rapid incision of the Mississippi River in the 1930s, and quantified flood frequency, depth, and duration by forest community type. Incision has decreased flooding especially in terms of frequency, which is one of the most important variables for ecological processes. Modeled depth-duration curves varied more among floodplain reaches than among forest communities within the same reach, but forest communities are now arranged in accordance with new flood regimes in place after river incision. Forest responses to subtle geomorphic change are slower than other vegetation communities, so detection of the full ramifications of ecohydrologic change may require decades.

  5. Recent Deforestation Causes Rapid Increase in River Sediment Load in the Northern Andes

    NASA Astrophysics Data System (ADS)

    Restrepo, J. D.; Kettner, A.; Syvitski, J. P.

    2016-12-01

    Human induced soil erosion reduces soil productivity; compromises freshwater ecosystem services, and drives geomorphic and ecological change in rivers and their floodplains. The Andes of Colombia have witnessed severe changes in land-cover and forest loss during the last three decades with the period 2000 and 2010 being the highest on record. We address the following: (1) what are the cumulative impacts of tropical forest loss on soil erosion? and (2) what effects has deforestation had on sediment production, availability, and the transport capacity of Andean rivers? Models and observations are combined to estimate the amount of sediment liberated from the landscape by deforestation within a major Andean basin, the Magdalena. We use a scaling model BQART that combines natural and human forces, like basin area, relief, temperature, runoff, lithology, and sediment trapping and soil erosion induced by humans. Model adjustments in terms of land cover change were used to establish the anthropogenic-deforestation factor for each of the sub-basins. Deforestation patterns across 1980-2010 were obtained from satellite imagery. Models were employed to simulate scenarios with and without human impacts. We estimate that, 9% of the sediment load in the Magdalena River basin is due to deforestation; 482 Mt of sediments was produced due to forest clearance over the last three decades. Erosion rates within the Magdalena drainage basin have increased 33% between 1972 and 2010; increasing the river's sediment load by 44 Mt/y. Much of the river catchment (79%) is under severe erosional conditions due in part to the clearance of more than 70% natural forest between 1980 and 2010.

  6. Changes in aquatic vegetation and floodplain land cover in the Upper Mississippi and Illinois rivers (1989–2000–2010)

    USGS Publications Warehouse

    DeJager, Nathan R.; Rohweder, Jason J.

    2017-01-01

    Quantifying changes in the cover of river-floodplain systems can provide important insights into the processes that structure these landscapes as well as the potential consequences to the ecosystem services they provide. We examined net changes in 13 different aquatic and floodplain land cover classes using photo interpreted maps of the navigable portions of the Upper Mississippi River (UMR, above the confluence with the Ohio River) and Illinois River from 1989 to 2000 and from 2000 to 2010. We detected net decreases in vegetated aquatic area in nearly all river reaches from 1989 to 2000. The only river reaches that experienced a subsequent recovery of vegetated aquatic area from 2000 to 2010 were located in the northern portion of the UMR (above navigation pool 14) and two reaches in the Illinois River. Changes on the floodplain were dominated by urban development, which increased in nearly every river reach studied from 1989 to 2000. Agricultural lands declined in most river reaches from 2000 to 2010. The loss of agricultural land cover in the northern UMR was accompanied by increases in forest cover, whereas in the lower UMR and Illinois River, declines in agriculture were accompanied by increases in forest and shallow marsh communities. The changes in aquatic vegetation occupied between 5 and 20% of the total aquatic area and are likely associated with previously reported regional improvements in water clarity, while smaller (1–15% of the total floodplain area) changes in anthropogenic land cover types on the floodplain are likely driven by broad-scale socio-economic conditions.

  7. Mining-Related Sediment and Soil Contamination in a Large Superfund Site: Characterization, Habitat Implications, and Remediation.

    PubMed

    Juracek, K E; Drake, K D

    2016-10-01

    Historical mining activity (1850-1970) in the now inactive Tri-State Mining District provided an ongoing source of lead and zinc to the environment including the US Environmental Protection Agency Superfund site located in Cherokee County, southeast Kansas, USA. The resultant contamination adversely affected biota and caused human health problems and risks. Remediation in the Superfund site requires an understanding of the magnitude and extent of contamination. To provide some of the required information, a series of sediment and soil investigations were conducted in and near the Superfund site to characterize lead and zinc contamination in the aquatic and floodplain environments along the main-stem Spring River and its major tributaries. In the Superfund site, the most pronounced lead and zinc contamination, with concentrations that far exceed sediment quality guidelines associated with potential adverse biological effects, was measured for streambed sediments and floodplain soils located within or downstream from the most intensive mining-affected areas. Tributary streambeds and floodplains in affected areas are heavily contaminated with some sites having lead and zinc concentrations that are an order of magnitude (or more) greater than the sediment quality guidelines. For the main-stem Spring River, the streambed is contaminated but the floodplain is mostly uncontaminated. Measured lead and zinc concentrations in streambed sediments, lakebed sediments, and floodplain soils documented a persistence of the post-mining contamination on a decadal timescale. These results provide a basis for the prioritization, development, and implementation of plans to remediate contamination in the affected aquatic and floodplain environments within the Superfund site.

  8. The storage time, age, and erosion hazard of laterally accreted sediment on the floodplain of a simulated meandering river

    USGS Publications Warehouse

    Bradley, D. Nathan; Tucker, Gregory E.

    2013-01-01

    A sediment particle traversing the fluvial system may spend the majority of the total transit time at rest, stored in various sedimentary deposits. Floodplains are among the most important of these deposits, with the potential to store large amounts of sediment for long periods of time. The virtual velocity of a sediment grain depends strongly on the amount of time spent in storage, but little is known about sediment storage times. Measurements of floodplain vegetation age have suggested that storage times are exponentially distributed, a case that arises when all the sediment on a floodplain is equally vulnerable to erosion in a given interval. This assumption has been incorporated into sediment routing models, despite some evidence that younger sediment is more likely to be eroded from floodplains than older sediment. We investigate the relationship between sediment age and erosion, which we term the “erosion hazard,” with a model of a meandering river that constructs its floodplain by lateral accretion. We find that the erosion hazard decreases with sediment age, leading to a storage time distribution that is not exponential. We propose an alternate model that requires that channel motion is approximately diffusive and results in a heavy tailed distribution of storage time. The model applies to timescales over which the direction of channel motion is uncorrelated. We speculate that the lower end of this range of time is set by the meander cutoff timescale and the upper end is set by processes that limit the width of the meander belt.

  9. Evaluating the 100 year floodplain as an indicator of flood risk in low-lying coastal watersheds

    NASA Astrophysics Data System (ADS)

    Sebastian, A.; Brody, S.; Bedient, P. B.

    2013-12-01

    The Gulf of Mexico is the fastest growing region in the United States. Since 1960, the number of housing units built in the low-lying coastal counties has increased by 246%. The region experiences some of the most intense rainfall events in the country and coastal watersheds are prone to severe flooding characterized by wide floodplains and ponding. This flooding is further exacerbated as urban development encroaches on existing streams and waterways. While the 100 year floodplain should play an important role in our ability to develop disaster resilient communities, recent research has indicated that existing floodplain delineations are a poor indicator of actual flood losses in low-lying coastal regions. Between 2001 and 2005, more than 30% of insurance claims made to FEMA in the Gulf Coast region were outside of the 100 year floodplain and residential losses amounted to more than $19.3 billion. As population density and investments in this region continue to increase, addressing flood risk in coastal communities should become a priority for engineers, urban planners, and decision makers. This study compares the effectiveness of 1-D and a 2-D modeling approaches to spatially capture flood claims from historical events. Initial results indicate that 2-D models perform much better in coastal environments and may serve better for floodplain modeling helping to prevent unintended losses. The results of this study encourage a shift towards better engineering practices using existing 2-D models in order to protect resources and provide guidance for urban development in low-lying coastal regions.

  10. Water balance of a lake with floodplain buffering: Lake Tana, Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Dessie, Mekete; Verhoest, Niko E. C.; Pauwels, Valentijn R. N.; Adgo, Enyew; Deckers, Jozef; Poesen, Jean; Nyssen, Jan

    2015-03-01

    Lakes are very important components of the earth's hydrological cycle, providing a variety of services for humans and ecosystem functioning. For a sustainable use of lakes, a substantial body of knowledge on their water balance is vital. We present here a detailed daily water balance analysis for Lake Tana, the largest lake in Ethiopia and the source of the Blue Nile. Rainfall on the lake is determined by Thiessen polygon procedure, open water evaporation is estimated by the Penman-combination equation and observed inflows for the gauged catchments as well as outflow data at the two lake outlets are directly used. Runoff from ungauged catchments is estimated using a simple rainfall-runoff model and runoff coefficients. Hillslope catchments and floodplains are treated separately, which makes this study unique compared to previous water balance studies. Impact of the floodplain on the lake water balance is analyzed by conducting scenario-based studies. We found an average yearly abstraction of 420 × 106 m3 or 6% of river inflows to the lake by the floodplain in 2012 and 2013. Nearly 60% of the inflow to the lake is from the Gilgel Abay River. Simulated lake levels compare well with the observed lake levels (R2 = 0.95) and the water balance can be closed with a closure error of 82 mm/year (3.5% of the total lake inflow). This study demonstrates the importance of floodplains and their influence on the water balance of the lake and the need of incorporating the effects of floodplains and water abstraction for irrigation to improve predictions.

  11. Contribution of local knowledge to understand socio-hydrological dynamics. Examples from a study in Senegal river valley

    NASA Astrophysics Data System (ADS)

    Bruckmann, Laurent

    2017-04-01

    In developing countries many watersheds are low monitored. However, rivers and its floodplains provides ecosystem services to societies, especially for agriculture, grazing and fishing. This uses of rivers and floodplains offer to communities an important local knowledge about hydrological dynamics. This knowledge can be useful to researchers studying ecological or hydrological processes. This presentation aims to discuss and present the interest of using qualitative data from surveys and interviews to understand relations between society and hydrology in floodplain from developing countries, but also to understand changes in hydrological dynamics. This communication is based on a PhD thesis held on from 2012 and 2016, that analyzes socio-ecological changes in the floodplain of the Senegal river floodplain following thirty years of transboundary water management. The results of this work along Senegal river valley suggest that the use of social data and qualitative study are beneficial in understanding the hydrological dynamics in two dimensions. First, it established the importance of perception of hydrological dynamics, particularly floods, on local water management and socio-agricultural trajectories. This perception of people is strictly derived from ecosystems services provided by river and its floodplain. Second, surveys have enlightened new questions concerning the hydrology of the river that are often cited by people, like a decrease of flood water fertility. This type of socio-hydrological study, combining hydrological and qualitative data, has great potential for guiding water management policies. Using local knowledge in their analyzes, researchers also legitimize river users, who are for the most part forgotten by water policies.

  12. Mining-Related Sediment and Soil Contamination in a Large Superfund Site: Characterization, Habitat Implications, and Remediation

    NASA Astrophysics Data System (ADS)

    Juracek, K. E.; Drake, K. D.

    2016-10-01

    Historical mining activity (1850-1970) in the now inactive Tri-State Mining District provided an ongoing source of lead and zinc to the environment including the US Environmental Protection Agency Superfund site located in Cherokee County, southeast Kansas, USA. The resultant contamination adversely affected biota and caused human health problems and risks. Remediation in the Superfund site requires an understanding of the magnitude and extent of contamination. To provide some of the required information, a series of sediment and soil investigations were conducted in and near the Superfund site to characterize lead and zinc contamination in the aquatic and floodplain environments along the main-stem Spring River and its major tributaries. In the Superfund site, the most pronounced lead and zinc contamination, with concentrations that far exceed sediment quality guidelines associated with potential adverse biological effects, was measured for streambed sediments and floodplain soils located within or downstream from the most intensive mining-affected areas. Tributary streambeds and floodplains in affected areas are heavily contaminated with some sites having lead and zinc concentrations that are an order of magnitude (or more) greater than the sediment quality guidelines. For the main-stem Spring River, the streambed is contaminated but the floodplain is mostly uncontaminated. Measured lead and zinc concentrations in streambed sediments, lakebed sediments, and floodplain soils documented a persistence of the post-mining contamination on a decadal timescale. These results provide a basis for the prioritization, development, and implementation of plans to remediate contamination in the affected aquatic and floodplain environments within the Superfund site.

  13. Large-scale controls on potential respiration and denitrification in riverine floodplains

    PubMed Central

    Welti, Nina; Bondar-Kunze, Elisabeth; Singer, Gabriel; Tritthart, Michael; Zechmeister-Boltenstern, Sophie; Hein, Thomas; Pinay, Gilles

    2012-01-01

    Restoration measures of deteriorated river ecosystems generally aim at increasing the spatial heterogeneity and connectivity of these systems in order to increase biodiversity and ecosystem stability. While this is believed to benefit overall ecological integrity, consequences of such restoration projects on biogeochemical processes per se (i.e. ecosystem functioning) in fluvial systems are rarely considered. We address these issues by evaluating the characteristics of surface water connection between side arms and the main river channel in a former braided river section and the role and degree of connectivity (i.e. duration of surface water connection) on the sediment biogeochemistry. We hypothesized that potential respiration and denitrification would be controlled by the degree of hydrological connectivity, which was increased after floodplain restoration. We measured potential microbial respiration (SIR) and denitrification (DEA) and compared a degraded floodplain section of the Danube River with a reconnected and restored floodplain in the same river section. Re-establishing surface water connection altered the controls on sediment microbial respiration and denitrification ultimately impacting potential microbial activities. Meta-variables were created to characterize the effects of hydrology, morphology, and the available carbon and nutrient pools on potential microbial processing. Mantel statistics and path analysis were performed and demonstrate a hierarchy where the effects of hydrology on the available substrates and microbial processing are mediated by the morphology of the floodplain. In addition, these processes are highest in the least connected sites. Surface water connection, mediated by morphology regulates the potential denitrification rate and the ratio of N2O to N2 emissions, demonstrating the effects of restoration in floodplain systems. PMID:23565037

  14. Flood pattern and weather determine Populus leaf litter breakdown and nitrogen dynamics on a cold desert floodplain

    USGS Publications Warehouse

    Andersen, D.C.; Nelson, S.M.

    2006-01-01

    Patterns and processes involved in litter breakdown on desert river floodplains are not well understood. We used leafpacks containing Fremont cottonwood (Populus deltoides subsp. wislizenii) leaf litter to investigate the roles of weather and microclimate, flooding (immersion), and macroinvertebrates on litter organic matter (OM) and nitrogen (N) loss on a floodplain in a cool-temperate semi-arid environment (Yampa River, northwestern Colorado, USA). Total mass of N in fresh autumn litter fell by ∼20% over winter and spring, but in most cases there was no further N loss prior to termination of the study after 653 days exposure, including up to 20 days immersion during the spring flood pulse. Final OM mass was 10–40% of initial values. The pattern of OM and N losses suggested most N would be released outside the flood season, when retention within the floodplain would be likely. The exclusion of macroinvertebrates modestly reduced the rate of OM loss (by about 10%) but had no effect on N dynamics over nine months. Immersion in floodwater accelerated OM loss, but modest variation in litter quality did not affect the breakdown rate. These results are consistent with the concept that decomposition on desert floodplains progresses much as does litter processing in desert uplands, but with periodic bouts of processing typical of aquatic environments when litter is inundated by floodwaters. The strong dependence of litter breakdown rate on weather and floods means that climate change or river flow management can easily disrupt floodplain nutrient dynamics.

  15. Mining-related sediment and soil contamination in a large Superfund site: Characterization, habitat implications, and remediation

    USGS Publications Warehouse

    Juracek, Kyle E.; Drake, K. D.

    2016-01-01

    Historical mining activity (1850–1970) in the now inactive Tri-State Mining District provided an ongoing source of lead and zinc to the environment including the US Environmental Protection Agency Superfund site located in Cherokee County, southeast Kansas, USA. The resultant contamination adversely affected biota and caused human health problems and risks. Remediation in the Superfund site requires an understanding of the magnitude and extent of contamination. To provide some of the required information, a series of sediment and soil investigations were conducted in and near the Superfund site to characterize lead and zinc contamination in the aquatic and floodplain environments along the main-stem Spring River and its major tributaries. In the Superfund site, the most pronounced lead and zinc contamination, with concentrations that far exceed sediment quality guidelines associated with potential adverse biological effects, was measured for streambed sediments and floodplain soils located within or downstream from the most intensive mining-affected areas. Tributary streambeds and floodplains in affected areas are heavily contaminated with some sites having lead and zinc concentrations that are an order of magnitude (or more) greater than the sediment quality guidelines. For the main-stem Spring River, the streambed is contaminated but the floodplain is mostly uncontaminated. Measured lead and zinc concentrations in streambed sediments, lakebed sediments, and floodplain soils documented a persistence of the post-mining contamination on a decadal timescale. These results provide a basis for the prioritization, development, and implementation of plans to remediate contamination in the affected aquatic and floodplain environments within the Superfund site.

  16. Carbon Transport, Transformation and Retention in Tropical Systems: The Lower Tana River Corridor as a Natural Laboratory

    NASA Astrophysics Data System (ADS)

    Govers, G.; Omengo, F.; Geeraert, N.; Bouillon, S.; Neyens, G.

    2016-12-01

    The lower Tana river in Kenya is an active river carrying high sediment and carbon loads, while lateral influxes from tributaries are very limited. We used this river as a natural laboratory to study the dynamics of carbon in the river-floodplain system. We measured carbon fluxes in the river as well as rates of carbon processing. Furthermore, we assessed carbon deposition in the floodplain and carbon mobilisation by river migration. We show that both within-river carbon dynamics as well as river-floodplain interaction can only be understood by accounting for autogenic river processes: the amounts of sediment (5-6 Mt yr-1) and particulate organic carbon (120-180 Mg yr-1) that are re-mobilised within the river reach (300 km) are similar to the amounts the reach receives from upstream. Carbon and sediment mobilisation are compensated for by deposition, both in the floodplain and within the river (point bars). This intensive exchange explains why the suspended sediment in the Tana river becomes finer (and more enriched in carbon) in the downstream direction, despite the deposition of fine, carbon-rich sediments in the floodplain. Contrary to what is found in temperate floodplains, overall carbon burial appears not to be very effective: most buried carbon is mineralised within decades after burial. However, burial efficiency is much higher for allochthonous organic carbon (deposited by the river) than for autochthonous organic carbon (sourced from local primary production). The Tana river does not only exchange carbon with its floodplain through deposition and remobilisation of POC. When floods occur, the floodplain acts as an important source of dissolved organic and inorganic carbon which is not only produced by organic carbon decomposition but also by weathering. Finally, there is significant CO2 outgassing from the Tana river, releasing 3-5 Mg C yr-1 to the atmosphere. Our study highlights the role of tropical river corridors as highly dynamic environments, which may be strongly affected by human management and/or climatic change. The planned construction of a major dam in the upper Tana is likely to steady the river's discharge and will limit lateral river migration and flooding, which may transform the lower Tana from a net sediment (and to a lesser extent, carbon) sink to a source.

  17. Spatial hydrological flow processes, water quality, sediment and vegetation community distributions in a natural floodplain fen - implication for the Flood Pulse Concept

    NASA Astrophysics Data System (ADS)

    Keizer, Floris; Schot, Paul; Wassen, Martin; Kardel, Ignacy; Okruszko, Tomasz

    2017-04-01

    We studied spatial patterns in inundation water quality, sediment and vegetation distribution in a floodplain fen in Poland to map interacting peatland hydrological processes. Using PCA and K-means cluster analysis, we identified four water types, related to river water inundation, discharge of clean and polluted groundwater, and precipitation and snowmelt dilution. Spatially, these hydrochemical water types are related to known water sources in the floodplain and occupy distinctive zones. River water is found along the river, clean and polluted groundwater at the valley margins and groundwater diluted with precipitation and snowmelt water in the central part of the floodplain. This implies that, despite the floodplain being completely inundated, nutrient input from river flooding occurs only in a relatively narrow zone next to the river. Our findings question the relevance of the edge of inundation, as presented in the Flood Pulse Concept, as delineating the zone of input and turnover of nutrients. Secondly, we studied rich-fen and freshwater vegetation community distributions in relation to the presented inundation water quality types. We successfully determined inundation water quality preference for 14 out of 17 studied rich-fen and freshwater communities in the floodplain. Spatial patterns in preference show vegetation with attributed river water preference to occur close to the river channel, with increasing distance to the river followed by communities with no preference, diluted groundwater preference in the central part, and clean and polluted groundwater preference at the valley margins. In inundation water, nutrients are known to be transported mainly as attached to sediment, besides in dissolved state. This means that in the zone where sediment deposition occurs, nutrient input can be a relevant contribution to the nutrient input of the floodplain. We found a significant decrease in sediment-attached nutrient deposition with distance from the river. Sediment-attached nutrients correlated better to aboveground standing biomass than dissolved nutrients. These findings further reduce the spatial zone where significant nutrient input is influenced by transport from the river, compared to the zone influenced by dissolved nutrients. Our findings indicate the need for a revision of the Flood Pulse Concept for temperate river with multiple water sources, as peatland hydrological processes significantly influence spatial floodplain vegetation distribution.

  18. Hydrodynamic Modeling to Assess the Impact of Man-Made Fishing Canals on Floodplain Dynamics: A Case Study in the Logone Floodplain

    NASA Astrophysics Data System (ADS)

    Shastry, A. R.; Durand, M. T.; Fernandez, A.; Phang, S. C.; Hamilton, I.; Laborde, S.; Mark, B. G.; Moritz, M.; Neal, J. C.

    2017-12-01

    The Logone floodplain in northern Cameroon, also known as Yaayre, is an excellent example of coupled human-natural systems because of strong couplings between social, ecological and hydrologic systems. Overbank flow from the Logone River inundates the floodplain ( 8000 km2) annually and the flood is essential for fish populations and the fishers that depend on them for their livelihood. However, a recent trend of construction of fishing canals threatens to change flood dynamics like duration and timing of onset and may reduce fish productivity. Fishers dig canals during dry season, which are used to catch fish by collecting and channeling water during the flood recession. By connecting the floodplain to the river, these fishing canals act an extension of the river drainage network. The goal of this study is to characterize the relationship between the observed exponential increase in numbers of fishing canals and flood dynamics. We modelled the Logone floodplain as a two-dimensional hydrodynamic model with sub-grid parameterizations of channels using LISFLOOD-FP. We use a simplified version of the hydraulic system at a grid-cell size of 1-km, upscaled using a new high accuracy map of global terrain elevations from Shuttle Radar Topography Mission (SRTM). Using data from a field-collected survey performed in 2014, 1120 fishing canal were collated and parameterized as 111 sub-grid channels and the fishnet structure was represented as a combination of weir and mesh screens. 49 mapped floodplain depressions were also represented as sub-grid channels. In situ discharge observations available at Katoa between 2001 and 2007 were used as input for the model. Preliminary results show that presence of canals resulted in a 24% quicker recession of water in the natural depressions showing increasing canal numbers lead to quicker flood recession. We also investigate the rate of effect increasing number of fishing canals has on flood recession by simulating varying numbers of canals. This model will be integrated within a larger modelling effort to quantify the floodplain's hydraulic, biological and human couplings. This larger integrated model will link inputs and outputs across three different models (flood, fish and fisher) for a holistic insight into the drivers and dynamics of this coupled human and natural system.

  19. Basin-scale impacts of hydropower development on the Mompós Depression wetlands, Colombia

    NASA Astrophysics Data System (ADS)

    Angarita, Héctor; Wickel, Albertus J.; Sieber, Jack; Chavarro, John; Maldonado-Ocampo, Javier A.; Herrera-R., Guido A.; Delgado, Juliana; Purkey, David

    2018-05-01

    A number of large hydropower dams are currently under development or in an advanced stage of planning in the Magdalena River basin, Colombia, spelling uncertainty for the Mompós Depression wetlands, one of the largest wetland systems in South America at 3400 km2. Annual large-scale inundation of floodplains and their associated wetlands regulates water, nutrient, and sediment cycles, which in turn sustain a wealth of ecological processes and ecosystem services, including critical food supplies. In this study, we implemented an integrated approach focused on key attributes of ecologically functional floodplains: (1) hydrologic connectivity between the river and the floodplain, and between upstream and downstream sections; (2) hydrologic variability patterns and their links to local and regional processes; and (3) the spatial scale required to sustain floodplain-associated processes and benefits, like migratory fish biodiversity. The implemented framework provides an explicit quantification of the nonlinear or direct response relationship of those considerations with hydropower development. The proposed framework was used to develop a comparative analysis of the potential effects of the hydropower expansion necessary to meet projected 2050 electricity requirements. As part of this study, we developed an enhancement of the Water Evaluation and Planning system (WEAP) that allows resolution of the floodplains water balance at a medium scale (˜ 1000 to 10 000 km2) and evaluation of the potential impacts of upstream water management practices. In the case of the Mompós Depression wetlands, our results indicate that the potential additional impacts of new hydropower infrastructure with respect to baseline conditions can range up to one order of magnitude between scenarios that are comparable in terms of energy capacity. Fragmentation of connectivity corridors between lowland floodplains and upstream spawning habitats and reduction of sediment loads show the greatest impacts, with potential reductions of up to 97.6 and 80 %, respectively, from pre-dam conditions. In some development scenarios, the amount of water regulated and withheld by upstream infrastructure is of similar magnitude to existing fluxes involved in the episodic inundation of the floodplain during dry years and, thus, can also induce substantial changes in floodplain seasonal dynamics of average-to-dry years in some areas of the Mompós Depression.

  20. Coupled stream and population dynamics: Modeling the role beaver (Castor canadensis) play in generating juvenile steelhead (Oncorhynchus mykiss) habitat

    NASA Astrophysics Data System (ADS)

    Jordan, C.; Bouwes, N.; Wheaton, J. M.; Pollock, M.

    2013-12-01

    Over the past several centuries, the population of North American Beaver has been dramatically reduced through fur trapping. As a result, the geomorphic impacts long-term beaver occupancy and activity can have on fluvial systems have been lost, both from the landscape and from our collective memory such that physical and biological models of floodplain system function neither consider nor have the capacity to incorporate the role beaver can play in structuring the dynamics of streams. Concomitant with the decline in beaver populations was an increasing pressure on streams and floodplains through human activity, placing numerous species of stream rearing fishes in peril, most notably the ESA listing of trout and salmon populations across the entirety of the Western US. The rehabilitation of stream systems is seen as one of the primary means by which population and ecosystem recovery can be achieved, yet the methods of stream rehabilitation are applied almost exclusively with the expected outcome of a static idealized stream planform, occasionally with an acknowledgement of restoring processes rather than form and only rarely with the goal of a beaver dominated riverscape. We have constructed an individual based model of trout and beaver populations that allows the exploration of fish population dynamics as a function of stream habitat quality and quantity. We based the simulation tool on Bridge Creek (John Day River basin, Oregon) where we have implemented a large-scale restoration experiment using wooden posts to provide beavers with stable platforms for dam building and to simulate the dams themselves. Extensive monitoring captured geomorphic and riparian changes, as well as fish and beaver population responses; information we use to parameterize the model as to the geomorphic and fish response to dam building beavers. In the simulation environment, stream habitat quality and quantity can be manipulated directly through rehabilitation actions and indirectly through the dynamics of the co-occurring beaver population. The model allowed to us to ask questions critical for designing restoration strategies based on dam building beaver activity, such as what beaver population growth rate is required to develop and maintain floodplain connectivity in an incised system, or what beaver population size is required to increase juvenile steelhead production? The model was sensitive to several variables including beaver colony size, dams and colony dynamics and site fidelity, and thus highlights further research needs to fill critical information gaps.

  1. 40 CFR 257.8 - Floodplains.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Floodplains. 257.8 Section 257.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR... relatively flat areas adjoining inland and coastal waters, including flood-prone areas of offshore islands...

  2. 40 CFR 257.8 - Floodplains.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Floodplains. 257.8 Section 257.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR... relatively flat areas adjoining inland and coastal waters, including flood-prone areas of offshore islands...

  3. 40 CFR 257.8 - Floodplains.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Floodplains. 257.8 Section 257.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR... relatively flat areas adjoining inland and coastal waters, including flood-prone areas of offshore islands...

  4. 40 CFR 257.8 - Floodplains.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Floodplains. 257.8 Section 257.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR... relatively flat areas adjoining inland and coastal waters, including flood-prone areas of offshore islands...

  5. 40 CFR 257.8 - Floodplains.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Floodplains. 257.8 Section 257.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR... relatively flat areas adjoining inland and coastal waters, including flood-prone areas of offshore islands...

  6. 18 CFR 725.4 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... EXECUTIVE ORDERS 11988, FLOODPLAIN MANAGEMENT AND 11990, PROTECTION OF WETLANDS Introduction § 725.4... definitions listed in the Glossary of the Council's Floodplain Management Guidelines for Implementing E.O... Council's Principles, Standards and Procedures (P,S,&P), provision of financial assistance for State...

  7. 10 CFR 1022.5 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENERGY (GENERAL PROVISIONS) COMPLIANCE WITH FLOODPLAIN AND WETLAND ENVIRONMENTAL REVIEW REQUIREMENTS... Commission. (b) This part applies to all proposed floodplain or wetland actions, including those sponsored... allocations to private parties for activities involving a wetland that are located on non-Federal property. (d...

  8. IMPACTS ON FLOODPLAINS BY AN INVASIVE SHRUB, BUDDLEJA DAVIDII

    EPA Science Inventory

    Despite its popularity, the ornamental, Buddleja davidii, a woody shrub of Asian origin, is considered problematic because of its ability to rapidly colonize and dominate floodplain and riparian ecosystems. Dominance during early succession may influence community dynamics and ec...

  9. Flooding tolerance of four floodplain meadow species depends on age.

    PubMed

    Gattringer, Johannes P; Donath, Tobias W; Eckstein, R Lutz; Ludewig, Kristin; Otte, Annette; Harvolk-Schöning, Sarah

    2017-01-01

    Numerous restoration campaigns focused on re-establishing species-rich floodplain meadows of Central Europe, whose species composition is essentially controlled by regular flooding. Climate change predictions expect strong alterations on the discharge regime of Europe's large rivers with little-known consequences on floodplain meadow plants. In this study, we aim to determine the effects of flooding on seedlings of different ages of four typical flood meadow species. To this end, we flooded seedlings of two familial pairs of flood meadow species of wetter and dryer microhabitats for 2 weeks each, starting 2, 4, 6, and 8 weeks after seedling germination, respectively. We show that a 2-week-flooding treatment had a negative effect on performance of seedlings younger than 6 weeks. Summer floods with high floodwater temperatures may have especially detrimental effects on seedlings, which is corroborated by previous findings. As expected, the plants from wet floodplain meadow microhabitats coped better with the flooding treatment than those from dryer microhabitats. In conclusion, our results suggest that restoration measures may perform more successfully if seedlings of restored species are older than the critical age of about 6 weeks before a spring flooding begins. Seasonal flow patterns may influence vegetation dynamics of floodplain meadows and should, therefore, be taken into account when timing future restoration campaigns.

  10. Flooding tolerance of four floodplain meadow species depends on age

    PubMed Central

    Donath, Tobias W.; Eckstein, R. Lutz; Ludewig, Kristin; Otte, Annette; Harvolk-Schöning, Sarah

    2017-01-01

    Numerous restoration campaigns focused on re-establishing species-rich floodplain meadows of Central Europe, whose species composition is essentially controlled by regular flooding. Climate change predictions expect strong alterations on the discharge regime of Europe’s large rivers with little-known consequences on floodplain meadow plants. In this study, we aim to determine the effects of flooding on seedlings of different ages of four typical flood meadow species. To this end, we flooded seedlings of two familial pairs of flood meadow species of wetter and dryer microhabitats for 2 weeks each, starting 2, 4, 6, and 8 weeks after seedling germination, respectively. We show that a 2-week-flooding treatment had a negative effect on performance of seedlings younger than 6 weeks. Summer floods with high floodwater temperatures may have especially detrimental effects on seedlings, which is corroborated by previous findings. As expected, the plants from wet floodplain meadow microhabitats coped better with the flooding treatment than those from dryer microhabitats. In conclusion, our results suggest that restoration measures may perform more successfully if seedlings of restored species are older than the critical age of about 6 weeks before a spring flooding begins. Seasonal flow patterns may influence vegetation dynamics of floodplain meadows and should, therefore, be taken into account when timing future restoration campaigns. PMID:28467463

  11. Nutrient dynamics in the lower Mississippi river floodplain: Comparing present and historic hydrologic conditions

    USGS Publications Warehouse

    Schramm, H.L.; Cox, M.S.; Tietjen, T.E.; Ezell, A.W.

    2009-01-01

    Alterations to the lower Mississippi River-floodplain ecosystem to facilitate commercial navigation and to reduce flooding of agricultural lands and communities in the historic floodplain have changed the hydrologic regime. As a result, the flood pulse usually has a lower water level, is of shorter duration, has colder water temperatures, and a smaller area of floodplain is inundated. Using average hydrologic conditions and water temperatures, we used established nitrogen and phosphorus processes in soils, an aquatic ecosystem model, and fish bioenergetic models to provide approximations of nitrogen and phosphorus flux in Mississippi River flood waters for the present conditions of a 2-month (mid-March to mid-May) flood pulse and for a 3-month (mid-March to mid-June), historic flood pulse. We estimated that the soils and aquatic biota can remove or sequester 542 and 976 kg nitrogen ha-1 during the present and historic hydrologic conditions, respectively. Phosphorus, on the other hand, will be added to the water largely as a result of anaerobic soil conditions but moderated by biological uptake by aquatic biota during both present and historic hydrologic conditions. The floodplain and associated water bodies may provide an important management opportunity for reducing downstream transport of nitrogen in Mississippi River waters. ?? 2009, The Society of Wetland Scientists.

  12. High genetic diversity among and within bitter manioc varieties cultivated in different soil types in Central Amazonia.

    PubMed

    Alves-Pereira, Alessandro; Peroni, Nivaldo; Cavallari, Marcelo Mattos; Lemes, Maristerra R; Zucchi, Maria Imaculada; Clement, Charles R

    2017-01-01

    Although manioc is well adapted to nutrient-poor Oxisols of Amazonia, ethnobotanical observations show that bitter manioc is also frequently cultivated in the highly fertile soils of the floodplains and Amazonian dark earths (ADE) along the middle Madeira River. Because different sets of varieties are grown in each soil type, and there are agronomic similarities between ADE and floodplain varieties, it was hypothesized that varieties grown in ADE and floodplain were more closely related to each other than either is to varieties grown in Oxisols. We tested this hypothesis evaluating the intra-varietal genetic diversity and the genetic relationships among manioc varieties commonly cultivated in Oxisols, ADE and floodplain soils. Genetic results did not agree with ethnobotanical expectation, since the relationships between varieties were variable and most individuals of varieties with the same vernacular name, but grown in ADE and floodplain, were distinct. Although the same vernacular name could not always be associated with genetic similarities, there is still a great amount of variation among the varieties. Many ecological and genetic processes may explain the high genetic diversity and differentiation found for bitter manioc varieties, but all contribute to the maintenance and amplification of genetic diversity within the manioc in Central Amazonia.

  13. Floodplain Assessment for the Middle Los Alamos Canyon Aggregate Area Investigations in Technical Area 02 at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles Dean

    The proposed action being assessed in this document occurs in TA-02 in the bottom of Los Alamos Canyon. The DOE proposes to conduct soil sampling at AOC 02-011 (d), AOC 02- 011(a)(ii), and SWMU 02-005, and excavate soils in AOC 02-011(a)(ii) as part of a corrective actions effort. Additional shallow surface soil samples (soil grab samples) will be collected throughout the TA-02 area, including within the floodplain, to perform ecotoxicology studies (Figures 1 and 2). The excavation boundaries in AOC 02-011(a)(ii) are slightly within the delineated 100-year floodplain. The project will use a variety of techniques for soil sampling andmore » remediation efforts to include hand/digging, standard hand auger/sampling, excavation using machinery such as backhoe and front end loader and small drill rig. Heavy equipment will traverse the floodplain and spoils piles will be staged in the floodplain within developed or previously disturbed areas (e.g., existing paved roads and parking areas). The project will utilize and maintain appropriate best management practices (BMPs) to contain excavated materials, and all pollutants, including oil from machinery/vehicles. The project will stabilize disturbed areas as appropriate at the end of the project.« less

  14. High genetic diversity among and within bitter manioc varieties cultivated in different soil types in Central Amazonia

    PubMed Central

    Alves-Pereira, Alessandro; Peroni, Nivaldo; Cavallari, Marcelo Mattos; Lemes, Maristerra R.; Zucchi, Maria Imaculada; Clement, Charles R.

    2017-01-01

    Abstract Although manioc is well adapted to nutrient-poor Oxisols of Amazonia, ethnobotanical observations show that bitter manioc is also frequently cultivated in the highly fertile soils of the floodplains and Amazonian dark earths (ADE) along the middle Madeira River. Because different sets of varieties are grown in each soil type, and there are agronomic similarities between ADE and floodplain varieties, it was hypothesized that varieties grown in ADE and floodplain were more closely related to each other than either is to varieties grown in Oxisols. We tested this hypothesis evaluating the intra-varietal genetic diversity and the genetic relationships among manioc varieties commonly cultivated in Oxisols, ADE and floodplain soils. Genetic results did not agree with ethnobotanical expectation, since the relationships between varieties were variable and most individuals of varieties with the same vernacular name, but grown in ADE and floodplain, were distinct. Although the same vernacular name could not always be associated with genetic similarities, there is still a great amount of variation among the varieties. Many ecological and genetic processes may explain the high genetic diversity and differentiation found for bitter manioc varieties, but all contribute to the maintenance and amplification of genetic diversity within the manioc in Central Amazonia. PMID:28399193

  15. Time as An Important Soil-Forming Factor Influencing Modern and Ancient Magnetic Susceptibility Enhancement Along the Delaware River Valley, USA

    NASA Astrophysics Data System (ADS)

    Stinchcomb, G. E.; Peppe, D. J.; Driese, S. G.

    2011-12-01

    Magnetic susceptibility is an increasingly popular low-cost method for rapidly assessing paleoclimate and paleoenvironmental impact on buried soils. The goal of this study is to determine the primary influence(s) on soil magnetic susceptibility along floodplain, terrace and upland soils in the middle Delaware River Valley, USA, using environmental magnetic, pedologic, and stratigraphic techniques. Two-hundred thirty samples were collected from age-constrained sandy, quartz-rich, floodplain, terrace, and upland soils (Entisols, Inceptisols). A Kruskal-Wallis (K-W) and post-hoc Tukey-Kramer (T-K) (α=0.05) multiple comparisons analysis on 176 mass-specific low-field susceptibility (Xlf) assays show that A and B horizons are magnetically enhanced compared to C and E horizons (p<0.0001). Results of descriptive soil micromorphology show that A and B horizons contain anywhere from 10-50% more amorphous organic matter and clay films along pores than do C and E horizons. Enhanced Xlf values also correlate positively (R^2=0.63) with the soil molecular weathering ratio of Alumina/Bases, suggesting that increased weathering likely results in the formation of pedogenic magnetic minerals and enhanced magnetic susceptibility signal. Additional K-W and T-K testing show that Xlf results, when grouped by floodplain-terrace designation (i.e., chronofunction) are significantly different (p<0.0001). The older T3 terrace and upland Xlf values (0.34±0.14 10^-6 m^3 kg^-1) are greater than the younger T2 terrace (0.18±0.06 10^-6 m^3 kg^-1) values, which are greater than modern floodplain (0.09±0.01 10^-6 m^3 kg^-1) Xlf values. These data suggest that longer intervals of soil formation enhance the Χlf value. This hypothesis is further supported when 159 Xlf values are plotted vs. age for the entire Holocene. A locally-weighted regression smoothing curve (LOESS) shows two distinct intervals of magnetic enhancement during previously established dry intervals, the early and late-middle Holocene. We hypothesize that prolonged drought during the early and middle Holocene reduced flood frequency and magnitude and the likelihood of soil burial, resulting in longer soil forming intervals and higher Xlf values. Although precipitation influences the Xlf signature, the results from this study suggest that the magnetic susceptibility values of well-drained buried floodplain soils along the Delaware River Valley are partly a function of time.

  16. Assessing the impacts of climate change and dams on floodplain inundation and wetland connectivity in the wet-dry tropics of northern Australia

    NASA Astrophysics Data System (ADS)

    Karim, Fazlul; Dutta, Dushmanta; Marvanek, Steve; Petheram, Cuan; Ticehurst, Catherine; Lerat, Julien; Kim, Shaun; Yang, Ang

    2015-03-01

    Floodplain wetlands and their hydrological connectivity with main river channels in the Australian wet-dry tropics are under increasing pressure from global climate change and water resource development, and there is a need for modelling tools to estimate the time dynamics of connectivity. This paper describes an integrated modelling framework combining conceptual rainfall-runoff modelling, river system modelling and hydrodynamic (HD) modelling to estimate hydrological connectivity between wetlands and rivers in the Flinders and Gilbert river catchments in northern Australia. Three historical flood events ranging from a mean annual flood to a 35-year return period flood were investigated using a two dimensional HD model (MIKE 21). Inflows from upstream catchments were estimated using a river network model. Local runoff within the HD modelling domain was simulated using the Sacramento rainfall-runoff model. The Shuttle Radar Topography Mission (SRTM) derived 30 m DEM was used to reproduce floodplain topography, stream networks and wetlands in the HD model. The HD model was calibrated using stream gauge data and inundation maps derived from satellite (MODIS: MODerate resolution Imaging Spectroradiometer) imagery. An algorithm was developed to combine the simulated water heights with the DEM to quantify inundation and flow connection between wetlands and rivers. The connectivity of 18 ecologically important wetlands on the Flinders floodplain and 7 on the Gilbert floodplain were quantified. The impacts of climate change and water resource development on connectivity to individual wetlands were assessed under a projected dry climate (2nd driest of 15 GCMs), wet climate (2nd wettest of 15 GCMs) and dam conditions. The results indicate that changes in rainfall under a wetter and drier future climate could have large impacts on area, duration and frequency of inundation and connectivity. Topographic relief, river bank elevation and flood magnitude were found to be the key factors contributing to the level of connectivity. Under a wetter future climate the average duration of connection of wetlands to the main river channel increased by 7% and under a drier climate it decreased by 18%. Construction of a 248 GL dam in the Flinders catchment and two (498 and 271 GL capacity) in the Gilbert catchment could reduce the average duration of connectivity by 1% and 2% in the Flinders and Gilbert catchments respectively. This information is potentially useful to future studies on the flood-dependent ecology in this region.

  17. Platelet-rich plasma stimulated by pulse electric fields: Platelet activation, procoagulant markers, growth factor release and cell proliferation.

    PubMed

    Frelinger, A L; Torres, A S; Caiafa, A; Morton, C A; Berny-Lang, M A; Gerrits, A J; Carmichael, S L; Neculaes, V B; Michelson, A D

    2016-01-01

    Therapeutic use of activated platelet-rich plasma (PRP) has been explored for wound healing, hemostasis and antimicrobial wound applications. Pulse electric field (PEF) stimulation may provide more consistent platelet activation and avoid complications associated with the addition of bovine thrombin, the current state of the art ex vivo activator of therapeutic PRP. The aim of this study was to compare the ability of PEF, bovine thrombin and thrombin receptor activating peptide (TRAP) to activate human PRP, release growth factors and induce cell proliferation in vitro. Human PRP was prepared in the Harvest SmartPreP2 System and treated with vehicle, PEF, bovine thrombin, TRAP or Triton X-100. Platelet activation and procoagulant markers and microparticle generation were measured by flow cytometry. Released growth factors were measured by ELISA. The releasates were tested for their ability to stimulate proliferation of human epithelial cells in culture. PEF produced more platelet-derived microparticles, P-selectin-positive particles and procoagulant annexin V-positive particles than bovine thrombin or TRAP. These differences were associated with higher levels of released epidermal growth factor after PEF than after bovine thrombin or TRAP but similar levels of platelet-derived, vascular-endothelial, and basic fibroblast growth factors, and platelet factor 4. Supernatant from PEF-treated platelets significantly increased cell proliferation compared to plasma. In conclusion, PEF treatment of fresh PRP results in generation of microparticles, exposure of prothrombotic platelet surfaces, differential release of growth factors compared to bovine thrombin and TRAP and significant cell proliferation. These results, together with PEF's inherent advantages, suggest that PEF may be a superior alternative to bovine thrombin activation of PRP for therapeutic applications.

  18. Factors Influencing Male Plutella xylostella (Lepidoptera: Plutellidae) Capture Rates in Sex Pheromone-Baited Traps on Canola in Western Canada.

    PubMed

    Miluch, C E; Dosdall, L M; Evenden, M L

    2014-12-01

    Optimization of male moth trapping rates in sex pheromone-baited traps plays a key role in managing Plutella xylostella (L.). We investigated various ways to increase the attractiveness of pheromone-baited traps to P. xylostella in canola agroecosystems in AB, Canada. Factors tested included pheromone blend and dose, addition of a green leaf volatile to the pheromone at different times during the season, lure type, trap color, and height. The industry standard dose of 100 μg of pheromone (four-component blend) per lure (ConTech Enterprises Inc., Delta, British Columbia [BC], Canada) captured the most moths in the two lure types tested. Traps baited with pheromone released from gray rubber septa captured more males than those baited with red rubber septa. Traps baited with lures in which Z11-16: Ac is the main component attracted significantly more moths than those in which Z11-16: Ald is the main component. The addition of the green leaf volatile, (Z)-3-hexenyl acetate, to pheromone at a range of doses, did not increase moth capture at any point during the canola growing season. Unpainted white traps captured significantly more male moths than pheromone-baited traps that were painted yellow. Trap height had no significant effect on moth capture. Recommendations for monitoring P. xylostella in canola agroecosystems of western Canada include using a pheromone blend with Z11-16: Ac as the main component released from gray rubber septa at a dose of 100 μg. © 2014 Entomological Society of America.

  19. Effects of surface and interface traps on exciton and multi-exciton dynamics in core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Bozio, Renato; Righetto, Marcello; Minotto, Alessandro

    2017-08-01

    Exciton interactions and dynamics are the most important factors determining the exceptional photophysical properties of semiconductor quantum dots (QDs). In particular, best performances have been obtained for ingeniously engineered core/shell QDs. We have studied two factors entering in the exciton decay dynamics with adverse effects for the luminescence efficiency: exciton trapping at surface and interface traps, and non-radiative Auger recombination in QDs carrying either net charges or multiple excitons. In this work, we present a detailed study into the optical absorption, fluorescence dynamics and quantum yield, as well as ultrafast transient absorption properties of CdSe/CdS, CdSe/Cd0.5Zn0.5S, and CdSe/ZnS QDs as a function of shell thickness. It turns out that de-trapping processes play a pivotal role in determining steady state emission properties. By studying the excitation dependent photoluminescence quantum yields (PLQY) in different CdSe/CdxZn1-xS (x = 0, 0.5, 1) QDs, we demonstrate the different role played by hot and cold carrier trapping rates in determining fluorescence quantum yields. Finally, the use of global analysis allows us untangling the complex ultrafast transient absorption signals. Smoothing of interface potential, together with effective surface passivation, appear to be crucial factors in slowing down both Auger-based and exciton trapping recombination processes.

  20. Study on Flake Formation Behavior and Its Influence Factors in Cr5 Steel

    PubMed Central

    Chen, Huitao; Zhao, Wu; Yan, Liang

    2018-01-01

    A flake is a crack that is induced by trapped hydrogen within steel. To study its formation mechanism, previous studies mostly focused on the formation process and magnitude of hydrogen pressure in hydrogen traps such as cavities and cracks. However, according to recent studies, the hydrogen leads to the decline of the mechanical properties of steel, which is known as hydrogen embrittlement, is another reason for flake formation. In addition, the phenomenon of stress induced hydrogen uphill diffusion should not be neglected. All of the three behaviors are at work simultaneously. In order to further explore the formation mechanism of flakes in steel, the process of flake initiation and growth were studied with the following three coupling factors: trap hydrogen pressure, hydrogen embrittlement, and stress induced hydrogen re-distribution. The analysis model was established using the finite element method, and a crack whose radius is 0.5 mm was set in its center. The cohesive method and Bilinear Traction Separate Law (BTSL) were used to address the coupling effect. The results show that trap hydrogen pressure is the main driving force for flake formation. After the high hydrogen pressure was generated around the trap, a stress field formed. In addition, the trap is the center of stress concentration. Then, hydrogen is concentrated in a distribution around this trap, and most of the steel mechanical properties are reduced. The trap size is a key factor for defining the critical hydrogen content for flake formation and propagation. However, when the trap size exceeds the specified value, the critical hydrogen content does not change any more. As for the crack whose radius is 0.5 mm, the critical hydrogen content of Cr5VMo steel is 2.2 ppm, which is much closer to the maximum safe hydrogen concentration of 2.0 ppm used in China. The work presented in this article increases our understanding of flake formation and propagation mechanisms in steel. PMID:29702610

Top