Friberg, Magne; Schwind, Christopher; Raguso, Robert A.; Thompson, John N.
2013-01-01
Backgrounds and Aims A current challenge in coevolutionary biology is to understand how suites of traits vary as coevolving lineages diverge. Floral scent is often a complex, variable trait that attracts a suite of generalized pollinators, but may be highly specific in plants specialized on attracting coevolved pollinating floral parasites. In this study, floral scent variation was investigated in four species of woodland stars (Lithophragma spp.) that share the same major pollinator (the moth Greya politella, a floral parasite). Three specific hypotheses were tested: (1) sharing the same specific major pollinator favours conservation of floral scent among close relatives; (2) selection favours ‘private channels’ of rare compounds particularly aimed at the specialist pollinator; or (3) selection from rare, less-specialized co-pollinators mitigates the conservation of floral scent and occurrence of private channels. Methods Dynamic headspace sampling and solid-phase microextraction were applied to greenhouse-grown plants from a common garden as well as to field samples from natural populations in a series of experiments aiming to disentangle the genetic and environmental basis of floral scent variation. Key Results Striking floral scent divergence was discovered among species. Only one of 69 compounds was shared among all four species. Scent variation was largely genetically based, because it was consistent across field and greenhouse treatments, and was not affected by visits from the pollinating floral parasite. Conclusions The strong divergence in floral scents among Lithophragma species contrasts with the pattern of conserved floral scent composition found in other plant genera involved in mutualisms with pollinating floral parasites. Unlike some of these other obligate pollination mutualisms, Lithophragma plants in some populations are occasionally visited by generalist pollinators from other insect taxa. This additional complexity may contribute to the diversification in floral scent found among the Lithophragma species pollinated by Greya moths. PMID:23365407
Lawson, David A; Chittka, Lars; Whitney, Heather M; Rands, Sean A
2018-06-13
Flowers act as multisensory billboards to pollinators by using a range of sensory modalities such as visual patterns and scents. Different floral organs release differing compositions and quantities of the volatiles contributing to floral scent, suggesting that scent may be patterned within flowers. Early experiments suggested that pollinators can distinguish between the scents of differing floral regions, but little is known about how these potential scent patterns might influence pollinators. We show that bumblebees can learn different spatial patterns of the same scent, and that they are better at learning to distinguish between flowers when the scent pattern corresponds to a matching visual pattern. Surprisingly, once bees have learnt the spatial arrangement of a scent pattern, they subsequently prefer to visit novel unscented flowers that have an identical arrangement of visual marks, suggesting that multimodal floral signals may exploit the mechanisms by which learnt information is stored by the bee. © 2018 The Authors.
Air pollutants degrade floral scents and increase insect foraging times
NASA Astrophysics Data System (ADS)
Fuentes, Jose D.; Chamecki, Marcelo; Roulston, T.'ai; Chen, Bicheng; Pratt, Kenneth R.
2016-09-01
Flowers emit mixtures of scents that mediate plant-insect interactions such as attracting insect pollinators. Because of their volatile nature, however, floral scents readily react with ozone, nitrate radical, and hydroxyl radical. The result of such reactions is the degradation and the chemical modification of scent plumes downwind of floral sources. Large Eddy Simulations (LES) are developed to investigate dispersion and chemical degradation and modification of floral scents due to reactions with ozone, hydroxyl radical, and nitrate radical within the atmospheric surface layer. Impacts on foraging insects are investigated by utilizing a random walk model to simulate insect search behavior. Results indicate that even moderate air pollutant levels (e.g., ozone mixing ratios greater than 60 parts per billion on a per volume basis, ppbv) substantially degrade floral volatiles and alter the chemical composition of released floral scents. As a result, insect success rates of locating plumes of floral scents were reduced and foraging times increased in polluted air masses due to considerable degradation and changes in the composition of floral scents. Results also indicate that plant-pollinator interactions could be sensitive to changes in floral scent composition, especially if insects are unable to adapt to the modified scentscape. The increase in foraging time could have severe cascading and pernicious impacts on the fitness of foraging insects by reducing the time devoted to other necessary tasks.
Parachnowitsch, Amy L; Raguso, Robert A; Kessler, André
2012-08-01
Fragrance is a putatively important character in the evolution of flowering plants, but natural selection on scent is rarely studied and thus poorly understood. We characterized floral scent composition and emission in a common garden of Penstemon digitalis from three nearby source populations. We measured phenotypic selection on scent as well as floral traits more frequently examined, such as floral phenology, display size, corolla pigment, and inflorescence height. Scent differed among populations in a common garden, underscoring the potential for scent to be shaped by differential selection pressures. Phenotypic selection on flower number and display size was strong. However, selection favoured scent rather than flower size or colour, suggesting that smelling stronger benefits reproductive success in P. digitalis. Linalool was a direct target of selection and its high frequency in floral-scent bouquets suggests that further studies of both pollinator- and antagonist-mediated selection on this compound would further our understanding of scent evolution. Our results indicate that chemical dimensions of floral display are just as likely as other components to experience selective pressure in a nonspecialized flowering herb. Therefore, studies that integrate visual and chemical floral traits should better reflect the true nature of floral evolutionary ecology. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Friberg, Magne; Waters, Mia T; Thompson, John N
2017-09-01
Many plant-pollinator interactions are mediated by floral scents that can vary among species, among populations within species and even among individuals within populations. This variation could be innate and unaffected by the environment, but, because many floral volatiles have amino-acid precursors, scent variation also could be affected by differences in nutrient availability among environments. In plants that have coevolved with specific pollinators, natural selection is likely to favour low phenotypic plasticity in floral scent even under different conditions of nutrient availability if particular scents or scent combinations are important for attracting local pollinators. Clonal pairs of multiple seed-families of two Lithophragma bolanderi (Saxifragaceae) populations were subjected to a high and a low nutrient treatment. These plants are pollinated primarily by host-specific Greya moths. It was evaluated how nutrient treatment affected variation in floral scent relative to other vegetative and reproductive traits. Floral scent strength (the per-flower emission rate) and composition were unaffected by nutrient treatment, but low-nutrient plants produced fewer and lighter leaves, fewer scapes and fewer flowers than high-nutrient plants. The results held in both populations, which differed greatly in the number and composition of floral scents produced. The results reveal a strong genetic component both to scent composition and emission level, and partly contrasts with the only previous study that has assessed the susceptibility of floral volatile signals to variation in the abundance of nutrients. These results, and the tight coevolutionary relationship between Lithophragma plants and their specialized Greya moth pollinators, indicate that reproductive traits important to coevolving interactions, such as the floral scent of L. bolanderi, may be locally specialized and more canalized than other traits important for plant fitness. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Gong, W-C; Chen, G; Vereecken, N J; Dunn, B L; Ma, Y-P; Sun, W-B
2015-01-01
Traditionally, plant-pollinator interactions have been interpreted as pollination syndrome. However, the validity of pollination syndrome has been widely doubted in modern studies of pollination ecology. The pollination ecology of five Asian Buddleja species, B. asiatica, B. crispa, B. forrestii, B. macrostachya and B. myriantha, in the Sino-Himalayan region in Asia, flowering in different local seasons, with scented inflorescences were investigated during 2011 and 2012. These five species exhibited diverse floral traits, with narrow and long corolla tubes and concealed nectar. According to their floral morphology, larger bees and Lepidoptera were expected to be the major pollinators. However, field observations showed that only larger bees (honeybee/bumblebee) were the primary pollinators, ranging from 77.95% to 97.90% of total visits. In this study, floral scents of each species were also analysed using coupled gas chromatography and mass spectrometry (GC-MS). Although the five Buddleja species emitted differentiated floral scent compositions, our results showed that floral scents of the five species are dominated by substances that can serve as attractive signals to bees, including species-specific scent compounds and principal compounds with larger relative amounts. This suggests that floral scent compositions are closely associated with the principal pollinator assemblages in these five species. Therefore, we conclude that floral scent compositions rather than floral morphology traits should be used to interpret plant-pollinator interactions in these Asian Buddleja species. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Sources of floral scent variation
Raguso, Robert A; Ashman, Tia-Lynn
2009-01-01
Studies of floral scent generally assume that genetic adaptation due to pollinator-mediated natural selection explains a significant amount of phenotypic variance, ignoring the potential for phenotypic plasticity in this trait. In this paper, we assess this latter possibility, looking first at previous studies of floral scent variation in relation to abiotic environmental factors. We then present data from our own research that suggests among-population floral scent variation is determined, in part, by environmental conditions and thus displays phenotypic plasticity. Such an outcome has strong ramifications for the study of floral scent variation; we conclude by presenting some fundamental questions that should lead to greater insight into our understanding of the evolution of this trait, which is important to plant-animal interactions. PMID:19649189
Gross, Karin; Sun, Mimi; Schiestl, Florian P.
2016-01-01
Geographically structured phenotypic selection can lead to adaptive divergence. However, in flowering plants, such divergent selection has rarely been shown, and selection on floral signals is generally little understood. In this study, we measured phenotypic selection on display size, floral color, and floral scent in four lowland and four mountain populations of the nectar-rewarding terrestrial orchid Gymnadenia odoratissima in two years. We also quantified population differences in these traits and pollinator community composition. Our results show positive selection on display size and positive, negative, or absence of selection on different scent compounds and floral color. Selection on the main scent compounds was consistently stronger in the lowlands than in the mountains, and lowland plants emitted higher amounts of most of these compounds. Pollinator community composition also differed between regions, suggesting different pollinators select for differences in floral volatiles. Overall, our study is the first to document consistent regional differences in selection on floral scent, suggesting this pattern of selection is one of the evolutionary forces contributing to regional divergence in floral chemical signaling. PMID:26886766
Steenhuisen, S-L; Raguso, R A; Johnson, S D
2012-12-01
Evolutionary shifts between pollination systems are often accompanied by modifications of floral traits, including olfactory cues. We investigated the implications of a shift from passerine bird to beetle pollination in Protea for floral scent chemistry, and also explored the functional significance of Protea scent for pollinator attraction. Using headspace sampling and gas chromatography-mass spectrometry, we found distinct differences in the emission rates and chemical composition of floral scents between eight bird- and four beetle-pollinated species. The amount of scent emitted from inflorescences of beetle-pollinated species was, on average, about 10-fold greater than that of bird-pollinated species. Floral scent of bird-pollinated species consists mainly of small amounts of "green-leaf volatiles" and benzenoid compounds, including benzaldehyde, anisole and benzyl alcohol. The floral scent of beetle-pollinated species is dominated by emissions of linalool, a wide variety of other monoterpenes and the benzenoid methyl benzoate, which imparts a fruity odour to the human nose. The number of compounds recorded in the scent of beetle-pollinated species was, on average, greater than in bird-pollinated species (45 versus 29 compounds, respectively). Choice experiments using a Y-maze showed that a primary pollinator of Protea species, the cetoniine beetle Atrichelaphinis tigrina, strongly preferred the scent of inflorescences of the beetle-pollinated Protea simplex over those of the bird-pollinated sympatric congener, Protea roupelliae. This study shows that a shift from passerine bird- to insect-pollination can be associated with marked up-regulation and compositional changes in floral scent emissions. Copyright © 2012 Elsevier Ltd. All rights reserved.
How scent and nectar influence floral antagonists and mutualists.
Kessler, Danny; Kallenbach, Mario; Diezel, Celia; Rothe, Eva; Murdock, Mark; Baldwin, Ian T
2015-07-01
Many plants attract and reward pollinators with floral scents and nectar, respectively, but these traits can also incur fitness costs as they also attract herbivores. This dilemma, common to most flowering plants, could be solved by not producing nectar and/or scent, thereby cheating pollinators. Both nectar and scent are highly variable in native populations of coyote tobacco, Nicotiana attenuata, with some producing no nectar at all, uncorrelated with the tobacco's main floral attractant, benzylacetone. By silencing benzylacetone biosynthesis and nectar production in all combinations by RNAi, we experimentally uncouple these floral rewards/attractrants and measure their costs/benefits in the plant's native habitat and experimental tents. Both scent and nectar increase outcrossing rates for three, separately tested, pollinators and both traits increase oviposition by a hawkmoth herbivore, with nectar being more influential than scent. These results underscore that it makes little sense to study floral traits as if they only mediated pollination services.
Nocturnal bees are attracted by widespread floral scents.
Carvalho, Airton Torres; Maia, Artur Campos Dalia; Ojima, Poliana Yumi; dos Santos, Adauto A; Schlindwein, Clemens
2012-03-01
Flower localization in darkness is a challenging task for nocturnal pollinators. Floral scents often play a crucial role in guiding them towards their hosts. Using common volatile compounds of floral scents, we trapped female nocturnal Megalopta-bees (Halictidae), thus uncovering olfactory cues involved in their search for floral resources. Applying a new sampling method hereby described, we offer novel perspectives on the investigation of nocturnal bees.
How floral odours are learned inside the bumblebee ( Bombus terrestris) nest
NASA Astrophysics Data System (ADS)
Molet, Mathieu; Chittka, Lars; Raine, Nigel E.
2009-02-01
Recruitment in social insects often involves not only inducing nestmates to leave the nest, but also communicating crucial information about finding profitable food sources. Although bumblebees transmit chemosensory information (floral scent), the transmission mechanism is unknown as mouth-to-mouth fluid transfer (as in honeybees) does not occur. Because recruiting bumblebees release a pheromone in the nest that triggers foraging in previously inactive workers, we tested whether this pheromone helps workers learn currently rewarding floral odours, as found in food social learning in rats. We exposed colonies to artificial recruitment pheromone, paired with anise scent. The pheromone did not facilitate learning of floral scent. However, we found that releasing floral scent in the air of the colony was sufficient to trigger learning and that learning performance was improved when the chemosensory cue was provided in the nectar in honeypots; probably because it guarantees a tighter link between scent and reward, and possibly because gustatory cues are involved in addition to olfaction. Scent learning was maximal when anise-scented nectar was brought into the nest by demonstrator foragers, suggesting that previously unidentified cues provided by successful foragers play an important role in nestmates learning new floral odours.
How scent and nectar influence floral antagonists and mutualists
Kessler, Danny; Kallenbach, Mario; Diezel, Celia; Rothe, Eva; Murdock, Mark; Baldwin, Ian T
2015-01-01
Many plants attract and reward pollinators with floral scents and nectar, respectively, but these traits can also incur fitness costs as they also attract herbivores. This dilemma, common to most flowering plants, could be solved by not producing nectar and/or scent, thereby cheating pollinators. Both nectar and scent are highly variable in native populations of coyote tobacco, Nicotiana attenuata, with some producing no nectar at all, uncorrelated with the tobacco's main floral attractant, benzylacetone. By silencing benzylacetone biosynthesis and nectar production in all combinations by RNAi, we experimentally uncouple these floral rewards/attractrants and measure their costs/benefits in the plant's native habitat and experimental tents. Both scent and nectar increase outcrossing rates for three, separately tested, pollinators and both traits increase oviposition by a hawkmoth herbivore, with nectar being more influential than scent. These results underscore that it makes little sense to study floral traits as if they only mediated pollination services. DOI: http://dx.doi.org/10.7554/eLife.07641.001 PMID:26132861
Circadian Rhythms in Floral Scent Emission.
Fenske, Myles P; Imaizumi, Takato
2016-01-01
To successfully recruit pollinators, plants often release attractive floral scents at specific times of day to coincide with pollinator foraging. This timing of scent emission is thought to be evolutionarily beneficial to maximize resource efficiency while attracting only useful pollinators. Temporal regulation of scent emission is tied to the activity of the specific metabolic pathways responsible for scent production. Although floral volatile profiling in various plants indicated a contribution by the circadian clock, the mechanisms by which the circadian clock regulates timing of floral scent emission remained elusive. Recent studies using two species in the Solanaceae family provided initial insight into molecular clock regulation of scent emission timing. In Petunia hybrida, the floral volatile benzenoid/phenylpropanoid (FVBP) pathway is the major metabolic pathway that produces floral volatiles. Three MYB-type transcription factors, ODORANT 1 (ODO1), EMISSION OF BENZENOIDS I (EOBI), and EOBII, all of which show diurnal rhythms in mRNA expression, act as positive regulators for several enzyme genes in the FVBP pathway. Recently, in P. hybrida and Nicotiana attenuata, homologs of the Arabidopsis clock gene LATE ELONGATED HYPOCOTYL (LHY) have been shown to have a similar role in the circadian clock in these plants, and to also determine the timing of scent emission. In addition, in P. hybrida, PhLHY directly represses ODO1 and several enzyme genes in the FVBP pathway during the morning as an important negative regulator of scent emission. These findings facilitate our understanding of the relationship between a molecular timekeeper and the timing of scent emission, which may influence reproductive success.
Kessler, Danny; Diezel, Celia; Clark, David G; Colquhoun, Thomas A; Baldwin, Ian T
2013-03-01
Flowers recruit floral visitors for pollination services by emitting fragrances. These scent signals can be intercepted by antagonists such as florivores to locate host plants. Hence, as a consequence of interactions with both mutualists and antagonists, floral bouquets likely consist of both attractive and defensive components. While the attractive functions of floral bouquets have been studied, their defensive function has not, and field-based evidence for the deterrence of floral-scent constituents is lacking. In field and glasshouse experiments with five lines of transgenic Petunia x hybrida plants specifically silenced in their ability to release particular components of their floral volatile bouquet, we demonstrate that the emission of single floral-scent compounds can dramatically decrease damage from generalist florivores. While some compounds are used in host location, others prevent florivory. We conclude that the complex blends that comprise floral scents are likely sculpted by the selective pressures of both pollinators and herbivores. © 2012 Blackwell Publishing Ltd/CNRS.
Friberg, Magne; Schwind, Christopher; Roark, Lindsey C; Raguso, Robert A; Thompson, John N
2014-09-01
Chemical defenses, repellents, and attractants are important shapers of species interactions. Chemical attractants could contribute to the divergence of coevolving plant-insect interactions, if pollinators are especially responsive to signals from the local plant species. We experimentally investigated patterns of daily floral scent production in three Lithophragma species (Saxifragaceae) that are geographically isolated and tested how scent divergence affects attraction of their major pollinator-the floral parasitic moth Greya politella (Prodoxidae). These moths oviposit through the corolla while simultaneously pollinating the flower with pollen adhering to the abdomen. The complex and species-specific floral scent profiles were emitted in higher amounts during the day, when these day-flying moths are active. There was minimal divergence found in petal color, which is another potential floral attractant. Female moths responded most strongly to scent from their local host species in olfactometer bioassays, and were more likely to oviposit in, and thereby pollinate, their local host species in no-choice trials. The results suggest that floral scent is an important attractant in this interaction. Local specialization in the pollinator response to a highly specific plant chemistry, thus, has the potential to contribute importantly to patterns of interaction specificity among coevolving plants and highly specialized pollinators.
Hsiao, Yu-Yun; Tsai, Wen-Chieh; Kuoh, Chang-Sheng; Huang, Tian-Hsiang; Wang, Hei-Chia; Wu, Tian-Shung; Leu, Yann-Lii; Chen, Wen-Huei; Chen, Hong-Hwa
2006-07-13
Floral scent is one of the important strategies for ensuring fertilization and for determining seed or fruit set. Research on plant scents has hampered mainly by the invisibility of this character, its dynamic nature, and complex mixtures of components that are present in very small quantities. Most progress in scent research, as in other areas of plant biology, has come from the use of molecular and biochemical techniques. Although volatile components have been identified in several orchid species, the biosynthetic pathways of orchid flower fragrance are far from understood. We investigated how flower fragrance was generated in certain Phalaenopsis orchids by determining the chemical components of the floral scent, identifying floral expressed-sequence-tags (ESTs), and deducing the pathways of floral scent biosynthesis in Phalaneopsis bellina by bioinformatics analysis. The main chemical components in the P. bellina flower were shown by gas chromatography-mass spectrometry to be monoterpenoids, benzenoids and phenylpropanoids. The set of floral scent producing enzymes in the biosynthetic pathway from glyceraldehyde-3-phosphate (G3P) to geraniol and linalool were recognized through data mining of the P. bellina floral EST database (dbEST). Transcripts preferentially expressed in P. bellina were distinguished by comparing the scent floral dbEST to that of a scentless species, P. equestris, and included those encoding lipoxygenase, epimerase, diacylglycerol kinase and geranyl diphosphate synthase. In addition, EST filtering results showed that transcripts encoding signal transduction and Myb transcription factors and methyltransferase, in addition to those for scent biosynthesis, were detected by in silico hybridization of the P. bellina unigene database against those of the scentless species, rice and Arabidopsis. Altogether, we pinpointed 66% of the biosynthetic steps from G3P to geraniol, linalool and their derivatives. This systems biology program combined chemical analysis, genomics and bioinformatics to elucidate the scent biosynthesis pathway and identify the relevant genes. It integrates the forward and reverse genetic approaches to knowledge discovery by which researchers can study non-model plants.
Sas, Claudia; Müller, Frank; Kappel, Christian; Kent, Tyler V; Wright, Stephen I; Hilker, Monika; Lenhard, Michael
2016-12-19
The enormous species richness of flowering plants is at least partly due to floral diversification driven by interactions between plants and their animal pollinators [1, 2]. Specific pollinator attraction relies on visual and olfactory floral cues [3-5]; floral scent can not only attract pollinators but also attract or repel herbivorous insects [6-8]. However, despite its central role for plant-animal interactions, the genetic control of floral scent production and its evolutionary modification remain incompletely understood [9-13]. Benzenoids are an important class of floral scent compounds that are generated from phenylalanine via several enzymatic pathways [14-17]. Here we address the genetic basis of the loss of floral scent associated with the transition from outbreeding to selfing in the genus Capsella. While the outbreeding C. grandiflora emits benzaldehyde as a major constituent of its floral scent, this has been lost in the selfing C. rubella. We identify the Capsella CNL1 gene encoding cinnamate:CoA ligase as responsible for this variation. Population genetic analysis indicates that CNL1 has been inactivated twice independently in C. rubella via different novel mutations to its coding sequence. Together with a recent study in Petunia [18], this identifies cinnamate:CoA ligase as an evolutionary hotspot for mutations causing the loss of benzenoid scent compounds in association with a shift in the reproductive strategy of Capsella from pollination by insects to self-fertilization. Copyright © 2016 Elsevier Ltd. All rights reserved.
Floral and vegetative cues in oil-secreting and non-oil-secreting Lysimachia species
Schäffler, I.; Balao, F.; Dötterl, S.
2012-01-01
Background and Aims Unrelated plants pollinated by the same group or guild of animals typically evolve similar floral cues due to pollinator-mediated selection. Related plant species, however, may possess similar cues either as a result of pollinator-mediated selection or as a result of sharing a common ancestor that possessed the same cues or traits. In this study, visual and olfactory floral cues in Lysimachia species exhibiting different pollination strategies were analysed and compared, and the importance of pollinators and phylogeny on the evolution of these floral cues was determined. For comparison, cues of vegetative material were examined where pollinator selection would not be expected. Methods Floral and vegetative scents and colours in floral oil- and non-floral oil-secreting Lysimachia species were studied by chemical and spectrophotometric analyses, respectively, compared between oil- and non-oil-secreting species, and analysed by phylogenetically controlled methods. Key Results Vegetative and floral scent was species specific, and variability in floral but not vegetative scent was lower in oil compared with non-oil species. Overall, oil species did not differ in their floral or vegetative scent from non-oil species. However, a correlation was found between oil secretion and six floral scent constituents specific to oil species, whereas the presence of four other floral compounds can be explained by phylogeny. Four of the five analysed oil species had bee-green flowers and the pattern of occurrence of this colour correlated with oil secretion. Non-oil species had different floral colours. The colour of leaves was similar among all species studied. Conclusions Evidence was found for correlated evolution between secretion of floral oils and floral but not vegetative visual and olfactory cues. The cues correlating with oil secretion were probably selected by Macropis bees, the specialized pollinators of oil-secreting Lysimachia species, and may have evolved in order to attract these bees. PMID:22634256
Floral scent emitted by white and coloured morphs in orchids.
Dormont, L; Delle-Vedove, R; Bessière, J-M; Schatz, B
2014-04-01
Polymorphism of floral signals, such as colour and odour, is widespread in flowering plants and often considered to be adaptive, reflecting various pollinator preferences for particular floral traits. Several authors have recently hypothesized that particular associations exist between floral colour and scent, which would result from shared biochemistry between these two floral traits. In this study, we compared the chemical composition of floral volatiles emitted by white- and purple-flowered morphs of three different orchid species, including two food-deceptive species (Orchis mascula and Orchis simia) and a food-rewarding species (Anacamptis coriophora fragrans). We found clear interspecific differences in floral odours. As expected from their pollination strategy, the two deceptive orchids showed high inter-individual variation of floral volatiles, whereas the food-rewarding A. c. fragrans showed low variation of floral scent. Floral volatiles did not differ overall between white- and coloured-flowered morphs in O. mascula and A. c. fragrans, while O. simia exhibited different volatile profiles between the two colour morphs. However, a detailed analysis restricted to benzenoid compounds (which are associated with the production of floral anthocyanin pigments) showed that white inflorescences emitted more volatiles of the shikimic pathway than coloured ones, both for O. mascula and O. simia. These results are consistent with the current hypothesis that shared biochemistry creates pleiotropic links between floral colour and scent. Whether intraspecific variation of floral signals actually affects pollinator attraction and influences the reproductive success of these orchids remains to be determined. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cna'ani, Alon; Spitzer-Rimon, Ben; Ravid, Jasmin; Farhi, Moran; Masci, Tania; Aravena-Calvo, Javiera; Ovadis, Marianna; Vainstein, Alexander
2015-11-01
The mechanism underlying the emission of phenylpropanoid volatiles is poorly understood. Here, we reveal the involvement of PH4, a petunia MYB-R2R3 transcription factor previously studied for its role in vacuolar acidification, in floral volatile emission. We used the virus-induced gene silencing (VIGS) approach to knock down PH4 expression in petunia, measured volatile emission and internal pool sizes by GC-MS, and analyzed transcript abundances of scent-related phenylpropanoid genes in flowers. Silencing of PH4 resulted in a marked decrease in floral phenylpropanoid volatile emission, with a concurrent increase in internal pool levels. Expression of scent-related phenylpropanoid genes was not affected. To identify putative scent-related targets of PH4, we silenced PH5, a tonoplast-localized H(+) -ATPase that maintains vacuolar pH homeostasis. Suppression of PH5 did not yield the reduced-emission phenotype, suggesting that PH4 does not operate in the context of floral scent through regulation of vacuolar pH. We conclude that PH4 is a key floral regulator that integrates volatile production and emission processes and interconnects two essential floral traits - color and scent. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Hsiao, Yu-Yun; Tsai, Wen-Chieh; Kuoh, Chang-Sheng; Huang, Tian-Hsiang; Wang, Hei-Chia; Wu, Tian-Shung; Leu, Yann-Lii; Chen, Wen-Huei; Chen, Hong-Hwa
2006-01-01
Background Floral scent is one of the important strategies for ensuring fertilization and for determining seed or fruit set. Research on plant scents has hampered mainly by the invisibility of this character, its dynamic nature, and complex mixtures of components that are present in very small quantities. Most progress in scent research, as in other areas of plant biology, has come from the use of molecular and biochemical techniques. Although volatile components have been identified in several orchid species, the biosynthetic pathways of orchid flower fragrance are far from understood. We investigated how flower fragrance was generated in certain Phalaenopsis orchids by determining the chemical components of the floral scent, identifying floral expressed-sequence-tags (ESTs), and deducing the pathways of floral scent biosynthesis in Phalaneopsis bellina by bioinformatics analysis. Results The main chemical components in the P. bellina flower were shown by gas chromatography-mass spectrometry to be monoterpenoids, benzenoids and phenylpropanoids. The set of floral scent producing enzymes in the biosynthetic pathway from glyceraldehyde-3-phosphate (G3P) to geraniol and linalool were recognized through data mining of the P. bellina floral EST database (dbEST). Transcripts preferentially expressed in P. bellina were distinguished by comparing the scent floral dbEST to that of a scentless species, P. equestris, and included those encoding lipoxygenase, epimerase, diacylglycerol kinase and geranyl diphosphate synthase. In addition, EST filtering results showed that transcripts encoding signal transduction and Myb transcription factors and methyltransferase, in addition to those for scent biosynthesis, were detected by in silico hybridization of the P. bellina unigene database against those of the scentless species, rice and Arabidopsis. Altogether, we pinpointed 66% of the biosynthetic steps from G3P to geraniol, linalool and their derivatives. Conclusion This systems biology program combined chemical analysis, genomics and bioinformatics to elucidate the scent biosynthesis pathway and identify the relevant genes. It integrates the forward and reverse genetic approaches to knowledge discovery by which researchers can study non-model plants. PMID:16836766
Yan, Juan; Wang, Gang; Sui, Yi; Wang, Menglin; Zhang, Ling
2016-04-13
Floral colour change is visual signals for pollinators to avoid old flowers and increase pollination efficiency. Quisqualis indica flowers change colour from white to pink to red may be associated with a shift from moth to butterfly pollination. To test this hypothesis, we investigated Q. indica populations in Southwest China. Flowers secreted nectar continuously from the evening of anthesis until the following morning, then decreased gradually with floral colour change. The scent compounds in the three floral colour stages were similar; however, the scent composition was different, and the scent emission rate decreased from the white to red stage. Dichogamy in Q. indica prevents self-pollination and interference of male and female functions. Controlled pollinations demonstrated that this species is self-incompatible and needs pollinators for seed production. Different pollinators were attracted in each floral colour stage; mainly moths at night and bees and butterflies during the day. Observations of open-pollinated inflorescences showed that white flowers had a higher fruit set than pink or red flowers, indicating the high contribution of moths to reproductive success. We concluded that the nectar and scent secretion are related to floral colour change in Q. indica, in order to attract different pollinators and promote reproductive fitness.
Flowers help bees cope with uncertainty: signal detection and the function of floral complexity
Leonard, Anne S.; Dornhaus, Anna; Papaj, Daniel R.
2011-01-01
Plants often attract pollinators with floral displays composed of visual, olfactory, tactile and gustatory stimuli. Since pollinators' responses to each of these stimuli are usually studied independently, the question of why plants produce multi-component floral displays remains relatively unexplored. Here we used signal detection theory to test the hypothesis that complex displays reduce a pollinator's uncertainty about the floral signal. Specifically, we asked whether one component of the floral display, scent, improved a bee's certainty about the value of another component, color hue. We first trained two groups of bumble bees (Bombus impatiens Cresson) to discriminate between rewarding and unrewarding artificial flowers of slightly different hues in the presence vs absence of scent. In a test phase, we presented these bees with a gradient of floral hues and assessed their ability to identify the hue rewarded during training. We interpreted the extent to which bees' preferences were biased away from the unrewarding hue (‘peak shift’) as an indicator of uncertainty in color discrimination. Our data show that the presence of an olfactory signal reduces uncertainty regarding color: not only was color learning facilitated on scented flowers but also bees showed a lower amount of peak shift in the presence of scent. We explore potential mechanisms by which scent might reduce uncertainty about color, and discuss the broader significance of our results for our understanding of signal evolution. PMID:21147975
Huang, Daihong; Zhang, Zhenguo; Chen, Guoping; Li, Houhun; Shi, Fuchen
2015-03-01
The floral scent plays the important key role in maintaining the obligate pollination mutualism between Glochidion plants and Epicephala moths. In the study, the dynamic headspace adsorption technique was employed to collect the floral scent emitted by Glochidion puberum, gas chromatography coupled with mass spectrometry (GC-MS) was used for the detection and identification of volatile chemical components in headspace samples of flowers from G. puberum. The peak area normalization was used to determine the relative contents of each odour component. The results showed that 45 compounds mainly consisting of monoterpenes and sesquiterpenes were isolated from the floral scent produced by G. puberum. Especially, both linalool (38.06%) and β-elemene (23.84%) were considered as the major scent components of G. puberum. It was speculated that linalool and β-elemene may be the two potential compounds attracting female Epicephala moths. The study provided the basic data for further electroantennographic detection and bioassays to identify the compounds having the actual physiological activity to female Epicephala moths.
Cna'ani, Alon; Mühlemann, Joelle K; Ravid, Jasmin; Masci, Tania; Klempien, Antje; Nguyen, Thuong T H; Dudareva, Natalia; Pichersky, Eran; Vainstein, Alexander
2015-07-01
Increasing temperatures due to changing global climate are interfering with plant-pollinator mutualism, an interaction facilitated mainly by floral colour and scent. Gas chromatography-mass spectroscopy analyses revealed that increasing ambient temperature leads to a decrease in phenylpropanoid-based floral scent production in two Petunia × hybrida varieties, P720 and Blue Spark, acclimated at 22/16 or 28/22 °C (day/night). This decrease could be attributed to down-regulation of scent-related structural gene expression from both phenylpropanoid and shikimate pathways, and up-regulation of a negative regulator of scent production, emission of benzenoids V (EOBV). To test whether the negative effect of increased temperature on scent production can be reduced in flowers with enhanced metabolic flow in the phenylpropanoid pathway, we analysed floral volatile production by transgenic 'Blue Spark' plants overexpressing CaMV 35S-driven Arabidopsis thaliana production of anthocyanin pigments 1 (PAP1) under elevated versus standard temperature conditions. Flowers of 35S:PAP1 transgenic plants produced the same or even higher levels of volatiles when exposed to a long-term high-temperature regime. This phenotype was also evident when analysing relevant gene expression as inferred from sequencing the transcriptome of 35S:PAP1 transgenic flowers under the two temperature regimes. Thus, up-regulation of transcription might negate the adverse effects of temperature on scent production. © 2014 John Wiley & Sons Ltd.
Hawkmoths evaluate scenting flowers with the tip of their proboscis
Haverkamp, Alexander; Yon, Felipe; Keesey, Ian W; Mißbach, Christine; Koenig, Christopher; Hansson, Bill S; Baldwin, Ian T
2016-01-01
Pollination by insects is essential to many ecosystems. Previously, we have shown that floral scent is important to mediate pollen transfer between plants (Kessler et al., 2015). Yet, the mechanisms by which pollinators evaluate volatiles of single flowers remained unclear. Here, Nicotiana attenuata plants, in which floral volatiles have been genetically silenced and its hawkmoth pollinator, Manduca sexta, were used in semi-natural tent and wind-tunnel assays to explore the function of floral scent. We found that floral scent functions to increase the fitness of individual flowers not only by increasing detectability but also by enhancing the pollinator's foraging efforts. Combining proboscis choice tests with neurophysiological, anatomical and molecular analyses we show that this effect is governed by newly discovered olfactory neurons on the tip of the moth's proboscis. With the tip of their tongue, pollinators assess the advertisement of individual flowers, an ability essential for maintaining this important ecosystem service. DOI: http://dx.doi.org/10.7554/eLife.15039.001 PMID:27146894
Salzmann, Charlotte C.; Nardella, Antonio M.; Cozzolino, Salvatore; Schiestl, Florian P.
2007-01-01
Background and Aims A comparative investigation was made of floral scent variation in the closely related, food-rewarding Anacamptis coriophora and the food-deceptive Anacamptis morio in order to identify patterns of variability of odour compounds in the two species and their role in pollinator attraction/avoidance learning. Methods Scent was collected from plants in natural populations and samples were analysed via quantitative gas chromatography and mass spectrometry. Combined gas chromatography and electroantennographic detection was used to identify compounds that are detected by the pollinators. Experimental reduction of scent variability was performed in the field with plots of A. morio plants supplemented with a uniform amount of anisaldehyde. Key Results Both orchid species emitted complex odour bouquets. In A. coriophora the two main benzenoid compounds, hydroquinone dimethyl ether (1,4-dimethoxybenzene) and anisaldehyde (methoxybenzaldehyde), triggered electrophysiological responses in olfactory neurons of honey-bee and bumble-bee workers. The scent of A. morio, however, was too weak to elicit any electrophysiological responses. The overall variation in scent was significantly lower in the rewarding A. coriophora than in the deceptive A. morio, suggesting pollinator avoidance-learning selecting for high variation in the deceptive species. A. morio flowers supplemented with non-variable scent in plot experiments, however, did not show significantly reduced pollination success. Conclusions Whereas in the rewarding A. coriophora stabilizing selection imposed by floral constancy of the pollinators may reduce scent variability, in the deceptive A. morio the emitted scent seems to be too weak to be detected by pollinators and thus its high variability may result from relaxed selection on this floral trait. PMID:17684024
Brodie, Bekka S.; Smith, Maia A.; Lawrence, Jason; Gries, Gerhard
2015-01-01
The common green bottle fly Lucilia sericata (Meigen) and other filth flies frequently visit pollen-rich composite flowers such as the Oxeye daisy, Leucanthemum vulgare Lam. In laboratory experiments with L. sericata, we investigated the effect of generic floral scent and color cues, and of Oxeye daisy-specific cues, on foraging decisions by recently eclosed flies. We also tested the effect of a floral pollen diet with 0–35% moisture content on the ability of females to mature their oocytes. Our data indicate that (1) young flies in the presence of generic floral scent respond more strongly to a uniformly yellow cue than to any other uniform color cue (green, white, black, blue, red) except for ultraviolet (UV); (2) the floral scent of Oxeye daisies enhances the attractiveness of a yellow cue; and (3) moisture-rich pollen provides nutrients that facilitate ovary maturation of flies. With evidence that L. sericata exploits floral cues during foraging, and that pollen can be an alternate protein source to animal feces and carrion, Pollen apparently plays a major role in the foraging ecology of L. sericata and possibly other filth flies. These flies, in turn, may play a significant role as pollinators, as supported by a recently published study. PMID:26717311
Brodie, Bekka S; Smith, Maia A; Lawrence, Jason; Gries, Gerhard
2015-01-01
The common green bottle fly Lucilia sericata (Meigen) and other filth flies frequently visit pollen-rich composite flowers such as the Oxeye daisy, Leucanthemum vulgare Lam. In laboratory experiments with L. sericata, we investigated the effect of generic floral scent and color cues, and of Oxeye daisy-specific cues, on foraging decisions by recently eclosed flies. We also tested the effect of a floral pollen diet with 0-35% moisture content on the ability of females to mature their oocytes. Our data indicate that (1) young flies in the presence of generic floral scent respond more strongly to a uniformly yellow cue than to any other uniform color cue (green, white, black, blue, red) except for ultraviolet (UV); (2) the floral scent of Oxeye daisies enhances the attractiveness of a yellow cue; and (3) moisture-rich pollen provides nutrients that facilitate ovary maturation of flies. With evidence that L. sericata exploits floral cues during foraging, and that pollen can be an alternate protein source to animal feces and carrion, Pollen apparently plays a major role in the foraging ecology of L. sericata and possibly other filth flies. These flies, in turn, may play a significant role as pollinators, as supported by a recently published study.
Floral scent compounds of Amazonian Annonaceae species pollinated by small beetles and thrips.
Jürgens, A; Webber, A C; Gottsberger, G
2000-11-01
Chemical analysis (GC-MS) yielded a total of 58 volatile compounds in the floral scents of six species of Annonaceae distributed in four genera (Xylopia, Anaxagorea, Duguetia, and Rollinia), Xylopia aromatica is pollinated principally by Thysanoptera and secondarily by small beetles (Nitidulidae and Staphylinidae), whereas the five other species were pollinated by Nitidulidae and Staphylinidae only. Although the six Annonaceae species attract a similar array of pollinator groups, the major constituents of their floral scents are of different biochemical origin. The fragrances of flowers of Anaxagorea brevipes and Anaxagorea dolichocarpa were dominated by esters of aliphatic acids (ethyl 2-methylbutanoate, ethyl 3-methylbutanoate), which were not detected in the other species. Monoterpenes (limonene, p-cymene, alpha-pinene) were the main scent compounds of Duguetia asterotricha, and naphthalene prevailed in the scent of Rollinia insignis flowers. The odors of X. aromatica and Xylopia benthamii flowers were dominated by high amounts of benzenoids (methylbenzoate, 2-phenylethyl alcohol).
More than euglossines: the diverse pollinators and floral scents of Zygopetalinae orchids.
Nunes, Carlos E P; Wolowski, Marina; Pansarin, Emerson Ricardo; Gerlach, Günter; Aximoff, Izar; Vereecken, Nicolas J; Salvador, Marcos José; Sazima, Marlies
2017-10-13
Floral volatile organic compounds (VOCs) play important roles in plant-pollinator interactions. We investigated the reproductive ecology and floral VOCs of Zygopetalinae orchids to understand the relationship between floral scents and pollinators. We performed focal observations, phenological censuses and breeding system experiments in eight species in southeast Brazil. Floral scents were collected and analysed using SPME/GC-MS. We performed multivariate analyses to group species according to affinities of their VOCs and define compounds associated to each plant. Dichaea cogniauxiana was pollinated by weevils which use their developing ovules, while D. pendula was pollinated by the same weevils and perfume-collecting male euglossine bees. The other species were deceit-pollinated by bees. Zygopetalum crinitum was pollinated by carpenter bees, while W. warreana, Z. mackayi and Z. maxillare were bumblebee-pollinated. The latter was also pollinated by Centris confusa. Breeding system varied widely with no association to any pollinator group. Most VOCs are common to other floral scents. Zygopetalum crinitum presented an exclusive blend of VOCs, mainly composed of benzenoids. The scents of Pabstia jugosa, Promenaea xanthina and the Zygopetalum spp. were similar. The bumblebee-pollinated species have flowering periods partially overlapped, thus neither phenology nor pollinators constitute hybridization barriers among these species. Euglossines are not the only pollinators of Zygopetalinae. Different VOCs, size and lifespan of flowers are associated with distinct pollinators. A distinctive VOC bouquet may determine specialisation in carpenter bees or male euglossines within bee-pollinated flowers. Finally, visitation of deceit-pollinated flowers by perfume-collecting euglossines allows us to hypothesise how pollination by this group of bees had evolved.
Pollinator choice in Petunia depends on two major genetic Loci for floral scent production.
Klahre, Ulrich; Gurba, Alexandre; Hermann, Katrin; Saxenhofer, Moritz; Bossolini, Eligio; Guerin, Patrick M; Kuhlemeier, Cris
2011-05-10
Differences in floral traits, such as petal color, scent, morphology, or nectar quality and quantity, can lead to specific interactions with pollinators and may thereby cause reproductive isolation. Petunia provides an attractive model system to study the role of floral characters in reproductive isolation and speciation. The night-active hawkmoth pollinator Manduca sexta relies on olfactory cues provided by Petunia axillaris. In contrast, Petunia exserta, which displays a typical hummingbird pollination syndrome, is devoid of scent. The two species can easily be crossed in the laboratory, which makes it possible to study the genetic basis of the evolution of scent production and the importance of scent for pollinator behavior. In an F2 population derived from an interspecific cross between P. axillaris and P. exserta, we identified two quantitative trait loci (QTL) that define the difference between the two species' ability to produce benzenoid volatiles. One of these loci was identified as the MYB transcription factor ODORANT1. Reciprocal introgressions of scent QTL were used for choice experiments under controlled conditions. These experiments demonstrated that the hawkmoth M. sexta prefers scented plants and that scent determines choice at a short distance. When exposed to conflicting cues of color versus scent, the insects display no preference, indicating that color and scent are equivalent cues. Our results show that scent is an important flower trait that defines plant-pollinator interactions at the level of individual plants. The genetic basis underlying such a major phenotypic difference appears to be relatively simple and may enable rapid loss or gain of scent through hybridization. Copyright © 2011 Elsevier Ltd. All rights reserved.
Spitzer-Rimon, Ben; Marhevka, Elena; Barkai, Oren; Marton, Ira; Edelbaum, Orit; Masci, Tania; Prathapani, Naveen-Kumar; Shklarman, Elena; Ovadis, Marianna; Vainstein, Alexander
2010-01-01
Floral scent, which is determined by a complex mixture of low molecular weight volatile molecules, plays a major role in the plant's life cycle. Phenylpropanoid volatiles are the main determinants of floral scent in petunia (Petunia hybrida). A screen using virus-induced gene silencing for regulators of scent production in petunia flowers yielded a novel R2R3-MYB–like regulatory factor of phenylpropanoid volatile biosynthesis, EMISSION OF BENZENOIDS II (EOBII). This factor was localized to the nucleus and its expression was found to be flower specific and temporally and spatially associated with scent production/emission. Suppression of EOBII expression led to significant reduction in the levels of volatiles accumulating in and emitted by flowers, such as benzaldehyde, phenylethyl alcohol, benzylbenzoate, and isoeugenol. Up/downregulation of EOBII affected transcript levels of several biosynthetic floral scent-related genes encoding enzymes from the phenylpropanoid pathway that are directly involved in the production of these volatiles and enzymes from the shikimate pathway that determine substrate availability. Due to its coordinated wide-ranging effect on the production of floral volatiles, and its lack of effect on anthocyanin production, a central regulatory role is proposed for EOBII in the biosynthesis of phenylpropanoid volatiles. PMID:20543029
Hoe, Y C; Gibernau, M; Maia, A C D; Wong, S Y
2016-07-01
In this study, the flowering mechanisms and pollination strategies of seven species of the highly diverse genus Homalomena (Araceae) were investigated in native populations of West Sarawak, Borneo. The floral scent compositions were also recorded for six of these species. The selected taxa belong to three out of four complexes of the section Cyrtocladon (Hanneae, Giamensis and Borneensis). The species belonging to the Hanneae complex exhibited longer anthesis (53-62 h) than those of the Giamensis and Borneensis complexes (ca. 30 h). Species belonging to the Hanneae complex underwent two floral scent emission events in consecutive days, during the pistillate and staminate phases of anthesis. In species belonging to the Giamensis and Borneensis complexes, floral scent emission was only evident to the human nose during the pistillate phase. A total of 33 volatile organic compounds (VOCs) were detected in floral scent analyses of species belonging to the Hanneae complex, whereas 26 VOCs were found in samples of those belonging to the Giamensis complex. The floral scent blends contained uncommon compounds in high concentration, which could ensure pollinator discrimination. Our observations indicate that scarab beetles (Parastasia gestroi and P. nigripennis; Scarabaeidae, Rutelinae) are the pollinators of the investigated species of Homalomena, with Chaloenus schawalleri (Chrysomelidae, Galeuricinae) acting as a secondary pollinator. The pollinators utilise the inflorescence for food, mating opportunities and safe mating arena as rewards. Flower-breeding flies (Colocasiomyia nigricauda and C. aff. heterodonta; Diptera, Drosophilidae) and terrestrial hydrophilid beetles (Cycreon sp.; Coleoptera, Hydrophilidae) were also frequently recovered from inflorescences belonging to all studied species (except H. velutipedunculata), but they probably do not act as efficient pollinators. Future studies should investigate the post-mating isolating barriers among syntopically co-flowering Homalomena sharing the same visiting insects. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Cordeiro, G D; Pinheiro, M; Dötterl, S; Alves-Dos-Santos, I
2017-03-01
Bees are the most important diurnal pollinators of angiosperms. In several groups of bees a nocturnal/crepuscular habit developed, yet little is known about their role in pollination and whether some plants are adapted specifically to these bees. We used a multidisciplinary approach to investigate the reproductive biology and to understand the role of nocturnal/crepuscular bees in pollination of Campomanesia phaea (Myrtaceae), popularly named cambuci. We studied the floral biology and breeding system of C. phaea. We collected the floral visitors and tested the pollinators' effectiveness. We also determined the floral scents released at night and during daytime, and studied behavioural responses of crepuscular/nocturnal bees towards these scents. The flowers of cambuci were self-incompatible and had pollen as the only resource for flower visitors. Anthesis lasted around 14 h, beginning at 04:30 h at night. The flowers released 14 volatile compounds, mainly aliphatic and aromatic compounds. We collected 52 species of floral visitors, mainly bees. Nocturnal and crepuscular bees (four species) were among the most frequent species and the only effective pollinators. In field bioassays performed at night, nocturnal/crepuscular bees were attracted by a synthetic scent blend consisting of the six most abundant compounds. This study describes the first scent-mediated pollination system between a plant and its nocturnal bee pollinators. Further, C. phaea has several floral traits that do not allow classification into other nocturnal pollination syndromes (e.g. pollinator attraction already before sunrise, with pollen as the only reward), instead it is a plant specifically adapted to nocturnal bees. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Floral scent in natural hybrids of Ipomopsis (Polemoniaceae) and their parental species
Bischoff, Mascha; Jürgens, Andreas; Campbell, Diane R.
2014-01-01
Background and Aims Floral traits, such as floral volatiles, can contribute to pre-zygotic reproductive isolation by promoting species-specific pollinator foraging. When hybrid zones form, floral traits could also influence post-zygotic isolation. This study examined floral volatiles in parental species and natural hybrids in order to explore potential scent mediation of pre-zygotic and post-zygotic isolation. Methods Floral bouquets were analysed for the sister species Ipomopsis aggregata and I. tenuituba and their natural hybrids at two contact sites differing in both hybridization rate and temporal foraging pattern of hawkmoth pollinators. Floral volatiles were quantified in diurnal and nocturnal scent samples using gas chromatography–mass spectrometry. Key Results The bouquets of parental species and hybrids showed qualitative overlap. All flowers emitted similar sets of monoterpenoid, sesquiterpenoid, aliphatic and benzenoid compounds, but separated into groups defined by multivariate analysis of quantitative emissions. The parental species differed most strikingly in the nitrogenous compound indole, which was found almost exclusively in nocturnal bouquets of I. tenuituba. Natural hybrid bouquets were highly variable, and showed emission rates of several compounds that appeared transgressive. However, indole emission rates were intermediate in the hybrids compared with rates in the parents. Volatile bouquets at the contact site with lower hybridization did not show greater species specificity in overall scent emission, but I. tenuituba presented a stronger indole signal during peak hawkmoth activity at that site. Conclusions The two species of Ipomopsis differed in patterns of floral bouquets, with indole emitted in nocturnal I. tenuituba, but not in I. aggregata. Natural hybrid bouquets were not consistently intermediate between the parents, although hybrids were intermediate in indole emission. The indole signal could potentially serve as a hawkmoth attractant that mediates reproductive isolation both before and after hybrid formation. PMID:24355404
Milet-Pinheiro, Paulo; Ayasse, Manfred; Dötterl, Stefan
2015-01-01
Oligolectic bees collect pollen from a few plants within a genus or family to rear their offspring, and are known to rely on visual and olfactory floral cues to recognize host plants. However, studies investigating whether oligolectic bees recognize distinct host plants by using shared floral cues are scarce. In the present study, we investigated in a comparative approach the visual and olfactory floral cues of six Campanula species, of which only Campanula lactiflora has never been reported as a pollen source of the oligolectic bee Ch. rapunculi. We hypothesized that the flowers of Campanula species visited by Ch. rapunculi share visual (i.e. color) and/or olfactory cues (scents) that give them a host-specific signature. To test this hypothesis, floral color and scent were studied by spectrophotometric and chemical analyses, respectively. Additionally, we performed bioassays within a flight cage to test the innate color preference of Ch. rapunculi. Our results show that Campanula flowers reflect the light predominantly in the UV-blue/blue bee-color space and that Ch. rapunculi displays a strong innate preference for these two colors. Furthermore, we recorded spiroacetals in the floral scent of all Campanula species, but Ca. lactiflora. Spiroacetals, rarely found as floral scent constituents but quite common among Campanula species, were recently shown to play a key function for host-flower recognition by Ch. rapunculi. We conclude that Campanula species share some visual and olfactory floral cues, and that neurological adaptations (i.e. vision and olfaction) of Ch. rapunculi innately drive their foraging flights toward host flowers. The significance of our findings for the evolution of pollen diet breadth in bees is discussed. PMID:26060994
A pollinators' eye view of a shelter mimicry system.
Vereecken, Nicolas J; Dorchin, Achik; Dafni, Amots; Hötling, Susann; Schulz, Stefan; Watts, Stella
2013-06-01
'Human-red' flowers are traditionally considered to be rather unpopular with bees, yet some allogamous species in the section Oncocyclus (genus Iris, Iridaceae) have evolved specialized interactions with their pollinators, a narrow taxonomic range of male solitary bees. The dark-red, tubular flowers of these irises are nectarless but provide protective shelters (i.e. a non-nutritive form of reward) primarily to male solitary bees (Apidae, Eucerini) that pollinate the flowers while looking for a shelter. An earlier study on orchids suggested that species pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of different n-alkenes (unsaturated cuticular hydrocarbons). Whether or not this also applies to the Oncocyclus irises and whether pollinators are attracted by specific colours or scents of these flowers is unknown. Using Iris atropurpurea, recording of pollinator preferences for shelters with different spatial parameters was combined with analyses of floral colours (by spectrophotometry) and scents (by gas chromatography-mass spectrometry) to test the hypotheses that (a) pollinators significantly prefer floral tunnels facing the rising sun (floral heat-reward hypothesis), and that (b) flowers pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of unsaturated cuticular hydrocarbons (n-alkenes) in their floral scent (preadaptation to sexual-deception hypothesis). Male bees do not significantly prefer shelters facing the rising sun or with the presence of high absolute/relative amounts and numbers of n-alkenes in the floral scent. The results suggest that the flowers of I. atropurpurea probably evolved by pollinator-mediated selection acting primarily on floral colours to mimic large achromatic ('bee-black') protective shelters used preferentially by male solitary bees, and that pollinator visits are presumably not the result of an odour-based sexual stimulation or motivated by an increased morning floral heat reward in tunnels facing the rising sun.
Floral scent and species divergence in a pair of sexually deceptive orchids.
Gervasi, Daniel D L; Selosse, Marc-Andre; Sauve, Mathieu; Francke, Wittko; Vereecken, Nicolas J; Cozzolino, Salvatore; Schiestl, Florian P
2017-08-01
Speciation is typically accompanied by the formation of isolation barriers between lineages. Commonly, reproductive barriers are separated into pre- and post-zygotic mechanisms that can evolve with different speed. In this study, we measured the strength of different reproductive barriers in two closely related, sympatric orchids of the Ophrys insectifera group, namely Ophrys insectifera and Ophrys aymoninii to infer possible mechanisms of speciation. We quantified pre- and post-pollination barriers through observation of pollen flow, by performing artificial inter- and intraspecific crosses and analyzing scent bouquets. Additionally, we investigated differences in mycorrhizal fungi as a potential extrinsic factor of post-zygotic isolation. Our results show that floral isolation mediated by the attraction of different pollinators acts apparently as the sole reproductive barrier between the two orchid species, with later-acting intrinsic barriers seemingly absent. Also, the two orchids share most of their fungal mycorrhizal partners in sympatry, suggesting little or no importance of mycorrhizal symbiosis in reproductive isolation. Key traits underlying floral isolation were two alkenes and wax ester, present predominantly in the floral scent of O. aymoninii . These compounds, when applied to flowers of O. insectifera , triggered attraction and a copulation attempt of the bee pollinator of O. aymoninii and thus led to the (partial) breakdown of floral isolation. Based on our results, we suggest that adaptation to different pollinators, mediated by floral scent, underlies species isolation in this plant group. Pollinator switches may be promoted by low pollination success of individuals in dense patches of plants, an assumption that we also confirmed in our study.
Gonzalez-Terrazas, Tania P.; Martel, Carlos; Milet-Pinheiro, Paulo; Ayasse, Manfred; Kalko, Elisabeth K. V.; Tschapka, Marco
2016-01-01
Nectar-feeding bats depend mainly on floral nectar to fulfil their energetic requirements. Chiropterophilous flowers generally present strong floral scents and provide conspicuous acoustic echoes to attract bats. While floral scents are assumed to attract bats over long distances, acoustic properties of flower structures may provide detailed information, thus supporting the localization of a flower at close ranges. So far, to our knowledge, there is no study trying to understand the relative importance as well as the combination of these generally coupled cues for detection (presence) and localization (exact position) of open flowers in nature. For a better comprehension of the significance of olfaction and echolocation in the foraging behaviour of nectar-feeding bats, we conducted two-choice experiments with Leptonycteris yerbabuenae. We tested the bats' behaviour in three experimental scenarios with different cues: (i) olfaction versus echolocation, (ii) echolocation versus echolocation and olfaction, and (iii) olfaction versus echolocation and olfaction. We used the floral scent of the bat-pollinated cactus Pachycereus pringlei as olfactory cue and an acrylic paraboloid as acoustic cue. Additionally, we recorded the echolocation behaviour of the bats and analysed the floral scent of P. pringlei. When decoupled cues were offered, bats displayed no preference in choice for any of the two cues. However, bats reacted first to and chose more often the coupled cues. All bats echolocated continuously and broadcast a long terminal group before a successful visit. The floral scent bouquet of P. pringlei is composed of 20 compounds, some of which (e.g. methyl benzoate) were already reported from chiropterophilous plants. Our investigation demonstrates for the first time to our knowledge, that nectar-feeding bats integrate over different sensory modes for detection and precise localization of open flowers. The combined information from olfactory and acoustic cues allows bats to forage more efficiently. PMID:27853595
Lau, Jenny Y. Y.; Pang, Chun-Chiu; Ramsden, Lawrence; Saunders, Richard M. K.
2016-01-01
The floral phenology, pollination ecology and breeding systems of two sympatric early-divergent angiosperms, Goniothalamus tapisoides and G. suaveolens (Annonaceae) are compared. The flowers are protogynous and morphologically similar, with anthesis over 23–25 h. Both species are predominantly xenogamous and pollinated by small beetles: G. tapisoides mainly by Curculionidae and G. suaveolens mainly by Nitidulidae. Coevolution and reproductive resource partitioning, reducing interspecific pollen transfer, is achieved by temporal isolation, due to contrasting floral phenologies; and ethological isolation, due to contrasting floral scents that contain attractants specific to the two beetle families. Analysis of floral scents revealed three volatiles (3-methylbutyl acetate, ethyl hexanoate and 2-phenylethanol) that are known to be nitidulid attractants in the floral scent of G. suaveolens, but absent from that of G. tapisoides. An effective pollinator trapping mechanism is demonstrated for both species, representing the first such report for the family. Trapping is achieved by the compression of the outer petals against the apertures between the inner petals. This trapping mechanism is likely to be a key evolutionary innovation for Goniothalamus, increasing pollination efficiency by increasing pollen loading on beetles during the staminate phase, promoting effective interfloral pollinator movements, and increasing seed-set by enabling rapid turn-over of flowers. PMID:27767040
Lau, Jenny Y Y; Pang, Chun-Chiu; Ramsden, Lawrence; Saunders, Richard M K
2016-10-21
The floral phenology, pollination ecology and breeding systems of two sympatric early-divergent angiosperms, Goniothalamus tapisoides and G. suaveolens (Annonaceae) are compared. The flowers are protogynous and morphologically similar, with anthesis over 23-25 h. Both species are predominantly xenogamous and pollinated by small beetles: G. tapisoides mainly by Curculionidae and G. suaveolens mainly by Nitidulidae. Coevolution and reproductive resource partitioning, reducing interspecific pollen transfer, is achieved by temporal isolation, due to contrasting floral phenologies; and ethological isolation, due to contrasting floral scents that contain attractants specific to the two beetle families. Analysis of floral scents revealed three volatiles (3-methylbutyl acetate, ethyl hexanoate and 2-phenylethanol) that are known to be nitidulid attractants in the floral scent of G. suaveolens, but absent from that of G. tapisoides. An effective pollinator trapping mechanism is demonstrated for both species, representing the first such report for the family. Trapping is achieved by the compression of the outer petals against the apertures between the inner petals. This trapping mechanism is likely to be a key evolutionary innovation for Goniothalamus, increasing pollination efficiency by increasing pollen loading on beetles during the staminate phase, promoting effective interfloral pollinator movements, and increasing seed-set by enabling rapid turn-over of flowers.
A pollinator shift explains floral divergence in an orchid species complex in South Africa
Peter, Craig I.; Johnson, Steven D.
2014-01-01
Background and Aims Floral diversification driven by shifts between pollinators has been one of the key explanations for the radiation of angiosperms. According to the Grant–Stebbins model of pollinator-driven speciation, these shifts result in morphologically distinct ‘ecotypes’ which may eventually become recognizable as species. The current circumscription of the food-deceptive southern African orchid Eulophia parviflora encompasses a highly variable monophyletic species complex. In this study, two forms were identified within this complex that differ in distribution, floral morphology, scent chemistry and phenology, and a test was made of whether these differences represent adaptations for different pollinators. Methods and Results Multivariate analysis of floral and vegetative traits revealed that there are at least two discrete morphological forms in the species complex. Field observations revealed that each form is pollinated by a different insect species, and thus represent distinct ecotypes. The early-flowering coastal form which has long spurs and floral scent dominated by sesquiterpene compounds is pollinated exclusively by the long-tongued bee Amegilla fallax (Apidae, Anthophorinae), while the late-flowering inland form with short spurs and floral scent dominated by benzenoid compounds is pollinated exclusively by the beetle Cyrtothyrea marginalis (Cetoniinae; Scarabaeidae). Choice experiments in a Y-maze olfactometer showed that beetles are preferentially attracted to the scent of the short-spurred form. A spur-shortening experiment showed that long spurs are required for effective pollination of the bee-pollinated form. Although it was initially thought likely that divergence occurred across a geographical pollinator gradient, plants of the long-spurred form were effectively pollinated when transplanted to an inland locality outside the natural coastal range of this form. Thus, the underlying geographical basis for the evolution of ecotypes in the E. parviflora complex remains uncertain, although early flowering in the long-spurred form to exploit the emergence of naïve bees may restrict this form to coastal areas where there is no frost that would damage flower buds. Later flowering of the short-spurred form coincides closely with the emergence of the pollinating beetles following winter frosts. Conclusions This study identifies a shift between bee and beetle pollination as the main driver of floral divergence in an orchid species complex. Floral scent and spur length appear to be key traits in mediating this evolutionary transition. PMID:24107684
A pollinator shift explains floral divergence in an orchid species complex in South Africa.
Peter, Craig I; Johnson, Steven D
2014-01-01
Floral diversification driven by shifts between pollinators has been one of the key explanations for the radiation of angiosperms. According to the Grant-Stebbins model of pollinator-driven speciation, these shifts result in morphologically distinct 'ecotypes' which may eventually become recognizable as species. The current circumscription of the food-deceptive southern African orchid Eulophia parviflora encompasses a highly variable monophyletic species complex. In this study, two forms were identified within this complex that differ in distribution, floral morphology, scent chemistry and phenology, and a test was made of whether these differences represent adaptations for different pollinators. Multivariate analysis of floral and vegetative traits revealed that there are at least two discrete morphological forms in the species complex. Field observations revealed that each form is pollinated by a different insect species, and thus represent distinct ecotypes. The early-flowering coastal form which has long spurs and floral scent dominated by sesquiterpene compounds is pollinated exclusively by the long-tongued bee Amegilla fallax (Apidae, Anthophorinae), while the late-flowering inland form with short spurs and floral scent dominated by benzenoid compounds is pollinated exclusively by the beetle Cyrtothyrea marginalis (Cetoniinae; Scarabaeidae). Choice experiments in a Y-maze olfactometer showed that beetles are preferentially attracted to the scent of the short-spurred form. A spur-shortening experiment showed that long spurs are required for effective pollination of the bee-pollinated form. Although it was initially thought likely that divergence occurred across a geographical pollinator gradient, plants of the long-spurred form were effectively pollinated when transplanted to an inland locality outside the natural coastal range of this form. Thus, the underlying geographical basis for the evolution of ecotypes in the E. parviflora complex remains uncertain, although early flowering in the long-spurred form to exploit the emergence of naïve bees may restrict this form to coastal areas where there is no frost that would damage flower buds. Later flowering of the short-spurred form coincides closely with the emergence of the pollinating beetles following winter frosts. This study identifies a shift between bee and beetle pollination as the main driver of floral divergence in an orchid species complex. Floral scent and spur length appear to be key traits in mediating this evolutionary transition.
A comparative analysis of characteristic floral scent compounds in Prunus mume and related species.
Hao, Ruijie; Du, Dongliang; Wang, Tao; Yang, Weiru; Wang, Jia; Zhang, Qixiang
2014-01-01
In order to investigate the difference in their characteristic floral scents between Prunus mume Siebold & Zucc. and the related Prunus species, their headspace volatiles and endogenous extraction were analyzed by gas chromatography-mass spectrometry. The efficiency of substrate utilization of the flowers was studied by incubating them with different alcohol substrates. Our results indicated that benzyl acetate is a dominant compound influencing the characteristic floral scent of P. mume. An alcohol substrate concentration of 4 mmol L(-1) and a reaction time of 2 h were constituted the reaction condition for catalysis of exogenous alcohol substrates by the flowers. Under these conditions, Prunus sibirica exhibited the highest utilization efficiency for benzyl alcohol substrate while the utilization efficiency of Prunus persica was the lowest. Comparative analysis of several alcohol substrates indicated that the flowers of the tested species had selective specificity for benzyl alcohol substrates.
A pollinators' eye view of a shelter mimicry system
Vereecken, Nicolas J.; Dorchin, Achik; Dafni, Amots; Hötling, Susann; Schulz, Stefan; Watts, Stella
2013-01-01
Background and Aims ‘Human-red’ flowers are traditionally considered to be rather unpopular with bees, yet some allogamous species in the section Oncocyclus (genus Iris, Iridaceae) have evolved specialized interactions with their pollinators, a narrow taxonomic range of male solitary bees. The dark-red, tubular flowers of these irises are nectarless but provide protective shelters (i.e. a non-nutritive form of reward) primarily to male solitary bees (Apidae, Eucerini) that pollinate the flowers while looking for a shelter. An earlier study on orchids suggested that species pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of different n-alkenes (unsaturated cuticular hydrocarbons). Whether or not this also applies to the Oncocyclus irises and whether pollinators are attracted by specific colours or scents of these flowers is unknown. Methods Using Iris atropurpurea, recording of pollinator preferences for shelters with different spatial parameters was combined with analyses of floral colours (by spectrophotometry) and scents (by gas chromatography–mass spectrometry) to test the hypotheses that (a) pollinators significantly prefer floral tunnels facing the rising sun (floral heat-reward hypothesis), and that (b) flowers pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of unsaturated cuticular hydrocarbons (n-alkenes) in their floral scent (preadaptation to sexual-deception hypothesis). Key Results Male bees do not significantly prefer shelters facing the rising sun or with the presence of high absolute/relative amounts and numbers of n-alkenes in the floral scent. Conclusions The results suggest that the flowers of I. atropurpurea probably evolved by pollinator-mediated selection acting primarily on floral colours to mimic large achromatic (‘bee-black’) protective shelters used preferentially by male solitary bees, and that pollinator visits are presumably not the result of an odour-based sexual stimulation or motivated by an increased morning floral heat reward in tunnels facing the rising sun. PMID:23599249
Colour-scent associations in a tropical orchid: three colours but two odours.
Delle-Vedove, Roxane; Juillet, Nicolas; Bessière, Jean-Marie; Grison, Claude; Barthes, Nicolas; Pailler, Thierry; Dormont, Laurent; Schatz, Bertrand
2011-06-01
Colour and scent are the major pollinator attractants to flowers, and their production may be linked by shared biosynthetic pathways. Species with polymorphic floral traits are particularly relevant to study the joint evolution of floral traits. We used in this study the tropical orchid Calanthe sylvatica from Réunion Island. Three distinct colour varieties are observed, presenting lilac, white or purple flowers, and named respectively C. sylvaticavar.lilacina (hereafter referred as var. lilacina), C. sylvaticavar. alba (var. alba) and C. sylvatica var. purpurea (var. purpurea). We investigated the composition of the floral scent produced by these colour varieties using the non-invasive SPME technique in the wild. Scent emissions are dominated by aromatic compounds. Nevertheless, the presence of the terpenoid (E)-4,8-dimethylnona-1,3,7-triène (DMNT) is diagnostic of var. purpurea, with the volatile organic compounds (VOC) produced by some individuals containing up to 60% of DMNT. We evidence specific colour-scent associations in C. sylvatica, with two distinct scent profiles in the three colour varieties: the lilacina-like profile containing no or very little DMNT (<2%) and the purpurea-like profile containing DMNT (>2%). Calanthe sylvatica var. alba individuals group with one or the other scent profile independently of their population of origin. We suggest that white-flowered individuals have evolved at least twice, once from var. lilacina and at least once from var. purpurea after the colonisation of la Réunion. White-flowered individuals may have been favoured by the particular pollinator fauna characterising the island. These flowering varieties of C. sylvatica, which display three colours but two scents profiles prove that colour is not always a good indicator of odour and that colour-scent associations may be complex, depending on pollination ecology of the populations concerned. Copyright © 2011 Elsevier Ltd. All rights reserved.
PhERF6, interacting with EOBI, negatively regulates fragrance biosynthesis in petunia flowers.
Liu, Fei; Xiao, Zhina; Yang, Li; Chen, Qian; Shao, Lu; Liu, Juanxu; Yu, Yixun
2017-09-01
In petunia, the production of volatile benzenoids/phenylpropanoids determines floral aroma, highly regulated by development, rhythm and ethylene. Previous studies identified several R2R3-type MYB trans-factors as positive regulators of scent biosynthesis in petunia flowers. Ethylene response factors (ERFs) have been shown to take part in the signal transduction of hormones, and regulation of metabolism and development processes in various plant species. Using virus-induced gene silencing technology, a negative regulator of volatile benzenoid biosynthesis, PhERF6, was identified by a screen for regulators of the expression of genes related to scent production. PhERF6 expression was temporally and spatially connected with scent production and was upregulated by exogenous ethylene. Up-/downregulation of the mRNA level of PhERF6 affected the expression of ODO1 and several floral scent-related genes. PhERF6 silencing led to a significant increase in the concentrations of volatiles emitted by flowers. Yeast two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays indicated that PhERF6 interacted with the N-terminus of EOBI, which includes two DNA binding domains. Our results show that PhERF6 negatively regulates volatile production in petunia flowers by competing for the binding of the c-myb domains of the EOBI protein with the promoters of genes related to floral scent. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
On the roles of colour and scent in a specialized floral mimicry system
Vereecken, Nicolas J.; Schiestl, Florian P.
2009-01-01
Background and Aims Sexually deceptive orchids achieve cross-pollination by mimicking the mating signals of female insects, generally hymenopterans. This pollination mechanism is often highly specific as it is based primarily on the mimicry of mating signals, especially the female sex pheromones of the targeted pollinator. Like many deceptive orchids, the Mediterranean species Ophrys arachnitiformis shows high levels of floral trait variation, especially in the colour of the perianth, which is either green or white/pinkinsh within populations. The adaptive significance of perianth colour polymorphism and its influence on pollinator visitation rates in sexually deceptive orchids remain obscure. Methods The relative importance of floral scent versus perianth colour in pollinator attraction in this orchid pollinator mimicry system was evaluated by performing floral scent analyses by gas chromatography-mass spectrometry (GC-MS) and behavioural bioassays with the pollinators under natural conditions were performed. Key Results The relative and absolute amounts of behaviourally active compounds are identical in the two colour morphs of O. arachnitiformis. Neither presence/absence nor the colour of the perianth (green versus white) influence attractiveness of the flowers to Colletes cunicularius males, the main pollinator of O. arachnitiformis. Conclusion Chemical signals alone can mediate the interactions in highly specialized mimicry systems. Floral colour polymorphism in O. arachnitiformis is not subjected to selection imposed by C. cunicularius males, and an interplay between different non-adaptive processes may be responsible for the maintenance of floral colour polymorphism both within and among populations. PMID:19692390
On the roles of colour and scent in a specialized floral mimicry system.
Vereecken, Nicolas J; Schiestl, Florian P
2009-11-01
Sexually deceptive orchids achieve cross-pollination by mimicking the mating signals of female insects, generally hymenopterans. This pollination mechanism is often highly specific as it is based primarily on the mimicry of mating signals, especially the female sex pheromones of the targeted pollinator. Like many deceptive orchids, the Mediterranean species Ophrys arachnitiformis shows high levels of floral trait variation, especially in the colour of the perianth, which is either green or white/pinkinsh within populations. The adaptive significance of perianth colour polymorphism and its influence on pollinator visitation rates in sexually deceptive orchids remain obscure. The relative importance of floral scent versus perianth colour in pollinator attraction in this orchid pollinator mimicry system was evaluated by performing floral scent analyses by gas chromatography-mass spectrometry (GC-MS) and behavioural bioassays with the pollinators under natural conditions were performed. The relative and absolute amounts of behaviourally active compounds are identical in the two colour morphs of O. arachnitiformis. Neither presence/absence nor the colour of the perianth (green versus white) influence attractiveness of the flowers to Colletes cunicularius males, the main pollinator of O. arachnitiformis. Chemical signals alone can mediate the interactions in highly specialized mimicry systems. Floral colour polymorphism in O. arachnitiformis is not subjected to selection imposed by C. cunicularius males, and an interplay between different non-adaptive processes may be responsible for the maintenance of floral colour polymorphism both within and among populations.
Responses to olfactory signals reflect network structure of flower-visitor interactions.
Junker, Robert R; Höcherl, Nicole; Blüthgen, Nico
2010-07-01
1. Network analyses provide insights into the diversity and complexity of ecological interactions and have motivated conclusions about community stability and co-evolution. However, biological traits and mechanisms such as chemical signals regulating the interactions between individual species--the microstructure of a network--are poorly understood. 2. We linked the responses of receivers (flower visitors) towards signals (flower scent) to the structure of a highly diverse natural flower-insect network. For each interaction, we define link temperature--a newly developed metric--as the deviation of the observed interaction strength from neutrality, assuming that animals randomly interact with flowers. 3. Link temperature was positively correlated to the specific visitors' responses to floral scents, experimentally examined in a mobile olfactometer. Thus, communication between plants and consumers via phytochemical signals reflects a significant part of the microstructure in a complex network. Negative as well as positive responses towards floral scents contributed to these results, where individual experience was important apart from innate behaviour. 4. Our results indicate that: (1) biological mechanisms have a profound impact on the microstructure of complex networks that underlies the outcome of aggregate statistics, and (2) floral scents act as a filter, promoting the visitation of some flower visitors, but also inhibiting the visitation of others.
Specific attraction of fig-pollinating wasps: role of volatile compounds released by tropical figs.
Grison-Pigé, Laure; Bessière, Jean-Marie; Hossaert-McKey, Martine
2002-02-01
Floral scents often act as pollinator attractants. In the case of obligate and specific plant-pollinator relationships, the role of floral signals may be crucial in allowing the encounter of the partners. About 750 Ficus species (Moraceae) are involved in such interactions, each with a distinct species of pollinating wasp (Chalcidoidea, Agaonidae). Several species have been shown to release volatile compounds, but their role in pollinator attraction has rarely been simultaneously tested. We investigated the floral scents of four tropical fig species and combined chemical analysis with biological tests of stimulation of insects. Pollinators of three species were stimulated by the odor of their associated fig species and generally not by the odor of another species. The fourth actually comprised two distinct varieties. The main compound was often a different one in each species. Floral blends of different species always shared compounds, but ratios of these compounds varied among species.
Li, Yuying; Ma, Hong; Wan, Youming; Li, Taiqiang; Liu, Xiuxian; Sun, Zhenghai; Li, Zhenghong
2016-04-22
Luculia plants are famed ornamental plants with sweetly fragrant flowers, of which L. pinceana Hooker, found primarily in Yunnan Province, China, has the widest distribution. Solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) was employed to identify the volatile organic compounds (VOCs) emitted from different flower development stages of L. pinceana for the evaluation of floral volatile polymorphism. Peak areas were normalized as percentages and used to determine the relative amounts of the volatiles. The results showed that a total of 39 compounds were identified at four different stages of L. pinceana flower development, including 26 at the bud stage, 26 at the initial-flowering stage, 32 at the full-flowering stage, and 32 at the end-flowering stage. The most abundant compound was paeonol (51%-83%) followed by (E,E)-α-farnesene, cyclosativene, and δ-cadinene. All these volatile compounds create the unique fragrance of L. pinceana flower. Floral scent emission offered tendency of ascending first and descending in succession, meeting its peak level at the initial-flowering stage. The richest diversity of floral volatile was detected at the third and later periods of flower development. Principal component analysis (PCA) indicated that the composition and its relative content of floral scent differed throughout the whole flower development. The result has important implications for future floral fragrance breeding of Luculia. L. pinceana would be adequate for a beneficial houseplant and has a promising prospect for development as essential oil besides for a fragrant ornamental owing to the main compounds of floral scent with many medicinal properties.
Dieringer, Gregg; Leticia Cabrera, R; Mottaleb, Mohammad
2014-02-01
Floral thermogenesis is an unusual floral trait with a well-documented physiological process, and yet, there is limited understanding of how this trait influences plant reproduction. The current study was undertaken to gain a better understanding of how floral thermogenesis in Nelumbo lutea impacts pollinator attraction and consequent plant reproduction. We conducted field studies on floral thermogenesis and thermoregulation, flower sexual development, floral visitation patterns, breeding system, pollen transfer dynamics, and floral scent production. The most abundant visitors to the thermoregulatory flowers included the Phoridae (Diptera), Chrysomelidae (Coleoptera), and Hymenoptera. Chrysomelid beetles, particularly Diabrotica, were frequent visitors to both first-day female- and second-day bisexual-phase flowers, while phorid flies were most common in bisexual-phase flowers. Pollen transfer experiments indicated that Diabrotica was equally effective in depositing pollen on stigmas, as were the less frequent, but pollen-loaded halictid bees. Flowers received a taxonomically wide assemblage of floral visitors and appear adapted to attract beetles, primarily Chrysomelidae and medium-sized bees. This study is the first to provide strong support that beetles can comprise the dominant portion of floral visitors and are as effective in pollen transfer as bees. Thermogenesis aids in dispersing the main floral scent component-1,4-dimethoxybenzene-attracting both chrysomelids and bees, while thermoregulation causes chrysomelid beetles to actively seek out new flowers for evening residence. This search behavior likely results in chrysomelids affecting cross-pollination.
Maia, Artur Campos Dália; Gibernau, Marc; Dötterl, Stefan; Navarro, Daniela Maria do Amaral Ferraz; Seifert, Karlheinz; Müller, Tobias; Schlindwein, Clemens
2013-09-01
The strongly fragrant thermogenic inflorescences of Taccarum ulei (Araceae) are highly attractive to night-active scarab beetles of Cyclocephala celata and C. cearae (Scarabaeidae, Cyclocephalini), which are effective pollinators of plants in the wild in northeastern Brazil. GC-MS analysis of headspace floral scent samples of T. ulei established that two constituents, (S)-2-hydroxy-5-methyl-3-hexanone (an aliphatic acyloin rarely detected in flowers) and dihydro-β-ionone (an irregular terpene) accounted for over 96% of the total scent discharge. Behavioral tests (in both field and cages) showed that male and female C. celata and C. cearae were attracted to traps baited with a synthetic mixture of both compounds; however, they were also responsive to (S)-2-hydroxy-5-methyl-3-hexanone alone, which thus functions as a specific attractive cue. These findings support other recent research in suggesting that angiosperms pollinated by cyclocephaline scarab beetles release floral odors of limited complexity in terms of numbers of compounds, but often dominated by unusual compounds that may ensure attraction of specific pollinator species. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fenske, Myles P.; Hewett Hazelton, Kristen D.; Hempton, Andrew K.; Shim, Jae Sung; Yamamoto, Breanne M.; Riffell, Jeffrey A.; Imaizumi, Takato
2015-01-01
Flowers present a complex display of signals to attract pollinators, including the emission of floral volatiles. Volatile emission is highly regulated, and many species restrict emissions to specific times of the day. This rhythmic emission of scent is regulated by the circadian clock; however, the mechanisms have remained unknown. In Petunia hybrida, volatile emissions are dominated by products of the floral volatile benzenoid/phenylpropanoid (FVBP) metabolic pathway. Here we demonstrate that the circadian clock gene P. hybrida LATE ELONGATED HYPOCOTYL (LHY; PhLHY) regulates the daily expression patterns of the FVBP pathway genes and floral volatile production. PhLHY expression peaks in the morning, antiphasic to the expression of P. hybrida GIGANTEA (PhGI), the master scent regulator ODORANT1 (ODO1), and many other evening-expressed FVBP genes. Overexpression phenotypes of PhLHY in Arabidopsis caused an arrhythmic clock phenotype, which resembles those of LHY overexpressors. In Petunia, constitutive expression of PhLHY depressed the expression levels of PhGI, ODO1, evening-expressed FVBP pathway genes, and FVBP emission in flowers. Additionally, in the Petunia lines in which PhLHY expression was reduced, the timing of peak expression of PhGI, ODO1, and the FVBP pathway genes advanced to the morning. Moreover, PhLHY protein binds to cis-regulatory elements called evening elements that exist in promoters of ODO1 and other FVBP genes. Thus, our results imply that PhLHY directly sets the timing of floral volatile emission by restricting the expression of ODO1 and other FVBP genes to the evening in Petunia. PMID:26124104
Fenske, Myles P; Hewett Hazelton, Kristen D; Hempton, Andrew K; Shim, Jae Sung; Yamamoto, Breanne M; Riffell, Jeffrey A; Imaizumi, Takato
2015-08-04
Flowers present a complex display of signals to attract pollinators, including the emission of floral volatiles. Volatile emission is highly regulated, and many species restrict emissions to specific times of the day. This rhythmic emission of scent is regulated by the circadian clock; however, the mechanisms have remained unknown. In Petunia hybrida, volatile emissions are dominated by products of the floral volatile benzenoid/phenylpropanoid (FVBP) metabolic pathway. Here we demonstrate that the circadian clock gene P. hybrida LATE ELONGATED HYPOCOTYL (LHY; PhLHY) regulates the daily expression patterns of the FVBP pathway genes and floral volatile production. PhLHY expression peaks in the morning, antiphasic to the expression of P. hybrida GIGANTEA (PhGI), the master scent regulator ODORANT1 (ODO1), and many other evening-expressed FVBP genes. Overexpression phenotypes of PhLHY in Arabidopsis caused an arrhythmic clock phenotype, which resembles those of LHY overexpressors. In Petunia, constitutive expression of PhLHY depressed the expression levels of PhGI, ODO1, evening-expressed FVBP pathway genes, and FVBP emission in flowers. Additionally, in the Petunia lines in which PhLHY expression was reduced, the timing of peak expression of PhGI, ODO1, and the FVBP pathway genes advanced to the morning. Moreover, PhLHY protein binds to cis-regulatory elements called evening elements that exist in promoters of ODO1 and other FVBP genes. Thus, our results imply that PhLHY directly sets the timing of floral volatile emission by restricting the expression of ODO1 and other FVBP genes to the evening in Petunia.
Esposito, Fabiana; Vereecken, Nicolas J; Gammella, Maddalena; Rinaldi, Rosita; Laurent, Pascal; Tyteca, Daniel
2018-01-01
Platanthera bifolia and P. chlorantha are terrestrial and rewarding orchids with a wide Eurasian distribution. Although genetically closely related, they exhibit significant morphological, phenological and ecological differences that maintain reproductive isolation between the species. However, where both species co-occur, individuals with intermediate phenotypic traits, often considered as hybrids, are frequently observed. Here, we combined neutral genetic markers (AFLPs), morphometrics and floral scent analysis (GC-MS) to investigate two mixed Platanthera populations where morphologically intermediate plants were found. Self-pollination experiments revealed a low level of autogamy and artificial crossings combined with assessments of fruit set and seed viability, showed compatibility between the two species. The results of the genetic analyses showed that morphologically intermediate plants had similar genetic patterns as the P. bifolia group. These results are corroborated also by floral scent analyses, which confirmed a strong similarity in floral scent composition between intermediate morphotypes and P. bifolia . Therefore, this study provided a much more detailed picture of the genetic structure of a sympatric zone between two closely allied species and supports the hypothesis that intermediate morphotypes in sympatry could reflect an adaptive evolution in response to local pollinator-mediated selection.
Maia, Artur Campos Dália; Dötterl, Stefan; Kaiser, Roman; Silberbauer-Gottsberger, Ilse; Teichert, Holger; Gibernau, Marc; do Amaral Ferraz Navarro, Daniela Maria; Schlindwein, Clemens; Gottsberger, Gerhard
2012-09-01
Cyclocephaline scarabs are specialised scent-driven pollinators, implicated with the reproductive success of several Neotropical plant taxa. Night-blooming flowers pollinated by these beetles are thermogenic and release intense fragrances synchronized to pollinator activity. However, data on floral scent composition within such mutualistic interactions are scarce, and the identity of behaviorally active compounds involved is largely unknown. We performed GC-MS analyses of floral scents of four species of Annona (magnoliids, Annonaceae) and Caladium bicolor (monocots, Araceae), and demonstrated the chemical basis for the attraction of their effective pollinators. 4-Methyl-5-vinylthiazole, a nitrogen and sulphur-containing heterocyclic compound previously unreported in flowers, was found as a prominent constituent in all studied species. Field biotests confirmed that it is highly attractive to both male and female beetles of three species of the genus Cyclocephala, pollinators of the studied plant taxa. The origin of 4-methyl-5-vinylthiazole in plants might be associated with the metabolism of thiamine (vitamin B1), and we hypothesize that the presence of this compound in unrelated lineages of angiosperms is either linked to selective expression of a plesiomorphic biosynthetic pathway or to parallel evolution.
The evolution of floral scent and insect chemical communication.
Schiestl, Florian P
2010-05-01
Plants have evolved a range of strategies to manipulate the behaviour of their insect partners. One powerful strategy is to produce signals that already have a role in the animals' own communication systems. To investigate to what extent the evolution of floral scents is correlated with chemical communication in insects, I analyse the occurrence, commonness, and evolutionary patterns of the 71 most common 'floral' volatile organic compounds (VOCs) in 96 plant families and 87 insect families. I found an overlap of 87% in VOCs produced by plants and insects. 'Floral' monoterpenes showed strong positive correlation in commonness between plants (both gymnosperms and angiosperms) and herbivores, whereas the commonness of 'floral' aromatics was positively correlated between angiosperms and both pollinators and herbivores. According to a multivariate regression analysis the commonness of 'floral' aromatics was best explained by their commonness in pollinators, whereas monoterpenes were best explained by herbivores. Among pollinator orders, aromatics were significantly more common in Lepidoptera than in Hymenoptera, whereas monoterpenes showed no difference among the two orders. Collectively, these patterns suggest that plants and insects converge in overall patterns of volatile production, both for attraction and defence. Monoterpenes seem to have evolved primarily for defence under selection by herbivores, whereas aromatics evolved signalling functions in angiosperms, primarily for pollinator attraction.
The importance of pollen chemistry in evolutionary host shifts of bees
Vanderplanck, Maryse; Vereecken, Nicolas J.; Grumiau, Laurent; Esposito, Fabiana; Lognay, Georges; Wattiez, Ruddy; Michez, Denis
2017-01-01
Although bee-plant associations are generally maintained through speciation processes, host shifts have occurred during evolution. Understanding shifts between both phylogenetically and morphologically unrelated plants (i.e., host-saltation) is especially important since they could have been key processes in the origin and radiation of bees. Probably far from being a random process, such host-saltation might be driven by hidden constraints associated with plant traits. We selected two clades of oligolectic bees (i.e., Colletes succinctus group and Melitta leporina group) foraging on co-flowering but unrelated host-plants to test this hypothesis. We analyzed floral scent, floral color and chemical composition of pollen from host and non-host plants of these two clades. We did not find evidence for host-plant evolution in the Melitta leporina group driven by one of the assayed floral traits. On the contrary, hosts of the C. succinctus group display similar primary nutritive content of pollen (i.e., amino acids and sterols) but not similar floral scent or color, suggesting that shared pollen chemistry probably mediates saltation in this clade. Our study revealed that constraints shaping floral associations are diverse and clearly depend on species life-history traits, but evidence suggests that pollen chemistry may act as a major floral filter and guide evolutionary host-shifts. PMID:28216663
Enzymatic production and emission of floral scent volatiles in Jasminum sambac.
Bera, Paramita; Mukherjee, Chiranjit; Mitra, Adinpunya
2017-03-01
Floral scent composed of low molecular weight volatile organic compounds. The sweet fragrance of any evening blooming flower is dominated by benzenoid and terpenoid volatile compounds. Floral scent of Jasminum sambac (Oleaceae) includes three major benzenoid esters - benzylacetate, methylbenzoate, and methylsalicylate and three major terpene compounds viz. (E)-β-ocimene, linalool and α-farnesene. We analyzed concentrations and emission rates of benzenoids and terpenoids during the developmental stages of J. sambac flower. In addition to spatial emission from different floral parts, we studied the time-course mRNA accumulations of phenylalanine ammonia-lyase (PAL) and the two representative genes of terpenoid pathway, namely 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) and terpene synthase (TPS). Further, in vitro activities of several enzymes of phenylpropanoid/benzenoid pathway viz., PAL and acetyl-coenzyme A: benzylalcohol acetyltransferase (BEAT), S-adenosyl-l-methionine: benzoic acid carboxyl methyl transferase (BAMT) and S-adenosyl-l-methionine: salicylic acid carboxyl methyltransferase (SAMT) were studied. All the above enzyme activities along with the in vitro activities of DXR and TPS were found to follow a certain rhythm as observed in the emission of different benzenoid and terpenoid compounds. Linalool emission peaked after petal opening and coincided with maximal expression of JsTPS gene as evidenced from RT-PCR analyses (semi-quantitative). The maximum transcript accumulation of this gene was observed in flower petals, indicating that the petals of J. sambac flower play an important role as a major contributor of volatile precursors. The transcripts accumulation of JsDXR and JsTPS in different developmental stages and in different floral part showed that emissions of terpenoid volatiles in J. sambac flower are partially regulated at transcription levels. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Hobbhahn, N; Steenhuisen, S-L; Olsen, T; Midgley, J J; Johnson, S D
2017-09-01
Unrelated plants adapted to particular pollinator types tend to exhibit convergent evolution in floral traits. However, inferences about likely pollinators from 'pollination syndromes' can be problematic due to trait overlap among some syndromes and unusual floral architecture in some lineages. An example is the rare South African parasitic plant Mystropetalon thomii (Mystropetalaceae), which has highly unusual brush-like inflorescences that exhibit features of both bird and rodent pollination syndromes. We used camera traps to record flower visitors, quantified floral spectral reflectance and nectar and scent production, experimentally determined self-compatibility and breeding system, and studied pollen dispersal using fluorescent dyes. The dark-red inflorescences are usually monoecious, with female flowers maturing before male flowers, but some inflorescences are purely female (gynoecious). Inflorescences were visited intensively by several rodent species that carried large pollen loads, while visits by birds were extremely rare. Rodents prefer male- over female-phase inflorescences, likely because of the male flowers' higher nectar and scent production. The floral scent contains several compounds known to attract rodents. Despite the obvious pollen transfer by rodents, we found that flowers on both monoecious and gynoecious inflorescences readily set seed in the absence of rodents and even when all flower visitors are excluded. Our findings suggest that seed production occurs at least partially through apomixis and that M. thomii is not ecologically dependent on its rodent pollinators. Our study adds another species and family to the growing list of rodent-pollinated plants, thus contributing to our understanding of the floral traits associated with pollination by non-flying mammals. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
Integrative taxonomy of the fly orchid group: insights from chemical ecology
NASA Astrophysics Data System (ADS)
Joffard, Nina; Buatois, Bruno; Schatz, Bertrand
2016-10-01
Several authors have recently stressed the need to develop an integrative approach in taxonomy, but studies applying such an approach to Mediterranean orchids are scarce. In sexually deceptive orchids from the taxonomically difficult genus Ophrys, pollination is specific and performed by male insects attracted to the flowers by sex pheromone-mimicking floral scents. Floral compounds are therefore of primary importance for reproductive isolation and species delimitations in this genus. In the fly orchid group, molecular, morphological, and ecological characters have been extensively studied, but a comprehensive survey of floral scents is still lacking. In the present study, the blends of floral compounds of its three members, Ophrys insectifera, Ophrys aymoninii, and Ophrys subinsectifera, were extracted and analyzed by gas chromatography-mass spectrometry. A total of 107 compounds were found, with a majority of saturated and unsaturated hydrocarbons. Significant differentiation, both qualitative and quantitative, was found among the three taxa. This result, pooled with those from the literature, forms a comprehensive and congruent dataset that allows us to elucidate the taxonomic rank of the three members of the fly orchid group.
Onda, Yoshihiko; Mochida, Keiichi; Yoshida, Takuhiro; Sakurai, Tetsuya; Seymour, Roger S.; Umekawa, Yui; Pirintsos, Stergios Arg; Shinozaki, Kazuo; Ito, Kikukatsu
2015-01-01
Several plant species can generate enough heat to increase their internal floral temperature above ambient temperature. Among thermogenic plants, Arum concinnatum shows the highest respiration activity during thermogenesis. However, an overall understanding of the genes related to plant thermogenesis has not yet been achieved. In this study, we performed de novo transcriptome analysis of flower organs in A. concinnatum. The de novo transcriptome assembly represented, in total, 158,490 non-redundant transcripts, and 53,315 of those showed significant homology with known genes. To explore genes associated with thermogenesis, we filtered 1266 transcripts that showed a significant correlation between expression pattern and the temperature trend of each sample. We confirmed five putative alternative oxidase transcripts were included in filtered transcripts as expected. An enrichment analysis of the Gene Ontology terms for the filtered transcripts suggested over-representation of genes involved in 1-deoxy-d-xylulose-5-phosphate synthase (DXS) activity. The expression profiles of DXS transcripts in the methyl-d-erythritol 4-phosphate (MEP) pathway were significantly correlated with thermogenic levels. Our results suggest that the MEP pathway is the main biosynthesis route for producing scent monoterpenes. To our knowledge, this is the first report describing the candidate pathway and the key enzyme for floral scent production in thermogenic plants. PMID:25736477
Policha, Tobias; Davis, Aleah; Barnadas, Melinda; Dentinger, Bryn T M; Raguso, Robert A; Roy, Bitty A
2016-05-01
Flowers use olfactory and visual signals to communicate with pollinators. Disentangling the relative contributions and potential synergies between signals remains a challenge. Understanding the perceptual biases exploited by floral mimicry illuminates the evolution of these signals. Here, we disentangle the olfactory and visual components of Dracula lafleurii, which mimics mushrooms in size, shape, color and scent, and is pollinated by mushroom-associated flies. To decouple signals, we used three-dimensional printing to produce realistic artificial flower molds that were color matched and cast using scent-free surgical silicone, to which we could add scent. We used GC-MS to measure scents in co-occurring mushrooms, and related orchids, and used these scents in field experiments. By combining silicone flower parts with real floral organs, we created chimeras that identified the mushroom-like labellum as a source of volatile attraction. In addition, we showed remarkable overlap in the volatile chemistry between D. lafleurii and co-occurring mushrooms. The characters defining the genus Dracula - a mushroom-like, 'gilled' labellum and a showy, patterned calyx - enhance pollinator attraction by exploiting the visual and chemosensory perceptual biases of drosophilid flies. Our techniques for the manipulation of complex traits in a nonmodel system not conducive to gene silencing or selective breeding are useful for other systems. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
The smell of environmental change: Using floral scent to explain shifts in pollinator attraction
Laura A. Burkle; Justin B. Runyon
2017-01-01
As diverse environmental changes continue to influence the structure and function of plant-pollinator interactions across spatial and temporal scales, we will need to enlist numerous approaches to understand these changes. Quantitative examination of floral volatile organic compounds (VOCs) is one approach that is gaining popularity, and recent work suggests that...
van der Niet, Timotheüs; Hansen, Dennis M; Johnson, Steven D
2011-05-01
Although pollination of plants that attract flies by resembling their carrion brood and food sites has been reported in several angiosperm families, there has been very little work done on the level of specificity in carrion mimicry systems and the importance of plant cues in mediating such specialization. Specificity may be expected, as carrion-frequenting flies often exploit different niches, which has been interpreted as avoidance of interspecific competition. Interactions between the orchid Satyrium pumilum and a local assemblage of carrion flies were investigated, and the functional significance of floral traits, especially scent, tested. Pollination success and the incidence of pollinator-mediated self-pollination were measured and these were compared with values for orchids with sexual- and food-deceptive pollination systems. Observations of insect visitation to animal carcasses and to flowers showed that the local assemblage of carrion flies was dominated by blow flies (Calliphoridae), house flies (Muscidae) and flesh flies (Sarcophagidae), but flowers of the orchid were pollinated exclusively by flesh flies, with a strong bias towards females that sometimes deposited live larvae on flowers. A trend towards similar partitioning of fly taxa was found in an experiment that tested the effect of large versus small carrion quantities on fly attraction. GC-MS analysis showed that floral scent is dominated by oligosulfides, 2-heptanone, p-cresol and indole, compounds that also dominate carrion scent. Flesh flies did not distinguish between floral and carrion scent in a choice experiment using olfactory cues only, which also showed that scent alone is responsible for fly attraction. Pollination success was relatively high (31·5 % of flowers), but tracking of stained pollinia also revealed that a relatively high percentage (46 %) of pollen deposited on stigmas originates from the same plant. Satyrium pumilum selectively attracts flesh flies, probably because its relatively weak scent resembles that of the small carrion on which these flies predominate. In this way, the plants exploit a specific subset of the insect assemblage associated with carrion. Pollination rates and levels of self-pollination were high compared with those in other deceptive orchids and it is therefore unlikely that this mimicry system evolved to promote outcrossing.
The effect of olfactory exposure to non-insecticidal agrochemicals on bumblebee foraging behavior.
Sprayberry, Jordanna D H; Ritter, Kaitlin A; Riffell, Jeffrey A
2013-01-01
Declines in bumblebee populations have led to investigations into potential causes - including agrochemical effects on bumblebee physiology. The indirect effects of agrochemicals (i.e. behavior modulation) have been postulated, but rarely directly tested. Olfactory information is critical in mediating bumblebee-floral interactions. As agrochemicals emit volatiles, they may indirectly modify foraging behavior. We tested the effects of olfactory contamination of floral odor by agrochemical scent on foraging activity of Bombus impatiens using two behavioral paradigms: localization of food within a maze and forced-choice preference. The presence of a fungicide decreased bumblebees' ability to locate food within a maze. Additionally, bumblebees preferred to forage in non-contaminated feeding chambers when offered a choice between control and either fertilizer- or fungicide-scented chambers.
Zito, Pietro; Dötterl, Stefan; Sajeva, Maurizio
2015-04-01
Floral scent in sapromyiophilous plants often consists of complex blends with not only fetid (e.g., sulfides) but also sweet (e.g., terpenoids) volatile organic compounds, and a recent study suggests that both groups of compounds are involved in pollinator attraction. However, little is known about the number and identity of compounds involved in pollinator attraction in these deceptive plants that mimic breeding sites of fly pollinators. In the present paper, we studied flower volatiles of sapromyiophilous Periploca laevigata and their capability to elicit biological responses in one of the pollinator species, Musca domestica. Floral volatiles were collected by dynamic headspace and analyzed by gas chromatography/mass spectrometry (GC/MS), and electrophysiological (GC/EAD) and behavioral assays (two choice olfactometer) were conducted. In the floral scent of P. laevigata, we detected 44 compounds, of which indole, β-caryophyllene, and germacrene D, as well as dimethyl trisulfide, which was present in trace amounts, were electrophysiologically active in the antennae of M. domestica. However, when we evaluated in behavioral experiments the attractiveness of the electrophysiologically active compounds (complete mixture against partial mixtures or against single compounds), we found that indole was the only attractive compound for the flies.
Phylogenetic fragrance patterns in Nicotiana sections Alatae and Suaveolentes.
Raguso, Robert A; Schlumpberger, Boris O; Kaczorowski, Rainee L; Holtsford, Timothy P
2006-09-01
We analyzed floral volatiles from eight tobacco species (Nicotiana; Solanaceae) including newly discovered Brazilian taxa (Nicotiana mutabilis and "Rastroensis") in section Alatae. Eighty-four compounds were found, including mono- and sesquiterpenoids, nitrogenous compounds, benzenoid and aliphatic alcohols, aldehydes and esters. Floral scent from recent accessions of Nicotiana alata, Nicotiana bonariensis and Nicotiana langsdorffii differed from previously published data, suggesting intraspecific variation in scent composition at the level of biosynthetic class. Newly discovered taxa in Alatae, like their relatives, emit large amounts of 1,8-cineole and smaller amounts of monoterpenes on a nocturnal rhythm, constituting a chemical synapomorphy for this lineage. Fragrance data from three species of Nicotiana sect. Suaveolentes, the sister group of Alatae, (two Australian species: N. cavicola, N. ingulba; one African species: N. africana), were compared to previously reported data from their close relative, N. suaveolens. Like N. suaveolens, N. cavicola and N. ingulba emit fragrances dominated by benzenoids and phenylpropanoids, whereas the flowers of N. africana lacked a distinct floral scent and instead emitted only small amounts of an aliphatic methyl ester from foliage. Interestingly, this ester also is emitted from foliage of N. longiflora and N. plumbaginifolia (both in section Alatae s.l.), which share a common ancestor with N. africana. This result, combined with the synapomorphic pattern of 1,8 cineole emission in Alatae s.s., suggests that phylogenetic signal explains a major component of fragrance composition among tobacco species in sections Alatae and Suaveolentes. At the intraspecific level, interpopulational scent variation is widespread in sect. Alatae, and may reflect edaphic specialization, introgression, local pollinator shifts, genetic drift or artificial selection in cultivation. Further studies with genetically and geographically well-defined populations are needed to distinguish between these possibilities.
Page, Paul; Favre, Adrien; Schiestl, Florian P; Karrenberg, Sophie
2014-01-01
Specialization in plant-insect interactions is an important driver of evolutionary divergence; yet, plant traits mediating such interactions are poorly understood. In this study, we investigated how flower color and floral scent are related to seed predation by a seed-eating pollinator. We used field-transplanted recombinant F2 hybrids between Silene latifolia and S. dioica that are the preferred and alternative hosts of the moth Hadena bicruris and crosses within these species for comparison. We scored seed predation and flower color and analyzed floral scent. Pinker S. dioica-like flowers and emission of α-pinene decreased the odds of seed predation while emission of benzyl acetate and 6-methyl-5-hepten-2-one increased the odds of seed predation. Emission of these compounds did not differ significantly between the two Silene species. Our results suggest that flower color plays an important role in the specific interaction of H. bicruris with its preferred host S. latifolia. The compounds α-pinene, benzyl acetate and 6-methyl-5-hepten-2-one could represent non-specific deterrents and attractants to ovipositing moths. Alternatively, emission of these compounds could be related to herbivory or pathogen attack and act as a signal for host quality. This would weaken the predictability of the plant's costs and benefits of the interaction and act to maintain an imperfect degree of specialization.
Page, Paul; Favre, Adrien; Schiestl, Florian P.; Karrenberg, Sophie
2014-01-01
Specialization in plant–insect interactions is an important driver of evolutionary divergence; yet, plant traits mediating such interactions are poorly understood. In this study, we investigated how flower color and floral scent are related to seed predation by a seed-eating pollinator. We used field-transplanted recombinant F2 hybrids between Silene latifolia and S. dioica that are the preferred and alternative hosts of the moth Hadena bicruris and crosses within these species for comparison. We scored seed predation and flower color and analyzed floral scent. Pinker S. dioica-like flowers and emission of α-pinene decreased the odds of seed predation while emission of benzyl acetate and 6-methyl-5-hepten-2-one increased the odds of seed predation. Emission of these compounds did not differ significantly between the two Silene species. Our results suggest that flower color plays an important role in the specific interaction of H. bicruris with its preferred host S. latifolia. The compounds α-pinene, benzyl acetate and 6-methyl-5-hepten-2-one could represent non-specific deterrents and attractants to ovipositing moths. Alternatively, emission of these compounds could be related to herbivory or pathogen attack and act as a signal for host quality. This would weaken the predictability of the plant's costs and benefits of the interaction and act to maintain an imperfect degree of specialization. PMID:24905986
The Effect of Olfactory Exposure to Non-Insecticidal Agrochemicals on Bumblebee Foraging Behavior
Sprayberry, Jordanna D. H.; Ritter, Kaitlin A.; Riffell, Jeffrey A.
2013-01-01
Declines in bumblebee populations have led to investigations into potential causes – including agrochemical effects on bumblebee physiology. The indirect effects of agrochemicals (i.e. behavior modulation) have been postulated, but rarely directly tested. Olfactory information is critical in mediating bumblebee-floral interactions. As agrochemicals emit volatiles, they may indirectly modify foraging behavior. We tested the effects of olfactory contamination of floral odor by agrochemical scent on foraging activity of Bombus impatiens using two behavioral paradigms: localization of food within a maze and forced-choice preference. The presence of a fungicide decreased bumblebees’ ability to locate food within a maze. Additionally, bumblebees preferred to forage in non-contaminated feeding chambers when offered a choice between control and either fertilizer- or fungicide-scented chambers. PMID:24204608
Private channels in plant-pollinator mutualisms
Chen, Chun; Hossaert-McKey, Martine
2010-01-01
Volatile compounds often mediate plant-pollinator interactions, and may promote specialization in plant-pollinator relationships, notably through private channels of unusual compounds. Nevertheless, the existence of private channels, i.e., the potential for exclusive communication via unique signals and receptors, is still debated in the literature. Interactions between figs and their pollinating wasps offer opportunities for exploring this concept. Several experiments have demonstrated that chemical mediation is crucial in ensuring the encounter between figs and their species-specific pollinators. Indeed, chemical messages emitted by figs are notably species- and developmental stage-specific, making them reliable cues for the pollinator. In most cases, the species-specificity of wasp attraction is unlikely to result from the presence of a single specific compound. Nevertheless, a recent paper on the role of scents in the interaction between Ficus semicordata and its pollinating wasp Ceratosolen gravelyi showed that a single compound, 4-methylanisole, is the main signal compound in the floral scent, and is sufficient by itself to attract the obligate pollinator. Mainly focusing on these results, we propose here that a floral scent can act as a private channel, attracting only the highly specific pollinator. PMID:20484975
Phenylpropanoid Scent Compounds in Petunia x hybrida Are Glycosylated and Accumulate in Vacuoles
Cna'ani, Alon; Shavit, Reut; Ravid, Jasmin; Aravena-Calvo, Javiera; Skaliter, Oded; Masci, Tania; Vainstein, Alexander
2017-01-01
Floral scent has been studied extensively in the model plant Petunia. However, little is known about the intracellular fate of scent compounds. Here, we characterize the glycosylation of phenylpropanoid scent compounds in Petunia x hybrida. This modification reduces scent compounds' volatility, reactivity, and autotoxicity while increasing their water-solubility. Gas chromatography–mass spectrometry (GC–MS) analyses revealed that flowers of petunia cultivars accumulate substantial amounts of glycosylated scent compounds and that their increasing level parallels flower development. In contrast to the pool of accumulated aglycones, which drops considerably at the beginning of the light period, the collective pool of glycosides starts to increase at that time and does not decrease thereafter. The glycoside pool is dynamic and is generated or catabolized during peak scent emission, as inferred from phenylalanine isotope-feeding experiments. Using several approaches, we show that phenylpropanoid scent compounds are stored as glycosides in the vacuoles of petal cells: ectopic expression of Aspergillus niger β-glucosidase-1 targeted to the vacuole resulted in decreased glycoside accumulation; GC–MS analysis of intact vacuoles isolated from petal protoplasts revealed the presence of glycosylated scent compounds. Accumulation of glycosides in the vacuoles seems to be a common mechanism for phenylpropanoid metabolites. PMID:29163617
van der Niet, Timotheüs; Hansen, Dennis M.; Johnson, Steven D.
2011-01-01
Background and Aims Although pollination of plants that attract flies by resembling their carrion brood and food sites has been reported in several angiosperm families, there has been very little work done on the level of specificity in carrion mimicry systems and the importance of plant cues in mediating such specialization. Specificity may be expected, as carrion-frequenting flies often exploit different niches, which has been interpreted as avoidance of interspecific competition. Interactions between the orchid Satyrium pumilum and a local assemblage of carrion flies were investigated, and the functional significance of floral traits, especially scent, tested. Pollination success and the incidence of pollinator-mediated self-pollination were measured and these were compared with values for orchids with sexual- and food-deceptive pollination systems. Methods and Key Results Observations of insect visitation to animal carcasses and to flowers showed that the local assemblage of carrion flies was dominated by blow flies (Calliphoridae), house flies (Muscidae) and flesh flies (Sarcophagidae), but flowers of the orchid were pollinated exclusively by flesh flies, with a strong bias towards females that sometimes deposited live larvae on flowers. A trend towards similar partitioning of fly taxa was found in an experiment that tested the effect of large versus small carrion quantities on fly attraction. GC-MS analysis showed that floral scent is dominated by oligosulfides, 2-heptanone, p-cresol and indole, compounds that also dominate carrion scent. Flesh flies did not distinguish between floral and carrion scent in a choice experiment using olfactory cues only, which also showed that scent alone is responsible for fly attraction. Pollination success was relatively high (31·5 % of flowers), but tracking of stained pollinia also revealed that a relatively high percentage (46 %) of pollen deposited on stigmas originates from the same plant. Conclusions Satyrium pumilum selectively attracts flesh flies, probably because its relatively weak scent resembles that of the small carrion on which these flies predominate. In this way, the plants exploit a specific subset of the insect assemblage associated with carrion. Pollination rates and levels of self-pollination were high compared with those in other deceptive orchids and it is therefore unlikely that this mimicry system evolved to promote outcrossing. PMID:21402538
Nunes, Carlos E P; Peñaflor, Maria Fernanda G V; Bento, José Maurício S; Salvador, Marcos José; Sazima, Marlies
2016-12-01
Volatile organic compounds (VOCs) mediate both mutualistic and antagonistic plant-animal interactions; thus, the attraction of mutualists and antagonists by floral VOCs constitutes an important trade-off in the evolutionary ecology of angiosperms. Here, we evaluate the role of VOCs in mediating communication between the plant and its mutualist and antagonist floral visitors. To assess the evolutionary consequences of VOC-mediated signalling to distinct floral visitors, we studied the reproductive ecology of Dichaea pendula, assessing the effects of florivores on fruit set, the pollination efficiency of pollinators and florivores, the floral scent composition and the attractiveness of the major VOC to pollinators and florivores. The orchid depends entirely on orchid-bees for sexual reproduction, and the major florivores, the weevils, feed on corollas causing self-pollination, triggering abortion of 26.4 % of the flowers. Floral scent was composed of approximately 99 % 2-methoxy-4-vinylphenol, an unusual floral VOC attractive to pollinators and florivores. The low fruit set from natural pollination (5.6 %) compared to hand cross-pollination (45.5 %) and low level of pollinator visitation [0.02 visits (flower hour) -1 ] represent the limitations to pollination. Our research found that 2-methoxy-4-vinylphenol mediates both mutualistic and antagonistic interactions, which could result in contrary evolutionary pressures on novo-emission. The scarcity of pollinators, not florivory, was the major constraint to fruit set. Our results suggest that, rather than anti-florivory adaptations, adaptations to enhance pollinator attraction and cross-pollination might be the primary drivers of the evolution of VOC emission in euglossine-pollinated flowers.
Transcriptomic Analysis of Flower Blooming in Jasminum sambac through De Novo RNA Sequencing.
Li, Yong-Hua; Zhang, Wei; Li, Yong
2015-06-10
Flower blooming is a critical and complicated plant developmental process in flowering plants. However, insufficient information is available about the complex network that regulates flower blooming in Jasminum sambac. In this study, we used the RNA-Seq platform to analyze the molecular regulation of flower blooming in J. sambac by comparing the transcript profiles at two flower developmental stages: budding and blooming. A total of 4577 differentially-expressed genes (DEGs) were identified between the two floral stages. The Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed that the DEGs in the "oxidation-reduction process", "extracellular region", "steroid biosynthesis", "glycosphingolipid biosynthesis", "plant hormone signal transduction" and "pentose and glucuronate interconversions" might be associated with flower development. A total of 103 and 92 unigenes exhibited sequence similarities to the known flower development and floral scent genes from other plants. Among these unigenes, five flower development and 19 floral scent unigenes exhibited at least four-fold differences in expression between the two stages. Our results provide abundant genetic resources for studying the flower blooming mechanisms and molecular breeding of J. sambac.
Chen, Xiaomin; Baldermann, Susanne; Cao, Shuyan; Lu, Yao; Liu, Caixia; Hirata, Hiroshi; Watanabe, Naoharu
2015-02-01
2-Phenylethanol (2PE) and 3,5-dimethoxytoluene (DMT) are characteristic scent compounds in specific roses such as Rosa x hybrida cv. 'Yves Piaget'. We analyzed the endogenous concentrations and emission of 2PE and DMT during the unfurling process in different floral organs, as well as changes in transcript levels of the two key genes, PAR and OOMT2. The emission of both 2PE and DMT increased during floral development to reach peaks at the fully unfurled stage. The relative transcripts of PAR and OOMT2 also increased during floral development. Whereas the maximum for OOMT2 was found at the fully unfurled stage (stage 4), similar expression levels of PAR were detected at stage 4 and the senescence stage (stage 6). The results demonstrate a positive correlation between the expression levels of PAR and OOMT2 and the emission of 2PE and DMT. In addition, endogenous volatiles and relative transcripts showed tissue- and development-specific patterns. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Corcobado, Guadalupe; Trillo, Alejandro
2017-01-01
Our understanding of how floral visitors integrate visual and olfactory cues when seeking food, and how background complexity affects flower detection is limited. Here, we aimed to understand the use of visual and olfactory information for bumblebees (Bombus terrestris terrestris L.) when seeking flowers in a visually complex background. To explore this issue, we first evaluated the effect of flower colour (red and blue), size (8, 16 and 32 mm), scent (presence or absence) and the amount of training on the foraging strategy of bumblebees (accuracy, search time and flight behaviour), considering the visual complexity of our background, to later explore whether experienced bumblebees, previously trained in the presence of scent, can recall and make use of odour information when foraging in the presence of novel visual stimuli carrying a familiar scent. Of all the variables analysed, flower colour had the strongest effect on the foraging strategy. Bumblebees searching for blue flowers were more accurate, flew faster, followed more direct paths between flowers and needed less time to find them, than bumblebees searching for red flowers. In turn, training and the presence of odour helped bees to find inconspicuous (red) flowers. When bees foraged on red flowers, search time increased with flower size; but search time was independent of flower size when bees foraged on blue flowers. Previous experience with floral scent enhances the capacity of detection of a novel colour carrying a familiar scent, probably by elemental association influencing attention. PMID:28898287
Honeybees Learn Odour Mixtures via a Selection of Key Odorants
Reinhard, Judith; Sinclair, Michael; Srinivasan, Mandyam V.; Claudianos, Charles
2010-01-01
Background The honeybee has to detect, process and learn numerous complex odours from her natural environment on a daily basis. Most of these odours are floral scents, which are mixtures of dozens of different odorants. To date, it is still unclear how the bee brain unravels the complex information contained in scent mixtures. Methodology/Principal Findings This study investigates learning of complex odour mixtures in honeybees using a simple olfactory conditioning procedure, the Proboscis-Extension-Reflex (PER) paradigm. Restrained honeybees were trained to three scent mixtures composed of 14 floral odorants each, and then tested with the individual odorants of each mixture. Bees did not respond to all odorants of a mixture equally: They responded well to a selection of key odorants, which were unique for each of the three scent mixtures. Bees showed less or very little response to the other odorants of the mixtures. The bees' response to mixtures composed of only the key odorants was as good as to the original mixtures of 14 odorants. A mixture composed of the other, non-key-odorants elicited a significantly lower response. Neither an odorant's volatility or molecular structure, nor learning efficiencies for individual odorants affected whether an odorant became a key odorant for a particular mixture. Odorant concentration had a positive effect, with odorants at high concentration likely to become key odorants. Conclusions/Significance Our study suggests that the brain processes complex scent mixtures by predominantly learning information from selected key odorants. Our observations on key odorant learning lend significant support to previous work on olfactory learning and mixture processing in honeybees. PMID:20161714
Floral traits and pollination ecology of European Arum hybrids.
Chartier, Marion; Liagre, Suzanne; Weiss-Schneeweiss, Hanna; Kolano, Bozena; Bessière, Jean-Marie; Schönenberger, Jürg; Gibernau, Marc
2016-02-01
Hybridisation is common in plants and can affect the genetic diversity and ecology of sympatric parental populations. Hybrids may resemble the parental species in their ecology, leading to competition and/or gene introgression; alternatively, they may diverge from the parental phenotypes, possibly leading to the colonisation of new ecological niches and to speciation. Here, we describe inflorescence morphology, ploidy levels, pollinator attractive scents, and pollinator guilds of natural hybrids of Arum italicum and A. maculatum (Araceae) from a site with sympatric parental populations in southern France to determine how these traits affect the hybrid pollination ecology. Hybrids were characterised by inflorescences with a size and a number of flowers more similar to A. italicum than to A. maculatum. In most cases, hybrid stamens were purple, as in A. maculatum, and spadix appendices yellow, as in A. italicum. Hybrid floral scent was closer to that of A. italicum, but shared some compounds with A. maculatum and comprised unique compounds. Also, the pollinator guild of the hybrids was similar to that of A. italicum. Nevertheless, the hybrids attracted a high proportion of individuals of the main pollinator of A. maculatum. We discuss the effects of hybridisation in sympatric parental zones in which hybrids exhibit low levels of reproductive success, the establishment of reproductive barriers between parental species, the role of the composition of floral attractive scents in the differential attraction of pollinators and in the competition between hybrids and their parental species, and the potential of hybridisation to give rise to new independent lineages.
Disentangling the role of floral sensory stimuli in pollination networks.
Kantsa, Aphrodite; Raguso, Robert A; Dyer, Adrian G; Olesen, Jens M; Tscheulin, Thomas; Petanidou, Theodora
2018-03-12
Despite progress in understanding pollination network structure, the functional roles of floral sensory stimuli (visual, olfactory) have never been addressed comprehensively in a community context, even though such traits are known to mediate plant-pollinator interactions. Here, we use a comprehensive dataset of floral traits and a novel dynamic data-pooling methodology to explore the impacts of floral sensory diversity on the structure of a pollination network in a Mediterranean scrubland. Our approach tracks transitions in the network behaviour of each plant species throughout its flowering period and, despite dynamism in visitor composition, reveals significant links to floral scent, and/or colour as perceived by pollinators. Having accounted for floral phenology, abundance and phylogeny, the persistent association between floral sensory traits and visitor guilds supports a deeper role for sensory bias and diffuse coevolution in structuring plant-pollinator networks. This knowledge of floral sensory diversity, by identifying the most influential phenotypes, could help prioritize efforts for plant-pollinator community restoration.
Silva, Erin M; Dean, Bill B; Hiller, Larry K
2003-10-01
Onion (Allium cepa L.) seed production has long been plagued with yield problems because of lack of pollination by the honey bee, Apis mellifera L. To attempt to attract more pollinators to the onion seed production field, honey bees were conditioned to associate onion floral odor components with a reward. Isolated nucleus hives of honey bees were fed 30% sucrose solutions scented with a 0.2% solution of onion floral odor compounds. After feeding on these solutions for 6 wk, bees were not found to prefer onion flowers to two competing food sources, carrot and alfalfa flowers, at the 5% significance level. However, there was an overall trend indicating a change in honey bee behavior, with fewer "trained" bees visiting alfalfa and carrot and more visiting onion. Thus, it may be possible to alter honey bee behavior with preconditioning but probably not to a degree that would be economically significant.
Do Plants Eavesdrop on Floral Scent Signals?
Caruso, Christina M; Parachnowitsch, Amy L
2016-01-01
Plants emit a diverse array of volatile organic compounds that can function as cues to other plants. Plants can use volatiles emitted by neighbors to gain information about their environment, and respond by adjusting their phenotype. Less is known about whether the many different volatile signals that plants emit are all equally likely to function as cues to other plants. We review evidence for the function of floral volatile signals and conclude that plants are as likely to perceive and respond to floral volatiles as to other, better-studied volatiles. We propose that eavesdropping on floral volatile cues is particularly likely to be adaptive because plants can respond to these cues by adjusting traits that directly affect pollination and mating. Copyright © 2015 Elsevier Ltd. All rights reserved.
Floral benzenoid carboxyl methyltransferases: From in vitro to in planta function
Effmert, Uta; Saschenbrecker, Sandra; Ross, Jeannine; Negre, Florence; Fraser, Chris M.; Noel, Joseph P.; Dudareva, Natalia; Piechulla, Birgit
2010-01-01
Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT’s three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in planta depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses might represent the ancestor for the presently existing floral genes which during evolution gained different expression profiles and encoded enzymes with the ability to accept structurally similar substrates. PMID:15946712
Ants and ant scent reduce bumblebee pollination of artificial flowers.
Cembrowski, Adam R; Tan, Marcus G; Thomson, James D; Frederickson, Megan E
2014-01-01
Ants on flowers can disrupt pollination by consuming rewards or harassing pollinators, but it is difficult to disentangle the effects of these exploitative and interference forms of competition on pollinator behavior. Using highly rewarding and quickly replenishing artificial flowers that simulate male or female function, we allowed bumblebees (Bombus impatiens) to forage (1) on flowers with or without ants (Myrmica rubra) and (2) on flowers with or without ant scent cues. Bumblebees transferred significantly more pollen analogue both to and from ant-free flowers, demonstrating that interference competition with ants is sufficient to modify pollinator foraging behavior. Bees also removed significantly less pollen analogue from ant-scented flowers than from controls, making this the first study to show that bees can use ant scent to avoid harassment at flowers. Ant effects on pollinator behavior, possibly in addition to their effects on pollen viability, may contribute to the evolution of floral traits minimizing ant visitation.
Floral advertisement scent in a changing plant-pollinators market.
Filella, Iolanda; Primante, Clara; Llusià, Joan; Martín González, Ana M; Seco, Roger; Farré-Armengol, Gerard; Rodrigo, Anselm; Bosch, Jordi; Peñuelas, Josep
2013-12-05
Plant-pollinator systems may be considered as biological markets in which pollinators choose between different flowers that advertise their nectar/pollen rewards. Although expected to play a major role in structuring plant-pollinator interactions, community-wide patterns of flower scent signals remain largely unexplored. Here we show for the first time that scent advertisement is higher in plant species that bloom early in the flowering period when pollinators are scarce relative to flowers than in species blooming later in the season when there is a surplus of pollinators relative to flowers. We also show that less abundant flowering species that may compete with dominant species for pollinator visitation early in the flowering period emit much higher proportions of the generalist attractant β-ocimene. Overall, we provide a first community-wide description of the key role of seasonal dynamics of plant-specific flower scent emissions, and reveal the coexistence of contrasting plant signaling strategies in a plant-pollinator market.
Interlinking showy traits: co-engineering of scent and colour biosynthesis in flowers.
Ben Zvi, Michal Moyal; Negre-Zakharov, Florence; Masci, Tania; Ovadis, Marianna; Shklarman, Elena; Ben-Meir, Hagit; Tzfira, Tzvi; Dudareva, Natalia; Vainstein, Alexander
2008-05-01
The phenylpropanoid pathway gives rise to metabolites that determine floral colour and fragrance. These metabolites are one of the main means used by plants to attract pollinators, thereby ensuring plant survival. A lack of knowledge about factors regulating scent production has prevented the successful enhancement of volatile phenylpropanoid production in flowers. In this study, the Production of Anthocyanin Pigment1 (Pap1) Myb transcription factor from Arabidopsis thaliana, known to regulate the production of non-volatile phenylpropanoids, including anthocyanins, was stably introduced into Petunia hybrida. In addition to an increase in pigmentation, Pap1-transgenic petunia flowers demonstrated an increase of up to tenfold in the production of volatile phenylpropanoid/benzenoid compounds. The dramatic increase in volatile production corresponded to the native nocturnal rhythms of volatile production in petunia. The application of phenylalanine to Pap1-transgenic flowers led to an increase in the otherwise negligible levels of volatiles emitted during the day to nocturnal levels. On the basis of gene expression profiling and the levels of pathway intermediates, it is proposed that both increased metabolic flux and transcriptional activation of scent and colour genes underlie the enhancement of petunia flower colour and scent production by Pap1. The co-ordinated regulation of metabolic steps within or between pathways involved in vital plant functions, as shown here for two showy traits determining plant-pollinator interactions, provides a clear advantage for plant survival. The use of a regulatory factor that activates scent production creates a new biotechnological strategy for the metabolic architecture of fragrance, leading to the creation of novel genetic variability for breeding purposes.
Yue, Yuechong; Yu, Rangcai; Fan, Yanping
2014-10-01
Hedychium coronarium, a perennial herb belonging to the family Zingiberaceae, is cultivated as a garden plant or cut flower as well as for medicine and aromatic oil. Its flowers emit a fresh and inviting scent, which is mainly because of monoterpenes present in the profile of the floral volatiles. However, fragrance produced as a result of monoterpenes has not been well studied. In the present study, two novel terpene synthase (TPS) genes (HcTPS7 and HcTPS8) were isolated to study the biosynthesis of monoterpenes in H. coronarium. In vitro characterization showed that the recombinant HcTPS7 was capable of generating sabinene as its main product, in addition to nine sub-products from geranyl diphosphate (GPP). Recombinant HcTPS8 almost specifically catalyzed the formation of linalool from GPP, while it converted farnesyl diphosphate (FPP) to α-bergamotene, cis-α-bisabolene, β-farnesene and other ten sesquiterpenes. Subcellular localization experiments revealed that HcTPS7 and HcTPS8 were located in plastids. Real-time PCR analyses showed that HcTPS7 and HcTPS8 genes were highly expressed in petals and sepals, but were almost undetectable in vegetative organs. The changes of their expression levels in petals were positively correlated with the emission patterns of sabinene and linalool, respectively, during flower development. The results indicated that HcTPS7 and HcTPS8 were involved in the biosynthesis of sabinene and linalool in H. coronarium flowers. Results on these two TPSs first characterized from H. coronarium provide new insights into molecular mechanisms of terpene biosynthesis in this species and also lay the basis for biotechnological modification of floral scent profile in Hedychium.
Dötterl, Stefan; David, Anja; Boland, Wilhelm; Silberbauer-Gottsberger, Ilse; Gottsberger, Gerhard
2012-12-01
Many plants attract their pollinators with floral scents, and these olfactory signals are especially important at night, when visual signals become inefficient. Dynastid scarab beetles are a speciose group of night-active pollinators, and several plants pollinated by these insects have methoxylated aromatic compounds in their scents. However, there is a large gap in our knowledge regarding the compounds responsible for beetle attraction. We used chemical analytical analyses to determine temporal patterns of scent emission and the composition of scent released from inflorescences of Philodendron selloum. The attractiveness of the main components in the scent to the dynastid scarab beetle Erioscelis emarginata, the exclusive pollinator of this plant, was assessed in field biotests. The amount of scent increased rapidly in the evening, and large amounts of scent were released during the activity time of the beetle pollinators. Inflorescences emitted a high number of compounds of different biosynthetic origin, among them both uncommon and also widespread flower scents. Methoxylated aromatic compounds dominated the scent, and 4-methoxystyrene, the most abundant compound, attracted E. emarginata beetles. Other compounds, such as (Z)-jasmone and possibly also the methoxylated aromatic compound 3,4-dimethoxystyrene increased the attractiveness of 4-methoxystyrene. Methoxylated aromatics, which are known from other dynastid pollinated plants as well, are important signals in many scarab beetles in a different context (e.g., pheromones), thus suggesting that these plants exploit pre-existing preferences of the beetles for attracting this group of insects as pollinators.
Green tea flavour determinants and their changes over manufacturing processes.
Han, Zhuo-Xiao; Rana, Mohammad M; Liu, Guo-Feng; Gao, Ming-Jun; Li, Da-Xiang; Wu, Fu-Guang; Li, Xin-Bao; Wan, Xiao-Chun; Wei, Shu
2016-12-01
Flavour determinants in tea infusions and their changes during manufacturing processes were studied using Camellia sinensis cultivars 'Bai-Sang Cha' ('BAS') possessing significant floral scents and 'Fuding-Dabai Cha' ('FUD') with common green tea odour. Metabolite profiling based on odour activity threshold revealed that 'BAS' contained higher levels of the active odorants β-ionone, linalool and its two oxides, geraniol, epoxylinalool, decanal and taste determinant catechins than 'FUD' (p<0.05). Enhanced transcription of some terpenoid and catechin biosynthetic genes in 'BAS' suggested genetically enhanced production of those flavour compounds. Due to manufacturing processes, the levels of linalool and geraniol decreased whereas those of β-ionone, linalool oxides, indole and cis-jasmone increased. Compared with pan-fire treatment, steam treatment reduced the levels of catechins and proportion of geraniol, linalool and its derivatives, consequently, reducing catechin-related astringency and monoterpenol-related floral scent. Our study suggests that flavour determinant targeted modulation could be made through genotype and manufacturing improvements. Copyright © 2016 Elsevier Ltd. All rights reserved.
Svensson, Glenn P; Okamoto, Tomoko; Kawakita, Atsushi; Goto, Ryutaro; Kato, Makoto
2010-06-01
*Obligate mutualisms involving actively pollinating seed predators are among the most remarkable insect-plant relationships known, yet almost nothing is known about the chemistry of pollinator attraction in these systems. The extreme species specificity observed in these mutualisms may be maintained by specific chemical compounds through 'private channels'. Here, we tested this hypothesis using the monoecious Breynia vitis-idaea and its host-specific Epicephala pollinator as a model. *Headspace samples were collected from both male and female flowers of the host. Gas chromatography with electroantennographic detection (GC-EAD), coupled gas chromatography-mass spectrometry, and olfactometer bioassays were used to identify the floral compounds acting as the pollinator attractant. *Male and female flowers of B. vitis-idaea produced similar sets of general floral compounds, but in different ratios, and male flowers emitted significantly more scent than female flowers. A mixture of 2-phenylethyl alcohol and 2-phenylacetonitrile, the two most abundant compounds in male flowers, was as attractive to female moths as the male flower sample, although the individual compounds were slightly less attractive when tested separately. *Data on the floral scent signals mediating obligate mutualisms involving active pollination are still very limited. We show that system-specific chemistry is not necessary for efficient host location by exclusive pollinators in these tightly coevolved mutualisms.
Hirota, Shun K; Nitta, Kozue; Suyama, Yoshihisa; Kawakubo, Nobumitsu; Yasumoto, Akiko A; Yahara, Tetsukazu
2013-01-01
To trace the fate of individual pollen grains through pollination processes, we determined genotypes of single pollen grains deposited on Hemerocallis stigmas in an experimental mixed-species array. Hemerocallis fulva, pollinated by butterflies, has diurnal, reddish and unscented flowers, and H. citrina, pollinated by hawkmoths, has nocturnal, yellowish and sweet scent flowers. We observed pollinator visits to an experimental array of 24 H. fulva and 12 F2 hybrids between the two species (H. fulva and H. citrina) and collected stigmas after every trip bout of swallowtail butterflies or hawkmoths. We then measured selection by swallowtail butterflies or hawkmoths through male and female components of pollination success as determined by single pollen genotyping. As expected, swallowtail butterflies imposed selection on reddish color and weak scent: the number of outcross pollen grains acquired is a quadratic function of flower color with the maximum at reddish color, and the combined pollination success was maximal at weak scent (almost unrecognizable for human). This explains why H. fulva, with reddish flowers and no recognizable scent, is mainly pollinated by swallowtail butterflies. However, we found no evidence of hawkmoths-mediated selection on flower color or scent. Our findings do not support a hypothesis that yellow flower color and strong scent intensity, the distinctive floral characteristics of H. citrina, having evolved in adaptations to hawkmoths. We suggest that the key trait that triggers the evolution of nocturnal flowers is flowering time rather than flower color and scent.
Studies on the floral anatomy and scent chemistry of Titan Arum (Amorphophallus titanum, Araceae)
USDA-ARS?s Scientific Manuscript database
Titan arum (Amorphophallus titanum)is popularly known for its world's largest unbranched inflorescence. It is also commonly called 'corpse flower' or 'carrion flower' due to the characteristic, putrid odor of the bloom. The present study illustrates detailed anatomy and micromorphology of various...
Determination of Plant Volatiles Using Solid Phase Microextraction GC-MS
ERIC Educational Resources Information Center
Van Bramer, Scott; Goodrich, Katherine R.
2015-01-01
This experiment combines analytical techniques of solid phase microextraction and gas chromatography-mass spectrometry with easily relatable and accessible plant volatile chemistry (floral and vegetative scents of local/available plants). The biosynthesis and structure of these chemicals are of interest in the areas of organic chemistry,…
The Complexity of Background Clutter Affects Nectar Bat Use of Flower Odor and Shape Cues.
Muchhala, Nathan; Serrano, Diana
2015-01-01
Given their small size and high metabolism, nectar bats need to be able to quickly locate flowers during foraging bouts. Chiropterophilous plants depend on these bats for their reproduction, thus they also benefit if their flowers can be easily located, and we would expect that floral traits such as odor and shape have evolved to maximize detection by bats. However, relatively little is known about the importance of different floral cues during foraging bouts. In the present study, we undertook a set of flight cage experiments with two species of nectar bats (Anoura caudifer and A. geoffroyi) and artificial flowers to compare the importance of shape and scent cues in locating flowers. In a training phase, a bat was presented an artificial flower with a given shape and scent, whose position was constantly shifted to prevent reliance on spatial memory. In the experimental phase, two flowers were presented, one with the training-flower scent and one with the training-flower shape. For each experimental repetition, we recorded which flower was located first, and then shifted flower positions. Additionally, experiments were repeated in a simple environment, without background clutter, or a complex environment, with a background of leaves and branches. Results demonstrate that bats visit either flower indiscriminately with simple backgrounds, with no significant difference in terms of whether they visit the training-flower odor or training-flower shape first. However, in a complex background olfaction was the most important cue; scented flowers were consistently located first. This suggests that for well-exposed flowers, without obstruction from clutter, vision and/or echolocation are sufficient in locating them. In more complex backgrounds, nectar bats depend more heavily on olfaction during foraging bouts.
The Complexity of Background Clutter Affects Nectar Bat Use of Flower Odor and Shape Cues
Muchhala, Nathan; Serrano, Diana
2015-01-01
Given their small size and high metabolism, nectar bats need to be able to quickly locate flowers during foraging bouts. Chiropterophilous plants depend on these bats for their reproduction, thus they also benefit if their flowers can be easily located, and we would expect that floral traits such as odor and shape have evolved to maximize detection by bats. However, relatively little is known about the importance of different floral cues during foraging bouts. In the present study, we undertook a set of flight cage experiments with two species of nectar bats (Anoura caudifer and A. geoffroyi) and artificial flowers to compare the importance of shape and scent cues in locating flowers. In a training phase, a bat was presented an artificial flower with a given shape and scent, whose position was constantly shifted to prevent reliance on spatial memory. In the experimental phase, two flowers were presented, one with the training-flower scent and one with the training-flower shape. For each experimental repetition, we recorded which flower was located first, and then shifted flower positions. Additionally, experiments were repeated in a simple environment, without background clutter, or a complex environment, with a background of leaves and branches. Results demonstrate that bats visit either flower indiscriminately with simple backgrounds, with no significant difference in terms of whether they visit the training-flower odor or training-flower shape first. However, in a complex background olfaction was the most important cue; scented flowers were consistently located first. This suggests that for well-exposed flowers, without obstruction from clutter, vision and/or echolocation are sufficient in locating them. In more complex backgrounds, nectar bats depend more heavily on olfaction during foraging bouts. PMID:26445216
The smell of environmental change: Using floral scent to explain shifts in pollinator attraction1
Burkle, Laura A.; Runyon, Justin B.
2017-01-01
As diverse environmental changes continue to influence the structure and function of plant–pollinator interactions across spatial and temporal scales, we will need to enlist numerous approaches to understand these changes. Quantitative examination of floral volatile organic compounds (VOCs) is one approach that is gaining popularity, and recent work suggests that floral VOCs hold substantial promise for better understanding and predicting the effects of environmental change on plant–pollinator interactions. Until recently, few ecologists were employing chemical approaches to investigate mechanisms by which components of environmental change may disrupt these essential mutualisms. In an attempt to make these approaches more accessible, we summarize the main field, laboratory, and statistical methods involved in capturing, quantifying, and analyzing floral VOCs in the context of changing environments. We also highlight some outstanding questions that we consider to be highly relevant to making progress in this field. PMID:28690928
Theis, Nina; Adler, Lynn S
2012-02-01
Many organisms face challenges in avoiding predation while searching for mates. For plants, emitting floral fragrances to advertise reproductive structures could increase the attraction of detrimental insects along with pollinators. Very few studies have experimentally evaluated the costs and benefits of fragrance emission with explicit consideration of how plant fitness is affected by both pollinators and florivores. To determine the reproductive consequences of increasing the apparency of reproductive parts, we manipulated fragrance, pollination, and florivores in the wild Texas gourd, Cucurbita pepo var. texana. With enhanced fragrance we found an increase in the attraction of florivores, rather than pollinators, and a decrease in seed production. This study is the first to demonstrate that enhanced floral fragrance can increase the attraction of detrimental florivores and decrease plant reproduction, suggesting that florivory as well as pollination has shaped the evolution of floral scent.
Hirota, Shun K.; Nitta, Kozue; Suyama, Yoshihisa; Kawakubo, Nobumitsu; Yasumoto, Akiko A.; Yahara, Tetsukazu
2013-01-01
To trace the fate of individual pollen grains through pollination processes, we determined genotypes of single pollen grains deposited on Hemerocallis stigmas in an experimental mixed-species array. Hemerocallis fulva, pollinated by butterflies, has diurnal, reddish and unscented flowers, and H. citrina, pollinated by hawkmoths, has nocturnal, yellowish and sweet scent flowers. We observed pollinator visits to an experimental array of 24 H. fulva and 12 F2 hybrids between the two species (H. fulva and H. citrina) and collected stigmas after every trip bout of swallowtail butterflies or hawkmoths. We then measured selection by swallowtail butterflies or hawkmoths through male and female components of pollination success as determined by single pollen genotyping. As expected, swallowtail butterflies imposed selection on reddish color and weak scent: the number of outcross pollen grains acquired is a quadratic function of flower color with the maximum at reddish color, and the combined pollination success was maximal at weak scent (almost unrecognizable for human). This explains why H. fulva, with reddish flowers and no recognizable scent, is mainly pollinated by swallowtail butterflies. However, we found no evidence of hawkmoths-mediated selection on flower color or scent. Our findings do not support a hypothesis that yellow flower color and strong scent intensity, the distinctive floral characteristics of H. citrina, having evolved in adaptations to hawkmoths. We suggest that the key trait that triggers the evolution of nocturnal flowers is flowering time rather than flower color and scent. PMID:24376890
Spitzer-Rimon, Ben; Farhi, Moran; Albo, Boaz; Cna’ani, Alon; Ben Zvi, Michal Moyal; Masci, Tania; Edelbaum, Orit; Yu, Yixun; Shklarman, Elena; Ovadis, Marianna; Vainstein, Alexander
2012-01-01
Flower scent is a highly dynamic trait, under developmental, spatial, and diurnal regulation. The mechanism governing scent production is only beginning to be unraveled. In petunia (Petunia hybrida), EMISSION OF BENZENOIDS II (EOBII) controls transcription of both the shikimate pathway-regulating MYB factor ODORANT1 (ODO1) and phenylpropanoid scent-related structural genes. A promoter-activation screen identified an R2R3-MYB–like regulatory factor of phenylpropanoid volatile biosynthesis acting downstream of EOBII, designated EOBI. EOBI silencing led to downregulation of ODO1 and numerous structural scent-related genes from both the shikimate and phenylpropanoid pathways. The ability of EOBI to directly activate ODO1, as revealed by electrophoretic mobility shift assay and yeast one-hybrid analysis, place EOBI upstream of ODO1 in regulating substrate availability for volatile biosynthesis. Interestingly, ODO1-silenced transgenic petunia flowers accumulated higher EOBI transcript levels than controls, suggesting a complex feedback loop between these regulatory factors. The accumulation pattern of EOBI transcript relative to EOBII and ODO1, and the effect of up/downregulation of EOBII on transcript levels of EOBI and ODO1, further support these factors' hierarchical relationships. The dependence of scent production on EOBI expression and its direct interaction with both regulatory and structural genes provide evidence for EOBI’s wide-ranging involvement in the production of floral volatiles. PMID:23275577
Spitzer-Rimon, Ben; Farhi, Moran; Albo, Boaz; Cna'ani, Alon; Ben Zvi, Michal Moyal; Masci, Tania; Edelbaum, Orit; Yu, Yixun; Shklarman, Elena; Ovadis, Marianna; Vainstein, Alexander
2012-12-01
Flower scent is a highly dynamic trait, under developmental, spatial, and diurnal regulation. The mechanism governing scent production is only beginning to be unraveled. In petunia (Petunia hybrida), EMISSION OF BENZENOIDS II (EOBII) controls transcription of both the shikimate pathway-regulating MYB factor ODORANT1 (ODO1) and phenylpropanoid scent-related structural genes. A promoter-activation screen identified an R2R3-MYB-like regulatory factor of phenylpropanoid volatile biosynthesis acting downstream of EOBII, designated EOBI. EOBI silencing led to downregulation of ODO1 and numerous structural scent-related genes from both the shikimate and phenylpropanoid pathways. The ability of EOBI to directly activate ODO1, as revealed by electrophoretic mobility shift assay and yeast one-hybrid analysis, place EOBI upstream of ODO1 in regulating substrate availability for volatile biosynthesis. Interestingly, ODO1-silenced transgenic petunia flowers accumulated higher EOBI transcript levels than controls, suggesting a complex feedback loop between these regulatory factors. The accumulation pattern of EOBI transcript relative to EOBII and ODO1, and the effect of up/downregulation of EOBII on transcript levels of EOBI and ODO1, further support these factors' hierarchical relationships. The dependence of scent production on EOBI expression and its direct interaction with both regulatory and structural genes provide evidence for EOBI's wide-ranging involvement in the production of floral volatiles.
Beekman, Madeleine
2005-12-01
Honey bees utilise floral food sources that vary temporally in their relative and absolute quality. Via a sophisticated colony organisation, a honey bee colony allocates its foragers such that the colony focuses on the most profitable forage sites while keeping track of changes within its foraging environment. One important mechanism of the allocation of foragers is the ability of experienced foragers to revisit past-profitable forage sites after a period of temporary dearth caused by, for example, inclement weather. The scent of past-profitable forage within the colony brought back by other foragers is sufficient to reactivate these experienced foragers. Here I determine for how long bees react to the scent of a past-profitable forage site. I show that the ability of foragers to revisit the location of a past-profitable food source diminishes rapidly over a period of 10 days, until no forager reacts to the cue (scent). I discuss the implications of these findings with respect to the colony's ability to react rapidly to changing foraging conditions.
Caffeine in floral nectar enhances a pollinator's memory of reward.
Wright, G A; Baker, D D; Palmer, M J; Stabler, D; Mustard, J A; Power, E F; Borland, A M; Stevenson, P C
2013-03-08
Plant defense compounds occur in floral nectar, but their ecological role is not well understood. We provide evidence that plant compounds pharmacologically alter pollinator behavior by enhancing their memory of reward. Honeybees rewarded with caffeine, which occurs naturally in nectar of Coffea and Citrus species, were three times as likely to remember a learned floral scent as were honeybees rewarded with sucrose alone. Caffeine potentiated responses of mushroom body neurons involved in olfactory learning and memory by acting as an adenosine receptor antagonist. Caffeine concentrations in nectar did not exceed the bees' bitter taste threshold, implying that pollinators impose selection for nectar that is pharmacologically active but not repellent. By using a drug to enhance memories of reward, plants secure pollinator fidelity and improve reproductive success.
Caffeine in floral nectar enhances a pollinator’s memory of reward
Wright, G. A.; Baker, D. D.; Palmer, M. J.; Stabler, D.; Mustard, J. A.; Power, E. F.; Borland, A. M.; Stevenson, P. C.
2015-01-01
Plant defence compounds occur in floral nectar, but their ecological role is not well-understood. We provide the first evidence that plant compounds pharmacologically alter pollinator behaviour by enhancing their memory of reward. Honeybees rewarded with caffeine, which occurs naturally in nectar of Coffea and Citrus species, were three times more likely to remember a learned floral scent than those rewarded with sucrose alone. Caffeine potentiated responses of mushroom body neurons involved in olfactory learning and memory by acting as an adenosine receptor antagonist. Caffeine concentrations in nectar never exceeded the bees’ bitter taste threshold, implying that pollinators impose selection for nectar that is pharmacologically active but not repellent. By using a drug to enhance memories of reward, plants secure pollinator fidelity and improve reproductive success. PMID:23471406
Van Kleunen, Mark; Nänni, Ingrid; Donaldson, John S; Manning, John C
2007-12-01
A deviation from the classical beetle pollination syndrome of dull-coloured flowers with an unpleasant scent is found in the Greater Cape Floral Region of South Africa. Here, monkey beetles (Scarabaeidae) visit brightly coloured, odourless flowers with conspicuous dark spots and centres (beetle marks). The role of flower colour and markings in attracting monkey beetles is still poorly understood. Artificial model flowers with different marking patterns were used to test the effect of beetle marks on visitation by monkey beetles. To test whether monkey beetles are conditioned to the colour of the local matrix species, model flowers of different colours were placed in populations of three differently coloured species of Iridaceae. Among all three matrix species the presence of dark markings of some kind (either centres or spots) increased visitation rates but the different matrix species differed in whether the effect was due to a dark centre or to dark spots. Monkey beetles were not conditioned for the colour of the matrix species: model colour was not significant in the Hesperantha vaginata and in the Romulea monadelpha matrices, whereas yellow model flowers were preferred over orange ones in the orange-flowered Sparaxis elegans matrix. This study is the first to demonstrate that beetle marks attract pollinating monkey beetles in the Greater Cape Floral Region. In contrast to plants with the classical beetle pollination syndrome that use floral scent as the most important attractant of pollinating beetles, plants with the monkey beetle pollination syndrome rely on visual signals, and, in some areas at least, monkey beetles favour flowers with dark beetle markings over unmarked flowers.
Xu, Shuqing; Schlüter, Philipp M
2015-01-01
Divergent selection by pollinators can bring about strong reproductive isolation via changes at few genes of large effect. This has recently been demonstrated in sexually deceptive orchids, where studies (1) quantified the strength of reproductive isolation in the field; (2) identified genes that appear to be causal for reproductive isolation; and (3) demonstrated selection by analysis of natural variation in gene sequence and expression. In a group of closely related Ophrys orchids, specific floral scent components, namely n-alkenes, are the key floral traits that control specific pollinator attraction by chemical mimicry of insect sex pheromones. The genetic basis of species-specific differences in alkene production mainly lies in two biosynthetic genes encoding stearoyl-acyl carrier protein desaturases (SAD) that are associated with floral scent variation and reproductive isolation between closely related species, and evolve under pollinator-mediated selection. However, the implications of this genetic architecture of key floral traits on the evolutionary processes of pollinator adaptation and speciation in this plant group remain unclear. Here, we expand on these recent findings to model scenarios of adaptive evolutionary change at SAD2 and SAD5, their effects on plant fitness (i.e., offspring number), and the dynamics of speciation. Our model suggests that the two-locus architecture of reproductive isolation allows for rapid sympatric speciation by pollinator shift; however, the likelihood of such pollinator-mediated speciation is asymmetric between the two orchid species O. sphegodes and O. exaltata due to different fitness effects of their predominant SAD2 and SAD5 alleles. Our study not only provides insight into pollinator adaptation and speciation mechanisms of sexually deceptive orchids but also demonstrates the power of applying a modeling approach to the study of pollinator-driven ecological speciation.
Aros, Danilo; Gonzalez, Veronica; Allemann, Rudolf K.; Müller, Carsten T.; Rosati, Carlo; Rogers, Hilary J.
2012-01-01
Native to South America, Alstroemeria flowers are known for their colourful tepals, and Alstroemeria hybrids are an important cut flower. However, in common with many commercial cut flowers, virtually all the commercial Alstroemeria hybrids are not scented. The cultivar ‘Sweet Laura’ is one of very few scented commercial Alstroemeria hybrids. Characterization of the volatile emission profile of these cut flowers revealed three major terpene compounds: (E)-caryophyllene, humulene (also known as α-caryophyllene), an ocimene-like compound, and several minor peaks, one of which was identified as myrcene. The profile is completely different from that of the parental scented species A. caryophyllaea. Volatile emission peaked at anthesis in both scented genotypes, coincident in cv. ‘Sweet Laura’ with the maximal expression of a putative terpene synthase gene AlstroTPS. This gene was preferentially expressed in floral tissues of both cv. ‘Sweet Laura’ and A. caryophyllaea. Characterization of the AlstroTPS gene structure from cv. ‘Sweet Laura’ placed it as a member of the class III terpene synthases, and the predicted 567 amino acid sequence placed it into the subfamily TPS-b. The conserved sequences R28(R)X8W and D321DXXD are the putative Mg2+-binding sites, and in vitro assay of AlstroTPS expressed in Escherichia coli revealed that the encoded enzyme possesses myrcene synthase activity, consistent with a role for AlstroTPS in scent production in Alstroemeria cv. ‘Sweet Laura’ flowers. PMID:22268153
Xiang, Lin; Zhao, Kaige; Chen, Longqing
2010-01-01
Farnesyl pyrophosphate (FPP) synthase catalyzes the biosynthesis of FPP, which is the precursors of sesquiterpenoids such as floral scent volatiles, from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). cDNA encoding wintersweet (Chimonanthus praecox L.) FPP synthase was isolated by the RT-PCR and RACE methods. The deduced amino acid sequence showed a high identity to plant FPP synthases. Expression of the gene in Escherichia coli yielded FPPS activity that catalyzed the synthesis of FPP as a main product. Tissue-specific and developmental analyses of the mRNA levels of CpFPPS and volatile sesquiterpenoids levels in C. praecox flowers revealed that the FPPS may play a regulatory role in floral volatile sesquiterpenoids of wintersweet. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths.
von Arx, Martin; Goyret, Joaquín; Davidowitz, Goggy; Raguso, Robert A
2012-06-12
Most research on plant-pollinator communication has focused on sensory and behavioral responses to relatively static cues. Floral rewards such as nectar, however, are dynamic, and foraging animals will increase their energetic profit if they can make use of floral cues that more accurately indicate nectar availability. Here we document such a cue--transient humidity gradients--using the night blooming flowers of Oenothera cespitosa (Onagraceae). The headspace of newly opened flowers reaches levels of about 4% above ambient relative humidity due to additive evapotranspirational water loss through petals and water-saturated air from the nectar tube. Floral humidity plumes differ from ambient levels only during the first 30 min after anthesis (before nectar is depleted in wild populations), whereas other floral traits (scent, shape, and color) persist for 12-24 h. Manipulative experiments indicated that floral humidity gradients are mechanistically linked to nectar volume and therefore contain information about energy rewards to floral visitors. Behavioral assays with Hyles lineata (Sphingidae) and artificial flowers with appropriate humidity gradients suggest that these hawkmoth pollinators distinguish between subtle differences in relative humidity when other floral cues are held constant. Moths consistently approached and probed flowers with elevated humidity over those with ambient humidity levels. Because floral humidity gradients are largely produced by the evaporation of nectar itself, they represent condition-informative cues that facilitate remote sensing of floral profitability by discriminating foragers. In a xeric environment, this level of honest communication should be adaptive when plant reproductive success is pollinator limited, due to intense competition for the attention of a specialized pollinator.
Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths
von Arx, Martin; Goyret, Joaquín; Davidowitz, Goggy; Raguso, Robert A.
2012-01-01
Most research on plant–pollinator communication has focused on sensory and behavioral responses to relatively static cues. Floral rewards such as nectar, however, are dynamic, and foraging animals will increase their energetic profit if they can make use of floral cues that more accurately indicate nectar availability. Here we document such a cue—transient humidity gradients—using the night blooming flowers of Oenothera cespitosa (Onagraceae). The headspace of newly opened flowers reaches levels of about 4% above ambient relative humidity due to additive evapotranspirational water loss through petals and water-saturated air from the nectar tube. Floral humidity plumes differ from ambient levels only during the first 30 min after anthesis (before nectar is depleted in wild populations), whereas other floral traits (scent, shape, and color) persist for 12–24 h. Manipulative experiments indicated that floral humidity gradients are mechanistically linked to nectar volume and therefore contain information about energy rewards to floral visitors. Behavioral assays with Hyles lineata (Sphingidae) and artificial flowers with appropriate humidity gradients suggest that these hawkmoth pollinators distinguish between subtle differences in relative humidity when other floral cues are held constant. Moths consistently approached and probed flowers with elevated humidity over those with ambient humidity levels. Because floral humidity gradients are largely produced by the evaporation of nectar itself, they represent condition-informative cues that facilitate remote sensing of floral profitability by discriminating foragers. In a xeric environment, this level of honest communication should be adaptive when plant reproductive success is pollinator limited, due to intense competition for the attention of a specialized pollinator. PMID:22645365
The evolution of imperfect floral mimicry
Vereecken, Nicolas J.; Schiestl, Florian P.
2008-01-01
The theory of mimicry predicts that selection favors signal refinement in mimics to optimally match the signals released by their specific model species. We provide here chemical and behavioral evidence that a sexually deceptive orchid benefits from its mimetic imperfection to its co-occurring and specific bee model by triggering a stronger response in male bees, which react more intensively to the similar, but novel, scent stimulus provided by the orchid. PMID:18508972
The evolution of imperfect floral mimicry.
Vereecken, Nicolas J; Schiestl, Florian P
2008-05-27
The theory of mimicry predicts that selection favors signal refinement in mimics to optimally match the signals released by their specific model species. We provide here chemical and behavioral evidence that a sexually deceptive orchid benefits from its mimetic imperfection to its co-occurring and specific bee model by triggering a stronger response in male bees, which react more intensively to the similar, but novel, scent stimulus provided by the orchid.
Balao, Francisco; Herrera, Javier; Talavera, Salvador; Dötterl, Stefan
2011-05-01
Scent emission is important in nocturnal pollination systems, and plant species pollinated by nocturnal insects often present characteristic odor compositions and temporal patterns of emission. We investigated the temporal (day/night; flower lifetime) and spatial (different flower parts, nectar) pattern of flower scent emission in nocturnally pollinated Dianthusinoxianus, and determined which compounds elicit physiological responses on the antennae of the sphingid pollinator Hyles livornica. The scent of D.inoxianus comprises 68 volatile compounds, but is dominated by aliphatic 2-ketones and sesquiterpenoids, which altogether make up 82% of collected volatiles. Several major and minor compounds elicit electrophysiological responses in the antennae of H. livornica. Total odor emission does not vary along day and night hours, and neither does along the life of the flower. However, the proportion of compounds eliciting physiological responses varies between day and night. All flower parts as well as nectar release volatiles. The scent of isolated flower parts is dominated by fatty acid derivatives, whereas nectar is dominated by benzenoids. Dissection (= damage) of flowers induced a ca. 20-fold increase in the rate of emission of EAD-active volatiles, especially aliphatic 2-ketones. We suggest that aliphatic 2-ketones might contribute to pollinator attraction in D. inoxianus, even though they have been attributed an insect repellent function in other plant species. We also hypothesize that the benzenoids in nectar may act as an honest signal ('nectar guide') for pollinators. Copyright © 2011 Elsevier Ltd. All rights reserved.
Floral odor learning within the hive affects honeybees' foraging decisions
NASA Astrophysics Data System (ADS)
Arenas, Andrés; Fernández, Vanesa M.; Farina, Walter M.
2007-03-01
Honeybees learn odor cues quickly and efficiently when visiting rewarding flowers. Memorization of these cues facilitates the localization and recognition of food sources during foraging flights. Bees can also use information gained inside the hive during social interactions with successful foragers. An important information cue that can be learned during these interactions is food odor. However, little is known about how floral odors learned in the hive affect later decisions of foragers in the field. We studied the effect of food scent on foraging preferences when this learning is acquired directly inside the hive. By using in-hive feeders that were removed 24 h before the test, we showed that foragers use the odor information acquired during a 3-day stimulation period with a scented solution during a food-choice situation outside the nest. This bias in food preference is maintained even 24 h after the replacement of all the hive combs. Thus, without being previously collected outside by foragers, food odors learned within the hive can be used during short-range foraging flights. Moreover, correct landings at a dual-choice device after replacing the storing combs suggests that long-term memories formed within the colony can be retrieved while bees search for food in the field.
Tao, Zhi-Bin; Ren, Zong-Xin; Bernhardt, Peter; Liang, Huan; Li, Hai-Dong; Zhao, Yan-Hui; Wang, Hong; Li, De-Zhu
2018-06-01
Isolation between species, or taxa sharing a common lineage, depends primarily on the relative strengths of various reproductive barriers. Previous studies on reproductive isolation between orchids emphasized mechanical and ethological barriers in flowers of species showing food and/or sexual mimicry. In this study, we investigated and quantified a series of prepollination and postpollination barriers between pink and white forms of Spiranthes sinensis sl, a nectar-secreting complex. We generated ML trees based on trn S-G and mat K to explore phylogenetic relationships in this species complex. Spiranthes sinensis sl segregated from some other congeners, but the white form constituted a distinct clade in relation to the pink form. The white form secreted 2-Phenylethanol as it is a single-scent compound and was pollinated almost exclusively by native, large-bodied Apis cerana and Bombus species (Apidae). Apis cerana showed a high floral constancy to this form. The scentless, pink form was pollinated primarily by smaller bees in the genera Ceratina (Apidae), and members of the family Halictidae, with infrequent visits by A. cerana and Bombus species. Fruit set and the production of large embryos following interform pollination treatments were significantly lower compared to intraform pollination results for the white form. Our results suggested that pollinator isolation, based on color and scent cues, may result in greater floral constancy in white populations when both forms are sympatric as two different, guilds of pollinators forage selectively preventing or reducing prospective gene flow. Postpollination barriers appear weaker than prepollination barriers but they also play a role in interform isolation, especially in the white form. Our findings suggest that floral color forms in S. sinensis do not represent an unbalanced polymorphism. Interpretations of the evolutionary status of these forms are discussed.
Rodriguez-Saona, Cesar; Parra, Leonardo; Quiroz, Andrés; Isaacs, Rufus
2011-01-01
Background and Aims Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined. Methods Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles. Key Results Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps. Conclusions Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers. PMID:21498566
Rodriguez-Saona, Cesar; Parra, Leonardo; Quiroz, Andrés; Isaacs, Rufus
2011-06-01
Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined. Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles. Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps. Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers.
Welsford, Megan R; Hobbhahn, Nina; Midgley, Jeremy J; Johnson, Steven D
2016-01-01
Transitions between animal and wind pollination have occurred in many lineages and have been linked to various floral modifications, but these have seldom been assessed in a phylogenetic framework. In the dioecious genus Leucadendron (Proteaceae), transitions from insect to wind pollination have occurred at least four times. Using analyses that controlled for relatedness among Leucadendron species, we investigated how these transitions shaped the evolution of floral structural and signaling traits, including the degree of sexual dimorphism in these traits. Pollen grains of wind-pollinated species were found to be smaller, more numerous, and dispersed more efficiently in wind than were those of insect-pollinated species. Wind-pollinated species also exhibited a reduction in spectral contrast between showy subtending leaves and background foliage, reduced volatile emissions, and a greater degree of sexual dimorphism in color and scent. Uniovulate flowers and inflorescence condensation are conserved ancestral features in Leucadendron and likely served as exaptations in shifts to wind pollination. These results offer insights into the key modifications of male and female floral traits involved in transitions between insect and wind pollination. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers
Yon, Felipe; Joo, Youngsung; Cortés Llorca, Lucas; Rothe, Eva; Baldwin, Ian T.; Kim, Sang-Gyu
2016-01-01
Summary The rhythmic opening/closing and volatile emissions of flowers is known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach led to the identification of core circadian clock components in Arabidopsis thaliana, involvement of these clock components for floral rhythms remained untested likely due to weak diurnal rhythms in A. thaliana flowers.Here we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents, and move vertically through a 140° arc.We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission, and pedicel movement, but not flower closing.We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known as a core clock component. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms. PMID:26439540
Van der Niet, Timotheüs; Pirie, Michael D.; Shuttleworth, Adam; Johnson, Steven D.; Midgley, Jeremy J.
2014-01-01
Background and Aims According to the Grant–Stebbins model of pollinator-driven divergence, plants that disperse beyond the range of their specialized pollinator may adapt to a new pollination system. Although this model provides a compelling explanation for pollination ecotype formation, few studies have directly tested its validity in nature. Here we investigate the distribution and pollination biology of several subspecies of the shrub Erica plukenetii from the Cape Floristic Region in South Africa. We analyse these data in a phylogenetic context and combine these results with information on pollinator ranges to test whether the evolution of pollination ecotypes is consistent with the Grant–Stebbins model. Methods and Key Results Pollinator observations showed that the most common form of E. plukenetii with intermediate corolla length is pollinated by short-billed Orange-breasted sunbirds. Populations at the northern fringe of the distribution are characterized by long corollas, and are mainly pollinated by long-billed Malachite sunbirds. A population with short corollas in the centre of the range was mainly pollinated by insects, particularly short-tongued noctuid moths. Bird exclusion in this population did not have an effect on fruit set, while insect exclusion reduced fruit set. An analysis of floral scent across the range, using coupled gas chromatography–mass spectrometry, showed that the scent bouquets of flowers from moth-pollinated populations are characterized by a larger number of scent compounds and higher emission rates than those in bird-pollinated populations. This was also reflected in clear separation of moth- and bird-pollinated populations in a two-dimensional phenotype space based on non-metric multidimensional scaling analysis of scent data. Phylogenetic analyses of chloroplast and nuclear DNA sequences strongly supported monophyly of E. plukenetii, but not of all the subspecies. Reconstruction of ancestral character states suggests two shifts from traits associated with short-billed Orange-breasted sunbird pollination: one towards traits associated with moth pollination, and one towards traits associated with pollination by long-billed Malachite sunbirds. The latter shift coincided with the colonization of Namaqualand in which Orange-breasted sunbirds are absent. Conclusions Erica plukenetii is characterized by three pollination ecotypes, but only the evolutionary transition from short- to long-billed sunbird pollination can be clearly explained by the Grant–Stebbins model. Corolla length is a key character for both ecotype transitions, while floral scent emission was important for the transition from bird to moth pollination. PMID:24071499
Pang, Chun-Chiu; Scharaschkin, Tanya; Su, Yvonne C. F.; Saunders, Richard M. K.
2013-01-01
Unlike most genera in the early-divergent angiosperm family Annonaceae, Pseuduvaria exhibits a diversity of floral sex expression. Most species are structurally andromonoecious (or possibly androdioecious), although the hermaphroditic flowers have been inferred to be functionally pistillate, with sterile staminodes. Pseuduvaria presents an ideal model for investigating the evolution of floral sex in early-divergent angiosperms, although detailed empirical studies are currently lacking. The phenology and pollination ecology of the Australian endemic species Pseuduvaria mulgraveana are studied in detail, including evaluations of floral scent chemistry, pollen viability, and floral visitors. Results showed that the flowers are pollinated by small diurnal nitidulid beetles and are protogynous. Pollen from both hermaphroditic and staminate flowers are shown to be equally viable. The structurally hermaphroditic flowers are nevertheless functionally pistillate as anther dehiscence is delayed until after petal abscission and hence after the departure of pollinators. This mechanism to achieve functional unisexuality of flowers has not previously been reported in angiosperms. It is known that protogyny is widespread amongst early-divergent angiosperms, including the Annonaceae, and is effective in preventing autogamy. Delayed anther dehiscence represents a further elaboration of this, and is effective in preventing geitonogamy since very few sexually mature flowers occur simultaneously in an individual. We highlight the necessity for field-based empirical interpretations of functional floral sex expression prior to evaluations of evolutionary processes. PMID:23555844
Seasonal induction of alternative principal pathway for rose flower scent
Hirata, Hiroshi; Ohnishi, Toshiyuki; Tomida, Kensuke; Ishida, Haruka; Kanda, Momoyo; Sakai, Miwa; Yoshimura, Jin; Suzuki, Hideyuki; Ishikawa, Takamasa; Dohra, Hideo; Watanabe, Naoharu
2016-01-01
Ecological adaptations to seasonal changes are often observed in the phenotypic traits of plants and animals, and these adaptations are usually expressed through the production of different biochemical end products. In this study, ecological adaptations are observed in a biochemical pathway without alteration of the end products. We present an alternative principal pathway to the characteristic floral scent compound 2-phenylethanol (2PE) in roses. The new pathway is seasonally induced in summer as a heat adaptation that uses rose phenylpyruvate decarboxylase (RyPPDC) as a novel enzyme. RyPPDC transcript levels and the resulting production of 2PE are increased time-dependently under high temperatures. The novel summer pathway produces levels of 2PE that are several orders of magnitude higher than those produced by the previously known pathway. Our results indicate that the alternative principal pathway identified here is a seasonal adaptation for managing the weakened volatility of summer roses. PMID:26831950
Wiśniewska, Natalia; Kowalkowska, Agnieszka K; Kozieradzka-Kiszkurno, Małgorzata; Krawczyńska, Agnieszka T; Bohdanowicz, Jerzy
2018-03-01
Two representatives of section Lepidorhiza, previously sometimes considered conspecific, Bulbophyllum levanae and Bulbophyllum nymphopolitanum, demonstrated both similarities and differences in floral features. There were significant differences in the length of sepals and micromorphological features of the labellum. In both species, osmophores are located on the extended apices of sepals and possibly on petals. An abundance of proteins in tepals is probably associated with the unpleasant scent of the flowers, whereas the thin wax layers on the epidermis are probably involved in the maintenance of the brilliance of floral tepals, which strongly attracts flies. In all tepals of both species, we noted the presence of dihydroxyphenolic globules in the cytoplasm after staining with FeCl 3 . Comparison with ultrastructure results revealed that they were associated with plastids containing plastoglobuli. The most remarkable feature was the presence of a prominent periplasmic space in the epidermal cells of both investigated species. Furthermore, in the labellum of B. levanae, the cuticle contained microchannels. The combination of periplasmic space and microchannels has not previously been recorded.
Byers, Kelsey J.R.P.; Vela, James P.; Peng, Foen; Riffell, Jeffrey A.; Bradshaw, H.D.
2014-01-01
Summary Pollinator-mediated reproductive isolation is a major factor in driving the diversification of flowering plants. Studies of floral traits involved in reproductive isolation have focused nearly exclusively on visual signals, such as flower color. The role of less obvious signals, such as floral scent, has been studied only recently. In particular, the genetics of floral volatiles involved in mediating differential pollinator visitation remains unknown. The bumblebee-pollinated Mimulus lewisii and hummingbird-pollinated M. cardinalis are a model system for studying reproductive isolation via pollinator preference. We have shown that these two species differ in three floral terpenoid volatiles - D-limonene, β-myrcene, and E-β-ocimene - that are attractive to bumblebee pollinators. By genetic mapping and in vitro enzyme activity analysis we demonstrate that these interspecific differences are consistent with allelic variation at two loci – LIMONENE-MYRCENE SYNTHASE (LMS) and OCIMENE SYNTHASE (OS). M. lewisii LMS (MlLMS) and OS (MlOS) are expressed most strongly in floral tissue in the last stages of floral development. M. cardinalis LMS (McLMS) is weakly expressed and has a nonsense mutation in exon 3. M. cardinalis OS (McOS) is expressed similarly to MlOS, but the encoded McOS enzyme produces no E-β-ocimene. Recapitulating the M. cardinalis phenotype by reducing the expression of MlLMS by RNAi in transgenic M. lewisii produces no behavioral difference in pollinating bumblebees; however, reducing MlOS expression produces a 6% decrease in visitation. Allelic variation at the OCIMENE SYNTHASE locus likely contributes to differential pollinator visitation, and thus promotes reproductive isolation between M. lewisii and M. cardinalis. OCIMENE SYNTHASE joins a growing list of “speciation genes” (“barrier genes”) in flowering plants. PMID:25319242
Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers.
Yon, Felipe; Joo, Youngsung; Cortés Llorca, Lucas; Rothe, Eva; Baldwin, Ian T; Kim, Sang-Gyu
2016-02-01
The rhythmic opening/closing and volatile emissions of flowers are known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach has led to the identification of core circadian clock components in Arabidopsis thaliana, the involvement of these clock components in floral rhythms has remained untested, probably because of the weak diurnal rhythms in A. thaliana flowers. Here, we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents and move vertically through a 140° arc. We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission and pedicel movement, but not flower closing. We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known to be core clock components. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Schiestl, Florian P; Dötterl, Stefan
2012-07-01
Coevolution is thought to be a major factor in shaping plant-pollinator interactions. Alternatively, plants may have evolved traits that fitted pre-existing preferences or morphologies in the pollinators. Here, we test these two scenarios in the plant family of Araceae and scarab beetles (Coleoptera, Scarabaeidae) as pollinators. We focused on floral volatile organic compounds (VOCs) and production/detection of VOCs by scarab beetles. We found phylogenetic structure in the production/detection of methoxylated aromatics in scarabs, but not plants. Within the plants, most of the compounds showed a well-supported pattern of correlated evolution with scarab-beetle pollination. In contrast, the scarabs showed no correlation between VOC production/detection and visitation to Araceae flowers, with the exception of the VOC skatole. Moreover, many VOCs were found in nonpollinating beetle groups (e.g., Melolonthinae) that are ancestors of pollinating scarabs. Importantly, none of the tested VOCs were found to have originated in pollinating taxa. Our analysis indicates a Jurassic origin of VOC production/detection in scarabs, but a Cretaceous/Paleocene origin of floral VOCs in plants. Therefore, we argue against coevolution, instead supporting the scenario of sequential evolution of floral VOCs in Araceae driven by pre-existing bias of pollinators. © 2012 The Author(s).
Behavioral consequences of innate preferences and olfactory learning in hawkmoth–flower interactions
Riffell, Jeffrey A.; Alarcón, Ruben; Abrell, Leif; Davidowitz, Goggy; Bronstein, Judith L.; Hildebrand, John G.
2008-01-01
Spatiotemporal variability in floral resources can have ecological and evolutionary consequences for both plants and the pollinators on which they depend. Seldom, however, can patterns of flower abundance and visitation in the field be linked with the behavioral mechanisms that allow floral visitors to persist when a preferred resource is scarce. To explore these mechanisms better, we examined factors controlling floral preference in the hawkmoth Manduca sexta in the semiarid grassland of Arizona. Here, hawkmoths forage primarily on flowers of the bat-adapted agave, Agave palmeri, but shift to the moth-adapted flowers of their larval host plant, Datura wrightii, when these become abundant. Both plants emit similar concentrations of floral odor, but scent composition, nectar, and flower reflectance are distinct between the two species, and A. palmeri flowers provide six times as much chemical energy as flowers of D. wrightii. Behavioral experiments with both naïve and experienced moths revealed that hawkmoths learn to feed from agave flowers through olfactory conditioning but readily switch to D. wrightii flowers, for which they are the primary pollinator, based on an innate odor preference. Behavioral flexibility and the olfactory contrast between flowers permit the hawkmoths to persist within a dynamic environment, while at the same time to function as the major pollinator of one plant species. PMID:18305169
Haugen, Riston H.; Saunders, Diane G. O.; Leonelli, Lauriebeth; MacLean, Dan; Hogenhout, Saskia A.; Kamoun, Sophien
2013-01-01
Pucciniamonoica is a spectacular plant parasitic rust fungus that triggers the formation of flower-like structures (pseudoflowers) in its Brassicaceae host plant Boechera stricta . Pseudoflowers mimic in shape, color, nectar and scent co-occurring and unrelated flowers such as buttercups. They act to attract insects thereby aiding spore dispersal and sexual reproduction of the rust fungus. Although much ecological research has been performed on P . monoica -induced pseudoflowers, this system has yet to be investigated at the molecular or genomic level. To date, the molecular alterations underlying the development of pseudoflowers and the genes involved have not been described. To address this, we performed gene expression profiling to reveal 256 plant biological processes that are significantly altered in pseudoflowers. Among these biological processes, plant genes involved in cell fate specification, regulation of transcription, reproduction, floral organ development, anthocyanin (major floral pigments) and terpenoid biosynthesis (major floral volatile compounds) were down-regulated in pseudoflowers. In contrast, plant genes involved in shoot, cotyledon and leaf development, carbohydrate transport, wax biosynthesis, cutin transport and L-phenylalanine metabolism (pathway that results in phenylethanol and phenylacetaldehyde volatile production) were up-regulated. These findings point to an extensive reprogramming of host genes by the rust pathogen to induce floral mimicry. We also highlight 31 differentially regulated plant genes that are enriched in the biological processes mentioned above, and are potentially involved in the formation of pseudoflowers. This work illustrates the complex perturbations induced by rust pathogens in their host plants, and provides a starting point for understanding the molecular mechanisms of pathogen-induced floral mimicry. PMID:24069397
Cano, Liliana M; Raffaele, Sylvain; Haugen, Riston H; Saunders, Diane G O; Leonelli, Lauriebeth; MacLean, Dan; Hogenhout, Saskia A; Kamoun, Sophien
2013-01-01
Pucciniamonoica is a spectacular plant parasitic rust fungus that triggers the formation of flower-like structures (pseudoflowers) in its Brassicaceae host plant Boecherastricta. Pseudoflowers mimic in shape, color, nectar and scent co-occurring and unrelated flowers such as buttercups. They act to attract insects thereby aiding spore dispersal and sexual reproduction of the rust fungus. Although much ecological research has been performed on P. monoica-induced pseudoflowers, this system has yet to be investigated at the molecular or genomic level. To date, the molecular alterations underlying the development of pseudoflowers and the genes involved have not been described. To address this, we performed gene expression profiling to reveal 256 plant biological processes that are significantly altered in pseudoflowers. Among these biological processes, plant genes involved in cell fate specification, regulation of transcription, reproduction, floral organ development, anthocyanin (major floral pigments) and terpenoid biosynthesis (major floral volatile compounds) were down-regulated in pseudoflowers. In contrast, plant genes involved in shoot, cotyledon and leaf development, carbohydrate transport, wax biosynthesis, cutin transport and L-phenylalanine metabolism (pathway that results in phenylethanol and phenylacetaldehyde volatile production) were up-regulated. These findings point to an extensive reprogramming of host genes by the rust pathogen to induce floral mimicry. We also highlight 31 differentially regulated plant genes that are enriched in the biological processes mentioned above, and are potentially involved in the formation of pseudoflowers. This work illustrates the complex perturbations induced by rust pathogens in their host plants, and provides a starting point for understanding the molecular mechanisms of pathogen-induced floral mimicry.
Sanguinetti, Agustin; Buzatto, Cristiano Roberto; Pedron, Marcelo; Davies, Kevin L.; Ferreira, Pedro Maria de Abreu; Maldonado, Sara; Singer, Rodrigo B.
2012-01-01
Background and Aims The pollination biology of very few Chloraeinae orchids has been studied to date, and most of these studies have focused on breeding systems and fruiting success. Chloraea membranacea Lindl. is one of the few non-Andean species in this group, and the aim of the present contribution is to elucidate the pollination biology, functional floral morphology and breeding system in native populations of this species from Argentina (Buenos Aires) and Brazil (Rio Grande do Sul State). Methods Floral features were examined using light microscopy, and scanning and transmission electron microscopy. The breeding system was studied by means of controlled pollinations applied to plants, either bagged in the field or cultivated in a glasshouse. Pollination observations were made on natural populations, and pollinator behaviour was recorded by means of photography and video. Key Results Both Argentinean and Brazilian plants were very consistent regarding all studied features. Flowers are nectarless but scented and anatomical analysis indicates that the dark, clavate projections on the adaxial labellar surface are osmophores (scent-producing glands). The plants are self-compatible but pollinator-dependent. The fruit-set obtained through cross-pollination and manual self-pollination was almost identical. The main pollinators are male and female Halictidae bees that withdraw the pollinarium when leaving the flower. Remarkably, the bees tend to visit more than one flower per inflorescence, thus promoting self-pollination (geitonogamy). Fruiting success in Brazilian plants reached 60·78 % in 2010 and 46 % in 2011. Some pollinarium-laden female bees were observed transferring pollen from the carried pollinarium to their hind legs. The use of pollen by pollinators is a rare record for Orchidaceae in general. Conclusions Chloraea membrancea is pollinated by deceit. Together, self-compatibility, pollinarium texture, pollinator abundance and behaviour may account for the observed high fruiting success. It is suggested that a reappraisal and re-analysis of important flower features in Chloraeinae orchids is necessary. PMID:23071217
2012-01-01
Background Silene latifolia and its pollinator, the noctuid moth Hadena bicruris, represent an open nursery pollination system wherein floral volatiles, especially veratrole (1, 2-dimethoxybenzene), lilac aldehydes, and phenylacetaldehyde are of key importance for floral signaling. Despite the important role of floral scent in ensuring reproductive success in S. latifolia, the molecular basis of scent biosynthesis in this species has not yet been investigated. Results We isolated two full-length cDNAs from S. latifolia that show similarity to rose orcinol O-methyltransferase. Biochemical analysis showed that both S. latifolia guaiacol O-methyltransferase1 (SlGOMT1) &S. latifolia guaiacol O-methyltransferase2 (SlGOMT2) encode proteins that catalyze the methylation of guaiacol to form veratrole. A large Km value difference between SlGOMT1 (~10 μM) and SlGOMT2 (~501 μM) resulted that SlGOMT1 is 31-fold more catalytically efficient than SlGOMT2. qRT-PCR expression analysis showed that the SlGOMT genes are specifically expressed in flowers and male S. latifolia flowers had 3- to 4-folds higher level of GOMT gene transcripts than female flower tissues. Two related cDNAs, S. dioica O-methyltransferase1 (SdOMT1) and S. dioica O-methyltransferase2 (SdOMT2), were also obtained from the sister species Silene dioica, but the proteins they encode did not methylate guaiacol, consistent with the lack of veratrole emission in the flowers of this species. Our evolutionary analysis uncovered that SlGOMT1 and SlGOMT2 genes evolved under positive selection, whereas SdOMT1 and SdOMT2 genes show no evidence for selection. Conclusions Altogether, we report the identification and functional characterization of the gene, SlGOMT1 that efficiently catalyzes veratrole formation, whereas another copy of this gene with only one amino acid difference, SlGOMT2 was found to be less efficient for veratrole synthesis in S. latifolia. PMID:22937972
Diversity of pollination ecology in the Schismatoglottis Calyptrata Complex Clade (Araceae).
Hoe, Y C; Gibernau, M; Wong, S Y
2018-05-01
Field studies integrating pollination investigations with an assessment of floral scent composition and thermogenesis in tropical aroids are rather few. Thus, this study aimed to investigate the pollination biology of nine species belonging to Schismatoglottis Calyptrata Complex Clade. The flowering mechanism, visiting insect activities, reproductive system, thermogenesis and floral scent composition were examined. Anthesis for all species started at dawn and lasted 25-29 h. Colocasiomyia (Diptera, Drosophilidae) are considered the main pollinators for all the investigated species. Cycreon (Coleoptera, Hydrophilidae) are considered secondary pollinators as they are only present in seven of the nine host plants, despite the fact that they are the most effective pollen carrier, carrying up to 15 times more pollen grains than Colocasiomyia flies. However, the number of Colocasiomyia individuals was six times higher than Cycreon beetles. Chaloenus (Chrysomelidae, Galeuricinae) appeared to be an inadvertent pollinator. Atheta (Coleoptera, Staphylinidae) is considered a floral visitor in most investigated species of the Calyptrata Complex Clade in Sarawak, but a possible pollinator in S. muluensis. Chironomidae midges and pteromalid wasps are considered visitors in S. calyptrata. Thermogenesis in a biphasic pattern was observed in inflorescences of S. adducta, S. calyptrata, S. giamensis, S. pseudoniahensis and S. roh. The first peak occurred during pistillate anthesis; the second peak during staminate anthesis. Inflorescences of all investigated species of Calyptrata Complex Clade emitted four types of ester compound, with methyl ester-3-methyl-3-butenoic acid as a single major VOC (volatile organic compound). The appendix, pistillate zone, staminate zone and spathe emitted all these compounds. A mixed fly-beetle pollination system is considered an ancestral trait in the Calyptrata Complex Clade, persisting in Sarawak taxa, whereas the marked reduction of interpistillar staminodes in taxa from Peninsular Malaysia and especially, Ambon, Indonesia, is probably linked to a shift in these taxa to a fly-pollinated system. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Sanguinetti, Agustin; Buzatto, Cristiano Roberto; Pedron, Marcelo; Davies, Kevin L; Ferreira, Pedro Maria de Abreu; Maldonado, Sara; Singer, Rodrigo B
2012-12-01
The pollination biology of very few Chloraeinae orchids has been studied to date, and most of these studies have focused on breeding systems and fruiting success. Chloraea membranacea Lindl. is one of the few non-Andean species in this group, and the aim of the present contribution is to elucidate the pollination biology, functional floral morphology and breeding system in native populations of this species from Argentina (Buenos Aires) and Brazil (Rio Grande do Sul State). Floral features were examined using light microscopy, and scanning and transmission electron microscopy. The breeding system was studied by means of controlled pollinations applied to plants, either bagged in the field or cultivated in a glasshouse. Pollination observations were made on natural populations, and pollinator behaviour was recorded by means of photography and video. Both Argentinean and Brazilian plants were very consistent regarding all studied features. Flowers are nectarless but scented and anatomical analysis indicates that the dark, clavate projections on the adaxial labellar surface are osmophores (scent-producing glands). The plants are self-compatible but pollinator-dependent. The fruit-set obtained through cross-pollination and manual self-pollination was almost identical. The main pollinators are male and female Halictidae bees that withdraw the pollinarium when leaving the flower. Remarkably, the bees tend to visit more than one flower per inflorescence, thus promoting self-pollination (geitonogamy). Fruiting success in Brazilian plants reached 60·78 % in 2010 and 46 % in 2011. Some pollinarium-laden female bees were observed transferring pollen from the carried pollinarium to their hind legs. The use of pollen by pollinators is a rare record for Orchidaceae in general. Chloraea membrancea is pollinated by deceit. Together, self-compatibility, pollinarium texture, pollinator abundance and behaviour may account for the observed high fruiting success. It is suggested that a reappraisal and re-analysis of important flower features in Chloraeinae orchids is necessary.
Shimoda, Takeshi; Nishihara, Masahiro; Ozawa, Rika; Takabayashi, Junji; Arimura, Gen-ichiro
2012-03-01
Plants under herbivore attack emit mixtures of volatiles (herbivore-induced plant volatiles, HIPVs) that can attract predators of the herbivores. Although the composition of HIPVs should be critical for the attraction, most studies of transgenic plant-emitted volatiles have simply addressed the effect of trans-volatiles without embedding in other endogenous plant volatiles. We investigated the abilities of transgenic wishbone flower plants (Torenia hybrida and Torenia fournieri) infested with spider mites, emitting a trans-volatile ((E)-β-ocimene) in the presence or absence of endogenous volatiles (natural HIPVs and/or floral volatiles), to attract predatory mites (Phytoseiulus persimilis). In both olfactory- and glasshouse-based assays, P. persimilis females were attracted to natural HIPVs from infested wildtype (wt) plants of T. hybrida but not to those of T. fournieri. The trans-volatile enhanced the ability to attract P. persimilis only when added to an active HIPV blend from the infested transgenic T. hybrida plants, in comparison with the attraction by infested wt plants. Intriguingly, floral volatiles abolished the enhanced attractive ability of T. hybrida transformants, although floral volatiles themselves did not elicit any attraction or avoidance behavior. Predator responses to trans-volatiles were found to depend on various background volatiles (e.g. natural HIPVs and floral volatiles) endogenously emitted by the transgenic plants. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Hossaert-McKey, M.; Proffit, M.; Soler, C. C. L.; Chen, C.; Bessière, J.-M.; Schatz, B.; Borges, R. M.
2016-01-01
In nursery pollination mutualisms, which are usually obligate interactions, olfactory attraction of pollinators by floral volatile organic compounds (VOCs) is the main step in guaranteeing partner encounter. However, mechanisms ensuring the evolutionary stability of dioecious fig–pollinator mutualisms, in which female fig trees engage in pollination by deceit resulting in zero reproductive success of pollinators that visit them, are poorly understood. In dioecious figs, individuals of each sex should be selected to produce odours that their pollinating wasps cannot distinguish, especially since pollinators have usually only one choice of a nursery during their lifetime. To test the hypothesis of intersexual chemical mimicry, VOCs emitted by pollen-receptive figs of seven dioecious species were compared using headspace collection and gas chromatography-mass spectrometry analysis. First, fig-flower scents varied significantly among species, allowing host-species recognition. Second, in species in which male and female figs are synchronous, intersexual VOC variation was not significant. However, in species where figs of both sexes flower asynchronously, intersexual variation of VOCs was detectable. Finally, with one exception, there was no sexual dimorphism in scent quantity. We show that there are two ways to use scent to be a dioecious fig based on differences in flowering synchrony between the sexes. PMID:26888579
Hossaert-McKey, M; Proffit, M; Soler, C C L; Chen, C; Bessière, J-M; Schatz, B; Borges, R M
2016-02-18
In nursery pollination mutualisms, which are usually obligate interactions, olfactory attraction of pollinators by floral volatile organic compounds (VOCs) is the main step in guaranteeing partner encounter. However, mechanisms ensuring the evolutionary stability of dioecious fig-pollinator mutualisms, in which female fig trees engage in pollination by deceit resulting in zero reproductive success of pollinators that visit them, are poorly understood. In dioecious figs, individuals of each sex should be selected to produce odours that their pollinating wasps cannot distinguish, especially since pollinators have usually only one choice of a nursery during their lifetime. To test the hypothesis of intersexual chemical mimicry, VOCs emitted by pollen-receptive figs of seven dioecious species were compared using headspace collection and gas chromatography-mass spectrometry analysis. First, fig-flower scents varied significantly among species, allowing host-species recognition. Second, in species in which male and female figs are synchronous, intersexual VOC variation was not significant. However, in species where figs of both sexes flower asynchronously, intersexual variation of VOCs was detectable. Finally, with one exception, there was no sexual dimorphism in scent quantity. We show that there are two ways to use scent to be a dioecious fig based on differences in flowering synchrony between the sexes.
Lesot, Agnès; Ginglinger, Jean-François; Beran, Franziska; Schneider, Bernd; Leiss, Kirsten; Werck-Reichhart, Danièle
2015-01-01
The acyclic monoterpene alcohol linalool is one of the most frequently encountered volatile compounds in floral scents. Various linalool oxides are usually emitted along with linalool, some of which are cyclic, such as the furanoid lilac compounds. Recent work has revealed the coexistence of two flower-expressed linalool synthases that produce the (S)- or (R)-linalool enantiomers and the involvement of two P450 enzymes in the linalool oxidation in the flowers of Arabidopsis thaliana. Partially redundant enzymes may also contribute to floral linalool metabolism. Here, we provide evidence that CYP76C1 is a multifunctional enzyme that catalyzes a cascade of oxidation reactions and is the major linalool metabolizing oxygenase in Arabidopsis flowers. Based on the activity of the recombinant enzyme and mutant analyses, we demonstrate its prominent role in the formation of most of the linalool oxides identified in vivo, both as volatiles and soluble conjugated compounds, including 8-hydroxy, 8-oxo, and 8-COOH-linalool, as well as lilac aldehydes and alcohols. Analysis of insect behavior on CYP76C1 mutants and in response to linalool and its oxygenated derivatives demonstrates that CYP76C1-dependent modulation of linalool emission and production of linalool oxides contribute to reduced floral attraction and favor protection against visitors and pests. PMID:26475865
Ren, Zong-Xin; Li, De-Zhu; Bernhardt, Peter; Wang, Hong
2011-01-01
Charles Darwin was fascinated by the orchid–pollinator interactions, but he did not realize that many orchid species are pollinated by deceit. Cypripedium, a model lineage of nonrewarding orchid flowers, is pollinated primarily by bees. Here we present both an example of floral mimesis of fungus-infected foliage in orchids and an example of flat-footed flies (Agathomyia sp.; Platypezidae) as pollen vectors for angiosperms. Cypripedium fargesii is a nectarless, terrestrial, endangered orchid from southwestern China that requires cross-pollination to produce the maximum number of viable embryos. All insects caught entering or leaving the labellum sac were Agathomyia sp. carrying conidia of Cladosporium sp. on their mouthparts and legs, suggesting mycophagy. Blackish hairy spots on the upper surface of foliage may imitate black mold spots, serving as short-term visual lures. Some odor molecules also associated with Cladosporium cultures were isolated in the floral scent. Mimesis of fungus-infected foliage probably represents an overlooked but important option in angiosperm diversification, because there are three to five more Cypripedium spp. in southwestern China with the same mode of floral presentation and black-spotted hairy leaves. PMID:21502502
Ren, Zong-Xin; Li, De-Zhu; Bernhardt, Peter; Wang, Hong
2011-05-03
Charles Darwin was fascinated by the orchid-pollinator interactions, but he did not realize that many orchid species are pollinated by deceit. Cypripedium, a model lineage of nonrewarding orchid flowers, is pollinated primarily by bees. Here we present both an example of floral mimesis of fungus-infected foliage in orchids and an example of flat-footed flies (Agathomyia sp.; Platypezidae) as pollen vectors for angiosperms. Cypripedium fargesii is a nectarless, terrestrial, endangered orchid from southwestern China that requires cross-pollination to produce the maximum number of viable embryos. All insects caught entering or leaving the labellum sac were Agathomyia sp. carrying conidia of Cladosporium sp. on their mouthparts and legs, suggesting mycophagy. Blackish hairy spots on the upper surface of foliage may imitate black mold spots, serving as short-term visual lures. Some odor molecules also associated with Cladosporium cultures were isolated in the floral scent. Mimesis of fungus-infected foliage probably represents an overlooked but important option in angiosperm diversification, because there are three to five more Cypripedium spp. in southwestern China with the same mode of floral presentation and black-spotted hairy leaves.
Wong, Darren C J; Pichersky, Eran; Peakall, Rod
2017-01-01
Flowers have evolved diverse strategies to attract animal pollinators, with visual and olfactory floral cues often crucial for pollinator attraction. While most plants provide reward (e.g., nectar, pollen) in return for the service of pollination, 1000s of plant species, particularly in the orchid family, offer no apparent reward. Instead, they exploit their often specific pollinators (one or few) by mimicking signals of female insects, food source, and oviposition sites, among others. A full understanding of how these deceptive pollination strategies evolve and persist remains an open question. Nonetheless, there is growing evidence that unique blends that often contain unusual compounds in floral volatile constituents are often employed to secure pollination by deception. Thus, the ability of plants to rapidly evolve new pathways for synthesizing floral volatiles may hold the key to the widespread evolution of deceptive pollination. Yet, until now the biosynthesis of these volatile compounds has been largely neglected. While elucidating the biosynthesis in non-model systems is challenging, nonetheless, these cases may also offer untapped potential for biosynthetic breakthroughs given that some of the compounds can be exclusive or dominant components of the floral scent and production is often tissue-specific. In this perspective article, we first highlight the chemical diversity underpinning some of the more widespread deceptive orchid pollination strategies. Next, we explore the potential metabolic pathways and biosynthetic steps that might be involved. Finally, we offer recommendations to accelerate the discovery of the biochemical pathways in these challenging but intriguing systems.
Gijbels, Pieter; Ceulemans, Tobias; Van den Ende, Wim; Honnay, Olivier
2015-11-01
Floral traits have evolved to maximize reproductive success by attracting pollinators and facilitating pollination. Highly attractive floral traits may, however, also increase the degree of self-pollination, which could become detrimental for plant fitness through inbreeding depression. Floral nectar is a trait that is known to strongly mediate pollinator attraction and plant reproductive success, but the particular role of the nectar amino acid (AA) composition is poorly understood. Therefore, we experimentally manipulated the nectar AA composition and abundance of the Lepidoptera-pollinated orchid Gymnadenia conopsea through soil fertilization, and we quantified AA content and AA composition through high performance anion exchange chromatography with pulsed amperometric detection. Mixed models were then used to evaluate differences in pollinia removal, fruit set, seed set and degree of selfing between fertilized and control individuals. Selfing rates were estimated using microsatellite markers. We found that fertilized individuals had a significantly higher nectar AA content and an altered AA composition, whereas plant height, number of flowers, nectar volume and sugar concentration remained unchanged. Fertilized individuals also had significantly more pollinia removed and a higher fruit set, whereas control plants that did not receive the fertilization treatment had significantly fewer selfed seeds, and more viable seeds. Although we cannot exclude a role of changes in floral scent following the fertilization treatment, our results strongly suggest a relation among nectar AA composition, fruiting success and selfing rates. Our results also indicate potential consequences of nutrient pollution for plant reproductive success, through the induced changes in nectar AA composition.
Sasaki, Katsutomo; Mitsuda, Nobutaka; Nashima, Kenji; Kishimoto, Kyutaro; Katayose, Yuichi; Kanamori, Hiroyuki; Ohmiya, Akemi
2017-09-04
Chrysanthemum morifolium is one of the most economically valuable ornamental plants worldwide. Chrysanthemum is an allohexaploid plant with a large genome that is commercially propagated by vegetative reproduction. New cultivars with different floral traits, such as color, morphology, and scent, have been generated mainly by classical cross-breeding and mutation breeding. However, only limited genetic resources and their genome information are available for the generation of new floral traits. To obtain useful information about molecular bases for floral traits of chrysanthemums, we read expressed sequence tags (ESTs) of chrysanthemums by high-throughput sequencing using the 454 pyrosequencing technology. We constructed normalized cDNA libraries, consisting of full-length, 3'-UTR, and 5'-UTR cDNAs derived from various tissues of chrysanthemums. These libraries produced a total number of 3,772,677 high-quality reads, which were assembled into 213,204 contigs. By comparing the data obtained with those of full genome-sequenced species, we confirmed that our chrysanthemum contig set contained the majority of all expressed genes, which was sufficient for further molecular analysis in chrysanthemums. We confirmed that our chrysanthemum EST set (contigs) contained a number of contigs that encoded transcription factors and enzymes involved in pigment and aroma compound metabolism that was comparable to that of other species. This information can serve as an informative resource for identifying genes involved in various biological processes in chrysanthemums. Moreover, the findings of our study will contribute to a better understanding of the floral characteristics of chrysanthemums including the myriad cultivars at the molecular level.
Wong, Darren C. J.; Pichersky, Eran; Peakall, Rod
2017-01-01
Flowers have evolved diverse strategies to attract animal pollinators, with visual and olfactory floral cues often crucial for pollinator attraction. While most plants provide reward (e.g., nectar, pollen) in return for the service of pollination, 1000s of plant species, particularly in the orchid family, offer no apparent reward. Instead, they exploit their often specific pollinators (one or few) by mimicking signals of female insects, food source, and oviposition sites, among others. A full understanding of how these deceptive pollination strategies evolve and persist remains an open question. Nonetheless, there is growing evidence that unique blends that often contain unusual compounds in floral volatile constituents are often employed to secure pollination by deception. Thus, the ability of plants to rapidly evolve new pathways for synthesizing floral volatiles may hold the key to the widespread evolution of deceptive pollination. Yet, until now the biosynthesis of these volatile compounds has been largely neglected. While elucidating the biosynthesis in non-model systems is challenging, nonetheless, these cases may also offer untapped potential for biosynthetic breakthroughs given that some of the compounds can be exclusive or dominant components of the floral scent and production is often tissue-specific. In this perspective article, we first highlight the chemical diversity underpinning some of the more widespread deceptive orchid pollination strategies. Next, we explore the potential metabolic pathways and biosynthetic steps that might be involved. Finally, we offer recommendations to accelerate the discovery of the biochemical pathways in these challenging but intriguing systems. PMID:29181016
Hsieh, Ming-Hsien; Pan, Zhao-Jun; Lai, Pei-Han; Lu, Hsiang-Chia; Yeh, Hsin-Hung; Hsu, Chia-Chi; Wu, Wan-Lin; Chung, Mei-Chu; Wang, Shyh-Shyan; Chen, Wen-Huei; Chen, Hong-Hwa
2013-09-01
Orchidaceae, one of the largest angiosperm families, has significant commercial value. Isolation of genes involved in orchid floral development and morphogenesis, scent production, and colouration will advance knowledge of orchid flower formation and facilitate breeding new varieties to increase the commercial value. With high-throughput virus-induced gene silencing (VIGS), this study identified five transcription factors involved in various aspects of flower morphogenesis in the orchid Phalaenopsis equestris. These genes are PeMADS1, PeMADS7, PeHB, PebHLH, and PeZIP. Silencing PeMADS1 and PebHLH resulted in reduced flower size together with a pelaloid column containing petal-like epidermal cells and alterations of epidermal cell arrangement in lip lateral lobes, respectively. Silencing PeMADS7, PeHB, and PeZIP alone resulted in abortion of the first three fully developed flower buds of an inflorescence, which indicates the roles of the genes in late flower development. Furthermore, double silencing PeMADS1 and PeMADS6, C- and B-class MADS-box genes, respectively, produced a combinatorial phenotype with two genes cloned in separate vectors. Both PeMADS1 and PeMADS6 are required to ensure the normal development of the lip and column as well as the cuticle formation on the floral epidermal cell surface. Thus, VIGS allows for unravelling the interaction between two classes of MADS transcription factors for dictating orchid floral morphogenesis.
Hsieh, Ming-Hsien; Pan, Zhao-Jun; Lai, Pei-Han; Lu, Hsiang-Chia; Yeh, Hsin-Hung; Hsu, Chia-Chi; Wu, Wan-Lin; Chung, Mei-Chu; Wang, Shyh-Shyan; Chen, Wen-Huei; Chen, Hong-Hwa
2013-01-01
Orchidaceae, one of the largest angiosperm families, has significant commercial value. Isolation of genes involved in orchid floral development and morphogenesis, scent production, and colouration will advance knowledge of orchid flower formation and facilitate breeding new varieties to increase the commercial value. With high-throughput virus-induced gene silencing (VIGS), this study identified five transcription factors involved in various aspects of flower morphogenesis in the orchid Phalaenopsis equestris. These genes are PeMADS1, PeMADS7, PeHB, PebHLH, and PeZIP. Silencing PeMADS1 and PebHLH resulted in reduced flower size together with a pelaloid column containing petal-like epidermal cells and alterations of epidermal cell arrangement in lip lateral lobes, respectively. Silencing PeMADS7, PeHB, and PeZIP alone resulted in abortion of the first three fully developed flower buds of an inflorescence, which indicates the roles of the genes in late flower development. Furthermore, double silencing PeMADS1 and PeMADS6, C- and B-class MADS-box genes, respectively, produced a combinatorial phenotype with two genes cloned in separate vectors. Both PeMADS1 and PeMADS6 are required to ensure the normal development of the lip and column as well as the cuticle formation on the floral epidermal cell surface. Thus, VIGS allows for unravelling the interaction between two classes of MADS transcription factors for dictating orchid floral morphogenesis. PMID:23956416
Floral reward, advertisement and attractiveness to honey bees in dioecious Salix caprea.
Dötterl, Stefan; Glück, Ulrike; Jürgens, Andreas; Woodring, Joseph; Aas, Gregor
2014-01-01
In dioecious, zoophilous plants potential pollinators have to be attracted to both sexes and switch between individuals of both sexes for pollination to occur. It often has been suggested that males and females require different numbers of visits for maximum reproductive success because male fertility is more likely limited by access to mates, whereas female fertility is rather limited by resource availability. According to sexual selection theory, males therefore should invest more in pollinator attraction (advertisement, reward) than females. However, our knowledge on the sex specific investment in floral rewards and advertisement, and its effects on pollinator behaviour is limited. Here, we use an approach that includes chemical, spectrophotometric, and behavioural studies i) to elucidate differences in floral nectar reward and advertisement (visual, olfactory cues) in dioecious sallow, Salix caprea, ii) to determine the relative importance of visual and olfactory floral cues in attracting honey bee pollinators, and iii) to test for differential attractiveness of female and male inflorescence cues to honey bees. Nectar amount and sugar concentration are comparable, but sugar composition varies between the sexes. Olfactory sallow cues are more attractive to honey bees than visual cues; however, a combination of both cues elicits the strongest behavioural responses in bees. Male flowers are due to the yellow pollen more colourful and emit a higher amount of scent than females. Honey bees prefer the visual but not the olfactory display of males over those of females. In all, the data of our multifaceted study are consistent with the sexual selection theory and provide novel insights on how the model organism honey bee uses visual and olfactory floral cues for locating host plants.
A test of phenotypic selection on petal form in the wild carnation, Dianthus inoxianus.
Herrera, J; Balao, F
2015-11-01
Floral phenotypes are considered a product of pollinator-mediated selection, which also has the side effect of decreasing floral variation within species. Correlates of flower visibility and function were studied in a carnation species (Dianthus inoxianus), which has crepuscular anthesis and scent-based pollination by the hawkmoth Hyles livornica. We also assessed constancy of flower form in nature and in cultivation and, using fruit set as an estimate of plant relative fitness, tested whether the main pollinator exerted phenotypic selection on floral traits. Petal claw, which is roughly equivalent to the average depth at which an insect's proboscis must be inserted to reach nectar, was remarkably constant among wild plants (coefficient of variation 8%). In contrast, the area of the visible part of the petal, and the intensity of a coloured dot pattern on the petal was very variable (respectively CV = 34% and 102%). Cultivation in a common environment revealed significant variation among genotypes as regards petal area, degree of laciniation and extension of the dot pattern, but not petal claw length, which remained steady. Petal area, shape and colour did not affect relative fitness during the year of study, but plants with intermediate petal claws (i.e. floral tubes) set significantly more fruit. Results are compatible with low response of the main pollinator to variation in visual traits (petal area, laciniation, colour) and high responsiveness to variation in other aspects (tube length). Inconsistent phenotypic selection by pollinators may add to other causes of floral variation in the genus Dianthus, the causes of which are discussed. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
Floral associations of cyclocephaline scarab beetles.
Moore, Matthew Robert; Jameson, Mary Liz
2013-01-01
The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: (1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, (2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and (3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses, host plant shifts, and mutualisms with angiosperms.
Floral Reward, Advertisement and Attractiveness to Honey Bees in Dioecious Salix caprea
Dötterl, Stefan; Glück, Ulrike; Jürgens, Andreas; Woodring, Joseph; Aas, Gregor
2014-01-01
In dioecious, zoophilous plants potential pollinators have to be attracted to both sexes and switch between individuals of both sexes for pollination to occur. It often has been suggested that males and females require different numbers of visits for maximum reproductive success because male fertility is more likely limited by access to mates, whereas female fertility is rather limited by resource availability. According to sexual selection theory, males therefore should invest more in pollinator attraction (advertisement, reward) than females. However, our knowledge on the sex specific investment in floral rewards and advertisement, and its effects on pollinator behaviour is limited. Here, we use an approach that includes chemical, spectrophotometric, and behavioural studies i) to elucidate differences in floral nectar reward and advertisement (visual, olfactory cues) in dioecious sallow, Salix caprea, ii) to determine the relative importance of visual and olfactory floral cues in attracting honey bee pollinators, and iii) to test for differential attractiveness of female and male inflorescence cues to honey bees. Nectar amount and sugar concentration are comparable, but sugar composition varies between the sexes. Olfactory sallow cues are more attractive to honey bees than visual cues; however, a combination of both cues elicits the strongest behavioural responses in bees. Male flowers are due to the yellow pollen more colourful and emit a higher amount of scent than females. Honey bees prefer the visual but not the olfactory display of males over those of females. In all, the data of our multifaceted study are consistent with the sexual selection theory and provide novel insights on how the model organism honey bee uses visual and olfactory floral cues for locating host plants. PMID:24676333
Floral Associations of Cyclocephaline Scarab Beetles
Moore, Matthew Robert; Jameson, Mary Liz
2013-01-01
The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: 1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, 2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and 3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses, host plant shifts, and mutualisms with angiosperms. PMID:24738782
First record of bat-pollination in the species-rich genus Tillandsia (Bromeliaceae).
Aguilar-Rodríguez, Pedro Adrián; MacSwiney G, M Cristina; Krömer, Thorsten; García-Franco, José G; Knauer, Anina; Kessler, Michael
2014-05-01
Bromeliaceae is a species-rich neotropical plant family that uses a variety of pollinators, principally vertebrates. Tillandsia is the most diverse genus, and includes more than one-third of all bromeliad species. Within this genus, the majority of species rely on diurnal pollination by hummingbirds; however, the flowers of some Tillandsia species show some characteristics typical for pollination by nocturnal animals, particularly bats and moths. In this study an examination is made of the floral and reproductive biology of the epiphytic bromeliad Tillandsia macropetala in a fragment of humid montane forest in central Veracruz, Mexico. The reproductive system of the species, duration of anthesis, production of nectar and floral scent, as well as diurnal and nocturnal floral visitors and their effectiveness in pollination were determined. Tillandsia macropetala is a self-compatible species that achieves a higher fruit production through outcrossing. Nectar production is restricted to the night, and only nocturnal visits result in the development of fruits. The most frequent visitor (75 % of visits) and the only pollinator of this bromeliad (in 96 % of visits) was the nectarivorous bat Anoura geoffroyi (Phyllostomidae: Glossophaginae). This is the first report of chiropterophily within the genus Tillandsia. The results on the pollination biology of this bromeliad suggest an ongoing evolutionary switch from pollination by birds or moths to bats.
Lan, Jian-bin; Yu, Rang-cai; Yu, Yun-yi; Fan, Yan-ping
2013-04-15
Farnesyl pyrophosphate synthase (FPPS EC 2.5.1.10) catalyzes the production of farnesyl pyrophosphate (FPP), which is a key precursor for many sesquiterpenoids such as floral scent and defense volatiles against herbivore attack. Here we report a new full-length cDNA encoding farnesyl diphosphate synthase from Hedychium coronarium. The open reading frame for full-length HcFPPS encodes a protein of 356 amino acids, which is 1068 nucleotides long with calculated molecular mass of 40.7 kDa. Phylogenetic tree analysis indicates that HcFPPS belongs to the plant FPPS super-family and has strong relationship with FPPS from Musa acuminata. Expression of the HcFPPS gene in Escherichia coli yielded FPPS activity. Tissue-specific and developmental analyses of the HcFPPS mRNA and corresponding volatile sesquiterpenoid levels in H. coronarium flowers revealed that the HcFPPS might play a regulatory role in floral volatile sesquiterpenoid biosynthesis. The emission of the FPP-derived volatile terpenoid correlates with strong expression of HcFPPS induced by mechanical wounding and Udaspes folus-damage in leaves, which suggests that HcFPPS may have an important ecological function in H. coronarium vegetative organ. Copyright © 2013 Elsevier B.V. All rights reserved.
Ito, Yuriko; Sugimoto, Akio; Kakuda, Takami; Kubota, Kikue
2002-08-14
The odorants in Chinese jasmine green tea scented with jasmine flowers (Jasminum sambac) were separated from the infusion by adsorption to Porapak Q resin. Among the 66 compounds identified by GC and GC/MS, linalool (floral), methyl anthranilate (grape-like), 4-hexanolide (sweet), 4-nonanolide (sweet), (E)-2-hexenyl hexanoate (green), and 4-hydroxy-2,5-dimethyl-3(2H)-furanone (sweet) were extracted as potent odorants by an aroma extract dilution analysis and sensory analysis. The enantiomeric ratios of linalool in jasmine tea and Jasminum sambac were determined by a chiral analysis for the first time in this study: 81.6% ee and 100% ee for the (R)-(-)-configuration, respectively. The jasmine tea flavor could be closely duplicated by a model mixture containing these six compounds on the basis of a sensory analysis. The omission of methyl anthranilate and the replacement of (R)-(-)-linalool by (S)-(+)-linalool led to great changes in the odor of the model. These two compounds were determined to be the key odorants of the jasmine tea flavor.
Functional Expression of an Orchid Fragrance Gene in Lactococcus lactis
Song, Adelene Ai Lian; Abdullah, Janna O.; Abdullah, Mohd Puad; Shafee, Norazizah; Rahim, Raha A.
2012-01-01
Vanda Mimi Palmer (VMP), an orchid hybrid of Vanda tesselata and Vanda Tan Chay Yan is a highly scented tropical orchid which blooms all year round. Previous studies revealed that VMP produces a variety of isoprenoid volatiles during daylight. Isoprenoids are well known to contribute significantly to the scent of most fragrant plants. They are a large group of secondary metabolites which may possess valuable characteristics such as flavor, fragrance and toxicity and are produced via two pathways, the mevalonate (MVA) pathway or/and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. In this study, a sesquiterpene synthase gene denoted VMPSTS, previously isolated from a floral cDNA library of VMP was cloned and expressed in Lactococcus lactis to characterize the functionality of the protein. L. lactis, a food grade bacterium which utilizes the mevalonate pathway for isoprenoid production was found to be a suitable host for the characterization of plant terpene synthases. Through recombinant expression of VMPSTS, it was revealed that VMPSTS produced multiple sesquiterpenes and germacrene D dominates its profile. PMID:22408409
Jin, Jingjing; Kim, Mi Jung; Dhandapani, Savitha; Tjhang, Jessica Gambino; Yin, Jun-Lin; Wong, Limsoon; Sarojam, Rajani; Chua, Nam-Hai; Jang, In-Cheol
2015-01-01
The pleasant fragrance of ylang ylang varieties (Cananga odorata) is mainly due to volatile organic compounds (VOCs) produced by the flowers. Floral scents are a key factor in plant–insect interactions and are vital for successful pollination. C. odorata var. fruticosa, or dwarf ylang ylang, is a variety of ylang ylang that is popularly grown in Southeast Asia as a small shrub with aromatic flowers. Here, we describe the combined use of bioinformatics and chemical analysis to discover genes for the VOC biosynthesis pathways and related genes. The scented flowers of C. odorata var. fruticosa were analysed by gas chromatography/mass spectrometry and a total of 49 VOCs were identified at four different stages of flower development. The bulk of these VOCs were terpenes, mainly sesquiterpenes. To identify the various terpene synthases (TPSs) involved in the production of these essential oils, we performed RNA sequencing on mature flowers. From the RNA sequencing data, four full-length TPSs were functionally characterized. In vitro assays showed that two of these TPSs were mono-TPSs. CoTPS1 synthesized four products corresponding to β-thujene, sabinene, β-pinene, and α-terpinene from geranyl pyrophosphate and CoTPS4 produced geraniol from geranyl pyrophosphate. The other two TPSs were identified as sesqui-TPSs. CoTPS3 catalysed the conversion of farnesyl pyrophosphate to α-bergamotene, whereas CoTPS2 was found to be a multifunctional and novel TPS that could catalyse the synthesis of three sesquiterpenes, β-ylangene, β-copaene, and β-cubebene. Additionally, the activities of the two sesqui-TPSs were confirmed in planta by transient expression of these TPS genes in Nicotiana benthamiana leaves by Agrobacterium-mediated infiltration. PMID:25956881
Falcão, B F; Stehmann, J R
2018-03-30
Pollination in Solanum (Solanaceae) species is commonly performed by female bees, which vibrate anthers to extract pollen. Another pollen removal type is by male euglossine bees, milking the anthers when searching for floral scents produced by secretory tissues (osmophorous) at the swollen connective of the anthers of species in the Cyphomandra clade. Some species of this clade, however, are buzz-pollinated and present papillate anthers that should also have secretory activity, a hypothesis here tested. The anthers of Solanum luridifuscescens were fixed at different stages of development and analysed under light microscopy, SEM and TEM. Histochemical tests for the detection of starch and lipids were done. Epidermal cells of the abaxial surface of the anthers were visibly papillose, had large nuclei and dense cytoplasm rich in organelles such as mitochondria and plastids, typical features of secretory tissues. In this site, lipid droplets were detected, concomitantly with starch consumption, compatible with the secretory process in osmophores. No exudate or accumulation of substances was seen on the surface; in agreement with a previous pollination study performed in field conditions, where no pollinators were observed collecting floral scents, only pollen. The histochemical and structural analyses have evidenced the lipidic composition of the secretion, strongly pointing to terpenes as the secreted compounds. Ours findings show that papillae of the anthers have secretory activities that produce lipophilic compounds. This does not result in resources for bees, but could be an evolutionary step to the development of more specialised anthers in the Cyphomandra clade. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Circadian rhythm of a Silene species favours nocturnal pollination and constrains diurnal visitation
Prieto-Benítez, Samuel; Dötterl, Stefan; Giménez-Benavides, Luis
2016-01-01
Background and Aims Traits related to flower advertisement and reward sometimes vary in a circadian way, reflecting phenotypic specialization. However, specialized flowers are not necessarily restricted to specialized pollinators. This is the case of most Silene species, typically associated with diurnal or nocturnal syndromes of pollination but usually showing complex suites of pollinators. Methods A Silene species with mixed floral features between diurnal and nocturnal syndromes was used to test how petal opening, nectar production, scent emission and pollination success correlate in a circadian rhythm, and whether this is influenced by environmental conditions. The effect of diurnal and nocturnal visitation rates on plant reproductive success is also explored in three populations, including the effect of the pollinating seed predator Hadena sancta. Key Results The result showed that repeated petal opening at dusk was correlated with nectar secretion and higher scent production during the night. However, depending on environmental conditions, petals remain opened for a while in the morning, when nectar and pollen still were available. Pollen deposition was similarly effective at night and in the morning, but less effective in the afternoon. These results were consistent with field studies. Conclusions The circadian rhythm regulating floral attractiveness and reward in S. colorata is predominantly adapted to nocturnal flower visitors. However, favourable environmental conditions lengthen the optimal daily period of flower attraction and pollination towards morning. This allows the complementarity of day and night pollination. Diurnal pollination may help to compensate the plant reproductive success when nocturnal pollinators are scarce and when the net outcome of H. sancta shifts from mutualism to parasitism. These results suggest a functional mechanism explaining why the supposed nocturnal syndrome of many Silene species does not successfully predict their pollinator guilds. PMID:27451986
Methyl jasmonate as a vital substance in plants.
Cheong, Jong-Joo; Choi, Yang Do
2003-07-01
The plant floral scent methyl jasmonate (MeJA) has been identified as a vital cellular regulator that mediates diverse developmental processes and defense responses against biotic and abiotic stresses. The pleiotropic effects of MeJA have raised numerous questions about its regulation for biogenesis and mode of action. Characterization of the gene encoding jasmonic acid carboxyl methyltransferase has provided basic information on the role(s) of this phytohormone in gene-activation control and systemic long-distance signaling. Recent approaches using functional genomics and bioinformatics have identified a whole set of MeJA-responsive genes, and provide insights into how plants use volatile signals to withstand diverse and variable environments.
Costa, Marilza Silva; Silva, Ricardo José; Paulino-Neto, Hipólito Ferreira; Pereira, Mônica Josene Barbosa
2017-01-01
The conservation and sustainable management of Annona coriacea requires knowledge of its floral and reproductive biology, and of its main pollinators and their life cycles. In this work, we analyzed these aspects in detail. Floral biology was assessed by observing flowers from the beginning of anthesis to senescence. The visiting hours and behavior of floral visitors in the floral chamber were recorded, as were the sites of oviposition. Excavations were undertaken around specimens of A. coriacea to determine the location of immature pollinators. Anthesis was nocturnal, starting at sunset, and lasted for 52-56 h. The flowers were bisexual, protogynous and emitted a strong scent similar to the plant´s own ripe fruit. There was pronounced synchrony among all floral events (the period and duration of stigmatic receptivity, release of odor, pollen release and drooping flowers) in different individuals, but no synchrony in the same individuals. All of the flowers monitored were visited by beetle species of the genera Cyclocephala and Arriguttia. Beetles arrived at the flowers with their bodies covered in pollen and these pollen grains were transferred to the stigmata while foraging on nutritious tissues at the base of the petals. With dehiscence of the stamens and retention within the floral chamber, the bodies of the floral visitors were again covered with pollen which they carried to newly opened flowers, thus promoting the cycle of pollination. After leaving the flowers, female beetles often excavated holes in the soil to lay eggs. Larvae were found between the leaf litter and the first layer of soil under specimens of A. coriacea. Cyclocephala beetles were the main pollinators of A. coriacea, but Arriguttia brevissima was also considered a pollinator and is the first species of this genus to be observed in Annonaceae flowers. Annona coriacea was found to be self-compatible with a low reproductive efficiency in the area studied. The results of this investigation provide ecological data that should contribute to the conservation and economic exploitation of A. coriacea.
Pereira, Mônica Josene Barbosa
2017-01-01
The conservation and sustainable management of Annona coriacea requires knowledge of its floral and reproductive biology, and of its main pollinators and their life cycles. In this work, we analyzed these aspects in detail. Floral biology was assessed by observing flowers from the beginning of anthesis to senescence. The visiting hours and behavior of floral visitors in the floral chamber were recorded, as were the sites of oviposition. Excavations were undertaken around specimens of A. coriacea to determine the location of immature pollinators. Anthesis was nocturnal, starting at sunset, and lasted for 52–56 h. The flowers were bisexual, protogynous and emitted a strong scent similar to the plant´s own ripe fruit. There was pronounced synchrony among all floral events (the period and duration of stigmatic receptivity, release of odor, pollen release and drooping flowers) in different individuals, but no synchrony in the same individuals. All of the flowers monitored were visited by beetle species of the genera Cyclocephala and Arriguttia. Beetles arrived at the flowers with their bodies covered in pollen and these pollen grains were transferred to the stigmata while foraging on nutritious tissues at the base of the petals. With dehiscence of the stamens and retention within the floral chamber, the bodies of the floral visitors were again covered with pollen which they carried to newly opened flowers, thus promoting the cycle of pollination. After leaving the flowers, female beetles often excavated holes in the soil to lay eggs. Larvae were found between the leaf litter and the first layer of soil under specimens of A. coriacea. Cyclocephala beetles were the main pollinators of A. coriacea, but Arriguttia brevissima was also considered a pollinator and is the first species of this genus to be observed in Annonaceae flowers. Annona coriacea was found to be self-compatible with a low reproductive efficiency in the area studied. The results of this investigation provide ecological data that should contribute to the conservation and economic exploitation of A. coriacea. PMID:28152094
Farré-Armengol, Gerard; Filella, Iolanda; Llusià, Joan; Peñuelas, Josep
2017-07-13
β-Ocimene is a very common plant volatile released in important amounts from the leaves and flowers of many plant species. This acyclic monoterpene can play several biological functions in plants, by potentially affecting floral visitors and also by mediating defensive responses to herbivory. The ubiquity and high relative abundance of β-ocimene in the floral scents of species from most plant families and from different pollination syndromes (ranging from generalism to specialism) strongly suggest that this terpenoid may play an important role in the attraction of pollinators to flowers. We compiled abundant evidence from published studies that supports β-ocimene as a generalist attractant of a wide spectrum of pollinators. We found no studies testing behavioural responses of pollinators to β-ocimene, that could directly demonstrate or deny the function of β-ocimene in pollinator attraction; but several case studies support that the emissions of β-ocimene in flowers of different species follow marked temporal and spatial patterns of emission, which are typical from floral volatile organic compound (VOC) emissions that are involved in pollinator attraction. Furthermore, important β-ocimene emissions are induced from vegetative plant tissues after herbivory in many species, which have relevant functions in the establishment of tritrophic interactions. We thus conclude that β-ocimene is a key plant volatile with multiple relevant functions in plants, depending on the organ and the time of emission. Experimental behavioural studies on pure β-ocimene conducted with pollinating insects will be necessary to prove the assumptions made here.
Vereecken, Nicolas J; Wilson, Carol A; Hötling, Susann; Schulz, Stefan; Banketov, Sergey A; Mardulyn, Patrick
2012-12-07
Pollination by sexual deception is arguably one of the most unusual liaisons linking plants and insects, and perhaps the most illustrative example of extreme floral specialization in angiosperms. While considerable progress has been made in understanding the floral traits involved in sexual deception, less is known about how this remarkable mimicry system might have arisen, the role of pre-adaptations in promoting its evolution and its extent as a pollination mechanism outside the few groups of plants (primarily orchids) where it has been described to date. In the Euro-Mediterranean region, pollination by sexual deception is traditionally considered to be the hallmark of the orchid genus Ophrys. Here, we introduce two new cases outside of Ophrys, in plant groups dominated by generalized, shelter-mimicking species. On the basis of phylogenetic reconstructions of ancestral pollination strategies, we provide evidence for independent and bidirectional evolutionary transitions between generalized (shelter mimicry) and specialized (sexual deception) pollination strategies in three groups of flowering plants, and suggest that pseudocopulation has evolved from pre-adaptations (floral colours, shapes and odour bouquets) that selectively attract male pollinators through shelter mimicry. These findings, along with comparative analyses of floral traits (colours and scents), shed light on particular phenotypic changes that might have fuelled the parallel evolution of these extraordinary pollination strategies. Collectively, our results provide the first substantive insights into how pollination sexual deception might have evolved in the Euro-Mediterranean region, and demonstrate that even the most extreme cases of pollinator specialization can reverse to more generalized interactions, breaking 'Cope's rule of specialization'.
Vereecken, Nicolas J.; Wilson, Carol A.; Hötling, Susann; Schulz, Stefan; Banketov, Sergey A.; Mardulyn, Patrick
2012-01-01
Pollination by sexual deception is arguably one of the most unusual liaisons linking plants and insects, and perhaps the most illustrative example of extreme floral specialization in angiosperms. While considerable progress has been made in understanding the floral traits involved in sexual deception, less is known about how this remarkable mimicry system might have arisen, the role of pre-adaptations in promoting its evolution and its extent as a pollination mechanism outside the few groups of plants (primarily orchids) where it has been described to date. In the Euro-Mediterranean region, pollination by sexual deception is traditionally considered to be the hallmark of the orchid genus Ophrys. Here, we introduce two new cases outside of Ophrys, in plant groups dominated by generalized, shelter-mimicking species. On the basis of phylogenetic reconstructions of ancestral pollination strategies, we provide evidence for independent and bidirectional evolutionary transitions between generalized (shelter mimicry) and specialized (sexual deception) pollination strategies in three groups of flowering plants, and suggest that pseudocopulation has evolved from pre-adaptations (floral colours, shapes and odour bouquets) that selectively attract male pollinators through shelter mimicry. These findings, along with comparative analyses of floral traits (colours and scents), shed light on particular phenotypic changes that might have fuelled the parallel evolution of these extraordinary pollination strategies. Collectively, our results provide the first substantive insights into how pollination sexual deception might have evolved in the Euro-Mediterranean region, and demonstrate that even the most extreme cases of pollinator specialization can reverse to more generalized interactions, breaking ‘Cope's rule of specialization’. PMID:23055065
Wragg, Peter D; Johnson, Steven D
2011-09-01
Transitions from wind pollination to insect pollination were pivotal to the radiation of land plants, yet only a handful are known and the trait shifts required are poorly understood. We tested the hypothesis that a transition to insect pollination took place in the ancestrally wind-pollinated sedges (Cyperaceae) and that floral traits modified during this transition have functional significance. We paired putatively insect-pollinated Cyperus obtusiflorus and Cyperus sphaerocephalus with related, co-flowering, co-occurring wind-pollinated species, and compared pairs in terms of pollination mode and functional roles of floral traits. Experimentally excluding insects reduced seed set by 56-89% in putatively insect-pollinated species but not in intermingled wind-pollinated species. The pollen of putatively insect-pollinated species was less motile in a wind tunnel than that of wind-pollinated species. Bees, beetles and flies preferred inflorescences, and color-matched white or yellow models, of putatively insect-pollinated species over inflorescences, or color-matched brown models, of wind-pollinated species. Floral scents of putatively insect-pollinated species were chemically consistent with those of other insect-pollinated plants, and attracted pollinators; wind-pollinated species were unscented. These results show that a transition from wind pollination to insect pollination occurred in sedges and shed new light on the function of traits involved in this important transition. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Shift from bird to butterfly pollination in Clivia (Amaryllidaceae).
Kiepiel, Ian; Johnson, Steven D
2014-01-01
Pollinator shifts have been implicated as a driver of divergence in angiosperms. We tested the hypothesis that there was a transition from bird- to butterfly pollination in the African genus Clivia (Amaryllidaceae) and investigated how floral traits may have been either modified or retained during this transition. We identified pollinators using field observations, correlations between lepidopteran wing scales and pollen on stigmas, and single-visit and selective exclusion experiments. We also quantified floral rewards and advertising traits. The upright trumpet-shaped flowers of C. miniata were found to be pollinated effectively by swallowtail butterflies during both nectar-feeding and brush visits. These butterflies transfer pollen on their wings, as evidenced by positive correlations between wing scales and pollen loads on stigmas. All other Clivia species have narrow pendulous flowers that are visited by sunbirds. Selective exclusion of birds and large butterflies from flowers of two Clivia species resulted in a significant decline in seed production. From the distribution of pollination systems on available phylogenies, it is apparent that a shift took place from bird- to butterfly pollination in Clivia. This shift was accompanied by the evolution of trumpet-shaped flowers, smaller nectar volume, and emission of scent, while flower color and nectar chemistry do not appear to have been substantially modified. These results are consistent with the idea that pollinator shifts can explain major floral modifications during plant diversification.
First record of bat-pollination in the species-rich genus Tillandsia (Bromeliaceae)
Aguilar-Rodríguez, Pedro Adrián; MacSwiney G., M. Cristina; Krömer, Thorsten; García-Franco, José G.; Knauer, Anina; Kessler, Michael
2014-01-01
Background and Aims Bromeliaceae is a species-rich neotropical plant family that uses a variety of pollinators, principally vertebrates. Tillandsia is the most diverse genus, and includes more than one-third of all bromeliad species. Within this genus, the majority of species rely on diurnal pollination by hummingbirds; however, the flowers of some Tillandsia species show some characteristics typical for pollination by nocturnal animals, particularly bats and moths. In this study an examination is made of the floral and reproductive biology of the epiphytic bromeliad Tillandsia macropetala in a fragment of humid montane forest in central Veracruz, Mexico. Methods The reproductive system of the species, duration of anthesis, production of nectar and floral scent, as well as diurnal and nocturnal floral visitors and their effectiveness in pollination were determined. Key Results Tillandsia macropetala is a self-compatible species that achieves a higher fruit production through outcrossing. Nectar production is restricted to the night, and only nocturnal visits result in the development of fruits. The most frequent visitor (75 % of visits) and the only pollinator of this bromeliad (in 96 % of visits) was the nectarivorous bat Anoura geoffroyi (Phyllostomidae: Glossophaginae). Conclusions This is the first report of chiropterophily within the genus Tillandsia. The results on the pollination biology of this bromeliad suggest an ongoing evolutionary switch from pollination by birds or moths to bats. PMID:24651370
Fenske, Myles P; Nguyen, LeAnn P; Horn, Erin K; Riffell, Jeffrey A; Imaizumi, Takato
2018-02-12
Most plant-pollinator interactions occur during specific periods during the day. To facilitate these interactions, many flowers are known to display their attractive qualities, such as scent emission and petal opening, in a daily rhythmic fashion. However, less is known about how the internal timing mechanisms (the circadian clocks) of plants and animals influence their daily interactions. We examine the role of the circadian clock in modulating the interaction between Petunia and one of its pollinators, the hawkmoth Manduca sexta. We find that desynchronization of the Petunia circadian clock affects moth visitation preference for Petunia flowers. Similarly, moths with circadian time aligned to plants show stronger flower-foraging activities than moths that lack this alignment. Moth locomotor activity is circadian clock-regulated, although it is also strongly repressed by light. Moths show a time-dependent burst increase in flight activity during subjective night. In addition, moth antennal responsiveness to the floral scent compounds exhibits a 24-hour rhythm in both continuous light and dark conditions. This study highlights the importance of the circadian clocks in both plants and animals as a crucial factor in initiating specialized plant-pollinator relationships.
Hattan, Jun-ichiro; Shindo, Kazutoshi; Ito, Tomoko; Shibuya, Yurica; Watanabe, Arisa; Tagaki, Chie; Ohno, Fumina; Sasaki, Tetsuya; Ishii, Jun; Kondo, Akihiko; Misawa, Norihiko
2016-04-01
A novel terpene synthase (Tps) gene isolated from Camellia brevistyla was identified as hedycaryol synthase, which was shown to be expressed specifically in flowers. Camellia plants are very popular because they bloom in winter when other plants seldom flower. Many ornamental cultivars of Camellia have been bred mainly in Japan, although the fragrance of their flowers has not been studied extensively. We analyzed floral scents of several Camellia cultivars by gas chromatography-mass spectrometry (GC-MS) and found that Camellia brevistyla produced various sesquiterpenes in addition to monoterpenes, whereas Camellia japonica and its cross-lines produced only monoterpenes, including linalool as the main product. From a flower of C. brevistyla, we isolated one cDNA encoding a terpene synthase (TPS) comprised of 554 amino acids, which was phylogenetically positioned to a sole gene clade. The cDNA, designated CbTps1, was expressed in mevalonate-pathway-engineered Escherichia coli, which carried the Streptomyces mevalonate-pathway gene cluster in addition to the acetoacetate-CoA ligase gene. A terpene product was purified from recombinant E. coli cultured with lithium acetoacetate, and analyzed by (1)H-nulcear magnetic resonance spectroscopy ((1)H-NMR) and GC-MS. It was shown that a sesquiterpene hedycaryol was produced, because (1)H-NMR signals of the purified product were very broad, and elemol, a thermal rearrangement product from hedycaryol, was identified by GC-MS analysis. Spectroscopic data of elemol were also determined. These results indicated that the CbTps1 gene encodes hedycaryol synthase. Expression analysis of CbTps1 showed that it was expressed specifically in flowers, and hedycaryol is likely to be one of the terpenes that attract insects for pollination of C. brevistyla. A linalool synthase gene, which was isolated from a flower of Camellia saluenensis, is also described.
Touyama, Akiko; Nakada, Shina; Higa, Osamu; Itoh, Shigeru
2017-01-01
Citrus junos Tanaka (yuzu) has a strong characteristic aroma and thus its juice is used in various Japanese foods. Herein, we evaluate the volatile compounds in yuzu juice to investigate whether underwater shockwave pretreatment affects its scent. A shockwave pretreatment at increased discharge and energy of 3.5 kV and 4.9 kJ, respectively, increased the content of aroma-active compounds. Moreover, the underwater shockwave pretreatment afforded an approximate tenfold increase in the scent intensity of yuzu juice cultivated in Rikuzentakata. The proposed treatment method exhibited reliable and good performance for the extraction of volatile and aroma-active compounds from the yuzu fruit. The broad applicability and high reliability of this technique for improving the scent of yuzu fruit juice were demonstrated, confirming its potential for application to a wide range of food extraction processes. PMID:28761874
Optimization and Development of a Human Scent Collection Method
2007-06-04
19. Schoon, G. A. A., Scent Identification Lineups by Dogs (Canis familiaris): Experimental Design and Forensic Application. Applied Animal...Parker, Lloyd R., Morgan, Stephen L., Deming, Stanley N., Sequential Simplex Optimization. Chemometrics Series, ed. S.D. Brown. 1991, Boca Raton
Jürgens, Andreas; Bosch, Simone R.; Webber, Antonio C.; Witt, Taina; Frame, Dawn; Gottsberger, Gerhard
2009-01-01
Background and Aims Spatial variation in pollinator composition and abundance is a well-recognized phenomenon. However, a weakness of many studies claiming specificity of plant–pollinator interactions is that they are often restricted to a single locality. The aim of the present study was to investigate pollinator effectiveness of the different flower visitors to the terrestrial orchid Eulophia alta at three different localities and to analyse whether differences in pollinator abundance and composition effect this plant's reproductive success. Methods Natural pollination was observed in vivo, and manipulative experiments were used to study the pollination biology and breeding system of E. alta at three sites near Manaus, Brazil. To gain a better understanding of the underlying mechanisms of pollinator attraction, nectar composition and secretion patterns were also studied, floral scent composition was analysed and a bioassay was conducted. Key Results Flower visitors, pollinator composition, pollinia transfer efficiency of particular pollinator species and natural fruit set differed among the investigated populations of E. alta. Flowers were self-compatible, partially autogamous and effectively pollinated by five bee species (four Centris species and Xylocopa muscaria). Visiting insects appeared to imbibe small amounts of hexose-rich nectar. Nectar sugar content was highest on the third day after flower opening. Floral fragrance analyses revealed 42 compounds, of which monoterpenes and benzenoids predominated. A bioassay using floral parts revealed that only floral tissue from the labellum chamber and labellum tip was attractive to flower visitors. Conclusions The data suggest that observed differences in reproductive success in the three populations cannot be explained by absolute abundance of pollinators alone. Due to behavioural patterns such as disturbance of effective pollinators on flowers by male Centris varia bees defending territory, pollinia transfer efficiencies of particular pollinator species also vary between study sites and result in differing reproductive success. PMID:19666899
Floral thermogenesis of three species of Hydnora (Hydnoraceae) in Africa
Seymour, Roger S.; Maass, Erika; Bolin, Jay F.
2009-01-01
Background and Aims Floral thermogenesis occurs in at least 12 families of ancient seed plants. Some species show very high rates of respiration through the alternative pathway, and some are thermoregulatory, with increasing respiration at decreasing ambient temperature. This study assesses the intensity and regulation of respiration in three species of African Hydnora that represent the Hydnoraceae, an unusual family of holoparasitic plants from arid environments. Methods Long-term respirometry (CO2 production) and thermometry were carried out on intact flowers of H. africana, H. abyssinica and H. esculenta in the field, and short-term measurements were made on floral parts during the protogynous flowering sequence. Key Results For H. africana, there was no temperature elevation in either the osmophores or the gynoecial chamber in any phase, and mass-specific respiration rates of the flower parts were low (maximum 8·3 nmol CO2 g−1 s−1 in osmophore tissue). Respiration tracked ambient and floral temperatures, eliminating the possibility of the inverse relationship expected in thermoregulatory flowers. Hydnora abyssinica flowers had higher respiration (maximum 27·5 nmol g−1 s−1 in the osmophores) and a slight elevation of osmophore temperature (maximum 2·8 °C) in the female stage. Respiration by gynoecial tissue was similar to that of osmophores in both species, but there was no measurable elevation of gynoecial chamber temperature. Gynoecial chamber temperature of H. esculenta could reach 3·8 °C above ambient, but there are no respiration data available. Antheral tissue respiration was maximal in the male phase (4·8 nmol g−1 s−1 in H. africana and 10·3 nmol g−1 s−1 in H. abyssinica), but it did not raise the antheral ring temperature, which showed that thermogenesis is not a by-product of pollen maturation or release. Conclusions The exceptionally low thermogenesis in Hydnora appears to be associated with scent production and possibly gynoecial development, but has little direct benefit to beetle pollinators. PMID:19584128
Williamson, J; Adams, C G; Isaacs, R; Gut, L J
2018-04-23
Declines in the number of commercial honey bees (Apis mellifera L.) (Hymenoptera: Apidae) and some wild bee species around the world threaten fruit, nut, and vegetable production and have prompted interest in developing methods for gaining efficiencies in pollination services. One possible approach would be to deploy attractants within the target crop to increase the number of floral visits. In this study, we evaluate two new pollinator attractants, Polynate and SPLAT Bloom, for their ability to increase pollinator visitation and fruit set in apple (Malus pumila Mill.), highbush blueberry (Vaccinium sp. L.), and tart cherry (Prunus cerasus L.). Polynate is a plastic twin-tube dispenser loaded with a mixture of floral scent and Nasonov pheromone. SPLAT Bloom contains the same chemical formula as Polynate, but is applied as a 3 g wax dollop directly onto the tree or bush. The objectives of this study were to determine if Polynate and SPLAT Bloom increase the number of honey bee foragers and fruit set in apples, highbush blueberries, and tart cherries. We conducted replicated evaluations of 32 fields or orchards with and without putative attractants over three growing seasons. Both products failed to provide a measurable increase in pollinator visits or fruit set in these crops, indicating no return on investment for either product.
Martin, Diane M.; Toub, Omid; Chiang, Angela; Lo, Bernard C.; Ohse, Sebastian; Lund, Steven T.; Bohlmann, Jörg
2009-01-01
Terpenoid volatiles are important information molecules that enable pollinators to locate flowers and may protect reproductive tissues against pathogens or herbivores. Inflorescences of grapevine (Vitis vinifera L.) are composed of tiny green flowers that produce an abundance of sesquiterpenoid volatiles. We demonstrate that male flower parts of grapevines are responsible for sesquiterpenoid floral scent formation. We describe temporal and spatial patterns of biosynthesis and release of floral volatiles throughout the blooming of V. vinifera L. cv. Cabernet Sauvignon. The biosynthesis of sesquiterpene volatiles, which are emitted with a light-dependent diurnal pattern early in the morning at prebloom and bloom, is localized to anthers and, more specifically, within the developing pollen grains. Valencene synthase (VvValCS) enzyme activity, which produces the major sesquiterpene volatiles of grapevine flowers, is present in anthers. VvValCS transcripts are most abundant in flowers at prebloom stages. Western blot analysis identified VvValCS protein in anthers, and in situ immunolabeling located VvValCS protein in pollen grains during bloom. Histochemical staining, as well as immunolabeling analysis by fluorescent microscopy and transmission electron microscopy, indicated that VvValCS localizes close to lipid bodies within the maturing microspore. PMID:19359488
Singh, Vijay; Jat, Mangi L; Ganie, Zahoor A; Chauhan, Bhagirath S; Gupta, Raj K
2016-03-01
Farmers' participatory field trials were conducted at Madhuban, and Taraori, the two participatory experimental sites/locations of the Cereal Systems Initiative for South Asia (CSISA), a collaborative project of IRRI and CIMMYT in Karnal district of Haryana, India, during Kharif (wet season) 2010 and 2011. This research aimed to evaluate preemergence (PRE) and postemergence (POST) herbicides for providing feasible and economically viable weed management options to farmers for predominant scented rice varieties. Treatments with pendimethalin PRE fb bispyribac-sodium + azimsulfuron POST had lower weed biomass at 45 days after sowing (DAS). At Madhuban, highest grain yield of scented basmati rice (3.43 t ha -1 ) was recorded with the sequential application of pendimethalin PRE fb bispyribac-sodium + azimsulfuron POST. However, at Taraori, yields were similar with pendimethalin or oxadiargyl PRE fb bispyribac-sodium and/or azimsulfuron POST. Applying oxadiargyl by mixing with sand onto flooded field was less effective than spray applications in non-flooded field. The benefit-cost ratio of rice crop was higher with herbicide treatments at both sites as compared with the non-treated weed-free check except single PRE and POST applications and sequential application of oxadiargyl PRE fb oxadiargyl PRE. In a separate experiment conducted at Nagla and Taraori sites, scented rice cultivars' ('CSR 30' and 'Pusa 1121') tolerance to three rates of azimsulfuron (15, 25, and 35 g ai ha -1 ) was evaluated over two years (2010 and 2011). CSR 30 (superfine, scented) was more sensitive to higher rates (35 g ai ha -1 ) of azimsulfuron as compared to Pusa 1121 (fine, scented). Crop injuries were 8 and 28% in case of CSR 30; 5 and 15% in Pusa 1121 when applied with azimsulfuron 25 and 35 g ai ha -1 , respectively. Azimsulfuron applied at 35 g ai ha -1 reduced yield in both cultivars but in CSR 30 yield reduction was twofold (11.5%) as that of Pusa 1121 (5.2%).
Singh, Vijay; Jat, Mangi L.; Ganie, Zahoor A.; Chauhan, Bhagirath S.; Gupta, Raj K.
2016-01-01
Farmers' participatory field trials were conducted at Madhuban, and Taraori, the two participatory experimental sites/locations of the Cereal Systems Initiative for South Asia (CSISA), a collaborative project of IRRI and CIMMYT in Karnal district of Haryana, India, during Kharif (wet season) 2010 and 2011. This research aimed to evaluate preemergence (PRE) and postemergence (POST) herbicides for providing feasible and economically viable weed management options to farmers for predominant scented rice varieties. Treatments with pendimethalin PRE fb bispyribac-sodium + azimsulfuron POST had lower weed biomass at 45 days after sowing (DAS). At Madhuban, highest grain yield of scented basmati rice (3.43 t ha−1) was recorded with the sequential application of pendimethalin PRE fb bispyribac-sodium + azimsulfuron POST. However, at Taraori, yields were similar with pendimethalin or oxadiargyl PRE fb bispyribac-sodium and/or azimsulfuron POST. Applying oxadiargyl by mixing with sand onto flooded field was less effective than spray applications in non-flooded field. The benefit-cost ratio of rice crop was higher with herbicide treatments at both sites as compared with the non-treated weed-free check except single PRE and POST applications and sequential application of oxadiargyl PRE fb oxadiargyl PRE. In a separate experiment conducted at Nagla and Taraori sites, scented rice cultivars' ('CSR 30′ and 'Pusa 1121′) tolerance to three rates of azimsulfuron (15, 25, and 35 g ai ha−1) was evaluated over two years (2010 and 2011). CSR 30 (superfine, scented) was more sensitive to higher rates (35 g ai ha−1) of azimsulfuron as compared to Pusa 1121 (fine, scented). Crop injuries were 8 and 28% in case of CSR 30; 5 and 15% in Pusa 1121 when applied with azimsulfuron 25 and 35 g ai ha−1, respectively. Azimsulfuron applied at 35 g ai ha−1 reduced yield in both cultivars but in CSR 30 yield reduction was twofold (11.5%) as that of Pusa 1121 (5.2%). PMID:26941471
Floral morphology and anatomy of Ophiocaryon, a paedomorphic genus of Sabiaceae.
Thaowetsuwan, P; Honorio Coronado, E N; Ronse De Craene, L P
2017-11-10
Ophiocaryon is a lesser known genus in Sabiaceae. This study examines flowers of six Ophiocaryon species in comparison with Meliosmaalba, to identify taxonomically informative characters for understanding relationships within the family Sabiaceae, to imply previously unknown pollination mechanisms of Ophiocaryon, and to contribute to the placement of Sabiaceae within the early-diverging eudicots. Floral morphology and anatomy of six Ophiocaryon species and M. alba were studied and described using scanning electron microscopy, clearing techniques and resin sectioning. Novel characters of Ophiocaryon were identified, e.g. conical cells on petals, different kinds of orbicules in anthers, stomata on nectary appendage tips and ovary, two distinct surface patterns on stamens and ovary, tanniferous cell layers in the ovary wall, and acorn-shaped unitegmic ovules with very short integuments. Comparison of floral characters between Ophiocaryon and Meliosma found that the calyx, corolla, androecium and gynoecium of Ophiocaryon resemble an undeveloped state of the latter taxon, reflecting a paedomorphic regression of the flower of Ophiocaryon. The flower morphology and anatomy of Ophiocaryon was compared with its putative sister species M. alba, but no clear shared derived characters could be detected. Moreover, the findings of scent, presence of conical cells on petals and a nectary suggest flowers are pollinated by small insects with a secondary pollen presentation on the cupula of fertile stamens. We found that Ophiocaryon may be derived from ancestors that were similar to extant Meliosma in their flower structure and pollination mechanism. However, the lack of shared derived characters between Ophiocaryon and its phylogenetic sister group M. alba is puzzling and requires further investigations on the diversity of the latter species. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Curran, Allison M; Prada, Paola A; Furton, Kenneth G
2010-06-15
In this study it is demonstrated that human odor collected from items recovered at a post-blast scene can be evaluated using human scent specific canine teams to locate and identify individuals who have been in contact with the improvised explosive device (IED) components and/or the delivery vehicle. The purpose of the experiments presented here was to document human scent survivability in both peroxide-based explosions as well as simulated roadside IEDs utilizing double-blind field trials. Human odor was collected from post-blast device and vehicle components. Human scent specific canine teams were then deployed at the blast scene and in locations removed from the blast scene to validate that human odor remains in sufficient quantities for reliable canine detection and identification. Human scent specific canines have shown the ability to identify individuals who have been in contact with IEDs using post-blast debris with an average success from site response of 82.2% verifying that this technology has great potential in criminal, investigative, and military applications. (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Koblitz, Jens C.; Fleming, Theodore H.; Medellín, Rodrigo A.; Kalko, Elisabeth K. V.; Schnitzler, Hans-Ulrich; Tschapka, Marco
2016-01-01
Nectar-feeding bats show morphological, physiological, and behavioral adaptations for feeding on nectar. How they find and localize flowers is still poorly understood. While scent cues alone allow no precise localization of a floral target, the spatial properties of flower echoes are very precise and could play a major role, particularly at close range. The aim of this study is to understand the role of echolocation for classification and localization of flowers. We compared the approach behavior of Leptonycteris yerbabuenae to flowers of a columnar cactus, Pachycereus pringlei, to that to an acrylic hollow hemisphere that is acoustically conspicuous to bats, but has different acoustic properties and, contrary to the cactus flower, present no scent. For recording the flight and echolocation behaviour we used two infrared video cameras under stroboscopic illumination synchronized with ultrasound recordings. During search flights all individuals identified both targets as a possible food source and initiated an approach flight; however, they visited only the cactus flower. In experiments with the acrylic hemisphere bats aborted the approach at ca. 40–50 cm. In the last instant before the flower visit the bats emitted a long terminal group of 10–20 calls. This is the first report of this behaviour for a nectar-feeding bat. Our findings suggest that L. yerbabuenae use echolocation for classification and localization of cactus flowers and that the echo-acoustic characteristics of the flower guide the bats directly to the flower opening. PMID:27684373
Shalit, Moshe; Guterman, Inna; Volpin, Hanne; Bar, Einat; Tamari, Tal; Menda, Naama; Adam, Zach; Zamir, Dani; Vainstein, Alexander; Weiss, David; Pichersky, Eran; Lewinsohn, Efraim
2003-01-01
The aroma of roses (Rosa hybrida) is due to more than 400 volatile compounds including terpenes, esters, and phenolic derivatives. 2-Phenylethyl acetate, cis-3-hexenyl acetate, geranyl acetate, and citronellyl acetate were identified as the main volatile esters emitted by the flowers of the scented rose var. “Fragrant Cloud.” Cell-free extracts of petals acetylated several alcohols, utilizing acetyl-coenzyme A, to produce the corresponding acetate esters. Screening for genes similar to known plant alcohol acetyltransferases in a rose expressed sequence tag database yielded a cDNA (RhAAT1) encoding a protein with high similarity to several members of the BAHD family of acyltransferases. This cDNA was functionally expressed in Escherichia coli, and its gene product displayed acetyl-coenzyme A:geraniol acetyltransferase enzymatic activity in vitro. The RhAAT1 protein accepted other alcohols such as citronellol and 1-octanol as substrates, but 2-phenylethyl alcohol and cis-3-hexen-1-ol were poor substrates, suggesting that additional acetyltransferases are present in rose petals. The RhAAT1 protein is a polypeptide of 458 amino acids, with a calculated molecular mass of 51.8 kD, pI of 5.45, and is active as a monomer. The RhAAT1 gene was expressed exclusively in floral tissue with maximum transcript levels occurring at stage 4 of flower development, where scent emission is at its peak. PMID:12692346
Campbell, Diane R; Jürgens, Andreas; Johnson, Steven D
2016-04-01
Floral trait differences between related species may play a key role in reproductive isolation imposed by pollinators. Volatile emissions can influence pollinator choice, but how they act in combination with traits such as flower orientation is rarely studied. We compared flower-opening patterns, morphology, colour, orientation and volatile emissions for two closely related species of Zaluzianskya and their natural hybrids. Hawkmoth pollinators were tested for preference between flowers of the two species, and between flowers with manipulations of volatiles or orientation. Flowers of Z. natalensis and Z. microsiphon open at night and day, respectively, but they overlap during early evening, when hawkmoths showed a strong preference for Z. natalensis. The species have similar flower size and colour, but Z. natalensis emits more floral volatiles in the evening and presents flowers vertically face-up as opposed to horizontally in Z. microsiphon, whereas natural hybrids are intermediate. Adding methyl benzoate and linalool to flowers of Z. microsiphon did not increase hawkmoth attraction, but re-orientation of flowers to face vertically increased attraction when scent cues were present, whereas re-orientation of Z. natalensis flowers to face horizontally decreased attraction. This study highlights the importance of flower orientation in imposing reproductive isolation. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Social learning of floral odours inside the honeybee hive.
Farina, Walter M; Grüter, Christoph; Díaz, Paula C
2005-09-22
A honeybee hive serves as an information centre in which communication among bees allows the colony to exploit the most profitable resources in a continuously changing environment. The best-studied communication behaviour in this context is the waggle dance performed by returning foragers, which encodes information about the distance and direction to the food source. It has been suggested that another information cue, floral scents transferred within the hive, is also important for recruitment to food sources, as bee recruits are more strongly attracted to odours previously brought back by foragers in both honeybees and bumble-bees. These observations suggested that honeybees learn the odour from successful foragers before leaving the hive. However, this has never been shown directly and the mechanisms and properties of the learning process remain obscure. We tested the learning and memory of recruited bees in the laboratory using the proboscis extension response (PER) paradigm, and show that recruits indeed learn the nectar odours brought back by foragers by associative learning and retrieve this memory in the PER paradigm. The associative nature of this learning reveals that information was gained during mouth-to-mouth contacts among bees (trophallaxis). Results further suggest that the information is transferred to long-term memory. Associative learning of food odours in a social context may help recruits to find a particular food source faster.
Jardine, Kolby J.; Gimenez, Bruno O.; Araujo, Alessandro C.; ...
2016-01-01
Oil palm plantations are rapidly expanding in the tropics because of insatiable global demand for fruit oil to be used in food, biofuels and cosmetics. Here we show that three tissue-specific volatiles can be quantified in ambient air above an African-American hybrid oil palm plantation in Brazil and linked photosynthesis (isoprene), floral scent (estragole), and for the first time, fruit oil processing (6-methyl-5-hepten-2-one, MHO). Plant enclosure techniques verified their tissue specific emission sources with ambient concentrations displaying distinct diurnal patterns above the canopy. Isoprene concentrations were near zero at night, but dramatically increased during the day while estragole showed elevatedmore » concentrations at night suggesting a light-independent, temperature-driven emission pattern from flowers. MHO also showed elevated concentrations at night and both estragole and MHO increased during the day. Our observations demonstrate that the African-American oil palm hybrid is strong isoprene emitter and suggest that MHO is a specific oxidation product of lycopene released during the industrial processing of palm oil. This study highlights the potential value of quantifying volatile oil palm signals in the atmosphere as a novel, non-invasive method to better understand biological functioning and its interactions with the environment including carbon assimilation, floral-insect interactions, and fruit oil production/processing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jardine, Kolby J.; Gimenez, Bruno O.; Araujo, Alessandro C.
Oil palm plantations are rapidly expanding in the tropics because of insatiable global demand for fruit oil to be used in food, biofuels and cosmetics. Here we show that three tissue-specific volatiles can be quantified in ambient air above an African-American hybrid oil palm plantation in Brazil and linked photosynthesis (isoprene), floral scent (estragole), and for the first time, fruit oil processing (6-methyl-5-hepten-2-one, MHO). Plant enclosure techniques verified their tissue specific emission sources with ambient concentrations displaying distinct diurnal patterns above the canopy. Isoprene concentrations were near zero at night, but dramatically increased during the day while estragole showed elevatedmore » concentrations at night suggesting a light-independent, temperature-driven emission pattern from flowers. MHO also showed elevated concentrations at night and both estragole and MHO increased during the day. Our observations demonstrate that the African-American oil palm hybrid is strong isoprene emitter and suggest that MHO is a specific oxidation product of lycopene released during the industrial processing of palm oil. This study highlights the potential value of quantifying volatile oil palm signals in the atmosphere as a novel, non-invasive method to better understand biological functioning and its interactions with the environment including carbon assimilation, floral-insect interactions, and fruit oil production/processing.« less
Peakall, Rod; Ebert, Daniel; Poldy, Jacqueline; Barrow, Russell A; Francke, Wittko; Bower, Colin C; Schiestl, Florian P
2010-10-01
• Sexually deceptive orchids are predicted to represent a special case of plant speciation where strong reproductive isolation may be achieved by differences in floral scent. • In this study of Australian sexually deceptive Chiloglottis orchids, we performed choice experiments to test for wasp pollinator specificity in the field; identified the compounds involved in pollinator attraction by gas chromatography with electroantennographic detection (GC-EAD), gas chromatography with mass selective detection (GC-MS), chemical synthesis and behavioural bioassays; and mapped our chemical findings on to a phylogeny of the orchids. • Field experiments confirmed pollination is a highly specific interaction, but also revealed a pool of nonpollinating 'minor responder' wasps. Six novel compounds, all 2,5-dialkylcyclohexan-1,3-diones, called 'chiloglottones', were discovered to be involved in pollinator attraction. Bioassays confirmed that pollinator specificity has a strong chemical basis, with specificity among sympatric orchids maintained by either different single compounds or a variation in a blend of two compounds. The phylogenetic overlay confirmed that speciation is always associated with pollinator switching and usually underpinned by chemical change. • If the chemical differences that control reproductive isolation in Chiloglottis have a strong genetic basis, and given the confirmed pool of potential pollinators, we conclude that pollinator-driven speciation appears highly plausible in this system. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).
Proteomic insights into floral biology.
Li, Xiaobai; Jackson, Aaron; Xie, Ming; Wu, Dianxing; Tsai, Wen-Chieh; Zhang, Sheng
2016-08-01
The flower is the most important biological structure for ensuring angiosperms reproductive success. Not only does the flower contain critical reproductive organs, but the wide variation in morphology, color, and scent has evolved to entice specialized pollinators, and arguably mankind in many cases, to ensure the successful propagation of its species. Recent proteomic approaches have identified protein candidates related to these flower traits, which has shed light on a number of previously unknown mechanisms underlying these traits. This review article provides a comprehensive overview of the latest advances in proteomic research in floral biology according to the order of flower structure, from corolla to male and female reproductive organs. It summarizes mainstream proteomic methods for plant research and recent improvements on two dimensional gel electrophoresis and gel-free workflows for both peptide level and protein level analysis. The recent advances in sequencing technologies provide a new paradigm for the ever-increasing genome and transcriptome information on many organisms. It is now possible to integrate genomic and transcriptomic data with proteomic results for large-scale protein characterization, so that a global understanding of the complex molecular networks in flower biology can be readily achieved. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. Copyright © 2016 Elsevier B.V. All rights reserved.
Atmospheric benzenoid emissions from plants rival those from fossil fuels.
Misztal, P K; Hewitt, C N; Wildt, J; Blande, J D; Eller, A S D; Fares, S; Gentner, D R; Gilman, J B; Graus, M; Greenberg, J; Guenther, A B; Hansel, A; Harley, P; Huang, M; Jardine, K; Karl, T; Kaser, L; Keutsch, F N; Kiendler-Scharr, A; Kleist, E; Lerner, B M; Li, T; Mak, J; Nölscher, A C; Schnitzhofer, R; Sinha, V; Thornton, B; Warneke, C; Wegener, F; Werner, C; Williams, J; Worton, D R; Yassaa, N; Goldstein, A H
2015-07-13
Despite the known biochemical production of a range of aromatic compounds by plants and the presence of benzenoids in floral scents, the emissions of only a few benzenoid compounds have been reported from the biosphere to the atmosphere. Here, using evidence from measurements at aircraft, ecosystem, tree, branch and leaf scales, with complementary isotopic labeling experiments, we show that vegetation (leaves, flowers, and phytoplankton) emits a wide variety of benzenoid compounds to the atmosphere at substantial rates. Controlled environment experiments show that plants are able to alter their metabolism to produce and release many benzenoids under stress conditions. The functions of these compounds remain unclear but may be related to chemical communication and protection against stress. We estimate the total global secondary organic aerosol potential from biogenic benzenoids to be similar to that from anthropogenic benzenoids (~10 Tg y(-1)), pointing to the importance of these natural emissions in atmospheric physics and chemistry.
Atmospheric benzenoid emissions from plants rival those from fossil fuels
Misztal, P.K.; Hewitt, C.N.; Wildt, J.; Blande, J.D.; Eller, A.S.D.; Fares, S.; Gentner, D.R.; Gilman, J.B.; Graus, M.; Greenberg, J.; Guenther, A.B.; Hansel, A.; Harley, P.; Huang, M.; Jardine, K.; Karl, T.; Kaser, L.; Keutsch, F.N.; Kiendler-Scharr, A.; Kleist, E.; Lerner, B.M.; Li, T.; Mak, J.; Nölscher, A.C.; Schnitzhofer, R.; Sinha, V.; Thornton, B.; Warneke, C.; Wegener, F.; Werner, C.; Williams, J.; Worton, D.R.; Yassaa, N.; Goldstein, A.H.
2015-01-01
Despite the known biochemical production of a range of aromatic compounds by plants and the presence of benzenoids in floral scents, the emissions of only a few benzenoid compounds have been reported from the biosphere to the atmosphere. Here, using evidence from measurements at aircraft, ecosystem, tree, branch and leaf scales, with complementary isotopic labeling experiments, we show that vegetation (leaves, flowers, and phytoplankton) emits a wide variety of benzenoid compounds to the atmosphere at substantial rates. Controlled environment experiments show that plants are able to alter their metabolism to produce and release many benzenoids under stress conditions. The functions of these compounds remain unclear but may be related to chemical communication and protection against stress. We estimate the total global secondary organic aerosol potential from biogenic benzenoids to be similar to that from anthropogenic benzenoids (~10 Tg y−1), pointing to the importance of these natural emissions in atmospheric physics and chemistry. PMID:26165168
Yu, Ying; Lyu, Shiheng; Chen, Dan; Lin, Yi; Chen, Jianjun; Chen, Guixin; Ye, Naixing
2017-03-29
Fresh jasmine flowers have been used to make jasmine teas in China, but there has been no complete information about volatile organic compound emissions in relation to flower developmental stages and no science-based knowledge about which floral stage should be used for the infusion. This study monitored volatile organic compounds emitted from living flowers of Jasminum sambac (L.) Ait. 'Bifoliatum' at five developmental stages and also from excised flowers. Among the compounds identified, α-farnesene, linalool, and benzyl acetate were most abundant. Since α-farnesene is synthesized through the Mevalonate pathway, four genes encoding 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), farnesyl pyrophosphate synthase, and terpene synthase were isolated. Their expression patterns in living flowers at the five stages and in excised flowers coincided with the emission patterns of α-farnesene. Application of lovastatin, a HMGR inhibitor, significantly reduced the expression of the genes and greatly decreased the emission of α-farnesene. The sweet scent was diminished from lovastatin-treated flowers as well. These results indicate that α-farnesene is an important compound emitted from jasmine flowers, and its emission patterns suggest that flowers at the opening stage or flower buds 8 h after excision should be used for the infusion of tea leaves.
Fungus-Farming Termites Selectively Bury Weedy Fungi that Smell Different from Crop Fungi.
Katariya, Lakshya; Ramesh, Priya B; Gopalappa, Thejashwini; Desireddy, Sathish; Bessière, Jean-Marie; Borges, Renee M
2017-10-01
Mutualistic associations such as the fungal farms of insects are prone to parasitism and are consequently vulnerable to attack by weeds and pests. Therefore, efficient farm management requires quick detection of weeds for their elimination. Furthermore, if the available weedicides are non-specific, then the ability of insects to discriminate between crop and weeds becomes essential for targeted application of such compounds. Here, we demonstrate for the first time in fungus-farming insects, that worker castes of the fungus-growing termite Odontotermes obesus discriminate between their crop (Termitomyces) and the weedy (Pseudoxylaria) fungi, even if exposed to only fungal scents. Termites respond to the presence of fungal mycelium or scent alone, by burying the weed with the offered material such as soil or agar, possibly anointing the weed with chemicals in the process. The scent profiles of crop and weedy fungi are distinct and the differences are likely exploited by termites to selectively mount their defences. Sesquiterpene compounds such as aristolene and viridiflorol, which are absent from crop odours, may constitute the "weedy scent". Our results provide a general mechanism of how other fungus-farming insects could avoid indiscriminate application of non-specific fungicides which could lead to poisoning their crops, and have bearing on the stability of the mutualism between termites and their crop fungus in the face of parasitism by weedy fungi.
Use of Scented Sugar Bait Stations to Track Mosquito-Borne Arbovirus Transmission in California
LOTHROP, HUGH D.; WHEELER, SARAH S.; FANG, YING; REISEN, WILLIAM K.
2012-01-01
Laboratory and field research was conducted to determine if Culex tarsalis Coquillett expectorated West Nile virus (WNV) during sugar feeding and if a lure or bait station could be developed to exploit this behavior for WNV surveillance. Experimentally infected Cx. tarsalis repeatedly expectorated WNV onto filter paper strips and into vials with wicks containing sucrose that was readily detectable by a quantitative reverse transcriptase-polymerase chain reaction assay. Few females (33%, n = 27) became infected by imbibing sugar solutions spiked with high concentrations (107 plaque forming units/ml) of WNV, indicating sugar feeding stations probably would not be a source of WNV infection. In nature, sugar bait stations scented with the floral attractant phenyl acetaldehyde tracked WNV transmission activity in desert but not urban or agricultural landscapes in California. When deployed in areas of the Coachella Valley with WNV activity during the summer of 2011, 27 of 400 weekly sugar samples (6.8%) tested positive for WNV RNA by reverse transcriptase-polymerase chain reaction. Prevalence of positives varied spatially, but positive sugar stations were detected before concurrent surveillance measures of infection (mosquito pools) or transmission (sentinel chicken seroconversions). In contrast, sugar bait stations deployed in urban settings in Los Angeles or agricultural habits near Bakersfield in Kern County supporting WNV activity produced 1 of 90 and 0 of 60 positive weekly sugar samples, respectively. These results with sugar bait stations will require additional research to enhance bait attractancy and to understand the relationship between positive sugar stations and standard metrics of arbovirus surveillance. PMID:23270177
MHC odours are not required or sufficient for recognition of individual scent owners
Hurst, Jane L; Thom, Michael D; Nevison, Charlotte M; Humphries, Richard E; Beynon, Robert J
2005-01-01
To provide information about specific depositors, scent marks need to encode a stable signal of individual ownership. The highly polymorphic major histocompatibility complex (MHC) influences scents and contributes to the recognition of close kin and avoidance of inbreeding when MHC haplotypes are shared. MHC diversity between individuals has also been proposed as a primary source of scents used in individual recognition. We tested this in the context of scent owner recognition among male mice, which scent mark their territories and countermark scents from other males. We examined responses towards urine scent according to the scent owner's genetic difference to the territory owner (MHC, genetic background, both and neither) or genetic match to a familiar neighbour. While urine of a different genetic background from the subject always stimulated greater scent marking than own, regardless of familiarity, MHC-associated odours were neither necessary nor sufficient for scent owner recognition and failed to stimulate countermarking. Urine of a different MHC type to the subject stimulated increased investigation only when this matched both the MHC and genetic background of a familiar neighbour. We propose an associative model of scent owner recognition in which volatile scent profiles, contributed by both fixed genetic and varying non-genetic factors, are learnt in association with a stable involatile ownership signal provided by other highly polymorphic urine components. PMID:15906464
Yang, Lu; Cheng, Ping; Wang, Jin-Hui; Li, Hong
2017-10-23
This study investigated the volatile flavor compounds and antioxidant properties of the essential oil of chrysanthemums that was extracted from the fresh flowers of 10 taxa of Chrysanthemum morifolium from three species; namely Dendranthema morifolium (Ramat.) Yellow, Dendranthema morifolium (Ramat.) Red, Dendranthema morifolium (Ramat.) Pink, Dendranthema morifolium (Ramat.) White, Pericallis hybrid Blue, Pericallis hybrid Pink, Pericallis hybrid Purple, Bellis perennis Pink, Bellis perennis Yellow, and Bellis perennis White. The antioxidant capacity of the essential oil was assayed by spectrophotometric analysis. The volatile flavor compounds from the fresh flowers were collected using dynamic headspace collection, analyzed using auto thermal desorber-gas chromatography/mass spectrometry, and identified with quantification using the external standard method. The antioxidant activities of Chrysanthemum morifolium were evaluated by DPPH and FRAP assays, and the results showed that the antioxidant activity of each sample was not the same. The different varieties of fresh Chrysanthemum morifolium flowers were distinguished and classified by fingerprint similarity evaluation, principle component analysis (PCA), and cluster analysis. The results showed that the floral volatile component profiles were significantly different among the different Chrysanthemum morifolium varieties. A total of 36 volatile flavor compounds were identified with eight functional groups: hydrocarbons, terpenoids, aromatic compounds, alcohols, ketones, ethers, aldehydes, and esters. Moreover, the variability among Chrysanthemum morifolium in basis to the data, and the first three principal components (PC1, PC2, and PC3) accounted for 96.509% of the total variance (55.802%, 30.599%, and 10.108%, respectively). PCA indicated that there were marked differences among Chrysanthemum morifolium varieties. The cluster analysis confirmed the results of the PCA analysis. In conclusion, the results of this study provide a basis for breeding Chrysanthemum cultivars with desirable floral scents, and they further support the view that some plants are promising sources of natural antioxidants.
Bumblebees can discriminate between scent-marks deposited by conspecifics
Pearce, Richard F.; Giuggioli, Luca; Rands, Sean A.
2017-01-01
Bumblebees secrete a substance from their tarsi wherever they land, which can be detected by conspecifics. These secretions are referred to as scent-marks, which bumblebees are able to use as social cues. Although it has been found that bumblebees can detect and associate scent-marks with rewarding or unrewarding flowers, their ability at discriminating between scent-marks from bumblebees of differing relatedness is unknown. We performed three separate experiments with bumblebees (Bombus terrestris), where they were repeatedly exposed to rewarding and unrewarding artificial flowers simultaneously. Each flower type carried scent-marks from conspecifics of differing relatedness or were unmarked. We found that bumblebees are able to distinguish between 1. Unmarked flowers and flowers that they themselves had scent-marked, 2. Flowers scent-marked by themselves and flowers scent-marked by others in their nest (nestmates), and 3. Flowers scent-marked by their nestmates and flowers scent-marked by non-nestmates. The bumblebees found it more difficult to discriminate between each of the flower types when both flower types were scent-marked. Our findings show that bumblebees have the ability to discriminate between scent-marks of conspecifics, which are potentially very similar in their chemical composition, and they can use this ability to improve their foraging success. PMID:28266572
The Eye Catching Property of Digital-Signage with Scent and a Scent-Emitting Video Display System
NASA Astrophysics Data System (ADS)
Tomono, Akira; Otake, Syunya
In this paper, the effective method of inducing a glance aimed at the digital signage by emitting a scent is described. The simulation experiment was done using the immersive VR System because there were a lot of restrictions to the experiment in an actual passageway. In order to investigate the eye catching property of the digital signage, the passer-by's eye movement was analyzed. Through the experiment, they were clarified that the digital signage with the scent was paid to attention, and the strong impression remained in the memory. Next, a scent-emitting video display system applying to the digital signage is described. To this end, a scent-emitting device that is able to quickly change the scents it is releasing, and present them from a distance (by the non-contact method), thus maintaining a relationship between the scent and the image, must be developed. We propose a new method where a device that can release pressurized gases is placed behind the display screen filled with tiny pores. Scents are then ejected from this device, traveling through the pores to the front side of the screen. An excellent scent delivery characteristic was obtained because the distance to the user is close and the scent is presented from the front. We also present a method for inducing viewer reactions using on-screen images, thereby enabling scent release to coincide precisely with viewer inhalations. We anticipate that the simultaneous presentation of scents and video images will deepen viewers' comprehension of these images.
Atmospheric benzenoid emissions from plants rival those from fossil fuels
Misztal, P. K.; Hewitt, C. N.; Wildt, J.; ...
2015-07-13
Despite the known biochemical production of a range of aromatic compounds by plants and the presence of benzenoids in floral scents, the emissions of only a few benzenoid compounds have been reported from the biosphere to the atmosphere. Here, using evidence from measurements at aircraft, ecosystem, tree, branch and leaf scales, with complementary isotopic labeling experiments, we show that vegetation (leaves, flowers, and phytoplankton) emits a wide variety of benzenoid compounds to the atmosphere at substantial rates. Controlled environment experiments show that plants are able to alter their metabolism to produce and release many benzenoids under stress conditions. The functionsmore » of these compounds remain unclear but may be related to chemical communication and protection against stress. We estimate the total global secondary organic aerosol potential from biogenic benzenoids to be similar to that from anthropogenic benzenoids (~10 Tg y -1), pointing to the importance of these natural emissions in atmospheric physics and chemistry.« less
Atmospheric benzenoid emissions from plants rival those from fossil fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misztal, P. K.; Hewitt, C. N.; Wildt, J.
Despite the known biochemical production of a range of aromatic compounds by plants and the presence of benzenoids in floral scents, the emissions of only a few benzenoid compounds have been reported from the biosphere to the atmosphere. Here, using evidence from measurements at aircraft, ecosystem, tree, branch and leaf scales, with complementary isotopic labeling experiments, we show that vegetation (leaves, flowers, and phytoplankton) emits a wide variety of benzenoid compounds to the atmosphere at substantial rates. Controlled environment experiments show that plants are able to alter their metabolism to produce and release many benzenoids under stress conditions. The functionsmore » of these compounds remain unclear but may be related to chemical communication and protection against stress. We estimate the total global secondary organic aerosol potential from biogenic benzenoids to be similar to that from anthropogenic benzenoids (~10 Tg y -1), pointing to the importance of these natural emissions in atmospheric physics and chemistry.« less
Mason, L.C.; Savidge, J.A.; Rodda, G.H.; Yackel Adams, A.A.
2011-01-01
Current methods for controlling the invasive Brown Treesnake (Boiga irregularis) on Guam include a modified minnow trap with a live mouse lure. We investigated the effects on capture success of augmenting these traps with scented guide ropes leading to trap entrances. Initial screening of scent preferences was based on time spent in scented and unscented arms of a Y-maze. Preferences of large and small snakes were scored for six different prey scents (live and carrion gecko, skink, and mouse). Large snakes spent more time in the maze arm scented with live gecko and carrion gecko, whereas small snakes spent more time in the arm scented with carrion mouse and carrion gecko. After the laboratory study, a pilot trapping session was conducted in the field using three treatments (live mouse-scented ropes, carrion gecko-scented ropes, and carrion mouse-scented ropes) and two controls (traps with unscented guide ropes and those with no ropes attached). Contrary to laboratory results, live mouse-scented ropes were most effective. We conducted a second trapping session using live mouse-scented ropes as well as the two controls used in the pilot study. For snakes of below-average to average condition, the number of captures for traps with live mouse-scented ropes was higher than for traps with no ropes. However, for snakes of above-average condition, there were no differences in capture rates between trap treatments. Overall, treatment effects were weaker than latent individual heterogeneity and the influence of snake body size, with large snakes trapped more readily. ?? 2011 Society for the Study of Amphibians and Reptiles.
Martín, José; López, Pilar
2013-03-01
Scent-marked substrates may inform conspecifics on the characteristics of territorial males. Scent-marks of male Carpetan rock lizards (Iberolacerta cyreni) affect space use of females, which by selecting an area may increase the probability of mating with the male that has scent-marked that area. However, males do not hold exclusive territories, and scent-marks of different individual males are often together. This may provide complex information from multiple sources on the social structure. Here, we examined female preference in response to scent marks of various males and combinations in a laboratory experiment. Females preferred areas scent-marked by territorial old males against those scent-marked by young satellite-sneaker males. This reflected the known preference of females for mating with old males. In a second experiment, females preferred areas scent-marked by two males to areas of similar size marked by a single male. This may increase the probability of obtaining multiple copulations with different males, which may favour sperm competition and cryptic female choice, or may be a way to avoid infertile males. Finally, when we experimentally over-marked the scent-marks of an old male with scent-marks of a young male, females did not avoid, nor prefer, the over-marked area, suggesting that the quality of the old male may override the presence of a satellite male. We suggest that, irrespective of the causes underlying why a female selects a scent-marked area, this strategy may affect her reproductive success, which may have the same evolutionary consequences that "direct" mate choice decisions of other animals. Copyright © 2013 Elsevier B.V. All rights reserved.
Both the adaxial and abaxial epidermal layers of the rose petal emit volatile scent compounds.
Bergougnoux, Véronique; Caissard, Jean-Claude; Jullien, Frédéric; Magnard, Jean-Louis; Scalliet, Gabriel; Cock, J Mark; Hugueney, Philippe; Baudino, Sylvie
2007-09-01
The localization and timing of production and emission of scent was studied in different Rosa x hybrida cultivars, focusing on three particular topics. First, it was found that petals represent the major source of scent in R. x hybrida. In heavily scented cultivars, the spectrum and levels of volatiles emitted by the flower broadly correlated with the spectrum and levels of volatiles contained within the petal, throughout petal development. Secondly, analysis of rose cultivars that lacked a detectable scent indicated that the absence of fragrance was due to a reduction in both the biosynthesis and emission of scent volatiles. A cytological study, conducted on scented and non-scented rose cultivars showed that no major difference was visible in the anatomy of the petals either at small magnification in optical sections or in ultrathin sections observed by TEM. In particular, the cuticle of epidermal cells was not thicker in scentless cultivars. Thirdly, using two different techniques, solid/liquid phase extraction and headspace collection of volatiles, we showed that in roses, both epidermal layers are capable of producing and emitting scent volatiles, despite the different morphologies of the cells of these two tissues. Moreover, OOMT, an enzyme involved in scent molecule biosynthesis was localized in both epidermal layers.
Pragadheesh, V S; Chanotiya, Chandan S; Rastogi, Shubhra; Shasany, Ajit K
2017-08-01
Jasminum species are among the most preferred fresh cut flowers in India since ancient times. The plant produces small and fragrant flowers, which are of great demand in the preparation of fragrant garlands and also in perfume industries. Floral volatile of Jasminum grandiflorum L. (Family: Oleaceae) was extracted using solid-phase microextraction and analyzed in enantioselective gas chromatography. Chemical classes of identified volatiles revealed the presence of terpenoids, phenylpropanoids, and fatty acid derivatives. Marker constituent of flower volatiles, linalool was selected for analytical characterization on ethyl- and acetyl-β-cyclodextrin stationary phase. (R)-(-)-Linalool was found as major enantiomer in volatiles of floral buds whereas (S)-(+)-linalool predominated in the volatiles of matured flowers. Simultaneously, a quantitative real-time PCR was performed to find the gene expression of linalool synthase to investigate the mechanism of enantiomeric inversion. The emission pattern of (R)-(-)-linalool at different flower developmental stages was well correlated (P = 0.01) with the gene expression of the cloned linalool synthase from J. grandiflorum. We observed that the successive change in (R)- to (S)-linalool ratio from bud to mature flower was mainly due to the enantio- specific transformation and temporal decline of (R)-linalool producing gene in J. grandiflorum. This enantiomeric change also leads to the difference in flower aroma. Furthermore, this is probably the reason behind consumer's acceptance for jasmine buds rather than bloomed flowers in cut flower segments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fenko, Anna; Loock, Caroline
2014-01-01
This study investigates the influence of ambient scent and music, and their combination, on patients' anxiety in a waiting room of a plastic surgeon. Waiting for an appointment with a plastic surgeon can increase a patient's anxiety. It is important to make the waiting time before an appointment with the surgeon more pleasant and to reduce the patient's anxiety. Ambient environmental stimuli can influence people's mood, cognition, and behavior. This experimental study was performed to test whether ambient scent and music can help to reduce patients' anxiety. Two pre-studies (n = 21) were conducted to measure the subjective pleasantness and arousal of various scents and music styles. Scent and music that scored high on pleasantness and low on arousal were selected for the main study. The field experiment (n = 117) was conducted in the waiting room of a German plastic surgeon. The patients' levels of anxiety were measured in four conditions: (1) without scent and music, (2) with lavender scent; (3) with instrumental music; (4) with both scent and music. When used separately, each of the environmental factors, music and scent, significantly reduced the level of patient's anxiety compared to the control condition. However, the combination of scent and music was not effective in reducing anxiety. Our results suggest that ambient scent and music can help to reduce patients' anxiety, but they should be used with caution. Adding more ambient elements to environment could raise patients' level of arousal and thus increase their anxiety. Healing environments, patient, patient-centered care, quality care, satisfaction.
21 CFR 884.5460 - Scented or scented deodorized menstrual tampon.
Code of Federal Regulations, 2010 CFR
2010-04-01
... menstrual tampons treated with added antimicrobial agents or other drugs. (b) Classification. Class II... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scented or scented deodorized menstrual tampon. 884.5460 Section 884.5460 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...
Do mammalian nest predators follow human scent trails in the shortgrass prairie?
Skagen, S.K.; Stanley, T.R.; Dillon, M.B.
1999-01-01
Nest predation, the major cause of nest failure in passerines, has exerted a strong influence on the evolution of life history traits of birds. Because human disturbance during nest monitoring may alter predation rates, we investigated whether human scent affected the survival of artificial ground nests in shortgrass prairie. Our experiment consisted of two treatments, one in which there was no attempt to mask human scent along travel routes between artificial nests, and one in which we masked human scent with cow manure, a scent familiar to mammalian predators in the study area. We found no evidence that human scent influenced predation rates, nor that mammalian predators followed human trails between nests. We conclude that scent trails made by investigators do not result in lower nesting success of passerines of the shortgrass prairie where vegetation trampling is minimal, mammalian predators predominate, and avian predators are rare.
21 CFR 884.5425 - Scented or scented deodorized menstrual pad.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scented or scented deodorized menstrual pad. 884.5425 Section 884.5425 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... indicated conditions, but does not include menstrual pads treated with added antimicrobial agents or other...
Caraballo, Norma Iris; Mendel, Julian; Holness, Howard; La Salvia, Joel; Moroose, Tina; Eckenrode, Brian; Stockham, Rex; Furton, Kenneth; Mills, DeEtta
2016-09-01
In criminal investigations, the collection of human scent often employs a non-contact, dynamic airflow device, known as the Scent Transfer Unit 100 (STU-100), to transfer volatile organic compounds (VOCs) from an object/person onto a collection material that is subsequently presented to human scent discriminating canines. Human scent is theorized to be linked to epithelial skin cells that are shed at a relatively constant rate allowing both scent and cellular material to be deposited into the environment and/or onto objects. Simultaneous collection of cellular material, with adequate levels of nuclear deoxyribonucleic acid (nDNA), and human scent using a non-invasive methodology would facilitate criminal investigations. This study evaluated the STU-100 for the concurrent collection of human scent and epithelial skin cells from a porous (paper) and non-porous (stainless steel bar) object that was held for a specified period of time in the dominant hand of twenty subjects (10 females and 10 males). Human scent analysis was performed using headspace static solid-phase microextraction with gas chromatography-mass spectrometry (HS-SPME/GC-MS). A polycarbonate filter was used to trap epithelial skin cells which, upon extraction, were subsequently analyzed, inter-laboratory, using the quantitative polymerase chain reaction (qPCR). The STU-100 proved to be inadequate for collecting the minimum number of epithelial skin cells required to obtain nuclear DNA concentrations above the limit of detection for the qPCR kit. With regard to its use for human scent collection, a reduction in the number and mass of compounds was observed when compared to samples that were directly collected. However, when the indirect collection of human scent from the two different objects was compared, a greater number and mass of compounds was observed from the non-porous object than from the porous object. This outcome suggests that the matrix composition of the scent source could affect the efficacy of the human scent collected when using a non-contact, dynamic airflow sampling device. The findings from this study are of importance because although the STU-100 proved to not be suitable for collecting epithelial skin cells for DNA analysis, its non-contact capability allows for the possibility of other potential forensic evidence, like that of human scent, to be obtained. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Meijón, Mónica; Cañal, María Jesús; Valledor, Luis; Rodríguez, Roberto; Feito, Isabel
2011-03-01
The ability to control the timing of flowering is a key strategy in planning the production of ornamental species such as azaleas; however, it requires a thorough understanding of floral transition. DNA methylation is involved in controlling the functional state of chromatin and gene expression during floral induction pathways in response to environmental and developmental signals. Plant hormone signalling is also known to regulate suites of morphogenic processes in plants and its role in flowering-time control is starting to emerge as a key controlling step. This work investigates if the gibberellin (GA) inhibitors and chemical pinching applied in improvement of azalea flowering alter the dynamics of DNA methylation or the levels of polyamines (PAs), GAs and cytokinins (CKs) during floral transition, and whether these changes could be related to the effects observed on flowering ability. DNA methylation during floral transition and endogenous content of PAs, GAs and CKs were analysed after the application of GA synthesis inhibitors (daminozide, paclobutrazol and chlormequat chloride) and a chemical pruner (fatty acids). The application of GA biosynthesis inhibitors caused alterations in levels of PAs, GAs and CKs and in global DNA methylation levels during floral transition; also, these changes in plant growth regulators and DNA methylation were correlated with flower development. DNA methylation, PA, GA and CK levels can be used as predictive markers of plant floral capacity in azalea. Copyright © Physiologia Plantarum 2010.
Macrides, F; Clancy, A N; Singer, A G; Agosta, W C
1984-10-01
Hamster vaginal discharge elicits intense genital investigation and facilitates overt copulatory behavior toward anesthetized males (female surrogates) whose hindquarters have been scented with this material. The ability of an arbitrary chemosensory stimulus to acquire behavioral activity like that of vaginal discharge through association with maternal stimuli and/or adult sexual experience was examined in male hamsters. Vanillin was used as the arbitrary stimulus because it is attractive to hamsters, is not likely to be a natural constituent of hamster scents, is not known to exert any adverse physiological effects, and is a subliming solid with an extremely long persistence when used as an artificial scent. The males were reared by vanillin-scented or control solvent (water)-scented foster mothers, and in adulthood were paired repeatedly with vanillin- or solvent-scented receptive females. Behavioral testing with scented surrogates was performed one week preceding, and again following, the sexual pairings. Rearing by vanillin-scented mothers modestly but significantly increased the amount of time sexually naive males spent investigating the hindquarters as compared to other body regions of vanillin-scented surrogates. However, neither neonatal nor adult interactions with vanillin-scented females imparted to this stimulus the capacity to facilitate overt copulatory behavior. Also, regardless of the males' exposure history, only vaginal discharge caused the males to direct their investigatory behavior predominantly toward the hindquarters. The characteristic investigatory and copulatory responses exhibited by male hamsters toward vaginal discharge thus do not appear to be readily developed toward arbitrary chemosensory stimuli associated with particular females to which the males have been exposed.
Handler beliefs affect scent detection dog outcomes.
Lit, Lisa; Schweitzer, Julie B; Oberbauer, Anita M
2011-05-01
Our aim was to evaluate how human beliefs affect working dog outcomes in an applied environment. We asked whether beliefs of scent detection dog handlers affect team performance and evaluated relative importance of human versus dog influences on handlers' beliefs. Eighteen drug and/or explosive detection dog/handler teams each completed two sets of four brief search scenarios (conditions). Handlers were falsely told that two conditions contained a paper marking scent location (human influence). Two conditions contained decoy scents (food/toy) to encourage dog interest in a false location (dog influence). Conditions were (1) control; (2) paper marker; (3) decoy scent; and (4) paper marker at decoy scent. No conditions contained drug or explosive scent; any alerting response was incorrect. A repeated measures analysis of variance was used with search condition as the independent variable and number of alerts as the dependent variable. Additional nonparametric tests compared human and dog influence. There were 225 incorrect responses, with no differences in mean responses across conditions. Response patterns differed by condition. There were more correct (no alert responses) searches in conditions without markers. Within marked conditions, handlers reported that dogs alerted more at marked locations than other locations. Handlers' beliefs that scent was present potentiated handler identification of detection dog alerts. Human more than dog influences affected alert locations. This confirms that handler beliefs affect outcomes of scent detection dog deployments.
Complex memories in honeybees: can there be more than two?
Reinhard, Judith; Srinivasan, Mandyam V; Zhang, Shaowu
2006-04-01
Foraging honeybees are likely to learn visual and chemical cues associated with many different food sources. Here, we explore how many such sources can be memorized and recalled. Marked bees were trained to visit two (or three) sugar feeders, each placed at a different outdoor location and carrying a different scent. We then tested the ability of the bees to recall these locations and fly to them, when the training scents were blown into the hive, and the scents and food at the feeders were removed. When trained on two feeder locations, each associated with a different scent, the bees could correctly recall the location associated with each scent. However, this ability broke down when the number of scents and feeder locations was increased to three. Performance was partially restored when each of the three training feeders was endowed with an additional cue, namely, a distinct colour. Our results suggest that bees can recall a maximum of two locations when each is associated with a different scent. However, this number can be increased if the scent cues are augmented by visual cues. These findings have implications for the ways in which associations are established and laid down in honeybee memory.
Zhang, Fan; Song, Yang; Ebrahimi, Mohammad; Niu, Liwen; Teng, Maikun; Li, Xu
2016-09-02
Clathrin-coated vesicles (CCVs) play critical roles in multiple cellular processes, including nutrient uptake, endosome/lysosome biogenesis, pathogen invasion, regulation of signalling receptors, etc. Saccharomyces cerevisiae Ent5 (ScEnt5) is one of the two major adaptors supporting the CCV-mediated TGN/endosome traffic in yeast cells. However, the classification and phosphoinositide binding characteristic of ScEnt5 remain elusive. Here we report the crystal structures of the ScEnt5 N-terminal domain, and find that ScEnt5 contains an insertion α' helix that does not exist in other ENTH or ANTH domains. Furthermore, we investigate the classification of ScEnt5-N(31-191) by evolutionary history analyses and structure comparisons, and find that the ScEnt5 N-terminal domain shows different phosphoinositide binding property from rEpsin1 and rCALM. Above results facilitate the understanding of the ScEnt5-mediated vesicle coat formation process. Copyright © 2016 Elsevier Inc. All rights reserved.
Production and emission of volatile compounds by petal cells.
Baudino, Sylvie; Caissard, Jean-Claude; Bergougnoux, Véronique; Jullien, Frédéric; Magnard, Jean-Louis; Scalliet, Gabriel; Cock, J Mark; Hugueney, Philippe
2007-11-01
We localized the tissues and cells that contribute to scent biosynthesis in scented and non-scented Rosa x hybrida cultivars as part of a detailed cytological analysis of the rose petal. Adaxial petal epidermal cells have a typical conical, papillate shape whereas abaxial petal epidermal cells are flat. Using two different techniques, solid/liquid phase extraction and headspace collection of volatiles, we showed that, in roses, both epidermal layers are capable of producing and emitting scent volatiles, despite the different morphologies of the cells of these two tissues. Moreover, OOMT, an enzyme involved in scent molecule biosynthesis, was localized in both epidermal layers. These results are discussed in view of results found in others species such as Antirrhinum majus, where it has been shown that the adaxial epidermis is the preferential site of scent production and emission.
Production and Emission of Volatile Compounds by Petal Cells
Caissard, Jean-Claude; Bergougnoux, Véronique; Jullien, Frédéric; Magnard, Jean-Louis; Scalliet, Gabriel; Cock, J Mark; Hugueney, Philippe
2007-01-01
We localized the tissues and cells that contribute to scent biosynthesis in scented and non-scented Rosa × hybrida cultivars as part of a detailed cytological analysis of the rose petal. Adaxial petal epidermal cells have a typical conical, papillate shape whereas abaxial petal epidermal cells are flat. Using two different techniques, solid/liquid phase extraction and headspace collection of volatiles, we showed that, in roses, both epidermal layers are capable of producing and emitting scent volatiles, despite the different morphologies of the cells of these two tissues. Moreover, OOMT, an enzyme involved in scent molecule biosynthesis, was localized in both epidermal layers. These results are discussed in view of results found in others species such as Antirrhinum majus, where it has been shown that the adaxial epidermis is the preferential site of scent production and emission. PMID:19704548
Chemosensory age discrimination in the snake Boa constrictor (Serpentes: Boidae).
Gabirot, Marianne; Picerno, Pablo; Valencia, Jorge; Lopez, Pilar; Martin, José
2012-12-01
Many snakes are able to use their chemosensory system to detect scent of conspecifics, which is important in many social contexts. Age discrimination based on chemical cues may be especially important to ensure access to sexually mature potential partners. In this study, we used 24 individual Boa constrictor snakes (12 adults mature and 12 non-mature individuals) that had been captured in different areas of Ecuador, and were maintained in captivity at the Vivarium of Quito. We used tongue-flick experiments to examine whether these snakes were able to discriminate between scents from mature and non-mature individuals. Results showed that B. constrictor snakes used chemical cues to recognize conspecifics and that the scent of individuals of different ages elicited chemosensory responses of different magnitudes. The scents from adult conspecifics elicited the quickest and highest chemosensory responses (i.e., short latency times and high tongue-flick rates), although we did not find differential responses to scent of males and females. The magnitude of the responses was lower to scent of sub adult individuals, and then even lower to scent of juvenile snakes, but in all cases the scent of snakes was discriminated from a blank control. We discuss the potential chemical mechanisms that may allow age recognition and its implications for social and sexual behavior of this snake species.
NASA Astrophysics Data System (ADS)
Proffit, Magali; Bessière, Jean-Marie; Schatz, Bertrand; Hossaert-McKey, Martine
2018-07-01
Volatile organic compounds (VOCs) emitted by flowers play an essential role in mediating the attraction of pollinators. However, they also attract other species exploiting resources associated with flowers. For instance, VOCs emitted by figs play a major role in encounters between Ficus spp., their mutualistic pollinating wasps, and all the members of the community of non-pollinating fig wasps (NPFWs) that exploit the mutualistic interaction. Because pollinators might be in limited supply for a tree bearing many inflorescences, the plant might maximize its individual reproductive success by reducing the attractiveness of inflorescences once they are pollinated, so that pollinators orient only towards the tree's unpollinated figs. Changes in VOCs emission that bring this about could represent an important cue for NPFWs that exploit particular stages of fig development. In this study, by monitoring precisely the presence of fig-associated wasps on figs of F. racemosa, a common widespread fig species, we demonstrated that 4-5 days and 15 days following pollination represent two critical transitional steps in the succession of different wasp species. Then, focusing on the first one of these transitional steps, by investigating the composition of fig VOCs at receptivity and from 1 to 5 days following pollination, we detected progressive quantitative and qualitative variation of floral scent following pollination. These changes are significant at 5 days following pollination. The qualitative changes are mainly due to an increase in the relative proportions of two monoterpenes (α-pinene and limonene). These variations of the floral VOCs following pollination could explain why pollinating wasps stop visiting figs very shortly after the first pollinators enter receptive figs. They also possibly explain the succession of non-pollinating wasps on the figs following pollination.
Hermann, Katrin; Klahre, Ulrich; Venail, Julien; Brandenburg, Anna; Kuhlemeier, Cris
2015-05-01
Switches between pollination syndromes have happened frequently during angiosperm evolution. Using QTL mapping and reciprocal introgressions, we show that changes in reproductive organ morphology have a simple genetic basis. In animal-pollinated plants, flowers have evolved to optimize pollination efficiency by different pollinator guilds and hence reproductive success. The two Petunia species, P. axillaris and P. exserta, display pollination syndromes adapted to moth or hummingbird pollination. For the floral traits color and scent, genetic loci of large phenotypic effect have been well documented. However, such large-effect loci may be typical for shifts in simple biochemical traits, whereas the evolution of morphological traits may involve multiple mutations of small phenotypic effect. Here, we performed a quantitative trait locus (QTL) analysis of floral morphology, followed by an in-depth study of pistil and stamen morphology and the introgression of individual QTL into reciprocal parental backgrounds. Two QTLs, on chromosomes II and V, are sufficient to explain the interspecific difference in pistil and stamen length. Since most of the difference in organ length is caused by differences in cell number, genes underlying these QTLs are likely to be involved in cell cycle regulation. Interestingly, conservation of the locus on chromosome II in a different P. axillaris subspecies suggests that the evolution of organ elongation was initiated on chromosome II in adaptation to different pollinators. We recently showed that QTLs for pistil and stamen length on chromosome II are tightly linked to QTLs for petal color and volatile emission. Linkage of multiple traits will enable major phenotypic change within a few generations in hybridizing populations. Thus, the genomic architecture of pollination syndromes in Petunia allows for rapid responses to changing pollinator availability.
McArt, Scott H.; Miles, Timothy D.; Rodriguez-Saona, Cesar; Schilder, Annemiek; Adler, Lynn S.; Grieshop, Matthew J.
2016-01-01
Several fungal plant pathogens induce ‘pseudoflowers’ on their hosts to facilitate insect-mediated transmission of gametes and spores. When spores must be transmitted to host flowers to complete the fungal life cycle, we predict that pseudoflowers should evolve traits that mimic flowers and attract the most effective vectors in the flower-visiting community. We quantified insect visitation to flowers, healthy leaves and leaves infected with Monilinia vaccinii-corymbosi (Mvc), the causative agent of mummy berry disease of blueberry. We developed a nested PCR assay for detecting Mvc spores on bees, flies and other potential insect vectors. We also collected volatiles from blueberry flowers, healthy leaves and leaves infected with Mvc, and experimentally manipulated specific pathogen-induced volatiles to assess attractiveness to potential vectors. Bees and flies accounted for the majority of contacts with flowers, leaves infected with Mvc and healthy leaves. Flowers were contacted most often, while there was no difference between bee or fly contacts with healthy and infected leaves. While bees contacted flowers more often than flies, flies contacted infected leaves more often than bees. Bees were more likely to have Mvc spores on their bodies than flies, suggesting that bees may be more effective vectors than flies for transmitting Mvc spores to flowers. Leaves infected with Mvc had volatile profiles distinct from healthy leaves but similar to flowers. Two volatiles produced by flowers and infected leaves, cinnamyl alcohol and cinnamic aldehyde, were attractive to bees, while no volatiles manipulated were attractive to flies or any other insects. These results suggest that Mvc infection of leaves induces mimicry of floral volatiles, and that transmission occurs primarily via bees, which had the highest likelihood of carrying Mvc spores and visited flowers most frequently. PMID:27851747
McArt, Scott H; Miles, Timothy D; Rodriguez-Saona, Cesar; Schilder, Annemiek; Adler, Lynn S; Grieshop, Matthew J
2016-01-01
Several fungal plant pathogens induce 'pseudoflowers' on their hosts to facilitate insect-mediated transmission of gametes and spores. When spores must be transmitted to host flowers to complete the fungal life cycle, we predict that pseudoflowers should evolve traits that mimic flowers and attract the most effective vectors in the flower-visiting community. We quantified insect visitation to flowers, healthy leaves and leaves infected with Monilinia vaccinii-corymbosi (Mvc), the causative agent of mummy berry disease of blueberry. We developed a nested PCR assay for detecting Mvc spores on bees, flies and other potential insect vectors. We also collected volatiles from blueberry flowers, healthy leaves and leaves infected with Mvc, and experimentally manipulated specific pathogen-induced volatiles to assess attractiveness to potential vectors. Bees and flies accounted for the majority of contacts with flowers, leaves infected with Mvc and healthy leaves. Flowers were contacted most often, while there was no difference between bee or fly contacts with healthy and infected leaves. While bees contacted flowers more often than flies, flies contacted infected leaves more often than bees. Bees were more likely to have Mvc spores on their bodies than flies, suggesting that bees may be more effective vectors than flies for transmitting Mvc spores to flowers. Leaves infected with Mvc had volatile profiles distinct from healthy leaves but similar to flowers. Two volatiles produced by flowers and infected leaves, cinnamyl alcohol and cinnamic aldehyde, were attractive to bees, while no volatiles manipulated were attractive to flies or any other insects. These results suggest that Mvc infection of leaves induces mimicry of floral volatiles, and that transmission occurs primarily via bees, which had the highest likelihood of carrying Mvc spores and visited flowers most frequently.
Weed control in rose-scented geranium (Pelargonium spp).
Kothari, Sushil K; Singh, Chandra P; Singh, Kamla
2002-12-01
Abstract: Field investigations were carried out during 1999 and 2000 to identify effective chemical/ cultural methods of weed control in rose-scented geranium (Pelargonium spp). The treatments comprised pre-emergence applications of oxyfluorfen (0.15, 0.20 and 0.25 kg AI ha(-1)) and pendimethalin (0.50, 0.75 and 1.00kg AI ha(-1)), successive hand weeding, hoeing and mulching using spent of lemon grass (at 5 tonnes ha(-1)) 45 days after planting (DAP), three hand-weedings 30, 60 and 90 DAP, weed-free (frequent manual weeding) and weedy control. Broad-leaf weeds were more predominant than grass and sedge weeds, accounting for 85.8% weed density and 93.0% weed dry weight in 1999 and 77.2% weed density and 93.9% weed dry weight in 2000. Unrestricted weed growth significantly reduced geranium oil yield, by 61.6% and 70.6% in 1999 and 2000, respectively. Pre-emergence application of pendimethalin (0.75-1.00 kgAI ha(-1)) or oxyfluorfen (0.25 kg AI ha(-1)), successive hand-weeding, hoeing and mulching and three hand-weedings were highly effective in reducing weed density and dry weight and gave oil yield comparable to the weed-free check. Application of oxyfluorfen (0.15 or 0.20 kg AI ha(-1)) and pendimethalin (0.50 kg AI ha(-1)) were less effective in controlling the weed species in geranium. None of the herbicides impaired the quality of rose-scented geranium oil measured in terms of citronellol and geraniol content.
Scent marking behavior as an odorant communication in mice
Arakawa, Hiroyuki; Blanchard, D. Caroline; Arakawa, Keiko; Dunlap, Christopher; Blanchard, Robert J.
2008-01-01
In rodents, where chemical signals play a particularly important role in determining intraspecies interactions including social dominance and intersexual relationships, various studies have shown that behavior is sensitive to conspecific odor cues. Mice use urinary scent marks for communication with individual conspecifics in many social contexts. Urinary scent involves genetic information about individuals such as species, sex, and individual identity as well as metabolic information such as social dominance, and reproductive and health status, which are mediated by chemical proteins in scent marks including the major histocompatibility complex and the major urinary proteins. The odor of the predator which can be considered to be a threatening signal for the prey also modulate mouse behavior in which scent marking is suppressed in response to the cat odor exposure in mice. These odorant chemicals are detected and recognized through two olfactory bulbs, the role of which in detection of chemosignals with biological relevant appears to be differential, but partly overlapped. Mice deposit scent marks toward conspecifics to maintain their social relationships, and inhibit scent marking in a context where natural predator, cat odor is contained. This suppression of scent marking is long-lasting (for at least 7 days) and context-dependent, while the odorant signaling to conspecifics tends to appear frequently (over 24 hrs but less than 7 days intervals) depending on the familiarity of each signal-recipient. It has been discussed that scent marking is a communicative behavior associated with territoriality toward conspecifics, indicating that the social signaling within species are sensitive to predator odor cues in terms of vulnerability to predation risk. PMID:18565582
An experimental investigation of chemical communication in the polar bear
Owen, Megan A.; Swaisgood, Ronald R.; Slocomb, C.; Amstrup, Steven C.; Durner, George M.; Simac, Kristin S.; Pessier, Allan P.
2015-01-01
The polar bear (Ursus maritimus), with its wide-ranging movements, solitary existence and seasonal reproduction, is expected to favor chemosignaling over other communication modalities. However, the topography of its Arctic sea ice habitat is generally lacking in stationary vertical substrates routinely used for targeted scent marking in other bears. These environmental constraints may have shaped a marking strategy, unique to polar bears, for widely dispersed continuous dissemination of scent via foot pads. To investigate the role of chemical communication, pedal scents were collected from free-ranging polar bears of different sex and reproductive classes captured on spring sea ice in the Beaufort and Chukchi seas, and presented in a controlled fashion to 26 bears in zoos. Results from behavioral bioassays indicated that bears, especially females, were more likely to approach conspecific scent during the spring than the fall. Male flehmen behavior, indicative of chemosignal delivery to the vomeronasal organ, differentiated scent donor by sex and reproductive condition. Histologic examination of pedal skin collected from two females indicated prominent and profuse apocrine glands in association with large compound hair follicles, suggesting that they may produce scents that function as chemosignals. These results suggest that pedal scent, regardless of origin, conveys information to conspecifics that may facilitate social and reproductive behavior, and that chemical communication in this species has been adaptively shaped by environmental constraints of its habitat. However, continuously distributed scent signals necessary for breeding behavior may prove less effective if current and future environmental conditions cause disruption of scent trails due to increased fracturing of sea ice.
Phantoms of the forest: legacy risk effects of a regionally extinct large carnivore.
Sahlén, Ellinor; Noell, Sonja; DePerno, Christopher S; Kindberg, Jonas; Spong, Göran; Cromsigt, Joris P G M
2016-02-01
The increased abundance of large carnivores in Europe is a conservation success, but the impact on the behavior and population dynamics of prey species is generally unknown. In Europe, the recolonization of large carnivores often occurs in areas where humans have greatly modified the landscape through forestry or agriculture. Currently, we poorly understand the effects of recolonizing large carnivores on extant prey species in anthropogenic landscapes. Here, we investigated if ungulate prey species showed innate responses to the scent of a regionally exterminated but native large carnivore, and whether the responses were affected by human-induced habitat openness. We experimentally introduced brown bear Ursus arctos scent to artificial feeding sites and used camera traps to document the responses of three sympatric ungulate species. In addition to controls without scent, reindeer scent Rangifer tarandus was used as a noncarnivore, novel control scent. Fallow deer Dama dama strongly avoided areas with bear scent. In the presence of bear scent, all ungulate species generally used open sites more than closed sites, whereas the opposite was observed at sites with reindeer scent or without scent. The opening of forest habitat by human practices, such as forestry and agriculture, creates a larger gradient in habitat openness than available in relatively unaffected closed forest systems, which may create opportunities for prey to alter their habitat selection and reduce predation risk in human-modified systems that do not exist in more natural forest systems. Increased knowledge about antipredator responses in areas subjected to anthropogenic change is important because these responses may affect prey population dynamics, lower trophic levels, and attitudes toward large carnivores. These aspects may be of particular relevance in the light of the increasing wildlife populations across much of Europe.
Koivula, M; Koskela, E; Viitala, J
1999-12-01
Scent markings of voles are visible via their ultraviolet reflection. Kestrels, and possibly other diurnal raptors, may use this property when hunting. We performed a laboratory study on bank voles to determine whether UV-reflectance of scent marks differs in relation to sex, age and social status. When reflectance spectra of scent marks were measured with a spectro-radiometer, we found UV reflectance to be strongest in mature males. There were no differences between mature females and immature juveniles, nor between sexes in juveniles or mature and immature individuals in females. Moreover, we did not find any difference in UV reflectance between dominant and subordinate mature males. The results of this study support earlier findings that UV sensitive predators may use UV reflectance of scent marks as a prey cue. Consequently, studies on differing vulnerability of voles to avian predators should take into account not only their space use and behaviour but also the UV reflectance of their scent marks.
Chocolate scents and product sales: a randomized controlled trial in a Canadian bookstore and café.
McGrath, Mary C; Aronow, Peter M; Shotwell, Vivien
2016-01-01
We report the results of a 31-day trial on the effects of chocolate scent on purchasing behavior in a bookstore. Our study replicates and extends a 10-day randomized controlled trial in order to examine the generalizability of the original finding. We first introduce the study of store atmospherics and highlight the importance and dearth of replication in this area. In the next section, we describe the original study and discuss the theory of ambient scent effects on product sales, and the role of scent-product congruity. We then describe our design and methods, followed by presentation and discussion of our results. We find no evidence that chocolate scent affects sales. These findings indicate the importance of replication in varied settings. Contextual factors and the choices available to customers may moderate the effects of ambient scent on purchasing behavior. Our study highlights the value of examining the generalizability of experimental findings, both for theory and practice.
A Basic Experiment on the Aerodynamics of Sniffing
NASA Astrophysics Data System (ADS)
Settles, Gary S.; Kester, Douglas A.
1999-11-01
Our previous work (APS/DFD97:Ii1 and 98:FA10) used flow visualization to observe canine olfaction. The results raised some basic questions about the aerodynamics of sniffing, e.g. what flow rate is required, as a function of distance from a scent source, to acquire a detectable scent? Commercial sampler technology does not address such questions. A basic experiment was thus designed to investigate the aerodynamic phenomena and performance of sniffing. A stable thermal layer on a horizontal plane was used as a "scent" source per Reynolds Analogy. The detector was a thermocouple inside a sniffer tube. Flow patterns were observed by schlieren. Results show the importance of sniffer proximity to localize a scent source. A transient scent spike occurs at the sniff onset, followed by signal decline due to source depletion. Sniffing shows extreme sensitivity to disruptive air currents. Unstably-stratified scent sources (thermal plumes) are also considered. These results help us understand evolved sniffing behavior, and they suggest sampler design criteria for electronic-nose devices. (Research supported by DARPA.)
Johnston, R E; Bhorade, A
1998-09-01
Hamsters preferentially remember or value the top scent of a scent over-mark. What cues do they use to do this? Using habituation-discrimination techniques, we exposed male golden hamsters (Mesocricetus auratus) on 3 to 4 trials to genital over-marks from 2 females and then tested subjects for their familiarity with these 2 scents compared with that of a novel female's secretion. Preferential memory for 1 of the 2 individuals' scents did not occur if the 2 marks did not overlap or did not overlap but differed in age, but it did occur if a region of overlap existed or 1 mark apparently occluded another (but did not overlap it). Thus, hamsters use regions of overlap and the spatial configuration of scents to evaluate over-marks. These phenomena constitute evidence for previously unsuspected perceptual abilities, including olfactory scene analysis, which is analogous to visual and auditory scene analysis.
[An odour of disease and decay: the nose as a diagnostic instrument].
Bomers, Marije K; Smulders, Yvo M
2015-01-01
Infectious diseases and cancer change a patient's metabolism and hence the metabolic compounds produced. The composition of volatile organic compounds (VOCs) in exhaled breath or urine or stool samples can therefore be characteristic of a particular disease. In recent years many studies have been conducted into the training of animals, including dogs, to recognise diseases by smell. Besides trained animals, electronic noses (e-noses) are also being developed. These devices can identify disease-specific odour profiles in VOCs. Although the results of research in the field of scent diagnosis are promising, the medical community remains largely sceptical. We discuss applications of scent detection as a diagnostic tool in modern medicine.
Soso, Simone B; Koziel, Jacek A
2016-06-25
Scent-marking is the most effective method of communication in the presence or absence of a signaler. These complex mixtures result in a multifaceted interaction triggered by the sense of smell. The objective was to identify volatile organic compound (VOC) composition and odors emitted by total marking fluid (MF) associated with Siberian tigers (Panthera tigris altaica). Siberian tiger, an endangered species, was chosen because its MF had never been analyzed. Solid phase microextraction (SPME) for headspace volatile collection combined with multidimensional gas chromatography-mass spectrometry-olfactometry for simultaneous chemical and sensory analyses were used. Thirty-two VOCs emitted from MF were identified. 2-acetyl-1-pyrroline, the sole previously identified compound responsible for the "characteristic" odor of P. tigris MF, was identified along with two additional compounds confirmed with standards (urea, furfural) and four tentatively identified compounds (3-methylbutanamine, (R)-3-methylcyclopentanone, propanedioic acid, and 3-hydroxybutanal) as being responsible for the characteristic aroma of Siberian tiger MF. Simultaneous chemical and sensory analyses improved characterization of scent-markings and identified compounds not previously reported in MF of other tiger species. This research will assist animal ecologists, behaviorists, and zookeepers in understanding how scents from specific MF compounds impact tiger and wildlife communication and improve management practices related to animal behavior. Simultaneous chemical and sensory analyses is applicable to unlocking scent-marking information for other species.
Vanishing flora--lost chemistry: the scents of endangered plants around the world.
Kaiser, Roman
2004-01-01
As part of our broad and ongoing evaluation of the olfactory components of fragrant plants and flowers during the past 25 years, we have encountered an astounding number of interestingly scented, but endangered plant species. In appreciation of nature's marvels in these species, we are compiling a report on their scent compositions and complementary information in an upcoming book 'Vanishing Flora--Lost Chemistry'. In this paper, a few examples of endangered plant species and their scent components are presented as a brief introduction to the concept of the book project.
Jansen, A M; Madeira, F; Carreira, J C; Medina-Acosta, E; Deane, M P
1997-05-01
The genus Didelphis (Marsupialia, Didelphidae) has the unique capacity of supporting both multiplication cycles of Trypanosoma cruzi simultaneously; besides the intracellular forms, the epimastigotes can be found multiplying and differentiating abundantly in the lumen of the scent glands. The biological significance of the life cycle of T. cruzi within the scent glands of Didelphis marsupialis, as well as its contribution to the epidemiology of the disease, is presently unclear. In order to clarify the mechanisms involved in the colonization of this singular habitat by T. cruzi, as well as to understand its biological role, we have carried out a serological and parasitological follow-up of both natural and experimental infections of young and adult opossums. Although all natural infections were stable and long lasting, no infected scent glands were found, indicating that the stability of the systemic infections does not depend on the presence of flagellates in the scent gland. In 84% of the experimentally infected animals the colonization of the scent glands was preceded by a period of patent parasitemia. Parasitism of the scent glands was essentially permanent and bilateral, and its maintenance was independent of circulating parasites. Moreover, the course of the infection differed depending on the source (scent glands versus axenic culture-derived) of the metacyclic forms. Our results suggest that parasitism of the SG of D. marsupialis is most likely a secondary acquisition, a step toward independence from the insect vector, similarly to what is accepted for Trypanosoma equiperdum.
Olfactory enrichment and scent cue associative learning in captive birds of prey.
Nelson Slater, Melissa; Hauber, Mark E
2017-03-01
As the use of enrichment in zoos has become a standardized husbandry practice, the continued improvement of enrichment programs should be concomitant with empirical validation of those practices. The role of scent as enrichment remains an unexplored avenue for many bird species. We conducted a multi-phase experiment to introduce wrapped food packages and scent cuing to indicate food presence into the exhibits of several birds of prey species at the Bronx Zoo, New York City, to assess if scent can function as enrichment in these species. Our research found support for these birds associating a novel scent cue from a package with the presence of food inside. When tested with sham (empty) packages, these individuals more often and more extensively handled scented versus unscented packages. Overall, these results indicate the ability of some our small sample of individuals to learn olfactory cues and provide support for trials to include olfactory enrichment as a potential part of the daily routine for some birds of prey in zoo settings. © 2017 Wiley Periodicals, Inc.
Rigorous Training of Dogs Leads to High Accuracy in Human Scent Matching-To-Sample Performance
Marchal, Sophie; Bregeras, Olivier; Puaux, Didier; Gervais, Rémi; Ferry, Barbara
2016-01-01
Human scent identification is based on a matching-to-sample task in which trained dogs are required to compare a scent sample collected from an object found at a crime scene to that of a suspect. Based on dogs’ greater olfactory ability to detect and process odours, this method has been used in forensic investigations to identify the odour of a suspect at a crime scene. The excellent reliability and reproducibility of the method largely depend on rigor in dog training. The present study describes the various steps of training that lead to high sensitivity scores, with dogs matching samples with 90% efficiency when the complexity of the scents presented during the task in the sample is similar to that presented in the in lineups, and specificity reaching a ceiling, with no false alarms in human scent matching-to-sample tasks. This high level of accuracy ensures reliable results in judicial human scent identification tests. Also, our data should convince law enforcement authorities to use these results as official forensic evidence when dogs are trained appropriately. PMID:26863620
The effects of incidental scents in the evaluation of environmental goods: The role of congruity.
Bonini, Nicolao; Graffeo, Michele; Hadjichristidis, Constantinos; Perrotta, Valentina
2015-06-01
We investigated whether pleasant ambient scents influence hypothetical and real money contributions toward environmental goods. We hypothesized that they would increase such contributions more when they were congruent with the target goods than when they were incongruent or when no scent was released. The results supported this congruity hypothesis. We offer a mental accessibility account: Pleasant scents that are congruent with a target good make positive information about that good more accessible and thus promote prosocial behavior. © 2014 The Institute of Psychology, Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.
Soso, Simone B; Koziel, Jacek A; Johnson, Anna; Lee, Young Jin; Fairbanks, W Sue
2014-03-05
In conjoining the disciplines of "ethology" and "chemistry" the field of "Ethochemistry" has been instituted. Ethochemistry is an effective tool in conservation efforts of endangered species and the understanding of behavioral patterns across all species. Chemical constituents of scent-markings have an important, yet poorly understood function in territoriality, reproduction, dominance, and impact on evolutionary biology, especially in large mammals. Particular attention has recently been focused on scent-marking analysis of great cats (Kalahari leopards (Panthera pardus), puma (Puma concolor) snow leopard (Panthera uncia), African lions (Panthera leo), cheetahs (Acinonyx jubatus), and tigers (Panthera tigris)) for the purpose of conservation. Sensory analyses of scent-markings could address knowledge gaps in ethochemistry. The objective of this review is to summarize the current state-of-the art of both the chemical and sensory analyses of scent-markings in wild mammals. Specific focus is placed on sampling and sample preparation, chemical analysis, sensory analysis, and simultaneous chemical and sensory analyses. Constituents of exocrine and endocrine secretions have been most commonly studied with chromatography-based analytical separations. Odor analysis of scent-markings provides an insight into the animal's sensory perception. A limited number of articles have been published in the area of sensory characterization of scent marks. Simultaneous chemical and sensory analyses with chromatography-olfactometry hyphenation could potentially aid conservation efforts by linking perceived odor, compounds responsible for odor, and resulting behavior.
Vaginal scent marking: effects on ultrasonic calling and attraction of male golden hamsters.
Johnston, R E; Kwan, M
1984-11-01
Male hamsters were tested for their responses to areas that had been scent marked by intact or vaginectomized females to determine the effects of naturally deposited vaginal secretions on male behavior. In the first experiment males produced more ultrasonic courtship calls when investigating areas marked by intact females than areas scented by vaginectomized females, demonstrating that vaginal marks facilitate such calling. In a wind-tunnel preference test situation in which scent-marked alleys and clean alleys served as sources of odor, males approached the scented alley first if it had been freshly marked by intact females but not if it had been scented by vaginectomized females or other males. Thus, the odors of vaginal marks are sufficient to attract males over short distances. After males entered these alleys they showed a preference for odors of both intact and vaginectomized females over no odors, but still spent significantly more time investigating the odors of intact females than those of vaginectomized females. These experiments indicate that vaginal secretions are one of the primary cues that elicit male courtship calling, and the small quantities of vaginal secretions deposited by females in vaginal marks are sufficient to elicit ultrasonic calling and attract males over short distances. Thus it is likely that vaginal scent marking and ultrasonic calling by females interact to facilitate attraction and location of mates during courtship.
Hay-scented fern spore production following clearcutting
Kathy A. Penrod; Larry H. McCormick
1997-01-01
Hay-scented fern is a common forest understory weed native to the Appalachian region. It interferes with oak and other hardwood seedling growth and often leads to regeneration failures. Harvesting is know to increase rates of vegetative expansion, spore germination, and possibly spore production of hay-scented fern. To examine the latter effect, a progressive series of...
Canine scent detection and microbial source tracking of human waste contamination in storm drains.
Van De Werfhorst, Laurie C; Murray, Jill L S; Reynolds, Scott; Reynolds, Karen; Holden, Patricia A
2014-06-01
Human fecal contamination of surface waters and drains is difficult to diagnose. DNA-based and chemical analyses of water samples can be used to specifically quantify human waste contamination, but their expense precludes routine use. We evaluated canine scent tracking, using two dogs trained to respond to the scent of municipal wastewater, as a field approach for surveying human fecal contamination. Fecal indicator bacteria, as well as DNA-based and chemical markers of human waste, were analyzed in waters sampled from canine scent-evaluated sites (urban storm drains and creeks). In the field, the dogs responded positively (70% and 100%) at sites for which sampled waters were then confirmed as contaminated with human waste. When both dogs indicated a negative response, human waste markers were absent. Overall, canine scent tracking appears useful for prioritizing sampling sites for which DNA-based and similarly expensive assays can confirm and quantify human waste contamination.
USING CANINES IN SOURCE DETECTION OF INDOOR AIR POLLUTANTS EPA SCIENCE FORUM
Scent detection dogs have been used extensively in law enforcement and military applications to detect narcotics and explosives for over thirty years. Controlled laboratory studies have documented accurate detection by dogs of specific compounds associated with explosives and nar...
Genotoxicity assessment of some cosmetic and food additives.
Di Sotto, Antonella; Maffei, Francesca; Hrelia, Patrizia; Di Giacomo, Silvia; Pagano, Ester; Borrelli, Francesca; Mazzanti, Gabriela
2014-02-01
α-Hexylcinnamaldehyde (HCA) and p-tert-butyl-alpha-methylhydrocinnamic aldehyde (BMHCA) are synthetic aldehydes, characterized by a typical floral scent, which makes them suitable to be used as fragrances in personal care (perfumes, creams, shampoos, etc.) and household products, and as flavouring additives in food and pharmaceutical industry. The aldehydic structure suggests the need for a safety assessment for these compounds. Here, HCA and BMHCA were evaluated for their potential genotoxic risk, both at gene level (frameshift or base-substitution mutations) by the bacterial reverse mutation assay (Ames test), and at chromosomal level (clastogenicity and aneuploidy) by the micronucleus test. In order to evaluate a primary and repairable DNA damage, the comet assay has been also included. In spite of their potential hazardous chemical structure, a lack of mutagenicity was observed for both compounds in all bacterial strains tested, also in presence of the exogenous metabolic activator, showing that no genotoxic derivatives were produced by CYP450-mediated biotransformations. Neither genotoxicity at chromosomal level (i.e. clastogenicity or aneuploidy) nor single-strand breaks were observed. These findings will be useful in further assessing the safety of HCA and BMHCA as either flavour or fragrance chemicals. Copyright © 2013 Elsevier Inc. All rights reserved.
Armbruster, W S; Di Stilio, V S; Tuxill, J D; Flores, T C; Velásquez Runk, J L
1999-01-01
Nearly forty years ago R. L. Berg proposed that plants with specialized pollination ecology evolve genetic and developmental systems that decouple floral morphology from phenotypic variation in vegetative traits. These species evolve separate floral and vegetative trait clusters, or as she termed them, "correlation pleiades." The predictions of this hypothesis have been generally supported, but only a small sample of temperate-zone herb and grass species has been tested. To further evaluate this hypothesis, especially its applicability to plants of other growth forms, we examined the patterns of phenotypic variation and covariation of floral and vegetative traits in nine species of Neotropical plants. We recognized seven specific predictions of Berg's hypothesis. Our results supported some predictions but not others. Species with specialized pollination systems usually had floral traits decoupled (weak correlation; Canna and Eichornia) or buffered (relationship with shallow proportional slope; Calathea and Canna) from variation in vegetative traits. However, the same trend was also observed in three species with unspecialized pollination systems (Echinodorus, Muntingia, and Wedelia). One species with unspecialized pollination (Croton) and one wind-pollinated species (Cyperus) showed no decoupling or buffering, as predicted. While species with specialized pollination usually showed lower coefficients of variation for floral traits than vegetative traits (as predicted), the same was also true of species with unspecialized or wind pollination (unlike our prediction). Species with specialized pollination showed less variation in floral traits than did species with unspecialized or wind pollination, as predicted. However, the same was true of the corresponding vegetative traits, which was unexpected. Also in contrast to our prediction, plants with specialized pollination systems did not exhibit tighter phenotypic integration of floral characters than did species with generalized pollination systems. We conclude that the patterns of morphological integration among floral traits and between floral and vegetative traits tend to be species specific, not easily predicted from pollination ecology, and generally more complicated than R. L. Berg envisaged.
Du, Lisha; Qi, Siyan; Ma, Juanjuan; Xing, Libo; Fan, Sheng; Zhang, Songwen; Li, Youmei; Shen, Yawen; Zhang, Dong; Han, Mingyu
2017-11-01
Trehalose (α-D-glucopyranosyl α-D-glucopyranoside) is a non-reducing disaccharide that serves as a carbon source and stress protectant in apple trees. Trehalose-6-phosphate (T6P) is the biosynthetic precursor of trehalose. It functions as a crucial signaling molecule involved in the regulation of floral induction, and is closely related to sucrose. Trehalose-6-phosphate synthase (TPS) family members are pivotal components of the T6P biosynthetic pathway. The present study identified 13 apple TPS family members and characterized their expression patterns in different tissues and in response to exogenous application of sucrose during floral induction. 'Fuji' apple trees were sprayed with sucrose prior to the onset of floral induction. Bud growth, flowering rate, and endogenous sugar levels were then monitored. The expression of genes associated with sucrose metabolism and flowering were also characterized by RT-quantitative PCR. Results revealed that sucrose applications significantly improved flower production and increased bud size and fresh weight, as well as the sucrose content in buds and leaves. Furthermore, the expression of MdTPS1, 2, 4, 10, and 11 was rapidly and significantly up-regulated in response to the sucrose treatments. In addition, the expression levels of flowering-related genes (e.g., SPL genes, FT1, and AP1) also increased in response to the sucrose sprays. In summary, apple TPS family members were identified that may influence the regulation of floral induction and other responses to sucrose. The relationship between sucrose and T6P or TPS during the regulation of floral induction in apple trees is discussed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Scent trailing by virgin females ofPseudococcm calceolariae.
Rotundo, G; Tremblay, E
1981-01-01
Virgin females of the citrophilous mealybugPseudococcus calceolariae (Mask.) deposit scent marks as trails on the substrate on which they rest or move. These substances elicit attraction and sexual behavior by conspecific males. The same responses were obtained when males were bioassayed on extracts from filter paper disks on which females had rested. The significance of scent trailing in mealybugs is discussed.
Crop scents affect the occurrence of trophallaxis among forager honeybees.
Gil, M; Farina, W M
2003-05-01
Previous evidence indicates that the recognition of the nectar delivered by forager honeybees within the colony may have been a primitive method of communication on food resources. Thus, the association between scent and reward that nectar foragers establish while they collect on a given flower species should be retrieved during trophallaxis, i.e., the transfer of liquid food by mouth, and, accordingly, foraging experience could affect the occurrence of these interactions inside the nest. We used experimental arenas to analyze how crop scents carried by donor bees affect trophallaxis among foragers, i.e., donors and receivers, which differ in their foraging experience. Results showed that whenever the foragers had collected unscented sugar solution from a feeder the presence of scents in the solution carried by donors did not affect the occurrence of trophallaxis nor its dynamics. In contrast, whenever the foragers had previous olfactory information, new scents present in the crop of the donors negatively affected the occurrence, but not the dynamics of trophallaxis. Thus, the association learned at the food source seems to be retrieved during trophallaxis, and it is possible that known scents present in the mouthparts of nest-mates may operate as a triggering stimulus to elicit trophallactic behavior within the hive.
Scent-marking by coyotes, Canis latrans: the influence of social and ecological factors
Gese; Ruff
1997-11-01
We observed 49 coyotes, Canis latransfrom five resident packs for 2456 h and five transient coyotes for 51 h from January 1991 to June 1993 in the Lamar River Valley, Yellowstone National Park, Wyoming, U.S.A. During these observations we recorded 3042 urinations, 451 defecations, 446 ground scratches and 743 double-marks. The rate of scent-marking (via urination) was influenced by the social organization (resident versus transient) to which the coyote belonged, the social class (alpha, beta or pup) of the animal and the time of the year. Transient coyotes scent-marked at a lower rate than did members of a resident pack. Within the resident packs, alpha coyotes scent-marked at a higher rate than beta coyotes (adults and yearlings subordinant to alphas, but dominant over pups) and pups. Alpha coyotes increased their rate of marking during the breeding season; beta and pup coyotes performed scent-marks at a relatively constant rate throughout the year. There was no influence of social class or time of year on the rate of defecation. The rate of double-marking was highest among alpha coyotes with a peak during the breeding season. Alpha coyotes ground-scratched at a higher rate than did beta and pup coyotes. Alpha and beta coyotes scent-marked more than expected along the periphery of the territory compared to the interior; pups marked in the interior and edge in proportion to expected frequencies. Double-marking and ground-scratching were higher than expected along the periphery of the territory. The distribution of defecations was not different from expected along the edge versus the interior of the territory. Pack size did not influence the rate of scent-marking performed by individuals in the pack or by the alpha pair. We concluded that alpha coyotes were the primary members of the resident pack involved in scent-marking. The large coyote packs and the high rate of marking by the alpha pairs were parallel to the scent-marking behaviour displayed by wolves, C. lupusto a greater extent than previously reported. Scent-marks appear to provide internal information to the members of the resident pack (internal map of territory, breeding condition, reproductive synchrony) and enhance demarcation of territorial boundaries.Copyright 1997 The Association for the Study of Animal Behaviour1997The Association for the Study of Animal Behaviour
Soso, Simone B.; Koziel, Jacek A.; Johnson, Anna; Lee, Young Jin; Fairbanks, W. Sue
2014-01-01
In conjoining the disciplines of “ethology” and “chemistry” the field of “Ethochemistry” has been instituted. Ethochemistry is an effective tool in conservation efforts of endangered species and the understanding of behavioral patterns across all species. Chemical constituents of scent-markings have an important, yet poorly understood function in territoriality, reproduction, dominance, and impact on evolutionary biology, especially in large mammals. Particular attention has recently been focused on scent-marking analysis of great cats (Kalahari leopards (Panthera pardus), puma (Puma concolor) snow leopard (Panthera uncia), African lions (Panthera leo), cheetahs (Acinonyx jubatus), and tigers (Panthera tigris)) for the purpose of conservation. Sensory analyses of scent-markings could address knowledge gaps in ethochemistry. The objective of this review is to summarize the current state-of-the art of both the chemical and sensory analyses of scent-markings in wild mammals. Specific focus is placed on sampling and sample preparation, chemical analysis, sensory analysis, and simultaneous chemical and sensory analyses. Constituents of exocrine and endocrine secretions have been most commonly studied with chromatography-based analytical separations. Odor analysis of scent-markings provides an insight into the animal's sensory perception. A limited number of articles have been published in the area of sensory characterization of scent marks. Simultaneous chemical and sensory analyses with chromatography-olfactometry hyphenation could potentially aid conservation efforts by linking perceived odor, compounds responsible for odor, and resulting behavior. PMID:24603639
Distribution and dynamics of the invasive native hay-scented fern
Songlin Fei; Peter Gould; Melanie Kaeser; Kim Steiner
2010-01-01
The spread and dominance of the invasive native hay-scented fern in the understory is one of the most significant changes to affect the forest ecosystems in the northeastern United States in the last century. We studied changes in the distribution and dynamics of hay-scented fern at a large scale over a 10-yr period in Pennsylvania. The study included 56 stands...
NaturCare from AlphaMed: the non-scented ostomy deodorant.
Rudoni, C; Sica, J
NaturCare is an ostomy deodorant manufactured and distributed by AlphaMed. Currently, it is the only non-scented deodorant available on prescription. Odour can be extremely stressful to both the person with a stoma (ostomist) and those involved in their care. Since NaturCare has no artificial scents added to its formula, it can be extremely helpful to those who find the odour embarrassing.
Parsons, Michael H; Apfelbach, Raimund; Banks, Peter B; Cameron, Elissa Z; Dickman, Chris R; Frank, Anke S K; Jones, Menna E; McGregor, Ian S; McLean, Stuart; Müller-Schwarze, Dietland; Sparrow, Elisa E; Blumstein, Daniel T
2018-02-01
Fear of predation is a universal motivator. Because predators hunt using stealth and surprise, there is a widespread ability among prey to assess risk from chemical information - scents - in their environment. Consequently, scents often act as particularly strong modulators of memory and emotions. Recent advances in ecological research and analytical technology are leading to novel ways to use this chemical information to create effective attractants, repellents and anti-anxiolytic compounds for wildlife managers, conservation biologists and health practitioners. However, there is extensive variation in the design, results, and interpretation of studies of olfactory-based risk discrimination. To understand the highly variable literature in this area, we adopt a multi-disciplinary approach and synthesize the latest findings from neurobiology, chemical ecology, and ethology to propose a contemporary framework that accounts for such disparate factors as the time-limited stability of chemicals, highly canalized mechanisms that influence prey responses, and the context within which these scents are detected (e.g. availability of alternative resources, perceived shelter, and ambient physical parameters). This framework helps to account for the wide range of reported responses by prey to predator scents, and explains, paradoxically, how the same individual predator scent can be interpreted as either safe or dangerous to a prey animal depending on how, when and where the cue was deposited. We provide a hypothetical example to illustrate the most common factors that influence how a predator scent (from dingoes, Canis dingo) may both attract and repel the same target organism (kangaroos, Macropus spp.). This framework identifies the catalysts that enable dynamic scents, odours or odorants to be used as attractants as well as deterrents. Because effective scent tools often relate to traumatic memories (fear and/or anxiety) that cause future avoidance, this information may also guide the development of appeasement, enrichment and anti-anxiolytic compounds, and help explain the observed variation in post-traumatic-related behaviours (including post-traumatic stress disorder, PTSD) among diverse terrestrial taxa, including humans. © 2017 Cambridge Philosophical Society.
Berns, Gregory S; Brooks, Andrew M; Spivak, Mark
2015-01-01
Understanding dogs' perceptual experience of both conspecifics and humans is important to understand how dogs evolved and the nature of their relationships with humans and other dogs. Olfaction is believed to be dogs' most powerful and perhaps important sense and an obvious place to begin for the study of social cognition of conspecifics and humans. We used fMRI in a cohort of dogs (N=12) that had been trained to remain motionless while unsedated and unrestrained in the MRI. By presenting scents from humans and conspecifics, we aimed to identify the dimensions of dogs' responses to salient biological odors - whether they are based on species (dog or human), familiarity, or a specific combination of factors. We focused our analysis on the dog's caudate nucleus because of its well-known association with positive expectations and because of its clearly defined anatomical location. We hypothesized that if dogs' primary association to reward, whether it is based on food or social bonds, is to humans, then the human scents would activate the caudate more than the conspecific scents. Conversely, if the smell of conspecifics activated the caudate more than the smell of humans, dogs' association to reward would be stronger to their fellow canines. Five scents were presented (self, familiar human, strange human, familiar dog, strange dog). While the olfactory bulb/peduncle was activated to a similar degree by all the scents, the caudate was activated maximally to the familiar human. Importantly, the scent of the familiar human was not the handler, meaning that the caudate response differentiated the scent in the absence of the person being present. The caudate activation suggested that not only did the dogs discriminate that scent from the others, they had a positive association with it. This speaks to the power of the dog's sense of smell, and it provides important clues about the importance of humans in dogs' lives. This article is part of a Special Issue entitled: Canine Behavior. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Iglesias, M Teresa; Martín-Alvarez, Pedro J; Polo, M Carmen; de Lorenzo, Cristina; Pueyo, Encarnación
2006-10-18
Fast protein liquid chromatography on a Superdex 75 HR column has been applied to analyze the proteins of 29 honeys, 12 of floral origin and 17 from honeydew. The molecular masses were comprised between 13100 and 94000 Da. Seven peaks have been separated; four of them were present in all of the honeys, and three were only present in some honeys. Direct observation of the chromatograms of the floral and honeydew honeys did not reveal any information about their botanical origins. However, both types of honeys can be distinguished with the percentages of the areas of four of the seven chromatographic peaks obtained.
The ABC Model and its Applicability to Basal Angiosperms
Soltis, Douglas E.; Chanderbali, André S.; Kim, Sangtae; Buzgo, Matyas; Soltis, Pamela S.
2007-01-01
Background Although the flower is the central feature of the angiosperms, little is known of its origin and subsequent diversification. The ABC model has long been the unifying paradigm for floral developmental genetics, but it is based on phylogenetically derived eudicot models. Synergistic research involving phylogenetics, classical developmental studies, genomics and developmental genetics has afforded valuable new insights into floral evolution in general, and the early flower in particular. Scope and Conclusions Genomic studies indicate that basal angiosperms, and by inference the earliest angiosperms, had a rich tool kit of floral genes. Homologues of the ABCE floral organ identity genes are also present in basal angiosperm lineages; however, C-, E- and particularly B-function genes are more broadly expressed in basal lineages. There is no single model of floral organ identity that applies to all angiosperms; there are multiple models that apply depending on the phylogenetic position and floral structure of the group in question. The classic ABC (or ABCE) model may work well for most eudicots. However, modifications are needed for basal eudicots and, the focus of this paper, basal angiosperms. We offer ‘fading borders’ as a testable hypothesis for the basal-most angiosperms and, by inference, perhaps some of the earliest (now extinct) angiosperms. PMID:17616563
Adenoma of the cloacal scent gland in a California Kingsnake (Lampropeltis getulus californiae).
Gál, János; Mándoki, Míra
2012-12-01
A multiple simple adenoma causing severe distortion of the tail base was identified in the cloacal scent gland of a female California Kingsnake (Lampropeltis getulus californiae). In addition to the normal epithelial layer of the gland and the skin, the tumour cells in the glandular epithelium also showed cross immunereactivity with humanised anti-cytokeratin antibody. This is the first description of an adenoma in the scent gland of a reptile species. Neither epithelial nor mesenchymal tumours arising from the scent gland of reptiles have been reported previously. This report also highlights the possible use of humanised antibodies on reptile species for the fast, reliable and specific differential diagnosis of tumours.
A technique for measuring petal gloss, with examples from the Namaqualand flora.
Whitney, Heather M; Rands, Sean A; Elton, Nick J; Ellis, Allan G
2012-01-01
The degree of floral gloss varies between species. However, little is known about this distinctive floral trait, even though it could be a key feature of floral biotic and abiotic interactions. One reason for the absence of knowledge is the lack of a simple, repeatable method of gloss measurement that can be used in the field to study floral gloss. A protocol is described for measuring gloss in petal samples collected in the field, using a glossmeter. Repeatability of the technique is assessed. We demonstrate a simple yet highly accurate and repeatable method that can easily be implemented in the field. We also highlight the huge variety of glossiness found within flowers and between species in a sample of spring-blooming flowers collected in Namaqualand, South Africa. We discuss the potential uses of this method and its applications for furthering studies in plant-pollinator interactions. We also discuss the potential functions of gloss in flowers.
Iglesias, María Teresa; De Lorenzo, Cristina; Del Carmen Polo, María; Martín-Alvarez, Pedro Jésus; Pueyo, Encarnacíon
2004-01-14
With the aim of finding methods that could constitute a solid alternative to melissopalynological and physicochemical analyses to determine the botanical origin (floral or honeydew) of honeys, the free amino acid content of 46 honey samples has been determined. The honeys were collected in a small geographic area of approximately 2000 km(2) in central Spain. Twenty-seven honey samples were classified as floral and 19 as honeydew according to their palynological and physicochemical analyses. The resulting data have been subjected to different multivariant analysis techniques. One hundred percent of honey samples have been correctly classified into either the floral or the honeydew groups, according to their content in glutamic acid and tryptophan. It is concluded that free amino acids are good indicators of the botanical origin of honeys, saving time compared with more tedious analyses.
Pregnancy is detected via odour in a wild cooperative breeder.
Mitchell, J; Cant, M A; Nichols, H J
2017-11-01
Among mammals, scent has long been known to encode oestrus; however, in many species, detecting pregnancy may also be important in terms of both competition and mate-choice. Here, we show, through odour presentation experiments, that pregnancy is discernible via scent by both sexes in the cooperatively breeding banded mongoose, Mungos mungo Males spent more time investigating and were more likely to scent mark the odours of non-pregnant females, compared to pregnant females. Females showed increased levels of scent marking when odours were of the same reproductive state as themselves. These results present the first direct demonstration that pregnancy is detectable via scent in wild cooperative breeders. Detecting pregnancy may be particularly important in cooperative breeders as, in addition to the competition between males for receptive mates, there is also intense competition between females for access to alloparental care. Consequently, dominant females benefit from targeting reproductive suppression towards subordinates that represent direct threats, such as pregnant females. © 2017 The Author(s).
Relatedness communicated in lemur scent
NASA Astrophysics Data System (ADS)
Morelli, Toni Lyn; Hayes, R. Andrew; Nahrung, Helen F.; Goodwin, Thomas E.; Harelimana, Innocent H.; MacDonald, Laura J.; Wright, Patricia C.
2013-08-01
Lemurs are the most olfactory-oriented of primates, yet there is still only a basic level of understanding of what their scent marks communicate. We analyzed scent secretions from Milne-Edwards' sifakas ( Propithecus edwardsi) collected in their natural habitat of Ranomafana National Park, Madagascar. We sought to test whether the scent mark could signal genetic relatedness in addition to species, sex, season, and individuality. We not only found correlations ( r 2 = 0.38, P = 0.017) between the total olfactory fingerprint and genetic relatedness but also between relatedness and specific components of the odor, despite the complex environmental signals from differences in diet and behavior in a natural setting. To the best of our knowledge, this is the first demonstration of an association between genetic relatedness and chemical communication in a wild primate population. Furthermore, we found a variety of compounds that were specific to each sex and each sampling period. This research shows that scent marks could act as a remote signal to avoid inbreeding, optimize mating opportunities, and potentially aid kin selection.
Horii, Yuko; Tanida, Mamoru; Shen, Jiao; Fujisaki, Yosiyuki; Fuyuki, Risa; Hashimoto, Kazuko; Niijima, Akira; Nakashima, Toshihiro; Nagai, Katsuya
2011-02-01
We observed that olfactory stimulation with scent of grapefruit oil elevated the activities of sympathetic nerves, and increased the plasma glycerol concentration and blood pressure. In contrast, olfactory stimulation with scent of lavender oil had opposite effects in rats. These suggest that changes in autonomic activities cause physiological functions via histaminergic H1 and H3 receptor. Moreover, it has been reported that somatic sensory stimulation affected autonomic neurotransmission. To examine effects of skin application of urea-containing cream on cutaneous arterial sympathetic nerve activity (CASNA), blood flow, and transepidermal water loss (TEWL). The activity of CASNA was determined by electrophysiological method, and cutaneous blood flow was determined using laser flowmeter in urethane-anesthetized rats, TEWL was measured using VapoMeter in the back skin of HWY hairless rats. CASNA was markedly and significantly inhibited by skin application of 10% urea-containing cream, whereas cutaneous blood flow was significantly elevated via histaminergic H3-receptor. In conscious hairless rats, TEWL was significantly decreased 24 h after application of 10% urea-containing cream to the back skin. These findings suggest that skin application of 10% urea-containing cream increases the cutaneous blood flow and water retaining ability, and that histaminergic H3-receptors may mediate these effects. © 2010 John Wiley & Sons A/S.
Letter to the Editor: On the definition and measurement of human scent: Comments on Curran et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preti, George; Willse, Alan R.; Labows, John N.
A recent article by Curran et al (J. Chem. Ecol. vol. 31 (7); 1607-1619, 2005) describes the collection and chemical analysis of ''human scent''. Contrary to the authors? claims, a great deal is known about the chemical constituents of human scent, and its measurement. Here we clarify what is known about human scent, and highlight several shortcomings concerning the authors analysis related to (1) the definition of human scent, (2) chemical analysis of human scent, and (3) conclusions about individual differences. More than 15 years of research has presented both organoleptic and analytical evidence that a mixture of C6-C11 normal,more » branched, hydroxy-and unsaturated acids present in axillary sweat constitute the characteristic axillary odor. (Zeng et al., 1991; 1992; 1996; 1996a; Natsch et al., 2003). In addition to this mixture of major odor constituents are trace amounts of thio-alcohols (Natsch et al., 2004; Troccaz et al., 2004; Hasegawa et al., 2004) with high odor impact (low olfactory threshold). The details of the chemical identification, exact structures and synthesis (of non-commercially available compounds) as well as biogenesis of many of these compounds have been described in the above cited manuscripts.« less
Tran, Bonnie Robin; Thomas, Anne Goldzier; Vaida, Florin; Ditsela, Mooketsi; Phetogo, Robert; Kelapile, David; Haubrich, Richard; Chambers, Christina; Shaffer, Richard
2014-01-01
Free condoms provided by the government are often not used by Botswana Defence Force (BDF) personnel due to a perceived unpleasant scent and unattractive wrapper. Formative work with the BDF found that scented condoms and military inspired (camouflage) wrapper graphics were appealing to personnel. A non-randomized intervention study was implemented to determine if condom wrapper graphics and scent improved condom use in the BDF. Four military sites were selected for participation. Two sites in the south received the intervention condom wrapped in a generic wrapper and two sites in the north received the intervention condom wrapped in a military inspired wrapper; intervention condoms were either scented or unscented. 211 male soldiers who ever had sex, aged 18–30 years, and stationed at one of the selected sites consented to participate. Sexual activity and condom use were measured pre- and post-intervention using sexual behavior diaries. A condom use rate (CUR; frequency of protected sex divided by total frequency of sex) was computed for each participant. Mean CURs significantly increased over time (85.7% baseline vs. 94.5% post-intervention). Adjusted odds of condom use over time were higher among participants who received the intervention condom packaged in the military wrapper compared with the generic wrapper. Adjusted odds of condom use were also higher for participants who reported using scented versus unscented condoms. Providing scented condoms and condoms packaged in a miltiary inspired wrapper may help increase condom use and reduce HIV infection among military personnel. PMID:24266459
[The "language" of bees and its utilization in agriculture. 1946].
von Frisch, K
1994-04-15
If honey-bees find a feeding place, after return they report the discovery by dancing. The species of flowers from which they are coming is indicated by means of the flower-scent adhering to their bodies, and also by the scent of nectar brought into the hive within the honey-stomach. By a long flight the scent adhering to the outer surface is diminished. But the scent within the honey-stomach is still the same. Therefore the scent of nectar (that is the specific flower-scent absorbed by nectar) is especially important if the feeding place is far away from the hive. Bees dance only in case there is plenty of food. Then the informed bees fly out and look for the flowers having the scent indicated by the dancing bees. In this way the number of visiting bees increases, and the nectar becomes scarce. Then honey collecting is still continued, but there is no more dancing in the bee-hive and the number of bees does not increase, so that there always is the correct relation between the amount of nectar and the number of collecting bees. If the feeding place is at a distance of some hundred meters there are many bees seeking for food at that distance but only a few seeking near the hive. By using an observation-hive the matter could be cleared up. Bees collecting at a feeding place nearer than 50 to 100 m make round-dances (Fig. 4, p. 400). Bees coming from a feeding place more distant make tail-wagging dances (Fig. 5, p. 400).(ABSTRACT TRUNCATED AT 250 WORDS)
Masuck, Ines; Hutzler, Christoph; Luch, Andreas
2010-04-30
In the revised European toy safety directive 2009/48/EC the application of fragrance allergens in children's toys is restricted. The focus of the present work lies on the instrumental analytics of 13 banned fragrance allergens, as well as on 11 fragrance allergens that require declaration when concentrations surpass 100 microg per gram material. Applying a mixture of ethyl acetate and toluene solid/liquid extraction was performed prior to quantitative analysis of mass contents of fragrances in scented toys. In addition, an easy-to-perform method for the determination of emitted fragrances at 23 degrees C (handling conditions) or at 40 degrees C (worst case scenario) has been worked out to allow for the evaluation of potential risks originating from inhalation of these compounds during handling of or playing with toys. For this purpose a headspace solid-phase microextraction (HS-SPME) technique was developed and coupled to subsequent gas chromatography-mass spectrometry (GC-MS) analysis. Fragrance allergens were adsorbed (extracted) from the gas phase onto an 85 microm polyacrylate fiber while incubating pieces of the scented toys in sealed headspace vials at 23 degrees C and 40 degrees C. Quantification of compounds was performed via external calibration. The newly developed headspace method was subsequently applied to five perfumed toys. As expected, the emission of fragrance allergens from scented toys depends on the temperature and on the content of fragrance allergens present in those samples. In particular at conditions mimicking worst case (40 degrees C), fragrance allergens in toys may pose a risk to children since considerable amounts of compound might be absorbed by lung tissue via breathing of contaminated air. 2010 Elsevier B.V. All rights reserved.
Parsons, Michael H; Blumstein, Daniel T
2010-05-05
Whether or not animals habituate to repeated exposure to predator scents may depend upon whether there are predators associated with the cues. Understanding the contexts of habituation is theoretically important and has profound implication for the application of predator-based herbivore deterrents. We repeatedly exposed a mixed mob of macropod marsupials to olfactory scents (urine, feces) from a sympatric predator (Canis lupus dingo), along with a control (water). If these predator cues were alarming, we expected that over time, some red kangaroos (Macropus rufous), western grey kangaroos (Macropus fuliginosus) and agile wallabies (Macropus agilis) would elect to not participate in cafeteria trials because the scents provided information about the riskiness of the area. We evaluated the effects of urine and feces independently and expected that urine would elicit a stronger reaction because it contains a broader class of infochemicals (pheromones, kairomones). Finally, we scored non-invasive indicators (flight and alarm stomps) to determine whether fear or altered palatability was responsible for the response. Repeated exposure reduced macropodid foraging on food associated with 40 ml of dingo urine, X = 986.75+/-3.97 g food remained as compared to the tap water control, X = 209.0+/-107.0 g (P<0.001). Macropodids fled more when encountering a urine treatment, X = 4.50+/-2.08 flights, as compared to the control, X = 0 flights (P<0.001). There was no difference in effect between urine or feces treatments (P>0.5). Macropodids did not habituate to repeated exposure to predator scents, rather they avoided the entire experimental area after 10 days of trials (R(2) = 83.8; P<0.001). Responses to urine and feces were indistinguishable; both elicited fear-based responses and deterred foraging. Despite repeated exposure to predator-related cues in the absence of a predator, macropodids persistently avoided an area of highly palatable food. Area avoidance is consistent with that observed from other species following repeated anti-predator conditioning, However, this is the first time this response has been experimentally observed among medium or large vertebrates - where a local response is observed spatially and an area effect is revealed over time.
Influence of olfactory enrichment on the exploratory behaviour of captive-housed domestic cats.
Machado, J C; Genaro, G
2014-12-01
To evaluate the influence of olfactory stimulation on the exploratory activity of captive-housed domestic cats. To evaluate the cats' exploratory behaviour, we devised three treatments. We placed a wooden cube (0.027 m(3)) covered with a cloth treated with rat scent on the floor of each cat enclosure (T3). We also used a cloth-covered cube that did not have rat scent (T2) and observed the cats' behaviours in the same area without any object (T1). All cats participated in T1, T2, and T3. All treatments were performed equally and at the same time in two identical enclosures with 11 and 10 cats, respectively. The cats had lived in the enclosures since entering the permanent animal house. We used a continuous recording method associated with focal sampling to analyse the recordings. Exploration was induced in the presence of a novel object, the cube, irrespective of whether the object was associated with the scent. In T3, we observed sex differences in exploration time: females spent more time exploring the scent-impregnated cube than males. Female cats also spent more time exploring the scent-impregnated cube than the scent-free cube. Cats in T3 had shorter latency for exploration, spent more time sniffing the ground and rubbing the cube, and had a higher frequency of urine spraying than those in T2. Although exploratory behaviour was induced by novelty in the form of a new object, significant effects were observed in the presence of the scent, mainly regarding latency to explore, sex differences and sniffing, rubbing and urine spraying. © 2014 Australian Veterinary Association.
Martín, José; López, Pilar
2012-01-01
Background Many animals produce elaborated sexual signals to attract mates, among them are common chemical sexual signals (pheromones) with an attracting function. Lizards produce chemical secretions for scent marking that may have a role in sexual selection. In the laboratory, female rock lizards (Iberolacerta cyreni) prefer the scent of males with more ergosterol in their femoral secretions. However, it is not known whether the scent-marks of male rock lizards may actually attract females to male territories in the field. Methodology/Principal Findings In the field, we added ergosterol to rocks inside the territories of male lizards, and found that this manipulation resulted in increased relative densities of females in these territories. Furthermore, a higher number of females were observed associated to males in manipulated plots, which probably increased mating opportunities for males in these areas. Conclusions/Significance These and previous laboratory results suggest that female rock lizards may select to settle in home ranges based on the characteristics of scent-marks from conspecific males. Therefore, male rock lizards might attract more females and obtain more matings by increasing the proportion of ergosterol when scent-marking their territories. However, previous studies suggest that the allocation of ergosterol to secretions may be costly and only high quality males could afford it, thus, allowing the evolution of scent-marks as an honest sexual display. PMID:22253895
Scent marking in a territorial African antelope: I. The maintenance of borders between male oribi.
Brashares; Arcese
1999-01-01
Scent marking is ubiquitous among the dwarf antelope and gazelles of Africa, but its function has been the subject of debate. This study examined preorbital gland scent marking in the oribi, Ourebia ourebi, a territorial African antelope. Several hypotheses for the function of scent marking by territorial antelope were tested with observational data. Of these, the hypotheses that scent marking is driven by intrasexual competition between neighbouring males, and that marks serve as an honest advertisement of a male's ability to defend his territory from rivals, were supported best. Thirty-three territorial male oribi on 23 territories marked most at borders shared with other territorial males, and territorial males marked more often at borders shared with multimale groups than at borders shared with a single male. This suggests that males perceived neighbouring male groups as a greater threat to territory ownership than neighbouring males that defended their territories without the aid of adult subordinates. Marking rate was unrelated to territory size or the number of females on adjacent territories, but males with many male neighbours marked at higher rates than those with fewer male neighbours. These results suggest that the presence of male neighbours has a greater effect on the scent marking behaviour of territorial antelope than has been considered previously. Copyright 1999 The Association for the Study of Animal Behaviour.
Menstrual cycle variation in women's preferences for the scent of symmetrical men.
Gangestad, S W; Thornhill, R
1998-01-01
Evidence suggests that female sexual preferences change across the menstrual cycle. Women's extra-pair copulations tend to occur in their most fertile period, whereas their intra-pair copulations tend to be more evenly spread out across the cycle. This pattern is consistent with women preferentially seeking men who evidence phenotypic markers of genetic benefits just before and during ovulation. This study examined whether women's olfactory preferences for men's scent would tend to favour the scent of more symmetrical men, most notably during the women's fertile period. College women sniffed and rated the attractiveness of the scent of 41 T-shirts worn over a period of two nights by different men. Results indicated that normally cycling (non-pill using) women near the peak fertility of their cycle tended to prefer the scent of shirts worn by symmetrical men. Normally ovulating women at low fertility within their cycle, and women using a contraceptive pill, showed no significant preference for either symmetrical or asymmetrical men's scent. A separate analysis revealed that, within the set of normally cycling women, individual women's preference for symmetry correlated with their probability of conception, given the actuarial value associated with the day of the cycle they reported at the time they smelled the shirts. Potential sexual selection processes and proximate mechanisms accounting for these findings are discussed. PMID:9633114
Historical perspective on the usage of perfumes and scented Articles in ancient Indian literatures
Prasad, Goli Penchala; Pratap, G. Penchala; Neelima, M.; Satyanrayanashastry, Vd Pammi
2008-01-01
In India perfumes and scented articles were in use from pre Vedic and Vedic periods for religious practices, social customs, and domestic rituals and later gradually became part and parcel of human life. Perfumes were also used in cosmetics and beauty aids. Medicinal values of many perfumes were well known to ancient Indians and were used in both rituals and to treat diseases. Medicated fumigation (dhupan) was an advanced method for medicinal purposes. Medicated oils, collyriums, powders were prepared from perfumes used externally in many diseases. Perfumes were also anointed in various body parts (Anulepan). Chewing betel leaves along with fragrant material like nutmeg, mace, etc. (Tambulam) was used with a view to rendering mouth clean and fragrant. usage of scented oils to massage body(Abhyanga) which keeps the skin smooth, healthy and invigorating; Udvartanam, massaging various body parts; Udgarshanam, scrubbing; Utsadanam rubbing with scented powders etc., were some of the health protective and disease eliminating procedures. Scented drugs and perfumes enhance the quality, activity and pleasantness of these processes. PMID:22557310
Chemical cues identify gender and individuality in Giant pandas (Ailuropoda melanoleuca).
Hagey, Lee; MacDonald, Edith
2003-06-01
The Giant panda communicates with conspecifics by depositing a mixture of volatile compounds (called scent marks) on trees and rocks. Using mass spectrometry, we identified 951 chemical components from scent glands, urine, vaginal secretions, and scent marks made by pandas. The scent marks of the two genders contained a similar array of chemicals but varied in concentration; specifically, males possessed a significantly greater amount of short chain fatty acids (F(1, 29) = 18.4, P = 0.002). Using stepwise discriminate analysis on the relative proportions of a subset of these chemicals, it was possible to classify gender (94% for males and females) and individuality (81% for males and 91% for females) from scent marks. The power to identify individual males was reduced due to the relatedness of two subjects. By cracking the identity code of Giant panda communication, we show insights into how these animals can match individuals with unique chemical profiles. Since radiocollaring is currently banned in China, the techniques described in this paper give field biologists a new means to identify and track pandas in the wild.
Appetite-Enhancing Effects of Curry Oil.
Ogawa, Kakuyou; Ito, Michiho
2016-01-01
Inhalation of scent compounds with phenylpropanoidal structures, such as trans-cinnamaldehyde, is expected to increase the appetite. The scent of curry powder is well known for its appetite-enhancing effect on humans. In this work, we show that the appetite of mice after inhalation of curry powder essential oil or benzylacetone showed a similar increase. The components of curry oil, trans-cinnamaldehyde, trans-anethole, and eugenol, each showed appetite-enhancing effects; therefore, these three scent compounds may be the active compounds in curry powder oil.
Psychophysical Bases for the Sensory Assessment of Rations
1984-09-01
fragrant Fragrant, minty, fruity Floral, citrusy Floral, citrusy Heavy citrus, very fragrant Spicy, fruity, woody Spicy, fruity, woody Heavy, jasmine ...strawberry pomance essence . J. Food Sei., 41, 45 (1980). ^l^D.B. ^in an(j E.L. Thomas. Application of response surface analysis in the formulation of...Sehen, M.W. Montgomery, and L.M. Libbey. Subjective and optimum evaluation of strawberry pomance essence . J. Food Sei., 41, 45 (1980). 412. D.B. Min
ERIC Educational Resources Information Center
Mannschreck, Albrecht; von Angerer, Erwin
2011-01-01
A few odorous compounds found in roses are chosen to arouse the reader's interest in their molecular structures. This article differs from some similar reports on odorants mainly by combining the structural description with the presentation of the following types of isomers: constitutional isomers, enantiomers, and diastereomers. The preparation…
The interplay between scent trails and group-mass recruitment systems in ants.
Planqué, Robert; van den Berg, Jan Bouwe; Franks, Nigel R
2013-10-01
Large ant colonies invariably use effective scent trails to guide copious ant numbers to food sources. The success of mass recruitment hinges on the involvement of many colony members to lay powerful trails. However, many ant colonies start off as single queens. How do these same colonies forage efficiently when small, thereby overcoming the hurdles to grow large? In this paper, we study the case of combined group and mass recruitment displayed by some ant species. Using mathematical models, we explore to what extent early group recruitment may aid deployment of scent trails, making such trails available at much smaller colony sizes. We show that a competition between group and mass recruitment may cause oscillatory behaviour mediated by scent trails. This results in a further reduction of colony size to establish trails successfully.
Histological, chemical and behavioural evidence of pedal communication in brown bears.
Sergiel, Agnieszka; Naves, Javier; Kujawski, Piotr; Maślak, Robert; Serwa, Ewa; Ramos, Damián; Fernández-Gil, Alberto; Revilla, Eloy; Zwijacz-Kozica, Tomasz; Zięba, Filip; Painer, Johanna; Selva, Nuria
2017-04-21
Most mammals rely upon scent for intraspecific communication. As most bear species have large home ranges and are non-territorial, scent deposit while walking could be an effective way to communicate with conspecifics. Here, we investigate the existence of pedal glands in brown bears and their role in chemical communication from a histological, biochemical and behavioural perspective. We found eccrine glands in footpads, and prominent apocrine and sebaceous glands in the interdigital, metacarpal and metatarsal skin sections. Pedal scent contained 26 compounds including carboxylic acids, important constituents of mammalian secretions. Six of these compounds were exclusive for males. Finally, we describe a specific marking gait recorded in the field, mostly performed by males. Our study supports the existence of chemical communication through pedal marking in brown bears and suggests sex-coding potential of pedal scent.
Interpreting carnivore scent-station surveys
Sargeant, G.A.; Johnson, D.H.; Berg, W.E.
1998-01-01
The scent-station survey method has been widely used to estimate trends in carnivore abundance. However, statistical properties of scent-station data are poorly understood, and the relation between scent-station indices and carnivore abundance has not been adequately evaluated. We assessed properties of scent-station indices by analyzing data collected in Minnesota during 1986-03. Visits to stations separated by <2 km were correlated for all species because individual carnivores sometimes visited several stations in succession. Thus, visits to stations had an intractable statistical distribution. Dichotomizing results for lines of 10 stations (0 or 21 visits) produced binomially distributed data that were robust to multiple visits by individuals. We abandoned 2-way comparisons among years in favor of tests for population trend, which are less susceptible to bias, and analyzed results separately for biogeographic sections of Minnesota because trends differed among sections. Before drawing inferences about carnivore population trends, we reevaluated published validation experiments. Results implicated low statistical power and confounding as possible explanations for equivocal or conflicting results of validation efforts. Long-term trends in visitation rates probably reflect real changes in populations, but poor spatial and temporal resolution, susceptibility to confounding, and low statistical power limit the usefulness of this survey method.
Transcriptome and gene expression analysis during flower blooming in Rosa chinensis 'Pallida'.
Yan, Huijun; Zhang, Hao; Chen, Min; Jian, Hongying; Baudino, Sylvie; Caissard, Jean-Claude; Bendahmane, Mohammed; Li, Shubin; Zhang, Ting; Zhou, Ningning; Qiu, Xianqin; Wang, Qigang; Tang, Kaixue
2014-04-25
Rosa chinensis 'Pallida' (Rosa L.) is one of the most important ancient rose cultivars originating from China. It contributed the 'tea scent' trait to modern roses. However, little information is available on the gene regulatory networks involved in scent biosynthesis and metabolism in Rosa. In this study, the transcriptome of R. chinensis 'Pallida' petals at different developmental stages, from flower buds to senescent flowers, was investigated using Illumina sequencing technology. De novo assembly generated 89,614 clusters with an average length of 428bp. Based on sequence similarity search with known proteins, 62.9% of total clusters were annotated. Out of these annotated transcripts, 25,705 and 37,159 sequences were assigned to gene ontology and clusters of orthologous groups, respectively. The dataset provides information on transcripts putatively associated with known scent metabolic pathways. Digital gene expression (DGE) was obtained using RNA samples from flower bud, open flower and senescent flower stages. Comparative DGE and quantitative real time PCR permitted the identification of five transcripts encoding proteins putatively associated with scent biosynthesis in roses. The study provides a foundation for scent-related gene discovery in roses. Copyright © 2014. Published by Elsevier B.V.
An unusual recruitment strategy in a mass-recruiting stingless bee, Partamona orizabaensis.
Flaig, Isabelle C; Aguilar, Ingrid; Schmitt, Thomas; Jarau, Stefan
2016-10-01
Foragers of several stingless bee species deposit attractive scent marks on solid substrates to precisely recruit nestmates to food. Interestingly, Partamona workers quickly recruit large numbers of nest mates to resources, likely even without the deposition of attractive scent marks. However, systematic studies of the recruitment system of these bees are lacking. We now studied the recruitment behavior of P. orizabaensis. Our findings show that foragers of this species can recruit large numbers of nestmates to food sources at a particular location. The precise nestmate recruitment does not rely on attractive scent marks deposited on substrates. We never observed any scent marking behavior and feeders baited with labial or mandibular gland extracts were not attractive for the bees. Chemical analyses showed that the foragers' labial gland secretions exclusively contain long chain hydrocarbons, which render their role in recruitment communication unlikely. Whether mandibular gland secretions, which contain esters and alcohols that are known as attractive pheromones in other bee species, are used to guide recruits toward food during flight, remains elusive. We conclude that Partamona's quick recruitment system that does not rely on conspicuous scent marks has evolved as a strategy against competition with sympatrically occurring and more aggressive bee species.
Schulze, Thies; Weldon, Paul J; Schulz, Stefan
2017-07-14
Analysis by gas chromatography/mass spectrometry of the scent gland secretions of male and female Middle American burrowing pythons (Loxocemus bicolor) revealed the presence of over 300 components including cholesterol, fatty acids, glyceryl monoalkyl ethers, and alcohols. The fatty acids, over 100 of which were identified, constitute most of the compounds in the secretions and show the greatest structural diversity. They include saturated and unsaturated, unbranched and mono-, di-, and trimethyl-branched compounds ranging in carbon-chain length from 13 to 24. The glyceryl monoethers possess saturated or unsaturated, straight or methyl-branched alkyl chains ranging in carbon-chain length from 13 to 24. Alcohols, which have not previously been reported from the scent glands, possess straight, chiefly saturated carbon chains ranging in length from 13 to 24. Sex or individual differences in secretion composition were not observed. Compounds in the scent gland secretions of L. bicolor may deter offending arthropods, such as ants.
Emissions of air pollutants from scented candles burning in a test chamber
NASA Astrophysics Data System (ADS)
Derudi, Marco; Gelosa, Simone; Sliepcevich, Andrea; Cattaneo, Andrea; Rota, Renato; Cavallo, Domenico; Nano, Giuseppe
2012-08-01
Burning of scented candles in indoor environment can release a large number of toxic chemicals. However, in spite of the large market penetration of scented candles, very few works investigated their organic pollutants emissions. This paper investigates volatile organic compounds emissions, with particular reference to the priority indoor pollutants identified by the European Commission, from the burning of scented candles in a laboratory-scale test chamber. It has been found that BTEX and PAHs emission factors show large differences among different candles, possibly due to the raw paraffinic material used, while aldehydes emission factors seem more related to the presence of additives. This clearly evidences the need for simple and cheap methodologies to measure the emission factors of commercial candles in order to foresee the expected pollutant concentration in a given indoor environment and compare it with health safety standards.
Guterman, Inna; Shalit, Moshe; Menda, Naama; Piestun, Dan; Dafny-Yelin, Mery; Shalev, Gil; Bar, Einat; Davydov, Olga; Ovadis, Mariana; Emanuel, Michal; Wang, Jihong; Adam, Zach; Pichersky, Eran; Lewinsohn, Efraim; Zamir, Dani; Vainstein, Alexander; Weiss, David
2002-01-01
For centuries, rose has been the most important crop in the floriculture industry; its economic importance also lies in the use of its petals as a source of natural fragrances. Here, we used genomics approaches to identify novel scent-related genes, using rose flowers from tetraploid scented and nonscented cultivars. An annotated petal EST database of ∼2100 unique genes from both cultivars was created, and DNA chips were prepared and used for expression analyses of selected clones. Detailed chemical analysis of volatile composition in the two cultivars, together with the identification of secondary metabolism–related genes whose expression coincides with scent production, led to the discovery of several novel flower scent–related candidate genes. The function of some of these genes, including a germacrene D synthase, was biochemically determined using an Escherichia coli expression system. This work demonstrates the advantages of using the high-throughput approaches of genomics to detail traits of interest expressed in a cultivar-specific manner in nonmodel plants. PMID:12368489
Evidence for intersexual chemical mimicry in a dioecious plant.
Soler, Catherine C L; Proffit, Magali; Bessière, Jean-Marie; Hossaert-McKey, Martine; Schatz, Bertrand
2012-09-01
The dioecious Mediterranean fig, Ficus carica, displays a unique phenology in which males sometimes bloom synchronously with females (in summer), and sometimes not (in spring). Ficus carica is engaged in an obligatory mutualism with a specific pollinating wasp, which reproduces only within figs, localising them by their specific scents. We show that scents emitted by male figs show seasonal variation within individual trees. Scents of summer male figs resemble those of the co-flowering females, and are different from those of the same male trees in spring, when female figs are absent. These differences hold even if only compounds electrophysiologically active for pollinators are considered. The similar scents of summer males and females may explain why the rewardless females are still pollinated. These results offer a tractable model for future studies of intersexual chemical mimicry in mutualistic pollination interactions. © 2012 Blackwell Publishing Ltd/CNRS.
Parsons, Michael H.; Blumstein, Daniel T.
2010-01-01
Background Whether or not animals habituate to repeated exposure to predator scents may depend upon whether there are predators associated with the cues. Understanding the contexts of habituation is theoretically important and has profound implication for the application of predator-based herbivore deterrents. We repeatedly exposed a mixed mob of macropod marsupials to olfactory scents (urine, feces) from a sympatric predator (Canis lupus dingo), along with a control (water). If these predator cues were alarming, we expected that over time, some red kangaroos (Macropus rufous), western grey kangaroos (Macropus fuliginosus) and agile wallabies (Macropus agilis) would elect to not participate in cafeteria trials because the scents provided information about the riskiness of the area. Methodology/Principal Findings We evaluated the effects of urine and feces independently and expected that urine would elicit a stronger reaction because it contains a broader class of infochemicals (pheromones, kairomones). Finally, we scored non-invasive indicators (flight and alarm stomps) to determine whether fear or altered palatability was responsible for the response. Repeated exposure reduced macropodid foraging on food associated with 40 ml of dingo urine, X = 986.75±3.97 g food remained as compared to the tap water control, X = 209.0±107.0 g (P<0.001). Macropodids fled more when encountering a urine treatment, X = 4.50±2.08 flights, as compared to the control, X = 0 flights (P<0.001). There was no difference in effect between urine or feces treatments (P>0.5). Macropodids did not habituate to repeated exposure to predator scents, rather they avoided the entire experimental area after 10 days of trials (R 2 = 83.8; P<0.001). Conclusions/Significance Responses to urine and feces were indistinguishable; both elicited fear-based responses and deterred foraging. Despite repeated exposure to predator-related cues in the absence of a predator, macropodids persistently avoided an area of highly palatable food. Area avoidance is consistent with that observed from other species following repeated anti-predator conditioning, However, this is the first time this response has been experimentally observed among medium or large vertebrates − where a local response is observed spatially and an area effect is revealed over time. PMID:20463952
Multimodal cues drive host-plant assessment in Asian citrus psyllid (Diaphorina citri).
Patt, Joseph M; Meikle, William G; Mafra-Neto, Agenor; Sétamou, Mamoudou; Mangan, Robert; Yang, Chenghai; Malik, Nasir; Adamczyk, John J
2011-12-01
Asian citrus psyllid (Diaphorina citri) transmits the causal agent of Huanglongbing, a devastating disease of citrus trees. In this study we measured behavioral responses of D. citri to combinations of visual, olfactory, and gustatory stimuli in test arenas. Stimuli were presented to the psyllids in droplets or lines of an emulsified wax formulation in two different arena types in no-choice tests. First, when placed on a colored ring situated halfway between the center and perimeter of a petri dish, D. citri spent more time on yellow versus gray rings; however, this response disappeared when either gray or yellow wax droplets were applied. When the psyllids were presented with droplets scented with terpenes, the response to both scent and color was increased. The addition of a dilute (≍0.1 M) sucrose solution to the wax droplets increased the magnitude of D. citri responses. Next, groups of D. citri were placed on plastic laboratory film covering a sucrose solution, to mimic a leaf surface. Test stimuli were presented via two 'midribs' made from lines of emulsified wax formulation. Probing levels were measured as a function of color saturation and scent composition, and concentration. The test scents were based on qualitatively major volatiles emitted by Murraya paniculata (L.) Jack, Citrus aurantifolia (Christm.) Swingle, and C. sinensis (L.) Osbeck. The highest probing response was observed on the middle concentration (20-μl scent/10 ml wax formulation) of the C. aurantifolia-scented wax lines. Results indicate that there are interactive effects between the different sensory modalities in directing host-plant assessment behavior.
Schueller, Teresa I; Nordheim, Erik V; Taylor, Benjamin J; Jeanne, Robert L
2010-11-01
This study explores whether or not foragers of the Neotropical swarm-founding wasp Polybia occidentalis use nest-based recruitment to direct colony mates to carbohydrate resources. Recruitment allows social insect colonies to rapidly exploit ephemeral resources, an ability especially advantageous to species such as P. occidentalis, which store nectar and prey in their nests. Although recruitment is often defined as being strictly signal mediated, it can also occur via cue-mediated information transfer. Previous studies indicated that P. occidentalis employs local enhancement, a type of cue-mediated recruitment in which the presence of conspecifics at a site attracts foragers. This recruitment is resource-based, and as such, is a blunt recruitment tool, which does not exclude non-colony mates. We therefore investigated whether P. occidentalis also employs a form of nest-based recruitment. A scented sucrose solution was applied directly to the nest. This mimicked a scented carbohydrate resource brought back by employed foragers, but, as foragers were not allowed to return to the nest with the resource, there was no possibility for on-nest recruitment behavior. Foragers were offered two dishes--one containing the test scent and the other an alternate scent. Foragers chose the test scent more often, signifying that its presence in the nest induces naïve foragers to search for it off-nest. P. occidentalis, therefore, employs a form of nest-based recruitment to carbohydrate resources that is mediated by a cue, the presence of a scented resource in the nest.
NASA Astrophysics Data System (ADS)
Schueller, Teresa I.; Nordheim, Erik V.; Taylor, Benjamin J.; Jeanne, Robert L.
2010-11-01
This study explores whether or not foragers of the Neotropical swarm-founding wasp Polybia occidentalis use nest-based recruitment to direct colony mates to carbohydrate resources. Recruitment allows social insect colonies to rapidly exploit ephemeral resources, an ability especially advantageous to species such as P. occidentalis, which store nectar and prey in their nests. Although recruitment is often defined as being strictly signal mediated, it can also occur via cue-mediated information transfer. Previous studies indicated that P. occidentalis employs local enhancement, a type of cue-mediated recruitment in which the presence of conspecifics at a site attracts foragers. This recruitment is resource-based, and as such, is a blunt recruitment tool, which does not exclude non-colony mates. We therefore investigated whether P. occidentalis also employs a form of nest-based recruitment. A scented sucrose solution was applied directly to the nest. This mimicked a scented carbohydrate resource brought back by employed foragers, but, as foragers were not allowed to return to the nest with the resource, there was no possibility for on-nest recruitment behavior. Foragers were offered two dishes—one containing the test scent and the other an alternate scent. Foragers chose the test scent more often, signifying that its presence in the nest induces naïve foragers to search for it off-nest. P. occidentalis, therefore, employs a form of nest-based recruitment to carbohydrate resources that is mediated by a cue, the presence of a scented resource in the nest.
The floral morphospace – a modern comparative approach to study angiosperm evolution
Chartier, Marion; Jabbour, Florian; Gerber, Sylvain; Mitteroecker, Philipp; Sauquet, Hervé; von Balthazar, Maria; Staedler, Yannick; Crane, Peter R.; Schönenberger, Jürg
2017-01-01
Summary Morphospaces are mathematical representations used for studying the evolution of morphological diversity and for the evaluation of evolved shapes among theoretically possible ones. Although widely used in zoology, they – with few exceptions – have been disregarded in plant science and in particular in the study of broad-scale patterns of floral structure and evolution. Here we provide basic information on the morphospace approach; we review earlier morphospace applications in plant science; and as a practical example, we construct and analyze a floral morphospace. Morphospaces are usually visualized with the help of ordination methods such as principal component analysis (PCA) or nonmetric multidimensional scaling (NMDS). The results of these analyses are then coupled with disparity indices that describe the spread of taxa in the space. We discuss these methods and apply modern statistical tools to the first and only angiosperm-wide floral morphospace published by Stebbins in 1951. Despite the incompleteness of Stebbins’ original dataset, our analyses highlight major, angiosperm-wide trends in the diversity of flower morphology and thereby demonstrate the power of this previously neglected approach in plant science. PMID:25539005
Increasing the applications of Crocus sativus flowers as natural antioxidants.
Serrano-Díaz, Jéssica; Sánchez, Ana M; Maggi, Luana; Martínez-Tomé, Magdalena; García-Diz, Luis; Murcia, M Antonia; Alonso, Gonzalo L
2012-11-01
Large amounts of floral bio-residues (92.6 g per 100 g of flowers) are generated and wasted in the production of saffron (Crocus sativus) spice. Progress in mechanization of saffron crop offer the opportunity to expand the uses of C. sativus flowers, beyond the spice (dried stigmas). The antioxidant potential of flowers of saffron, their separate parts (tepals, stamens, styles, and stigmas) and floral bio-residues were evaluated by 4 in vitro assays: lipid peroxidation, deoxyribose assay, Rancimat test, and Trolox equivalent antioxidant capacity. Phenolic content and crocetin ester composition were also determined. All the samples studied showed to be potential antioxidants. The highest phenolic, flavonoid, and anthocyanin contents were observed in tepals. Stamens showed lower phenolic, flavonoid, and anthocyanin contents than those of whole flowers, tepals, and floral bio-residues. Crocetin esters were not found in tepals or stamens. Stamens exhibited the most potent LOO(•) and OH(•) radicals scavenging activity, being higher than those of food antioxidant propyl gallate. Flowers of saffron, tepals, stamens, styles, and floral bio-residues showed LOO(•), OH(•), and ABTS(•-) radicals scavenging activity, while stigmas showed LOO(•) and ABTS(•-) radicals scavenging activity. All samples studied improved the oxidative stability of sunflower oil in Rancimat test. These antioxidant properties could suggest the application of this floral material as functional ingredients with the subsequent added value. Saffron spice, the most valuable spice worldwide, is the dried stigma that only represents 7.4% of Crocus sativus flowers. Other parts of the flowers different to stigmas are discarded. Flower harvest and all the postharvest steps to produce saffron spice are performed manually. Mechanization of flower collection, stigma separation, and dehydration process is a revolution in saffron spice production, which increases the productive capacity making it possible to extend the uses of C. sativus flowers, beyond the production of saffron spice. Flowers possessed high-phenolic content and excellent antioxidant properties that could contribute to their application as functional ingredients. © 2012 Institute of Food Technologists®
Polgár, Zita; Kinnunen, Mari; Újváry, Dóra; Miklósi, Ádám; Gácsi, Márta
2016-01-01
Many dog breeds are bred specifically for increased performance in scent-based tasks. Whether dogs bred for this purpose have higher olfactory capacities than other dogs, or even wolves with whom they share a common ancestor, has not yet been studied. Indeed, there is no standard test for assessing canine olfactory ability. This study aimed to create a simple procedure that requires no pre-training and to use it to measure differences in olfactory capacity across four groups of canines: (1) dog breeds that have been selected for their scenting ability; (2) dog breeds that have been bred for other purposes; (3) dog breeds with exaggerated short-nosed features; and (4) hand-reared grey wolves. The procedure involved baiting a container with raw turkey meat and placing it under one of four identical ceramic pots. Subjects were led along the row of pots and were tasked with determining by olfaction alone which of them contained the bait. There were five levels of increasing difficulty determined by the number of holes on the container’s lid. A subsample of both dogs and wolves was retested to assess reliability. The results showed that breeds selected for scent work were better than both short-nosed and non-scent breeds. In the most difficult level, wolves and scenting breeds performed better than chance, while non-scenting and short-nosed breeds did not. In the retested samples wolves improved their success; however, dogs showed no change in their performances indicating that a single test may be reliable enough to assess their capacity. Overall, we revealed measurable differences between dog breeds in their olfactory abilities and suggest that the Natural Detection Task is a good foundation for developing an efficient way of quantifying them. PMID:27152412
Polgár, Zita; Kinnunen, Mari; Újváry, Dóra; Miklósi, Ádám; Gácsi, Márta
2016-01-01
Many dog breeds are bred specifically for increased performance in scent-based tasks. Whether dogs bred for this purpose have higher olfactory capacities than other dogs, or even wolves with whom they share a common ancestor, has not yet been studied. Indeed, there is no standard test for assessing canine olfactory ability. This study aimed to create a simple procedure that requires no pre-training and to use it to measure differences in olfactory capacity across four groups of canines: (1) dog breeds that have been selected for their scenting ability; (2) dog breeds that have been bred for other purposes; (3) dog breeds with exaggerated short-nosed features; and (4) hand-reared grey wolves. The procedure involved baiting a container with raw turkey meat and placing it under one of four identical ceramic pots. Subjects were led along the row of pots and were tasked with determining by olfaction alone which of them contained the bait. There were five levels of increasing difficulty determined by the number of holes on the container's lid. A subsample of both dogs and wolves was retested to assess reliability. The results showed that breeds selected for scent work were better than both short-nosed and non-scent breeds. In the most difficult level, wolves and scenting breeds performed better than chance, while non-scenting and short-nosed breeds did not. In the retested samples wolves improved their success; however, dogs showed no change in their performances indicating that a single test may be reliable enough to assess their capacity. Overall, we revealed measurable differences between dog breeds in their olfactory abilities and suggest that the Natural Detection Task is a good foundation for developing an efficient way of quantifying them.
Bryce, E; Zurberg, T; Zurberg, M; Shajari, S; Roscoe, D
2017-10-01
Prompted by an article describing a dog trained to detect Clostridium difficile in patients, our institution evaluated a dog's ability to detect C. difficile scent from equipment and surfaces to assist in strategic deployment of adjunctive cleaning measures. An expert in drug and explosives scent dog handling trained a canine to identify odours from pure cultures and/or faecal specimens positive for C. difficile. Methods used to assess explosive and drug detection dogs were adapted and included evaluation of (i) odour recognition, using containers positive and negative for the scent of C. difficile, and of (ii) search capability, on a simulation ward with hidden scents. After demonstration that the canine could accurately and reliably detect the scent of C. difficile, formal assessments of all clinical areas began. Odour recognition (N = 75 containers) had a sensitivity of 100% and specificity of 97%. Search capability was 80% sensitive and 92.9% specific after removal of results from one room where dog and trainer fatigue influenced performance. Both odour recognition and search capability had an overall sensitivity of 92.3% and specificity of 95.4%. The clinical unit sweeps over a period of five months revealed a sensitivity of 100% in alerting on positive quality control hides. These clinical unit sweeps also resulted in 83 alerts during 49 sweep days. A dog can be trained to accurately and reliably detect C. difficile odour from environmental sources to guide the best deployment of adjunctive cleaning measures and can be successfully integrated into a quality infection control programme. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Karabagias, Ioannis K; Karabournioti, Sofia
2018-05-03
Twenty-two honey samples, namely clover and citrus honeys, were collected from the greater Cairo area during the harvesting year 2014⁻2015. The main purpose of the present study was to characterize the aforementioned honey types and to investigate whether the use of easily assessable physicochemical parameters, including color attributes in combination with chemometrics, could differentiate honey floral origin. Parameters taken into account were: pH, electrical conductivity, ash, free acidity, lactonic acidity, total acidity, moisture content, total sugars (degrees Brix-°Bx), total dissolved solids and their ratio to total acidity, salinity, CIELAB color parameters, along with browning index values. Results showed that all honey samples analyzed met the European quality standards set for honey and had variations in the aforementioned physicochemical parameters depending on floral origin. Application of linear discriminant analysis showed that eight physicochemical parameters, including color, could classify Egyptian honeys according to floral origin ( p < 0.05). Correct classification rate was 95.5% using the original method and 90.9% using the cross validation method. The discriminatory ability of the developed model was further validated using unknown honey samples. The overall correct classification rate was not affected. Specific physicochemical parameter analysis in combination with chemometrics has the potential to enhance the differences in floral honeys produced in a given geographical zone.
Karabournioti, Sofia
2018-01-01
Twenty-two honey samples, namely clover and citrus honeys, were collected from the greater Cairo area during the harvesting year 2014–2015. The main purpose of the present study was to characterize the aforementioned honey types and to investigate whether the use of easily assessable physicochemical parameters, including color attributes in combination with chemometrics, could differentiate honey floral origin. Parameters taken into account were: pH, electrical conductivity, ash, free acidity, lactonic acidity, total acidity, moisture content, total sugars (degrees Brix-°Bx), total dissolved solids and their ratio to total acidity, salinity, CIELAB color parameters, along with browning index values. Results showed that all honey samples analyzed met the European quality standards set for honey and had variations in the aforementioned physicochemical parameters depending on floral origin. Application of linear discriminant analysis showed that eight physicochemical parameters, including color, could classify Egyptian honeys according to floral origin (p < 0.05). Correct classification rate was 95.5% using the original method and 90.9% using the cross validation method. The discriminatory ability of the developed model was further validated using unknown honey samples. The overall correct classification rate was not affected. Specific physicochemical parameter analysis in combination with chemometrics has the potential to enhance the differences in floral honeys produced in a given geographical zone. PMID:29751543
Glyphosate controls hardwoods in West Virginia
G. W. Wendel; J. N. Kochenderfer
1982-01-01
Applications of Roundup, a glyphosate, by mistblower were effective in controlling hay-scented fern, blackberries, and some tree, shrub, and herbaceous species on an experimental watershed in West Virginia. Damage to planted Norway spruce was slight at rates of 1, 2, and 3 qt/acre (0.75, 1.50, and 2.25 lb/acre of the acid glyphosate). A variety of hardwood species were...
Bera, Paramita; Kotamreddy, Jhansi Narmada Reddy; Samanta, Tanmoy; Maiti, Saborni; Mitra, Adinpunya
2015-01-01
Jasmines are commercially grown for their fragrant flowers and essential oil production. The flowers of jasmine emit sweet-smelling fragrance from evening till midnight. This study was designed to study the composition and inter-specific variation of the emitted scent volatiles from flowers of four commercially cultivated Jasminum species namely, Jasminum sambac, Jasminum auriculatum, Jasminum grandiflorum and Jasminum multiflorum. Gas chromatography-mass spectrometry analysis revealed that the scent volatiles composition of these flowers was predominantly enriched with both terpenoid and benzenoid compounds. Linalool and (3E,6E)-α-farnesene were identified as the major monoterpene and sesquiterpene in all the four species, respectively. The most abundant benzenoid detected in all flowers was benzyl acetate. Comparison of volatile profiles indicated a variation in fragrance contents and types emitted from these four jasmine flowers. The outcome of this study shall help in elucidating the enzymes and genes of fragrance biosynthesis in jasmines and in aiming to create flowers with improved scent quality.
PLANT VOLATILES. Biosynthesis of monoterpene scent compounds in roses.
Magnard, Jean-Louis; Roccia, Aymeric; Caissard, Jean-Claude; Vergne, Philippe; Sun, Pulu; Hecquet, Romain; Dubois, Annick; Hibrand-Saint Oyant, Laurence; Jullien, Frédéric; Nicolè, Florence; Raymond, Olivier; Huguet, Stéphanie; Baltenweck, Raymonde; Meyer, Sophie; Claudel, Patricia; Jeauffre, Julien; Rohmer, Michel; Foucher, Fabrice; Hugueney, Philippe; Bendahmane, Mohammed; Baudino, Sylvie
2015-07-03
The scent of roses (Rosa x hybrida) is composed of hundreds of volatile molecules. Monoterpenes represent up to 70% percent of the scent content in some cultivars, such as the Papa Meilland rose. Monoterpene biosynthesis in plants relies on plastid-localized terpene synthases. Combining transcriptomic and genetic approaches, we show that the Nudix hydrolase RhNUDX1, localized in the cytoplasm, is part of a pathway for the biosynthesis of free monoterpene alcohols that contribute to fragrance in roses. The RhNUDX1 protein shows geranyl diphosphate diphosphohydrolase activity in vitro and supports geraniol biosynthesis in planta. Copyright © 2015, American Association for the Advancement of Science.
Removal of floral microbiota reduces floral terpene emissions
Peñuelas, Josep; Farré-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda
2014-01-01
The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting β-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination. PMID:25335793
Removal of floral microbiota reduces floral terpene emissions
NASA Astrophysics Data System (ADS)
Peñuelas, Josep; Farré-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda
2014-10-01
The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting β-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination.
Removal of floral microbiota reduces floral terpene emissions.
Peñuelas, Josep; Farré-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda
2014-10-22
The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting β-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination.
Impact of room fragrance products on indoor air quality
NASA Astrophysics Data System (ADS)
Uhde, Erik; Schulz, Nicole
2015-04-01
Everyday life can no longer be imagined without fragrances and scented products. For the consumer, countless products exists which are solely or partly intended to give off a certain scent in sufficient concentrations to odorize a complete room. Sprays, diffusers and evaporators, scented candles and automatic devices for the distribution of fragrance liquids are typical examples of such products. If the consumer uses such products, his consent to the release of certain chemicals in his home can be implied, however, he may not know what kind of fragrance substances and solvents will be present in which concentrations. In this study, we determined the volatile emissions of a number of fragrance products in detail. Measurements were carried out under controlled conditions in test chambers. The products were tested in a passive (unused) and an active state, wherever applicable. Following a defined test protocol, the release of volatile organic compounds, ultrafine particles and NOx was monitored for each product. The potential for forming secondary organic aerosols under the influence of ozone was studied, and for a selection of products the long-term emission behavior was assessed. A remarkable variety of fragrance substances was found and more than 100 relevant compounds were identified and quantified. While it is the intended function of such products to release fragrance substances, also considerable amounts of non-odorous solvents and by-products were found to be released from several air fresheners. Emissions rates exceeding 2 mg/(unit*h) were measured for the five most common solvents.
Martinez-Harms, Jaime; Warskulat, Anne-Christin; Dudek, Bettina; Kunert, Grit; Lorenz, Sybille; Hansson, Bill S; Schneider, Bernd
2018-04-26
Despite the increasing evidence for biosynthetic connections between flower pigments and volatiles, examples of such relationships in polymorphic plant species remains limited. Here, we investigated color-scent associations in flowers from Papaver nudicaule (Papaveraceae). We determined the spectral reflectance and the scent composition of flowers of four color cultivars. We found that pigments and volatiles occur in specific combinations in flowers of P. nudicaule. The presence of indole in the bouquets is strongly associated with the occurrence of yellow pigments called nudicaulins, for which indole is one of the final biosynthetic precursors. While yellow flowers emit an excess of indole, orange flowers consume it during nudicaulin production and lack the substance in their bouquet. Using the honeybee, Apis mellifera, we evaluated how color and scent affect the discrimination of these flowers by pollinators. Honeybees were able to discriminate artificial odor mixtures resembling the natural flower odors. Bees trained with stimuli combining colors and odors showed an improved discrimination performance. Our results indicate that the indole moiety of nudicaulins and emitted indole might be products of the same biochemical pathway. We propose that conserved pathways account for the evolution of color-scent associations in P. nudicaule and that these associations positively affect flower constancy of pollinators. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Attar, Usmangani; Hinge, Vidya; Zanan, Rahul; Adhav, Rahul; Nadaf, Altafhusain
2017-04-01
Mung bean having high food value and easily digestible proteins, is one of the socioeconomically important crop of India. Among the varied cultivars, Sona mung is having aroma and hence popularly cultivated in the pockets of Ganga river basin at Bhutnir char village of Malda District in the West Bengal state. In the present study, aroma volatiles with special reference to 2-acetyl-1-pyrroline (2AP) were analyzed using HS-SPME-GCMS from Sona mung bean and compared with non-scented mung bean (PHULE M-9339). 26 volatiles in seeds of Sona mung and 20 in non-scented mung bean were identified, in which 3,7-dimethyl-6-octenal, (2 E )-2-decen-1-ol, 2-ethyl-1-dodecanol and 3,5,5-trimethyl-2-cyclohexene-1-one are first time reported. 0.19 ± 0.001 ppm 2AP was recorded in Sona mung seeds whereas it was not detected in non-scented mung bean. PCA analysis indicated that 2AP, octanal, 1 pentanol, decanal, phenylmethanol and 2-nonen-1-ol were the major contributors in the aroma of Sona mung bean. The significantly higher level proline, methylglyoxal and lower level of BADH2 transcript were detected in Sona mung than non-scented mung, suggesting similar 2AP biosynthesis mechanism in Sona mung bean as reported in scented rice, sorghum and soybean.
Trypanosoma cruzi in the scent glands of Didelphis marsupialis: the kinetics of colonization.
Carreira, J C; Jansen, A M; de Nazareth Meirelles, M; Costa e Silva, F; Lenzi, H L
2001-03-01
This study examined the dynamics of colonization of Trypanosoma cruzi in the scent glands of the opossum Didelphis marsupialis following direct inoculation with 10(5) epimastigotes of isolate G-49 (an opossum-derived strain). One, three, and five days, 1 month, and 1 year after inoculation, scent glands were fixed for analysis using brightfield and electron microscopies. One day after inoculation the parasites, mainly as epimastigotes, were randomly distributed into the lumen. From the third day on, the parasites still in the form of epimastigotes tended to concentrate closer to the epithelium. The flagellates reached the definitive distribution pattern on the fifth day, when they formed huge clusters deep into the foveae. In samples collected 1 month and 1 year after inoculation, the ratio of epimastigotes:trypomastigotes was 1:1, with epimastigotes predominating near the epithelium and trypomastigotes far from it. Our observations suggest that T. cruzi grows continuously in the scent glands and does not depend on adhesion to promote metacyclogenesis. Metacyclogenesis far from the epithelium seems to be an important selective advantage to both host and parasite, since it assures the elimination of the infective forms of the parasite when the host expels the glands' contents, which occurs in frightening situations or at times of stress. The morphological characteristics of infected and noninfected scent glands using transmission and scanning electron microscopies were also described. Copyright 2001 Academic Press.
Cerda-Molina, Ana Lilia; Hernández-López, Leonor; de la O, Claudio E; Chavira-Ramírez, Roberto; Mondragón-Ceballos, Ricardo
2013-01-01
Several studies have shown that a woman's vaginal or axillary odors convey information on her attractivity. Yet, whether such scents induce psychoneuroendocrinological changes in perceivers is still controversial. We studied if smelling axillary and vulvar odors collected in the periovulatory and late luteal phases of young women modify salivary testosterone and cortisol levels, as well as sexual desire in men. Forty-five women and 115 men, all of them college students and unacquainted with each other, participated in the study. Female odors were collected on pads affixed to the axilla and on panty protectors both worn the entire night before experiments. Men provided five saliva samples, a basal one before the smelling procedure, and four more 15, 30, 60, and 75 min after exposure to odors. Immediately after smelling the odor source, men answered a questionnaire rating hedonic qualities of scents, and after providing the last saliva sample they answered questionnaire on sexual desire. We found that periovulatory axillary and vulvar odors increased testosterone and cortisol levels, with vulvar scents producing a more prolonged effect. Luteal axilla odors decreased testosterone and cortisol levels, while luteal vulva odors increased cortisol. Periovulatory axilla and vulva scents accounted for a general increase of interest in sex. These odors were also rated as more pleasant and familiar, while luteal vulvar odors were perceived as intense and unpleasant.
Cerda-Molina, Ana Lilia; Hernández-López, Leonor; de la O, Claudio E.; Chavira-Ramírez, Roberto; Mondragón-Ceballos, Ricardo
2013-01-01
Several studies have shown that a woman’s vaginal or axillary odors convey information on her attractivity. Yet, whether such scents induce psychoneuroendocrinological changes in perceivers is still controversial. We studied if smelling axillary and vulvar odors collected in the periovulatory and late luteal phases of young women modify salivary testosterone and cortisol levels, as well as sexual desire in men. Forty-five women and 115 men, all of them college students and unacquainted with each other, participated in the study. Female odors were collected on pads affixed to the axilla and on panty protectors both worn the entire night before experiments. Men provided five saliva samples, a basal one before the smelling procedure, and four more 15, 30, 60, and 75 min after exposure to odors. Immediately after smelling the odor source, men answered a questionnaire rating hedonic qualities of scents, and after providing the last saliva sample they answered questionnaire on sexual desire. We found that periovulatory axillary and vulvar odors increased testosterone and cortisol levels, with vulvar scents producing a more prolonged effect. Luteal axilla odors decreased testosterone and cortisol levels, while luteal vulva odors increased cortisol. Periovulatory axilla and vulva scents accounted for a general increase of interest in sex. These odors were also rated as more pleasant and familiar, while luteal vulvar odors were perceived as intense and unpleasant. PMID:24194730
2011-01-01
Background The numerous diverse metabolic pathways by which plant compounds can be produced make it difficult to predict how colour pigmentation is lost for different tissues and plants. This study employs mathematical and in silico methods to identify correlated gene targets for the loss of colour pigmentation in plants from a whole cell perspective based on the full metabolic network of Arabidopsis. This involves extracting a self-contained flavonoid subnetwork from the AraCyc database and calculating feasible metabolic routes or elementary modes (EMs) for it. Those EMs leading to anthocyanin compounds are taken to constitute the anthocyanin biosynthetic pathway (ABP) and their interplay with the rest of the EMs is used to study the minimal cut sets (MCSs), which are different combinations of reactions to block for eliminating colour pigmentation. By relating the reactions to their corresponding genes, the MCSs are used to explore the phenotypic roles of the ABP genes, their relevance to the ABP and the impact their eliminations would have on other processes in the cell. Results Simulation and prediction results of the effect of different MCSs for eliminating colour pigmentation correspond with existing experimental observations. Two examples are: i) two MCSs which require the simultaneous suppression of genes DFR and ANS to eliminate colour pigmentation, correspond to observational results of the same genes being co-regulated for eliminating floral pigmentation in Aquilegia and; ii) the impact of another MCS requiring CHS suppression, corresponds to findings where the suppression of the early gene CHS eliminated nearly all flavonoids but did not affect the production of volatile benzenoids responsible for floral scent. Conclusions From the various MCSs identified for eliminating colour pigmentation, several correlate to existing experimental observations, indicating that different MCSs are suitable for different plants, different cells, and different conditions and could also be related to regulatory genes. Being able to correlate the predictions with experimental results gives credence to the use of these mathematical and in silico analyses methods in the design of experiments. The methods could be used to prioritize target enzymes for different objectives to achieve desired outcomes, especially for less understood pathways. PMID:21849042
Volatile profiles of aromatic and non-aromatic rice
USDA-ARS?s Scientific Manuscript database
Rice is enjoyed by many people as a staple food because of its flavor and texture. Some scented varieties command a premium in the marketplace because of their distinctive aroma and flavor. The compound most commonly associated with the popcorn or nutty scent of aromatic rice is 2-acetyl-1-pyrroline...
Bloch, Guy; Bar-Shai, Noam; Cytter, Yotam; Green, Rachel
2017-11-19
The interactions between flowering plants and insect pollinators shape ecological communities and provide one of the best examples of coevolution. Although these interactions have received much attention in both ecology and evolution, their temporal aspects are little explored. Here we review studies on the circadian organization of pollination-related traits in bees and flowers. Research, mostly with the honeybee, Apis mellifera , has implicated the circadian clock in key aspects of their foraging for flower rewards. These include anticipation, timing of visits to flowers at specified locations and time-compensated sun-compass orientation. Floral rhythms in traits such as petal opening, scent release and reward availability also show robust daily rhythms. However, in only few studies was it possible to adequately determine whether these oscillations are driven by external time givers such as light and temperature cycles, or endogenous circadian clocks. The interplay between the timing of flower and pollinator rhythms may be ecologically significant. Circadian regulation of pollination-related traits in only few species may influence the entire pollination network and thus affect community structure and local biodiversity. We speculate that these intricate chronobiological interactions may be vulnerable to anthropogenic effects such as the introduction of alien invasive species, pesticides or environmental pollutants.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'. © 2017 The Author(s).
Transcriptome of the floral transition in Rosa chinensis 'Old Blush'.
Guo, Xuelian; Yu, Chao; Luo, Le; Wan, Huihua; Zhen, Ni; Xu, Tingliang; Tan, Jiongrui; Pan, Huitang; Zhang, Qixiang
2017-02-23
The floral transition plays a vital role in the life of ornamental plants. Despite progress in model plants, the molecular mechanisms of flowering regulation remain unknown in perennial plants. Rosa chinensis 'Old Blush' is a unique plant that can flower continuously year-round. In this study, gene expression profiles associated with the flowering transition were comprehensively analyzed during floral transition in the rose. According to the transcriptomic profiles, 85,663 unigenes and 1,637 differentially expressed genes (DEGs) were identified, among which 32 unigenes were involved in the circadian clock, sugar metabolism, hormone, and autonomous pathways. A hypothetical model for the regulation of floral transition was proposed in which the candidate genes function synergistically the floral transition process. Hormone contents and biosynthesis and metabolism genes fluctuated during the rose floral transition process. Gibberellins (GAs) inhibited rose floral transition, the content of GAs gradually decreased and GA2ox and SCL13 were upregulated from vegetative (VM) meristem to floral meristem (FM). Auxin plays an affirmative part in mediating floral transition, auxin content and auxin-related gene expression levels were gradually upregulated during the floral transition of the rose. However, ABA content and ABA signal genes were gradually downregulated, suggesting that ABA passively regulates the rose floral transition by participating in sugar signaling. Furthermore, sugar content and sugar metabolism genes increased during floral transition in the rose, which may be a further florigenic signal that activates floral transition. Additionally, FRI, FY, DRM1, ELIP, COP1, CO, and COL16 are involved in the circadian clock and autonomous pathway, respectively, and they play a positively activating role in regulating floral transition. Overall, physiological changes associated with genes involved in the circadian clock or autonomous pathway collectively regulated the rose floral transition. Our results summarize a valuable collective of gene expression profiles characterizing the rose floral transition. The DEGs are candidates for functional analyses of genes affecting the floral transition in the rose, which is a precious resource that reveals the molecular mechanism of mediating floral transition in other perennial plants.
Regulation of Floral Terpenoid Emission and Biosynthesis in Sweet Basil (Ocimum basilicum).
Jiang, Yifan; Ye, Jiayan; Li, Shuai; Niinemets, Ülo
2016-12-01
Past studies have focused on the composition of essential oil of Ocimum basilicum leaves, but data on composition and regulation of its aerial emissions, especially floral volatile emissions are scarce. We studied the chemical profile, within-flower spatial distribution (sepals, petals, pistils with stamina and pedicels), diurnal emission kinetics and effects of exogenous methyl jasmonate (MeJA) application on the emission of floral volatiles by dynamic headspace collection and identification using gas chromatography-mass spectrometry (GC-MS) and proton transfer reaction mass spectrometry (PTR-MS). We observed more abundant floral emissions from flowers compared with leaves. Sepals were the main emitters of floral volatiles among the flower parts studied. The emissions of lipoxygenase compounds (LOX) and monoterpenoids, but not sesquiterpene emissions, displayed a diurnal variation driven by light. Response to exogenous MeJA treatment of flowers consisted of a rapid stress response and a longer-term acclimation response. The initial response was associated with enhanced emissions of fatty acid derivatives, monoterpenoids, and sesquiterpenoids without variation of the composition of individual compounds. The longer-term response was associated with enhanced monoterpenoid and sesquiterpenoid emissions with profound changes in the emission spectrum. According to correlated patterns of terpenoid emission changes upon stress, highlighted by a hierarchical cluster analysis, candidate terpenoid synthases responsible for observed diversity and complexity of released terpenoid blends were postulated. We conclude that flower volatile emissions differ quantitatively and qualitatively from leaf emissions, and overall contribute importantly to O. basilicum flavor, especially under stress conditions.
Regulation of Floral Terpenoid Emission and Biosynthesis in Sweet Basil (Ocimum basilicum)
Jiang, Yifan; Ye, Jiayan; Li, Shuai; Niinemets, Ülo
2018-01-01
Past studies have focused on the composition of essential oil of Ocimum basilicum leaves, but data on composition and regulation of its aerial emissions, especially floral volatile emissions are scarce. We studied the chemical profile, within-flower spatial distribution (sepals, petals, pistils with stamina and pedicels), diurnal emission kinetics and effects of exogenous methyl jasmonate (MeJA) application on the emission of floral volatiles by dynamic headspace collection and identification using gas chromatography-mass spectrometry (GC-MS) and proton transfer reaction mass spectrometry (PTR-MS). We observed more abundant floral emissions from flowers compared with leaves. Sepals were the main emitters of floral volatiles among the flower parts studied. The emissions of lipoxygenase compounds (LOX) and monoterpenoids, but not sesquiterpene emissions, displayed a diurnal variation driven by light. Response to exogenous MeJA treatment of flowers consisted of a rapid stress response and a longer-term acclimation response. The initial response was associated with enhanced emissions of fatty acid derivatives, monoterpenoids, and sesquiterpenoids without variation of the composition of individual compounds. The longer-term response was associated with enhanced monoterpenoid and sesquiterpenoid emissions with profound changes in the emission spectrum. According to correlated patterns of terpenoid emission changes upon stress, highlighted by a hierarchical cluster analysis, candidate terpenoid synthases responsible for observed diversity and complexity of released terpenoid blends were postulated. We conclude that flower volatile emissions differ quantitatively and qualitatively from leaf emissions, and overall contribute importantly to O. basilicum flavor, especially under stress conditions. PMID:29367803
2013-12-06
Sulfurous Volcano 1643 Burnt Flesh 219 Burning Rubber 1645 Dead Body 243 Diesel Exhaust 1690 Vomit 252 Oily Machinery/Hydraulic Fluid Food 1432...Vehicle 1664 Cumin 1650 Tar Asphalt 1680 Rosemary Focaccia Bread 1680 Car Bomb 1990 Garlic 1905 Turpentine 1992 Mesquite BBQ Scent System
Prevalence of fragrance sensitivity in the American population.
Caress, Stanley M; Steinemann, Anne C
2009-03-01
This study determined the percentages of individuals who report adverse effects from exposure to fragranced products in the U.S. population and in subpopulations of those with asthma or chemical sensitivity. Data were collected through telephone interviews from two geographically weighted, random samples of the continental U.S. in two surveys during 2002-2003 and 2005-2006 (1,057 and 1,058 cases, respectively). Respondents were asked if they find being next to someone wearing a scented product irritating or appealing; if they have headaches, breathing difficulties, or other problems when exposed to air fresheners or deodorizers; and if they are irritated by the scent from laundry products, fabric softeners, or dryer sheets that are vented outside. Results aggregated from both surveys found that 30.5% of the general population reported scented products on others irritating, 19% reported adverse health effects from air fresheners, and 10.9% reported irritation by scented laundry products vented outside. This study reveals that a considerable percentage of the U.S. population reports adverse health effects or irritation from fragranced products, with higher percentages among those with asthma and chemical sensitivity.
Effects of olfactory sense on chocolate craving.
Firmin, Michael W; Gillette, Aubrey L; Hobbs, Taylor E; Wu, Di
2016-10-01
In the present study, we assessed the effect of the olfactory sense on chocolate craving in college females. Building on previous research by Kemps and Tiggemann (2013), we hypothesized that a fresh scent would decrease one's craving level for chocolate food. While the precursor study only addressed the decrease of chocolate craving, we also hypothesized that a sweet scent would increase one's craving level for chocolate foods. In the present experiment, participants rated their craving levels after viewing images of chocolate foods and inhaling essential oils: one fresh (Slique™ essence), and one sweet (vanilla). Results supported both of the hypotheses: inhaling a fresh scent reduced females' craving levels; similarly, when a sweet scent was inhaled, the participants' craving levels for chocolate food increased. These findings are particularly beneficial for women seeking weight loss and the findings can be applied in contexts such as weight loss programs, therapy, and maintenance programs, even beyond college settings. The results are particularly useful for helping women regarding stimuli that might serve as triggers for chocolate cravings. Copyright © 2016 Elsevier Ltd. All rights reserved.
Plant scents modify innate colour preference in foraging swallowtail butterflies.
Yoshida, Mina; Itoh, Yuki; Ômura, Hisashi; Arikawa, Kentaro; Kinoshita, Michiyo
2015-07-01
Flower-visiting insects exhibit innate preferences for particular colours. A previous study demonstrated that naive Papilio xuthus females prefer yellow and red, whereas males are more attracted to blue. Here, we demonstrate that the innate colour preference can be modified by olfactory stimuli in a sexually dimorphic manner. Naive P. xuthus were presented with four coloured discs: blue, green, yellow and red. The innate colour preference (i.e. the colour first landed on) of the majority of individuals was blue. When scent from essential oils of either orange flower or lily was introduced to the room, females' tendency to select the red disc increased. Scents of lavender and flowering potted Hibiscus rosa-sinensis, however, were less effective. Interestingly, the odour of the non-flowering larval host plant, Citrus unshiu, shifted the preference to green in females. In males, however, all plant scents were less effective than in females, such that blue was always the most favoured colour. These observations indicate that interactions between visual and olfactory cues play a more prominent role in females. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Role of Petal-Specific Orcinol O-Methyltransferases in the Evolution of Rose Scent1
Scalliet, Gabriel; Lionnet, Claire; Le Bechec, Mickaël; Dutron, Laurence; Magnard, Jean-Louis; Baudino, Sylvie; Bergougnoux, Véronique; Jullien, Frédéric; Chambrier, Pierre; Vergne, Philippe; Dumas, Christian; Cock, J. Mark; Hugueney, Philippe
2006-01-01
Orcinol O-methyltransferase (OOMT) 1 and 2 catalyze the last two steps of the biosynthetic pathway leading to the phenolic methyl ether 3,5-dimethoxytoluene (DMT), the major scent compound of many rose (Rosa x hybrida) varieties. Modern roses are descended from both European and Chinese species, the latter being producers of phenolic methyl ethers but not the former. Here we investigated why phenolic methyl ether production occurs in some but not all rose varieties. In DMT-producing varieties, OOMTs were shown to be localized specifically in the petal, predominanty in the adaxial epidermal cells. In these cells, OOMTs become increasingly associated with membranes during petal development, suggesting that the scent biosynthesis pathway catalyzed by these enzymes may be directly linked to the cells' secretory machinery. OOMT gene sequences were detected in two non-DMT-producing rose species of European origin, but no mRNA transcripts were detected, and these varieties lacked both OOMT protein and enzyme activity. These data indicate that up-regulation of OOMT gene expression may have been a critical step in the evolution of scent production in roses. PMID:16361520
Ultrafine particles generated from coloring with scented markers in the presence of ozone.
Fung, C-C D; Shu, S; Zhu, Y
2014-10-01
High concentrations of ultrafine particles (UFPs) have been previously reported during school art activities. This is possibly due to secondary organic aerosols (SOAs) formed from reactions between ozone and volatile organic compounds emitted from art products. Four brands of markers, three scented and one unscented, were tested inside a stainless steel chamber at eight different ozone concentrations between 0 and 300 ppb. Out of the 32 tested markers, only the lemon- and orange-scented markers from one brand reacted with ozone to form UFPs. Limonene, pinene, and several other terpenes were identified as ingredients of ink in SOA-forming markers. Coloring with one lemon-scented marker for 1 min without ozone generated on average approximately 26 ± 4 ppb of limonene inside the chamber. At 150 ppb ozone, using one lemon marker for 1 min formed on average 7.7 × 10(10) particles. The particle size distribution indicated an initial mode of 15 nm which grew to 40 nm. At 50 ppb ozone and below, no significant SOA formation occurred. The number of particles formed is moderately correlated with the mass of ink used (R(2) = 0.68). Based on these data, scented markers are not likely a strong source of SOA under normal indoor ozone levels. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Jackson, Grant; Roddick, John F.; Bull, C. Michael
2016-01-01
Individual movement influences the spatial and social structuring of a population. Animals regularly use the same paths to move efficiently to familiar places, or to patrol and mark home ranges. We found that Australian sleepy lizards (Tiliqua rugosa), a monogamous species with stable pair-bonds, repeatedly used the same paths within their home ranges and investigated whether path re-use functions as a scent-marking behaviour, or whether it is influenced by site familiarity. Lizards can leave scent trails on the substrate when moving through the environment and have a well-developed vomeronasal system to detect and respond to those scents. Path re-use would allow sleepy lizards to concentrate scent marks along these well-used trails, advertising their presence. Hypotheses of mate attraction and mating competition predict that sleepy lizard males, which experience greater intra-sexual competition, mark more strongly. Consistent with those hypotheses, males re-used their paths more than females, and lizards that showed pairing behaviour with individuals of the opposite sex re-used paths more than unpaired lizards, particularly among females. Hinterland marking is most economic when home ranges are large and mobility is low, as is the case in the sleepy lizard. Consistent with this strategy, re-used paths were predominantly located in the inner 50% home range areas. Together, our detailed movement analyses suggest that path re-use is a scent marking behaviour in the sleepy lizard. We also investigated but found less support for alternative explanations of path re-use behaviour, such as site familiarity and spatial knowledge. Lizards established the same number of paths, and used them as often, whether they had occupied their home ranges for one or for more years. We discuss our findings in relation to maintenance of the monogamous mating system of this species, and the spatial and social structuring of the population. PMID:27019790
Leu, Stephan T; Jackson, Grant; Roddick, John F; Bull, C Michael
2016-01-01
Individual movement influences the spatial and social structuring of a population. Animals regularly use the same paths to move efficiently to familiar places, or to patrol and mark home ranges. We found that Australian sleepy lizards (Tiliqua rugosa), a monogamous species with stable pair-bonds, repeatedly used the same paths within their home ranges and investigated whether path re-use functions as a scent-marking behaviour, or whether it is influenced by site familiarity. Lizards can leave scent trails on the substrate when moving through the environment and have a well-developed vomeronasal system to detect and respond to those scents. Path re-use would allow sleepy lizards to concentrate scent marks along these well-used trails, advertising their presence. Hypotheses of mate attraction and mating competition predict that sleepy lizard males, which experience greater intra-sexual competition, mark more strongly. Consistent with those hypotheses, males re-used their paths more than females, and lizards that showed pairing behaviour with individuals of the opposite sex re-used paths more than unpaired lizards, particularly among females. Hinterland marking is most economic when home ranges are large and mobility is low, as is the case in the sleepy lizard. Consistent with this strategy, re-used paths were predominantly located in the inner 50% home range areas. Together, our detailed movement analyses suggest that path re-use is a scent marking behaviour in the sleepy lizard. We also investigated but found less support for alternative explanations of path re-use behaviour, such as site familiarity and spatial knowledge. Lizards established the same number of paths, and used them as often, whether they had occupied their home ranges for one or for more years. We discuss our findings in relation to maintenance of the monogamous mating system of this species, and the spatial and social structuring of the population.
Condition-dependent pheromone signaling by male rock lizards: more oily scents are more attractive.
Martín, José; López, Pilar
2010-05-01
Pheromones of vertebrates are often a mixture of several chemicals with different properties and messages, and their production seems condition dependent. Thus, pheromones are a good, but little studied, example of multiple sexual signals. Femoral gland secretions of male rock lizards Iberolacerta cyreni contain steroids that may act as pheromones, but there are also many other lipids, such as oleic acid, whose allocation to secretions may be costly because it has to be diverted from body fat reserves. This suggests that oleic acid could also have some function in secretions. Chemical analyses showed that proportions of oleic acid in femoral secretions of males were positively related to body condition of males, suggesting that the oleic acid secreted may reflect the amount of body fat reserves of a male. Tongue-flick bioassays showed that females were able to detect by chemosensory cues alone differences in proportions of oleic acid in secretions of males. Scents of males with more oleic acid elicited stronger chemosensory responses by females. Further tests with chemical standards confirmed that females distinguished oleic acid, and changes in its concentration, from other chemicals that are naturally found in secretions of males. Moreover, choice trials of scent-marked substrates showed that females were more attracted to areas that were experimentally manipulated to increase the proportion of oleic acid in natural scent marks of males. We suggest that oleic acid in femoral secretions might be a reliable advertisement of a male's body condition, which females could use to select high-quality mates in conjunction with information provided by other chemicals. Alternatively, scent marks with more oleic acid might be simply more attractive to females if chemosensory responses of females to scent of males were originated by a preexisting sensory bias for food chemicals such as the oleic acid. Nevertheless, this sensory trap might have evolved into an honest signal because the elaboration of the signal seems differentially costly for males with different body conditions.
Bioinformatics and expressional analysis of cDNA clones from floral buds
NASA Astrophysics Data System (ADS)
Pawełkowicz, Magdalena Ewa; Skarzyńska, Agnieszka; Cebula, Justyna; Hincha, Dirck; ZiÄ bska, Karolina; PlÄ der, Wojciech; Przybecki, Zbigniew
2017-08-01
The application of genomic approaches may serve as an initial step in understanding the complexity of biochemical network and cellular processes responsible for regulation and execution of many developmental tasks. The molecular mechanism of sex expression in cucumber is still not elucidated. A study of differential expression was conducted to identify genes involved in sex determination and floral organ morphogenesis. Herein, we present generation of expression sequence tags (EST) obtained by differential hybridization (DH) and subtraction technique (cDNA-DSC) and their characteristic features such as molecular function, involvement in biology processes, expression and mapping position on the genome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, D. K., E-mail: gour.netai@gmail.com; Sahoo, S., E-mail: sukadevsahoo@yahoo.com
2016-04-13
In recent years graphene attracts the scientific and engineering communities due to its outstanding electronic, thermal, mechanical and optical properties and many potential applications. Recently, Popov et al. [1] have studied the properties of graphene and proved that it is aromatic but without fragrance. In this paper, we present a theory to prepare graphene with fragrance. This can be used as scented pencils, perfumes, room and car fresheners, cosmetics and many other useful household substances.
ERIC Educational Resources Information Center
Leap, Evelyn M.
2013-01-01
This quasi-experimental study was conducted with two fifth grade classrooms to investigate the effect of scent on students' acquisition and retention of multiplication facts and math anxiety. Forty participants received daily instruction for nine weeks, using a strategy-rich multiplication program called Factivation. Students in the Double Smencil…
ERIC Educational Resources Information Center
Ji, Qing; El-Hamdi, Nadia S.; Miljanic´, Ognjen S?.
2014-01-01
Esters are volatile and pleasantly smelling compounds, commonly used as food additives. Using Ti(OBu)[subscript 4]-catalyzed acyl exchange, we demonstrate a scent transmutation experiment, in which two fragrant esters swap their acyl and alkoxy substituents and are, during the course of a reactive distillation, quantitatively converted into two…
Birnbach, D J; King, D; Vlaev, I; Rosen, L F; Harvey, P D
2013-09-01
This study investigated the impact of a fresh scent on the rate of hand hygiene compliance (HHC) among novice healthcare providers. In all, 165 participants examined a standardized patient with one sample exposed to fresh scent (N = 79) and the other exposed to the standard environment (N = 86). Hand hygiene behaviours were tracked before patient contact using video surveillance. The standard environment group had an HHC rate of 51% whereas participants in the fresh scent group had a higher HHC rate of 80% (P < 0.001). These data demonstrate that hand hygiene behaviour may be subconsciously influenced by cues in the environment. © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
UFO: an Arabidopsis gene involved in both floral meristem and floral organ development.
Levin, J Z; Meyerowitz, E M
1995-05-01
We describe the role of the UNUSUAL FLORAL ORGANS (UFO) gene in Arabidopsis floral development based on a genetic and molecular characterization of the phenotypes of nine ufo alleles. UFO is required for the proper identity of the floral meristem and acts in three different aspects of the process that distinguishes flowers from shoots. UFO is involved in establishing the whorled pattern of floral organs, controlling the determinacy of the floral meristem, and activating the APETALA3 and PISTILLATA genes required for petal and stamen identity. In many respects, UFO acts in a manner similar to LEAFY, but the ufo mutant phenotype also suggests an additional role for UFO in defining boundaries within the floral primordia or controlling cell proliferation during floral organ growth. Finally, genetic interactions that prevent flower formation and lead to the generation of filamentous structures implicate UFO as a member of a new, large, and diverse class of genes in Arabidopsis necessary for flower formation.
Poyatos-Pertíñez, Sandra; Quinet, Muriel; Ortíz-Atienza, Ana; Yuste-Lisbona, Fernando J; Pons, Clara; Giménez, Estela; Angosto, Trinidad; Granell, Antonio; Capel, Juan; Lozano, Rafael
2016-01-01
Floral organogenesis requires coordinated interactions between genes specifying floral organ identity and those regulating growth and size of developing floral organs. With the aim to isolate regulatory genes linking both developmental processes (i.e., floral organ identity and growth) in the tomato model species, a novel mutant altered in the formation of floral organs was further characterized. Under normal growth conditions, floral organ primordia of mutant plants were correctly initiated, however, they were unable to complete their development impeding the formation of mature and fertile flowers. Thus, the growth of floral buds was blocked at an early stage of development; therefore, we named this mutant as unfinished flower development ( ufd ). Genetic analysis performed in a segregating population of 543 plants showed that the abnormal phenotype was controlled by a single recessive mutation. Global gene expression analysis confirmed that several MADS-box genes regulating floral identity as well as other genes participating in cell division and different hormonal pathways were affected in their expression patterns in ufd mutant plants. Moreover, ufd mutant inflorescences showed higher hormone contents, particularly ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and strigol compared to wild type. Such results indicate that UFD may have a key function as positive regulator of the development of floral primordia once they have been initiated in the four floral whorls. This function should be performed by affecting the expression of floral organ identity and growth genes, together with hormonal signaling pathways.
Regulation of floral stem cell termination in Arabidopsis
Sun, Bo; Ito, Toshiro
2015-01-01
In Arabidopsis, floral stem cells are maintained only at the initial stages of flower development, and they are terminated at a specific time to ensure proper development of the reproductive organs. Floral stem cell termination is a dynamic and multi-step process involving many transcription factors, chromatin remodeling factors and signaling pathways. In this review, we discuss the mechanisms involved in floral stem cell maintenance and termination, highlighting the interplay between transcriptional regulation and epigenetic machinery in the control of specific floral developmental genes. In addition, we discuss additional factors involved in floral stem cell regulation, with the goal of untangling the complexity of the floral stem cell regulatory network. PMID:25699061
Hepworth, Shelley R; Klenz, Jennifer E; Haughn, George W
2006-03-01
The UNUSUAL FLORAL ORGANS (UFO) gene of Arabidopsis encodes an F-box protein required for the determination of floral-organ and floral-meristem identity. Mutation of UFO leads to dramatic changes in floral-organ type which are well-characterized whereas inflorescence defects are more subtle and less understood. These defects include an increase in the number of secondary inflorescences, nodes that alternate between forming flowers and secondary inflorescences, and nodes in which a single flower is subtended by a bract. Here, we show how inflorescence defects correlate with the abnormal development of floral primordia and establish a temporal requirement for UFO in this process. At the inflorescence apex of ufo mutants, newly formed primordia are initially bract-like. Expression of the floral-meristem identity genes LFY and AP1 are confined to a relatively small adaxial region of these primordia with expression of the bract-identity marker FIL observed in cells that comprise the balance of the primordia. Proliferation of cells in the adaxial region of these early primordia is delayed by several nodes such that primordia appear "chimeric" at several nodes, having visible floral and bract components. However, by late stage 2 of floral development, growth of the bract generally ceases and is overtaken by development of the floral primordium. This abnormal pattern of floral meristem development is not rescued by expression of UFO from the AP1 promoter, indicating that UFO is required prior to AP1 activation for normal development of floral primordia. We propose that UFO and LFY are jointly required in the inflorescence meristem to both promote floral meristem development and inhibit, in a non-cell autonomous manner, growth of the bract.
Smelling fit: scent marking exposes parasitic infection status in the banded mongoose.
Mitchell, Jessica; Cant, Michael A; Vitikainen, Emma I K; Nichols, Hazel J
2017-06-01
Preference for uninfected mates is presumed beneficial as it minimizes one's risk of contracting an infection and infecting one's offspring. In avian systems, visual ornaments are often used to indicate parasite burdens and facilitate mate choice. However, in mammals, olfactory cues have been proposed to act as a mechanism allowing potential mates to be discriminated by infection status. The effect of infection upon mammalian mate choice is mainly studied in captive rodents where experimental trials support preference for the odors of uninfected mates and some data suggest scent marking is reduced in individuals with high infection burdens. Nevertheless, whether such effects occur in nonmodel and wild systems remains poorly understood. Here, we investigate the interplay between parasite load (estimated using fecal egg counts) and scent marking behavior in a wild population of banded mongooses Mungos mungo . Focusing on a costly protozoan parasite of the genus Isospora and the nematode worm Toxocara , we first show that banded mongooses that engage in frequent, intensive scent marking have lower Isospora loads, suggesting marking behavior may be an indicator trait regarding infection status. We then use odor presentations to demonstrate that banded mongooses mark less in response to odors of opposite sexed individuals with high Isospora and Toxocara loads. As both of these parasites are known to have detrimental effects upon the health of preweaned young in other species, they would appear key targets to avoid during mate choice. Results provide support for scent as an important ornament and mechanism for advertising parasitic infection within wild mammals.
Ternesten-Hasséus, Ewa; Lowhagen, Olle; Millqvist, Eva
2007-01-01
Objective It is common in asthma and allergy clinics to see patients presenting with upper and lower airway symptoms that are induced by chemicals and scents and not explained by allergic or asthmatic reactions. Previous studies have shown that these patients often have increased cough sensitivity to inhaled capsaicin; such sensitivity is known to reflect the airway sensory reactivity. The aim of this study was to evaluate the duration of symptoms induced by chemicals and scents and to measure health-related quality of life (HRQL) in patients with chemically induced airway symptoms. We also wished to determine and compare repeatability of the cough response to capsaicin inhalation, and to evaluate the patients’ airway sensory reactivity in a long-term perspective. Participants Seventeen patients with a history of at least 12 months of airway symptoms induced by chemicals and scents were followed over 5 years with repeated questionnaires, measurements of HRQL, and capsaicin inhalation tests. Results The symptoms persisted and did not change significantly over time, and the patients had a reduced HRQL that did not change during the 5-year period. The capsaicin sensitivity was increased at the start of the study, the cough sensitivity was long-lasting, and the repeatability of the capsaicin inhalation test was considered to be good in a long-term perspective. Conclusions Upper and lower airway symptoms induced by chemicals and scents represent an entity of chronic diseases, different from asthma or chronic obstructive pulmonary disease, with persistent symptoms, a reduced HRQL, and unchanged sensory hyperreactivity. PMID:17431493
Gromov, V S
1997-01-01
Sex-age and seasonal variability of the ventral glands and different stereotypes of scent marking behaviour in four Meriones species (M. unguiculatus, M. meridianus, M. libycus, M. tamariscinus) have been studied in nature and under semi-natural conditions. Two major ways of olfactory marking are considered: by secretion of the ventral glands and by "signal heaps" with urine and feces. Intraspecific and inter-species variability of marking activity is investigated. The ventral glands start to function at the period of preparation of a generative system to reproduction. The peak of secretary activity of gland and maximum of two types of marking activity is observed in spring and early summer, i.e. the period of active reproduction. The maximum of two types of the marking activity is observed during this period. In M. tamariscinus and M. meridianus the marking by the ventral gland is prevailing mode of the territory scent marking, while Mongolian gerbils (M. unguiculatus) prefer to use "signal heaps" Libyan gerbils (M. libycus) in this relation take an intermediate position. At the non-productive period a level of marking activity is on 10-20 times lower than at the reproductive season. Besides hormonal, social factors were also important for regulation of marking activity. By influence of these factors the differences in the level of marking activity in high-rank and low-rank individuals and differences in patterns of a spatial distribution of scent marks in individuals of different hierarchical rank is explained. Functional significance of various ways of territory scent marking is discussed.
Zagreda, L; Goodman, J; Druin, D P; McDonald, D; Diamond, A
1999-07-15
Phenylalanine hydroxylase (Pah)-deficient "PKU mice" have a mutation in the Pah gene that causes phenylketonuria (PKU) in humans. PKU produces cognitive deficits in humans if it is untreated. We report here the first evidence that the genetic mouse model of PKU (Pah(enu2)) also produces cognitive impairments. PKU mice were impaired on both odor discrimination reversal and latent learning compared with heterozygote littermates and with wild-type mice of the same BTBR strain. A small container of cinnamon-scented sand was presented on the right or left, and nutmeg-scented sand was presented on the other side; left-right location varied over trials. Digging in sand of the correct scent was rewarded by finding phenylalanine-free chocolate. To prevent scent cuing, new containers were used on every trial, and both containers always contained chocolate. Digging in the incorrect choice was stopped before the chocolate was uncovered. Once criterion was reached, the other scent was rewarded. PKU mice were impaired on reversals 2, 3, and 4. They were also impaired in latent learning. On day 1, half the mice were allowed to explore a maze and discover the location of water. On day 2, all mice were water-deprived and were placed in the maze. Whereas pre-exposed wild-type and heterozygous mice showed evidence that they remembered the location of the water and hence could find the water faster on day 2, pre-exposed PKU mice showed no significant benefit from their pre-exposure on day 1.
Detecting swift fox: Smoked-plate scent stations versus spotlighting
Daniel W. Uresk; Kieth E. Severson; Jody Javersak
2003-01-01
We compared two methods of detecting presence of swift fox: smoked-plate scent stations and spotlight counts. Tracks were counted on ten 1-mile (1.6-km) transects with bait/tracking plate stations every 0.1 mile (0.16 km). Vehicle spotlight counts were conducted on the same transects. Methods were compared with Spearman's rank order correlation. Repeated measures...
Hexyl decanoate, the first trail pheromone compound identified in a stingless bee, Trigona recursa.
Jarau, Stefan; Schulz, Claudia M; Hrncir, Michael; Francke, Wittko; Zucchi, Ronaldo; Barth, Friedrich G; Ayasse, Manfred
2006-07-01
Foragers of many species of stingless bees guide their nestmates to food sources by means of scent trails deposited on solid substrates between the food and the nest. The corresponding trail pheromones are generally believed to be produced in the mandibular glands, although definitive experimental proof has never been provided. We tested the trail following behavior of recruits of Trigona recursa in field experiments with artificial scent trails branching off from natural scent trails of this stingless bee. First-time recruits (newcomers) did not follow these trails when they were laid with pure solvent or mandibular gland extract. However, they did follow trails made with labial gland extract. Chemical analyses of labial gland secretions revealed that hexyl decanoate was the dominant component (72.4 +/- 1.9% of all volatiles). Newcomers were significantly attracted to artificial trails made with synthetic hexyl decanoate, demonstrating its key function in eliciting scent-following behavior. According to our experiments with T. recursa, the trail pheromone is produced in the labial glands and not in the mandibular glands. Hexyl decanoate is the first component of a trail pheromone identified and proved to be behaviorally active in stingless bees.
Horth, Lisa; Campbell, Laura; Bray, Rebecca
2014-01-01
ABSTRACT Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent floral guides affect visitation rates and pollinator preference. PMID:24585774
Horth, Lisa; Campbell, Laura; Bray, Rebecca
2014-03-15
Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent floral guides affect visitation rates and pollinator preference.
Costanzo, J P
1989-11-01
Adult garter snakes (Thamnophis sirtalis), collected in October near a traditional, communal hibernaculum in central Wisconsin, were acclimated to autumnal conditions and subjected to laboratory tests to determine whether they could follow scent trails of a conspecific. Graded responses were obtained, but 75% of the sample showed at least some inclination to follow scent trails. The results suggest that pheromone cues may be used by male and female garter snakes to locate traditional dens during autumnal migrations. Evidence from this and other studies suggests that pheromones are probably used in conjunction with other homing mechanisms and that the role of pheromones in den location may be more important in younger snakes and in populations inhabiting northern latitudes.
Raspotnig, Günther; Bodner, Michaela; Schäffer, Sylvia; Koblmüller, Stephan; Schönhofer, Axel; Karaman, Ivo
2015-01-01
Large prosomal scent glands constitute a major synapomorphic character of the arachnid order Opiliones. These glands produce a variety of chemicals very specific to opilionid taxa of different taxonomic levels, and thus represent a model system to investigate the evolutionary traits in exocrine secretion chemistry across a phylogenetically old group of animals. The chemically best-studied opilionid group is certainly Laniatores, and currently available chemical data allow first hypotheses linking the phylogeny of this group to the evolution of major chemical classes of secretion chemistry. Such hypotheses are essential to decide upon a best-fitting explanation of the distribution of scent-gland secretion compounds across extant laniatorean taxa, and hence represent a key toward a well-founded opilionid chemosystematics. PMID:26074662
Raspotnig, Günther; Bodner, Michaela; Schäffer, Sylvia; Koblmüller, Stephan; Schönhofer, Axel; Karaman, Ivo
2015-04-01
Large prosomal scent glands constitute a major synapomorphic character of the arachnid order Opiliones. These glands produce a variety of chemicals very specific to opilionid taxa of different taxonomic levels, and thus represent a model system to investigate the evolutionary traits in exocrine secretion chemistry across a phylogenetically old group of animals. The chemically best-studied opilionid group is certainly Laniatores, and currently available chemical data allow first hypotheses linking the phylogeny of this group to the evolution of major chemical classes of secretion chemistry. Such hypotheses are essential to decide upon a best-fitting explanation of the distribution of scent-gland secretion compounds across extant laniatorean taxa, and hence represent a key toward a well-founded opilionid chemosystematics.
Todd E. Ristau
2017-01-01
Dense rhizomatous fern layers compete with desirable tree seedlings for light, which suppresses development and even kills seedlings. Sulfometuron methyl (Oust XP®) herbicide can be safely and effectively used to control ferns. Previous research showed that depending on application timing, as little as 2 ounces of Oust XP per acre controlled ferns while hardwood tree...
The Scent of the Future: Manned Space Travel and the Soviet Union.
1981-06-01
AND ECONOMIC APPLICATIONS 56 GREENHOUSES , BOOSTERS, AND SPACE PLANES: SOVIET SPACE-RELATED RESEARCH AND DEVELOPMENT 72 R.U.R. REVISITED: MANNED VERSUS... greenhouse that was part of their 12-square-meter closed environment.9 6 The successful conclusion of this test demonstrated the feasibility of a manned...will probably be timed to coincide with the XXVI Party Congress which convenes in February 1981. 71 GREENHOUSES , BOOSTERS, AND SPACE PLANES: SOVIET
Effects of female odors on the sexual behavior of male hamsters.
Johnston, R E
1986-09-01
A series of experiments was undertaken to investigate the effects of removal of several scent glands and scent-producing organs of female hamsters on the copulatory performance of male hamsters. In the first experiment it was shown that males engage in less copulatory activity toward females lacking vaginal secretions than toward females with these odors. Eliminating visual cues by observing pairs under infrared illumination did not change the performance of males toward these two kinds of females. The results of Experiment 2 indicated the importance of flank, ear, and Harderian glands as well as vaginal secretions--males showed the highest levels of copulatory behavior toward females with a full complement of odors and the lowest levels toward those lacking three of four sources of scent. Similar results were obtained in the third experiment in which anesthetized females were used as stimulus animals to increase the importance of chemical cues and to reduce variability due to the behavior of females. The sexual behavior of males was greatest toward females with all sources of scent present, lower toward those lacking vaginal secretions, and still lower toward those lacking vaginal secretions and other sources of odors. In the fourth experiment we asked whether any one of the nonvaginal scent glands was particularly important in stimulating male sexual behavior, but we found no differences in male performance toward females that lacked vaginal secretions or that in addition lacked one of the other scent glands. In the fifth experiment males displayed higher levels of sexual behavior toward vaginectomized females than toward vaginectomized females that had been deodorized by a cleaning procedure, again indicating the importance of nonvaginal odors in stimulating copulatory performance. Thus these experiments demonstrate the importance of vaginal secretions in the sexual arousal of male hamsters, a role for nonvaginal odors in sexual arousal of males, and the lack of necessity of these odors for male copulatory behavior. These results have implications for theories of olfactory communication in mammals and for interpretations of experiments in which lesions of the olfactory system lead to deficits in male copulatory performance.
Floral polymorphism and the fitness implications of attracting pollinating and florivorous insects.
de Jager, Marinus L; Ellis, Allan G
2014-01-01
Floral polymorphism is frequently attributed to pollinator-mediated selection. Multiple studies, however, have revealed the importance of non-pollinating visitors in floral evolution. Using the polymorphic annual daisy Ursinia calenduliflora, this study investigated the importance of different insect visitors, and their effects on fitness, in the maintenance of floral polymorphism. The spatial structure of a discrete floral polymorphism was characterized based on the presence/absence of anthocyanin floret spots in U. calenduliflora. A 3-year observational study was then conducted in polymorphic populations to investigate differences in visitation rates of dominant visitors to floral morphs. Experiments were performed to explore the floral preference of male and female Megapalpus capensis (the dominant insect visitor) and their effectiveness as pollinators. Next, floral damage by antagonistic florivores and the reproductive success of the two floral morphs were surveyed in multiple populations and years. Floral polymorphism in U. calenduliflora was structured spatially, as were insect visitation patterns. Megapalpus capensis males were the dominant visitors and exhibited strong preference for the spotted morph in natural and experimental observations. While this may indicate potential fitness benefits for the spotted morph, female fitness did not differ between floral morphs. However, as M. capensis males are very efficient at exporting U. calenduliflora pollen, their preference may likely increase the reproductive fitness of the spotted morph through male fitness components. The spotted morph, however, also suffered significantly greater costs due to ovule predation by florivores than the spotless morph. The results suggest that pollinators and florivores may potentially exert antagonistic selection that could contribute to the maintenance of floral polymorphism across the range of U. calenduliflora. The relative strength of selection imposed by each agent is potentially determined by insect community composition and abundance at each site, highlighting the importance of community context in the evolution of floral phenotypes.
Floral colour versus phylogeny in structuring subalpine flowering communities.
McEwen, Jamie R; Vamosi, Jana C
2010-10-07
The relative number of seeds produced by competing species can influence the community structure; yet, traits that influence seed production, such as pollinator attraction and floral colour, have received little attention in community ecology. Here, we analyse floral colour using reflectance spectra that include near-UV and examined the phylogenetic signal of floral colour. We found that coflowering species within communities tended to be more divergent in floral colour than expected by chance. However, coflowering species were not phylogenetically dispersed, in part due to our finding that floral colour is a labile trait with a weak phylogenetic signal. Furthermore, while we found that locally rare and common species exhibited equivalent floral colour distances from their coflowering neighbours, frequent species (those found in more communities) exhibited higher colour distances from their coflowering neighbours. Our findings support recent studies, which have found that (i) plant lineages exhibit frequent floral colour transitions; and (ii) traits that influence local population dynamics contribute to community structure.
Spigler, Rachel B
2017-01-01
Plasticity of floral traits in response to pollination can enable plants to maximize opportunities for pollen import and export under poor pollination conditions, while minimizing costs under favourable ones. Both floral longevity and display are key traits influencing pollination. While pollination-induced flower wilting is widely documented, we lack an understanding of the multifactorial complexity of this response, including the influence of other pollination components, costs of extended longevity and subsequent impacts on floral display. Plasticity of floral longevity was experimentally evaluated in Sabatia angularis in response to multiple pollination factors: pollen addition, removal, and source (self, single-donor outcross, multiple-donor outcross) and timing of pollination. Effects of pollen quantity were further evaluated by exploiting variation in autonomous self-pollen deposition. Delayed pollination costs were tested comparing seed set from early versus late pollinations. Finally, I compared floral display metrics (peak floral display, time to peak flower, flowering duration, mean flowering rate) between experimentally pollinated and control plants. Floral longevity was highly plastic in response to pollen addition and its timing, and the response was dose-dependent but insensitive to pollen source. Pollen removal tended to extend floral longevity, but only insofar as it precluded pollination-induced wilting via autonomous self-pollination. Under delayed pollination, the wilting response was faster and no cost was detected. Pollination further led to reduced peak floral displays and condensed flowering periods. Floral longevity and display plasticity could optimize fitness in S. angularis, a species prone to pollen limitation and high inbreeding depression. Under pollinator scarcity, extended floral longevities offer greater opportunities for pollen receipt and export at no cost to seed set, reproductive assurance via autonomous self-pollination and larger, more attractive floral displays. Under high pollinator availability, shortened longevities lead to smaller displays that should lower the risk of geitonogamy. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Foraging scent marks of bumblebees: footprint cues rather than pheromone signals
NASA Astrophysics Data System (ADS)
Wilms, Jessica; Eltz, Thomas
2008-02-01
In their natural habitat foraging bumblebees refuse to land on and probe flowers that have been recently visited (and depleted) by themselves, conspecifics or other bees, which increases their overall rate of nectar intake. This avoidance is often based on recognition of scent marks deposited by previous visitors. While the term ‘scent mark’ implies active labelling, it is an open question whether the repellent chemicals are pheromones actively and specifically released during flower visits, or mere footprints deposited unspecifically wherever bees walk. To distinguish between the two possibilities, we presented worker bumblebees ( Bombus terrestris) with three types of feeders in a laboratory experiment: unvisited control feeders, passive feeders with a corolla that the bee had walked over on its way from the nest (with unspecific footprints), and active feeders, which the bee had just visited and depleted, but which were immediately refilled with sugar water (potentially with specific scent marks). Bumblebees rejected both active and passive feeders more frequently than unvisited controls. The rate of rejection of passive feeders was only slightly lower than that of active feeders, and this difference vanished completely when passive corollas were walked over repeatedly on the way from the nest. Thus, mere footprints were sufficient to emulate the repellent effect of an actual feeder visit. In confirmation, glass slides on which bumblebees had walked on near the nest entrance accumulated hydrocarbons (alkanes and alkenes, C23 to C31), which had previously been shown to elicit repellency in flower choice experiments. We conclude that repellent scent marks are mere footprints, which foraging bees avoid when they encounter them in a foraging context.
Early olfactory environment influences social behaviour in adult Octodon degus.
Márquez, Natalia; Martínez-Harms, Jaime; Vásquez, Rodrigo A; Mpodozis, Jorge
2015-01-01
We evaluated the extent to which manipulation of early olfactory environment can influence social behaviours in the South American Hystricognath rodent Octodon degus. The early olfactory environment of newborn degus was manipulated by scenting all litter members with eucalyptol during the first month of life. The social behaviour of sexually mature animals (5-7 months old) towards conspecifics was then assessed using a y-maze to compare the response of control (naïve) and treated animals to two different olfactory configurations (experiment 1): (i) a non-familiarized conspecific impregnated with eucalyptol (eucalyptol arm) presented against (ii) a non-familiarized unscented conspecific (control arm). In addition, in dyadic encounters, we assessed the behaviour of control and eucalyptol treated animals towards a non-familiarized conspecific scented with eucalyptol (experiment 2). We found that control subjects explored and spent significantly less time in the eucalyptol arm, indicating neophobic behaviours towards the artificially scented conspecific. Treated subjects explored and spent similar time in both arms of the maze, showing the same interest for both olfactory stimuli presented. During dyadic encounters in experiment 2, an interaction effect between early experience and sex was observed. Control males escaped and avoided their scented partner more frequently than eucalyptol treated male subjects and than females. Both groups did not differ in the exploration of their scented partners, suggesting that avoidance within agonistic context does not relate to neophobic behaviours. Our results suggest that the exposure to eucalyptol during early ontogeny decreases evasive behaviours within an agonistic context as a result of olfactory learning. Altogether, these results indicate that olfactory cues learned in early ontogeny can influence olfactory-guided behaviours in adult degus.
Adam, Martin; Schaffner, Emmanuel; Barthélémy, Jean-Claude; Carballo, David; Gaspoz, Jean-Michel; Rochat, Thierry; Schindler, Christian; Schwartz, Joel; Zock, Jan-Paul; Künzli, Nino; Probst-Hensch, Nicole; Team, SAPALDIA
2012-01-01
Background: Household cleaning products are associated with adverse respiratory health outcomes, but the cardiovascular health effects are largely unknown. Objective: We determined if long-term use of household sprays and scented products at home was associated with reduced heart rate variability (HRV), a marker of autonomic cardiac dysfunction. Methods: We recorded 24-hr electrocardiograms in a cross-sectional survey of 581 Swiss adults, ≥ 50 years of age, who answered a detailed questionnaire regarding their use of household cleaning products in their homes. The adjusted average percent changes in standard deviation of all normal-to-normal intervals in 24 hr (24-hr SDNN) and total power (TP) were estimated in multiple linear regression in association with frequency [< 1, 1–3, or 4–7 days/week, unexposed (reference)] of using cleaning sprays, air freshening sprays, and scented products. Results: Decreases in 24-hr SDNN and TP were observed with frequent use of all product types, but the strongest reductions were associated with air freshening sprays. Compared with unexposed participants, we found that using air freshening sprays 4–7 days/week was associated with 11% [95% confidence interval (CI): –20%, –2%] and 29% (95% CI: –46%, –8%) decreases in 24-hr SDNN and TP, respectively. Inverse associations of 24-SDNN and TP with increased use of cleaning sprays, air freshening sprays, and scented products were observed mainly in participants with obstructive lung disease (p < 0.05 for interactions). Conclusions: In predominantly older adult women, long-term frequent use of household spray and scented products was associated with reduced HRV, which suggests an increased risk of cardiovascular health hazards. People with preexisting pulmonary conditions may be more susceptible. PMID:22538298
Qian, Chao-Dong; Fu, Yu-Hang; Jiang, Fu-Sheng; Xu, Zheng-Hong; Cheng, Dong-Qing; Ding, Bin; Gao, Cheng-Xian; Ding, Zhi-Shan
2014-11-30
Studies on endophytes, a relatively under-explored group of microorganisms, are currently popular amongst biologists and natural product researchers. A fungal strain (ME4-2) was isolated from flower samples of mistletoe (Viscum coloratum) during a screening program for endophytes. As limited information on floral endophytes is available, the aim of the present study is to characterise fungal endophytes using their secondary metabolites. ME4-2 grew well in both natural and basic synthetic media but produced no conidia. Sequence analysis of its internal transcribed spacer rDNA demonstrated that ME4-2 forms a distinct branch within the genus Lasiodiplodia and is closely related to L. pseudotheobromae. This floral endophyte was thus identified as Lasiodiplodia sp. based on its molecular biological characteristics. Five aromatic compounds, including cyclo-(Trp-Ala), indole-3-carboxylic acid (ICA), indole-3-carbaldehyde, mellein and 2-phenylethanol, were found in the culture. The structures of these compounds were determined using spectroscopic methods combined with gas chromatography. To the best of our knowledge, our work is the first to report isolation of these aromatic metabolites from a floral endophyte. Interestingly, ICA, a major secondary metabolite produced by ME4-2, seemed to be biosynthesized via an unusual pathway. Furthermore, our results indicate that the fungus ME4-2 is a potent producer of 2-phenylethanol, which is a common component of floral essential oils. This study introduces a fungal strain producing several important aromatic metabolites with pharmaceutical or food applications and suggests that endophytic fungi isolated from plant flowers are promising natural sources of aromatic compounds.
UNUSUAL FLORAL ORGANS Controls Meristem Identity and Organ Primordia Fate in Arabidopsis.
Wilkinson, M. D.; Haughn, G. W.
1995-09-01
A novel gene that is involved in regulating flower initiation and development has been identified in Arabidopsis. This gene has been designated UNUSUAL FLORAL ORGANS (UFO), with five corresponding nuclear recessive alleles designated ufo[middot]1 to ufo[middot]5. Under short day-length conditions, ufo homozygotes generate more coflorescences than do the wild type, and coflorescences often appear apical to the first floral shoot, resulting in a period of inflorescence development in which regions of floral and coflorescence shoots are produced alternately. ufo enhances the phenotype of weak leafy alleles, and the double mutant Ufo-1 Apetala1-1 produces only coflorescence-like shoots, suggesting that these two genes control different aspects of floral initiation. Floral development was also altered in Ufo plants. Ufo flowers have an altered organ number in all whorls, and organs in the first, second, and third whorls exhibit variable homeotic transformations. Ufo single and double mutant phenotypes suggest that the floral changes result from reduction in class B floral homeotic gene expression and fluctuations in the expression boundaries of class C function and FLO10. Surprisingly, in situ hybridization analysis revealed no obvious differences in expression pattern or level in developing Ufo flowers compared with that of the wild type for any class B or C gene studied. We propose that UFO acts in concert with known floral initiation genes and regulates the domains of floral homeotic gene function.
Samach, A; Klenz, J E; Kohalmi, S E; Risseeuw, E; Haughn, G W; Crosby, W L
1999-11-01
Genetic and molecular studies have suggested that the UNUSUAL FLORAL ORGANS (UFO) gene, from Arabidopsis thaliana, is expressed in all shoot apical meristems, and is involved in the regulation of a complex set of developmental events during floral development, including floral meristem and floral organ identity. Results from in situ hybridization using genes expressed early in floral development as probes indicate that UFO controls growth of young floral primordia. Transgenic constructs were used to provide evidence that UFO regulates floral organ identity by activating or maintaining transcription of the class B organ-identity gene APETALA 3, but not PISTILLATA. In an attempt to understand the biochemical mode of action of the UFO gene product, we show here that UFO is an F-box protein that interacts with Arabidopsis SKP1-like proteins, both in the yeast two-hybrid system and in vitro. In yeast and other organisms both F-box proteins and SKP1 homologues are subunits of specific ubiquitin E3 enzyme complexes that target specific proteins for degradation. The protein selected for degradation by the complex is specified by the F-box proteins. It is therefore possible that the role of UFO is to target for degradation specific proteins controlling normal growth patterns in the floral primordia, as well as proteins that negatively regulate APETALA 3 transcription.
Koski, Matthew H; Ashman, Tia-Lynn
2016-07-01
Selection driven by biotic interactions can generate variation in floral traits. Abiotic selection, however, also contributes to floral diversity, especially with respect to patterns of pigmentation. Combining comparative studies of floral pigmentation and geography can reveal the bioclimatic factors that may drive macroevolutionary patterns of floral color. We create a molecular phylogeny and measure ultraviolet (UV) floral pattern for 177 species in the Potentilleae tribe (Rosaceae). Species are similar in flower shape and visible color but vary in UV floral pattern. We use comparative approaches to determine whether UV pigmentation variation is associated with geography and/or bioclimatic features (UV-B, precipitation, temperature). Floral UV pattern was present in half of the species, while others were uniformly UV-absorbing. Phylogenetic signal was detected for presence/absence of pattern, but among patterned species, quantitative variation in UV-absorbing area was evolutionarily labile. Uniformly UV-absorbing species tended to experience higher UV-B irradiance. Patterned species occurring at higher altitudes had larger UV-absorbing petal areas, corresponding with low temperature and high UV exposure. This analysis expands our understanding of the covariation of UV-B irradiance and UV floral pigmentation from within species to that among species, and supports the view that abiotic selection is associated with floral diversification among species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Metabolite profiling of the carnivorous pitcher plants Darlingtonia and Sarracenia.
Hotti, Hannu; Gopalacharyulu, Peddinti; Seppänen-Laakso, Tuulikki; Rischer, Heiko
2017-01-01
Sarraceniaceae is a New World carnivorous plant family comprising three genera: Darlingtonia, Heliamphora, and Sarracenia. The plants occur in nutrient-poor environments and have developed insectivorous capability in order to supplement their nutrient uptake. Sarracenia flava contains the alkaloid coniine, otherwise only found in Conium maculatum, in which its biosynthesis has been studied, and several Aloe species. Its ecological role and biosynthetic origin in S. flava is speculative. The aim of the current research was to investigate the occurrence of coniine in Sarracenia and Darlingtonia and to identify common constituents of both genera, unique compounds for individual variants and floral scent chemicals. In this comprehensive metabolic profiling study, we looked for compound patterns that are associated with the taxonomy of Sarracenia species. In total, 57 different Sarracenia and D. californica accessions were used for metabolite content screening by gas chromatography-mass spectrometry. The resulting high-dimensional data were studied using a data mining approach. The two genera are characterized by a large number of metabolites and huge chemical diversity between different species. By applying feature selection for clustering and by integrating new biochemical data with existing phylogenetic data, we were able to demonstrate that the chemical composition of the species can be explained by their known classification. Although transcriptome analysis did not reveal a candidate gene for coniine biosynthesis, the use of a sensitive selected ion monitoring method enabled the detection of coniine in eight Sarracenia species, showing that it is more widespread in this genus than previously believed.
Metabolite profiling of the carnivorous pitcher plants Darlingtonia and Sarracenia
Seppänen-Laakso, Tuulikki
2017-01-01
Sarraceniaceae is a New World carnivorous plant family comprising three genera: Darlingtonia, Heliamphora, and Sarracenia. The plants occur in nutrient-poor environments and have developed insectivorous capability in order to supplement their nutrient uptake. Sarracenia flava contains the alkaloid coniine, otherwise only found in Conium maculatum, in which its biosynthesis has been studied, and several Aloe species. Its ecological role and biosynthetic origin in S. flava is speculative. The aim of the current research was to investigate the occurrence of coniine in Sarracenia and Darlingtonia and to identify common constituents of both genera, unique compounds for individual variants and floral scent chemicals. In this comprehensive metabolic profiling study, we looked for compound patterns that are associated with the taxonomy of Sarracenia species. In total, 57 different Sarracenia and D. californica accessions were used for metabolite content screening by gas chromatography-mass spectrometry. The resulting high-dimensional data were studied using a data mining approach. The two genera are characterized by a large number of metabolites and huge chemical diversity between different species. By applying feature selection for clustering and by integrating new biochemical data with existing phylogenetic data, we were able to demonstrate that the chemical composition of the species can be explained by their known classification. Although transcriptome analysis did not reveal a candidate gene for coniine biosynthesis, the use of a sensitive selected ion monitoring method enabled the detection of coniine in eight Sarracenia species, showing that it is more widespread in this genus than previously believed. PMID:28222171
Guitton, Yann; Nicolè, Florence; Moja, Sandrine; Valot, Nadine; Legrand, Sylvain; Jullien, Frédéric; Legendre, Laurent
2010-02-01
Despite the commercial importance of Lavandula angustifolia Mill. and L. x intermedia Emeric ex Loisel floral essential oils (EOs), no information is currently available on potential changes in individual volatile organic compound (VOC) content during inflorescence development. Calyces were found to be the main sites of VOC accumulation. The 20 most abundant VOCs could be separated into three sub-groups according to their patterns of change in concentration The three groups of VOCs sequentially dominated the global scent bouquet of inflorescences, the transition between the first and second groups occurring around the opening of the first flower of the inflorescence and the one between the second and third groups at the start of seed set. Changes in calyx VOC accumulation were linked to the developmental stage of individual flowers. Leaves accumulated a smaller number of VOCs which were a subset of those seen in preflowering inflorescences. Their nature and content remained constant during the growing season. Quantitative real time polymerase chain reaction assessments of the expression of two terpene synthase (TPS) genes, LaLIMS and LaLINS, revealed similar trends between their patterns of expression and those of their VOC products. Molecular and chemical analyses suggest that changes in TPS expression occur during lavender inflorescence development and lead to changes in EO composition. Both molecular data and terpene analysis support the findings that changes in biosynthesis of terpene occurred during inflorescence development.
Pollination and protection against herbivory of Nepalese Coelogyninae (Orchidaceae).
Subedi, Abishkar; Chaudhary, Ram P; van Achterberg, Cees; Heijerman, Theodoor; Lens, Frederic; Van Dooren, Tom J M; Gravendeel, Barbara
2011-07-01
Although many species in the orchid genus Coelogyne are horticulturally popular, hardly anything is known about their pollination. Pollinators of three species were observed in the field in Nepal. This information is urgently needed because many orchid species in Nepal are endangered. Whether the exudates produced by extrafloral nectaries played a role in protection against herbivory was also investigated. Pollinators of C. flaccida, C. nitida, and Otochilus albus were filmed, captured, and identified. Ant surveys and exclusion experiments were carried out. To investigate whether pollinators are needed for fruit set, plants were wrapped in mesh wire bags. Inflorescence stems were examined with microscopy. Fehling's reagent was used to detect sugars in extrafloral exudates. Coelogyne flaccida and C. nitida need pollinators to set fruit and are pollinated by wild bees identified as Apis cerana. Otochilus albus was found to be pollinated by Bombus kashmirensis. Extrafloral nectar was found to be exuded by nectary-modified stomata and contained high amounts of sugars. Different species of ants were observed collecting these exudates. A significant difference was found in damage inflicted by flower and leaf-eating beetles between C. nitida plants living in trees with ant nests and those in ant-free trees. Floral syndromes include scented and colored trap flowers without reward to their pollinators. All orchids investigated exude extrafloral nectar by nectary-modified stomata. This nectar was found to flow from the phloem to the stomata through intercellular spaces in the outer parenchymatous layer of the inflorescence.
McCarthy, Elizabeth W.; Arnold, Sarah E. J.; Chittka, Lars; Le Comber, Steven C.; Verity, Robert; Dodsworth, Steven; Knapp, Sandra; Kelly, Laura J.; Chase, Mark W.; Baldwin, Ian T.; Kovařík, Aleš; Mhiri, Corinne; Taylor, Lin; Leitch, Andrew R.
2015-01-01
Background and Aims Speciation in angiosperms can be accompanied by changes in floral colour that may influence pollinator preference and reproductive isolation. This study investigates whether changes in floral colour can accompany polyploid and homoploid hybridization, important processes in angiosperm evolution. Methods Spectral reflectance of corolla tissue was examined for 60 Nicotiana (Solanaceae) accessions (41 taxa) based on spectral shape (corresponding to pigmentation) as well as bee and hummingbird colour perception in order to assess patterns of floral colour evolution. Polyploid and homoploid hybrid spectra were compared with those of their progenitors to evaluate whether hybridization has resulted in floral colour shifts. Key Results Floral colour categories in Nicotiana seem to have arisen multiple times independently during the evolution of the genus. Most younger polyploids displayed an unexpected floral colour, considering those of their progenitors, in the colour perception of at least one pollinator type, whereas older polyploids tended to resemble one or both of their progenitors. Conclusions Floral colour evolution in Nicotiana is weakly constrained by phylogeny, and colour shifts do occur in association with both polyploid and homoploid hybrid divergence. Transgressive floral colour in N. tabacum has arisen by inheritance of anthocyanin pigmentation from its paternal progenitor while having a plastid phenotype like its maternal progenitor. Potentially, floral colour evolution has been driven by, or resulted in, pollinator shifts. However, those polyploids that are not sympatric (on a regional scale) with their progenitor lineages are typically not divergent in floral colour from them, perhaps because of a lack of competition for pollinators. PMID:25979919
Specialist Osmia bees forage indiscriminately among hybridizing Balsamorhiza floral hosts
James H. Cane
2011-01-01
Pollinators, even floral generalists (=polyleges), typically specialize during individual foraging bouts, infrequently switching between floral hosts. Such transient floral constancy restricts pollen flow, and thereby gene flow, to conspecific flowers in mixed plant communities. Where incipient flowering species meet, however, weak cross-fertility and often similar...
Armbruster, W. Scott
2014-01-01
Plant reproduction by means of flowers has long been thought to promote the success and diversification of angiosperms. It remains unclear, however, how this success has come about. Do flowers, and their capacity to have specialized functions, increase speciation rates or decrease extinction rates? Is floral specialization fundamental or incidental to the diversification? Some studies suggest that the conclusions we draw about the role of flowers in the diversification and increased phenotypic disparity (phenotypic diversity) of angiosperms depends on the system. For orchids, for example, specialized pollination may have increased speciation rates, in part because in most orchids pollen is packed in discrete units so that pollination is precise enough to contribute to reproductive isolation. In most plants, however, granular pollen results in low realized pollination precision, and thus key innovations involving flowers more likely reflect reduced extinction rates combined with opportunities for evolution of greater phenotypic disparity (phenotypic diversity) and occupation of new niches. Understanding the causes and consequences of the evolution of specialized flowers requires knowledge of both the selective regimes and the potential fitness trade-offs in using more than one pollinator functional group. The study of floral function and flowering-plant diversification remains a vibrant evolutionary field. Application of new methods, from measuring natural selection to estimating speciation rates, holds much promise for improving our understanding of the relationship between floral specialization and evolutionary success. PMID:24790124
Plant hormones including ethylene are recruited in calyx inflation in Solanaceous plants.
Khan, Muhammad Ramzan; Hu, Jinyong; He, Chaoying
2012-07-01
Plant hormones direct many processes of floral and post-floral morphogenesis in Angiosperms. However, their role in shaping floral morphological novelties, such as inflated calyx syndrome (ICS) exhibited by a few genera of the Solanaceae, remains unknown. In Withania and Physalis, sepals resume growth after pollination and encapsulate the mature fruit to form a balloon-like structure, i.e. ICS. The epidermal cells of calyx show enlargement and lobation post-fertilization. Application of hormones to depistillated flower buds of Withania revealed that cytokinins and gibberellins mimic fertilization signals. The ICS development is a synchronous step with fruit development; both processes are under the control of more or less the same set of hormones, including cytokinins and gibberellic acids. Interestingly, inhibition of ethylene in the system is sufficient to yield inflated calyx in Withania. In contrast, Tubocapsicum, a closely related species and an evolutionary natural loss mutant of ICS - showed no response to applied hormones, and ethylene led to inflation of the receptacle indirectly. In addition to hormones, the expression of an MPF2-like MADS-box transcription factor in sepals is essential for ICS formation. Nevertheless, the interactions between MPF2-like genes and hormones are barely detectable at the transcript level. Our data provide insight into the role of hormones in generating floral morphological diversity during evolution. Copyright © 2012 Elsevier GmbH. All rights reserved.
Holmes, Thomas H; McCormick, Mark I
2010-03-01
The speed with which individuals can learn to identify and react appropriately to predation threats when transitioning to new life history stages and habitats will influence their survival. This study investigated the role of chemical alarm cues in both anti-predator responses and predator identification during a transitional period in a newly settled coral reef damselfish, Pomacentrus amboinensis. Individuals were tested for changes in seven behavioural traits in response to conspecific and heterospecific skin extracts. Additionally, we tested whether fish could learn to associate a previously novel chemical cue (i.e. simulated predator scent) with danger, after previously being exposed to a paired cue combining the conspecific skin extract with the novel scent. Fish exposed to conspecific skin extracts were found to significantly decreased their feeding rate whilst those exposed to heterospecific and control cues showed no change. Individuals were also able to associate a previously novel scent with danger after only a single previous exposure to the paired conspecific skin extract/novel scent cue. Our results indicate that chemical alarm cues play a large role in both threat detection and learned predator recognition during the early post-settlement period in coral reef fishes. Copyright (c) 2010. Published by Elsevier B.V.
Kin discrimination via odour in the cooperatively breeding banded mongoose.
Mitchell, J; Kyabulima, S; Businge, R; Cant, M A; Nichols, H J
2018-03-01
Kin discrimination is often beneficial for group-living animals as it aids in inbreeding avoidance and providing nepotistic help. In mammals, the use of olfactory cues in kin discrimination is widespread and may occur through learning the scents of individuals that are likely to be relatives, or by assessing genetic relatedness directly through assessing odour similarity (phenotype matching). We use scent presentations to investigate these possibilities in a wild population of the banded mongoose Mungos mungo , a cooperative breeder in which inbreeding risk is high and females breed communally, disrupting behavioural cues to kinship. We find that adults show heightened behavioural responses to unfamiliar (extra-group) scents than to familiar (within-group) scents. Interestingly, we found that responses to familiar odours, but not unfamiliar odours, varied with relatedness. This suggests that banded mongooses are either able to use an effective behavioural rule to identify likely relatives from within their group, or that phenotype matching is used in the context of within-group kin recognition but not extra-group kin recognition. In other cooperative breeders, familiarity is used within the group and phenotype matching may be used to identify unfamiliar kin. However, for the banded mongoose this pattern may be reversed, most likely due to their unusual breeding system which disrupts within-group behavioural cues to kinship.
Predators Are Attracted to the Olfactory Signals of Prey
Hughes, Nelika K.; Price, Catherine J.; Banks, Peter B.
2010-01-01
Background Predator attraction to prey social signals can force prey to trade-off the social imperatives to communicate against the profound effect of predation on their future fitness. These tradeoffs underlie theories on the design and evolution of conspecific signalling systems and have received much attention in visual and acoustic signalling modes. Yet while most territorial mammals communicate using olfactory signals and olfactory hunting is widespread in predators, evidence for the attraction of predators to prey olfactory signals under field conditions is lacking. Methodology/Principal Findings To redress this fundamental issue, we examined the attraction of free-roaming predators to discrete patches of scents collected from groups of two and six adult, male house mice, Mus domesticus, which primarily communicate through olfaction. Olfactorily-hunting predators were rapidly attracted to mouse scent signals, visiting mouse scented locations sooner, and in greater number, than control locations. There were no effects of signal concentration on predator attraction to their prey's signals. Conclusions/Significance This implies that communication will be costly if conspecific receivers and eavesdropping predators are simultaneously attracted to a signal. Significantly, our results also suggest that receivers may be at greater risk of predation when communicating than signallers, as receivers must visit risky patches of scent to perform their half of the communication equation, while signallers need not. PMID:20927352
Assessment of predation risk through conspecific alarm odors by spiny lobsters
2009-01-01
Strong “alarm odors” emanating from lethally injured conspecifics may indicate an imminent risk of predation to spiny lobsters. In laboratory trials,1 strong conspecific alarm odors elicited avoidance in Panulirus argus, a highly gregarious species that displays collective defense behavior, but not in Panulirus guttatus, a species that tends to aggregate when reproductive activity is high (spring) but not when it is low (late summer) and does not display collective defensive behavior. To reduce predation risk, however, lobsters may autotomize limbs, thus sustaining nonlethal injuries. I tested the response of these lobsters to scents emanating from intact, lethally-injured and non-lethally injured conspecifics. In P. argus, these scents elicited, respectively, attraction, avoidance and a random response, suggesting that, in P. argus, avoidance of conspecific alarm odors depends on their strength. In contrast, P. guttatus lobsters responded at random to scents of lethally injured conspecifics and showed a similar response to scents of intact and non-lethally injured conspecifics in the spring (attraction) and in the summer (random), reflecting the more cryptic defensive behavior of this species. Therefore, both species use conspecific alarm odors for risk-assessment, but each responds to these cues in the most effective way to reduce its risk of predation. PMID:19721871
Briones-Fourzán, Patricia
2009-07-01
Strong "alarm odors" emanating from lethally injured conspecifics may indicate an imminent risk of predation to spiny lobsters. In laboratory trials,1 strong conspecific alarm odors elicited avoidance in Panulirus argus, a highly gregarious species that displays collective defense behavior, but not in Panulirus guttatus, a species that tends to aggregate when reproductive activity is high (spring) but not when it is low (late summer) and does not display collective defensive behavior. To reduce predation risk, however, lobsters may autotomize limbs, thus sustaining nonlethal injuries. I tested the response of these lobsters to scents emanating from intact, lethally-injured and non-lethally injured conspecifics. In P. argus, these scents elicited, respectively, attraction, avoidance and a random response, suggesting that, in P. argus, avoidance of conspecific alarm odors depends on their strength. In contrast, P. guttatus lobsters responded at random to scents of lethally injured conspecifics and showed a similar response to scents of intact and non-lethally injured conspecifics in the spring (attraction) and in the summer (random), reflecting the more cryptic defensive behavior of this species. Therefore, both species use conspecific alarm odors for risk-assessment, but each responds to these cues in the most effective way to reduce its risk of predation.
Rafiq, Ragina; Hayek, Saeed A.; Anyanwu, Ugochukwu; Hardy, Bonita I.; Giddings, Valerie L.; Ibrahim, Salam A.; Tahergorabi, Reza; Kang, Hye Won
2016-01-01
Essential oils are natural antimicrobials that have the potential to provide a safer alternative to synthetic antimicrobials currently used in the food industry. Therefore, the aim of this study was to evaluate the antimicrobial and antioxidant activities of essential oils from white wormwood, rose-scented geranium and bay laurel against Salmonella typhimurium and Escherichia coli O157:H7 on fresh produce and to examine consumer acceptability of fresh produce treated with these essential oils. Our results showed that essential oil derived from rose-scented geranium exhibited the most effective antimicrobial activity at the same and similar minimum inhibition concentration levels (0.4%, v/v and 0.4% and 0.5%, v/v) respectively against Salmonella typhimurium and Escherichia coli O157:H7. All three essential oils showed antioxidant properties, with the highest activity occurring in bay laurel essential oil. In a sensory test, tomatoes, cantaloupe and spinach sprayed with 0.4% rose-scented geranium essential oil received higher scores by panelists. In conclusion, rose-scented geranium essential oil could be developed into a natural antimicrobial to prevent contamination of Salmonella typhimurium and Escherichia coli O157:H7 in fresh produce, plus this oil would provide additional health benefits due to the antioxidant properties of its residue. PMID:28231123
Retail Florist: Selling the Floral Product, Maintenance and Delivery.
ERIC Educational Resources Information Center
Southern Illinois Univ., Carbondale.
This retail florist unit guide is provided to help teachers teach units on sales of floral products and maintenance and delivery in a floral shop. Topics covered in the selling unit are basic mathematics; taxable items; sales etiquette; types of floral products; telephone etiquette; order form information; wire service regulations; care of floral…
Herbivory by a Phloem-feeding insect inhibits floral volatile production.
Pareja, Martin; Qvarfordt, Erika; Webster, Ben; Mayon, Patrick; Pickett, John; Birkett, Michael; Glinwood, Robert
2012-01-01
There is extensive knowledge on the effects of insect herbivory on volatile emission from vegetative tissue, but little is known about its impact on floral volatiles. We show that herbivory by phloem-feeding aphids inhibits floral volatile emission in white mustard Sinapis alba measured by gas chromatographic analysis of headspace volatiles. The effect of the Brassica specialist aphid Lipaphis erysimi was stronger than the generalist aphid Myzus persicae and feeding by chewing larvae of the moth Plutella xylostella caused no reduction in floral volatile emission. Field observations showed no effect of L. erysimi-mediated floral volatile emission on the total number of flower visits by pollinators. Olfactory bioassays suggested that although two aphid natural enemies could detect aphid inhibition of floral volatiles, their olfactory orientation to infested plants was not disrupted. This is the first demonstration that phloem-feeding herbivory can affect floral volatile emission, and that the outcome of interaction between herbivory and floral chemistry may differ depending on the herbivore's feeding mode and degree of specialisation. The findings provide new insights into interactions between insect herbivores and plant chemistry.
Levin, J Z; Fletcher, J C; Chen, X; Meyerowitz, E M
1998-06-01
In a screen to identify novel genes required for early Arabidopsis flower development, we isolated four independent mutations that enhance the Ufo phenotype toward the production of filamentous structures in place of flowers. The mutants fall into three complementation groups, which we have termed FUSED FLORAL ORGANS (FFO) loci. ffo mutants have specific defects in floral organ separation and/or positioning; thus, the FFO genes identify components of a boundary formation mechanism(s) acting between developing floral organ primordia. FFO1 and FFO3 have specific functions in cauline leaf/stem separation and in first- and third-whorl floral organ separation, with FFO3 likely acting to establish and FFO1 to maintain floral organ boundaries. FFO2 acts at early floral stages to regulate floral organ number and positioning and to control organ separation within and between whorls. Plants doubly mutant for two ffo alleles display additive phenotypes, indicating that the FFO genes may act in separate pathways. Plants doubly mutant for an ffo gene and for ufo, lfy, or clv3 reveal that the FFO genes play roles related to those of UFO and LFY in floral meristem initiation and that FFO2 and FFO3 may act to control cell proliferation late in inflorescence development.
Short Vegetative Phase-Like MADS-Box Genes Inhibit Floral Meristem Identity in Barley1[W][OA
Trevaskis, Ben; Tadege, Million; Hemming, Megan N.; Peacock, W. James; Dennis, Elizabeth S.; Sheldon, Candice
2007-01-01
Analysis of the functions of Short Vegetative Phase (SVP)-like MADS-box genes in barley (Hordeum vulgare) indicated a role in determining meristem identity. Three SVP-like genes are expressed in vegetative tissues of barley: Barley MADS1 (BM1), BM10, and Vegetative to Reproductive Transition gene 2. These genes are induced by cold but are repressed during floral development. Ectopic expression of BM1 inhibited spike development and caused floral reversion in barley, with florets at the base of the spike replaced by tillers. Head emergence was delayed in plants that ectopically express BM1, primarily by delayed development after the floral transition, but expression levels of the barley VRN1 gene (HvVRN1) were not affected. Ectopic expression of BM10 inhibited spike development and caused partial floral reversion, where florets at the base of the spike were replaced by inflorescence-like structures, but did not affect heading date. Floral reversion occurred more frequently when BM1 and BM10 ectopic expression lines were grown in short-day conditions. BM1 and BM10 also inhibited floral development and caused floral reversion when expressed in Arabidopsis (Arabidopsis thaliana). We conclude that SVP-like genes function to suppress floral meristem identity in winter cereals. PMID:17114273
UNUSUAL FLORAL ORGANS Controls Meristem Identity and Organ Primordia Fate in Arabidopsis.
Wilkinson, M. D.; Haughn, G. W.
1995-01-01
A novel gene that is involved in regulating flower initiation and development has been identified in Arabidopsis. This gene has been designated UNUSUAL FLORAL ORGANS (UFO), with five corresponding nuclear recessive alleles designated ufo[middot]1 to ufo[middot]5. Under short day-length conditions, ufo homozygotes generate more coflorescences than do the wild type, and coflorescences often appear apical to the first floral shoot, resulting in a period of inflorescence development in which regions of floral and coflorescence shoots are produced alternately. ufo enhances the phenotype of weak leafy alleles, and the double mutant Ufo-1 Apetala1-1 produces only coflorescence-like shoots, suggesting that these two genes control different aspects of floral initiation. Floral development was also altered in Ufo plants. Ufo flowers have an altered organ number in all whorls, and organs in the first, second, and third whorls exhibit variable homeotic transformations. Ufo single and double mutant phenotypes suggest that the floral changes result from reduction in class B floral homeotic gene expression and fluctuations in the expression boundaries of class C function and FLO10. Surprisingly, in situ hybridization analysis revealed no obvious differences in expression pattern or level in developing Ufo flowers compared with that of the wild type for any class B or C gene studied. We propose that UFO acts in concert with known floral initiation genes and regulates the domains of floral homeotic gene function. PMID:12242408
Floral abundance, richness, and spatial distribution drive urban garden bee communities.
Plascencia, M; Philpott, S M
2017-10-01
In urban landscapes, gardens provide refuges for bee diversity, but conservation potential may depend on local and landscape features. Foraging and population persistence of bee species, as well as overall pollinator community structure, may be supported by the abundance, richness, and spatial distribution of floral resources. Floral resources strongly differ in urban gardens. Using hand netting and pan traps to survey bees, we examined whether abundance, richness, and spatial distribution of floral resources, as well as ground cover and garden landscape surroundings influence bee abundance, species richness, and diversity on the central coast of California. Differences in floral abundance and spatial distribution, as well as urban cover in the landscape, predicted different bee community variables. Abundance of all bees and of honeybees (Apis mellifera) was lower in sites with more urban land cover surrounding the gardens. Honeybee abundance was higher in sites with patchy floral resources, whereas bee species richness and bee diversity was higher in sites with more clustered floral resources. Surprisingly, bee species richness and bee diversity was lower in sites with very high floral abundance, possibly due to interactions with honeybees. Other studies have documented the importance of floral abundance and landscape surroundings for bees in urban gardens, but this study is the first to document that the spatial arrangement of flowers strongly predicts bee abundance and richness. Based on these findings, it is likely that garden managers may promote bee conservation by managing for floral connectivity and abundance within these ubiquitous urban habitats.
2010-01-01
Background Floral traits within plants can vary with flower position or flowering time. Within an inflorescence, sexual allocation of early produced basal flowers is often female-biased while later produced distal flowers are male-biased. Such temporal adjustment of floral resource has been considered one of the potential advantages of modularity (regarding a flower as a module) in hermaphrodites. However, flowers are under constraints of independent evolution of a given trait. To understand flower diversification within inflorescences, here we examine variation and covariation in floral traits within racemes at the individual and the maternal family level respectively in an alpine herb Aconitum gymnandrum (Ranunculaceae). Results We found that floral traits varied significantly with flower position and among families, and position effects were family-specific. Most of the variance of floral traits was among individuals rather than among flowers within individuals or among families. Significant phenotypic correlations between traits were not affected by position, indicating trait integration under shared developmental regulation. In contrast, positive family-mean correlations in floral traits declined gradually from basal to distal flowers (nine significant correlations among floral traits in basal flowers and only three in distal flowers), showing position-specificity. Therefore, the pattern and magnitude of genetic correlations decreased with flower position. Conclusions This finding on covariation pattern in floral reproductive structures within racemes has not been revealed before, providing insights into temporal variation and position effects in floral traits within plants and the potential advantages of modularity in hermaphrodites. PMID:20482889
Zhao, Zhi-Gang; Du, Guo-Zhen; Huang, Shuang-Quan
2010-05-20
Floral traits within plants can vary with flower position or flowering time. Within an inflorescence, sexual allocation of early produced basal flowers is often female-biased while later produced distal flowers are male-biased. Such temporal adjustment of floral resource has been considered one of the potential advantages of modularity (regarding a flower as a module) in hermaphrodites. However, flowers are under constraints of independent evolution of a given trait. To understand flower diversification within inflorescences, here we examine variation and covariation in floral traits within racemes at the individual and the maternal family level respectively in an alpine herb Aconitum gymnandrum (Ranunculaceae). We found that floral traits varied significantly with flower position and among families, and position effects were family-specific. Most of the variance of floral traits was among individuals rather than among flowers within individuals or among families. Significant phenotypic correlations between traits were not affected by position, indicating trait integration under shared developmental regulation. In contrast, positive family-mean correlations in floral traits declined gradually from basal to distal flowers (nine significant correlations among floral traits in basal flowers and only three in distal flowers), showing position-specificity. Therefore, the pattern and magnitude of genetic correlations decreased with flower position. This finding on covariation pattern in floral reproductive structures within racemes has not been revealed before, providing insights into temporal variation and position effects in floral traits within plants and the potential advantages of modularity in hermaphrodites.
McCarthy, Elizabeth W; Arnold, Sarah E J; Chittka, Lars; Le Comber, Steven C; Verity, Robert; Dodsworth, Steven; Knapp, Sandra; Kelly, Laura J; Chase, Mark W; Baldwin, Ian T; Kovařík, Aleš; Mhiri, Corinne; Taylor, Lin; Leitch, Andrew R
2015-06-01
Speciation in angiosperms can be accompanied by changes in floral colour that may influence pollinator preference and reproductive isolation. This study investigates whether changes in floral colour can accompany polyploid and homoploid hybridization, important processes in angiosperm evolution. Spectral reflectance of corolla tissue was examined for 60 Nicotiana (Solanaceae) accessions (41 taxa) based on spectral shape (corresponding to pigmentation) as well as bee and hummingbird colour perception in order to assess patterns of floral colour evolution. Polyploid and homoploid hybrid spectra were compared with those of their progenitors to evaluate whether hybridization has resulted in floral colour shifts. Floral colour categories in Nicotiana seem to have arisen multiple times independently during the evolution of the genus. Most younger polyploids displayed an unexpected floral colour, considering those of their progenitors, in the colour perception of at least one pollinator type, whereas older polyploids tended to resemble one or both of their progenitors. Floral colour evolution in Nicotiana is weakly constrained by phylogeny, and colour shifts do occur in association with both polyploid and homoploid hybrid divergence. Transgressive floral colour in N. tabacum has arisen by inheritance of anthocyanin pigmentation from its paternal progenitor while having a plastid phenotype like its maternal progenitor. Potentially, floral colour evolution has been driven by, or resulted in, pollinator shifts. However, those polyploids that are not sympatric (on a regional scale) with their progenitor lineages are typically not divergent in floral colour from them, perhaps because of a lack of competition for pollinators. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Li, Haifeng; Liang, Wanqi; Yin, Changsong; Zhu, Lu; Zhang, Dabing
2011-01-01
Grass plants develop unique floral patterns that determine grain production. However, the molecular mechanism underlying the specification of floral organ identities and meristem determinacy, including the interaction among floral homeotic genes, remains largely unknown in grasses. Here, we report the interactions of rice (Oryza sativa) floral homeotic genes, OsMADS3 (a C-class gene), OsMADS13 (a D-class gene), and DROOPING LEAF (DL), in specifying floral organ identities and floral meristem determinacy. The interaction among these genes was revealed through the analysis of double mutants. osmads13-3 osmads3-4 displayed a loss of floral meristem determinacy and generated abundant carpelloid structures containing severe defective ovules in the flower center, which were not detectable in the single mutant. In addition, in situ hybridization and yeast two-hybrid analyses revealed that OsMADS13 and OsMADS3 did not regulate each other’s transcription or interact at the protein level. This indicates that OsMADS3 plays a synergistic role with OsMADS13 in both ovule development and floral meristem termination. Strikingly, osmads3-4 dl-sup6 displayed a severe loss of floral meristem determinacy and produced supernumerary whorls of lodicule-like organs at the forth whorl, suggesting that OsMADS3 and DL synergistically terminate the floral meristem. Furthermore, the defects of osmads13-3 dl-sup6 flowers appeared identical to those of dl-sup6, and the OsMADS13 expression was undetectable in dl-sup6 flowers. These observations suggest that DL and OsMADS13 may function in the same pathway specifying the identity of carpel/ovule and floral meristem. Collectively, we propose a model to illustrate the role of OsMADS3, DL, and OsMADS13 in the specification of flower organ identity and meristem determinacy in rice. PMID:21444646
Reliability of bloodhounds in criminal investigations.
Harvey, Lisa M; Harvey, Jeffrey W
2003-07-01
Anecdotal evidence and legend have suggested that bloodhounds are capable of trailing and alerting to a human by his or her individual scent. This same evidence may be presented to a court of law in order to accuse a particular suspect or suspects of a crime. There is little to no scientific evidence confirming the bloodhound's ability to trail and discriminate the scent of different individual humans. Eight bloodhounds (3 novice and 5 veteran), trained in human scent discrimination were used to determine the reliability of evidence, garnered through the use of bloodhounds, in a court of law. These dogs were placed on trails in an environment that simulated real-life scenarios. Results indicate that a veteran bloodhound can trail and correctly identify a person under various conditions. These data suggest that the potential error rate of a veteran bloodhound-handler team is low and can be a useful tool for law enforcement personnel.
Odor Communication and Mate Choice in Rodents
Ferkin, Michael H.
2018-01-01
This paper details how chemical communication is affected by ecological challenges such as finding mates. I list several conditions that affect the decision to attract mates, the decision to respond to the signals of potential mates and how the response depends on context. These mate-choice decisions and their outcomes will depend on the life history constraints placed on individuals such as their fecundity, sex, lifespan, opportunities to mate in the future and age at senescence. Consequently, the sender’s decision to scent mark or self-groom as well as the receiver’s choice of response represents a tradeoff between the current costs of the participant’s own survival and future reproduction against that of reproducing now. The decision to scent mark and the response to the scent mark of opposite-sex conspecifics should maximize the fitness of the participants in that context. PMID:29370074
Jun Hyung Lee; Paula M. Pijut
2017-01-01
Reproductive sterility, which can be obtained by manipulating floral organ identity genes, is an important tool for gene containment of genetically engineered trees. In Arabidopsis, AGAMOUS (AG) is the only C-class gene responsible for both floral meristem determinacy and floral organ identity, and its mutations produce...
2010-01-01
Background Molecular genetic studies of floral development have concentrated on several core eudicots and grasses (monocots), which have canalized floral forms. Basal eudicots possess a wider range of floral morphologies than the core eudicots and grasses and can serve as an evolutionary link between core eudicots and monocots, and provide a reference for studies of other basal angiosperms. Recent advances in genomics have enabled researchers to profile gene activities during floral development, primarily in the eudicot Arabidopsis thaliana and the monocots rice and maize. However, our understanding of floral developmental processes among the basal eudicots remains limited. Results Using a recently generated expressed sequence tag (EST) set, we have designed an oligonucleotide microarray for the basal eudicot Eschscholzia californica (California poppy). We performed microarray experiments with an interwoven-loop design in order to characterize the E. californica floral transcriptome and to identify differentially expressed genes in flower buds with pre-meiotic and meiotic cells, four floral organs at pre-anthesis stages (sepals, petals, stamens and carpels), developing fruits, and leaves. Conclusions Our results provide a foundation for comparative gene expression studies between eudicots and basal angiosperms. We identified whorl-specific gene expression patterns in E. californica and examined the floral expression of several gene families. Interestingly, most E. californica homologs of Arabidopsis genes important for flower development, except for genes encoding MADS-box transcription factors, show different expression patterns between the two species. Our comparative transcriptomics study highlights the unique evolutionary position of E. californica compared with basal angiosperms and core eudicots. PMID:20950453
Reproduction and survival of a solitary bee along native and exotic floral resource gradients.
Palladini, Jennifer D; Maron, John L
2014-11-01
Native bee abundance has long been assumed to be limited by floral resources. This paradigm has been established in large measure because more bees are often found in areas supporting greater floral abundance. This could result from attraction to resource-rich sites as well as greater local demographic performance in sites supporting high floral abundance; however, demographic performance is usually unknown. Factors other than floral resources such as availability of nest sites, pressure from natural enemies, or whether floral resources are from a mixed native or mostly monodominant exotic assemblage might influence survival or fecundity and hence abundance. We examined how the survival and fecundity of the native solitary bee Osmia lignaria varied along a gradient in floral resource abundance. We released bees alongside a nest block at 27 grassland sites in Montana (USA) that varied in floral abundance and the extent of invasion by exotic forbs. We monitored nest construction and the fate of offspring within each nest. The number of nests established was positively related to native forb abundance and was negatively related to exotic forb species richness. Fecundity was positively related to native forb species richness; however, offspring mortality caused by the brood parasite Tricrania stansburyi was significantly greater in native-dominated sites. These results suggest that native floral resources can positively influence bee populations, but that the relationship between native floral resources and bee population performance is not straightforward. Rather, bees may face a trade-off between high offspring production and low offspring survival in native-dominated sites.
Wang, Yong-Qiang; Melzer, Rainer; Theissen, Günter
2010-10-01
Several lines of evidence suggest that the identity of floral organs in angiosperms is specified by multimeric transcription factor complexes composed of MADS-domain proteins. These bind to specific cis-regulatory elements ('CArG-boxes') of their target genes involving DNA-loop formation, thus constituting 'floral quartets'. Gymnosperms, angiosperms' closest relatives, contain orthologues of floral homeotic genes, but when and how the interactions constituting floral quartets were established during evolution has remained unknown. We have comprehensively studied the dimerization and DNA-binding of several classes of MADS-domain proteins from the gymnosperm Gnetum gnemon. Determination of protein-protein and protein-DNA interactions by yeast two-hybrid, in vitro pull-down and electrophoretic mobility shift assays revealed complex patterns of homo- and heterodimerization among orthologues of floral homeotic class B, class C and class E proteins and B(sister) proteins. Using DNase I footprint assays we demonstrate that both orthologues of class B with C proteins, and orthologues of class C proteins alone, but not orthologues of class B proteins alone can loop DNA in floral quartet-like complexes. This is in contrast to class B and class C proteins from angiosperms, which require other factors such as class E floral homeotic proteins to 'glue' them together in multimeric complexes. Our findings suggest that the evolutionary origin of floral quartet formation is based on the interaction of different DNA-bound homodimers, does not depend on class E proteins, and predates the origin of angiosperms. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.
Chanderbali, André S; Albert, Victor A; Leebens-Mack, Jim; Altman, Naomi S; Soltis, Douglas E; Soltis, Pamela S
2009-06-02
The debate on the origin and evolution of flowers has recently entered the field of developmental genetics, with focus on the design of the ancestral floral regulatory program. Flowers can differ dramatically among angiosperm lineages, but in general, male and female reproductive organs surrounded by a sterile perianth of sepals and petals constitute the basic floral structure. However, the basal angiosperm lineages exhibit spectacular diversity in the number, arrangement, and structure of floral organs, whereas the evolutionarily derived monocot and eudicot lineages share a far more uniform floral ground plan. Here we show that broadly overlapping transcriptional programs characterize the floral transcriptome of the basal angiosperm Persea americana (avocado), whereas floral gene expression domains are considerably more organ specific in the model eudicot Arabidopsis thaliana. Our findings therefore support the "fading borders" model for organ identity determination in basal angiosperm flowers and extend it from the action of regulatory genes to downstream transcriptional programs. Furthermore, the declining expression of components of the staminal transcriptome in central and peripheral regions of Persea flowers concurs with elements of a previous hypothesis for developmental regulation in a gymnosperm "floral progenitor." Accordingly, in contrast to the canalized organ-specific regulatory apparatus of Arabidopsis, floral development may have been originally regulated by overlapping transcriptional cascades with fading gradients of influence from focal to bordering organs.
Levin, J Z; Fletcher, J C; Chen, X; Meyerowitz, E M
1998-01-01
In a screen to identify novel genes required for early Arabidopsis flower development, we isolated four independent mutations that enhance the Ufo phenotype toward the production of filamentous structures in place of flowers. The mutants fall into three complementation groups, which we have termed FUSED FLORAL ORGANS (FFO) loci. ffo mutants have specific defects in floral organ separation and/or positioning; thus, the FFO genes identify components of a boundary formation mechanism(s) acting between developing floral organ primordia. FFO1 and FFO3 have specific functions in cauline leaf/stem separation and in first- and third-whorl floral organ separation, with FFO3 likely acting to establish and FFO1 to maintain floral organ boundaries. FFO2 acts at early floral stages to regulate floral organ number and positioning and to control organ separation within and between whorls. Plants doubly mutant for two ffo alleles display additive phenotypes, indicating that the FFO genes may act in separate pathways. Plants doubly mutant for an ffo gene and for ufo, lfy, or clv3 reveal that the FFO genes play roles related to those of UFO and LFY in floral meristem initiation and that FFO2 and FFO3 may act to control cell proliferation late in inflorescence development. PMID:9611175
Herbivory as an important selective force in the evolution of floral traits and pollinator shifts
Overson, Rick P.; Raguso, Robert A.; Skogen, Krissa A.
2017-01-01
Abstract Floral trait evolution is frequently attributed to pollinator-mediated selection but herbivores can play a key role in shaping plant reproductive biology. Here we examine the role of florivores in driving floral trait evolution and pollinator shifts in a recently radiated clade of flowering plants, Oenothera sect. Calylophus. We compare florivory by a specialist, internal feeder, Mompha, on closely related hawkmoth- and bee-pollinated species and document variation in damage based on floral traits within sites, species and among species. Our results show that flowers with longer floral tubes and decreased floral flare have increased Mompha damage. Bee-pollinated flowers, which have substantially smaller floral tubes, experience on average 13% less Mompha florivory than do hawkmoth-pollinated flowers. The positive association between tube length and Mompha damage is evident even within sites of some species, suggesting that Mompha can drive trait differentiation at microevolutionary scales. Given that there are at least two independent shifts from hawkmoth to bee pollination in this clade, florivore-mediated selection on floral traits may have played an important role in facilitating morphological changes associated with transitions from hawkmoth to bee pollination. PMID:28011456
Pattamayutanon, Praetinee; Angeli, Sergio; Thakeow, Prodpran; Abraham, John; Disayathanoowat, Terd; Chantawannakul, Panuwan
2017-01-01
The volatile organic compounds (VOCs) of four monofloral and one multifloral of Thai honeys produced by Apis cerana, Apis dorsata and Apis mellifera were analyzed by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography and mass spectrometry (GC-MS). The floral sources were longan, sunflower, coffee, wild flowers (wild) and lychee. Honey originating from longan had more VOCs than all other floral sources. Sunflower honey had the least numbers of VOCs. cis-Linalool oxide, trans-linalool oxide, ho-trienol, and furan-2,5-dicarbaldehyde were present in all the honeys studied, independent of their floral origin. Interestingly, 2-phenylacetaldehyde was detected in all honey sample except longan honey produced by A. cerana. Thirty-two VOCs were identified as possible floral markers. After validating differences in honey volatiles from different floral sources and honeybee species, the results suggest that differences in quality and quantity of honey volatiles are influenced by both floral source and honeybee species. The group of honey volatiles detected from A. cerana was completely different from those of A. mellifera and A. dorsata. VOCs could therefore be applied as chemical markers of honeys and may reflect preferences of shared floral sources amongst different honeybee species.
Pollinators exert natural selection on flower size and floral display in Penstemon digitalis.
Parachnowitsch, Amy L; Kessler, André
2010-10-01
• A major gap in our understanding of floral evolution, especially micro-evolutionary processes, is the role of pollinators in generating patterns of natural selection on floral traits. Here we explicitly tested the role of pollinators in selecting floral traits in a herbaceous perennial, Penstemon digitalis. • We manipulated the effect of pollinators on fitness through hand pollinations and compared phenotypic selection in open- and hand-pollinated plants. • Despite the lack of pollen limitation in our population, pollinators mediated selection on floral size and floral display. Hand pollinations removed directional selection for larger flowers and stabilizing selection on flower number, suggesting that pollinators were the agents of selection on both of these traits. • We reviewed studies that measured natural selection on floral traits by biotic agents and generally found stronger signatures of selection imposed by pollinators than by herbivores and co-flowering plant species. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).
Massen, Jorg J. M.; Šlipogor, Vedrana; Gallup, Andrew C.
2016-01-01
Behavioral contagion is suggested to promote group coordination that may facilitate activity transitions, increased vigilance, and state matching. Apart from contagious yawning, however, very little attention has been given to this phenomenon, and studies on contagious yawning in primates have so far only focused on Old World monkeys and apes. Here we studied behavioral contagion in common marmosets, a species for which group coordination and vigilance are paramount. In particular, we investigated the contagiousness of yawning, stretching, scratching, tongue protrusion, gnawing, and scent-marking. We coded these behaviors from 14 adult marmosets, from two different social groups. During testing sessions, animals were separated into groups of four individuals for 20-min observation periods, across three distinct diurnal time points (morning, midday, and afternoon) to test for circadian patterns. We observed almost no yawning (0.12 yawns/h) and very little stretching behavior. For all other behaviors, which were more common, we found several temporal and inter-individual differences (i.e., sex, age, dominance status) predictive of these responses. Moreover, we found that gnawing and scent-marking, which almost always co-occurred as a fixed-action pattern, were highly temporally clustered within observation sessions. We discuss the relative absence of yawning in marmosets as well as the possible function of contagious scent-marking, and provide suggestions for future research into the proximate and ultimate functions of these behaviors in marmosets. PMID:27563294
Canine scent detection for the diagnosis of lung cancer in a screening-like situation.
Hackner, Klaus; Errhalt, Peter; Mueller, Michael Rolf; Speiser, Manulea; Marzluf, Beatrice A; Schulheim, Andrea; Schenk, Peter; Bilek, Johannes; Doll, Theodor
2016-09-27
The prognosis in lung cancer depends largely on early stage detection, and thus new screening methods are attracting increasing attention. Canine scent detection has shown promising results in lung cancer detection, but there has only been one previous study that reproduces a screening-like situation. Here breath samples were collected from 122 patients at risk for lung cancer (smokers and ex-smokers); 29 of the subjects had confirmed diagnosis of lung cancer but had not yet been treated and 93 subjects had no signs or symptoms of lung cancer at the time of inclusion. The breath samples were presented to a trained sniffer dog squadron in a double-blind manner. A rigid scientific protocol was used with respect to earlier canine scent detection studies, with one difference: instead of offering one in five positive samples to the dogs, we offered a random number of positive samples (zero to five). The final positive and negative predictive values of 30.9% and 84.0%, respectively, were rather low compared to other studies. The results differed from those of previous studies, indicating that canine scent detection might not be as powerful as is looked for in real screening situations. One main reason for the rather poor performance in our setting might be the higher stress from the lack of positive responses for dogs and handlers.
What is a Fresh Scent in Perfumery? Perceptual Freshness is Correlated with Substantivity
Zarzo, Manuel
2013-01-01
Perfumes are manufactured by mixing odorous materials with different volatilities. The parameter that measures the lasting property of a material when applied on the skin is called substantivity or tenacity. It is well known by perfumers that citrus and green notes are perceived as fresh and they tend to evaporate quickly, while odors most dissimilar to ‘fresh’ (e.g., oriental, powdery, erogenic and animalic scents) are tenacious. However, studies aimed at quantifying the relationship between fresh odor quality and substantivity have not received much attention. In this work, perceptual olfactory ratings on a fresh scale, estimated in a previous study, were compared with substantivity parameters and antierogenic ratings from the literature. It was found that the correlation between fresh odor character and odorant substantivity is quite strong (r = −0.85). ‘Fresh’ is sometimes interpreted in perfumery as ‘cool’ and the opposite of ‘warm’. This association suggests that odor freshness might be somehow related to temperature. Assuming that odor perception space was shaped throughout evolution in temperate climates, results reported here are consistent with the hypothesis that ‘fresh’ evokes scents typically encountered in the cool season, while ‘warm’ would be evoked by odors found in nature during summer. This hypothesis is rather simplistic but it may provide a new insight to better understand the perceptual space of scents. PMID:23275083
NASA Astrophysics Data System (ADS)
Douglas, Hector D.
2008-01-01
Alloanointing, the transfer of chemicals between conspecifics, is known among mammals, but hitherto, the behavior has not been documented for birds. The crested auklet ( Aethia cristatella), a colonial seabird of Alaskan and Siberian waters, alloanoints during courtship with fragrant aldehydes that are released from specialized wick-like feathers located in the interscapular region. Crested auklets solicit anointment at the colony, and prospective mates rub bill, breast, head, and neck over wick feathers of their partners. This distributes aldehydes over the head, neck, and face where the birds cannot self-preen. The resulting chemical concentrations are sufficient to deter ectoparasites. Auklets that emit more odorant can transfer more defensive chemicals to mates and are thus more sexually attractive. Behavioral studies showed that crested auklets are attracted to their scent. Wild birds searched for dispensers that emitted their scent and rubbed their bills on the dispensers and engaged in vigorous anointment behaviors. In captive experiments, naïve crested auklets responded more strongly to synthetic auklet scent than controls, and the greatest behavioral response occurred during early courtship. This study extends scientific knowledge regarding functions of alloanointing. Alloanointing had previously been attributed to scent marking and individual recognition in vertebrates. Alloanointing is described here in the context of an adaptive social cue — the transfer of arthropod deterrents between prospective mates.
Yang, Fengxi; Zhu, Genfa
2015-01-01
Cymbidium ensifolium belongs to the genus Cymbidium of the orchid family. Owing to its spectacular flower morphology, C. ensifolium has considerable ecological and cultural value. However, limited genetic data is available for this non-model plant, and the molecular mechanism underlying floral organ identity is still poorly understood. In this study, we characterize the floral transcriptome of C. ensifolium and present, for the first time, extensive sequence and transcript abundance data of individual floral organs. After sequencing, over 10 Gb clean sequence data were generated and assembled into 111,892 unigenes with an average length of 932.03 base pairs, including 1,227 clusters and 110,665 singletons. Assembled sequences were annotated with gene descriptions, gene ontology, clusters of orthologous group terms, the Kyoto Encyclopedia of Genes and Genomes, and the plant transcription factor database. From these annotations, 131 flowering-associated unigenes, 61 CONSTANS-LIKE (COL) unigenes and 90 floral homeotic genes were identified. In addition, four digital gene expression libraries were constructed for the sepal, petal, labellum and gynostemium, and 1,058 genes corresponding to individual floral organ development were identified. Among them, eight MADS-box genes were further investigated by full-length cDNA sequence analysis and expression validation, which revealed two APETALA1/AGL9-like MADS-box genes preferentially expressed in the sepal and petal, two AGAMOUS-like genes particularly restricted to the gynostemium, and four DEF-like genes distinctively expressed in different floral organs. The spatial expression of these genes varied distinctly in different floral mutant corresponding to different floral morphogenesis, which validated the specialized roles of them in floral patterning and further supported the effectiveness of our in silico analysis. This dataset generated in our study provides new insights into the molecular mechanisms underlying floral patterning of Cymbidium and supports a valuable resource for molecular breeding of the orchid plant. PMID:26580566
Sargent, Risa D.
2017-01-01
Abstract Background and Aims The study of the evolution of floral traits has generally focused on pollination as the primary driver of selection. However, herbivores can also impose selection on floral traits through a variety of mechanisms, including florivory and parasitism. Less well understood is whether floral and inflorescence architecture traits that influence a plant’s tolerance to herbivory, such as compensatory regrowth, alter pollinator-mediated selection. Methods Because herbivore damage to Lythrum salicaria meristems typically leads to an increase in the number of inflorescences and the size of the floral display, an experiment was conducted to test whether simulated herbivory (i.e. clipping the developing meristem) could alter the magnitude or direction of pollinator-mediated selection on a suite of floral and inflorescence architecture traits. Using a pollen supplementation protocol, pollen limitation was compared in the presence and absence of meristem damage in order to quantify any interaction between pollinator and herbivore-mediated selection on floral traits. Key Results Surprisingly, in spite of an obvious impact on floral display and architecture, with clipped plants producing more inflorescences and more flowers, there was no difference in pollen limitation between clipped and unclipped plants. Correspondingly, there was no evidence that imposing herbivore damage altered pollinator-mediated selection in this system. Rather, the herbivory treatment alone was found to alter direct selection on floral display, with clipped plants experiencing greater selection for earlier flowering and weaker selection for number of inflorescences when compared with unclipped plants. Conclusions These findings imply that herbivory on its own can drive selection on plant floral traits and inflorescence architecture in this species, even more so than pollinators. Specifically, herbivory can impose selection on floral traits if such traits influence a plant’s tolerance to herbivory, such as through the timing of flowering and/or the compensatory regrowth response. PMID:28369263
Krajncic, B; Kristl, J; Janzekovic, I
2006-01-01
Jasmonic acid (JA) is implicated in a wide variety of developmental and physiological processes in plants. Here, we studied the effects of JA and the combination of JA and ethylenediamine-dio-hydroxyphenyl-acetic acid (EDDHA) on flowering in Lemna minor in axenical cultures. JA (0.475-47.5 nmol l(-1)) enhanced floral induction in L. minor under long-day (LD) conditions. Under the same conditions, at a concentration of 237.5 nmol l(-1), JA inhibited floral induction, and at a concentration of 475 nmol l(-1) it prevented floral induction. Under LD conditions with LD preculture, a combination of EDDHA (20,500 nmol l(-1)) and JA (47.5 nmol l(-1)) had a synergistic effect on the promotion of floral induction. Floral induction was enhanced to the greatest extent in experiments with LD precultures. Microscopic examination of microphotographs of histological sections showed that JA and, to an even greater extent, JA+EDDHA at optimal concentrations promote apical floral induction (evocation). Furthermore, JA, and to an even greater extent JA in combination with EDDHA in an optimal concentration, also promote flower differentiation, especially the development of stamens, as is evident from the microphotographs. The experimental results show that JA promotes floral induction in other species of Lemnaceae from various groups according to their photoperiodic response. The results support our hypothesis that, in addition to previously ascribed functions, JA may regulate floral induction, evocation and floral differentiation. Our hypothesis is supported also by the results obtained by quantitative determination of endogenous JA levels in L. minor at three growth stages. The levels of endogenous JA decreased from 389 ng JA g(-1) (fresh weight) of L. minor during the vegetative stage to 217 ng JA g(-1) during the evocation stage, and to 37.5 ng JA g(-1) during the flowering stage, which proves that JA is used for flowering.
Carbon allocation during fruiting in Rubus chamaemorus
Gauci, R.; Otrysko, B.; Catford, J.-G.; Lapointe, L.
2009-01-01
Background and Aims Rubus chamaemorus (cloudberry) is a herbaceous clonal peatland plant that produces an extensive underground rhizome system with distant ramets. Most of these ramets are non-floral. The main objectives of this study were to determine: (a) if plant growth was source limited in cloudberry; (b) if the non-floral ramets translocated carbon (C) to the fruit; and (c) if there was competition between fruit, leaves and rhizomes for C during fruit development. Methods Floral and non-floral ramet activities were monitored during the period of flower and fruit development using three approaches: gas exchange measurements, 14CO2 labelling and dry mass accumulation in the different organs. Source and sink activity were manipulated by eliminating leaves or flowers or by reducing rhizome length. Key Results Photosynthetic rates were lower in floral than in deflowered ramets. Autoradiographs and 14C labelling data clearly indicated that fruit is a very strong sink for the floral ramet, whereas non-floral ramets translocated C toward the rhizome but not toward floral ramets. Nevertheless, rhizomes received some C from the floral ramet throughout the fruiting period. Ramets with shorter rhizomes produced smaller leaves and smaller fruits, and defoliated ramets produced very small fruits. Conclusions Plant growth appears to be source-limited in cloudberry since a reduction in sink strength did not induce a reduction in photosynthetic activity. Non-floral ramets did not participate directly to fruit development. Developing leaves appear to compete with the developing fruit but the intensity of this competition could vary with the specific timing of the two organs. The rhizome appears to act both as a source but also potentially as a sink during fruit development. Further studies are needed to characterize better the complex role played by the rhizome in fruit C nutrition. PMID:19520701
Developmental transcriptome analysis of floral transition in Rosa odorata var. gigantea.
Guo, Xuelian; Yu, Chao; Luo, Le; Wan, Huihua; Zhen, Ni; Li, Yushu; Cheng, Tangren; Wang, Jia; Pan, Huitang; Zhang, Qixiang
2018-05-07
Expression analyses revealed that floral transition of Rosa odorata var. gigantea is mainly regulated by VRN1, COLs, DELLA and KSN, with contributions by the effects of phytohormone and starch metabolism. Seasonal plants utilize changing environmental and developmental cues to control the transition from vegetative growth to flowering at the correct time of year. This study investigated global gene expression profiles at different developmental stages of Rosa odorata var. gigantea by RNA-sequencing, combined with phenotypic characterization and physiological changes. Gene ontology enrichment analysis of the differentially expressed genes (DEGs) between four different developmental stages (vegetative meristem, pre-floral meristem, floral meristem and secondary axillary buds) indicated that DNA methylation and the light reaction played a large role in inducing the rose floral transition. The expression of SUF and FLC, which are known to play a role in delaying flowering until vernalization, was down-regulated from the vegetative to the pre-floral meristem stage. In contrast, the expression of VRN1, which promotes flowering by repressing FLC expression, increased. The expression of DELLA proteins, which function as central nodes in hormone signaling pathways, and probably involve interactions between GA, auxin, and ABA to promote the floral transition, was well correlated with the expression of floral integrators, such as AGL24, COL4. We also identified DEGs associated with starch metabolism correlated with SOC1, AGL15, SPL3, AGL24, respectively. Taken together, our results suggest that vernalization and photoperiod are prominent cues to induce the rose floral transition, and that DELLA proteins also act as key regulators. The results summarized in the study on the floral transition of the seasonal rose lay a foundation for further functional demonstration, and have profound economic and ornamental values.
Wang, Ruohan; Xu, Sai; Liu, Xiangyu; Zhang, Yiyuan; Wang, Jianzhong; Zhang, Zhixiang
2014-01-01
Magnolia sprengeri Pamp. is an ornamentally and ecologically important tree that blooms at cold temperatures in early spring. In this study, thermogenesis and variation in the chemical compounds of floral odours and insect visitation in relation to flowering cycles were studied to increase our understanding of the role of floral thermogenesis in the pollination biology of M. sprengeri. There were five distinct floral stages across the floral cycle of this species: pre-pistillate, pistillate, pre-staminate, staminate and post-staminate. Floral thermogenesis during anthesis and consisted of two distinct peaks: one at the pistillate stage and the other at the staminate stage. Insects of five families visited M. sprengeri during the floral cycle, and sap beetles (Epuraea sp., Nitidulidae) were determined to be the most effective pollinators, whereas bees (Apis cerana, Apidae) were considered to be occasional pollinators. A strong fragrance was released during thermogenesis, consisting of 18 chemical compounds. Although the relative proportions of these compounds varied at different floral stages across anthesis, linalool, 1-iodo-2-methylundecane and 2,2,6-trimethyl-6-vinyltetrahydro-2H-pyran-3-ol were dominant. Importantly, we found that the floral blends released during the pistillate and staminate stages were very similar, and coincided with flower visitation by sap beetles and the two thermogenic episodes. Based on these results, we propose that odour acts as a signal for a reward (pollen) and that an odour mimicry of staminate-stage flowers occurs during the pistillate stage. PMID:24922537
Almeida, N M de; Castro, C C de; Leite, A V de Lima; Novo, R R; Machado, I C
2013-03-01
Enantiostyly is a form of reciprocal herkogamy, in which floral morphs present reciprocal differences in the position of sexual elements, and occurs in monomorphic and dimorphic forms. This polymorphism maximises cross-pollination and reduces self-pollination, being very common within the subtribe Cassiinae (Fabaceae). Nevertheless, few studies have investigated the functionality of enantiostyly, particularly in this plant group. The present study aimed to investigate enantiostyly and its functionality in Chamaecrista ramosa, a monomorphic enantiostylous shrub, in an area of coastal vegetation in northeast Brazil. Pollen deposition and capture on the body of floral visitors, the relationship of these data with floral biology and breeding system, and morph ratio were evaluated. Pollen deposition and capture occurred in specific sites of the floral visitor body, showing the functionality of enantiostyly. The floral architecture, associated with the floral visitor behaviour, resulted in indirect pollen deposition on the floral visitor body. This occurred through a loop made by the pollen upon the inner petal surface, similar that generally reported for other Cassiinae. Chamaecrista ramosa is self-compatible, although no fruit set was observed through spontaneous self-pollination. The occurrence and number of floral morphs was similar within clumps. Enantiostyly seems to be advantageous for this species, as it results in efficient pollen capture and deposition, reduces the chances of autogamy and maximises intermorph pollen flow. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Paibon, W; Yimnoi, C-A; Tembab, N; Boonlue, W; Jampachaisri, K; Nuengchamnong, N; Waranuch, N; Ingkaninan, K
2011-04-01
Several tropical flowers have distinctive fragrances which are very appealing to use in perfumery, cosmetics and spa. However, to obtain a 'natural fragrance' from the flower is a challenge as the scent could change during the extraction process. The aim of the study is to find the suitable procedure for extraction of volatile oils from some Thai fragrant flowers. Three different methods: hydrodistillation, solvent extraction and enfleurage methods have been applied for the extraction of volatile oil from Jasminum sambac L. Aiton; Oleaceae (jasmine). The quantities and quality of jasmine volatile oils obtained from the different tested methods were compared. The solvent extraction method using 95% ethanol provided the greatest level of oil yield. However, sensory evaluation using preference test showed that the scents of the volatile oils from solvent extraction using diethyl ether and from enfleurage method were the closest to the fresh flowers compared with the volatile oils obtained from other methods. Their chemical constituents were analysed using gas chromatography coupled with mass spectrometer. Both volatile oils were then evaluated using a triangle discrimination test. From the triangle test, we found that 14 panellists from the total of 36 could not distinguish between the scents of jasmine oil from enfleurage and fresh jasmine flowers whereas only one panellist could not distinguish between the scent of jasmine oil from the solvent extraction and fresh jasmine flowers. These results suggest that the scent of the volatile oil obtained from the enfleurage method was the closest to fresh flowers compared with that obtained from other methods. This method was then successfully applied for extraction of volatile oils from three other Thai fragrant flowers, Michelia alba DC.; Magnoliaceae, Millingtonia hortensis L.; Bignoniaceae and Hedychium coronarium J. Konig; Zingiberaceae. © 2010 The Authors. Journal compilation © 2010 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Maternal Diet Influences Offspring Feeding Behavior and Fearfulness in the Precocial Chicken
Aigueperse, Nadège; Calandreau, Ludovic; Bertin, Aline
2013-01-01
Background In chicken, oils in the maternal diet confer a specific scent to the yolk. Embryos are known to perceive and memorize chemosensory signals of the surrounding environment; however, the potential impact of the maternal diet has not previously been investigated. In the present study, we hypothesized that chicken embryos memorize the chemical signals of the maternal diet and that this perceptual learning may orient subsequent feeding behavior of the hatchlings. Methodology/Principal Findings Laying hens were fed standard food enriched with 2% menhaden oil (MH group) or 2% soybean oil (controls). The scent of menhaden was significantly more detected in MH egg yolks than in control yolks by a human panel. We analyzed the development and behavior of offspring towards different types of food, bearing or not bearing the menhaden scent. When chicks were exposed to a 3-min choice test between the familiar food bearing the menhaden scent and the familiar food without menhaden, no effect of treatment was observed. In a 3-min choice test with unfamiliar food (mashed cereals) MH chicks showed a clear positive orientation toward the unfamiliar food bearing the menhaden scent. By contrast, control chicks showed a preference for the non-odorized unfamiliar food. MH chicks expressed higher emotional reactivity level than control chicks as expressed by food neophobia and longer immobility in a restraint test. Conclusion/Significance Chicks exposed in ovo to menhaden oil via the maternal diet preferentially oriented their feeding behavior towards food containing menhaden oil, but only when the food was unfamiliar. We propose that oil in the maternal diet engenders maternal effects and contributes to the development of behavioral phenotype in the offspring. In ovo chemosensory learning may have evolved to prepare precocial offspring for their environment. This suggests a common principle of embryonic chemosensory learning across vertebrate taxa. PMID:24204881
Narnoliya, Lokesh K; Kaushal, Girija; Singh, Sudhir P; Sangwan, Rajender S
2017-01-13
Rose-scented geranium (Pelargonium sp.) is a perennial herb that produces a high value essential oil of fragrant significance due to the characteristic compositional blend of rose-oxide and acyclic monoterpenoids in foliage. Recently, the plant has also been shown to produce tartaric acid in leaf tissues. Rose-scented geranium represents top-tier cash crop in terms of economic returns and significance of the plant and plant products. However, there has hardly been any study on its metabolism and functional genomics, nor any genomic expression dataset resource is available in public domain. Therefore, to begin the gains in molecular understanding of specialized metabolic pathways of the plant, de novo sequencing of rose-scented geranium leaf transcriptome, transcript assembly, annotation, expression profiling as well as their validation were carried out. De novo transcriptome analysis resulted a total of 78,943 unique contigs (average length: 623 bp, and N50 length: 752 bp) from 15.44 million high quality raw reads. In silico functional annotation led to the identification of several putative genes representing terpene, ascorbic acid and tartaric acid biosynthetic pathways, hormone metabolism, and transcription factors. Additionally, a total of 6,040 simple sequence repeat (SSR) motifs were identified in 6.8% of the expressed transcripts. The highest frequency of SSR was of tri-nucleotides (50%). Further, transcriptome assembly was validated for randomly selected putative genes by standard PCR-based approach. In silico expression profile of assembled contigs were validated by real-time PCR analysis of selected transcripts. Being the first report on transcriptome analysis of rose-scented geranium the data sets and the leads and directions reflected in this investigation will serve as a foundation for pursuing and understanding molecular aspects of its biology, and specialized metabolic pathways, metabolic engineering, genetic diversity as well as molecular breeding.
The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice.
Li, Haifeng; Liang, Wanqi; Jia, Ruidong; Yin, Changsong; Zong, Jie; Kong, Hongzhi; Zhang, Dabing
2010-03-01
Although AGAMOUS-LIKE6 (AGL6) MADS-box genes are ancient with wide distributions in gymnosperms and angiosperms, their functions remain poorly understood. Here, we show the biological role of the AGL6-like gene, OsMADS6, in specifying floral organ and meristem identities in rice (Oryza sativa L.). OsMADS6 was strongly expressed in the floral meristem at early stages. Subsequently, OsMADS6 transcripts were mainly detectable in paleas, lodicules, carpels and the integument of ovule, as well as in the receptacle. Compared to wild type plants, osmads6 mutants displayed altered palea identity, extra glume-like or mosaic organs, abnormal carpel development and loss of floral meristem determinacy. Strikingly, mutation of a SEPALLATA (SEP)-like gene, OsMADS1 (LHS1), enhanced the defect of osmads6 flowers, and no inner floral organs or glume-like structures were observed in whorls 2 and 3 of osmads1-z osmads6-1 flowers. Furthermore, the osmads1-z osmads6-1 double mutants developed severely indeterminate floral meristems. Our finding, therefore, suggests that the ancient OsMADS6 gene is able to specify "floral state" by determining floral organ and meristem identities in monocot crop rice together with OsMADS1.
2008-09-01
using the principle of pheromones . The termite senses the pheromone , which tells him to gather up dirt in its mouth and deposit it where the scent of...the pheromone is the strongest. The termite gathers dirt and moves to the location of the strongest scent and deposits the mud there. As this...process is repeated by a number of termites all leaving their own contribution of pheromone at the scene, the autocatalytic effect takes over. This
Flowering time control and applications in plant breeding.
Jung, Christian; Müller, Andreas E
2009-10-01
Shifting the seasonal timing of reproduction is a major goal of plant breeding efforts to produce novel varieties that are better adapted to local environments and changing climatic conditions. The key regulators of floral transition have been studied extensively in model species, and in recent years a growing number of related genes have been identified in crop species, with some notable exceptions. These sequences and variants thereof, as well as several major genes which were only identified in crop species, can now be used by breeders as molecular markers and for targeted genetic modification of flowering time. This article reviews the major floral regulatory pathways and discusses current and novel strategies for altering bolting and flowering behavior in crop plants.
Similar Genetic Mechanisms Underlie the Parallel Evolution of Floral Phenotypes
Zhang, Wenheng; Kramer, Elena M.; Davis, Charles C.
2012-01-01
The repeated origin of similar phenotypes is invaluable for studying the underlying genetics of adaptive traits; molecular evidence, however, is lacking for most examples of such similarity. The floral morphology of neotropical Malpighiaceae is distinctive and highly conserved, especially with regard to symmetry, and is thought to result from specialization on oil-bee pollinators. We recently demonstrated that CYCLOIDEA2–like genes (CYC2A and CYC2B) are associated with the development of the stereotypical floral zygomorphy that is critical to this plant–pollinator mutualism. Here, we build on this developmental framework to characterize floral symmetry in three clades of Malpighiaceae that have independently lost their oil bee association and experienced parallel shifts in their floral morphology, especially in regard to symmetry. We show that in each case these species exhibit a loss of CYC2B function, and a strikingly similar shift in the expression of CYC2A that is coincident with their shift in floral symmetry. These results indicate that similar floral phenotypes in this large angiosperm clade have evolved via parallel genetic changes from an otherwise highly conserved developmental program. PMID:22558314
Caruso, Christina M; Remington, Davin L D; Ostergren, Kate E
2005-11-01
The availability of both pollen and resources can influence natural selection on floral traits, but their relative importance in shaping floral evolution is unclear. We experimentally manipulated pollinator and resource (fertilizer and water) availability in the perennial wildflower Asclepias syriaca L. Nine floral traits, one male fitness component (number of pollinia removed), and two female fitness components (number of pollinia inserted and number of fruits initiated) were measured for plants in each of three treatments (unmanipulated control, decreased pollinator access, and resource supplementation). Although decreasing pollinators' access to flowers did result in fewer pollinia inserted and removed, fruit set and phenotypic selection on floral traits via female and male fitness did not differ from the control. In contrast, resource supplementation increased fruit set, and phenotypic selection on seven out of nine floral traits was stronger via female than male fitness, consistent with the prediction that selection via female fitness would be greater when reproduction was less resource-limited. Our results support the hypothesis that abiotic resource availability can influence floral evolution by altering gender-specific selection.
Wang, Chun-Neng; Hsu, Hao-Chun; Wang, Cheng-Chun; Lee, Tzu-Kuei; Kuo, Yan-Fu
2015-01-01
The quantification of floral shape variations is difficult because flower structures are both diverse and complex. Traditionally, floral shape variations are quantified using the qualitative and linear measurements of two-dimensional (2D) images. The 2D images cannot adequately describe flower structures, and thus lead to unsatisfactory discrimination of the flower shape. This study aimed to acquire three-dimensional (3D) images by using microcomputed tomography (μCT) and to examine the floral shape variations by using geometric morphometrics (GM). To demonstrate the advantages of the 3D-μCT-GM approach, we applied the approach to a second-generation population of florist's gloxinia (Sinningia speciosa) crossed from parents of zygomorphic and actinomorphic flowers. The flowers in the population considerably vary in size and shape, thereby served as good materials to test the applicability of the proposed phenotyping approach. Procedures were developed to acquire 3D volumetric flower images using a μCT scanner, to segment the flower regions from the background, and to select homologous characteristic points (i.e., landmarks) from the flower images for the subsequent GM analysis. The procedures identified 95 landmarks for each flower and thus improved the capability of describing and illustrating the flower shapes, compared with typically lower number of landmarks in 2D analyses. The GM analysis demonstrated that flower opening and dorsoventral symmetry were the principal shape variations of the flowers. The degrees of flower opening and corolla asymmetry were then subsequently quantified directly from the 3D flower images. The 3D-μCT-GM approach revealed shape variations that could not be identified using typical 2D approaches and accurately quantified the flower traits that presented a challenge in 2D images. The approach opens new avenues to investigate floral shape variations.
Advance innovations of an intelligent sprayer for nursery and fruit tree crops
USDA-ARS?s Scientific Manuscript database
Conventional spray application technology requires excessive amounts of pesticide use to achieve effective pest control in floral, nursery, and other specialty crop productions. This onerous challenge is now overcome by our newly developed automated variable-rate, air-assisted precision sprayer. Thi...
Development of Two Intelligent Spray Systems for Ornamental Nurseries
USDA-ARS?s Scientific Manuscript database
Current application technology for floral, nursery, and other specialty crop production wastes significant amounts of pesticides. Two different real-time variable-rate sprayer prototypes for ornamental nursery and tree crops were developed to deliver chemicals on target areas as needed. The first pr...
Interactions of OsMADS1 with Floral Homeotic Genes in Rice Flower Development.
Hu, Yun; Liang, Wanqi; Yin, Changsong; Yang, Xuelian; Ping, Baozhe; Li, Anxue; Jia, Ru; Chen, Mingjiao; Luo, Zhijing; Cai, Qiang; Zhao, Xiangxiang; Zhang, Dabing; Yuan, Zheng
2015-09-01
During reproductive development, rice plants develop unique flower organs which determine the final grain yield. OsMADS1, one of SEPALLATA-like MADS-box genes, has been unraveled to play critical roles in rice floral organ identity specification and floral meristem determinacy. However, the molecular mechanisms underlying interactions of OsMADS1 with other floral homeotic genes in regulating flower development remains largely elusive. In this work, we studied the genetic interactions of OsMADS1 with B-, C-, and D-class genes along with physical interactions among their proteins. We show that the physical and genetic interactions between OsMADS1 and OsMADS3 are essential for floral meristem activity maintenance and organ identity specification; while OsMADS1 physically and genetically interacts with OsMADS58 in regulating floral meristem determinacy and suppressing spikelet meristem reversion. We provided important genetic evidence to support the neofunctionalization of two rice C-class genes (OsMADS3 and OsMADS58) during flower development. Gene expression profiling and quantitative RT-PCR analyses further revealed that OsMADS1 affects the expression of many genes involved in floral identity and hormone signaling, and chromatin immunoprecipitation (ChIP)-PCR assay further demonstrated that OsMADS17 is a direct target gene of OsMADS1. Taken together, these results reveal that OsMADS1 has diversified regulatory functions in specifying rice floral organ and meristem identity, probably through its genetic and physical interactions with different floral homeotic regulators. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
Theis, Nina; Barber, Nicholas A; Gillespie, Sandra D; Hazzard, Ruth V; Adler, Lynn S
2014-08-01
• Floral traits play important roles in pollinator attraction and defense against floral herbivory. However, plants may experience trade-offs between conspicuousness to pollinators and herbivore attraction. Comparative studies provide an excellent framework to examine the role of multiple traits shaping mutualist and antagonist interactions.• To assess whether putative defensive and attractive traits predict species interactions, we grew 20 different Cucurbitaceae species and varieties in the field to measure interactions with pollinators and herbivores and in the greenhouse to assess trait variation. Cucurbits are characterized by the production of cucurbitacins, bitter nonvolatile terpenoids that are effective against generalist herbivores but can attract specialist beetles. We determined whether plant traits such as cucurbitacins predict herbivore resistance and pollinator attraction using an information-theoretic approach.• Mutualists and floral antagonists were attracted to the same cucurbit varieties once they flowered. However, rather than cucurbitacin concentration, we found that the size of the flower and volatile emissions of floral sesquiterpenoids explained both pollinator and floral herbivore visitation preference across cucurbit taxa. This pattern held across cucurbit taxa and within the Cucurbita genus.• Surprisingly, floral sesquiterpenoid volatiles, which are associated with direct defense, indirect defense, and attraction, rather than defense traits such as cucurbitacins, appeared to drive interactions with both pollinators and floral herbivores across cucurbit taxa. Identifying the relevant plant traits for attraction and deterrence is important in this economically valuable crop, particularly if pollinators and floral herbivores use the same plant traits as cues. © 2014 Botanical Society of America, Inc.
Johnson, Karen A.
2013-01-01
Background and Aims Convergent floral traits hypothesized as attracting particular pollinators are known as pollination syndromes. Floral diversity suggests that the Australian epacrid flora may be adapted to pollinator type. Currently there are empirical data on the pollination systems for 87 species (approx. 15 % of Australian epacrids). This provides an opportunity to test for pollination syndromes and their important morphological traits in an iconic element of the Australian flora. Methods Data on epacrid–pollinator relationships were obtained from published literature and field observation. A multivariate approach was used to test whether epacrid floral attributes related to pollinator profiles. Statistical classification was then used to rank floral attributes according to their predictive value. Data sets excluding mixed pollination systems were used to test the predictive power of statistical classification to identify pollination models. Key Results Floral attributes are correlated with bird, fly and bee pollination. Using floral attributes identified as correlating with pollinator type, bird pollination is classified with 86 % accuracy, red flowers being the most important predictor. Fly and bee pollination are classified with 78 and 69 % accuracy, but have a lack of individually important floral predictors. Excluding mixed pollination systems improved the accuracy of the prediction of both bee and fly pollination systems. Conclusions Although most epacrids have generalized pollination systems, a correlation between bird pollination and red, long-tubed epacrids is found. Statistical classification highlights the relative importance of each floral attribute in relation to pollinator type and proves useful in classifying epacrids to bird, fly and bee pollination systems. PMID:23681546
Rational analyses of information foraging on the web.
Pirolli, Peter
2005-05-06
This article describes rational analyses and cognitive models of Web users developed within information foraging theory. This is done by following the rational analysis methodology of (a) characterizing the problems posed by the environment, (b) developing rational analyses of behavioral solutions to those problems, and (c) developing cognitive models that approach the realization of those solutions. Navigation choice is modeled as a random utility model that uses spreading activation mechanisms that link proximal cues (information scent) that occur in Web browsers to internal user goals. Web-site leaving is modeled as an ongoing assessment by the Web user of the expected benefits of continuing at a Web site as opposed to going elsewhere. These cost-benefit assessments are also based on spreading activation models of information scent. Evaluations include a computational model of Web user behavior called Scent-Based Navigation and Information Foraging in the ACT Architecture, and the Law of Surfing, which characterizes the empirical distribution of the length of paths of visitors at a Web site. 2005 Lawrence Erlbaum Associates, Inc.
Reproductive Organography of Bougainvillea spectabilis Willd
USDA-ARS?s Scientific Manuscript database
Bougainvillea spectabilis Willd. is of prime importance for horticulture, as well as potentially for pharmaceutical industries, agriculture and environmental industries. However, its floral development is not yet well understood. A detailed study on floral structure and floral organography in the sp...
Molecular mechanisms of floral mimicry in orchids.
Schlüter, Philipp M; Schiestl, Florian P
2008-05-01
Deceptive plants do not produce floral rewards, but attract pollinators by mimicking signals of other organisms, such as food plants or female insects. Such floral mimicry is particularly common in orchids, in which flower morphology, coloration and odour play key roles in deceiving pollinators. A better understanding of the molecular bases for these traits should provide new insights into the occurrence, mechanisms and evolutionary consequences of floral mimicry. It should also reveal the molecular bases of pollinator-attracting signals, in addition to providing strategies for manipulating insect behaviour in general. Here, we review data on the molecular bases for traits involved in floral mimicry, and we describe methodological advances helpful for the functional evaluation of key genes.
The evolution of floral sonication, a pollen foraging behavior used by bees (Anthophila)
Cardinal, Sophie; Buchmann, Stephen L.; Russell, Avery L.
2018-01-01
Abstract Over 22,000 species of biotically pollinated flowering plants, including some major agricultural crops, depend primarily on bees capable of floral sonication for pollination services. The ability to sonicate (“buzz”) flowers is widespread in bees but not ubiquitous. Despite the prevalence of this pollinator behavior and its importance to natural and agricultural systems, the evolutionary history of floral sonication in bees has not been previously studied. Here, we reconstruct the evolutionary history of floral sonication in bees by generating a time‐calibrated phylogeny and reconstructing ancestral states for this pollen extraction behavior. We also test the hypothesis that the ability to sonicate flowers and thereby efficiently access pollen from a diverse assemblage of plant species, led to increased diversification among sonicating bee taxa. We find that floral sonication evolved on average 45 times within bees, possibly first during the Early Cretaceous (100–145 million years ago) in the common ancestor of bees. We find that sonicating lineages are significantly more species rich than nonsonicating sister lineages when comparing sister clades, but a probabilistic structured rate permutation on phylogenies approach failed to support the hypothesis that floral sonication is a key driver of bee diversification. This study provides the evolutionary framework needed to further study how floral sonication by bees may have facilitated the spread and common evolution of angiosperm species with poricidal floral morphology. PMID:29392714
Microbial diversity in the floral nectar of seven Epipactis (Orchidaceae) species
Jacquemyn, Hans; Lenaerts, Marijke; Tyteca, Daniel; Lievens, Bart
2013-01-01
Abstract Floral nectar of animal-pollinated plants is commonly infested with microorganisms, yet little is known about the microorganisms inhabiting the floral nectar of orchids. In this study, we investigated microbial communities occurring in the floral nectar of seven Epipactis (Orchidaceae) species. Culturable bacteria and yeasts were isolated and identified by partially sequencing the small subunit (SSU) ribosomal RNA (rRNA) gene and the D1/D2 domains of the large subunit (LSU) rRNA gene, respectively. Using three different culture media, we found that bacteria were common inhabitants of the floral nectar of Epipactis. The most widely distributed bacterial operational taxonomic units (OTUs) in nectar of Epipactis were representatives of the family of Enterobacteriaceae, with an unspecified Enterobacteriaceae bacterium as the most common. In contrast to previous studies investigating microbial communities in floral nectar, very few yeast species (mainly of the genus Cryptococcus) were observed, and most of them occurred in very low densities. Total OTU richness (i.e., the number of bacterial and yeast OTUs per orchid species) varied between 4 and 20. Cluster analysis revealed that microbial communities of allogamous species differed from those of autogamous and facultatively autogamous species. This study extends previous efforts to identify microbial communities in floral nectar and indicates that the floral nectar of the orchids investigated mainly contained bacterial communities with moderate phylogenetic diversity. PMID:23836678
Convergent evolution of floral signals underlies the success of Neotropical orchids
Papadopulos, Alexander S. T.; Powell, Martyn P.; Pupulin, Franco; Warner, Jorge; Hawkins, Julie A.; Salamin, Nicolas; Chittka, Lars; Williams, Norris H.; Whitten, W. Mark; Loader, Deniz; Valente, Luis M.; Chase, Mark W.; Savolainen, Vincent
2013-01-01
The great majority of plant species in the tropics require animals to achieve pollination, but the exact role of floral signals in attraction of animal pollinators is often debated. Many plants provide a floral reward to attract a guild of pollinators, and it has been proposed that floral signals of non-rewarding species may converge on those of rewarding species to exploit the relationship of the latter with their pollinators. In the orchid family (Orchidaceae), pollination is almost universally animal-mediated, but a third of species provide no floral reward, which suggests that deceptive pollination mechanisms are prevalent. Here, we examine floral colour and shape convergence in Neotropical plant communities, focusing on certain food-deceptive Oncidiinae orchids (e.g. Trichocentrum ascendens and Oncidium nebulosum) and rewarding species of Malpighiaceae. We show that the species from these two distantly related families are often more similar in floral colour and shape than expected by chance and propose that a system of multifarious floral mimicry—a form of Batesian mimicry that involves multiple models and is more complex than a simple one model–one mimic system—operates in these orchids. The same mimetic pollination system has evolved at least 14 times within the species-rich Oncidiinae throughout the Neotropics. These results help explain the extraordinary diversification of Neotropical orchids and highlight the complexity of plant–animal interactions. PMID:23804617
Floral trait variation and integration as a function of sexual deception in Gorteria diffusa
Ellis, Allan G.; Brockington, Samuel F.; de Jager, Marinus L.; Mellers, Gregory; Walker, Rachel H.; Glover, Beverley J.
2014-01-01
Phenotypic integration, the coordinated covariance of suites of morphological traits, is critical for proper functioning of organisms. Angiosperm flowers are complex structures comprising suites of traits that function together to achieve effective pollen transfer. Floral integration could reflect shared genetic and developmental control of these traits, or could arise through pollinator-imposed stabilizing correlational selection on traits. We sought to expose mechanisms underlying floral trait integration in the sexually deceptive daisy, Gorteria diffusa, by testing the hypothesis that stabilizing selection imposed by male pollinators on floral traits involved in mimicry has resulted in tighter integration. To do this, we quantified patterns of floral trait variance and covariance in morphologically divergent G. diffusa floral forms representing a continuum in the levels of sexual deception. We show that integration of traits functioning in visual attraction of male pollinators increases with pollinator deception, and is stronger than integration of non-mimicry trait modules. Consistent patterns of within-population trait variance and covariance across floral forms suggest that integration has not been built by stabilizing correlational selection on genetically independent traits. Instead pollinator specialization has selected for tightened integration within modules of linked traits. Despite potentially strong constraint on morphological evolution imposed by developmental genetic linkages between traits, we demonstrate substantial divergence in traits across G. diffusa floral forms and show that divergence has often occurred without altering within-population patterns of trait correlations. PMID:25002705
Biotechnological Advancements for Improving Floral Attributes in Ornamental Plants
Noman, Ali; Aqeel, Muhammad; Deng, Jianming; Khalid, Noreen; Sanaullah, Tayyaba; Shuilin, He
2017-01-01
Developing new ornamental cultivars with improved floral attributes is a major goal in floriculture. Biotechnological approach together with classical breeding methods has been used to modify floral color, appearance as well as for increasing disease resistance. Transgenic strategies possess immense potential to produce novel flower phenotypes that are not found in nature. Adoption of Genetic engineering has supported the idea of floral trait modification. Ornamental plant attributes like floral color, fragrance, disease resistance, and vase life can be improved by means of genetic manipulation. Therefore, we witness transgenic plant varieties of high aesthetic and commercial value. This review focuses on biotechnological advancements in manipulating key floral traits that contribute in development of diverse ornamental plant lines. Data clearly reveals that regulation of biosynthetic pathways related to characteristics like pigment production, flower morphology and fragrance is both possible and predictable. In spite of their great significance, small number of genetically engineered varieties of ornamental plants has been field tested. Today, novel flower colors production is regarded as chief commercial benefit obtained from transgenic plants. But certain other floral traits are much more important and have high commercial potential. Other than achievements such as novel architecture, modified flower color, etc., very few reports are available regarding successful transformation of other valuable horticultural characteristics. Our review also summarized biotechnological efforts related to enhancement of fragrance and induction of early flowering along with changes in floral anatomy and morphology. PMID:28473834
Biotechnological Advancements for Improving Floral Attributes in Ornamental Plants.
Noman, Ali; Aqeel, Muhammad; Deng, Jianming; Khalid, Noreen; Sanaullah, Tayyaba; Shuilin, He
2017-01-01
Developing new ornamental cultivars with improved floral attributes is a major goal in floriculture. Biotechnological approach together with classical breeding methods has been used to modify floral color, appearance as well as for increasing disease resistance. Transgenic strategies possess immense potential to produce novel flower phenotypes that are not found in nature. Adoption of Genetic engineering has supported the idea of floral trait modification. Ornamental plant attributes like floral color, fragrance, disease resistance, and vase life can be improved by means of genetic manipulation. Therefore, we witness transgenic plant varieties of high aesthetic and commercial value. This review focuses on biotechnological advancements in manipulating key floral traits that contribute in development of diverse ornamental plant lines. Data clearly reveals that regulation of biosynthetic pathways related to characteristics like pigment production, flower morphology and fragrance is both possible and predictable. In spite of their great significance, small number of genetically engineered varieties of ornamental plants has been field tested. Today, novel flower colors production is regarded as chief commercial benefit obtained from transgenic plants. But certain other floral traits are much more important and have high commercial potential. Other than achievements such as novel architecture, modified flower color, etc., very few reports are available regarding successful transformation of other valuable horticultural characteristics. Our review also summarized biotechnological efforts related to enhancement of fragrance and induction of early flowering along with changes in floral anatomy and morphology.
Convergent evolution of floral signals underlies the success of Neotropical orchids.
Papadopulos, Alexander S T; Powell, Martyn P; Pupulin, Franco; Warner, Jorge; Hawkins, Julie A; Salamin, Nicolas; Chittka, Lars; Williams, Norris H; Whitten, W Mark; Loader, Deniz; Valente, Luis M; Chase, Mark W; Savolainen, Vincent
2013-08-22
The great majority of plant species in the tropics require animals to achieve pollination, but the exact role of floral signals in attraction of animal pollinators is often debated. Many plants provide a floral reward to attract a guild of pollinators, and it has been proposed that floral signals of non-rewarding species may converge on those of rewarding species to exploit the relationship of the latter with their pollinators. In the orchid family (Orchidaceae), pollination is almost universally animal-mediated, but a third of species provide no floral reward, which suggests that deceptive pollination mechanisms are prevalent. Here, we examine floral colour and shape convergence in Neotropical plant communities, focusing on certain food-deceptive Oncidiinae orchids (e.g. Trichocentrum ascendens and Oncidium nebulosum) and rewarding species of Malpighiaceae. We show that the species from these two distantly related families are often more similar in floral colour and shape than expected by chance and propose that a system of multifarious floral mimicry--a form of Batesian mimicry that involves multiple models and is more complex than a simple one model-one mimic system--operates in these orchids. The same mimetic pollination system has evolved at least 14 times within the species-rich Oncidiinae throughout the Neotropics. These results help explain the extraordinary diversification of Neotropical orchids and highlight the complexity of plant-animal interactions.
Ozone Differentially Affects Perception of Plant Volatiles in Western Honey Bees.
Dötterl, Stefan; Vater, Marina; Rupp, Thomas; Held, Andreas
2016-06-01
Floral scents play a key role in mediating plant-pollinator interactions. Volatile organic compounds (VOCs) emitted by flowers are used by flower visitors as olfactory cues to locate flowers, both from a distance and at close range. More recently it has been demonstrated that reactive molecules such as ozone can modify or degrade VOCs, and this may impair the communication between plants and their pollinators. However, it is not known whether such reactive molecules also may affect the olfactory system of pollinators, and thus not only influence signal transmission but perception of the signal. In this study, we used electroantennographic measurements to determine the effect of increased levels of ozone on antennal responses in western honey bees (Apis mellifera L.). Linalool and 2-phenylethanol, both known to be involved in location of flowers by the bees, and (Z)-3-hexenyl acetate, a widespread green leaf volatile also detected by bees, were used. The results showed that ozone affected antennal responses to the different substances differently. Ozone decreased antennal responses to (Z)-3-hexenyl acetate, whereas responses to linalool and 2-phenylethanol were not influenced by ozone. Overall, the study does not provide evidence that pollination by honey bees is impaired by damage in the olfactory system of the bees caused by increased levels of ozone, at least when linalool and 2-phenylethanol are the attractive signals. However, the results also suggest that ozone can change the overall perception of an odor blend. This might have negative effects in pollination systems and other organismic interactions mediated by specific ratios of compounds.
When should fig fruit produce volatiles? Pattern in a ripening process
NASA Astrophysics Data System (ADS)
Borges, Renee M.; Ranganathan, Yuvaraj; Krishnan, Anusha; Ghara, Mahua; Pramanik, Gautam
2011-11-01
Ripe fruit need to signal their presence to attract dispersal agents. Plants may employ visual and/or olfactory sensory channels to signal the presence of ripe fruit. Visual signals of ripe fruit have been extensively investigated. However, the volatile signatures of ripe fruit that use olfactorily-oriented dispersers have been scarcely investigated. Moreover, as in flowers, where floral scents are produced at times when pollinators are active (diurnal versus nocturnal), whether plants can modulate the olfactory signal to produce fruit odours when dispersers are active in the diel cycle is completely unknown. We investigated day-night differences in fruit odours in two species of figs, Ficus racemosa and Ficus benghalensis. The volatile bouquet of fruit of F. racemosa that are largely dispersed by bats and other mammals was dominated by fatty acid derivatives such as esters. In this species in which the ripe fig phase is very short, and where the figs drop off soon after ripening, there were no differences between day and night in fruit volatile signature. The volatile bouquet of fruit of F. benghalensis that has a long ripening period, however, and that remain attached to the tree for extended periods when ripe, showed an increase in fatty acid derivatives such as esters and of benzenoids such as benzaldehyde at night when they are dispersed by bats, and an elevation of sesquiterpenes during the day when they are dispersed by birds. For the first time we provide data that suggest that the volatile signal produced by fruit can show diel differences based on the activity period of the dispersal agent.
Ceropegia sandersonii Mimics Attacked Honeybees to Attract Kleptoparasitic Flies for Pollination.
Heiduk, Annemarie; Brake, Irina; von Tschirnhaus, Michael; Göhl, Matthias; Jürgens, Andreas; Johnson, Steven D; Meve, Ulrich; Dötterl, Stefan
2016-10-24
Four to six percent of plants, distributed over different angiosperm families, entice pollinators by deception [1]. In these systems, chemical mimicry is often used as an efficient way to exploit the olfactory preferences of animals for the purpose of attracting them as pollinators [2,3]. Here, we report a very specific type of chemical mimicry of a food source. Ceropegia sandersonii (Apocynaceae), a deceptive South African plant with pitfall flowers, mimics attacked honeybees. We identified kleptoparasitic Desmometopa flies (Milichiidae) as the main pollinators of C. sandersonii. These flies are well known to feed on honeybees that are eaten by spiders, which we thus predicted as the model chemically mimicked by the plant. Indeed, we found that the floral scent of C. sandersonii is comparable to volatiles released from honeybees when under simulated attack. Moreover, many of these shared compounds elicited physiological responses in antennae of pollinating Desmometopa flies. A mixture of four compounds-geraniol, 2-heptanone, 2-nonanol, and (E)-2-octen-1-yl acetate-was highly attractive to the flies. We conclude that C. sandersonii is specialized on kleptoparasitic fly pollinators by deploying volatiles linked to the flies' food source, i.e., attacked and/or freshly killed honeybees. The blend of compounds emitted by C. sandersonii is unusual among flowering plants and lures kleptoparasitic flies into the trap flowers. This study describes a new example of how a plant can achieve pollination through chemical mimicry of the food sources of adult carnivorous animals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Turetsky, Bruce I.; Moberg, Paul J.
2012-01-01
Objective Although olfactory deficits are common in schizophrenia, their underlying pathophysiology remains unknown. Recent evidence has suggested that cAMP signaling may be disrupted in schizophrenia. Since cAMP mediates signal transduction in olfactory receptor neurons, this could contribute to the etiology of observed olfactory deficits. This study was designed to test this hypothesis by determining odor detection threshold sensitivities to two odorants that differ in their relative activations of this intracellular cAMP signaling cascade. Method Thirty schizophrenia patients, 25 healthy comparison subjects, and 19 unaffected first-degree relatives of schizophrenia patients were studied. Odor detection threshold sensitivities were measured for the two odorants citralva and lyral. Although both have fruity/floral scents, citralva strongly activates adenylyl cyclase to increase cAMP levels, while lyral is a very weak activator of adenylyl cyclase. Results There was a significant group-by-odor interaction. Both schizophrenia patients and unaffected first-degree relatives were impaired in their ability to detect lyral versus citralva. Comparison subjects were equally sensitive to both odorants. This selective deficit could not be explained by differences in age, sex, smoking, clinical symptom profile, or medication use. Conclusions This study establishes the presence of an odor-specific hyposmia that may denote a disruption of cAMP-mediated signal transduction in schizophrenia. The presence of a parallel deficit in the patients’ unaffected first-degree relatives suggests that this deficit is genetically mediated. Although additional physiological studies are needed to confirm the underlying mechanism, these results offer strong inferential support for the hypothesis that cAMP signaling is dys-regulated in schizophrenia. PMID:19074977
Turetsky, Bruce I; Moberg, Paul J
2009-02-01
Although olfactory deficits are common in schizophrenia, their underlying pathophysiology remains unknown. Recent evidence has suggested that cAMP signaling may be disrupted in schizophrenia. Since cAMP mediates signal transduction in olfactory receptor neurons, this could contribute to the etiology of observed olfactory deficits. This study was designed to test this hypothesis by determining odor detection threshold sensitivities to two odorants that differ in their relative activations of this intracellular cAMP signaling cascade. Thirty schizophrenia patients, 25 healthy comparison subjects, and 19 unaffected first-degree relatives of schizophrenia patients were studied. Odor detection threshold sensitivities were measured for the two odorants citralva and lyral. Although both have fruity/floral scents, citralva strongly activates adenylyl cyclase to increase cAMP levels, while lyral is a very weak activator of adenylyl cyclase. There was a significant group-by-odor interaction. Both schizophrenia patients and unaffected first-degree relatives were impaired in their ability to detect lyral versus citralva. Comparison subjects were equally sensitive to both odorants. This selective deficit could not be explained by differences in age, sex, smoking, clinical symptom profile, or medication use. This study establishes the presence of an odor-specific hyposmia that may denote a disruption of cAMP-mediated signal transduction in schizophrenia. The presence of a parallel deficit in the patients' unaffected first-degree relatives suggests that this deficit is genetically mediated. Although additional physiological studies are needed to confirm the underlying mechanism, these results offer strong inferential support for the hypothesis that cAMP signaling is dysregulated in schizophrenia.
Floral morphology of Gonocaryum with emphasis on the gynoecium
USDA-ARS?s Scientific Manuscript database
We investigated the floral development of Gonocaryum, a genus of Cardiopteridaceae that was segregated from Icacinaceae s.l., using scanning electron microscopy to clarify its gynoecial structure and facilitate morphological comparisons of Cardiopteridaceae. The key floral developmental characters i...
Changes in the free amino acid contents of honeys during storage at ambient temperature.
Iglesias, M Teresa; Martín-Alvarez, Pedro J; Polo, M Carmen; de Lorenzo, Cristina; Gonzalez, Montserrat; Pueyo, Encarnación
2006-11-29
This study was carried out to establish the changes in the free amino acid contents of floral honeys, honeydew honeys, and blend honeys during storage at room temperature and to test the capacity of the amino acids to distinguish the origin of the honeys after storage. For this purpose, 54 artisanal honeys (39 floral, 5 honeydew, and 10 blend) were studied. Samples were taken from recently collected honeys and at 3, 6, 9, 12, 16, 20, and 24 months after harvesting. The contents of most of the free amino acids were found to decrease with storage time, with the greatest reduction observed in the first 9 months. The contents of the amino acids aspartic acid, beta-alanine, and proline increased in the first few months after storage, reaching maximum values at 6 months, suggesting the possible existence of enzymatic activities. The application of stepwise discriminant analysis to the free amino acid content data demonstrated that the contents of the amino acids valine, beta-alanine, gamma-aminobutyric acid, serine, isoleucine, alpha-alanine, ornithine, and glutamine correctly assigned 87% of honeys to their group of origin: floral, honeydew, or blend.
Ó'Maoiléidigh, Diarmuid S; Stewart, Darragh; Zheng, Beibei; Coupland, George; Wellmer, Frank
2018-02-13
As originally proposed by Goethe in 1790, floral organs are derived from leaf-like structures. The conversion of leaves into different types of floral organ is mediated by floral homeotic proteins, which, as described by the ABCE model of flower development, act in a combinatorial manner. However, how these transcription factors bring about this transformation process is not well understood. We have previously shown that floral homeotic proteins are involved in suppressing the formation of branched trichomes, a hallmark of leaf development, on reproductive floral organs of Arabidopsis Here, we present evidence that the activities of the C function gene AGAMOUS ( AG ) and the related SHATTERPROOF1 / 2 genes are superimposed onto the regulatory network that controls the distribution of trichome formation in an age-dependent manner. We show that AG regulates cytokinin responses and genetically interacts with the organ polarity gene KANADI1 to suppress trichome initiation on gynoecia. Thus, our results show that parts of the genetic program for leaf development remain active during flower formation but have been partially rewired through the activities of the floral homeotic proteins. © 2018. Published by The Company of Biologists Ltd.
A Floral Transcriptome for Hippeastrum (Amaryllidaceae)
USDA-ARS?s Scientific Manuscript database
Two transcriptomes have been constructed from floral tissue of two Hippeastrum (Amaryllidaceae) species, H. brasilianum (Traub & J.L.Doran) Dutilh and H. papilio (Ravenna) Van Scheepan. The former has fragrant flowers, while flowers of the latter do not produce floral fragrance. RNA was isolated a...
Jorgensen, Rachael; Arathi, H S
2013-09-01
A plant investing in reproduction partitions resources between flowering and seed production. Under resource limitation, altered allocations may result in floral trait variations, leading to compromised fecundity. Floral longevity and timing of selfing are often the traits most likely to be affected. The duration of corolla retention determines whether fecundity results from outcrossing or by delayed selfing-mediated reproductive assurance. In this study, the role of pollination schedules and soil water availability on floral longevity and seed production is tested in Collinsia heterophylla (Plantaginaceae). Using three different watering regimes and pollination schedules, effects on floral longevity and seed production were studied in this protandrous, flowering annual. The results reveal that soil water status and pollination together influence floral longevity with low soil water and hand-pollinations early in the floral lifespan reducing longevity. However, early pollinations under excess water did not extend longevity, implying that resource surplus does not lengthen the outcrossing period. The results also indicate that pollen receipt, a reliable cue for fecundity, accelerates flower drop. Early corolla abscission under drought stress could potentially exacerbate sexual conflict in this protandrous, hermaphroditic species by ensuring self-pollen paternity and enabling male control of floral longevity. While pollination schedules did not affect fecundity, water stress reduced per-capita seed numbers. Unmanipulated flowers underwent delayed autonomous selfing, producing very few seeds, suggesting that inbreeding depression may limit benefits of selfing. In plants where herkogamy and dichogamy facilitate outcrossing, floral longevity determines reproductive success and mating system. Reduction in longevity under drought suggests a strong environmental effect that could potentially alter the preferred breeding mode in this mixed-mated species. Extrapolating the findings to unpredictable global drought cycles, it is suggested that in addition to reducing yield, water stress may influence the evolutionary trajectory of plant mating system.
RONSE DE CRAENE, LOUIS P.
2004-01-01
• Background and Aims On the basis of molecular evidence Berberidopsidaceae have been linked with Aextoxicaceae in an order Berberidopsidales at the base of the core Eudicots. The floral development of Berberidopsis is central to the understanding of the evolution of floral configurations at the transition of the basal Eudicots to the core Eudicots. It lies at the transition of trimerous or dimerous, simplified apetalous forms into pentamerous, petaliferous flowers. • Methods The floral ontogeny of Berberidopsis was studied with a scanning electron microscope. • Key Results Flowers are grouped in terminal racemes with variable development. The relationship between the number of tepals, stamens and carpels is more or less fixed and floral initiation follows a strict 2/5 phyllotaxis. Two bracteoles, 12 tepals, eight stamens and three carpels are initiated in a regular sequence. The number of stamens can be increased by a doubling of stamen positions. • Conclusions The floral ontogeny of Berberidopsis provides support for the shift in floral bauplan from the basal Eudicots to the core Eudicots as a transition of a spiral flower with a 2/5 phyllotaxis to pentamerous flowers with two perianth whorls, two stamen whorls and a single carpel whorl. The differentiation of sepals and petals from bracteotepals is discussed and a comparison is made with other Eudicots with a similar configuration and development. Depending on the resolution of the relationships among the basalmost core Eudicots it is suggested that Berberidopsis either represents a critical stage in the evolution of pentamerous flowers of major clades of Eudicots, or has a floral prototype that may be at the base of evolution of flowers of other core Eudicots. The distribution of a floral Bauplan in other clades of Eudicots similar to Berberidopsidales is discussed. PMID:15451722
Antoń, Sebastian; Komoń-Janczara, Elwira; Denisow, Bożena
2017-12-01
Main conclusion The floral nectars were sucrose-dominant; however, nectar protein and amino acid contents differed, indicating that composition of nitrogenous compounds may vary considerably even between closely related plant species, irrespectively of nectary structure. Numerous zoophilous plants attract their pollinators by offering floral nectar; an aqueous solution produced by specialized secretory tissues, known as floral nectaries. Although many papers on nectaries and nectar already exist, there has been a little research into the structure of nectaries and/or nectar production and composition in species belonging to the same genus. To redress this imbalance, we sought, in the present paper, to describe the floral nectary, nectar production, and nectar composition in five nocturnal Oenothera species with respect to their floral visitors. The structure of nectaries was similar for all the species investigated, and comprised the epidermis (with nectarostomata), numerous layers of nectary parenchyma, and subsecretory parenchyma. Anthesis for a single flower was short (ca. 10-12 h), and flowers lasted only one night. The release of floral nectar commenced at the bud stage (approx. 4 h before anthesis) and nectar was available to pollinators until petal closure. Nectar concentration was relatively low (ca. 27%) and the nectar was sucrose-dominant, and composed mainly of sucrose, glucose and fructose. The protein content of the nectar was also relatively low (on average, 0.31 µg ml -1 ). Nevertheless, a great variety of amino acids, including both protein and non-protein types, was detected in the nectar profile of the investigated taxa. We noted both diurnal and nocturnal generalist, opportunistic floral insect visitors.
Himeno, Misako; Neriya, Yutaro; Minato, Nami; Miura, Chihiro; Sugawara, Kyoko; Ishii, Yoshiko; Yamaji, Yasuyuki; Kakizawa, Shigeyuki; Oshima, Kenro; Namba, Shigetou
2011-09-01
Abnormal flowers are often induced by infection of certain plant pathogens, e.g. phytoplasma, but the molecular mechanisms underlying these malformations have remained poorly understood. Here, we show that infection with OY-W phytoplasma (Candidatus Phytoplasma asteris, onion yellows phytoplasma strain, line OY-W) affects the expression of the floral homeotic genes of petunia plants in an organ-specific manner. Upon infection with OY-W phytoplasma, floral morphological changes, including conversion to leaf-like structures, were observed in sepals, petals and pistils, but not in stamens. As the expression levels of homeotic genes differ greatly between floral organs, we examined the expression levels of homeotic genes in each floral organ infected by OY-W phytoplasma, compared with healthy plants. The expression levels of several homeotic genes required for organ development, such as PFG, PhGLO1 and FBP7, were significantly downregulated by the phytoplasma infection in floral organs, except the stamens, suggesting that the unique morphological changes caused by the phytoplasma infection might result from the significant decrease in expression of some crucial homeotic genes. Moreover, the expression levels of TER, ALF and DOT genes, which are known to participate in floral meristem identity, were significantly downregulated in the phytoplasma-infected petunia meristems, implying that phytoplasma would affect an upstream signaling pathway of floral meristem identity. Our results suggest that phytoplasma infection may have complex effects on floral development, resulting in the unique phenotypes that were clearly distinct from the mutant flower phenotypes produced by the knock-out or the overexpression of certain homeotic genes. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Shen, Chen; Xu, Yingwu; Huang, Jianqin; Wang, Zhengjia; Qiu, Jiani; Huang, Youjun
2014-10-01
The full ORFs of three floral genes in hickory (Carya cathayensis Sarg.), CcAGL24 (the AGAMOUS-LIKE24 homolog), CcSOC1 (the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 homolog) and CcAP1 (the APETALA1 homolog) are derived using a 5' RACE PCR protocol. Through sequence alignment and phylogenetic analysis, it is demonstrated that the three genes belong to the MADS-Box family. According to the evolutionary trees of the three genes, the homologous genes from the same family cluster well together, while those from different orders doesn't match evolutionary regularity of individual organisms. The result of Quantitative RT-PCR analysis shows that the transcriptional levels of the three genes are up-regulated in early stage and down-regulated in late stage in pistillate floral development. However, it takes different time to reach respective expression peak among the three genes. In staminate floral development, the transcription trend of the three genes is up-regulated, subsequently down-regulated, and then up-regulated again. Nevertheless, those trajectories, peaks, expression levels, inflection points are different in pistillate floral development. The result suggests that their functions are different in between pistillate and staminate floral development. The probable ordinal site of the three genes in the flowering network from top down is CcAGL24, CcSOC1, and CcAP1, which is identical to that in herbaceous plants. Moreover, several adverse environmental factors trigger several negative genes and then confine the development of staminate floral buds. Our results suggest the possible relationship among the three critical floral genes and their functions throughout the floral development in hickory. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Yarur, Antonia; Soto, Esteban; León, Gabriel; Almeida, Andrea Miyasaka
2016-12-01
FT gene is expressed in leaves and buds and is involved in floral meristem determination and bud development in sweet cherry. In woody fruit perennial trees, floral determination, dormancy and bloom, depends on perception of different environmental and endogenous cues which converge to a systemic signaling gene known as FLOWERING LOCUS T (FT). In long-day flowering plants, FT is expressed in the leaves on long days. The protein travels through the phloem to the shoot apical meristem, where it induces flower determination. In perennial plants, meristem determination and flowering are separated by a dormancy period. Meristem determination takes place in summer, but flowering occurs only after a dormancy period and cold accumulation during winter. The roles of FT are not completely clear in meristem determination, dormancy release, and flowering in perennial plants. We cloned FT from sweet cherry (Prunus avium) and analyzed its expression pattern in leaves and floral buds during spring and summer. Phylogenetic analysis shows high identity of the FT cloned sequence with orthologous genes from other Rosaceae species. Our results show that FT is expressed in both leaves and floral buds and increases when the daylight reached 12 h. The peak in FT expression was coincident with floral meristem identity genes expression and morphological changes typical of floral meristem determination. The Edi-0 Arabidopsis ecotype, which requires vernalization to flower, was transformed with a construct for overexpression of PavFT. These transgenic plants showed an early-flowering phenotype without cold treatment. Our results suggest that FT is involved in floral meristem determination and bud development in sweet cherry. Moreover, we show that FT is expressed in both leaves and floral buds in this species, in contrast to annual plants.
Schlumpberger, Boris O.; Cocucci, Andrea A.; Moré, Marcela; Sérsic, Alicia N.; Raguso, Robert A.
2009-01-01
Background and aims A South American cactus species, Echinopsis ancistrophora (Cactaceae), with dramatic among-population variation in floral traits is presented. Methods Eleven populations of E. ancistrophora were studied in their habitats in northern Argentina, and comparisons were made of relevant floral traits such as depth, stigma position, nectar volume and sugar concentration, and anthesis time. Diurnal and nocturnal pollinator assemblages were evaluated for populations with different floral trait combinations. Key Results Remarkable geographical variations in floral traits were recorded among the 11 populations throughout the distribution range of E. ancistrophora, with flower lengths ranging from 4·5 to 24·1 cm. Other floral traits associated with pollinator attraction also varied in a population-specific manner, in concert with floral depth. Populations with the shortest flowers showed morning anthesis and those with the longest flowers opened at dusk, whereas those with flowers of intermediate length opened at unusual times (2300–0600 h). Nectar production varied non-linearly with floral length; it was absent to low (population means up to 15 µL) in short- to intermediate-length flowers, but was high (population means up to 170 µL) in the longest tubed flowers. Evidence from light-trapping of moths, pollen carriage on their bodies and moth scale deposition on stigmas suggests that sphingid pollination is prevalent only in the four populations with the longest flowers, in which floral morphological traits and nectar volumes match the classic expectations for the hawkmoth pollination syndrome. All other populations, with flowers 4·5–15 cm long, were pollinated exclusively by solitary bees. Conclusions The results suggest incipient differentiation at the population level and local adaptation to either bee or hawkmoth (potentially plus bee) pollination. PMID:19342397
Guo, Xinwei; Ma, Zeyang; Zhang, Zhonghui; Cheng, Lailiang; Zhang, Xiuren; Li, Tianhong
2017-01-01
Transition from vegetative to floral buds is a critical physiological change during flower induction that determines fruit productivity. Small non-coding RNAs (sRNAs) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) are pivotal regulators of plant growth and development. Although the key role of sRNAs in flowering regulation has been well-described in Arabidopsis and some other annual plants, their relevance to vegetative-to-floral transition (hereafter, referred to floral transition) in perennial woody trees remains under defined. Here, we performed Illumina sequencing of sRNA libraries prepared from vegetative and floral bud during flower induction of the apple trees. A large number of sRNAs exemplified by 33 previously annotated miRNAs and six novel members display significant differential expression (DE) patterns. Notably, most of these DE-miRNAs in floral transition displayed opposite expression changes in reported phase transition in apple trees. Bioinformatics analysis suggests most of the DE-miRNAs targeted transcripts involved in SQUAMOSA PROMOTER BINDING PROTEIN-LIKE ( SPL ) gene regulation, stress responses, and auxin and gibberellin (GA) pathways, with further suggestion that there is an inherent link between physiological stress response and metabolism reprogramming during floral transition. We also observed significant changes in 24 nucleotide (nt) sRNAs that are hallmarks for RNA-dependent DNA methylation (RdDM) pathway, suggestive of the correlation between epigenetic modifications and the floral transition. The study not only provides new insight into our understanding of fundamental mechanism of poorly studied floral transition in apple and other woody plants, but also presents important sRNA resource for future in-depth research in the apple flowering physiology.
Guo, Xinwei; Ma, Zeyang; Zhang, Zhonghui; Cheng, Lailiang; Zhang, Xiuren; Li, Tianhong
2017-01-01
Transition from vegetative to floral buds is a critical physiological change during flower induction that determines fruit productivity. Small non-coding RNAs (sRNAs) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) are pivotal regulators of plant growth and development. Although the key role of sRNAs in flowering regulation has been well-described in Arabidopsis and some other annual plants, their relevance to vegetative-to-floral transition (hereafter, referred to floral transition) in perennial woody trees remains under defined. Here, we performed Illumina sequencing of sRNA libraries prepared from vegetative and floral bud during flower induction of the apple trees. A large number of sRNAs exemplified by 33 previously annotated miRNAs and six novel members display significant differential expression (DE) patterns. Notably, most of these DE-miRNAs in floral transition displayed opposite expression changes in reported phase transition in apple trees. Bioinformatics analysis suggests most of the DE-miRNAs targeted transcripts involved in SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene regulation, stress responses, and auxin and gibberellin (GA) pathways, with further suggestion that there is an inherent link between physiological stress response and metabolism reprogramming during floral transition. We also observed significant changes in 24 nucleotide (nt) sRNAs that are hallmarks for RNA-dependent DNA methylation (RdDM) pathway, suggestive of the correlation between epigenetic modifications and the floral transition. The study not only provides new insight into our understanding of fundamental mechanism of poorly studied floral transition in apple and other woody plants, but also presents important sRNA resource for future in-depth research in the apple flowering physiology. PMID:28611800
Phosphatidic acid is a major phospholipid class in reproductive organs of Arabidopsis thaliana.
Yunus, Ian Sofian; Cazenave-Gassiot, Amaury; Liu, Yu-Chi; Lin, Ying-Chen; Wenk, Markus R; Nakamura, Yuki
2015-01-01
Phospholipids are the crucial components of biological membranes and signal transduction. Among different tissues, flower phospholipids are one of the least characterized features of plant lipidome. Here, we report that floral reproductive organs of Arabidopsis thaliana contain high levels of phosphatidic acid (PA), a known lipid second messenger. By using floral homeotic mutants enriched with specific floral organs, lipidomics study showed increased levels of PA species in ap3-3 mutant with enriched pistils. Accompanied gene expression study for 7 diacylglycerol kinases and 11 PA phosphatases revealed distinct floral organ specificity, suggesting an active phosphorylation/dephosphorylation between PA and diacylglycerol in flowers. Our results suggest that PA is a major phospholipid class in floral reproductive organs of A. thaliana.
Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology.
Ogilvie, Jane E; Griffin, Sean R; Gezon, Zachariah J; Inouye, Brian D; Underwood, Nora; Inouye, David W; Irwin, Rebecca E
2017-12-01
Climate change can influence consumer populations both directly, by affecting survival and reproduction, and indirectly, by altering resources. However, little is known about the relative importance of direct and indirect effects, particularly for species important to ecosystem functioning, like pollinators. We used structural equation modelling to test the importance of direct and indirect (via floral resources) climate effects on the interannual abundance of three subalpine bumble bee species. In addition, we used long-term data to examine how climate and floral resources have changed over time. Over 8 years, bee abundances were driven primarily by the indirect effects of climate on the temporal distribution of floral resources. Over 43 years, aspects of floral phenology changed in ways that indicate species-specific effects on bees. Our study suggests that climate-driven alterations in floral resource phenology can play a critical role in governing bee population responses to global change. © 2017 John Wiley & Sons Ltd/CNRS.
Pollen sensitivity to ultraviolet-B (UV-B) suggests floral structure evolution in alpine plants.
Zhang, Chan; Yang, Yong-Ping; Duan, Yuan-Wen
2014-03-31
Various biotic and abiotic factors are known to exert selection pressures on floral traits, but the influence of ultraviolet-B (UV-B) light on the evolution of flower structure remains relatively unexplored. We have examined the effectiveness of flower structure in blocking radiation and the effects of UV-B on pollen viability in 42 species of alpine plants in the Hengduan Mountains, China. Floral forms were categorized as either protecting or exposing pollen grains to UV-B. The floral materials of plants with exposed and protected pollen grains were able to block UV-B at similar levels. Exposure to UV-B radiation in vitro resulted in a significantly greater loss of viability in pollen from plant species with protective floral structures. The pronounced sensitivity of protected pollen to UV-B radiation was associated with the type of flower structure. These findings demonstrate that UV-B plays an important role in the evolution of protective floral forms in alpine plants.
Floral trait variation and integration as a function of sexual deception in Gorteria diffusa.
Ellis, Allan G; Brockington, Samuel F; de Jager, Marinus L; Mellers, Gregory; Walker, Rachel H; Glover, Beverley J
2014-08-19
Phenotypic integration, the coordinated covariance of suites of morphological traits, is critical for proper functioning of organisms. Angiosperm flowers are complex structures comprising suites of traits that function together to achieve effective pollen transfer. Floral integration could reflect shared genetic and developmental control of these traits, or could arise through pollinator-imposed stabilizing correlational selection on traits. We sought to expose mechanisms underlying floral trait integration in the sexually deceptive daisy, Gorteria diffusa, by testing the hypothesis that stabilizing selection imposed by male pollinators on floral traits involved in mimicry has resulted in tighter integration. To do this, we quantified patterns of floral trait variance and covariance in morphologically divergent G. diffusa floral forms representing a continuum in the levels of sexual deception. We show that integration of traits functioning in visual attraction of male pollinators increases with pollinator deception, and is stronger than integration of non-mimicry trait modules. Consistent patterns of within-population trait variance and covariance across floral forms suggest that integration has not been built by stabilizing correlational selection on genetically independent traits. Instead pollinator specialization has selected for tightened integration within modules of linked traits. Despite potentially strong constraint on morphological evolution imposed by developmental genetic linkages between traits, we demonstrate substantial divergence in traits across G. diffusa floral forms and show that divergence has often occurred without altering within-population patterns of trait correlations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
The evolution of floral sonication, a pollen foraging behavior used by bees (Anthophila).
Cardinal, Sophie; Buchmann, Stephen L; Russell, Avery L
2018-03-01
Over 22,000 species of biotically pollinated flowering plants, including some major agricultural crops, depend primarily on bees capable of floral sonication for pollination services. The ability to sonicate ("buzz") flowers is widespread in bees but not ubiquitous. Despite the prevalence of this pollinator behavior and its importance to natural and agricultural systems, the evolutionary history of floral sonication in bees has not been previously studied. Here, we reconstruct the evolutionary history of floral sonication in bees by generating a time-calibrated phylogeny and reconstructing ancestral states for this pollen extraction behavior. We also test the hypothesis that the ability to sonicate flowers and thereby efficiently access pollen from a diverse assemblage of plant species, led to increased diversification among sonicating bee taxa. We find that floral sonication evolved on average 45 times within bees, possibly first during the Early Cretaceous (100-145 million years ago) in the common ancestor of bees. We find that sonicating lineages are significantly more species rich than nonsonicating sister lineages when comparing sister clades, but a probabilistic structured rate permutation on phylogenies approach failed to support the hypothesis that floral sonication is a key driver of bee diversification. This study provides the evolutionary framework needed to further study how floral sonication by bees may have facilitated the spread and common evolution of angiosperm species with poricidal floral morphology. © 2018 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Li, Haifeng; Liang, Wanqi; Hu, Yun; Zhu, Lu; Yin, Changsong; Xu, Jie; Dreni, Ludovico; Kater, Martin M.; Zhang, Dabing
2011-01-01
AGAMOUS-LIKE6 (AGL6) genes play essential roles in flower development, but whether and how they work with floral organ identity genes remain less understood. Here, we describe interactions of the rice (Oryza sativa) AGL6 gene MADS6 with other rice floral homeotic genes in flower development. Genetic analyses revealed that MADS6 specifies the identity of the three inner whorls and floral meristem determinacy redundantly with SUPERWOMAN1/MADS16 (B-gene) or MADS3 (C-gene). MADS6 was shown to define carpel/ovule development and floral determinacy by interacting with MADS13 (D-gene) and control the palea and floral meristem identities together with the YABBY gene DROOPING LEAF. Expression analyses revealed that the transcript levels of six B-, C-, and E-class genes were reduced in mads6-1 at the early flower developmental stage, suggesting that MADS6 is a key regulator of early flower development. Moreover, MADS6 can directly bind to a putative regulatory motif on MADS58 (C-gene), and mads6-1 mads58 displayed phenotypes similar to that of mads6-1. These results suggest that MADS6 is a key player in specifying flower development via interacting with other floral homeotic genes in rice, thus providing new insights into the mechanism by which flower development is controlled. PMID:21784949
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticide plant floral... (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1127 Biochemical pesticide plant floral volatile attractant compounds...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Biochemical pesticide plant floral... (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1127 Biochemical pesticide plant floral volatile attractant compounds...
USDA-ARS?s Scientific Manuscript database
Healthy plant communities of the American sagebrush-steppe consist of mostly wind-pollinated shrubs and grasses interspersed with a diverse mix of mostly spring-blooming, herbaceous perennial wildflowers. Native, non-social bees are the common floral visitors, but their floral associations and abund...
USDA-ARS?s Scientific Manuscript database
Pollinators make foraging decisions based on numerous floral traits, including nectar and pollen rewards, and associated visual and olfactory cues. For insect-pollinated crops, identifying and breeding for attractive floral traits may increase yields. In this study, we examined floral trait variatio...
Bees without flowers: before peak bloom, diverse native bees find insect-produced honeydew sugars
USDA-ARS?s Scientific Manuscript database
Bee foragers respond to complex visual, olfactory, and extrasensory cues to optimize searches for floral rewards. Their abilities to detect and distinguish floral colors, shapes, volatiles, and ultraviolet signals, and even gauge nectar availability from changes in floral humidity or electric fields...
Bonoan, Rachael E; O'Connor, Luke D; Starks, Philip T
Honey bees (Apis mellifera) obtain micronutrients from floral resources and "dirty", or turbid, water. Past research suggests that honey bees drink dirty water to supplement the micronutrients in their floral diet, however, there is no research that directly investigates how floral micronutrient content varies with water preferences, or how micronutrients in honey bees themselves vary seasonally. In this study, we used chemical analyses (ICP-OES) to investigate seasonal variation of micronutrients in honey bee workers and floral resources in the field. We found that honey bees likely use mineralized water to supplement their floral diet and may be limited by availability of calcium and potassium. Our results also suggest that honey bees may seasonally seek specific micronutrients, perhaps in preparation for overwintering. Copyright © 2018 Elsevier Ltd. All rights reserved.
Flexibility in the structure of spiral flowers and its underlying mechanisms.
Wang, Peipei; Liao, Hong; Zhang, Wengen; Yu, Xianxian; Zhang, Rui; Shan, Hongyan; Duan, Xiaoshan; Yao, Xu; Kong, Hongzhi
2015-12-07
Spiral flowers usually bear a variable number of organs, suggestive of the flexibility in structure. The mechanisms underlying the flexibility, however, remain unclear. Here we show that in Nigella damascena, a species with spiral flowers, different types of floral organs show different ranges of variation in number. We also show that the total number of organs per flower is largely dependent on the initial size of the floral meristem, whereas the respective numbers of different types of floral organs are determined by the functional domains of corresponding genetic programmes. By conducting extensive expression and functional studies, we further elucidate the genetic programmes that specify the identities of different types of floral organs. Notably, the AGL6-lineage member NdAGL6, rather than the AP1-lineage members NdFL1/2, is an A-function gene, whereas petaloidy of sepals is not controlled by AP3- or PI-lineage members. Moreover, owing to the formation of a regulatory network, some floral organ identity genes also regulate the boundaries between different types of floral organs. On the basis of these results, we propose that the floral organ identity determination programme is highly dynamic and shows considerable flexibility. Transitions from spiral to whorled flowers, therefore, may be explained by evolution of the mechanisms that reduce the flexibility.
Huang, Lan-Jie; Fu, Wen-Long; Wang, Xiao-Fan
2014-01-01
Distyly, a special polymorph, has evolved in many groups of angiosperms and has attracted attention since Darwin's time. Development studies on distylous taxa have helped us to understand the evolutionary process of this polymorph, but most of these studies focus on species with narrowly tubular corolla. Here, we studied the floral development of Polygonum jucundum, a distylous species with broadly open flowers, at multiple spatial scales. Results showed that the difference in stigma height between flowers of the two morphs was caused by differences in style growth throughout the entire floral development process. The observed difference in anther heights between the two morphs was because the filaments grew faster in short-styled (SS) than in long-styled (LS) flowers in the later stages of floral development. In addition, the longer styles in LS flowers than in SS flowers was because of faster cell division in the early stages of floral development. However, SS flowers had longer filaments than LS flowers primarily because of greater cell elongation. These results indicate that floral development in P. jucundum differs from that of distylous taxa with floral tubes shown in previous studies. Further, we conclude that the presence of distyly in species with open flowers is a result of convergent evolution.
Meijón, Mónica; Feito, Isabel; Valledor, Luis; Rodríguez, Roberto; Cañal, María Jesús
2011-09-01
The ability to control the timing of flowering is a key strategy for planning production in ornamental species such as the azalea; however, this requires a thorough understanding of floral induction pathways. DNA methylation is one of the main mechanisms involved in controlling the functional state of chromatin and gene expression in response to environmental and developmental signals. This work investigated the promotion of flowering in azaleas by the manipulation of environmental factors, using DNA methylation levels as a marker of floral bud development. The results showed that the change of long-day (LD) to short-day (SD) photoperiod is the primary factor responsible for floral induction in azaleas, whereas the existence of the previous cold period as well as the physiological memory are factors which improve floral production. Furthermore, for blooming to take place, 1300 units of growing degree days under an LD were necessary. The promotion of flowering in azaleas by alterations of photoperiod and temperature induced DNA methylation changes. The demethylation observed after the change from LD to SD is linked to a change in cell fate which is necessary for floral transition to take place and seems to be associated with the floral signal. Copyright © Physiologia Plantarum 2011.
Zhou, Xing-Wen; Fan, Zheng-Qi; Chen, Yue; Zhu, Yu-Lin; Li, Ji-Yuan; Yin, Heng-Fu
2013-09-01
The flavonoids metabolic pathway plays central roles in floral coloration, in which anthocyanins and flavonols are derived from common precursors, dihydroflavonols. Flavonol synthase (FLS) catalyses dihydroflavonols into flavonols, which presents a key branch of anthocyanins biosynthesis. The yellow flower of Camellia nitidissima Chi. is a unique feature within the genus Camellia, which makes it a precious resource for breeding yellow camellia varieties. In this work, we characterized the secondary metabolites of pigments during floral development of C. nitidissima and revealed that accumulation of flavonols correlates with floral coloration. We first isolated CnFLS1 and showed that it is a FLS of C. nitidissima by gene family analysis. Second, expression analysis during floral development and different floral organs indicated that the expression level of CnFLS1 was regulated by developmental cues, which was in agreement with the accumulating pattern of flavonols. Furthermore, over-expression of CnFLS1 in Nicotiana tabacum altered floral colour into white or light yellow, and metabolic analysis showed significant increasing of flavonols and reducing of anthocyanins in transgenic plants. Our work suggested CnFLS1 plays critical roles in yellow colour pigmentation and is potentially a key point of genetic engineering toward colour modification in Camellia.
[In vitro flowering of cultures from a hybrid of Cymbidium goeringii and C. hybridium].
Zheng, Li-Ming; Pang, Ji-Liang
2006-06-01
Wild-type female spring orchid (Cymbidium goeringii) was crossed with male Cymbidium hybridium. Over eight hundred protocorm clones were obtained from hybrid offsprings. Among them, one protocorm clone was identified to differentiate visible floral buds two months after subculture in vitro (Plate I). The protocorms and shoots derived from this clone were further used in studying the effects of abscisic acid (ABA) and paclobutrazol (PP333) pretreatment as well as different concentrations of 6-benzyladenine (6-BA) on floral bud differentiation. The optimum combination of hormones in floral bud induction was 6-BA 1.0 mg/L and NAA 0.1 mg/L, and total frequency of floral bud formation was up to 31% (Table 1). The optimum length of shoots used in floral bud induction was 1-2 cm, and the frequency of floral bud formation was 19% (Table 1). The increase in total frequency was not significant in floral bud induction from protocorms and shoots with length of 1-2 cm or 2-4 cm cultured on MS medium containing 6-BA 1.0 mg/L and NAA 0.1 mg/L after pretreatment on MS medium supplemented with ABA 0.5 mg/L and PP333 0.5 mg/L for 35 d (Table 2).
Desfeux, Christine; Clough, Steven J.; Bent, Andrew F.
2000-01-01
The floral-dip method for Agrobacterium-mediated transformation of Arabidopsis allows efficient plant transformation without need for tissue culture. To facilitate use with other plant species, we investigated the mechanisms that underlie this method. In manual outcrossing experiments, application of Agrobacterium tumefaciens to pollen donor plants did not produce any transformed progeny, whereas application of Agrobacterium to pollen recipient plants yielded transformants at a rate of 0.48%. Agrobacterium strains with T-DNA carrying gusA (encoding β-glucuronidase [GUS]) under the control of 35S, LAT52, or ACT11 promoters revealed delivery of GUS activity to developing ovules, whereas no GUS staining of pollen or pollen tubes was observed. Transformants derived from the same seed pod contained independent T-DNA integration events. In Arabidopsis flowers, the gynoecium develops as an open, vase-like structure that fuses to form closed locules roughly 3 d prior to anthesis. In correlation with this fact, we found that the timing of Agrobacterium infection was critical. Transformants were obtained and GUS staining of ovules and embryo sacs was observed only if the Agrobacterium were applied 5 d or more prior to anthesis. A 6-fold higher rate of transformation was obtained with a CRABS-CLAW mutant that maintains an open gynoecium. Our results suggest that ovules are the site of productive transformation in the floral-dip method, and further suggest that Agrobacterium must be delivered to the interior of the developing gynoecium prior to locule closure if efficient transformation is to be achieved. PMID:10889238
Desfeux, C; Clough, S J; Bent, A F
2000-07-01
The floral-dip method for Agrobacterium-mediated transformation of Arabidopsis allows efficient plant transformation without need for tissue culture. To facilitate use with other plant species, we investigated the mechanisms that underlie this method. In manual outcrossing experiments, application of Agrobacterium tumefaciens to pollen donor plants did not produce any transformed progeny, whereas application of Agrobacterium to pollen recipient plants yielded transformants at a rate of 0.48%. Agrobacterium strains with T-DNA carrying gusA (encoding beta-glucuronidase [GUS]) under the control of 35S, LAT52, or ACT11 promoters revealed delivery of GUS activity to developing ovules, whereas no GUS staining of pollen or pollen tubes was observed. Transformants derived from the same seed pod contained independent T-DNA integration events. In Arabidopsis flowers, the gynoecium develops as an open, vase-like structure that fuses to form closed locules roughly 3 d prior to anthesis. In correlation with this fact, we found that the timing of Agrobacterium infection was critical. Transformants were obtained and GUS staining of ovules and embryo sacs was observed only if the Agrobacterium were applied 5 d or more prior to anthesis. A 6-fold higher rate of transformation was obtained with a CRABS-CLAW mutant that maintains an open gynoecium. Our results suggest that ovules are the site of productive transformation in the floral-dip method, and further suggest that Agrobacterium must be delivered to the interior of the developing gynoecium prior to locule closure if efficient transformation is to be achieved.
Gonçalves-Souza, Patrícia; Schlindwein, Clemens; Dötterl, Stefan; Paiva, Elder Antônio Sousa
2017-03-01
Araceae species pollinated by nocturnal Cyclocephalini beetles attract their pollinators by inflorescence scents. In Philodendron , despite the intense odour, the osmophores exhibit no definite morphological identity, making them difficult to locate. This may explain why structural studies of the scent-releasing tissue are not available so far. Several approaches were employed for locating and understanding the osmophores of Philodendron adamantinum . A sensory test allowed other analyses to be restricted to fertile and sterile stamens as odour production sites. Stamens were studied under light and electron microscopy. Dynamic headspace and gas chromatography-mass spectrometry were used to collect and analyse scents from different zones of the inflorescence. The epidermal cells of the distal portion of fertile stamens and staminodes are papillose and, similar to the parenchyma cells of this region, have dense cytoplasm and large nuclei. In these cells, the composition of organelles is compatible with secretory activity, especially the great number of mitochondria and plastids. In this portion, lipid droplets that are consumed concomitantly with the release of odour were observed. Quantitative scent analyses revealed that the scent, with a predominance of dihydro-β-ionone, is mainly emitted by the fertile and sterile staminate zones of the spadix. An amorphous substance in the stomata pores indicates that the components are secreted and volatilized outside of the osmophore under thermogenic heat. Despite the difficulty in locating osmophores in the absence of morphological identity and inefficiency of neutral red staining, the osmophores of P. adamantinum have some features expected for these structures. The results indicate a functional link between thermogenesis and volatilization of osmophore secretions to produce olfactory signals for attracting specialized beetle pollinators. These first experimental data about the precise location of osmophores in Philodendron will stimulate studies in related species that will allow future comparison and the establishment of patterns of functional morphology. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Chand, Sukhmal; Singh, Geetu; Patra, D D
2016-08-02
An investigation was carried out to evaluate the effect of heavy metal toxicity on growth, herb, oil yield and quality and metal accumulation in rose scented geranium (Pelargonium graveolens) grown in heavy metal enriched soils. Four heavy metals (Cd, Ni, Cr, and Pb) each at two levels (10 and 20 mg kg-1 soil) were tested on geranium. Results indicated that Cr concentration in soil at 20 mg kg-1 reduced leaves, stem and root yield by 70, 83, and 45%, respectively, over control. Root growth was significantly affected in Cr stressed soil. Nickel, Cr, and Cd concentration and accumulation in plant increased with higher application of these metals. Chromium, nickel and cadmium uptake was observed to be higher in leaves than in stem and roots. Essential oil constituents were generally not significantly affected by heavy metals except Pb at 10 and 20 ppm, which significantly increased the content of citronellol and Ni at 20 ppm increased the content of geraniol. Looking in to the higher accumulation of toxic metals by geranium and the minimal impact of heavy metals on quality of essential oil, geranium can be commercially cultivated in heavy metal polluted soil for production of high value essential oil.
López-Salesansky, Noelia; Mazlan, Nur H; Whitfield, Lucy E; Wells, Dominic J; Burn, Charlotte C
2016-10-01
Olfaction plays a crucial role in mouse communication, providing information about genetic identity, physiological status of conspecifics and alerting mice to potential predators. Scents of animal origin can trigger physiological and behavioural responses that could affect experimental responses and impact positively or negatively on mouse welfare. Additionally, differing olfactory profiles could help explain variation in results between laboratories. A survey was sent to animal research units in the UK to investigate potential transfer of scents of animal origin during routine husbandry procedures, and responses were obtained from animal care workers and researchers using mice in 51 institutions. The results reveal great diversity between animal units regarding the relevant husbandry routines covered. Most [71%] reported housing non-breeding male and female mice in the same room, with 76% reporting that hands were not washed and gloves not changed between handling male and female mice. The most commonly reported species housed in the same facility as mice was the rat (91%), and 41% of respondents were aware that scents from rats could affect mice. Changing of gloves between handling mice and other species was reported by 79% of respondents. Depending on the aspect considered, between 18 and 33% of respondents believed human and non-human animal odours would strongly affect mouse physiology, behaviour or standardization, while approximately 32-54% believed these effects would be weak. This indicates uncertainty regarding the significance of these factors. Understanding and controlling these practices could reduce unwanted variability in experimental results and maximize welfare. © The Author(s) 2015.
Zhao, D; Gao, J; Wang, Y; Jiang, J; Li, R
2012-08-01
Tessaratoma papillosa (Drury) (Hemiptera: Tessaratomidae) is a serious insect pest of litchi and longan in South China. When disturbed, this insect could release large quantities of disagreeable odorous volatiles from its scent gland. Knowledge on the scent gland and its secretion is crucial for developing the semiochemical methods to manage this pest. Morphology and ultrastructure of the metathoracic scent glands (MTGs) were studied under stereo and scanning electron microscopy, and the volatile compounds of MTGs from both male and female T. papillosa were analyzed with coupled gas chromatography-mass spectrometry (GC-MS). The MTG complex is located between the metathorax and the first abdominal segment at the ventral surface of the insect, which has a well-developed single double valve cystic-shaped orange median reservoir, paired colorless lateral glands in both sides, and a long and wavy tubular accessory gland that inlays tightly into the ventral edge around the median reservoir. The MTG opens to the body surface through paired ostioles located between the meso- and metacoxae of the evaporatorium with mushroom bodies. The GC-MS analyses showed that female and male adults have nine major volatile components in common. Tridecane is the most abundant in both females and males, reaching up to 47.1% and 51.8% of relative amount, respectively. The minor component is benzophenone with only 0.28% and 0.14%. Furthermore, undecane, tetradecane, 3-methyl-tridecane, and cyclopentadecane were found only in males. The possible function of volatile compounds of MTG contents in T. papillosa is addressed.
Lebedev, Mikhail A; Pimashkin, Alexey; Ossadtchi, Alexei
2018-01-01
According to the currently prevailing theory, hippocampal formation constructs and maintains cognitive spatial maps. Most of the experimental evidence for this theory comes from the studies on navigation in laboratory rats and mice, typically male animals. While these animals exhibit a rich repertoire of behaviors associated with navigation, including locomotion, head movements, whisking, sniffing, raring and scent marking, the contribution of these behavioral patterns to the hippocampal spatially-selective activity has not been sufficiently studied. Instead, many publications have considered animal position in space as the major variable that affects the firing of hippocampal place cells and entorhinal grid cells. Here we argue that future work should focus on a more detailed examination of different behaviors exhibited during navigation to better understand the mechanism of spatial tuning in hippocampal neurons. As an inquiry in this direction, we have analyzed data from two datasets, shared online, containing recordings from rats navigating in square and round arenas. Our analyses revealed patchy navigation patterns, evident from the spatial maps of animal position, velocity and acceleration. Moreover, grid cells available in the datasets exhibited similar periodicity as the navigation parameters. These findings indicate that activity of grid cells could affect navigation parameters and/or vice versa. Additionally, we speculate that scent marks left by navigating animals could contribute to neuronal responses while rats and mice sniff their environment; the act of sniffing could modulate neuronal discharges even in virtual visual environments. Accordingly, we propose that future experiments should contain additional controls for navigation patterns, whisking, sniffing and maps composed of scent marks.
Quirino, Z G M; Machado, I C
2014-02-01
To describe plant phenological patterns and correlate functioning for the quantity and quality of resources available for the pollinator, it is crucial to understand the temporal dynamics of biological communities. In this way, the pollination syndromes of 46 species with different growth habits (trees, shrubs, herbs, and vines) were examined in an area of Caatinga vegetation, northeastern Brazil (7° 28' 45″ S and 36° 54' 18″ W), during two years. Flowering was monitored monthly in all the species, over two years (from January 2003 to December 2004). Pollination syndromes were characterised based on floral traits such as size, colour, morphology, symmetry, floral resources, as well as on direct visual observation of floral visitors on focal plants and published information. We observed differences among the plant growth habits with respect to floral traits, types of resources offered, and floral syndromes. The flowering periods of the species varied among floral syndrome groups. The majority of the melittophilous species flowered during the rainy season in the two study years, while the species of the other pollination syndroms flowered at the end of the dry season. An asynchrony of flowering was noted among the chiropterophilous species, while the phalenophilous group concentrated during the rainy season. The overall availability of floral resources was different during the rainy and the dry seasons, and also it varied among plants with different growth habits. The availability of oil-flowers coincided with the period of low nectar availability. We observed a relationship between the temporal distribution of the pollination syndromes and the availability of floral resources among each growth habits in this tropical ecosystem. Resource allocation in seasonal environments, such as the Caatinga, can function as a strategy for maintaining pollinators, facilitating therefore the reproductive success of plant species. The availability of floral resources during all the year, specially in seasonal environments such as the Caatinga, may function as a strategy to maintain pollinator populations ensuring the reproductive success of the plants.
A developmental basis for stochasticity in floral organ numbers
Kitazawa, Miho S.; Fujimoto, Koichi
2014-01-01
Stochasticity ubiquitously inevitably appears at all levels from molecular traits to multicellular, morphological traits. Intrinsic stochasticity in biochemical reactions underlies the typical intercellular distributions of chemical concentrations, e.g., morphogen gradients, which can give rise to stochastic morphogenesis. While the universal statistics and mechanisms underlying the stochasticity at the biochemical level have been widely analyzed, those at the morphological level have not. Such morphological stochasticity is found in foral organ numbers. Although the floral organ number is a hallmark of floral species, it can distribute stochastically even within an individual plant. The probability distribution of the floral organ number within a population is usually asymmetric, i.e., it is more likely to increase rather than decrease from the modal value, or vice versa. We combined field observations, statistical analysis, and mathematical modeling to study the developmental basis of the variation in floral organ numbers among 50 species mainly from Ranunculaceae and several other families from core eudicots. We compared six hypothetical mechanisms and found that a modified error function reproduced much of the asymmetric variation found in eudicot floral organ numbers. The error function is derived from mathematical modeling of floral organ positioning, and its parameters represent measurable distances in the floral bud morphologies. The model predicts two developmental sources of the organ-number distributions: stochastic shifts in the expression boundaries of homeotic genes and a semi-concentric (whorled-type) organ arrangement. Other models species- or organ-specifically reproduced different types of distributions that reflect different developmental processes. The organ-number variation could be an indicator of stochasticity in organ fate determination and organ positioning. PMID:25404932
Sea lamprey avoid areas scented with conspecific tissue extract in Michigan streams
Di Rocco, Richard; Johnson, Nicholas; Brege, Linnea; Imre, I.; Brown, G.E.
2016-01-01
Three in-stream experiments were conducted to determine whether sea lamprey, Petromyzon marinus L., tissue extract (alarm cue) and 2-phenylethylamine hydrochloride (PEA HCl, a putative predator cue) influenced the distribution of migrating adult sea lamprey. Experiments evaluated sea lamprey movement when an odour was applied to (1) a tributary of a larger stream; and (2) half of a stream channel. Fewer sea lamprey entered the tributary and side of the river scented with sea lamprey tissue extract compared to the control treatment. Sea lamprey did not avoid the tributary and side of the river scented with PEA HCl. A final laboratory experiment found no difference in the avoidance response of sea lamprey to PEA HCl mixed with river water vs PEA HCl mixed with water from Lake Huron. As such, the lack of sea lamprey response to PEA HCl in the stream was unlikely to have been caused by the presence of the river water. Rather, the difference between laboratory and field results may be attributed to the complexity of the physical environment.
Female Scent Signals Enhance the Resistance of Male Mice to Influenza
Litvinova, Ekaterina A.; Goncharova, Elena P.; Zaydman, Alla M.; Zenkova, Marina A.; Moshkin, Mikhail P.
2010-01-01
Background The scent from receptive female mice functions as a signal, which stimulates male mice to search for potential mating partners. This searching behavior is coupled with infection risk due to sniffing both scent marks as well as nasal and anogenital areas of females, which harbor bacteria and viruses. Consideration of host evolution under unavoidable parasitic pressures, including helminthes, bacteria, viruses, etc., predicts adaptations that help protect hosts against the parasites associated with mating. Methods and Findings We propose that the perception of female signals by BALB/c male mice leads to adaptive redistribution of the immune defense directed to protection against respiratory infection risks. Our results demonstrate migration of macrophages and neutrophils to the upper airways upon exposure to female odor stimuli, which results in an increased resistance of the males to experimental influenza virus infection. This moderate leukocyte intervention had no negative effect on the aerobic performance in male mice. Conclusions Our data provide the first demonstration of the adaptive immunological response to female odor stimuli through induction of nonspecific immune responses in the upper respiratory tract. PMID:20208997
Englert, Amy C.; Greene, Michael J.
2009-01-01
Background The Brazilian free-tailed bat (Tadarida brasiliensis) is an exceptionally social and gregarious species of chiropteran known to roost in assemblages that can number in the millions. Chemical recognition of roostmates within these assemblages has not been extensively studied despite the fact that an ability to chemically recognize individuals could play an important role in forming and stabilizing complex suites of social interactions. Methodology/Principal Findings Individual bats were given a choice between three roosting pouches: one permeated with the scent of a group of roostmates, one permeated with the scent of non-roostmates, and a clean control. Subjects rejected non-roostmate pouches with greater frequency than roostmate pouches or blank control pouches. Also, bats chose to roost in the roostmate scented pouches more often than the non-roostmate or control pouches. Conclusions/Significance We demonstrated that T. brasiliensis has the ability to chemically recognize roostmates from non-roostmates and a preference for roosting in areas occupied by roostmates. It is important to investigate these behaviors because of their potential importance in colony dynamics and roost choice. PMID:19901986
Floral developmental timing in the ornamental progenitor species Anthurium amnicola Dressler
USDA-ARS?s Scientific Manuscript database
Designation and measurement of five timepoints in the development of the floral stem of A. amnicola were done to establish a general framework based on readily identifiable physical attributes for the study of floral gene expression in this species. The five stages were designated stage 1, bud in s...
Floral Nectar Guide Patterns Discourage Nectar Robbing by Bumble Bees
Leonard, Anne S.; Brent, Joshua; Papaj, Daniel R.; Dornhaus, Anna
2013-01-01
Floral displays are under selection to both attract pollinators and deter antagonists. Here we show that a common floral trait, a nectar guide pattern, alters the behavior of bees that can act opportunistically as both pollinators and as antagonists. Generally, bees access nectar via the floral limb, transporting pollen through contact with the plant’s reproductive structures; however bees sometimes extract nectar from a hole in the side of the flower that they or other floral visitors create. This behavior is called “nectar robbing” because bees may acquire the nectar without transporting pollen. We asked whether the presence of a symmetric floral nectar guide pattern on artificial flowers affected bumble bees’ (Bombus impatiens) propensity to rob or access nectar “legitimately.” We discovered that nectar guides made legitimate visits more efficient for bees than robbing, and increased the relative frequency of legitimate visits, compared to flowers lacking nectar guides. This study is the first to show that beyond speeding nectar discovery, a nectar guide pattern can influence bees’ flower handling in a way that could benefit the plant. PMID:23418475
Genetic control of floral zygomorphy in pea (Pisum sativum L.).
Wang, Zheng; Luo, Yonghai; Li, Xin; Wang, Liping; Xu, Shilei; Yang, Jun; Weng, Lin; Sato, Shusei; Tabata, Satoshi; Ambrose, Mike; Rameau, Catherine; Feng, Xianzhong; Hu, Xiaohe; Luo, Da
2008-07-29
Floral zygomorphy (flowers with bilateral symmetry) has multiple origins and typically manifests two kinds of asymmetries, dorsoventral (DV) and organ internal (IN) asymmetries in floral and organ planes, respectively, revealing the underlying key regulators in plant genomes that generate and superimpose various mechanisms to build up complexity and different floral forms during plant development. In this study, we investigate the loci affecting these asymmetries during the development of floral zygomorphy in pea (Pisum sativum L.). Two genes, LOBED STANDARD 1 (LST1) and KEELED WINGS (K), were cloned that encode TCP transcription factors and have divergent functions to constitute the DV asymmetry. A previously undescribed regulator, SYMMETRIC PETALS 1 (SYP1), has been isolated as controlling IN asymmetry. Genetic analysis demonstrates that DV and IN asymmetries could be controlled independently by the two kinds of regulators in pea, and their interactions help to specify the type of zygomorphy. Based on the genetic analysis in pea, we suggest that variation in both the functions and interactions of these regulators could give rise to the wide spectrum of floral symmetries among legume species and other flowering plants.
Floral thermogenesis: An adaptive strategy of pollination biology in Magnoliaceae
Wang, Ruohan; Zhang, Zhixiang
2015-01-01
Floral thermogenesis plays a crucial role in pollination biology, especially in plant–pollinator interactions. We have recently explored how thermogenesis is related to pollinator activity and odour release in Magnolia sprengeri. By analyzing flower temperatures, emission of volatiles, and insect visitation, we found that floral blends released during pistillate and staminate stages were similar and coincided with sap beetle visitation. Thus, odour mimicry of staminate-stage flowers may occur during the pistillate stage and may be an adaptive strategy of Magnolia species to attract pollinators during both stages, ensuring successful pollination. In addition to the biological significance of floral thermogenesis in Magnolia species, we explored the underlying regulatory mechanisms via profiling miRNA expression in M. denudata flowers during thermogenic and non-thermogenic stages. We identified 17 miRNAs that may play regulatory roles in floral thermogenesis. Functional annotation of their target genes indicated that these miRNAs regulate floral thermogenesis by influencing cellular respiration and light reactions. These findings increase our understanding of plant–pollinator interactions and the regulatory mechanisms in thermogenic plants. PMID:26844867
Chen, Zhong; Ye, Meixia; Su, Xiaoxing; Liao, Weihua; Ma, Huandi; Gao, Kai; Lei, Bingqi; An, Xinmin
2015-08-01
APETALA1 plays a crucial role in the transition from vegetative to reproductive phase and in floral development. In this study, to determine the effect of AP1 expression on flowering time and floral organ development, transgenic Arabidopsis and poplar overexpressing of AtAP1M3 (Arabidopsis AP1 mutant by dominant negative mutation) were generated. Transgenic Arabidopsis with e35Spro::AtAP1M3 displayed phenotypes with delayed-flowering compared to wild-type and flowers with abnormal sepals, petals and stamens. In addition, transgenic Arabidopsis plants exhibited reduced growth vigor compared to the wild-type plants. Ectopic expression of AtAP1M3 in poplar resulted in up- or down-regulation of some endogenous key flowering-related genes, including floral meristems identity gene LFY, B-class floral organ identity genes AP3 and PI, flowering pathway integrator FT1 and flower repressors TFL1 and SVP. These results suggest that AtAP1M3 regulates flowering time and floral development in plants.
Chamberlain, Scott A; Holland, J Nathaniel
2008-05-01
Interspecific interactions are often mediated by the interplay between resource supply and consumer density. The supply of a resource and a consumer's density response to it may in turn yield context-dependent use of other resources. Such consumer-resource interactions occur not only for predator-prey and competitive interactions, but for mutualistic ones as well. For example, consumer-resource interactions between ants and extrafloral nectar (EFN) plants are often mutualistic, as EFN resources attract and reward ants which protect plants from herbivory. Yet, ants also commonly exploit floral resources, leading to antagonistic consumer-resource interactions by disrupting pollination and plant reproduction. EFN resources associated with mutualistic ant-plant interactions may also mediate antagonistic ant-flower interactions through the aggregative density response of ants on plants, which could either exacerbate ant-flower interactions or alternatively satiate and distract ants from floral resources. In this study, we examined how EFN resources mediate the density response of ants on senita cacti in the Sonoran Desert and their context-dependent use of floral resources. Removal of EFN resources reduced the aggregative density of ants on plants, both on hourly and daily time scales. Yet, the increased aggregative ant density on plants with EFN resources decreased rather than increased ant use of floral resources, including contacts with and time spent in flowers. Behavioral assays showed no confounding effect of floral deterrents on ant-flower interactions. Thus, ant use of floral resources depends on the supply of EFN resources, which mediates the potential for both mutualistic and antagonistic interactions by increasing the aggregative density of ants protecting plants, while concurrently distracting ants from floral resources. Nevertheless, only certain years and populations of study showed an increase in plant reproduction through herbivore protection or ant distraction from floral resources. Despite pronounced effects of EFN resources mediating the aggregative density of ants on plants and their context-dependent use of floral resources, consumer-resource interactions remained largely commensalistic.
Ronse De Craene, Louis
2018-05-01
Flower morphology results from the interaction of an established genetic program, the influence of external forces induced by pollination systems, and physical forces acting before, during and after initiation. Floral ontogeny, as the process of development from a meristem to a fully developed flower, can be approached either from a historical perspective, as a "recapitulation of the phylogeny" mainly explained as a process of genetic mutations through time, or from a physico-dynamic perspective, where time, spatial pressures, and growth processes are determining factors in creating the floral morphospace. The first (historical) perspective clarifies how flower morphology is the result of development over time, where evolutionary changes are only possible using building blocks that are available at a certain stage in the developmental history. Flowers are regulated by genetically determined constraints and development clarifies specific transitions between different floral morphs. These constraints are the result of inherent mutations or are induced by the interaction of flowers with pollinators. The second (physico-dynamic) perspective explains how changes in the physical environment of apical meristems create shifts in ontogeny and this is reflected in the morphospace of flowers. Changes in morphology are mainly induced by shifts in space, caused by the time of initiation (heterochrony), pressure of organs, and alterations of the size of the floral meristem, and these operate independently or in parallel with genetic factors. A number of examples demonstrate this interaction and its importance in the establishment of different floral forms. Both perspectives are complementary and should be considered in the understanding of factors regulating floral development. It is suggested that floral evolution is the result of alternating bursts of physical constraints and genetic stabilization processes following each other in succession. Future research needs to combine these different perspectives in understanding the evolution of floral systems and their diversification.
Multimodal Floral Signals and Moth Foraging Decisions
Riffell, Jeffrey A.; Alarcón, Ruben
2013-01-01
Background Combinations of floral traits – which operate as attractive signals to pollinators – act on multiple sensory modalities. For Manduca sexta hawkmoths, how learning modifies foraging decisions in response to those traits remains untested, and the contribution of visual and olfactory floral displays on behavior remains unclear. Methodology/Principal Findings Using M. sexta and the floral traits of two important nectar resources in southwestern USA, Datura wrightii and Agave palmeri, we examined the relative importance of olfactory and visual signals. Natural visual and olfactory cues from D. wrightii and A. palmeri flowers permits testing the cues at their native intensities and composition – a contrast to many studies that have used artificial stimuli (essential oils, single odorants) that are less ecologically relevant. Results from a series of two-choice assays where the olfactory and visual floral displays were manipulated showed that naïve hawkmoths preferred flowers displaying both olfactory and visual cues. Furthermore, experiments using A. palmeri flowers – a species that is not very attractive to hawkmoths – showed that the visual and olfactory displays did not have synergistic effects. The combination of olfactory and visual display of D. wrightii, however – a flower that is highly attractive to naïve hawkmoths – did influence the time moths spent feeding from the flowers. The importance of the olfactory and visual signals were further demonstrated in learning experiments in which experienced moths, when exposed to uncoupled floral displays, ultimately chose flowers based on the previously experienced olfactory, and not visual, signals. These moths, however, had significantly longer decision times than moths exposed to coupled floral displays. Conclusions/Significance These results highlight the importance of specific sensory modalities for foraging hawkmoths while also suggesting that they learn the floral displays as combinatorial signals and use the integrated floral traits from their memory traces to mediate future foraging decisions. PMID:23991154
Vasconcelos, Thais N C; Lucas, Eve J; Faria, Jair E Q; Prenner, Gerhard
2018-01-25
Comparative floral ontogeny represents a valuable tool to understand angiosperm evolution. Such an approach may elucidate subtle changes in development that discretely modify floral architecture and underlie reproductive lability in groups with superficial homogeneous morphology. This study presents a comparative survey of floral development in Eugenia (Myrtaceae), one of the largest genera of angiosperms, and shows how previously undocumented ontogenetic trends help to explain the evolution of its megadiversity in contrast to its apparent flower uniformity. Using scanning electron microscopy, selected steps of the floral ontogeny of a model species (Eugenia punicifolia) are described and compared with 20 further species representing all ten major clades in the Eugenia phylogenetic tree. Additional floral trait data are contrasted for correlation analysis and character reconstructions performed against the Myrtaceae phylogenetic tree. Eugenia flowers show similar organ arrangement patterns: radially symmetrical, (most commonly) tetramerous flowers with variable numbers of stamens and ovules. Despite a similar general organization, heterochrony is evident from size differences between tissues and structures at similar developmental stages. These differences underlie variable levels of investment in protection, subtle modifications to symmetry, herkogamic effects and independent androecium and gynoecium variation, producing a wide spectrum of floral display and contributing to fluctuations in fitness. During Eugenia's bud development, the hypanthium (as defined here) is completely covered by stamen primordia, unusual in other Myrtaceae. This is the likely plesiomorphic state for Myrteae and may have represented a key evolutionary novelty in the tribe. Floral evolution in Eugenia depends on heterochronic patterns rather than changes in complexity to promote flexibility in floral strategies. The successful early establishment of Myrteae, previously mainly linked to the key innovation of fleshy fruit, may also have benefitted from changes in flower structure. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Briscoe Runquist, Ryan D; Moeller, David A
2014-01-01
Reproductive character displacement (RCD) is often an important signature of reinforcement when partially cross-compatible taxa meet in secondary sympatry. In this study, floral evolution is examined during the Holocene range expansion of Clarkia xantiana subsp. parviflora from eastern Pleistocene refugia to a western zone of sympatry with its sister taxon, subsp. xantiana. Floral divergence between the two taxa is greater in sympatry than allopatry. The goal was to test an alternative hypothesis to reinforcement - that floral divergence of sympatric genotypes is simply a by-product of adaptation to pollination environments that differ between the allopatric and sympatric portions of the subspecies' range. Floral trait data from two common garden studies were used to examine floral divergence between sympatric and allopatric regions and among phylogeographically defined lineages. In natural populations of C. x. parviflora, the magnitude of pollen limitation and reproductive assurance were quantified across its west-to-east range. Potted sympatric and allopatric genotypes were also reciprocally translocated between geographical regions to distinguish between the effects of floral phenotype versus contrasting pollinator environments on reproductive ecology. Sympatric populations are considerably smaller flowered with reduced herkogamy. Pollen limitation and the reproductive assurance value of selfing are greater in sympatric than in allopatric populations. Most significantly, reciprocal translocation experiments showed these differences in reproductive ecology cannot be attributed to contrasting pollinator environments between the sympatric and allopatric regions, but instead reflect the effects of flower size on pollinator attraction. Floral evolution occurred during the westward range expansion of parviflora, particularly in the zone of sympatry with xantiana. No evidence was found that strongly reduced flower size in sympatric parviflora (and RCD between parviflora and xantiana) is due to adaptation to limited pollinator availability. Rather, floral divergence appears to have been driven by other factors, such as interactions with congenerics in secondary sympatry.
Almeida, Natan Messias; Castro, Cibele Cardoso; Leite, Ana Virgínia; Novo, Reinaldo Rodrigo; Machado, Isabel Cristina
2013-01-01
Background and Aims Reciprocal herkogamy, including enantiostyly and heterostyly, involves reciprocity in the relative positions of the sexual elements within the flower. Such systems result in morphologically and, since pollen is deposited on and captured from different parts of the pollinator, functionally distinct floral forms. Deviations from the basic pattern may modify the functionality of these mechanisms. For heterostylous species, such deviations are generally related to environmental disturbances, pollination services and/or reduced numbers of one floral morph. Deviations for enantiostylous species have not yet been reported. This study aims to investigate enantiostyly in Chamaecrista flexuosa, in particular the presence of deviations from the standard form, in an area of coastal vegetation in north-east Brazil. Methods Observations and investigations of floral biology, the reproductive system, pollinator behaviour, floral morphology and morphometry were performed. Key Results In C. flexuosa flowers, anthers of different size but similar function are grouped. The flowers were self-compatible and set fruits after every treatment, except in the spontaneous self-pollination experiment, thereby indicating their dependence on pollen vectors. The flowers were pollinated by bees, especially Xylocopa cearensis and X. grisencens. Pollen is deposited and captured from the ventral portion of the pollinator's body. Variations in the spatial arrangement of floral elements allowed for the identification of floral morphs based on both morphological and functional criteria. Using morphological criteria, morphologically right (MR) and morphologically left (ML) floral morphs were identified. Three floral morphs were identified using functional criteria: functionally right (FR), functionally central (FC) and functionally left (FL). Combinations of morphologically and functionally defined morphs did not occur in equal proportions. There was a reduced frequency of the MR–FR combination. Conclusions The results indicate the occurrence of an atypical enantiostyly in C. flexuosa. This seems to improve reproductive success by increasing the efficiency of pollen deposition and capture. PMID:24026440
Jeiter, Julius; Hilger, Hartmut H; Smets, Erik F; Weigend, Maximilian
2017-11-10
Flowers of Geraniaceae and Hypseocharitaceae are generally considered as morphologically simple. However, previous studies indicated complex diversity in floral architecture including tendencies towards synorganization. Most of the species have nectar-rewarding flowers which makes the nectaries a key component of floral organization and architecture. Here, the development of the floral nectaries is studied and placed into the context of floral architecture. Seven species from Geraniaceae and one from Hypseocharitaceae were investigated using scanning electron microscopy and light microscopy. Samples were prepared and processed using standard protocols. The development of the nectary glands follows the same trajectory in all species studied. Minor differences occur in the onset of nectarostomata development. The most striking finding is the discovery that a short anthophore develops via intercalary growth at the level of the nectary glands. This anthophore lifts up the entire flower apart from the nectary gland itself and thus plays an important role in floral architecture, especially in the flowers of Pelargonium. Here, the zygomorphic flowers show a particularly extensive receptacular growth, resulting in the formation of a spur-like receptacular cavity ('inner spur'). The nectary gland is hidden at the base of the cavity. Various forms of compartmentalization, culminating in the 'revolver flower' of Geranium maderense, are described. Despite the superficial similarity of the flowers in Geraniaceae and Hypseocharitaceae, there is broad diversity in floral organization and floral architecture. While the receptacular origin of the spur-like cavity in Pelargonium had already been described, anthophore formation via intercalary growth of the receptacle in the other genera had not been previously documented. In the context of the most recent phylogenies of the families, an evolutionary series for the floral architecture is proposed, underscoring the importance of synorganization in these seemingly simple flowers. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Soltis, Douglas E; Soltis, Pamela S; Albert, Victor A; Oppenheimer, David G; dePamphilis, Claude W; Ma, Hong; Frohlich, Michael W; Theissen, Günter
2002-01-01
To understand the genetic architecture of floral development, including the origin and subsequent diversification of the flower, data are needed not only for a few model organisms but also for gymnosperms, basal angiosperm lineages and early-diverging eudicots. We must link what is known about derived model plants such as Arabidopsis, snapdragon and maize with other angiosperms. To this end, we suggest a massive evolutionary genomics effort focused on the identification and expression patterns of floral genes and elucidation of their expression patterns in 'missing-link' taxa differing in the arrangement, number and organization of floral parts.
Dhakate, Priyanka; Tyagi, Shikha; Singh, Anupama; Singh, Anandita
2017-05-01
LEAFY plays a central role in regulation of flowering time and floral meristem identity in plants. Unfortunately, LFY function remains uncharacterized in agronomicaly important Brassicas. Herein, we illustrate fine-mapping of expression domains of LFY in 15 cultivars of 6 Brassica species and describe gain-of-function phenotypes in Arabidopsis and Brassica. We depict early flowering and altered fatty-acid composition in transgenic seed. The cDNA encoding BjuLFY (417aa) shared only 85% identity with reported homolog of B.juncea implying distinctness. Quantitative RT-PCR based coarse expression mapping of BjuLFY in tissue samples representing 3 time points at specific days after sowing (DAS), pre-flowering (30 DAS), flowering (75 DAS) and post-flowering (110 DAS), depicted an intense pulse of BjuLFY expression restricted to primary floral buds (75 DAS) which subsided in secondary floral buds (110 DAS); expression in root samples was also recorded implying neo-functionalization. Fine-mapping of expression during flowering confirmed tightly regulated LFY expression during early stages of bud development in 15 cultivars of 6 Brassica species implying functional conservation. Ectopic expression of BjuLFY in A. thaliana and B. juncea caused floral meristem defects and precocious flowering. B. juncea transgenics (T 1 ) over-expressing BjuLFY flowered 20days earlier produced normal flowers. GC-MS analysis of mature seed from Brassica transgenics showed an altered fatty-acid profile suggestive of seed maturation occurring at lower temperatures vis-à-vis control. Our findings implicate BjuLFY as a regulator of flowering in B. juncea and suggest its application in developing climate resilient crops. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Songwen; Zhang, Dong; Fan, Sheng; Du, Lisha; Shen, Yawen; Xing, Libo; Li, Youmei; Ma, Juanjuan; Han, Mingyu
2016-10-01
Gibberellins (GAs) reduce apple (Malus domestica) flowering rates; however, the mechanism of their action is not fully understood. To gain a better insight into gibberellin-regulated flowering, here, 5 year-old 'Fuji' apple trees were used to explore the responses of hormones [GA1+3, GA4+7, indole-3-acetic acid (IAA), zeatin-riboside (ZR), and abscisic acid (ABA)], and gibberellin- and flowering-associated genes, to applications of gibberellin acid (GA3) and paclobutrazol (PAC). Results showed that GA3 relatively stimulated vegetative growth and delayed floral induction. Moreover, GA3 spraying significantly affected contents of all endogenous hormones and all the genes tested in at least one time points: the content of endogenous GAs was increased instantly and that of ZR was reduced at 44 days after fullbloom (DAF), which might constitute an unfavorable factor for flower formation; MdKO (ent-kaurene oxidase gene) and MdGA20ox (GA20 oxidase gene) were significantly repressed by a high level of GAs through the negative feedback regulation of GA; additionally, the MdSPLs (SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE) in this study were all significantly repressed by GA3 but promoted by PAC; the expression of MdFT1/2 (FLOWERING LOCUS T), MdSOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1) and MdAP1 (APETALA1) in GA3-treated buds changed in the same way, and they were repressed at 44 DAF. We suppose that GA3 spraying disrupts the balance between ZR and GAs, and inhibits floral induction, probably by suppressing MdSPLs and the floral integrators in flower induction, which ultimately contributed to inhibiting flower formation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Flower scents from the Pacific.
Joulain, Daniel
2008-06-01
For a long time, exotic scents from the islands of the South Pacific have universally been appreciated. Most frequently, fragrant flowers (e.g., frangipani, jasmine sambac, tiaré, pua kenikeni) are used locally for ornamental purposes such as flower garlands (leis). Despite their powerful and delightful fragrance, very few of these flowers have been commercially employed in this part of the world for perfume manufacturing. Creative perfumers are nevertheless strongly interested to better understand these fragrances and to use them, either genuine or artificially reconstituted. Analytical results on the fragrance of these flowers are reported, together with some economical considerations.
Divergence of the Floral A-Function between an Asterid and a Rosid Species[OPEN
Heijmans, Klaas; Rozier, Frédérique; Zethof, Jan; Chamot, Sophy
2017-01-01
The ABC model is widely used as a genetic framework for understanding floral development and evolution. In this model, the A-function is required for the development of sepals and petals and to antagonize the C-function in the outer floral whorls. In the rosid species Arabidopsis thaliana, the AP2-type AP2 transcription factor represents a major A-function protein, but how the A-function is encoded in other species is not well understood. Here, we show that in the asterid species petunia (Petunia hybrida), AP2B/BLIND ENHANCER (BEN) confines the C-function to the inner petunia floral whorls, in parallel with the microRNA BLIND. BEN belongs to the TOE-type AP2 gene family, members of which control flowering time in Arabidopsis. In turn, we demonstrate that the petunia AP2-type REPRESSOR OF B-FUNCTION (ROB) genes repress the B-function (but not the C-function) in the first floral whorl, together with BEN. We propose a combinatorial model for patterning the B- and C-functions, leading to the homeotic conversion of sepals into petals, carpels, or stamens, depending on the genetic context. Combined with earlier results, our findings suggest that the molecular mechanisms controlling the spatial restriction of the floral organ identity genes are more diverse than the well-conserved B and C floral organ identity functions. PMID:28646074
You, Xiangrong; Wang, Lingxia; Liang, Wenyu; Gai, Yonghong; Wang, Xiaoyan; Chen, Wei
2012-02-02
Two-dimensional gel electrophoresis (2-DE) was used to analyze the proteins related to floral reversion in Dimocarpus longan Lour. Proteins were extracted from buds undergoing the normal process of flowering and from those undergoing floral reversion in three developing stages in D. longan. Differentially expressed proteins were identified from the gels after 2-DE analysis, which were confirmed using matrix-assisted laser desorption/ionization-time of flying-mass spectroscopy and protein database search. A total of 39 proteins, including 18 up-regulated and 21 down-regulated proteins, were classified into different categories, such as energy and substance metabolism, protein translation, secondary metabolism, phytohormone, cytoskeleton structure, regulation, and stress tolerance. Among these, the largest functional class was associated with primary metabolism. Down-regulated proteins were involved in photosynthesis, transcription, and translation, whereas up-regulated proteins were involved in respiration. Decreased flavonoid synthesis and up-regulated GA20ox might be involved in the floral reversion process. Up-regulated 14-3-3 proteins played a role in the regulation of floral reversion in D. longan by responding to abiotic stress. Observations via transmission electron microscopy revealed the ultrastructure changes in shedding buds undergoing floral reversion. Overall, the results provided insights into the molecular basis for the floral reversion mechanism in D. longan. Copyright © 2011 Elsevier B.V. All rights reserved.
Baldermann, Susanne; Yang, Ziyin; Sakai, Miwa; Fleischmann, Peter; Morita, Akio; Todoroki, Yasushi; Watanabe, Naoharu
2013-05-01
Carotenoids are a major class of plant pigments and fulfill many functions in different organisms that either produce or consume them. Although the color of the stamina of tea (Camellia sinensis) flowers is clearly due to the presence of carotenoids, the carotenoid profile and content remain to be discovered. We investigated the carotenoid profile of tea flowers and determined changes in concentrations over the floral development. The flowers contained oxygenated xanthophylls such as neoxanthin, lutein and zeaxanthin, as well as the hydrocarbons β-carotene and α-carotene. Flowers of the tea plant contain to vegetables comparable amounts of carotenoids. The content of 9'-cis-epoxycarotenoids, which serve as abscisic acid precursors, as well as changes in concentration of abscisic acid were studied. The concentrations of carotenoids decreased whereas the abscisic acid content increased over the floral development. Exogenously applied S-abscisic acid affected water uptake, flower opening and carotenoid accumulation. In summary, this paper reports, for the first time, the carotenoid profile and content of tea flowers. The study revealed that carotenoids in tea flowers are an interesting target in respect of possible applications of tea flower extracts as well as biological functions of abscisic acid during floral development. © 2012 Society of Chemical Industry.
Solid waste management of temple floral offerings by vermicomposting using Eisenia fetida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Akanksha, E-mail: bhuaks29@gmail.com; Jain, Akansha, E-mail: akansha007@rediffmail.com; Sarma, Birinchi K., E-mail: birinchi_ks@yahoo.com
2013-05-15
Highlights: ► Effective management of temple floral offerings using E. fetida. ► Physico-chemical properties in TW VC were better especially EC, C/N, C/P and TK. ► TW VC as plant growth promoter at much lower application rates than KW and FYW VC. - Abstract: Recycling of temple waste (TW) mainly comprising of floral offerings was done through vermitechnology using Eisenia fetida and its impact on seed germination and plant growth parameters was studied by comparing with kitchen waste (KW) and farmyard waste (FYW) vermicompost (VC). The worm biomass was found to be maximum in TW VC compared to KW andmore » FYW VCs at both 40 and 120 days old VCs. Physico-chemical analysis of worm-worked substrates showed better results in TW VC especially in terms of electrical conductivity, C/N, C/P and TK. 10% TW VC–water extract (VCE) showed stimulatory effect on germination percentage of chickpea seeds while KW and FYW VCE proved effective at higher concentration. Variation in growth parameters was also observed with change in the VC–soil ratio and TW VC showed enhanced shoot length, root length, number of secondary roots and total biomass at 12.5% VC compared to KW and FYW VC.« less
William R. Glenny; Justin B. Runyon; Laura A. Burkle
2018-01-01
Climate change can alter species interactions essential for maintaining biodiversity and ecosystem function, such as pollination. Understanding the interactive effects of multiple abiotic conditions on floral traits and pollinator visitation are important to anticipate the implications of climate change on pollinator services. Floral visual and olfactory traits were...
USDA-ARS?s Scientific Manuscript database
Qualitative changes in floral pollen protein have been shown to be an important aspect of pollinator health. Flowering late in the season, goldenrod (Solidago spp.), provides an essential autumnal source of floral pollen for wild bee and honeybee populations prior to winter, with tall or Canada gol...
Florally rich habitats reduce insect pollination and the reproductive success of isolated plants.
Evans, Tracie M; Cavers, Stephen; Ennos, Richard; Vanbergen, Adam J; Heard, Matthew S
2017-08-01
Landscape heterogeneity in floral communities has the potential to modify pollinator behavior. Pollinator foraging varies with the diversity, abundance, and spatial configuration of floral resources. However, the implications of this variation for pollen transfer and ultimately the reproductive success of insect pollinated plants remains unclear, especially for species which are rare or isolated in the landscape. We used a landscape-scale experiment, coupled with microsatellite genotyping, to explore how the floral richness of habitats affected pollinator behavior and pollination effectiveness. Small arrays of the partially self-compatible plant Californian poppy ( Eschscholzia californica) were introduced across a landscape gradient to simulate rare, spatially isolated populations. The effects on pollinator activity, outcrossing, and plant reproduction were measured. In florally rich habitats, we found reduced pollen movement between plants, leading to fewer long-distance pollination events, lower plant outcrossing, and a higher incidence of pollen limitation. This pattern indicates a potential reduction in per capita pollinator visitation, as suggested by the lower activity densities and richness of pollinators observed within florally rich habitats. In addition, seed production reduced by a factor of 1.8 in plants within florally rich habitats and progeny germination reduced by a factor of 1.2. We show this to be a consequence of self-fertilization within the partially self-compatible plant, E. californica . These findings indicate that locally rare plants are at a competitive disadvantage within florally rich habitats because neighboring plant species disrupt conspecific mating by co-opting pollinators. Ultimately, this Allee effect may play an important role in determining the long-term persistence of rarer plants in the landscape, both in terms of seed production and viability. Community context therefore requires consideration when designing and implementing conservation management for plants which are comparatively rare in the landscape.
A novel role of BELL1-like homeobox genes, PENNYWISE and POUND-FOOLISH, in floral patterning.
Yu, Lifeng; Patibanda, Varun; Smith, Harley M S
2009-02-01
Flowers are determinate shoots comprised of perianth and reproductive organs displayed in a whorled phyllotactic pattern. Floral organ identity genes display region-specific expression patterns in the developing flower. In Arabidopsis, floral organ identity genes are activated by LEAFY (LFY), which functions with region-specific co-regulators, UNUSUAL FLORAL ORGANS (UFO) and WUSCHEL (WUS), to up-regulate homeotic genes in specific whorls of the flower. PENNYWISE (PNY) and POUND-FOOLISH (PNF) are redundant functioning BELL1-like homeodomain proteins that are expressed in shoot and floral meristems. During flower development, PNY functions with a co-repressor complex to down-regulate the homeotic gene, AGAMOUS (AG), in the outer whorls of the flower. However, the function of PNY as well as PNF in regulating floral organ identity in the central whorls of the flower is not known. In this report, we show that combining mutations in PNY and PNF enhance the floral patterning phenotypes of weak and strong alleles of lfy, indicating that these BELL1-like homeodomain proteins play a role in the specification of petals, stamens and carpels during flower development. Expression studies show that PNY and PNF positively regulate the homeotic genes, APETALA3 and AG, in the inner whorls of the flower. Moreover, PNY and PNF function in parallel with LFY, UFO and WUS to regulate homeotic gene expression. Since PNY and PNF interact with the KNOTTED1-like homeodomain proteins, SHOOTMERISTEMLESS (STM) and KNOTTED-LIKE from ARABIDOPSIS THALIANA2 (KNAT2) that regulate floral development, we propose that PNY/PNF-STM and PNY/PNF-KNAT2 complexes function in the inner whorls to regulate flower patterning events.
Floral development and floral phyllotaxis in Anaxagorea (Annonaceae).
Endress, Peter K; Armstrong, Joseph E
2011-10-01
Background and Aims Anaxagorea is the phylogenetically basalmost genus in the large tropical Annonaceae (custard apple family) of Magnoliales, but its floral structure is unknown in many respects. The aim of this study is to analyse evolutionarily interesting floral features in comparison with other genera of the Annonaceae and the sister family Eupomatiaceae. Methods Live flowers of Anaxagorea crassipetala were examined in the field with vital staining, liquid-fixed material was studied with scanning electron microscopy, and microtome section series were studied with light microscopy. In addition, herbarium material of two other Anaxagorea species was cursorily studied with the dissecting microscope. Key Results Floral phyllotaxis in Anaxagorea is regularly whorled (with complex whorls) as in all other Annonaceae with a low or medium number of floral organs studied so far (in those with numerous stamens and carpels, phyllotaxis becoming irregular in the androecium and gynoecium). The carpels are completely plicate as in almost all other Annonaceae. In these features Anaxagorea differs sharply from the sister family Eupomatiaceae, which has spiral floral phyllotaxis and ascidiate carpels. Flat stamens and the presence of inner staminodes differ from most other Annonaceae and may be plesiomorphic in Anaxagorea. However, the inner staminodes appear to be non-secretory in most Anaxagorea species, which differs from inner staminodes in other families of Magnoliales (Eupomatiaceae, Degeneriacae, Himantandraceae), which are secretory. Conclusions Floral phyllotaxis in Anaxagorea shows that there is no signature of a basal spiral pattern in Annonaceae and that complex whorls are an apomorphy not just for a part of the family but for the family in its entirety, and irregular phyllotaxis is derived. This and the presence of completely plicate carpels in Anaxagorea makes the family homogeneous and distinguishes it from the closest relatives in Magnoliales.
Floral development and floral phyllotaxis in Anaxagorea (Annonaceae)
Endress, Peter K.; Armstrong, Joseph E.
2011-01-01
Background and Aims Anaxagorea is the phylogenetically basalmost genus in the large tropical Annonaceae (custard apple family) of Magnoliales, but its floral structure is unknown in many respects. The aim of this study is to analyse evolutionarily interesting floral features in comparison with other genera of the Annonaceae and the sister family Eupomatiaceae. Methods Live flowers of Anaxagorea crassipetala were examined in the field with vital staining, liquid-fixed material was studied with scanning electron microscopy, and microtome section series were studied with light microscopy. In addition, herbarium material of two other Anaxagorea species was cursorily studied with the dissecting microscope. Key Results Floral phyllotaxis in Anaxagorea is regularly whorled (with complex whorls) as in all other Annonaceae with a low or medium number of floral organs studied so far (in those with numerous stamens and carpels, phyllotaxis becoming irregular in the androecium and gynoecium). The carpels are completely plicate as in almost all other Annonaceae. In these features Anaxagorea differs sharply from the sister family Eupomatiaceae, which has spiral floral phyllotaxis and ascidiate carpels. Flat stamens and the presence of inner staminodes differ from most other Annonaceae and may be plesiomorphic in Anaxagorea. However, the inner staminodes appear to be non-secretory in most Anaxagorea species, which differs from inner staminodes in other families of Magnoliales (Eupomatiaceae, Degeneriacae, Himantandraceae), which are secretory. Conclusions Floral phyllotaxis in Anaxagorea shows that there is no signature of a basal spiral pattern in Annonaceae and that complex whorls are an apomorphy not just for a part of the family but for the family in its entirety, and irregular phyllotaxis is derived. This and the presence of completely plicate carpels in Anaxagorea makes the family homogeneous and distinguishes it from the closest relatives in Magnoliales. PMID:21821626
Xun, Erna; Zhang, Yanwen; Zhao, Jimin; Guo, Jixun
2017-11-01
Metals and metalloids in soil could be transferred into reproductive organs and floral rewards of hyperaccumulator plants and influence their reproductive success, yet little is known whether non-hyperaccumulator plants can translocate heavy metals from soil into their floral organs and rewards (i.e., nectar and pollen) and, if so, whether plant reproduction will be affected. In our studies, summer squash (Cucurbita pepo L. cv. Golden Apple) was exposed to heavy-metal treatments during bud stage to investigate the translocation of soil-supplemented zinc, copper, nickel and lead into its floral organs (pistil, anther and nectary) and rewards (nectar and pollen) as well as floral metal accumulation effects on its reproduction. The results showed that metals taken up by squash did translocate into its floral organs and rewards, although metal accumulation varied depending on different metal types and concentrations as well as floral organ/reward types. Mean foraging time of honey bees to each male and female flower of squash grown in metal-supplemented soils was shorter relative to that of plants grown in control soils, although the visitation rate of honeybees to both male and female flowers was not affected by metal treatments. Pollen viability, pollen removal and deposition as well as mean mass per seed produced by metal-treated squash that received pollen from plants grown in control soils decreased with elevated soil-supplemented metal concentrations. The fact that squash could translocate soil-supplemented heavy metals into floral organs and rewards indicated possible reproductive consequences caused either directly (i.e., decreasing pollen viability or seed mass) or indirectly (i.e., affecting pollinators' visitation behavior to flowers) to plant fitness. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Jin-Xue; Hou, Xiao-Jin; Zhu, Jiao; Zhou, Jing-Jing; Huang, Hua-Bin; Yue, Jian-Qiang; Gao, Jun-Yan; Du, Yu-Xia; Hu, Cheng-Xiao; Hu, Chun-Gen; Zhang, Jin-Zhi
2017-01-01
Water deficit is a key factor to induce flowering in many woody plants, but reports on the molecular mechanisms of floral induction and flowering by water deficit are scarce. Here, we analyzed the morphology, cytology, and different hormone levels of lemon buds during floral inductive water deficits. Higher levels of ABA were observed, and the initiation of floral bud differentiation was examined by paraffin sections analysis. A total of 1638 differentially expressed genes (DEGs) were identified by RNA sequencing. DEGs were related to flowering, hormone biosynthesis, or metabolism. The expression of some DEGs was associated with floral induction by real-time PCR analysis. However, some DEGs may not have anything to do with flowering induction/flower development; they may be involved in general stress/drought response. Four genes from the phosphatidylethanolamine-binding protein family were further investigated. Ectopic expression of these genes in Arabidopsis changed the flowering time of transgenic plants. Furthermore, the 5′ flanking region of these genes was also isolated and sequence analysis revealed the presence of several putative cis-regulatory elements, including basic elements and hormone regulation elements. The spatial and temporal expression patterns of these promoters were investigated under water deficit treatment. Based on these findings, we propose a model for citrus flowering under water deficit conditions, which will enable us to further understand the molecular mechanism of water deficit-regulated flowering in citrus. Highlight: Based on gene activity during floral inductive water deficits identified by RNA sequencing and genes associated with lemon floral transition, a model for citrus flowering under water deficit conditions is proposed. PMID:28659956