Sample records for floral stem cell

  1. Regulation of floral stem cell termination in Arabidopsis

    PubMed Central

    Sun, Bo; Ito, Toshiro

    2015-01-01

    In Arabidopsis, floral stem cells are maintained only at the initial stages of flower development, and they are terminated at a specific time to ensure proper development of the reproductive organs. Floral stem cell termination is a dynamic and multi-step process involving many transcription factors, chromatin remodeling factors and signaling pathways. In this review, we discuss the mechanisms involved in floral stem cell maintenance and termination, highlighting the interplay between transcriptional regulation and epigenetic machinery in the control of specific floral developmental genes. In addition, we discuss additional factors involved in floral stem cell regulation, with the goal of untangling the complexity of the floral stem cell regulatory network. PMID:25699061

  2. APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem.

    PubMed

    Würschum, Tobias; Gross-Hardt, Rita; Laux, Thomas

    2006-02-01

    Postembryonic organ formation in higher plants relies on the activity of stem cell niches in shoot and root meristems where differentiation of the resident cells is repressed by signals from surrounding cells. We searched for mutations affecting stem cell maintenance and isolated the semidominant l28 mutant, which displays premature termination of the shoot meristem and differentiation of the stem cells. Allele competition experiments suggest that l28 is a dominant-negative allele of the APETALA2 (AP2) gene, which previously has been implicated in floral patterning and seed development. Expression of both WUSCHEL (WUS) and CLAVATA3 (CLV3) genes, which regulate stem cell maintenance in the wild type, were disrupted in l28 shoot apices from early stages on. Unlike in floral patterning, AP2 mRNA is active in the center of the shoot meristem and acts via a mechanism independent of AGAMOUS, which is a repressor of WUS and stem cell maintenance in the floral meristem. Genetic analysis shows that termination of the primary shoot meristem in l28 mutants requires an active CLV signaling pathway, indicating that AP2 functions in stem cell maintenance by modifying the WUS-CLV3 feedback loop.

  3. Expression of HtKNOT1, a class I KNOX gene, overlaps cell layers and development compartments of differentiating cells in stems and flowers of Helianthus tuberosus.

    PubMed

    Michelotti, V; Giorgetti, L; Geri, C; Cionini, G; Pugliesi, C; Fambrini, M

    2007-10-01

    In plant, post-embryonic development relies on the activities of indeterminate cell populations termed meristems, spatially clustered cell lineages, wherein a subset divides indeterminately. For correct growth, the plant must maintain a constant flow of cells through the meristem, where the input of dividing pluripotent cells offsets the output of differentiating cells. KNOTTED1-like homeobox (KNOX) genes are expressed in specific patterns in the plant meristems and play important roles in maintaining meristematic cell identity. We have analyzed the expression pattern of HtKNOT1, a class I KNOX gene of Helianthus tuberosus, in stems, inflorescence meristems, floral meristems and floral organs. HtKNOT1 is expressed in cambial cells, phloem cells and xylematic parenchyma within apical stem internodes, while in basal internodes HtKNOT1 expression was restricted to the presumptive initials and recently derived phloem cells. In the reproductive phase, HtKNOT1 mRNAs were detected in both the inflorescence and floral meristems as well within lateral organ primordia (i.e. floral bracts, petals, stamens and carpels). In more differentiated flowers, the expression of HtKNOT1 was restricted to developing ovules and pollen mother cells. HtKNOT1 may play a dual role being required to maintain the meristem initials as well as initiating differentiation and/or conferring new cell identity. In particular, it is possible that HtKNOT1 cooperates at floral level with additional factors that more specifically control floral organs and pollen development in H. tuberosus.

  4. Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor.

    PubMed

    McKinley, Brian; Rooney, William; Wilkerson, Curtis; Mullet, John

    2016-11-01

    Biomass accumulated preferentially in leaves of the sweet sorghum Della until floral initiation, then stems until anthesis, followed by panicles until grain maturity, and apical tillers. Sorghum stem RNA-seq transcriptome profiles and composition data were collected for approximately 100 days of development beginning at floral initiation. The analysis identified >200 differentially expressed genes involved in stem growth, cell wall biology, and sucrose accumulation. Genes encoding expansins and xyloglucan endotransglucosylase/hydrolases were differentially expressed in growing stem internodes. Genes encoding enzymes involved in the synthesis of cellulose, lignin, and glucuronoarabinoxylan were expressed at elevated levels in stems until approximately 7 days before anthesis and then down-regulated. CESA genes involved in primary and secondary cell wall synthesis showed different temporal patterns of expression. Following floral initiation, the level of sucrose and other non-structural carbohydrates increased to approximately 50% of the stem's dry weight. Stem sucrose accumulation was inversely correlated with >100-fold down-regulation of SbVIN1, a gene encoding a vacuolar invertase. Accumulation of stem sucrose was also correlated with cessation of leaf and stem growth at anthesis, decreased expression of genes involved in stem cell wall synthesis, and approximately 10-fold lower expression of SbSUS4, a gene encoding sucrose synthase that generates UDP-glucose from sucrose for cell wall biosynthesis. Genes for mixed linkage glucan synthesis (CSLF) and turnover were expressed at high levels in stems throughout development. Overall, the stem transcription profile resource and the genes and regulatory dynamics identified in this study will be useful for engineering sorghum stem composition for improved conversion to biofuels and bio-products. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  5. The Aquilegia JAGGED homolog promotes proliferation of adaxial cell types in both leaves and stems.

    PubMed

    Min, Ya; Kramer, Elena M

    2017-10-01

    In order to explore the functional conservation of JAGGED, a key gene involved in the sculpting of lateral organs in several model species, we identified its ortholog AqJAG in the lower eudicot species Aquilegia coerulea. We analyzed the expression patterns of AqJAG in various tissues and developmental stages, and used RNAi-based methods to generate knockdown phenotypes of AqJAG. AqJAG was strongly expressed in shoot apices, floral meristems, lateral root primordia and all lateral organ primordia. Silencing of AqJAG revealed a wide range of defects in the developing stems, leaves and flowers; strongest phenotypes include severe reduction of leaflet laminae due to a decrease in cell size and number, change of adaxial cell identity, outgrowth of laminar-like tissue on the inflorescence stem, and early arrest of floral meristems and floral organ primordia. Our results indicate that AqJAG plays a critical role in controlling primordia initiation and distal growth of floral organs, and laminar development of leaflets. Most strikingly, we demonstrated that AqJAG disproportionally controls the behavior of cells with adaxial identity in vegetative tissues, providing evidence of how cell proliferation is controlled in an identity-specific manner. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Genetic and phenotypic analysis of shoot apical and floral meristem development

    USDA-ARS?s Scientific Manuscript database

    The shoot apical and floral meristems (SAM and FM, respectively) of Arabidopsis thaliana contain reservoirs of self-renewing stem cells that function as sources of progenitor cells for organ formation during development. The primary SAM produces all of the aerial structures of the adult plant, where...

  7. The ERECTA receptor kinase regulates Arabidopsis shoot apical meristem size, phyllotaxy and floral meristem identity

    USDA-ARS?s Scientific Manuscript database

    In plants, the shoot apical meristem (SAM) serves as a reservoir of pluripotent stem cells from which all above ground organs originate. To sustain proper growth, the SAM must maintain homeostasis between the self-renewal of pluripotent stem cells and cell recruitment for lateral organ formation. At...

  8. ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis.

    PubMed

    Carles, Cristel C; Choffnes-Inada, Dan; Reville, Keira; Lertpiriyapong, Kvin; Fletcher, Jennifer C

    2005-03-01

    The higher-plant shoot apical meristem is a dynamic structure continuously producing cells that become incorporated into new leaves, stems and flowers. The maintenance of a constant flow of cells through the meristem depends on coordination of two antagonistic processes: self-renewal of the stem cell population and initiation of the lateral organs. This coordination is stringently controlled by gene networks that contain both positive and negative components. We have previously defined the ULTRAPETALA1 (ULT1) gene as a key negative regulator of cell accumulation in Arabidopsis shoot and floral meristems, because mutations in ULT1 cause the enlargement of inflorescence and floral meristems, the production of supernumerary flowers and floral organs, and a delay in floral meristem termination. Here, we show that ULT1 negatively regulates the size of the WUSCHEL (WUS)-expressing organizing center in inflorescence meristems. We have cloned the ULT1 gene and find that it encodes a small protein containing a B-box-like motif and a SAND domain, a DNA-binding motif previously reported only in animal transcription factors. ULT1 and its Arabidopsis paralog ULT2 define a novel small gene family in plants. ULT1 and ULT2 are expressed coordinately in embryonic shoot apical meristems, in inflorescence and floral meristems, and in developing stamens, carpels and ovules. Additionally, ULT1 is expressed in vegetative meristems and leaf primordia. ULT2 protein can compensate for mutant ULT1 protein when overexpressed in an ult1 background, indicating that the two genes may regulate a common set of targets during plant development. Downregulation of both ULT genes can lead to shoot apical meristem arrest shortly after germination, revealing a requirement for ULT activity in early development.

  9. At-MINI ZINC FINGER2 and Sl-INHIBITOR OF MERISTEM ACTIVITY, a Conserved Missing Link in the Regulation of Floral Meristem Termination in Arabidopsis and Tomato.

    PubMed

    Bollier, Norbert; Sicard, Adrien; Leblond, Julie; Latrasse, David; Gonzalez, Nathalie; Gévaudant, Frédéric; Benhamed, Moussa; Raynaud, Cécile; Lenhard, Michael; Chevalier, Christian; Hernould, Michel; Delmas, Frédéric

    2018-01-01

    In angiosperms, the gynoecium is the last structure to develop within the flower due to the determinate fate of floral meristem (FM) stem cells. The maintenance of stem cell activity before its arrest at the stage called FM termination affects the number of carpels that develop. The necessary inhibition at this stage of WUSCHEL ( WUS ), which is responsible for stem cell maintenance, involves a two-step mechanism. Direct repression mediated by the MADS domain transcription factor AGAMOUS (AG), followed by indirect repression requiring the C2H2 zinc-finger protein KNUCKLES (KNU), allow for the complete termination of floral stem cell activity. Here, we show that Arabidopsis thaliana MINI ZINC FINGER2 (AtMIF2) and its homolog in tomato ( Solanum lycopersicum ), INHIBITOR OF MERISTEM ACTIVITY (SlIMA), participate in the FM termination process by functioning as adaptor proteins. AtMIF2 and SlIMA recruit AtKNU and SlKNU, respectively, to form a transcriptional repressor complex together with TOPLESS and HISTONE DEACETYLASE19. AtMIF2 and SlIMA bind to the WUS and SlWUS loci in the respective plants, leading to their repression. These results provide important insights into the molecular mechanisms governing (FM) termination and highlight the essential role of AtMIF2/SlIMA during this developmental step, which determines carpel number and therefore fruit size. © 2018 American Society of Plant Biologists. All rights reserved.

  10. Control of Floral Meristem Determinacy in Petunia by MADS-Box Transcription Factors1[W

    PubMed Central

    Ferrario, Silvia; Shchennikova, Anna V.; Franken, John; Immink, Richard G.H.; Angenent, Gerco C.

    2006-01-01

    The shoot apical meristem (SAM), a small group of undifferentiated dividing cells, is responsible for the continuous growth of plants. Several genes have been identified that control the development and maintenance of the SAM. Among these, WUSCHEL (WUS) from Arabidopsis (Arabidopsis thaliana) is thought to be required for maintenance of a stem cell pool in the SAM. The MADS-box gene AGAMOUS, in combination with an unknown factor, has been proposed as a possible negative regulator of WUS, leading to the termination of meristematic activity within the floral meristem. Transgenic petunia (Petunia hybrida) plants were produced in which the E-type and D-type MADS-box genes FLORAL BINDING PROTEIN2 (FBP2) and FBP11, respectively, are simultaneously overexpressed. These plants show an early arrest in development at the cotyledon stage. Molecular analysis of these transgenic plants revealed a possible combined action of FBP2 and FBP11 in repressing the petunia WUS homolog, TERMINATOR. Furthermore, the ectopic up-regulation of the C-type and D-type homeotic genes FBP6 and FBP7, respectively, suggests that they may also participate in a complex, which causes the determinacy in transgenic plants. These data support the model that a transcription factor complex consisting of C-, D-, and E-type MADS-box proteins controls the stem cell population in the floral meristem. PMID:16428599

  11. Coordination of flower development by homeotic master regulators.

    PubMed

    Ito, Toshiro

    2011-02-01

    Floral homeotic genes encode transcription factors and act as master regulators of flower development. The homeotic protein complex is expressed in a specific whorl of the floral primordium and determines floral organ identity by the combinatorial action. Homeotic proteins continue to be expressed until late in flower development to coordinate growth and organogenesis. Recent genomic studies have shown that homeotic proteins bind thousands of target sites in the genome and regulate the expression of transcription factors, chromatin components and various proteins involved in hormone biosynthesis and signaling and other physiological activities. Further, homeotic proteins program chromatin to direct the developmental coordination of stem cell maintenance and differentiation in shaping floral organs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. A genetic screen for modifiers of UFO meristem activity identifies three novel FUSED FLORAL ORGANS genes required for early flower development in Arabidopsis.

    PubMed

    Levin, J Z; Fletcher, J C; Chen, X; Meyerowitz, E M

    1998-06-01

    In a screen to identify novel genes required for early Arabidopsis flower development, we isolated four independent mutations that enhance the Ufo phenotype toward the production of filamentous structures in place of flowers. The mutants fall into three complementation groups, which we have termed FUSED FLORAL ORGANS (FFO) loci. ffo mutants have specific defects in floral organ separation and/or positioning; thus, the FFO genes identify components of a boundary formation mechanism(s) acting between developing floral organ primordia. FFO1 and FFO3 have specific functions in cauline leaf/stem separation and in first- and third-whorl floral organ separation, with FFO3 likely acting to establish and FFO1 to maintain floral organ boundaries. FFO2 acts at early floral stages to regulate floral organ number and positioning and to control organ separation within and between whorls. Plants doubly mutant for two ffo alleles display additive phenotypes, indicating that the FFO genes may act in separate pathways. Plants doubly mutant for an ffo gene and for ufo, lfy, or clv3 reveal that the FFO genes play roles related to those of UFO and LFY in floral meristem initiation and that FFO2 and FFO3 may act to control cell proliferation late in inflorescence development.

  13. A genetic screen for modifiers of UFO meristem activity identifies three novel FUSED FLORAL ORGANS genes required for early flower development in Arabidopsis.

    PubMed Central

    Levin, J Z; Fletcher, J C; Chen, X; Meyerowitz, E M

    1998-01-01

    In a screen to identify novel genes required for early Arabidopsis flower development, we isolated four independent mutations that enhance the Ufo phenotype toward the production of filamentous structures in place of flowers. The mutants fall into three complementation groups, which we have termed FUSED FLORAL ORGANS (FFO) loci. ffo mutants have specific defects in floral organ separation and/or positioning; thus, the FFO genes identify components of a boundary formation mechanism(s) acting between developing floral organ primordia. FFO1 and FFO3 have specific functions in cauline leaf/stem separation and in first- and third-whorl floral organ separation, with FFO3 likely acting to establish and FFO1 to maintain floral organ boundaries. FFO2 acts at early floral stages to regulate floral organ number and positioning and to control organ separation within and between whorls. Plants doubly mutant for two ffo alleles display additive phenotypes, indicating that the FFO genes may act in separate pathways. Plants doubly mutant for an ffo gene and for ufo, lfy, or clv3 reveal that the FFO genes play roles related to those of UFO and LFY in floral meristem initiation and that FFO2 and FFO3 may act to control cell proliferation late in inflorescence development. PMID:9611175

  14. The Myb-domain protein ULTRAPETALA1 INTERACTING FACTOR 1 controls floral meristem activities in Arabidopsis.

    PubMed

    Moreau, Fanny; Thévenon, Emmanuel; Blanvillain, Robert; Lopez-Vidriero, Irene; Franco-Zorrilla, Jose Manuel; Dumas, Renaud; Parcy, François; Morel, Patrice; Trehin, Christophe; Carles, Cristel C

    2016-04-01

    Higher plants continuously and iteratively produce new above-ground organs in the form of leaves, stems and flowers. These organs arise from shoot apical meristems whose homeostasis depends on coordination between self-renewal of stem cells and their differentiation into organ founder cells. This coordination is stringently controlled by the central transcription factor WUSCHEL (WUS), which is both necessary and sufficient for stem cell specification in Arabidopsis thaliana ULTRAPETALA1 (ULT1) was previously identified as a plant-specific, negative regulator of WUS expression. However, molecular mechanisms underlying this regulation remain unknown. ULT1 protein contains a SAND putative DNA-binding domain and a B-box, previously proposed as a protein interaction domain in eukaryotes. Here, we characterise a novel partner of ULT1, named ULT1 INTERACTING FACTOR 1 (UIF1), which contains a Myb domain and an EAR motif. UIF1 and ULT1 function in the same pathway for regulation of organ number in the flower. Moreover, UIF1 displays DNA-binding activity and specifically binds to WUS regulatory elements. We thus provide genetic and molecular evidence that UIF1 and ULT1 work together in floral meristem homeostasis, probably by direct repression of WUS expression. © 2016. Published by The Company of Biologists Ltd.

  15. Floral developmental timing in the ornamental progenitor species Anthurium amnicola Dressler

    USDA-ARS?s Scientific Manuscript database

    Designation and measurement of five timepoints in the development of the floral stem of A. amnicola were done to establish a general framework based on readily identifiable physical attributes for the study of floral gene expression in this species. The five stages were designated stage 1, bud in s...

  16. Climate effects on phytoplankton floral composition in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Harding, L. W.; Adolf, J. E.; Mallonee, M. E.; Miller, W. D.; Gallegos, C. L.; Perry, E. S.; Johnson, J. M.; Sellner, K. G.; Paerl, H. W.

    2015-09-01

    Long-term data on floral composition of phytoplankton are presented to document seasonal and inter-annual variability in Chesapeake Bay related to climate effects on hydrology. Source data consist of the abundances of major taxonomic groups of phytoplankton derived from algal photopigments (1995-2004) and cell counts (1985-2007). Algal photopigments were measured by high-performance liquid chromatography (HPLC) and analyzed using the software CHEMTAX to determine the proportions of chlorophyll-a (chl-a) in major taxonomic groups. Cell counts determined microscopically provided species identifications, enumeration, and dimensions used to obtain proportions of cell volume (CV), plasma volume (PV), and carbon (C) in the same taxonomic groups. We drew upon these two independent data sets to take advantage of the unique strengths of each method, using comparable quantitative measures to express floral composition for the main stem bay. Spatial and temporal variability of floral composition was quantified using data aggregated by season, year, and salinity zone. Both time-series were sufficiently long to encompass the drought-flood cycle with commensurate effects on inputs of freshwater and solutes. Diatoms emerged as the predominant taxonomic group, with significant contributions by dinoflagellates, cryptophytes, and cyanobacteria, depending on salinity zone and season. Our analyses revealed increased abundance of diatoms in wet years compared to long-term average (LTA) or dry years. Results are presented in the context of long-term nutrient over-enrichment of the bay, punctuated by inter-annual variability of freshwater flow that strongly affects nutrient loading, chl-a, and floral composition. Statistical analyses generated flow-adjusted diatom abundance and showed significant trends late in the time series, suggesting current and future decreases of nutrient inputs may lead to a reduction of the proportion of biomass comprised by diatoms in an increasingly diverse flora.

  17. Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture

    PubMed Central

    Wei, Wei; Davis, Robert Edward; Nuss, Donald L.; Zhao, Yan

    2013-01-01

    In the life cycle of higher plants, it is the fate of meristem cells that determines the pattern of growth and development, and therefore plant morphotype and fertility. Floral transition, the turning point from vegetative growth to reproductive development, is achieved via genetically programmed sequential changes in meristem fate from vegetative to inflorescence, and to floral, leading to flower formation and eventual seed production. The transition is rarely reversible once initiated. In this communication, we report that a bacterial infection can derail the genetically programmed fate of meristem cells, thereby drastically altering the growth pattern of the host plant. We identified four characteristic symptoms in tomato plants infected with a cell wall-less bacterium, phytoplasma. The symptoms are a manifestation of the pathogen-induced alterations of growth pattern, whereas each symptom corresponds to a distinct phase in the derailment of shoot apical meristem fate. The phases include premature floral meristem termination, suppressed floral meristem initiation, delayed conversion of vegetative meristem to inflorescence meristem, and repetitive initiation and outgrowth of lateral vegetative meristems. We further found that the pathogen-induced alterations of growth pattern were correlated with transcriptional reprogramming of key meristem switching genes. Our findings open an avenue toward understanding pathological alterations in patterns of plant growth and development, thus aiding identification of molecular targets for disease control and symptom alleviation. The findings also provide insights for understanding stem cell pluripotency and raise a tantalizing possibility for using phytoplasma as a tool to dissect the course of normal plant development and to modify plant morphogenesis by manipulating meristem fate. PMID:24191032

  18. The promoter of the Arabidopsis PIN6 auxin transporter enabled strong expression in the vasculature of roots, leaves, floral stems and reproductive organs.

    PubMed

    Nisar, Nazia; Cuttriss, Abby J; Pogson, Barry J; Cazzonelli, Christopher I

    2014-01-01

    Cellular auxin homeostasis controls many aspects of plant growth, organogenesis and development. The existence of intracellular auxin transport mediated by endoplasmic reticulum (ER)-localized PIN5, PIN6 and PIN8 proteins is a relatively recent discovery shaping a new era in understanding auxin-mediated growth processes. Here we summarize the importance of PIN6 in mediating intracellular auxin transport during root formation, leaf vein patterning and nectary production. While, it was previously shown that PIN6 was strongly expressed in rosette leaf cell types important in vein formation, here we demonstrate by use a PIN6 promoter-reporter fusion, that PIN6 is also preferentially expressed in the vasculature of the primary root, cotyledons, cauline leaves, floral stem, sepals and the main transmitting tract of the reproductive silique. The strong, vein- specific reporter gene expression patterns enabled by the PIN6 promoter emphasizes that transcriptional control is likely to be a major regulator of PIN6 protein levels, during vasculature formation, and supports the need for ER-localized PIN proteins in selecting specialized cells for vascular function in land plants.

  19. [Morphological and anatomical characterization of a stripe mutant with abnormal floral organs in rice].

    PubMed

    Chen, De Xi; Ma, Bing Tian; Wang, Yu Ping; Li, Shi Gui; Hao, Ming

    2006-08-01

    A rice double mutant was derived from the transgenic process,but it does not carry the alien gene. The mutant showed white stripe on stem, leaf and spikelet. In some growing stage,the leaf started to produce fork or curliness. The floret number increased, showing multi-lemma/palea, palea-like or lemma-like lodicules or enlarged lodicules, additional pistil and stamen and the spited floret. With observation of cell ultra structure using electron microscope,the white tissue showed concaved cell wall and abnormal plastid which could not develop normal lamellae and thylakoid. The contents of chlorophyll and net photosynthesis rate in the mutant were obviously lower than those in the wild type. The cells in green sectors grow normally with the exception of the bigger cell volume. The morphogenesis of floral organ was observed by using the scanning electron microscopy (SEM). Results showed that the stamen development was not synchronal and the sizes of stamen primordium were different in mutant, and the carpel was smaller than that of wild type.

  20. The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis.

    PubMed

    Zhao, D; Yang, M; Solava, J; Ma, H

    1999-09-01

    Normal flower development likely requires both specific and general regulators. We have isolated an Arabidopsis mutant ask1-1 (for -Arabidopsis skp1-like1-1), which exhibits defects in both vegetative and reproductive development. In the ask1-1mutant, rosette leaf growth is reduced, resulting in smaller than normal rosette leaves, and internodes in the floral stem are shorter than normal. Examination of cell sizes in these organs indicates that cell expansion is normal in the mutant, but cell number is reduced. In the mutant, the numbers of petals and stamens are reduced, and many flowers have one or more petals with a reduced size. In addition, all mutant flowers have short stamen filaments. Furthermore, petal/stamen chimeric organs are found in many flowers. These results indicate that the ASK1 gene affects the size of vegetative and floral organs. The ask1 floral phenotype resembles somewhat that of the Arabidopsis ufo mutants in that both genes affect whorls 2 and 3. We therefore tested for possible interactions between ASK1 and UFO by analyzing the phenotypes of ufo-2 ask1-1 double mutant plants. In these plants, vegetative development is similar to that of the ask1-1 single mutant, whereas the floral defects are more severe than those in either single mutant. Interior to the first whorl, the double mutant flowers have more sepals or sepal-like organs than are found in ufo-2, and less petals than ask1-1. Our results suggest that ASK1 interacts with UFO to control floral organ identity in whorls 2 and 3. This is very intriguing because ASK1 is very similar in sequence to the yeast SKP1 protein and UFO contains an F-box, a motif known to interact with SKP1 in yeast. Although the precise mechanism of ASK1 and UFO action is unknown, our results support the hypothesis that these two proteins physically interact in vivo. Copyright 1999 Wiley-Liss, Inc.

  1. TOPOISOMERASE1α Acts through Two Distinct Mechanisms to Regulate Stele and Columella Stem Cell Maintenance.

    PubMed

    Zhang, Yonghong; Zheng, Lanlan; Hong, Jing Han; Gong, Ximing; Zhou, Chun; Pérez-Pérez, José Manuel; Xu, Jian

    2016-05-01

    TOPOISOMERASE1 (TOP1), which releases DNA torsional stress generated during replication through its DNA relaxation activity, plays vital roles in animal and plant development. In Arabidopsis (Arabidopsis thaliana), TOP1 is encoded by two paralogous genes (TOP1α and TOP1β), of which TOP1α displays specific developmental functions that are critical for the maintenance of shoot and floral stem cells. Here, we show that maintenance of two different populations of root stem cells is also dependent on TOP1α-specific developmental functions, which are exerted through two distinct novel mechanisms. In the proximal root meristem, the DNA relaxation activity of TOP1α is critical to ensure genome integrity and survival of stele stem cells (SSCs). Loss of TOP1α function triggers DNA double-strand breaks in S-phase SSCs and results in their death, which can be partially reversed by the replenishment of SSCs mediated by ETHYLENE RESPONSE FACTOR115 In the quiescent center and root cap meristem, TOP1α is epistatic to RETINOBLASTOMA-RELATED (RBR) in the maintenance of undifferentiated state and the number of columella stem cells (CSCs). Loss of TOP1α function in either wild-type or RBR RNAi plants leads to differentiation of CSCs, whereas overexpression of TOP1α mimics and further enhances the effect of RBR reduction that increases the number of CSCs Taken together, these findings provide important mechanistic insights into understanding stem cell maintenance in plants. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. MGOUN1 encodes an Arabidopsis type IB DNA topoisomerase required in stem cell regulation and to maintain developmentally regulated gene silencing.

    PubMed

    Graf, Philipp; Dolzblasz, Alicja; Würschum, Tobias; Lenhard, Michael; Pfreundt, Ulrike; Laux, Thomas

    2010-03-01

    Maintenance of stem cells in the Arabidopsis thaliana shoot meristem is regulated by signals from the underlying cells of the organizing center, provided through the transcription factor WUSCHEL (WUS). Here, we report the isolation of several independent mutants of MGOUN1 (MGO1) as genetic suppressors of ectopic WUS activity and enhancers of stem cell defects in hypomorphic wus alleles. mgo1 mutants have previously been reported to result in a delayed progression of meristem cells into differentiating organ primordia (Laufs et al., 1998). Genetic analyses indicate that MGO1 functions together with WUS in stem cell maintenance at all stages of shoot and floral meristems. Synergistic interactions of mgo1 with several chromatin mutants suggest that MGO1 affects gene expression together with chromatin remodeling pathways. In addition, the expression states of developmentally regulated genes are randomly switched in mgo1 in a mitotically inheritable way, indicating that MGO1 stabilizes epigenetic states against stochastically occurring changes. Positional cloning revealed that MGO1 encodes a putative type IB topoisomerase, which in animals and yeast has been shown to be required for regulation of DNA coiling during transcription and replication. The specific developmental defects in mgo1 mutants link topoisomerase IB function in Arabidopsis to stable propagation of developmentally regulated gene expression.

  3. Cloning and function analysis of an alfalfa (Medicago sativa L.) zinc finger protein promoter MsZPP.

    PubMed

    Li, Yan; Sun, Yan; Yang, Qingchuan; Kang, Junmei; Zhang, Tiejun; Gruber, Margaret Yvonne; Fang, Feng

    2012-08-01

    A 1272 bp upstream sequence of MsZFN gene was cloned from alfalfa, which was designed as MsZPP (Genbank accession number: FJ 161979.2) using an adaptor-mediated genome walking method. A sole transcription start site was located 69 bp upstream of the translation start site. Its pattern of expression included roots, stem vascular tissues, floral reproductive organs, and leaves, but the promoter did not express in seeds, petals or sepals. Transcription levels can be stimulated by dark, MeJA, and IAA. However, GUS fusion activities had no change by treatments of GA, ABA, drought and high salt for 3 days. Deletion analysis revealed that all sections of the promoter can drive gus gene expression in the root, stem, leaves and floral reproductive organs; however, only fragments longer than the -460 bp promoter can stimulate strong gus gene expression in these organs. In addition, the -460 bp promoter fragment can drive gus expression not only in the vascular tissue, but also in leaf guard cells. The results suggest that the promoter MsZPP plays roles in the regulation of transgene expression, particularly due to its darkness, MeJA, and IAA responsiveness.

  4. Flower diversity and bee reproduction in an arid ecosystem.

    PubMed

    Dorado, Jimena; Vázquez, Diego P

    2016-01-01

    Diverse flower communities are more stable in floral resource production along the flowering season, but the question about how the diversity and stability of resources affect pollinator reproduction remains open. High plant diversity could favor short foraging trips, which in turn would enhance bee fitness. In addition to plant diversity, greater temporal stability of floral resources in diverse communities could favor pollinator fitness because such communities are likely to occupy the phenological space more broadly, increasing floral availability for pollinators throughout the season. In addition, this potential effect of flower diversity on bee reproduction could be stronger for generalist pollinators because they can use a broader floral spectrum. Based on above arguments we predicted that pollinator reproduction would be positively correlated to flower diversity, and to temporal stability in flower production, and that this relationship would be stronger for the most generalized pollinator species. Using structural equation models, we evaluated the effect of these variables and other ecological factors on three estimates of bee reproduction (average number of brood cells per nest per site, total number of brood cells per site, and total number of nests per site), and whether such effects were modulated by bee generalization on floral resources. Contrary to our expectations, flower diversity had no effect on bee reproduction, stability in flower production had a weakly negative effect on one of the bee reproductive variables, and the strength of the fitness-diversity relationship was unrelated to bee generalization. In contrast, elevation had a negative effect on bee reproduction, despite the narrow elevation range encompassed by our sites. Flower diversity did not affect the reproduction of the solitary bees studied here. This result could stem from the context dependence of the diversity-stability relationship, given that elevation had a positive effect on flower diversity but a negative effect on bee reproduction. Although high temporal stability in flower production is expected to enhance pollinator reproduction, in our study it had a weakly negative-instead of positive-effect on the average number of brood cells per nest. Other environmental factors that vary with elevation could influence bee reproduction. Our study focused on a small group of closely-related bee species, which cautions against generalization of our findings to other groups of pollinators. More studies are clearly needed to assess the extent to which pollinator demography is influenced by the diversity of floral resources.

  5. The conflict between cell proliferation and expansion primarily affects stem organogenesis in Arabidopsis.

    PubMed

    Maeda, Saori; Gunji, Shizuka; Hanai, Kenya; Hirano, Tomonari; Kazama, Yusuke; Ohbayashi, Iwai; Abe, Tomoko; Sawa, Shinichiro; Tsukaya, Hirokazu; Ferjani, Ali

    2014-11-01

    Plant shoot organs such as stems, leaves and flowers are derived from specialized groups of stem cells organized at the shoot apical meristem (SAM). Organogenesis involves two major processes, namely cell proliferation and differentiation, whereby the former contributes to increasing the cell number and the latter involves substantial increases in cell volume through cell expansion. Co-ordination between the above processes in time and space is essential for proper organogenesis. To identify regulatory factors involved in proper organogenesis, heavy-ion beam-irradiated de-etiolated (det) 3-1 seeds have been used to identify striking phenotypes in the A#26-2; det3-1 mutant. In addition to the stunted plant stature mimicking det3-1, the A#26-2; det3-1 mutant exhibited stem thickening, increased floral organ number and a fruit shape reminiscent of clavata (clv) mutants. DNA sequencing analysis demonstrated that A#26-2; det3-1 harbors a mutation in the CLV3 gene. Importantly, A#26-2; det3-1 displayed cracks that randomly occurred on the main stem with a frequency of approximately 50%. Furthermore, the double mutants clv3-8 det3-1, clv1-4 det3-1 and clv2-1 det3-1 consistently showed stem cracks with frequencies of approximately 97, 38 and 35%, respectively. Cross-sections of stems further revealed an increase in vascular bundle number, cell number and size in the pith of clv3-8 det3-1 compared with det3-1. These findings suggest that the stem inner volume increase due to clv mutations exerts an outward mechanical stress; that in a det3-1 background (defective in cell expansion) resulted in cracking of the outermost layer of epidermal cells. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. The founder-cell transcriptome in the Arabidopsis apetala1 cauliflower inflorescence meristem.

    PubMed

    Frerichs, Anneke; Thoma, Rahere; Abdallah, Ali Taleb; Frommolt, Peter; Werr, Wolfgang; Chandler, John William

    2016-11-03

    Although the pattern of lateral organ formation from apical meristems establishes species-specific plant architecture, the positional information that confers cell fate to cells as they transit to the meristem flanks where they differentiate, remains largely unknown. We have combined fluorescence-activated cell sorting and RNA-seq to characterise the cell-type-specific transcriptome at the earliest developmental time-point of lateral organ formation using DORNRÖSCHEN-LIKE::GFP to mark founder-cell populations at the periphery of the inflorescence meristem (IM) in apetala1 cauliflower double mutants, which overproliferate IMs. Within the lateral organ founder-cell population at the inflorescence meristem, floral primordium identity genes are upregulated and stem-cell identity markers are downregulated. Additional differentially expressed transcripts are involved in polarity generation and boundary formation, and in epigenetic and post-translational changes. However, only subtle transcriptional reprogramming within the global auxin network was observed. The transcriptional network of differentially expressed genes supports the hypothesis that lateral organ founder-cell specification involves the creation of polarity from the centre to the periphery of the IM and the establishment of a boundary from surrounding cells, consistent with bract initiation. However, contrary to the established paradigm that sites of auxin response maxima pre-pattern lateral organ initiation in the IM, auxin response might play a minor role in the earliest stages of lateral floral initiation.

  7. Temporal Control of Trichome Distribution by MicroRNA156-Targeted SPL Genes in Arabidopsis thaliana[W][OA

    PubMed Central

    Yu, Nan; Cai, Wen-Juan; Wang, Shucai; Shan, Chun-Min; Wang, Ling-Jian; Chen, Xiao-Ya

    2010-01-01

    The production and distribution of plant trichomes is temporally and spatially regulated. After entering into the flowering stage, Arabidopsis thaliana plants have progressively reduced numbers of trichomes on the inflorescence stem, and the floral organs are nearly glabrous. We show here that SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes, which define an endogenous flowering pathway and are targeted by microRNA 156 (miR156), temporally control the trichome distribution during flowering. Plants overexpressing miR156 developed ectopic trichomes on the stem and floral organs. By contrast, plants with elevated levels of SPLs produced fewer trichomes. During plant development, the increase in SPL transcript levels is coordinated with the gradual loss of trichome cells on the stem. The MYB transcription factor genes TRICHOMELESS1 (TCL1) and TRIPTYCHON (TRY) are negative regulators of trichome development. We show that SPL9 directly activates TCL1 and TRY expression through binding to their promoters and that this activation is independent of GLABROUS1 (GL1). The phytohormones cytokinin and gibberellin were reported to induce trichome formation on the stem and inflorescence via the C2H2 transcription factors GIS, GIS2, and ZFP8, which promote GL1 expression. We show that the GIS-dependent pathway does not affect the regulation of TCL1 and TRY by miR156-targeted SPLs, represented by SPL9. These results demonstrate that the miR156-regulated SPLs establish a direct link between developmental programming and trichome distribution. PMID:20622149

  8. Expression of proteinase inhibitor II proteins during floral development in Solanum americanum.

    PubMed

    Sin, Suk-Fong; Chye, Mee-Len

    2004-10-01

    The heterologous expression of serine proteinase inhibitor II (PIN2) proteins confers insect resistance in transgenic plants, but little is known of their endogenous roles. We have cloned two cDNAs encoding Solanum americanum PIN2 proteins, SaPIN2a and SaPIN2b. SaPIN2a is highly expressed in stem, particularly in the phloem, suggesting it could possibly regulate proteolysis in the sieve elements. When SaPIN2a was expressed in transgenic lettuce, we observed an inhibition of endogenous trypsin- and chymotrypsin-like activities. Here, we demonstrate that both SaPIN2a and SaPIN2b are expressed in floral tissues that are destined to undergo developmental programmed cell death (PCD), suggesting possible endogenous roles in inhibiting trypsin- and chymotrypsin-like activities during flower development. Northern and western blot analyses revealed that SaPIN2a and SaPIN2b mRNAs and proteins show highest expression early in floral development. In situ hybridization analysis and immunolocalization on floral sections, localized SaPIN2a and SaPIN2b mRNAs and their proteins to tissues that would apparently undergo PCD: the ovules, the stylar transmitting tissue, the stigma and the vascular bundles. Detection of PCD in floral sections was achieved using terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) analysis. Examination of the mid-style before, and 1 day after, pollination revealed that high expression of SaPIN2a and SaPIN2b in the style was inversely correlated with PCD.

  9. Grass meristems I: shoot apical meristem maintenance, axillary meristem determinacy and the floral transition.

    PubMed

    Pautler, Michael; Tanaka, Wakana; Hirano, Hiro-Yuki; Jackson, David

    2013-03-01

    The vegetative and reproductive shoot architectures displayed by members of the grass family are critical to reproductive success, and thus agronomic yield. Variation in shoot architecture is explained by the maintenance, activity and determinacy of meristems, pools of pluripotent stem cells responsible for post-embryonic plant growth. This review summarizes recent progress in understanding the major properties of grass shoot meristems, focusing on vegetative phase meristems and the floral transition, primarily in rice and maize. Major areas of interest include: the control of meristem homeostasis by the CLAVATA-WUSCHEL pathway and by hormones such as cytokinin; the initiation of axillary meristems and the control of axillary meristem dormancy; and the environmental and endogenous cues that regulate flowering time. In an accompanying paper, Tanaka et al. review subsequent stages of shoot development, including current knowledge of reproductive meristem determinacy and the fate transitions associated with these meristems.

  10. Exogenous trehalose largely alleviates ionic unbalance, ROS burst, and PCD occurrence induced by high salinity in Arabidopsis seedlings

    PubMed Central

    Yang, Lei; Zhao, Xiaoju; Zhu, Hong; Paul, Matthew; Zu, Yuangang; Tang, Zhonghua

    2014-01-01

    Trehalose (Tre) has been reported to play a critical role in plant response to salinity and the involved mechanisms remain to be investigated in detail. Here, the putative roles of Tre in regulation of ionic balance, cellular redox state, cell death were studied in Arabidopsis under high salt condition. Our results found that the salt-induced restrictions on both vegetative and reproductive growth in salt-stressed plants were largely alleviated by exogenous supply with Tre. The microprobe analysis of ionic dynamics in the leaf and stem of florescence highlighted the Tre ability to retain K and K/Na ratio in plant tissues to improve salt tolerance. The flow cytometry assay of cellular levels of reactive oxygen species and programmed cell death displayed that Tre was able to antagonized salt-induced damages in redox state and cell death and sucrose did not play the same role with Tre. By comparing ionic distribution in leaf and inflorescence stem (IS), we found that Tre was able to restrict Na transportation to IS from leaves since that the ratio of Na accumulation in leaves relative to IS was largely improved due to Tre. The marked decrease of Na ion and improved sucrose level in IS might account for the promoted floral growth when Tre was included in the saline solution. At the same time, endogenous soluble sugars and antioxidant enzyme activities in the salt-stressed plants were also elevated by Tre to counteract high salt stress. We concluded that Tre could improve Arabidopsis salt resistance with respect to biomass accumulation and floral transition in the means of regulating plant redox state, cell death, and ionic distribution. PMID:25400644

  11. Major phenolic and volatile compounds and their influence on sensorial aspects in stem-contact fermentation winemaking of Primitivo red wines.

    PubMed

    Suriano, S; Alba, V; Di Gennaro, D; Basile, T; Tamborra, M; Tarricone, L

    2016-08-01

    In red winemaking de-stemming is crucial since the stems contain polymeric phenolic compounds responsible for the astringency of wine. Wine such as Primitivo has low phenolic constituents and tannins and stems affect aroma, taste body and olfactory characteristics. The aim of the study was to evaluate the effects of presence of stems during fermentation on polyphenolic, volatile compounds and sensory characteristics of wine. Primitivo grapes vinified in presence of different percentage of stems: 100 % de-stemmed (D100), 75 % de-stemmed (D75) and 50 % de-stemmed (D50). Results confirmed that the wines vinified in presence of stems were higher in tannins, flavans, to vanillin and proanthocyanidins, colour intensity with lower anthocyanins. The presence of stems during fermentation conferred more structure and flavour to wines. They facilitated must aeration thus promoting synthesis of higher alcohols and ethyl esters by yeast. In particular, a higher content of hexan-1-ol, hex-3-en-1-ol and 2-phenyl ethanol in D50 and D75 gave the wines that suggest green grass, herb and floral. Wine from D75 seemed to be better than D50 in terms of volatile compounds as well as fruity, floral and balsamic components preserved, without any unpleasant taste of long chain fatty acids found in D50.

  12. Flower diversity and bee reproduction in an arid ecosystem

    PubMed Central

    Vázquez, Diego P.

    2016-01-01

    Background: Diverse flower communities are more stable in floral resource production along the flowering season, but the question about how the diversity and stability of resources affect pollinator reproduction remains open. High plant diversity could favor short foraging trips, which in turn would enhance bee fitness. In addition to plant diversity, greater temporal stability of floral resources in diverse communities could favor pollinator fitness because such communities are likely to occupy the phenological space more broadly, increasing floral availability for pollinators throughout the season. In addition, this potential effect of flower diversity on bee reproduction could be stronger for generalist pollinators because they can use a broader floral spectrum. Based on above arguments we predicted that pollinator reproduction would be positively correlated to flower diversity, and to temporal stability in flower production, and that this relationship would be stronger for the most generalized pollinator species. Materials and Methods: Using structural equation models, we evaluated the effect of these variables and other ecological factors on three estimates of bee reproduction (average number of brood cells per nest per site, total number of brood cells per site, and total number of nests per site), and whether such effects were modulated by bee generalization on floral resources. Results: Contrary to our expectations, flower diversity had no effect on bee reproduction, stability in flower production had a weakly negative effect on one of the bee reproductive variables, and the strength of the fitness-diversity relationship was unrelated to bee generalization. In contrast, elevation had a negative effect on bee reproduction, despite the narrow elevation range encompassed by our sites. Discussion: Flower diversity did not affect the reproduction of the solitary bees studied here. This result could stem from the context dependence of the diversity-stability relationship, given that elevation had a positive effect on flower diversity but a negative effect on bee reproduction. Although high temporal stability in flower production is expected to enhance pollinator reproduction, in our study it had a weakly negative—instead of positive—effect on the average number of brood cells per nest. Other environmental factors that vary with elevation could influence bee reproduction. Our study focused on a small group of closely-related bee species, which cautions against generalization of our findings to other groups of pollinators. More studies are clearly needed to assess the extent to which pollinator demography is influenced by the diversity of floral resources. PMID:27547556

  13. UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression.

    PubMed

    Hepworth, Shelley R; Klenz, Jennifer E; Haughn, George W

    2006-03-01

    The UNUSUAL FLORAL ORGANS (UFO) gene of Arabidopsis encodes an F-box protein required for the determination of floral-organ and floral-meristem identity. Mutation of UFO leads to dramatic changes in floral-organ type which are well-characterized whereas inflorescence defects are more subtle and less understood. These defects include an increase in the number of secondary inflorescences, nodes that alternate between forming flowers and secondary inflorescences, and nodes in which a single flower is subtended by a bract. Here, we show how inflorescence defects correlate with the abnormal development of floral primordia and establish a temporal requirement for UFO in this process. At the inflorescence apex of ufo mutants, newly formed primordia are initially bract-like. Expression of the floral-meristem identity genes LFY and AP1 are confined to a relatively small adaxial region of these primordia with expression of the bract-identity marker FIL observed in cells that comprise the balance of the primordia. Proliferation of cells in the adaxial region of these early primordia is delayed by several nodes such that primordia appear "chimeric" at several nodes, having visible floral and bract components. However, by late stage 2 of floral development, growth of the bract generally ceases and is overtaken by development of the floral primordium. This abnormal pattern of floral meristem development is not rescued by expression of UFO from the AP1 promoter, indicating that UFO is required prior to AP1 activation for normal development of floral primordia. We propose that UFO and LFY are jointly required in the inflorescence meristem to both promote floral meristem development and inhibit, in a non-cell autonomous manner, growth of the bract.

  14. Two-Step Functional Innovation of the Stem-Cell Factors WUS/WOX5 during Plant Evolution

    PubMed Central

    Zhang, Yuzhou; Jiao, Yue; Jiao, Hengwu

    2017-01-01

    WUS and WOX5, which are expressed, respectively, in the organizing center (OC) and the quiescent center (QC), are essential for shoot/root apical stem-cell maintenance in flowering plants. However, little is known about how these stem-cell factors evolved their functions in flowering plants. Here, we show that the WUS/WOX5 proteins acquired two distinct capabilities by a two-step functional innovation process in the course of plant evolution. The first-step is the apical stem-cell maintenance activity of WUS/WOX5, which originated in the common ancestor of ferns and seed plants, as evidenced by the interspecies complementation experiments, showing that ectopic expression of fern Ceratopteris richardii WUS-like (CrWUL) surrounding OC/QC, or exclusive OC-/QC-expressed gymnosperms/angiosperms WUS/WOX5 in Arabidopsis wus-1 and wox5-1 mutants, could rescue their phenotypes. The second-step is the intercellular mobility that emerged in the common ancestor of seed plants after divergence from the ferns. Evidence for this includes confocal imaging of GFP fusion proteins, showing that WUS/WOX5 from seed plants, rather than from the fern CrWUL, can migrate into cells adjacent to the OC/QC. Evolutionary analysis showed that the WUS-like gene was duplicated into two copies prior to the divergence of gymnosperms/angiosperms. Then the two gene copies (WUS and WOX5) have undergone similar levels of purifying selection, which is consistent with their conserved functions in angiosperm shoot/root stem-cell maintenance and floral organ formation. Our results highlight the critical roles and the essential prerequisites that the two-step functional innovation of these genes performs and represents in the origin of flowering plants. PMID:28053005

  15. Flower-specific KNOX phenotype in the orchid Dactylorhiza fuchsii

    PubMed Central

    Box, Mathew S.; Glover, Beverley J.

    2012-01-01

    The KNOTTED1-like homeobox (KNOX) genes are best known for maintaining a pluripotent stem-cell population in the shoot apical meristem that underlies indeterminate vegetative growth, allowing plants to adapt their development to suit the prevailing environmental conditions. More recently, the function of the KNOX gene family has been expanded to include additional roles in lateral organ development such as complex leaf morphogenesis, which has come to dominate the KNOX literature. Despite several reports implicating KNOX genes in the development of carpels and floral elaborations such as petal spurs, few authors have investigated the role of KNOX genes in flower development. Evidence is presented here of a flower-specific KNOX function in the development of the elaborate flowers of the orchid Dactylorhiza fuchsii, which have a three-lobed labellum petal with a prominent spur. Using degenerate PCR, four Class I KNOX genes (DfKN1–4) have been isolated, one from each of the four major Class I KNOX subclades and by reverse transcription PCR (RT-PCR), it is demonstrated that DfKNOX transcripts are detectable in developing floral organs such as the spur-bearing labellum and inferior ovary. Although constitutive expression of the DfKN2 transcript in tobacco produces a wide range of floral abnormalities, including serrated petal margins, extra petal tissue, and fused organs, none of the vegetative phenotypes typical of constitutive KNOX expression were produced. These data are highly suggestive of a role for KNOX expression in floral development that may be especially important in taxa with elaborate flowers. PMID:22771852

  16. Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport.

    PubMed

    Clay, Nicole K; Nelson, Timothy

    2005-06-01

    Polar auxin transport has been implicated in the induction of vascular tissue and in the definition of vein positions. Leaves treated with chemical inhibitors of polar auxin transport exhibited vascular phenotypes that include increased vein thickness and vascularization. We describe a recessive mutant, thickvein (tkv), which develops thicker veins in leaves and in inflorescence stems. The increased vein thickness is attributable to an increased number of vascular cells. Mutant plants have smaller leaves and shorter inflorescence stems, and this reduction in organ size and height is accompanied by an increase in organ vascularization, which appears to be attributable to an increase in the recruitment of cells into veins. Furthermore, although floral development is normal, auxin transport in the inflorescence stem is significantly reduced in the mutant, suggesting that the defect in auxin transport is responsible for the vascular phenotypes. In the primary root, the veins appear morphologically normal, but root growth in the tkv mutant is hypersensitive to exogenous cytokinin. The tkv mutation was found to reside in the ACL5 gene, which encodes a spermine synthase and whose expression is specific to provascular cells. We propose that ACL5/TKV is involved in vein definition (defining the boundaries between veins and nonvein regions) and in polar auxin transport, and that polyamines are involved in this process.

  17. Arabidopsis thickvein Mutation Affects Vein Thickness and Organ Vascularization, and Resides in a Provascular Cell-Specific Spermine Synthase Involved in Vein Definition and in Polar Auxin Transport1

    PubMed Central

    Clay, Nicole K.; Nelson, Timothy

    2005-01-01

    Polar auxin transport has been implicated in the induction of vascular tissue and in the definition of vein positions. Leaves treated with chemical inhibitors of polar auxin transport exhibited vascular phenotypes that include increased vein thickness and vascularization. We describe a recessive mutant, thickvein (tkv), which develops thicker veins in leaves and in inflorescence stems. The increased vein thickness is attributable to an increased number of vascular cells. Mutant plants have smaller leaves and shorter inflorescence stems, and this reduction in organ size and height is accompanied by an increase in organ vascularization, which appears to be attributable to an increase in the recruitment of cells into veins. Furthermore, although floral development is normal, auxin transport in the inflorescence stem is significantly reduced in the mutant, suggesting that the defect in auxin transport is responsible for the vascular phenotypes. In the primary root, the veins appear morphologically normal, but root growth in the tkv mutant is hypersensitive to exogenous cytokinin. The tkv mutation was found to reside in the ACL5 gene, which encodes a spermine synthase and whose expression is specific to provascular cells. We propose that ACL5/TKV is involved in vein definition (defining the boundaries between veins and nonvein regions) and in polar auxin transport, and that polyamines are involved in this process. PMID:15894745

  18. Yeasts in floral nectar: a quantitative survey

    PubMed Central

    Herrera, Carlos M.; de Vega, Clara; Canto, Azucena; Pozo, María I.

    2009-01-01

    Background and Aims One peculiarity of floral nectar that remains relatively unexplored from an ecological perspective is its role as a natural habitat for micro-organisms. This study assesses the frequency of occurrence and abundance of yeast cells in floral nectar of insect-pollinated plants from three contrasting plant communities on two continents. Possible correlations between interspecific differences in yeast incidence and pollinator composition are also explored. Methods The study was conducted at three widely separated areas, two in the Iberian Peninsula (Spain) and one in the Yucatán Peninsula (Mexico). Floral nectar samples from 130 species (37–63 species per region) in 44 families were examined microscopically for the presence of yeast cells. For one of the Spanish sites, the relationship across species between incidence of yeasts in nectar and the proportion of flowers visited by each of five major pollinator categories was also investigated. Key Results Yeasts occurred regularly in the floral nectar of many species, where they sometimes reached extraordinary densities (up to 4 × 105 cells mm−3). Depending on the region, between 32 and 44 % of all nectar samples contained yeasts. Yeast cell densities in the order of 104 cells mm−3 were commonplace, and densities >105 cells mm−3 were not rare. About one-fifth of species at each site had mean yeast cell densities >104 cells mm−3. Across species, yeast frequency and abundance were directly correlated with the proportion of floral visits by bumble-bees, and inversely with the proportion of visits by solitary bees. Conclusions Incorporating nectar yeasts into the scenario of plant–pollinator interactions opens up a number of intriguing avenues for research. In addition, with yeasts being as ubiquitous and abundant in floral nectars as revealed by this study, and given their astounding metabolic versatility, studies focusing on nectar chemical features should carefully control for the presence of yeasts in nectar samples. PMID:19208669

  19. Two-Step Functional Innovation of the Stem-Cell Factors WUS/WOX5 during Plant Evolution.

    PubMed

    Zhang, Yuzhou; Jiao, Yue; Jiao, Hengwu; Zhao, Huabin; Zhu, Yu-Xian

    2017-03-01

    WUS and WOX5, which are expressed, respectively, in the organizing center (OC) and the quiescent center (QC), are essential for shoot/root apical stem-cell maintenance in flowering plants. However, little is known about how these stem-cell factors evolved their functions in flowering plants. Here, we show that the WUS/WOX5 proteins acquired two distinct capabilities by a two-step functional innovation process in the course of plant evolution. The first-step is the apical stem-cell maintenance activity of WUS/WOX5, which originated in the common ancestor of ferns and seed plants, as evidenced by the interspecies complementation experiments, showing that ectopic expression of fern Ceratopteris richardii WUS-like (CrWUL) surrounding OC/QC, or exclusive OC-/QC-expressed gymnosperms/angiosperms WUS/WOX5 in Arabidopsis wus-1 and wox5-1 mutants, could rescue their phenotypes. The second-step is the intercellular mobility that emerged in the common ancestor of seed plants after divergence from the ferns. Evidence for this includes confocal imaging of GFP fusion proteins, showing that WUS/WOX5 from seed plants, rather than from the fern CrWUL, can migrate into cells adjacent to the OC/QC. Evolutionary analysis showed that the WUS-like gene was duplicated into two copies prior to the divergence of gymnosperms/angiosperms. Then the two gene copies (WUS and WOX5) have undergone similar levels of purifying selection, which is consistent with their conserved functions in angiosperm shoot/root stem-cell maintenance and floral organ formation. Our results highlight the critical roles and the essential prerequisites that the two-step functional innovation of these genes performs and represents in the origin of flowering plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Comparative histology of floral elaiophores in the orchids Rudolfiella picta (Schltr.) Hoehne (Maxillariinae sensu lato) and Oncidium ornithorhynchum H.B.K. (Oncidiinae sensu lato).

    PubMed

    Davies, Kevin L; Stpiczyńska, Malgorzata

    2009-08-01

    Floral elaiophores, although widespread amongst orchids, have not previously been described for Maxillariinae sensu lato. Here, two claims that epithelial, floral elaiophores occur in the genus Rudolfiella Hoehne (Bifrenaria clade) are investigated. Presumed elaiophores were compared with those of Oncidiinae Benth. and the floral, resin-secreting tissues of Rhetinantha M.A. Blanco and Heterotaxis Lindl., both genera formerly assigned to Maxillaria Ruiz & Pav. (Maxillariinae sensu stricto). Putative, floral elaiophore tissue of Rudolfiella picta (Schltr.) Hoehne and floral elaiophores of Oncidium ornithorhynchum H.B.K. were examined by means of light microscopy, histochemistry, scanning electron microscopy and transmission electron microscopy. Floral, epithelial elaiophores are present in Rudolfiella picta, indicating, for the first time, that oil secretion occurs amongst members of the Bifrenaria clade (Maxillariinae sensu lato). However, whereas the elaiophore of R. picta is borne upon the labellar callus, the elaiophores of O. ornithorhynchum occur on the lateral lobes of the labellum. In both species, the elaiophore comprises a single layer of palisade secretory cells and parenchymatous, subsecretory tissue. Cell wall cavities are absent from both and there is no evidence of cuticular distension in response to oil accumulation between the outer tangential wall and the overlying cuticle in R. picta. Distension of the cuticle, however, occurs in O. ornithorhynchum. Secretory cells of R. picta contain characteristic, spherical or oval plastids with abundant plastoglobuli and these more closely resemble plastids found in labellar, secretory cells of representatives of Rhetinantha (formerly Maxillaria acuminata Lindl. alliance) than elaiophore plastids of Oncidiinae. In Rhetinantha, such plastids are involved in the synthesis of resin-like material or wax. Despite these differences, the elaiophore anatomy of both R. picta (Bifrenaria clade) and O. ornithorhynchum (Oncidiinae) fundamentally resembles that of several representatives of Oncidiinae. These, in their possession of palisade secretory cells, in turn, resemble the floral elaiophores of certain members of Malpighiaceae, indicating that convergence has occurred here in response to similar pollination pressures.

  1. Variation of hyperforin in Hypericum montbretii during its phenological cycle.

    PubMed

    Cirak, C; Radusiene, J

    2007-11-01

    Hypericum montbretii, a perennial herbaceous plant from Turkish flora has a great pharmaceutical potential with its well-documented chemical content. In the present study, morphogenetic and phenological variations of hyperforin were investigated in this species for the first time. Wild growing plants were harvested at vegetative, floral budding, full flowering, fresh fruiting, and mature fruiting stages and dissected into stem, leaf and reproductive tissues and assayed for hyperforin by HPLC method. Phenological changes in hyperforin content were found to be significant. After decreasing at floral budding slightly, hyperforin concentration in whole shoots increased with advancing of plant development and the highest level was reached at fresh fruiting. Among different parts of the plant, reproductive tissues namely green capsules and full opened flowers accumulated significantly higher amount of hyperforin when compared to stems and leaves. Such kind of data could be useful for elucidation of the chemotaxonomical significance of hyperforin and phytochemical evaluation of H. montbretii.

  2. Effect of variety on content of bioactive phenolic compounds in common elder (Sambucus nigra L.).

    PubMed

    Vrchotová, Naděžda; Dadáková, Eva; Matějíček, Aleš; Tříska, Jan; Kaplan, Jiří

    2017-03-01

    The inflorescence of common elder (Sambucus nigra L., Adoxaceae) is known to be rich in phenolic compounds. The content of five selected phenolic compounds (rutin, chlorogenic acid, isoquercitrin, isorhamnetin-3-O- rutinoside and dicaffeoylquinic acid) was determined in methanolic extracts from flowers and floral stems by HPLC in samples obtained from 20 varieties of S. nigra cultivated in Czech Republic. In all samples, there were determined rutin (11-54 mg/g), chlorogenic acid (23-46 mg/g), isoquercitrin (0.6-18 mg/g), isorhamnetin-3-O-rutinoside (3-10 mg/g), calculated on air-dried material. The content of dicaffeoylquinic acid was 0-13 mg/g of air-dried material. The amount of the analysed compounds in floral stems was lower than the flowers. The results are a unique set of information on the content of main phenolics in the inflorescence of cultured elderberry varieties.

  3. The shoot stem cell niche in angiosperms: expression patterns of WUS orthologues in rice and maize imply major modifications in the course of mono- and dicot evolution.

    PubMed

    Nardmann, Judith; Werr, Wolfgang

    2006-12-01

    In Arabidopsis, stem cell homeostasis in the shoot apical meristem (SAM) is controlled by a feedback loop between WUS and CLV functions. We have identified WUS orthologues in maize and rice by a detailed phylogenetic analysis of the WOX gene family and subsequent cloning. A single WUS orthologue is present in the rice genome (OsWUS), whereas the allotetraploid maize genome contains 2 WUS paralogues (ZmWUS1 and ZmWUS2). None of the isolated grass WUS orthologues displays an organizing center-type expression pattern in the vegetative SAM as in Arabidopsis. In contrast, the grass-specific expression patterns relate to the specification of new phytomers consistent with the transcriptional expression patterns of TD1 and FON1 (CLV1 orthologues of maize and rice, respectively). Moreover, the grass WUS and CLV1 orthologues are coexpressed in all reproductive meristems, where fasciation and supernumerary floral organs occur in td1 or fon1 loss-of-function mutants. The expression patterns of WUS orthologues in both grass species compared with those of dicots imply that major changes in WUS function, which are correlated with changes in CLV1 signaling, have occurred during angiosperm evolution and raise doubts about the uniqueness of the WUS/CLV antagonism in the maintenance of the shoot stem cell niche in grasses.

  4. AtERF38 (At2g35700), an AP2/ERF family transcription factor gene from Arabidopsis thaliana, is expressed in specific cell types of roots, stems and seeds that undergo suberization.

    PubMed

    Lasserre, Eric; Jobet, Edouard; Llauro, Christel; Delseny, Michel

    2008-12-01

    An inverse genetic approach was used to gain insight into the role of AP2/ERF-type transcription factors genes during plant development in Arabidopsis thaliana. Here we show that the expression pattern of AtERF38, which is, among the organs tested, more intensively expressed in mature siliques and floral stems, is closely associated with tissues that undergo secondary cell wall modifications. Firstly, public microarray data sets analysis indicates that AtERF38 is coregulated with several genes involved in secondary wall thickening. Secondly, this was experimentally confirmed in different types of cells expressing a Pro(AtERF38)::GUS fusion: histochemical analysis revealed strong and specific GUS activity in outer integument cells of mature seeds, endodermal cells of the roots in the primary developmental stage and some sclerified cells of mature inflorescence stems. All of these cells are known or shown here to be characterized by a reinforced wall. The latter, which have not been well characterized to date in Arabidopsis and may be suberized, could benefit of the use of AtERF38 as a specific marker. We were not able to detect any phenotype in an insertion line in which ectopic expression of AtERF38 is caused by the insertion of a T-DNA in its promoter. Nevertheless, AtERF28 may be considered as a candidate regulator of secondary wall metabolism in particular cell types that are not reinforced by the typical deposition of lignin and cellulose, but that have at least in common accumulation of suberin-like lipid polyesters in their walls.

  5. UFO: an Arabidopsis gene involved in both floral meristem and floral organ development.

    PubMed

    Levin, J Z; Meyerowitz, E M

    1995-05-01

    We describe the role of the UNUSUAL FLORAL ORGANS (UFO) gene in Arabidopsis floral development based on a genetic and molecular characterization of the phenotypes of nine ufo alleles. UFO is required for the proper identity of the floral meristem and acts in three different aspects of the process that distinguishes flowers from shoots. UFO is involved in establishing the whorled pattern of floral organs, controlling the determinacy of the floral meristem, and activating the APETALA3 and PISTILLATA genes required for petal and stamen identity. In many respects, UFO acts in a manner similar to LEAFY, but the ufo mutant phenotype also suggests an additional role for UFO in defining boundaries within the floral primordia or controlling cell proliferation during floral organ growth. Finally, genetic interactions that prevent flower formation and lead to the generation of filamentous structures implicate UFO as a member of a new, large, and diverse class of genes in Arabidopsis necessary for flower formation.

  6. Comparative histology of floral elaiophores in the orchids Rudolfiella picta (Schltr.) Hoehne (Maxillariinae sensu lato) and Oncidium ornithorhynchum H.B.K. (Oncidiinae sensu lato)

    PubMed Central

    Davies, Kevin L.; Stpiczyńska, Malgorzata

    2009-01-01

    Background and Aims Floral elaiophores, although widespread amongst orchids, have not previously been described for Maxillariinae sensu lato. Here, two claims that epithelial, floral elaiophores occur in the genus Rudolfiella Hoehne (Bifrenaria clade) are investigated. Presumed elaiophores were compared with those of Oncidiinae Benth. and the floral, resin-secreting tissues of Rhetinantha M.A. Blanco and Heterotaxis Lindl., both genera formerly assigned to Maxillaria Ruiz & Pav. (Maxillariinae sensu stricto). Methods Putative, floral elaiophore tissue of Rudolfiella picta (Schltr.) Hoehne and floral elaiophores of Oncidium ornithorhynchum H.B.K. were examined by means of light microscopy, histochemistry, scanning electron microscopy and transmission electron microscopy. Key Results and Conclusions Floral, epithelial elaiophores are present in Rudolfiella picta, indicating, for the first time, that oil secretion occurs amongst members of the Bifrenaria clade (Maxillariinae sensu lato). However, whereas the elaiophore of R. picta is borne upon the labellar callus, the elaiophores of O. ornithorhynchum occur on the lateral lobes of the labellum. In both species, the elaiophore comprises a single layer of palisade secretory cells and parenchymatous, subsecretory tissue. Cell wall cavities are absent from both and there is no evidence of cuticular distension in response to oil accumulation between the outer tangential wall and the overlying cuticle in R. picta. Distension of the cuticle, however, occurs in O. ornithorhynchum. Secretory cells of R. picta contain characteristic, spherical or oval plastids with abundant plastoglobuli and these more closely resemble plastids found in labellar, secretory cells of representatives of Rhetinantha (formerly Maxillaria acuminata Lindl. alliance) than elaiophore plastids of Oncidiinae. In Rhetinantha, such plastids are involved in the synthesis of resin-like material or wax. Despite these differences, the elaiophore anatomy of both R. picta (Bifrenaria clade) and O. ornithorhynchum (Oncidiinae) fundamentally resembles that of several representatives of Oncidiinae. These, in their possession of palisade secretory cells, in turn, resemble the floral elaiophores of certain members of Malpighiaceae, indicating that convergence has occurred here in response to similar pollination pressures. PMID:19447811

  7. CCS52A2/FZR1, a cell cycle regulator, is an essential factor for shoot apical meristem maintenance in Arabidopsis thaliana.

    PubMed

    Liu, Yajie; Ye, Wei; Li, Beibei; Zhou, Xiaojing; Cui, Yuhai; Running, Mark P; Liu, Kede

    2012-08-08

    Cell division and cell fate decisions regulate organ formation and function in plant growth and development. It is still unclear how specific meristematic regulatory networks operate with the cell cycle machinery to translate stem cell identity and maintenance into cellular behavior. In this study, we address these questions by analysis of a shoot apex defective mutant, namely xcm9. Phenotypic analysis of the xcm9 mutant reveals concomitant premature termination of floral shoots with frequent bifurcation of the shoot apices, stems, and flowers. Microscopic observations show irregular cell organization in shoot apical meristems of xcm9. Positional cloning revealed that xcm9 is a loss of function allele of the CCS52A2/FZR1 gene, which has previously been implicated in root development. Expression analysis demonstrated that CCS52A2 maintains a higher transcriptional expression level in actively dividing tissue. Genetic studies indicated that the CCS52A2 gene functions together with WUSCHEL (WUS) and CLAVATA3 (CLV3) in regulating the development of the shoot meristem, and also contributes to this regulation together with the chromatin remodeling pathway. In addition, fewer xcm9 cells express CYCLIN B1:1, showing that cell cycle progression is disrupted in the mutant. We propose that the CCS52A2 gene is a mediator that functions together with meristematic genes to regulate meristem organization, and cross-functions with chromatin regulators in cell cycle progression during shoot apical meristem development.

  8. Floral development at multiple spatial scales in Polygonum jucundum (Polygonaceae), a distylous species with broadly open flowers.

    PubMed

    Huang, Lan-Jie; Fu, Wen-Long; Wang, Xiao-Fan

    2014-01-01

    Distyly, a special polymorph, has evolved in many groups of angiosperms and has attracted attention since Darwin's time. Development studies on distylous taxa have helped us to understand the evolutionary process of this polymorph, but most of these studies focus on species with narrowly tubular corolla. Here, we studied the floral development of Polygonum jucundum, a distylous species with broadly open flowers, at multiple spatial scales. Results showed that the difference in stigma height between flowers of the two morphs was caused by differences in style growth throughout the entire floral development process. The observed difference in anther heights between the two morphs was because the filaments grew faster in short-styled (SS) than in long-styled (LS) flowers in the later stages of floral development. In addition, the longer styles in LS flowers than in SS flowers was because of faster cell division in the early stages of floral development. However, SS flowers had longer filaments than LS flowers primarily because of greater cell elongation. These results indicate that floral development in P. jucundum differs from that of distylous taxa with floral tubes shown in previous studies. Further, we conclude that the presence of distyly in species with open flowers is a result of convergent evolution.

  9. Specific duplication and dorsoventrally asymmetric expression patterns of Cycloidea-like genes in zygomorphic species of Ranunculaceae.

    PubMed

    Jabbour, Florian; Cossard, Guillaume; Le Guilloux, Martine; Sannier, Julie; Nadot, Sophie; Damerval, Catherine

    2014-01-01

    Floral bilateral symmetry (zygomorphy) has evolved several times independently in angiosperms from radially symmetrical (actinomorphic) ancestral states. Homologs of the Antirrhinum majus Cycloidea gene (Cyc) have been shown to control floral symmetry in diverse groups in core eudicots. In the basal eudicot family Ranunculaceae, there is a single evolutionary transition from actinomorphy to zygomorphy in the stem lineage of the tribe Delphinieae. We characterized Cyc homologs in 18 genera of Ranunculaceae, including the four genera of Delphinieae, in a sampling that represents the floral morphological diversity of this tribe, and reconstructed the evolutionary history of this gene family in Ranunculaceae. Within each of the two RanaCyL (Ranunculaceae Cycloidea-like) lineages previously identified, an additional duplication possibly predating the emergence of the Delphinieae was found, resulting in up to four gene copies in zygomorphic species. Expression analyses indicate that the RanaCyL paralogs are expressed early in floral buds and that the duration of their expression varies between species and paralog class. At most one RanaCyL paralog was expressed during the late stages of floral development in the actinomorphic species studied whereas all paralogs from the zygomorphic species were expressed, composing a species-specific identity code for perianth organs. The contrasted asymmetric patterns of expression observed in the two zygomorphic species is discussed in relation to their distinct perianth architecture.

  10. Specific Duplication and Dorsoventrally Asymmetric Expression Patterns of Cycloidea-Like Genes in Zygomorphic Species of Ranunculaceae

    PubMed Central

    Jabbour, Florian; Cossard, Guillaume; Le Guilloux, Martine; Sannier, Julie; Nadot, Sophie; Damerval, Catherine

    2014-01-01

    Floral bilateral symmetry (zygomorphy) has evolved several times independently in angiosperms from radially symmetrical (actinomorphic) ancestral states. Homologs of the Antirrhinum majus Cycloidea gene (Cyc) have been shown to control floral symmetry in diverse groups in core eudicots. In the basal eudicot family Ranunculaceae, there is a single evolutionary transition from actinomorphy to zygomorphy in the stem lineage of the tribe Delphinieae. We characterized Cyc homologs in 18 genera of Ranunculaceae, including the four genera of Delphinieae, in a sampling that represents the floral morphological diversity of this tribe, and reconstructed the evolutionary history of this gene family in Ranunculaceae. Within each of the two RanaCyL (Ranunculaceae Cycloidea-like) lineages previously identified, an additional duplication possibly predating the emergence of the Delphinieae was found, resulting in up to four gene copies in zygomorphic species. Expression analyses indicate that the RanaCyL paralogs are expressed early in floral buds and that the duration of their expression varies between species and paralog class. At most one RanaCyL paralog was expressed during the late stages of floral development in the actinomorphic species studied whereas all paralogs from the zygomorphic species were expressed, composing a species-specific identity code for perianth organs. The contrasted asymmetric patterns of expression observed in the two zygomorphic species is discussed in relation to their distinct perianth architecture. PMID:24752428

  11. The Genetic Architecture of Interspecific Variation in Mimulus

    PubMed Central

    Macnair, M. R.; Cumbes, Q. J.

    1989-01-01

    The genetic architecture of various floral and morphological differences between Mimulus cupriphilus and Mimulus guttatus is investigated. M. cupriphilus is believed to have speciated from M. guttatus in the recent past. The two parent species, the F(1) and F(2), and two backcrosses were grown and scored for 23 different characters. The analysis of means revealed significant epistasis for a number of the floral characters, particularly those involving the length of parts. Dominance was generally toward M. guttatus, except for the characters related to flowering time. Analysis of the genetic correlations between characters revealed that there were at least four different polygenic genetic systems, governing flowering time, size of flower, number of spots on the corolla, and general size. An analysis of minimum gene number suggested that there were at least 3-7 genes controlling floral size, and a different three controlling floral spot number. Two other characters, corolla lobe shape and stem color, were produced by independent major gene differences. Annuality was also shown to be heritable. The two species appear to utilize the same gene for copper tolerance. The results are discussed in the light of current theories of speciation. PMID:17246497

  12. A redox-mediated modulation of stem bolting in transgenic Nicotiana sylvestris differentially expressing the external mitochondrial NADPH dehydrogenase.

    PubMed

    Liu, Yun-Jun; Nunes-Nesi, Adriano; Wallström, Sabá V; Lager, Ida; Michalecka, Agnieszka M; Norberg, Fredrik E B; Widell, Susanne; Fredlund, Kenneth M; Fernie, Alisdair R; Rasmusson, Allan G

    2009-07-01

    Cytosolic NADPH can be directly oxidized by a calcium-dependent NADPH dehydrogenase, NDB1, present in the plant mitochondrial electron transport chain. However, little is known regarding the impact of modified cytosolic NADPH reduction levels on growth and metabolism. Nicotiana sylvestris plants overexpressing potato (Solanum tuberosum) NDB1 displayed early bolting, whereas sense suppression of the same gene led to delayed bolting, with consequential changes in flowering time. The phenotype was dependent on light irradiance but not linked to any change in biomass accumulation. Whereas the leaf NADPH/NADP(+) ratio was unaffected, the stem NADPH/NADP(+) ratio was altered following the genetic modification and strongly correlated with the bolting phenotype. Metabolic profiling of the stem showed that the NADP(H) change affected relatively few, albeit central, metabolites, including 2-oxoglutarate, glutamate, ascorbate, sugars, and hexose-phosphates. Consistent with the phenotype, the modified NDB1 level also affected the expression of putative floral meristem identity genes of the SQUAMOSA and LEAFY types. Further evidence for involvement of the NADPH redox in stem development was seen in the distinct decrease in the stem apex NADPH/NADP(+) ratio during bolting. Additionally, the potato NDB1 protein was specifically detected in mitochondria, and a survey of its abundance in major organs revealed that the highest levels are found in green stems. These results thus strongly suggest that NDB1 in the mitochondrial electron transport chain can, by modifying cell redox levels, specifically affect developmental processes.

  13. Genetic Enhancer Analysis Reveals that FLORAL ORGAN NUMBER2 and OsMADS3 Co-operatively Regulate Maintenance and Determinacy of the Flower Meristem in Rice.

    PubMed

    Yasui, Yukiko; Tanaka, Wakana; Sakamoto, Tomoaki; Kurata, Tetsuya; Hirano, Hiro-Yuki

    2017-05-01

    Meristems such as the shoot apical meristem and flower meristem (FM) act as a reservoir of stem cells, which reproduce themselves and supply daughter cells for the differentiation of lateral organs. In Oryza sativa (rice), the FLORAL ORGAN NUMBER2 (FON2) gene, which is similar to Arabidopsis CLAVATA3, is involved in meristem maintenance. In fon2 mutants, the numbers of floral organs are increased due to an enlargement of the FM. To identify new factors regulating meristem maintenance in rice, we performed a genetic screening of mutants that enhanced the fon2 mutation, and found a mutant line (2B-424) in which pistil number was dramatically increased. By using a map-based approach and next-generation sequencing, we found that the line 2B-424 had a complete loss-of-function mutation (a large deletion) in OsMADS3, a class C MADS-box gene that is known to be involved in stamen specification. Disruption of OsMADS3 in the fon2 mutant by CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9) technology caused a flower phenotype similar to that of 2B-424, confirming that the gene responsible for enhancement of fon2 was OsMADS3. Morphological analysis showed that the fon2 and osmads3 mutations synergistically affected pistil development and FM determinacy. We also found that whorl 3 was duplicated in mature flowers and the FM was enlarged at an early developmental stage in severe osmads3 single mutants. These findings suggest that OsMADS3 is involved not only in FM determinacy in late flower development but also in FM activity in early flower development. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Arabidopsis floral phytomer development: auxin response relative to biphasic modes of organ initiation

    PubMed Central

    Chandler, J. W.; Werr, W.

    2014-01-01

    In the Arabidopsis inflorescence meristem (IM), auxin is considered a prepatterning signal for floral primordia, whereas a centripetal mode of positional information for floral organ identity is inherent to the ABCE model. However, spatio-temporal patterns of organ initiation in each whorl at the earliest initiation stages are largely unknown. Evidence suggests that initial flower development occurs along an abaxial/adaxial axis and conforms to phytomer theory. Use of the founder cell marker DORNRÖSCHEN-LIKE (DRNL) as a tool in leafy, puchi, and apetala 1 cauliflower mutant backgrounds suggests that bract founder cells are marked at the IM periphery. The DRNL transcription domain in the wild-type IM is spatially discrete from DR5 expression, suggesting that bract initiation is independent of canonical auxin response. When bracts develop in lfy and puchi mutant floral primordia the initiation of lateral sepals precedes the specification of medial sepals compared with wild type, showing an interplay between bract and abaxial sepal founder cell recruitment. In the perianthia (pan) mutant background, DRNL expression indicates that a radial outer whorl arrangement derives from splitting of sepal founder cell populations at abaxial and adaxial positions. This splitting of incipient sepal primordia is partially dependent on PRESSED FLOWER (PRS) activity and implies that sepal specification is independent of WUSCHEL and CLAVATA3 expression, as both marker genes only regain activity in stage-2 flowers, when patterning of inner floral organs switches to a centripetal mode. The transition from an initially abaxial/adaxial into a centripetal patterning programme, and its timing represent an adaptive trait that possibly contributes to variation in floral morphology, especially unidirectional organ initiation. PMID:24744428

  15. Arabidopsis floral phytomer development: auxin response relative to biphasic modes of organ initiation.

    PubMed

    Chandler, J W; Werr, W

    2014-07-01

    In the Arabidopsis inflorescence meristem (IM), auxin is considered a prepatterning signal for floral primordia, whereas a centripetal mode of positional information for floral organ identity is inherent to the ABCE model. However, spatio-temporal patterns of organ initiation in each whorl at the earliest initiation stages are largely unknown. Evidence suggests that initial flower development occurs along an abaxial/adaxial axis and conforms to phytomer theory. Use of the founder cell marker DORNRÖSCHEN-LIKE (DRNL) as a tool in leafy, puchi, and apetala 1 cauliflower mutant backgrounds suggests that bract founder cells are marked at the IM periphery. The DRNL transcription domain in the wild-type IM is spatially discrete from DR5 expression, suggesting that bract initiation is independent of canonical auxin response. When bracts develop in lfy and puchi mutant floral primordia the initiation of lateral sepals precedes the specification of medial sepals compared with wild type, showing an interplay between bract and abaxial sepal founder cell recruitment. In the perianthia (pan) mutant background, DRNL expression indicates that a radial outer whorl arrangement derives from splitting of sepal founder cell populations at abaxial and adaxial positions. This splitting of incipient sepal primordia is partially dependent on PRESSED FLOWER (PRS) activity and implies that sepal specification is independent of WUSCHEL and CLAVATA3 expression, as both marker genes only regain activity in stage-2 flowers, when patterning of inner floral organs switches to a centripetal mode. The transition from an initially abaxial/adaxial into a centripetal patterning programme, and its timing represent an adaptive trait that possibly contributes to variation in floral morphology, especially unidirectional organ initiation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. A Factor Linking Floral Organ Identity and Growth Revealed by Characterization of the Tomato Mutant unfinished flower development (ufd).

    PubMed

    Poyatos-Pertíñez, Sandra; Quinet, Muriel; Ortíz-Atienza, Ana; Yuste-Lisbona, Fernando J; Pons, Clara; Giménez, Estela; Angosto, Trinidad; Granell, Antonio; Capel, Juan; Lozano, Rafael

    2016-01-01

    Floral organogenesis requires coordinated interactions between genes specifying floral organ identity and those regulating growth and size of developing floral organs. With the aim to isolate regulatory genes linking both developmental processes (i.e., floral organ identity and growth) in the tomato model species, a novel mutant altered in the formation of floral organs was further characterized. Under normal growth conditions, floral organ primordia of mutant plants were correctly initiated, however, they were unable to complete their development impeding the formation of mature and fertile flowers. Thus, the growth of floral buds was blocked at an early stage of development; therefore, we named this mutant as unfinished flower development ( ufd ). Genetic analysis performed in a segregating population of 543 plants showed that the abnormal phenotype was controlled by a single recessive mutation. Global gene expression analysis confirmed that several MADS-box genes regulating floral identity as well as other genes participating in cell division and different hormonal pathways were affected in their expression patterns in ufd mutant plants. Moreover, ufd mutant inflorescences showed higher hormone contents, particularly ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and strigol compared to wild type. Such results indicate that UFD may have a key function as positive regulator of the development of floral primordia once they have been initiated in the four floral whorls. This function should be performed by affecting the expression of floral organ identity and growth genes, together with hormonal signaling pathways.

  17. Characterisation of odorants in roasted stem tea using gas chromatography-mass spectrometry and gas chromatography-olfactometry analysis.

    PubMed

    Sasaki, Tetsuya; Koshi, Erina; Take, Harumi; Michihata, Toshihide; Maruya, Masachika; Enomoto, Toshiki

    2017-04-01

    Roasted stem tea has a characteristic flavour, which is obtained by roasting tea stems, by-product of green tea production. This research aims to understand the characteristic odorants in roasted stem tea by comparing it to roasted leaf tea. We revealed potent odorants in commercial roasted stem tea using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry with aroma extract dilution analysis (AEDA). The difference between roasted stem and leaf tea derived from the same tea plants were investigated using GC-MS. Pyrazine compounds exhibited a roasted odour and high flavour dilution (FD) factors, as determined via AEDA. Roasted stem tea was richer in these pyrazines than roasted leaf tea. Geraniol and linalool exhibited high FD factors and a floral odour, and roasted stem tea was richer in these compounds than roasted leaf tea. These results may have a positive impact on the development of tea products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation.

    PubMed

    Ghedira, Rim; De Buck, Sylvie; Van Ex, Frédéric; Angenon, Geert; Depicker, Ann

    2013-12-01

    T-DNA transfer and integration frequencies during Agrobacterium-mediated root explant cocultivation and floral dip transformations of Arabidopsis thaliana were analyzed with and without selection for transformation-competent cells. Based on the presence or absence of CRE recombinase activity without or with the CRE T-DNA being integrated, transient expression versus stable transformation was differentiated. During root explant cocultivation, continuous light enhanced the number of plant cells competent for interaction with Agrobacterium and thus the number of transient gene expression events. However, in transformation competent plant cells, continuous light did not further enhance cotransfer or cointegration frequencies. Upon selection for root transformants expressing a first T-DNA, 43-69 % of these transformants showed cotransfer of another non-selected T-DNA in two different light regimes. However, integration of the non-selected cotransferred T-DNA occurred only in 19-46 % of these transformants, indicating that T-DNA integration in regenerating root cells limits the transformation frequencies. After floral dip transformation, transient T-DNA expression without integration could not be detected, while stable T-DNA transformation occurred in 0.5-1.3 % of the T1 seedlings. Upon selection for floral dip transformants with a first T-DNA, 8-34 % of the transformants showed cotransfer of the other non-selected T-DNA and in 93-100 % of them, the T-DNA was also integrated. Therefore, a productive interaction between the agrobacteria and the female gametophyte, rather than the T-DNA integration process, restricts the floral dip transformation frequencies.

  19. Transcriptomic Signature of the SHATTERPROOF2 Expression Domain Reveals the Meristematic Nature of Arabidopsis Gynoecial Medial Domain1[OPEN

    PubMed Central

    Villarino, Gonzalo H.; Hu, Qiwen; Flores-Vergara, Miguel; Sehra, Bhupinder; Brumos, Javier; Stepanova, Anna N.; Sundberg, Eva; Heber, Steffen

    2016-01-01

    Plant meristems, like animal stem cell niches, maintain a pool of multipotent, undifferentiated cells that divide and differentiate to give rise to organs. In Arabidopsis (Arabidopsis thaliana), the carpel margin meristem is a vital meristematic structure that generates ovules from the medial domain of the gynoecium, the female floral reproductive structure. The molecular mechanisms that specify this meristematic region and regulate its organogenic potential are poorly understood. Here, we present a novel approach to analyze the transcriptional signature of the medial domain of the Arabidopsis gynoecium, highlighting the developmental stages that immediately proceed ovule initiation, the earliest stages of seed development. Using a floral synchronization system and a SHATTERPROOF2 (SHP2) domain-specific reporter, paired with FACS and RNA sequencing, we assayed the transcriptome of the gynoecial medial domain with temporal and spatial precision. This analysis reveals a set of genes that are differentially expressed within the SHP2 expression domain, including genes that have been shown previously to function during the development of medial domain-derived structures, including the ovules, thus validating our approach. Global analyses of the transcriptomic data set indicate a similarity of the pSHP2-expressing cell population to previously characterized meristematic domains, further supporting the meristematic nature of this gynoecial tissue. Our method identifies additional genes including novel isoforms, cis-natural antisense transcripts, and a previously unrecognized member of the REPRODUCTIVE MERISTEM family of transcriptional regulators that are potential novel regulators of medial domain development. This data set provides genome-wide transcriptional insight into the development of the carpel margin meristem in Arabidopsis. PMID:26983993

  20. Comparative anatomy of floral elaiophores in Vitekorchis Romowicz & Szlach., Cyrtochilum Kunth and a florally dimorphic species of Oncidium Sw. (Orchidaceae: Oncidiinae).

    PubMed

    Davies, Kevin L; Stpiczyńska, Małgorzata; Rawski, Michał

    2014-06-01

    Recently, molecular approaches have been used to investigate the phylogeny of subtribe Oncidiinae, resulting in the re-alignment of several of its genera. Here, a description is given of the structure of the floral elaiophores (oil glands) of four species formerly assigned to Oncidium Sw. Those of Vitekorchis excavata (Lindl.) Romowicz & Szlach., Cyrtochilum meirax (Rchb.f.) Dalström and a species of Oncidium displaying floral dimorphism, namely O. heteranthum Poepp. & Endl. var. album, are compared with that of Gomesa longipes (Lindl.) M.W. Chase & N.H. Williams, whose epithelial elaiophores are typical of many Oncidiinae, in order to extend our understanding of elaiophore diversity within this subtribe. Floral elaiophore structure was examined and compared at anthesis for all four species using light microscopy, scanning electron microscopy, transmission electron microscopy and histochemistry. In all species investigated, with the exception of C. meirax, the floral elaiophore occurs on the labellar callus and is of the intermediate type, possessing both glabrous and trichomatous regions. By contrast, although all four species produce lipid secretions, C. meirax lacks an obvious elaiophore. In each case, the secretory tissue is represented by a single-layered epidermis of cuboidal cells (trichomatous and/or atrichomatous). Palisade cells are absent. The secretion may be wax- or oil-like and is usually produced by smooth endoplasmic reticulum (SER). However, in C. meirax, where rough endoplasmic reticulum (RER) predominates, oil accumulates as plastoglobuli within elaioplasts. These plastoglobuli are then discharged into the cytoplasm, forming oil bodies. In some species, oil usually accumulates within vesicles at the plasmalemma or in the periplasmic space before traversing the cell wall and accumulating beneath the cuticle, sometimes with distension of the latter. Gomesa longipes is unusual in its production of a heterogeneous secretion, whereas Vitekorchis excavata is equally remarkable for the protuberances found on the walls of its secretory cells. Anatomically, the secretory tissues of all four species, despite currently being assigned to four different genera, are remarkably similar and indicative of homoplasy. This supports previous investigations of the floral elaiophore in Oncidiinae, which showed that the same elaiophore characters may be shared by different clades, but not always by species of the same genus. Consequently, elaiophores are considered to be of limited value in investigating the phylogeny of this subtribe. Furthermore, floral dimorphism does not greatly modify elaiophore structure in the fertile flowers of Oncidium heteranthum var. album. Based on the presence or absence of well-defined elaiophores, the nature of the secretion and the cell ultrastructure, it is likely that floral oil may be produced in Oncidiinae in one of two ways: by the ER (mainly SER) or by plastids, most notably elaioplasts. Once the oil is discharged into the cytoplasm as oil bodies or oil droplets, there is little difference between the subsequent stages of oil secretion; the oil traversing the cytoplasm (often vesicle-mediated) and cell wall before accumulating beneath the cuticle. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Comparative anatomy of floral elaiophores in Vitekorchis Romowicz & Szlach., Cyrtochilum Kunth and a florally dimorphic species of Oncidium Sw. (Orchidaceae: Oncidiinae)

    PubMed Central

    Davies, Kevin L.; Stpiczyńska, Małgorzata; Rawski, Michał

    2014-01-01

    Background and Aims Recently, molecular approaches have been used to investigate the phylogeny of subtribe Oncidiinae, resulting in the re-alignment of several of its genera. Here, a description is given of the structure of the floral elaiophores (oil glands) of four species formerly assigned to Oncidium Sw. Those of Vitekorchis excavata (Lindl.) Romowicz & Szlach., Cyrtochilum meirax (Rchb.f.) Dalström and a species of Oncidium displaying floral dimorphism, namely O. heteranthum Poepp. & Endl. var. album, are compared with that of Gomesa longipes (Lindl.) M.W. Chase & N.H. Williams, whose epithelial elaiophores are typical of many Oncidiinae, in order to extend our understanding of elaiophore diversity within this subtribe. Methods Floral elaiophore structure was examined and compared at anthesis for all four species using light microscopy, scanning electron microscopy, transmission electron microscopy and histochemistry. Key Results In all species investigated, with the exception of C. meirax, the floral elaiophore occurs on the labellar callus and is of the intermediate type, possessing both glabrous and trichomatous regions. By contrast, although all four species produce lipid secretions, C. meirax lacks an obvious elaiophore. In each case, the secretory tissue is represented by a single-layered epidermis of cuboidal cells (trichomatous and/or atrichomatous). Palisade cells are absent. The secretion may be wax- or oil-like and is usually produced by smooth endoplasmic reticulum (SER). However, in C. meirax, where rough endoplasmic reticulum (RER) predominates, oil accumulates as plastoglobuli within elaioplasts. These plastoglobuli are then discharged into the cytoplasm, forming oil bodies. In some species, oil usually accumulates within vesicles at the plasmalemma or in the periplasmic space before traversing the cell wall and accumulating beneath the cuticle, sometimes with distension of the latter. Gomesa longipes is unusual in its production of a heterogeneous secretion, whereas Vitekorchis excavata is equally remarkable for the protuberances found on the walls of its secretory cells. Conclusions Anatomically, the secretory tissues of all four species, despite currently being assigned to four different genera, are remarkably similar and indicative of homoplasy. This supports previous investigations of the floral elaiophore in Oncidiinae, which showed that the same elaiophore characters may be shared by different clades, but not always by species of the same genus. Consequently, elaiophores are considered to be of limited value in investigating the phylogeny of this subtribe. Furthermore, floral dimorphism does not greatly modify elaiophore structure in the fertile flowers of Oncidium heteranthum var. album. Based on the presence or absence of well-defined elaiophores, the nature of the secretion and the cell ultrastructure, it is likely that floral oil may be produced in Oncidiinae in one of two ways: by the ER (mainly SER) or by plastids, most notably elaioplasts. Once the oil is discharged into the cytoplasm as oil bodies or oil droplets, there is little difference between the subsequent stages of oil secretion; the oil traversing the cytoplasm (often vesicle-mediated) and cell wall before accumulating beneath the cuticle. PMID:24737719

  2. Physiological responses of spring rapeseed (Brassica napus) to red/far-red ratios and irradiance during pre- and post-flowering stages.

    PubMed

    Rondanini, Deborah P; del Pilar Vilariño, Maria; Roberts, Marcos E; Polosa, Marina A; Botto, Javier F

    2014-12-01

    Early shade signals promote the shade avoidance syndrome (SAS) which causes, among others, petiole and shoot elongation and upward leaf position. In spite of its relevance, these photomorphogenic responses have not been deeply studied in rapeseed (Brassica napus). In contrast to other crops like maize and wheat, rapeseed has a complex developmental phenotypic pattern as it evolves from an initial rosette to the main stem elongation and an indeterminate growth of floral raceme. In this work, we analyzed (1) morphological and physiological responses at individual level due to low red/far-red (R/FR) ratio during plant development, and (2) changes in biomass allocation, grain yield and composition at crop level in response to high R/FR ratio and low irradiance in two modern spring rapeseed genotypes. We carried out pot and field experiments modifying R/FR ratios and irradiance at vegetative or reproductive stages. In pot experiments, low R/FR ratio increased the petiole and lamina length, upward leaf position and also accelerated leaf senescence. Furthermore, low R/FR ratio reduced main floral raceme and increased floral branching with higher remobilization of soluble carbohydrates from the stems. In field experiments, low irradiance during post-flowering reduced grain yield, harvest index and grain oil content, and high R/FR ratio reaching the crop partially alleviated such effects. We conclude that photomorphogenic signals are integrated early during the vegetative growth, and irradiance has stronger effects than R/FR signals at rapeseed crop level. © 2014 Scandinavian Plant Physiology Society.

  3. SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs.

    PubMed

    Shi, Jian Xin; Malitsky, Sergey; De Oliveira, Sheron; Branigan, Caroline; Franke, Rochus B; Schreiber, Lukas; Aharoni, Asaph

    2011-05-01

    Floral organs display tremendous variation in their exterior that is essential for organogenesis and the interaction with the environment. This diversity in surface characteristics is largely dependent on the composition and structure of their coating cuticular layer. To date, mechanisms of flower organ initiation and identity have been studied extensively, while little is known regarding the regulation of flower organs surface formation, cuticle composition, and its developmental significance. Using a synthetic microRNA approach to simultaneously silence the three SHINE (SHN) clade members, we revealed that these transcription factors act redundantly to shape the surface and morphology of Arabidopsis flowers. It appears that SHNs regulate floral organs' epidermal cell elongation and decoration with nanoridges, particularly in petals. Reduced activity of SHN transcription factors results in floral organs' fusion and earlier abscission that is accompanied by a decrease in cutin load and modified cell wall properties. SHN transcription factors possess target genes within four cutin- and suberin-associated protein families including, CYP86A cytochrome P450s, fatty acyl-CoA reductases, GSDL-motif lipases, and BODYGUARD1-like proteins. The results suggest that alongside controlling cuticular lipids metabolism, SHNs act to modify the epidermis cell wall through altering pectin metabolism and structural proteins. We also provide evidence that surface formation in petals and other floral organs during their growth and elongation or in abscission and dehiscence through SHNs is partially mediated by gibberellin and the DELLA signaling cascade. This study therefore demonstrates the need for a defined composition and structure of the cuticle and cell wall in order to form the archetypal features of floral organs surfaces and control their cell-to-cell separation processes. Furthermore, it will promote future investigation into the relation between the regulation of organ surface patterning and the broader control of flower development and biological functions.

  4. SHINE Transcription Factors Act Redundantly to Pattern the Archetypal Surface of Arabidopsis Flower Organs

    PubMed Central

    Shi, Jian Xin; Malitsky, Sergey; De Oliveira, Sheron; Branigan, Caroline; Franke, Rochus B.; Schreiber, Lukas; Aharoni, Asaph

    2011-01-01

    Floral organs display tremendous variation in their exterior that is essential for organogenesis and the interaction with the environment. This diversity in surface characteristics is largely dependent on the composition and structure of their coating cuticular layer. To date, mechanisms of flower organ initiation and identity have been studied extensively, while little is known regarding the regulation of flower organs surface formation, cuticle composition, and its developmental significance. Using a synthetic microRNA approach to simultaneously silence the three SHINE (SHN) clade members, we revealed that these transcription factors act redundantly to shape the surface and morphology of Arabidopsis flowers. It appears that SHNs regulate floral organs' epidermal cell elongation and decoration with nanoridges, particularly in petals. Reduced activity of SHN transcription factors results in floral organs' fusion and earlier abscission that is accompanied by a decrease in cutin load and modified cell wall properties. SHN transcription factors possess target genes within four cutin- and suberin-associated protein families including, CYP86A cytochrome P450s, fatty acyl-CoA reductases, GSDL-motif lipases, and BODYGUARD1-like proteins. The results suggest that alongside controlling cuticular lipids metabolism, SHNs act to modify the epidermis cell wall through altering pectin metabolism and structural proteins. We also provide evidence that surface formation in petals and other floral organs during their growth and elongation or in abscission and dehiscence through SHNs is partially mediated by gibberellin and the DELLA signaling cascade. This study therefore demonstrates the need for a defined composition and structure of the cuticle and cell wall in order to form the archetypal features of floral organs surfaces and control their cell-to-cell separation processes. Furthermore, it will promote future investigation into the relation between the regulation of organ surface patterning and the broader control of flower development and biological functions. PMID:21637781

  5. Comparative transcriptomics among floral organs of the basal eudicot Eschscholzia californica as reference for floral evolutionary developmental studies

    PubMed Central

    2010-01-01

    Background Molecular genetic studies of floral development have concentrated on several core eudicots and grasses (monocots), which have canalized floral forms. Basal eudicots possess a wider range of floral morphologies than the core eudicots and grasses and can serve as an evolutionary link between core eudicots and monocots, and provide a reference for studies of other basal angiosperms. Recent advances in genomics have enabled researchers to profile gene activities during floral development, primarily in the eudicot Arabidopsis thaliana and the monocots rice and maize. However, our understanding of floral developmental processes among the basal eudicots remains limited. Results Using a recently generated expressed sequence tag (EST) set, we have designed an oligonucleotide microarray for the basal eudicot Eschscholzia californica (California poppy). We performed microarray experiments with an interwoven-loop design in order to characterize the E. californica floral transcriptome and to identify differentially expressed genes in flower buds with pre-meiotic and meiotic cells, four floral organs at pre-anthesis stages (sepals, petals, stamens and carpels), developing fruits, and leaves. Conclusions Our results provide a foundation for comparative gene expression studies between eudicots and basal angiosperms. We identified whorl-specific gene expression patterns in E. californica and examined the floral expression of several gene families. Interestingly, most E. californica homologs of Arabidopsis genes important for flower development, except for genes encoding MADS-box transcription factors, show different expression patterns between the two species. Our comparative transcriptomics study highlights the unique evolutionary position of E. californica compared with basal angiosperms and core eudicots. PMID:20950453

  6. Byrsonic acid--the clue to floral mimicry involving oil-producing flowers and oil-collecting bees.

    PubMed

    Reis, Mariza G; de Faria, D Aparecida; dos Santos, Isabel Alves; Amaral, Maria do Carmo E; Marsaioli, Anita J

    2007-07-01

    Tetrapedia diversipes and other Apidae (Anthophoridae) may be deceived by floral similarities between Malpighiaceae and Orchidaceae of the Oncidiinae subtribe. The latter do not usually exudate floral oils. Thus, visitors may pollinate the flowers in a deceit/food/pollination syndrome. We studied the chemical compositions of Byrsonima intermedia (Malpighiaceae) floral oil and T. diversipes (Anthophoridae) cell provisions. From B. intermedia floral oil, we isolated a novel fatty acid (3R, 7R)-3,7-diacetoxy-docosanoic acid, here named byrsonic acid, and from T diversipes cell provisions we isolated two novel fatty acid derivatives 3,7-dihydroxy-eicosanoic acid and 3,7-dihydroxy-docosanoic acid, here named tetrapedic acids A and B, respectively. The three fatty acid derivatives have common features: possess long chains (20 or 22 carbon atoms) with no double bond and either hydroxy or acetoxy groups at carbons 3 and 7. This characteristic was also encountered in the fatty acid moiety of oncidinol (2S, 3'R, 7'R)-l-acetyl-2-[3', 7'-diacetoxyeicosanyl)-glycerol, a major floral oil constituent of several Oncidiinae species (Orchidaceae). Thus, both tetrapedic A (C20) and B (C22) could be the biotransformation products of oncidinol and byrsonic acid by T. diversipes hydrolases. These are the chemical clues for bee visitation and oil collecting from both plant species. The results indicate that the deceit/pollination syndrome should not be applied to all Oncidiinae flowers.

  7. Characterization of AgMaT2, a Plasma Membrane Mannitol Transporter from Celery, Expressed in Phloem Cells, Including Phloem Parenchyma Cells[OA

    PubMed Central

    Juchaux-Cachau, Marjorie; Landouar-Arsivaud, Lucie; Pichaut, Jean-Philippe; Campion, Claire; Porcheron, Benoit; Jeauffre, Julien; Noiraud-Romy, Nathalie; Simoneau, Philippe; Maurousset, Laurence; Lemoine, Rémi

    2007-01-01

    A second mannitol transporter, AgMaT2, was identified in celery (Apium graveolens L. var. dulce), a species that synthesizes and transports mannitol. This transporter was successfully expressed in two different heterologous expression systems: baker's yeast (Saccharomyces cerevisiae) cells and tobacco (Nicotiana tabacum) plants (a non-mannitol-producing species). Data indicated that AgMaT2 works as an H+/mannitol cotransporter with a weak selectivity toward other polyol molecules. When expressed in tobacco, AgMaT2 decreased the sensitivity to the mannitol-secreting pathogenic fungi Alternaria longipes, suggesting a role for polyol transporters in defense mechanisms. In celery, in situ hybridization showed that AgMaT2 was expressed in the phloem of leaflets, petioles from young and mature leaves, floral stems, and roots. In the phloem of petioles and leaflets, AgMaT2, as localized with specific antibodies, was present in the plasma membrane of three ontologically related cell types: sieve elements, companion cells, and phloem parenchyma cells. These new data are discussed in relation to the physiological role of AgMaT2 in regulating mannitol fluxes in celery petioles. PMID:17631523

  8. Ectopic expression of SUPERMAN suppresses development of petals and stamens.

    PubMed

    Yun, Jae-Young; Weigel, Detlef; Lee, Ilha

    2002-01-01

    The floral regulatory gene SUPERMAN (SUP) encodes a C2H2 type zinc finger protein that is required for maintaining boundaries between floral organs in Arabidopsis. It has been proposed that the main function of SUP is to balance cell proliferation in the third and fourth whorl of developing flowers, thereby maintaining the boundaries between the two whorls. To gain further insight into the function of SUP, we have ectopically expressed SUP using the promoter of APETALA1 (AP1), a gene that is initially expressed throughout floral meristems and later becomes restricted to the first and second whorls. Flowers of AP1::SUP plants have fewer floral organs, consistent with an effect of SUP on cell proliferation. In addition, the AP1::SUP transgene caused the conversion of petals to sepals and suppressed the development of stamens. The expression of the B function homeotic gene APETALA3 (AP3) and its regulator UNUSUAL FLORAL ORGANS (UFO) were delayed and reduced in AP1::SUP flowers. However, SUP does not act merely through UFO, as constitutive expression of UFO did not rescue the defects in petal and stamen development in AP1::SUP flowers. Together, these results suggest that SUP has both indirect and direct effects on the expression of B function homeotic genes.

  9. Promotion of flowering in azaleas by manipulating photoperiod and temperature induces epigenetic alterations during floral transition.

    PubMed

    Meijón, Mónica; Feito, Isabel; Valledor, Luis; Rodríguez, Roberto; Cañal, María Jesús

    2011-09-01

    The ability to control the timing of flowering is a key strategy for planning production in ornamental species such as the azalea; however, this requires a thorough understanding of floral induction pathways. DNA methylation is one of the main mechanisms involved in controlling the functional state of chromatin and gene expression in response to environmental and developmental signals. This work investigated the promotion of flowering in azaleas by the manipulation of environmental factors, using DNA methylation levels as a marker of floral bud development. The results showed that the change of long-day (LD) to short-day (SD) photoperiod is the primary factor responsible for floral induction in azaleas, whereas the existence of the previous cold period as well as the physiological memory are factors which improve floral production. Furthermore, for blooming to take place, 1300 units of growing degree days under an LD were necessary. The promotion of flowering in azaleas by alterations of photoperiod and temperature induced DNA methylation changes. The demethylation observed after the change from LD to SD is linked to a change in cell fate which is necessary for floral transition to take place and seems to be associated with the floral signal. Copyright © Physiologia Plantarum 2011.

  10. CLE signaling systems during plant development and nematode infection.

    PubMed

    Kiyohara, Syunsuke; Sawa, Shinichiro

    2012-12-01

    Plants contain numerous CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR) (CLE) genes encoding small secreted peptide hormones that function in a variety of developmental and physiological processes. The first known Arabidopsis CLE gene was originally discovered through the analysis of clv3 mutants, which exhibit fasciated stems and an increased number of floral organs. In total, 32 CLE genes have been identified in Arabidopsis. Amongst these are CLV3 and CLE40, which repress the expression of homeobox-containing genes WUSCHEL (WUS) and WUSCHEL-related homeobox 5 (WOX5) to control shoot apical meristem (SAM) and root columella initial cell activity, respectively. Interestingly, the CLE signaling pathway appears to be conserved amongst plants. In this review, we discuss the latest research uncovering the diverse functions and activities of CLE peptides in plants; especially during shoot, root and vascular development. In addition, we discuss the important role of CLE peptides during infection by phytoparasitic nematodes. Understanding the molecular properties of CLE peptides and their modes of action will provide further insight into plant cell-cell communication, which could also be applied to manipulate plant-nematode interactions.

  11. Dynamics of gene expression during development and expansion of vegetative stem internodes of bioenergy sorghum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kebrom, Tesfamichael H.; McKinley, Brian; Mullet, John E.

    Bioenergy sorghum accumulates 75% of shoot biomass in stem internodes. Grass stem internodes are formed during vegetative growth and elongate in response to developmental and environmental signals. To identify genes and molecular mechanisms that modulate the extent of internode growth, we conducted microscopic and transcriptomic analyses of four successive sub-apical vegetative internodes representing different stages of internode development of the bioenergy sorghum genotype R.07020. Stem internodes of sorghum genotype R.07020 are formed during the vegetative phase and their length is enhanced by environmental signals such as shade and floral induction in short days. During vegetative growth, the first visible andmore » youngest sub-apical internode was ~0.7 cm in length, whereas the fourth fully expanded internode was ~5 cm in length. Microscopic analyses revealed that all internode tissue types including pith parenchyma and vascular bundles are present in the four successive internodes. Growth in the first two sub-apical internodes occurred primarily through an increase in cell number consistent with expression of genes involved in the cell cycle and DNA replication. Growth of the 3rd internode was associated with an increase in cell length and growth cessation in the 4th internode was associated with up-regulation of genes involved in secondary cell wall deposition. The expression of genes involved in hormone metabolism and signaling indicates that GA, BR, and CK activity decreased while ethylene, ABA, and JA increased in the 3rd/4th internodes. While the level of auxin appears to be increasing as indicated by the up-regulation of ARFs, down-regulation of TIR during development indicates that auxin signaling is also modified. The expression patterns of transcription factors are closely associated with their role during the development of the vegetative internodes. Microscopic and transcriptome analyses of four successive sub-apical internodes characterized the developmental progression of vegetative stem internodes from initiation through full elongation in the sorghum genotype R.07020. Transcriptome profiling indicates that dynamic variation in the levels and action of GA, CK, IAA, BR, ethylene, ABA, and JA modulate gene expression and growth during internode growth and development. Thus, this study provides detailed microscopic and transcriptomic data useful for identifying genes and molecular pathways regulating internode elongation in response to various developmental and environmental signals.« less

  12. Dynamics of gene expression during development and expansion of vegetative stem internodes of bioenergy sorghum

    DOE PAGES

    Kebrom, Tesfamichael H.; McKinley, Brian; Mullet, John E.

    2017-06-21

    Bioenergy sorghum accumulates 75% of shoot biomass in stem internodes. Grass stem internodes are formed during vegetative growth and elongate in response to developmental and environmental signals. To identify genes and molecular mechanisms that modulate the extent of internode growth, we conducted microscopic and transcriptomic analyses of four successive sub-apical vegetative internodes representing different stages of internode development of the bioenergy sorghum genotype R.07020. Stem internodes of sorghum genotype R.07020 are formed during the vegetative phase and their length is enhanced by environmental signals such as shade and floral induction in short days. During vegetative growth, the first visible andmore » youngest sub-apical internode was ~0.7 cm in length, whereas the fourth fully expanded internode was ~5 cm in length. Microscopic analyses revealed that all internode tissue types including pith parenchyma and vascular bundles are present in the four successive internodes. Growth in the first two sub-apical internodes occurred primarily through an increase in cell number consistent with expression of genes involved in the cell cycle and DNA replication. Growth of the 3rd internode was associated with an increase in cell length and growth cessation in the 4th internode was associated with up-regulation of genes involved in secondary cell wall deposition. The expression of genes involved in hormone metabolism and signaling indicates that GA, BR, and CK activity decreased while ethylene, ABA, and JA increased in the 3rd/4th internodes. While the level of auxin appears to be increasing as indicated by the up-regulation of ARFs, down-regulation of TIR during development indicates that auxin signaling is also modified. The expression patterns of transcription factors are closely associated with their role during the development of the vegetative internodes. Microscopic and transcriptome analyses of four successive sub-apical internodes characterized the developmental progression of vegetative stem internodes from initiation through full elongation in the sorghum genotype R.07020. Transcriptome profiling indicates that dynamic variation in the levels and action of GA, CK, IAA, BR, ethylene, ABA, and JA modulate gene expression and growth during internode growth and development. Thus, this study provides detailed microscopic and transcriptomic data useful for identifying genes and molecular pathways regulating internode elongation in response to various developmental and environmental signals.« less

  13. Overexpression of two PsnAP1 genes from Populus simonii × P. nigra causes early flowering in transgenic tobacco and Arabidopsis.

    PubMed

    Zheng, Tangchun; Li, Shuang; Zang, Lina; Dai, Lijuan; Yang, Chuanping; Qu, Guan-Zheng

    2014-01-01

    In Arabidopsis, AP1 is a floral meristem identity gene and plays an important role in floral organ development. In this study, PsnAP1-1 and PsnAP1-2 were isolated from the male reproductive buds of poplar (Populus simonii × P. nigra), which are the orthologs of AP1 in Arabidopsis, by sequence analysis. Northern blot and qRT-PCR analysis showed that PsnAP1-1 and PsnAP1-2 exhibited high expression level in early inflorescence development of poplar. Subcellular localization showed the PsnAP1-1 and PsnAP1-2 proteins are localized in the nucleus. Overexpression of PsnAP1-1 and PsnAP1-2 in tobacco under the control of a CaMV 35S promoter significantly enhanced early flowering. These transgenic plants also showed much earlier stem initiation and higher rates of photosynthesis than did wild-type tobacco. qRT-PCR analysis further indicated that overexpression of PsnAP1-1 and PsnAP1-2 resulted in up-regulation of genes related to flowering, such as NtMADS4, NtMADS5 and NtMADS11. Overexpression of PsnAP1-1 and PsnAP1-2 in Arabidopsis also induced early flowering, but did not complement the ap1-10 floral morphology to any noticeable extent. This study indicates that PsnAP1-1 and PsnAP1-2 play a role in floral transition of poplar.

  14. Is nectar reabsorption restricted by the stalk cells of floral and extrafloral nectary trichomes?

    PubMed

    Cardoso-Gustavson, P; Davis, A R

    2015-01-01

    Reabsorption is a phase of nectar dynamics that occurs concurrently with secretion; it has been described in floral nectaries that exude nectar through stomata or unicellular trichomes, but has not yet been recorded in extrafloral glands. Apparently, nectar reabsorption does not occur in multicellular secretory trichomes (MST) due to the presence of lipophilic impregnations - which resemble Casparian strips - in the anticlinal walls of the stalk cells. It has been assumed that these impregnations restrict solute movement within MST to occur unidirectionally and exclusively by the symplast, thereby preventing nectar reflux toward the underlying nectary tissues. We hypothesised that reabsorption is absent in nectaries possessing MST. The fluorochrome lucifer yellow (LYCH) was applied to standing nectar of two floral and extrafloral glands of distantly related species, and then emission spectra from nectary sections were systematically analysed using confocal microscopy. Passive uptake of LYCH via the stalk cells to the nectary tissues occurred in all MST examined. Moreover, we present evidence of nectar reabsorption in extrafloral nectaries, demonstrating that LYCH passed the stalk cells of MST, although it did not reach the deepest nectary tissues. Identical (control) experiments performed with neutral red (NR) demonstrated no uptake of this stain by actively secreting MST, whereas diffusion of NR did occur in plasmolysed MST of floral nectaries at the post-secretory phase, indicating that nectar reabsorption by MST is governed by stalk cell physiology. Interestingly, non-secretory trichomes failed to reabsorb nectar. The role of various nectary components is discussed in relation to the control of nectar reabsorption by secretory trichomes. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Physicochemical, melissopalynological and antioxidant properties of artisanal honeys from Lebanon.

    PubMed

    Jaafar, Katherine; Haidar, Janay; Kuraydiyyah, Sawsan; Ghaddar, Tarek; Knio, Khouzama; Ismail, Baraem; Toufeili, Imad

    2017-07-01

    Sixteen honeydew and 15 floral honeys from Lebanon were analyzed for pollen spectra and physicochemical parameters. A total of 37 families and 67 taxa were recorded with the honeybees producing honeydew honey exhibiting a more diverse foraging behavior than those making floral honeys. The honeydew and floral honeys exhibited differences in moisture content, pH, electrical conductivity, color, protein and Maillard reaction products. The honeydew honeys contained more total phenols, had higher antioxidant contents, and displayed higher antioxidant capacities than the floral samples in the Trolox equivalent antioxidant capacity, oxygen radical absorbance capacity, inhibition of superoxide dismutase activity and protection of red blood cells against hemolysis assays. The honey samples exhibited higher antioxidant capacities, in the aforementioned assays, than their corresponding methanol-extractable phenol fractions although the differences did not reach statistical significance in the floral samples. The relative antioxidant capacity indices which integrate measures of antioxidant capacity from the different assays of the honey samples and their corresponding extracts exhibited similar patterns ( r  = 0.9774, 0.9937) thereby indicating that the antioxidative behavior of the entire honeys is mirrored by their methanol-extractable phenolic fractions.

  16. Overexpression of Two PsnAP1 Genes from Populus simonii × P. nigra Causes Early Flowering in Transgenic Tobacco and Arabidopsis

    PubMed Central

    Zheng, Tangchun; Li, Shuang; Zang, Lina; Dai, Lijuan; Yang, Chuanping; Qu, Guan-Zheng

    2014-01-01

    In Arabidopsis, AP1 is a floral meristem identity gene and plays an important role in floral organ development. In this study, PsnAP1-1 and PsnAP1-2 were isolated from the male reproductive buds of poplar (Populus simonii × P. nigra), which are the orthologs of AP1 in Arabidopsis, by sequence analysis. Northern blot and qRT-PCR analysis showed that PsnAP1-1 and PsnAP1-2 exhibited high expression level in early inflorescence development of poplar. Subcellular localization showed the PsnAP1-1 and PsnAP1-2 proteins are localized in the nucleus. Overexpression of PsnAP1-1 and PsnAP1-2 in tobacco under the control of a CaMV 35S promoter significantly enhanced early flowering. These transgenic plants also showed much earlier stem initiation and higher rates of photosynthesis than did wild-type tobacco. qRT-PCR analysis further indicated that overexpression of PsnAP1-1 and PsnAP1-2 resulted in up-regulation of genes related to flowering, such as NtMADS4, NtMADS5 and NtMADS11. Overexpression of PsnAP1-1 and PsnAP1-2 in Arabidopsis also induced early flowering, but did not complement the ap1-10 floral morphology to any noticeable extent. This study indicates that PsnAP1-1 and PsnAP1-2 play a role in floral transition of poplar. PMID:25360739

  17. Functional Characterization of PhapLEAFY, a FLORICAULA/LEAFY Ortholog in Phalaenopsis aphrodite.

    PubMed

    Jang, Seonghoe

    2015-11-01

    The plant-specific transcription factor LEAFY (LFY) is considered to be a master regulator of flower development in the model plant, Arabidopsis. This protein plays a dual role in plant growth, integrating signals from the floral inductive pathways and acting as a floral meristem identity gene by activating genes for floral organ development. Although LFY occupies an important position in flower development, the functional divergence of LFY homologs has been demonstrated in several plants including monocots and gymnosperms. In particular, the functional roles of LFY genes from orchid species such as Phalaenopsis that contain unique floral morphologies with distinct expression patterns of floral organ identity genes remain elusive. Here, PhapLFY, an ortholog of Arabidopsis LFY from Phalaenopsis aphrodite subsp. formosana, a Taiwanese native monopodial orchid, was isolated and characterized through analyses of expression and protein activity. PhapLFY transcripts accumulated in the floral primordia of developing inflorescences, and the PhapLFY protein had transcriptional autoactivation activity forming as a homodimer. Furthermore, PhapLFY rescues the aberrant floral phenotypes of Arabidopsis lfy mutants. Overexpression of PhapLFY alone or together with PhapFT1, a P. aphrodite subsp. formosana homolog of Arabidopsis FLOWERING LOCUS T (FT) in rice, caused precocious heading. Consistently, a higher Chl content in the sepals and morphological changes in epidermal cells were observed in the floral organs of PhapLFY knock-down orchids generated by virus-induced gene silencing. Taken together, these results suggest that PhapLFY is functionally distinct from RICE FLORICAULA/LEAFY (RFL) but similar to Arabidopsis LFY based on phenotypes of our transgenic Arabidopsis and rice plants. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Phytocalpain controls the proliferation and differentiation fates of cells in plant organ development.

    PubMed

    Ahn, Joon-Woo; Kim, Moonil; Lim, Jeong Hwa; Kim, Gyung-Tae; Pai, Hyun-Sook

    2004-06-01

    Calpain, a calcium-dependent cysteine protease, plays an essential role in basic cellular processes in animal cells, including cell proliferation, apoptosis, and differentiation. NbDEK encodes the calpain homolog of N. benthamiana. In this study, virus-induced gene silencing (VIGS) of NbDEK resulted in arrested organ development and hyperplasia in all the major plant organs examined. The epidermal layers of the leaves and stems were covered with hyperproliferating cell masses, and stomata and trichome development was severely inhibited. During flower development, a single dome-like structure was grown from the flower meristem to generate a large cylinder-shaped flower lacking any floral organs. At the cellular level, cell division was sustained in tissues that were otherwise already differentiated, and cell differentiation was severely hampered. NbDEK is ubiquitously expressed in all the plant tissues examined. In the abnormal organs of the NbDEK VIGS lines, protein levels of D-type cyclins (CycD)2, CycD3, and proliferating cell nuclear antigen (PCNA) were greatly elevated, and transcription of E2F (E2 promoter binding factor), E2F-regulated genes, retinoblastoma (Rb), and KNOTTED1 (KN1)-type homeobox genes was also stimulated. These results suggest that phytocalpain is a key regulator of cell proliferation and differentiation during plant organogenesis, and that it acts partly by controlling the CycD/Rb pathway.

  19. Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in Phalaenopsis orchids.

    PubMed

    Hsieh, Ming-Hsien; Pan, Zhao-Jun; Lai, Pei-Han; Lu, Hsiang-Chia; Yeh, Hsin-Hung; Hsu, Chia-Chi; Wu, Wan-Lin; Chung, Mei-Chu; Wang, Shyh-Shyan; Chen, Wen-Huei; Chen, Hong-Hwa

    2013-09-01

    Orchidaceae, one of the largest angiosperm families, has significant commercial value. Isolation of genes involved in orchid floral development and morphogenesis, scent production, and colouration will advance knowledge of orchid flower formation and facilitate breeding new varieties to increase the commercial value. With high-throughput virus-induced gene silencing (VIGS), this study identified five transcription factors involved in various aspects of flower morphogenesis in the orchid Phalaenopsis equestris. These genes are PeMADS1, PeMADS7, PeHB, PebHLH, and PeZIP. Silencing PeMADS1 and PebHLH resulted in reduced flower size together with a pelaloid column containing petal-like epidermal cells and alterations of epidermal cell arrangement in lip lateral lobes, respectively. Silencing PeMADS7, PeHB, and PeZIP alone resulted in abortion of the first three fully developed flower buds of an inflorescence, which indicates the roles of the genes in late flower development. Furthermore, double silencing PeMADS1 and PeMADS6, C- and B-class MADS-box genes, respectively, produced a combinatorial phenotype with two genes cloned in separate vectors. Both PeMADS1 and PeMADS6 are required to ensure the normal development of the lip and column as well as the cuticle formation on the floral epidermal cell surface. Thus, VIGS allows for unravelling the interaction between two classes of MADS transcription factors for dictating orchid floral morphogenesis.

  20. Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in Phalaenopsis orchids

    PubMed Central

    Hsieh, Ming-Hsien; Pan, Zhao-Jun; Lai, Pei-Han; Lu, Hsiang-Chia; Yeh, Hsin-Hung; Hsu, Chia-Chi; Wu, Wan-Lin; Chung, Mei-Chu; Wang, Shyh-Shyan; Chen, Wen-Huei; Chen, Hong-Hwa

    2013-01-01

    Orchidaceae, one of the largest angiosperm families, has significant commercial value. Isolation of genes involved in orchid floral development and morphogenesis, scent production, and colouration will advance knowledge of orchid flower formation and facilitate breeding new varieties to increase the commercial value. With high-throughput virus-induced gene silencing (VIGS), this study identified five transcription factors involved in various aspects of flower morphogenesis in the orchid Phalaenopsis equestris. These genes are PeMADS1, PeMADS7, PeHB, PebHLH, and PeZIP. Silencing PeMADS1 and PebHLH resulted in reduced flower size together with a pelaloid column containing petal-like epidermal cells and alterations of epidermal cell arrangement in lip lateral lobes, respectively. Silencing PeMADS7, PeHB, and PeZIP alone resulted in abortion of the first three fully developed flower buds of an inflorescence, which indicates the roles of the genes in late flower development. Furthermore, double silencing PeMADS1 and PeMADS6, C- and B-class MADS-box genes, respectively, produced a combinatorial phenotype with two genes cloned in separate vectors. Both PeMADS1 and PeMADS6 are required to ensure the normal development of the lip and column as well as the cuticle formation on the floral epidermal cell surface. Thus, VIGS allows for unravelling the interaction between two classes of MADS transcription factors for dictating orchid floral morphogenesis. PMID:23956416

  1. The role of WOX genes in flower development

    PubMed Central

    Costanzo, Enrico; Trehin, Christophe; Vandenbussche, Michiel

    2014-01-01

    Background WOX (Wuschel-like homeobOX) genes form a family of plant-specific HOMEODOMAIN transcription factors, the members of which play important developmental roles in a diverse range of processes. WOX genes were first identified as determining cell fate during embryo development, as well as playing important roles in maintaining stem cell niches in the plant. In recent years, new roles have been identified in plant architecture and organ development, particularly at the flower level. Scope In this review, the role of WOX genes in flower development and flower architecture is highlighted, as evidenced from data obtained in the last few years. The roles played by WOX genes in different species and different flower organs are compared, and differential functional recruitment of WOX genes during flower evolution is considered. Conclusions This review compares available data concerning the role of WOX genes in flower and organ architecture among different species of angiosperms, including representatives of monocots and eudicots (rosids and asterids). These comparative data highlight the usefulness of the WOX gene family for evo–devo studies of floral development. PMID:24973416

  2. Distribution of XTH, expansin, and secondary-wall-related CesA in floral and fruit abscission zones during fruit development in tomato (Solanum lycopersicum)

    PubMed Central

    Tsuchiya, Mutsumi; Satoh, Shinobu; Iwai, Hiroaki

    2015-01-01

    After fruit development is triggered by pollination, the abscission zone (AZ) in the fruit pedicel strengthens its adhesion to keep the fruit attached. We previously reported that xyloglucan and arabinan accumulation in the AZ accompanies the shedding of unpollinated flowers. After the fruit has developed and is fully ripened, shedding occurs easily in the AZ due to lignin accumulation. Regulation of cell wall metabolism may play an important role in these processes, but it is not well understood. In the present report, we used immunohistochemistry to visualize changes in the distributions of xyloglucan and arabinan metabolism-related enzymes in the AZs of pollinated and unpollinated flowers, and in ripened fruits. During floral abscission, we observed a gradual increase in polyclonal antibody labeling of expansin in the AZ. The intensities of LM6 and LM15 labeling of arabinan and xyloglucan, respectively, also increased. However, during floral abscission, we observed a large 1 day post anthesis (DPA) peak in the polyclonal antibody labeling of XTH in the AZ, which then decreased. These results suggest that expansin and XTH play important, but different roles in the floral abscission process. During fruit abscission, unlike during floral abscission, no AZ-specific expansin and XTH were observed. Although lignification was seen in the AZ of over-ripe fruit pedicels, secondary cell wall-specific cellulose synthase signals were not observed. This suggests that cellulose metabolism-related enzymes do not play important roles in the AZ prior to fruit abscission. PMID:26029225

  3. Floral affinity and benefits of dietary mixing with flowers for a polyphagous scarab, Popillia japonica Newman.

    PubMed

    Held, David W; Potter, Daniel A

    2004-07-01

    Many generalist herbivores, especially adult beetles, are facultative florivores, feeding on leaves but readily accepting floral tissues when available. We speculated that day-flying beetles with high energetic requirements would benefit from dietary mixing with nutrient-rich flower tissues and favor them during foraging. We tested that "Floral Affinity Hypothesis" with Popillia japonica, a day-active ruteline scarab that feeds intermittently throughout its adult life on multiple plant species. In field tests with six species of flowering hosts, far more landings occurred on flowers than on foliage for all plants except Hibiscus syriacus which bears flowers along the main stem rather than terminally. Trials with elevated plants showed that height of the floral display contributes to beetles' landing on flowers. Flower petals generally were preferred over leaves in laboratory choice tests. Nitrogen and water content were comparable or higher in foliage than in petals, but plant sugars were much higher in petals. Longevity and fecundity of beetles provided single-plant diets of Hibiscus, Rosa x hybrida, or Trifolium flowers for 3 weeks were as high, or higher, than for beetles fed foliage of Tilia cordata, a highly suitable resource. As expected, rotating flowers or Tilia foliage with marginally suitable Quercus palustris foliage enhanced those parameters relative to a diet of Quercus alone, but beetles provided high-quality Tilia foliage also benefitted from dietary mixing with flowers. Nearly all past dietary mixing studies concerned immature insects, for which growth rate is paramount. Opportunistic florivory by adult beetles represents a type of dietary mixing wherein the premium may be calorie-rich food for fueling flight muscles, with ensuing reproductive benefits.

  4. Generation and multiplication of plantlets from callus derived from Haplopappus gracilus (Nutt.) Gray and their karyotype analysis

    NASA Technical Reports Server (NTRS)

    Kann, R. P.; O'Connor, S. A.; Levine, H. G.; Krikorian, A. D.

    1991-01-01

    Unopened flower heads of Haplopappus gracilis (2n = 4) provided primary explants for callus production and subsequent induction of organized growth. Callus was initiated from small (3-5 mm in length) floral buds with benzylaminopurine (BAP) (44.4 micromoles; 10 mg/l) and naphthalene acetic acid (NAA) (0.54 micromole; 0.1 mg/l). Lowering the BAP level to 4.44 micromoles (1 mg/l) but maintaining the NAA level, gave rise to organized but highly compressed shoot growing points from an otherwise undifferentiated callus mass. Shoots selected from such cultures were maintainable and could be proliferated by growing 1-1.5-cm stem tip cuttings on Murashige and Skoog basal medium (solidified with agar) containing 0.444 micromole (0.1 mg/l) BAP and 0.054 micromole (0.01 mg/l) NAA. The stem tip multiplication rates obtainable by these means permit reliable strategies for shoot multiplication or production of rooted plantlets. Prolonged subculture and maintenance of shoots on growth regulator-free medium leads to in vitro flowering and greatly reduces rooting capacity. Karyotype analysis of chromosomes from root tip cells at metaphase and chromosome measurements show that karyologically uniform plantlets (based on chromosome number and morphology) can be obtained.

  5. Physcomitrella MADS-box genes regulate water supply and sperm movement for fertilization.

    PubMed

    Koshimizu, Shizuka; Kofuji, Rumiko; Sasaki-Sekimoto, Yuko; Kikkawa, Masahide; Shimojima, Mie; Ohta, Hiroyuki; Shigenobu, Shuji; Kabeya, Yukiko; Hiwatashi, Yuji; Tamada, Yosuke; Murata, Takashi; Hasebe, Mitsuyasu

    2018-01-01

    MIKC classic (MIKC C )-type MADS-box genes encode transcription factors that function in various developmental processes, including angiosperm floral organ identity. Phylogenetic analyses of the MIKC C -type MADS-box family, including genes from non-flowering plants, suggest that the increased numbers of these genes in flowering plants is related to their functional divergence; however, their precise functions in non-flowering plants and their evolution throughout land plant diversification are unknown. Here, we show that MIKC C -type MADS-box genes in the moss Physcomitrella patens function in two ways to enable fertilization. Analyses of protein localization, deletion mutants and overexpression lines of all six genes indicate that three MIKC C -type MADS-box genes redundantly regulate cell division and growth in the stems for appropriate external water conduction, as well as the formation of sperm with motile flagella. The former function appears to be maintained in the flowering plant lineage, while the latter was lost in accordance with the loss of sperm.

  6. De novo Transcriptome Assembly of Floral Buds of Pineapple and Identification of Differentially Expressed Genes in Response to Ethephon Induction

    PubMed Central

    Liu, Chuan-He; Fan, Chao

    2016-01-01

    A remarkable characteristic of pineapple is its ability to undergo floral induction in response to external ethylene stimulation. However, little information is available regarding the molecular mechanism underlying this process. In this study, the differentially expressed genes (DEGs) in plants exposed to 1.80 mL·L−1 (T1) or 2.40 mL·L−1 ethephon (T2) compared with Ct plants (control, cleaning water) were identified using RNA-seq and gene expression profiling. Illumina sequencing generated 65,825,224 high-quality reads that were assembled into 129,594 unigenes with an average sequence length of 1173 bp. Of these unigenes, 24,775 were assigned to specific KEGG pathways, of which metabolic pathways and biosynthesis of secondary metabolites were the most highly represented. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority were involved in metabolic and cellular processes, cell and cell part, catalytic activity and binding. Gene expression profiling analysis revealed 3788, 3062, and 758 DEGs in the comparisons of T1 with Ct, T2 with Ct, and T2 with T1, respectively. GO analysis indicated that these DEGs were predominantly annotated to metabolic and cellular processes, cell and cell part, catalytic activity, and binding. KEGG pathway analysis revealed the enrichment of several important pathways among the DEGs, including metabolic pathways, biosynthesis of secondary metabolites and plant hormone signal transduction. Thirteen DEGs were identified as candidate genes associated with the process of floral induction by ethephon, including three ERF-like genes, one ETR-like gene, one LTI-like gene, one FT-like gene, one VRN1-like gene, three FRI-like genes, one AP1-like gene, one CAL-like gene, and one AG-like gene. qPCR analysis indicated that the changes in the expression of these 13 candidate genes were consistent with the alterations in the corresponding RPKM values, confirming the accuracy and credibility of the RNA-seq and gene expression profiling results. Ethephon-mediated induction likely mimics the process of vernalization in the floral transition in pineapple by increasing LTI, FT, and VRN1 expression and promoting the up-regulation of floral meristem identity genes involved in flower development. The candidate genes screened can be used in investigations of the molecular mechanisms of the flowering pathway and of various other biological mechanisms in pineapple. PMID:26955375

  7. Major Transcriptome Reprogramming Underlies Floral Mimicry Induced by the Rust Fungus Puccinia monoica in Boechera stricta

    PubMed Central

    Haugen, Riston H.; Saunders, Diane G. O.; Leonelli, Lauriebeth; MacLean, Dan; Hogenhout, Saskia A.; Kamoun, Sophien

    2013-01-01

    Pucciniamonoica is a spectacular plant parasitic rust fungus that triggers the formation of flower-like structures (pseudoflowers) in its Brassicaceae host plant Boechera stricta . Pseudoflowers mimic in shape, color, nectar and scent co-occurring and unrelated flowers such as buttercups. They act to attract insects thereby aiding spore dispersal and sexual reproduction of the rust fungus. Although much ecological research has been performed on P . monoica -induced pseudoflowers, this system has yet to be investigated at the molecular or genomic level. To date, the molecular alterations underlying the development of pseudoflowers and the genes involved have not been described. To address this, we performed gene expression profiling to reveal 256 plant biological processes that are significantly altered in pseudoflowers. Among these biological processes, plant genes involved in cell fate specification, regulation of transcription, reproduction, floral organ development, anthocyanin (major floral pigments) and terpenoid biosynthesis (major floral volatile compounds) were down-regulated in pseudoflowers. In contrast, plant genes involved in shoot, cotyledon and leaf development, carbohydrate transport, wax biosynthesis, cutin transport and L-phenylalanine metabolism (pathway that results in phenylethanol and phenylacetaldehyde volatile production) were up-regulated. These findings point to an extensive reprogramming of host genes by the rust pathogen to induce floral mimicry. We also highlight 31 differentially regulated plant genes that are enriched in the biological processes mentioned above, and are potentially involved in the formation of pseudoflowers. This work illustrates the complex perturbations induced by rust pathogens in their host plants, and provides a starting point for understanding the molecular mechanisms of pathogen-induced floral mimicry. PMID:24069397

  8. Major transcriptome reprogramming underlies floral mimicry induced by the rust fungus Puccinia monoica in Boechera stricta.

    PubMed

    Cano, Liliana M; Raffaele, Sylvain; Haugen, Riston H; Saunders, Diane G O; Leonelli, Lauriebeth; MacLean, Dan; Hogenhout, Saskia A; Kamoun, Sophien

    2013-01-01

    Pucciniamonoica is a spectacular plant parasitic rust fungus that triggers the formation of flower-like structures (pseudoflowers) in its Brassicaceae host plant Boecherastricta. Pseudoflowers mimic in shape, color, nectar and scent co-occurring and unrelated flowers such as buttercups. They act to attract insects thereby aiding spore dispersal and sexual reproduction of the rust fungus. Although much ecological research has been performed on P. monoica-induced pseudoflowers, this system has yet to be investigated at the molecular or genomic level. To date, the molecular alterations underlying the development of pseudoflowers and the genes involved have not been described. To address this, we performed gene expression profiling to reveal 256 plant biological processes that are significantly altered in pseudoflowers. Among these biological processes, plant genes involved in cell fate specification, regulation of transcription, reproduction, floral organ development, anthocyanin (major floral pigments) and terpenoid biosynthesis (major floral volatile compounds) were down-regulated in pseudoflowers. In contrast, plant genes involved in shoot, cotyledon and leaf development, carbohydrate transport, wax biosynthesis, cutin transport and L-phenylalanine metabolism (pathway that results in phenylethanol and phenylacetaldehyde volatile production) were up-regulated. These findings point to an extensive reprogramming of host genes by the rust pathogen to induce floral mimicry. We also highlight 31 differentially regulated plant genes that are enriched in the biological processes mentioned above, and are potentially involved in the formation of pseudoflowers. This work illustrates the complex perturbations induced by rust pathogens in their host plants, and provides a starting point for understanding the molecular mechanisms of pathogen-induced floral mimicry.

  9. The role of WOX genes in flower development.

    PubMed

    Costanzo, Enrico; Trehin, Christophe; Vandenbussche, Michiel

    2014-11-01

    WOX (Wuschel-like homeobOX) genes form a family of plant-specific HOMEODOMAIN transcription factors, the members of which play important developmental roles in a diverse range of processes. WOX genes were first identified as determining cell fate during embryo development, as well as playing important roles in maintaining stem cell niches in the plant. In recent years, new roles have been identified in plant architecture and organ development, particularly at the flower level. In this review, the role of WOX genes in flower development and flower architecture is highlighted, as evidenced from data obtained in the last few years. The roles played by WOX genes in different species and different flower organs are compared, and differential functional recruitment of WOX genes during flower evolution is considered. This review compares available data concerning the role of WOX genes in flower and organ architecture among different species of angiosperms, including representatives of monocots and eudicots (rosids and asterids). These comparative data highlight the usefulness of the WOX gene family for evo-devo studies of floral development. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Vesicles Are Persistent Features of Different Plastids.

    PubMed

    Lindquist, Emelie; Solymosi, Katalin; Aronsson, Henrik

    2016-10-01

    Peripheral vesicles in plastids have been observed repeatedly, primarily in proplastids and developing chloroplasts, in which they are suggested to function in thylakoid biogenesis. Previous observations of vesicles in mature chloroplasts have mainly concerned low temperature pretreated plants occasionally treated with inhibitors blocking vesicle fusion. Here, we show that such vesicle-like structures occur not only in chloroplasts and proplastids, but also in etioplasts, etio-chloroplasts, leucoplasts, chromoplasts and even transforming desiccoplasts without any specific pretreatment. Observations are made both in C3 and C4 species, in different cell types (meristematic, epidermis, mesophyll, bundle sheath and secretory cells) and different organs (roots, stems, leaves, floral parts and fruits). Until recently not much focus has been given to the idea that vesicle transport in chloroplasts could be mediated by proteins, but recent data suggest that the vesicle system of chloroplasts has similarities with the cytosolic coat protein complex II system. All current data taken together support the idea of an ongoing, active and protein-mediated vesicle transport not only in chloroplasts but also in other plastids, obviously occurring regardless of chemical modifications, temperature and plastid developmental stage. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Molecular aspects of zygotic embryogenesis in sunflower (Helianthus annuus L.): correlation of positive histone marks with HaWUS expression and putative link HaWUS/HaL1L.

    PubMed

    Salvini, Mariangela; Fambrini, Marco; Giorgetti, Lucia; Pugliesi, Claudio

    2016-01-01

    The link HaWUS/ HaL1L , the opposite transcriptional behavior, and the decrease/increase in positive histone marks bond to both genes suggest an inhibitory effect of WUS on HaL1L in sunflower zygotic embryos. In Arabidopsis, a group of transcription factors implicated in the earliest events of embryogenesis is the WUSCHEL-RELATED HOMEOBOX (WOX) protein family including WUSCHEL (WUS) and other 14 WOX protein, some of which contain a conserved WUS-box domain in addition to the homeodomain. WUS transcripts appear very early in embryogenesis, at the 16-cell embryo stage, but gradually become restricted to the center of the developing shoot apical meristem (SAM) primordium and continues to be expressed in cells of the niche/organizing center of SAM and floral meristems to maintain stem cell population. Moreover, WUS has decisive roles in the embryonic program presumably promoting the vegetative-to-embryonic transition and/or maintaining the identity of the embryonic stem cells. However, data on the direct interaction between WUS and key genes for seed development (as LEC1 and L1L) are not collected. The novelty of this report consists in the characterization of Helianthus annuus WUS (HaWUS) gene and in its analysis regarding the pattern of the methylated lysine 4 (K4) of the Histone H3 and of the acetylated histone H3 during the zygotic embryo development. Also, a parallel investigation was performed for HaL1L gene since two copies of the WUS-binding site (WUSATA), previously identified on HaL1L nucleotide sequence, were able to be bound by the HaWUS recombinant protein suggesting a not described effect of HaWUS on HaL1L transcription.

  12. [LEAFY, a master regulator of flower development].

    PubMed

    Vachon, Gilles; Tichtinsky, Gabrielle; Parcy, François

    2012-01-01

    Flowering plants or angiosperms constitute the vast majority of plant species. Their evolutionary success is largely due to the efficiency of the flower as reproductive structure. Work performed on model plant species in the last 20 years has identified the LEAFY gene as a key regulator of flower development. LEAFY is a unique plant transcription factor responsible for the formation of the earliest floral stage as well as for the induction of homeotic genes triggering floral organ determination. But LEAFY is also present in non-flowering plants such as mosses, ferns and gymnosperms. Recent studies suggest that LEAFY might play a role in cell division and meristem development in basal plants, a function that is probably more ancestral than the later acquired floral function. Analyzing the evolution of the role and the biochemical properties of this peculiar regulator starts to shade light on the mysterious origin of flowering plants. © Société de Biologie, 2012.

  13. ODDSOC2 Is a MADS Box Floral Repressor That Is Down-Regulated by Vernalization in Temperate Cereals1[W][OA

    PubMed Central

    Greenup, Aaron G.; Sasani, Shahryar; Oliver, Sandra N.; Talbot, Mark J.; Dennis, Elizabeth S.; Hemming, Megan N.; Trevaskis, Ben

    2010-01-01

    In temperate cereals, such as wheat (Triticum aestivum) and barley (Hordeum vulgare), the transition to reproductive development can be accelerated by prolonged exposure to cold (vernalization). We examined the role of the grass-specific MADS box gene ODDSOC2 (OS2) in the vernalization response in cereals. The barley OS2 gene (HvOS2) is expressed in leaves and shoot apices but is repressed by vernalization. Vernalization represses OS2 independently of VERNALIZATION1 (VRN1) in a VRN1 deletion mutant of einkorn wheat (Triticum monococcum), but VRN1 is required to maintain down-regulation of OS2 in vernalized plants. Furthermore, barleys that carry active alleles of the VRN1 gene (HvVRN1) have reduced expression of HvOS2, suggesting that HvVRN1 down-regulates HvOS2 during development. Overexpression of HvOS2 delayed flowering and reduced spike, stem, and leaf length in transgenic barley plants. Plants overexpressing HvOS2 showed reduced expression of barley homologs of the Arabidopsis (Arabidopsis thaliana) gene FLOWERING PROMOTING FACTOR1 (FPF1) and increased expression of RNase-S-like genes. FPF1 promotes floral development and enhances cell elongation, so down-regulation of FPF1-like genes might explain the phenotypes of HvOS2 overexpression lines. We present an extended model of the genetic pathways controlling vernalization-induced flowering in cereals, which describes the regulatory relationships between VRN1, OS2, and FPF1-like genes. Overall, these findings highlight differences and similarities between the vernalization responses of temperate cereals and the model plant Arabidopsis. PMID:20431086

  14. Regulatory role of AINTEGUMENTA in organ initiation and growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krizek, Beth Allyn; Lebioda, Lukasz

    2005-03-01

    Although several members of the plant-specific AP2/ERF family of transcription factors are important developmental regulators, many genes in this large protein family remain uncharacterized. Here, we present a phylogenetic analysis of the18 genes that make up the AP2 subgroup of this family. We report expression analyses of seven Arabidopsis genes most closely related to the floral development gene AINTEGUMENTA and show that all AINTEGUMENTA-like (AIL) genes are transcribed in multiple tissues during development. They are expressed primarily in young actively dividing tissues of a plant and not in mature leaves or stems. The spatial distribution of AIL5, AIL6, and AIL7more » mRNA in inflorescences was characterized by in situ hybridization. Each of these genes is expressed in a spatially and temporally distinct pattern within inflorescence meristems and flowers. Ectopic expression of AIL5 resulted in a larger floral organ phenotype, similar to that resulting from ectopic expression of ANT. Our results are consistent with AIL genes having roles in specification of meristematic or division-competent states.« less

  15. PHOTOPERIODIC BEHAVIOR OF SUNFLOWER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, H.J.; Skok, J.; Scully, N.J.

    1959-09-01

    S>The sunflower, Helianthus annuus L., var. Mammoth Russian, has been shown to be a short-day type plant. It will, however, flower under a wide range of photoperiodic conditions, including excessively long days (as long as 20 hours) and a regime in which the daily dark periods are interrupted by 1-hour light periods if it be permitted to grow for a sufficiently long period. Short photoperiods promote flowering both by hastening the initiation of flower primordia and by hastening the development of primordia into macroscropic floral structures. Interruption of the dark periods by light is effective in inhibiting both the initiationmore » of flower primordia as well as the development of primordia into macroscopic floral structures. Sunflower thus exhibits a wide range of photoperiodic conditions under which flowering may take place plus an unusual variability in the time of flowering among individual plants in a given population. This may be related to the phenomenon pointed out by Habermann and Wallace: that a certain maturation requiremert or vegetative growth requirement for flowering must be met before flowering can occur. Stem elongation in sunflower is favored by long photoperiods. (auth)« less

  16. HANABA TARANU regulates the shoot apical meristem and leaf development in cucumber (Cucumis sativus L.)

    PubMed Central

    Ding, Lian; Yan, Shuangshuang; Jiang, Li; Liu, Meiling; Zhang, Juan; Zhao, Jianyu; Zhao, Wensheng; Han, Ying-yan; Wang, Qian; Zhang, Xiaolan

    2015-01-01

    The shoot apical meristem (SAM) is essential for continuous organogenesis in higher plants, while the leaf is the primary source organ and the leaf shape directly affects the efficiency of photosynthesis. HANABA TARANU (HAN) encodes a GATA3-type transcription factor that functions in floral organ development, SAM organization, and embryo development in Arabidopsis, but is involved in suppressing bract outgrowth and promoting branching in grass species. Here the function of the HAN homologue CsHAN1 was characterized in cucumber, an important vegetable with great agricultural and economic value. CsHAN1 is predominantly expressed at the junction of the SAM and the stem, and can partially rescue the han-2 floral organ phenotype in Arabidopsis. Overexpression and RNAi of CsHAN1 transgenic cucumber resulted in retarded growth early after embryogenesis and produced highly lobed leaves. Further, it was found that CsHAN1 may regulate SAM development through regulating the WUSCHEL (WUS) and SHOOT MERISTEMLESS (STM) pathways, and mediate leaf development through a complicated gene regulatory network in cucumber. PMID:26320238

  17. The Origin of Floral Organ Identity Quartets

    PubMed Central

    van Mourik, Hilda; Kaufmann, Kerstin

    2017-01-01

    The origin of flowers has puzzled plant biologists ever since Darwin referred to their sudden appearance in the fossil record as an abominable mystery. Flowers are considered to be an assembly of protective, attractive, and reproductive male and female leaf-like organs. Their origin cannot be understood by a morphological comparison to gymnosperms, their closest relatives, which develop separate male or female cones. Despite these morphological differences, gymnosperms and angiosperms possess a similar genetic toolbox consisting of phylogenetically related MADS domain proteins. Using ancestral MADS domain protein reconstruction, we trace the evolution of organ identity quartets along the stem lineage of crown angiosperms. We provide evidence that current floral quartets specifying male organ identity, which consist of four types of subunits, evolved from ancestral complexes of two types of subunits through gene duplication and integration of SEPALLATA proteins just before the origin of flowering plants. Our results suggest that protein interaction changes underlying this compositional shift were the result of a gradual and reversible evolutionary trajectory. Modeling shows that such compositional changes may have facilitated the evolution of the perfect, bisexual flower. PMID:28100708

  18. The Origin of Floral Organ Identity Quartets.

    PubMed

    Ruelens, Philip; Zhang, Zhicheng; van Mourik, Hilda; Maere, Steven; Kaufmann, Kerstin; Geuten, Koen

    2017-02-01

    The origin of flowers has puzzled plant biologists ever since Darwin referred to their sudden appearance in the fossil record as an abominable mystery. Flowers are considered to be an assembly of protective, attractive, and reproductive male and female leaf-like organs. Their origin cannot be understood by a morphological comparison to gymnosperms, their closest relatives, which develop separate male or female cones. Despite these morphological differences, gymnosperms and angiosperms possess a similar genetic toolbox consisting of phylogenetically related MADS domain proteins. Using ancestral MADS domain protein reconstruction, we trace the evolution of organ identity quartets along the stem lineage of crown angiosperms. We provide evidence that current floral quartets specifying male organ identity, which consist of four types of subunits, evolved from ancestral complexes of two types of subunits through gene duplication and integration of SEPALLATA proteins just before the origin of flowering plants. Our results suggest that protein interaction changes underlying this compositional shift were the result of a gradual and reversible evolutionary trajectory. Modeling shows that such compositional changes may have facilitated the evolution of the perfect, bisexual flower. © 2017 American Society of Plant Biologists. All rights reserved.

  19. Removal of floral microbiota reduces floral terpene emissions

    PubMed Central

    Peñuelas, Josep; Farré-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda

    2014-01-01

    The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting β-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination. PMID:25335793

  20. Removal of floral microbiota reduces floral terpene emissions

    NASA Astrophysics Data System (ADS)

    Peñuelas, Josep; Farré-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda

    2014-10-01

    The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting β-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination.

  1. Removal of floral microbiota reduces floral terpene emissions.

    PubMed

    Peñuelas, Josep; Farré-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda

    2014-10-22

    The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting β-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination.

  2. Comparative floral development in Lithospermum (Boraginaceae) and implications for the evolution and development of heterostyly.

    PubMed

    Cohen, James I; Litt, Amy; Davis, Jerrold I

    2012-05-01

    The evolution and development of floral developmental patterns were investigated in three heterostylous and three homostylous species of Lithospermum to determine whether species that independently acquired the same floral form follow the same pattern of development or different patterns. Using light and scanning electron microscopy, we observed developmental patterns in flowers at different stages of maturity. These patterns were compared within individual species, between heterostylous morphs, and among heterostylous and homostylous species. Although heterostyly has been determined by phylogenetic analysis to have originated independently in each of the heterostylous species, flowers of the long-style morph of each species follow similar patterns of gross development, as do those of the short-style morph. In addition, the flowers of each morph develop in a manner similar to those of their respective homostylous, herkogamous relatives. However, the developmental patterns of the stylar epidermal cells differ among these species and between heterostylous and homostylous species. Floral developmental patterns in homostylous species provide evidence that modification of specific traits, such as patterns of stylar growth, can lead to the evolution of heterostyly. The developmental changes that affect the positions of the stigmas and anthers in each morph likely involve either temporal or spatial modifications of gene function. The floral developmental patterns described here and the occurrence of multiple types of herkogamy within some species of Lithospermum provide evidence that heterostylous species in the genus have originated via distinct evolutionary developmental pathways.

  3. Temporal, but not spatial, changes in expression patterns of petal identity genes are associated with loss of papillate conical cells and the shift to bird pollination in Macaronesian Lotus (Leguminosae).

    PubMed

    Ojeda, D I; Jaén-Molina, R; Santos-Guerra, A; Caujape-Castells, J; Cronk, Q

    2017-05-01

    In the generally bee-pollinated genus Lotus a group of four species have evolved bird-pollinated flowers. The floral changes in these species include altered petal orientation, shape and texture. In Lotus these characters are associated with dorsiventral petal identity, suggesting that shifts in the expression of dorsal identity genes may be involved in the evolution of bird pollination. Of particular interest is Lotus japonicus CYCLOIDEA 2 (LjCYC2), known to determine the presence of papillate conical cells on the dorsal petal in L. japonicus. Bird-pollinated species are unusual in not having papillate conical cells on the dorsal petal. Using RT-PCR at various stages of flower development, we determined the timing of expression in all petal types for the three putative petal identity genes (CYC-like genes) in different species with contrasting floral morphology and pollination syndromes. In bird-pollinated species the dorsal identity gene, LjCYC2, is not expressed at the floral stage when papillate conical cells are normally differentiating in bee-pollinated species. In contrast, in bee-pollinated species, LjCYC2 is expressed during conical cell development. Changes in the timing of expression of the above two genes are associated with modifications in petal growth and lateralisation of the dorsal and ventral petals in the bird-pollinated species. This study indicates that changes in the timing, rather than spatial distribution, of expression likely contribute to the modifications of petal micromorphology and petal size during the transition from bee to bird pollination in Macaronesian Lotus species. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Transcriptome of the floral transition in Rosa chinensis 'Old Blush'.

    PubMed

    Guo, Xuelian; Yu, Chao; Luo, Le; Wan, Huihua; Zhen, Ni; Xu, Tingliang; Tan, Jiongrui; Pan, Huitang; Zhang, Qixiang

    2017-02-23

    The floral transition plays a vital role in the life of ornamental plants. Despite progress in model plants, the molecular mechanisms of flowering regulation remain unknown in perennial plants. Rosa chinensis 'Old Blush' is a unique plant that can flower continuously year-round. In this study, gene expression profiles associated with the flowering transition were comprehensively analyzed during floral transition in the rose. According to the transcriptomic profiles, 85,663 unigenes and 1,637 differentially expressed genes (DEGs) were identified, among which 32 unigenes were involved in the circadian clock, sugar metabolism, hormone, and autonomous pathways. A hypothetical model for the regulation of floral transition was proposed in which the candidate genes function synergistically the floral transition process. Hormone contents and biosynthesis and metabolism genes fluctuated during the rose floral transition process. Gibberellins (GAs) inhibited rose floral transition, the content of GAs gradually decreased and GA2ox and SCL13 were upregulated from vegetative (VM) meristem to floral meristem (FM). Auxin plays an affirmative part in mediating floral transition, auxin content and auxin-related gene expression levels were gradually upregulated during the floral transition of the rose. However, ABA content and ABA signal genes were gradually downregulated, suggesting that ABA passively regulates the rose floral transition by participating in sugar signaling. Furthermore, sugar content and sugar metabolism genes increased during floral transition in the rose, which may be a further florigenic signal that activates floral transition. Additionally, FRI, FY, DRM1, ELIP, COP1, CO, and COL16 are involved in the circadian clock and autonomous pathway, respectively, and they play a positively activating role in regulating floral transition. Overall, physiological changes associated with genes involved in the circadian clock or autonomous pathway collectively regulated the rose floral transition. Our results summarize a valuable collective of gene expression profiles characterizing the rose floral transition. The DEGs are candidates for functional analyses of genes affecting the floral transition in the rose, which is a precious resource that reveals the molecular mechanism of mediating floral transition in other perennial plants.

  5. [Molecular cloning and characterization of BcMYBogu, a novel member of the MYB family involved in OguCMS in Brassica campestris ssp. chinensis].

    PubMed

    Xiang, Xun; Cao, Jia-Shu; Ye, Wan-Zhi; Cui, Hui-Mei; Yu, Jian-Nong

    2007-05-01

    In the attempt to elucidate the molecular mechanism of CMS. Ogura cytoplasmic male sterile (OguCMS) lines were obtained in Chinese cabbage after interspecific hybridization between Brassica. napus L. OguCMS and B. campestris ssp. chinensis followed by recurrent backcross with B. campestris ssp. chinensis as the pollen donor. The CMS lines were significantly characterized by the whitish anther and indehiscence of anther. The tapetal hypertrophy with excess vacuola-tion was the first observed defective soon after the tetrad stage, subsequently the microspores defected in pollen wall forma-tion, and later the cytoplasm detached from the exine wall and underwent degeneration. With aid of cDNA-AFLP and RACE approaches, we cloned the BcMYBogu(GenBank accession No: EF127861) in Chinese cabbage, which is premature expressed in early and middle stage floral buds of OguCMS lines, and predicted to encode a novel protein with a DNA binding domain: SH[AL]QKY[RF] motif at the N-terminus. Phylogenetic comparison revealed that the BcMYBogu was clustered with AtMYB32, AtMYB26 and AtMYB4, which were indicated to be involved in male sterility in Arabidopsis thaliana. The BcMYBogu transcript was detected in rosette leaves, floral buds and stems by RT-PCR analysis. Compared with the maintainer, the expression level of BcMYBogu was increased in these organs, especially in floral buds of OguCMS lines. Our investigation suggests that BcMYBogu is a new member of the MYB family involved in male sterility in Chinese cabbage.

  6. Perigone Lobe Transcriptome Analysis Provides Insights into Rafflesia cantleyi Flower Development.

    PubMed

    Lee, Xin-Wei; Mat-Isa, Mohd-Noor; Mohd-Elias, Nur-Atiqah; Aizat-Juhari, Mohd Afiq; Goh, Hoe-Han; Dear, Paul H; Chow, Keng-See; Haji Adam, Jumaat; Mohamed, Rahmah; Firdaus-Raih, Mohd; Wan, Kiew-Lian

    2016-01-01

    Rafflesia is a biologically enigmatic species that is very rare in occurrence and possesses an extraordinary morphology. This parasitic plant produces a gigantic flower up to one metre in diameter with no leaves, stem or roots. However, little is known about the floral biology of this species especially at the molecular level. In an effort to address this issue, we have generated and characterised the transcriptome of the Rafflesia cantleyi flower, and performed a comparison with the transcriptome of its floral bud to predict genes that are expressed and regulated during flower development. Approximately 40 million sequencing reads were generated and assembled de novo into 18,053 transcripts with an average length of 641 bp. Of these, more than 79% of the transcripts had significant matches to annotated sequences in the public protein database. A total of 11,756 and 7,891 transcripts were assigned to Gene Ontology categories and clusters of orthologous groups respectively. In addition, 6,019 transcripts could be mapped to 129 pathways in Kyoto Encyclopaedia of Genes and Genomes Pathway database. Digital abundance analysis identified 52 transcripts with very high expression in the flower transcriptome of R. cantleyi. Subsequently, analysis of differential expression between developing flower and the floral bud revealed a set of 105 transcripts with potential role in flower development. Our work presents a deep transcriptome resource analysis for the developing flower of R. cantleyi. Genes potentially involved in the growth and development of the R. cantleyi flower were identified and provide insights into biological processes that occur during flower development.

  7. Spatial and temporal transcriptome changes occurring during flower opening and senescence of the ephemeral hibiscus flower, Hibiscus rosa-sinensis

    PubMed Central

    Trivellini, Alice; Cocetta, Giacomo; Hunter, Donald A.; Vernieri, Paolo; Ferrante, Antonio

    2016-01-01

    Flowers are complex systems whose vegetative and sexual structures initiate and die in a synchronous manner. The rapidity of this process varies widely in flowers, with some lasting for months while others such as Hibiscus rosa-sinensis survive for only a day. The genetic regulation underlying these differences is unclear. To identify key genes and pathways that coordinate floral organ senescence of ephemeral flowers, we identified transcripts in H. rosa-sinensis floral organs by 454 sequencing. During development, 2053 transcripts increased and 2135 decreased significantly in abundance. The senescence of the flower was associated with increased abundance of many hydrolytic genes, including aspartic and cysteine proteases, vacuolar processing enzymes, and nucleases. Pathway analysis suggested that transcripts altering significantly in abundance were enriched in functions related to cell wall-, aquaporin-, light/circadian clock-, autophagy-, and calcium-related genes. Finding enrichment in light/circadian clock-related genes fits well with the observation that hibiscus floral development is highly synchronized with light and the hypothesis that ageing/senescence of the flower is orchestrated by a molecular clock. Further study of these genes will provide novel insight into how the molecular clock is able to regulate the timing of programmed cell death in tissues. PMID:27591432

  8. Molecular cloning and characterization of a gene regulating flowering time from Alfalfa (Medicago sativa L.).

    PubMed

    Zhang, Tiejun; Chao, Yuehui; Kang, Junmei; Ding, Wang; Yang, Qingchuan

    2013-07-01

    Genes that regulate flowering time play crucial roles in plant development and biomass formation. Based on the cDNA sequence of Medicago truncatula (accession no. AY690425), the LFY gene of alfalfa was cloned. Sequence similarity analysis revealed high homology with FLO/LFY family genes of other plants. When fused to the green fluorescent protein, MsLFY protein was localized in the nucleus of onion (Allium cepa L.) epidermal cells. The RT-qPCR analysis of MsLFY expression patterns showed that the expression of MsLFY gene was at a low level in roots, stems, leaves and pods, and the expression level in floral buds was the highest. The expression of MsLFY was induced by GA3 and long photoperiod. Plant expression vector was constructed and transformed into Arabidopsis by the agrobacterium-mediated methods. PCR amplification with the transgenic Arabidopsis genome DNA indicated that MsLFY gene had integrated in Arabidopsis genome. Overexpression of MsLFY specifically caused early flowering under long day conditions compared with non-transgenic plants. These results indicated MsLFY played roles in promoting flowering time.

  9. Comparison of the structure of floral nectaries in two Euonymus L. species (Celastraceae).

    PubMed

    Konarska, Agata

    2015-05-01

    The inconspicuous Euonymus L. flowers are equipped with open receptacular floral nectaries forming a quadrilateral green disc around the base of the superior ovary. The morphology and anatomy of the nectaries in Euonymus fortunei (Turcz.) Hand.-Mazz. and Euonymus europaeus L. flowers were analysed under a bright-field light microscope as well as stereoscopic and scanning electron microscopes. Photosynthetic nectaries devoid of the vascular tissue were found in both species. Nectar was exuded through typical nectarostomata (E. fortunei) or nectarostomata and secretory cell cuticle (E. europaeus). The nectaries of the examined species differed in their width and height, number of layers and thickness of secretory parenchyma, and the height of epidermal cells. Moreover, there were differences in the location and abundance of nectarostomata and the content of starch and phenolic compounds.

  10. Floral scent emitted by white and coloured morphs in orchids.

    PubMed

    Dormont, L; Delle-Vedove, R; Bessière, J-M; Schatz, B

    2014-04-01

    Polymorphism of floral signals, such as colour and odour, is widespread in flowering plants and often considered to be adaptive, reflecting various pollinator preferences for particular floral traits. Several authors have recently hypothesized that particular associations exist between floral colour and scent, which would result from shared biochemistry between these two floral traits. In this study, we compared the chemical composition of floral volatiles emitted by white- and purple-flowered morphs of three different orchid species, including two food-deceptive species (Orchis mascula and Orchis simia) and a food-rewarding species (Anacamptis coriophora fragrans). We found clear interspecific differences in floral odours. As expected from their pollination strategy, the two deceptive orchids showed high inter-individual variation of floral volatiles, whereas the food-rewarding A. c. fragrans showed low variation of floral scent. Floral volatiles did not differ overall between white- and coloured-flowered morphs in O. mascula and A. c. fragrans, while O. simia exhibited different volatile profiles between the two colour morphs. However, a detailed analysis restricted to benzenoid compounds (which are associated with the production of floral anthocyanin pigments) showed that white inflorescences emitted more volatiles of the shikimic pathway than coloured ones, both for O. mascula and O. simia. These results are consistent with the current hypothesis that shared biochemistry creates pleiotropic links between floral colour and scent. Whether intraspecific variation of floral signals actually affects pollinator attraction and influences the reproductive success of these orchids remains to be determined. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Meristem maintenance, auxin, jasmonic and abscisic acid pathways as a mechanism for phenotypic plasticity in Antirrhinum majus

    NASA Astrophysics Data System (ADS)

    Weiss, Julia; Alcantud-Rodriguez, Raquel; Toksöz, Tugba; Egea-Cortines, Marcos

    2016-01-01

    Plants grow under climatic changing conditions that cause modifications in vegetative and reproductive development. The degree of changes in organ development i.e. its phenotypic plasticity seems to be determined by the organ identity and the type of environmental cue. We used intraspecific competition and found that Antirrhinum majus behaves as a decoupled species for lateral organ size and number. Crowding causes decreases in leaf size and increased leaf number whereas floral size is robust and floral number is reduced. Genes involved in shoot apical meristem maintenance like ROA and HIRZ, cell cycle (CYCD3a; CYCD3b, HISTONE H4) or organ polarity (GRAM) were not significantly downregulated under crowding conditions. A transcriptomic analysis of inflorescence meristems showed Gene Ontology enriched pathways upregulated including Jasmonic and Abscisic acid synthesis and or signalling. Genes involved in auxin synthesis such as AmTAR2 and signalling AmANT were not affected by crowding. In contrast, AmJAZ1, AmMYB21, AmOPCL1 and AmABA2 were significantly upregulated. Our work provides a mechanistic working hypothesis where a robust SAM and stable auxin signalling enables a homogeneous floral size while changes in JA and ABA signalling maybe responsible for the decreased leaf size and floral number.

  12. Extreme divergence in floral scent among woodland star species (Lithophragma spp.) pollinated by floral parasites

    PubMed Central

    Friberg, Magne; Schwind, Christopher; Raguso, Robert A.; Thompson, John N.

    2013-01-01

    Backgrounds and Aims A current challenge in coevolutionary biology is to understand how suites of traits vary as coevolving lineages diverge. Floral scent is often a complex, variable trait that attracts a suite of generalized pollinators, but may be highly specific in plants specialized on attracting coevolved pollinating floral parasites. In this study, floral scent variation was investigated in four species of woodland stars (Lithophragma spp.) that share the same major pollinator (the moth Greya politella, a floral parasite). Three specific hypotheses were tested: (1) sharing the same specific major pollinator favours conservation of floral scent among close relatives; (2) selection favours ‘private channels’ of rare compounds particularly aimed at the specialist pollinator; or (3) selection from rare, less-specialized co-pollinators mitigates the conservation of floral scent and occurrence of private channels. Methods Dynamic headspace sampling and solid-phase microextraction were applied to greenhouse-grown plants from a common garden as well as to field samples from natural populations in a series of experiments aiming to disentangle the genetic and environmental basis of floral scent variation. Key Results Striking floral scent divergence was discovered among species. Only one of 69 compounds was shared among all four species. Scent variation was largely genetically based, because it was consistent across field and greenhouse treatments, and was not affected by visits from the pollinating floral parasite. Conclusions The strong divergence in floral scents among Lithophragma species contrasts with the pattern of conserved floral scent composition found in other plant genera involved in mutualisms with pollinating floral parasites. Unlike some of these other obligate pollination mutualisms, Lithophragma plants in some populations are occasionally visited by generalist pollinators from other insect taxa. This additional complexity may contribute to the diversification in floral scent found among the Lithophragma species pollinated by Greya moths. PMID:23365407

  13. Floral and vegetative cues in oil-secreting and non-oil-secreting Lysimachia species

    PubMed Central

    Schäffler, I.; Balao, F.; Dötterl, S.

    2012-01-01

    Background and Aims Unrelated plants pollinated by the same group or guild of animals typically evolve similar floral cues due to pollinator-mediated selection. Related plant species, however, may possess similar cues either as a result of pollinator-mediated selection or as a result of sharing a common ancestor that possessed the same cues or traits. In this study, visual and olfactory floral cues in Lysimachia species exhibiting different pollination strategies were analysed and compared, and the importance of pollinators and phylogeny on the evolution of these floral cues was determined. For comparison, cues of vegetative material were examined where pollinator selection would not be expected. Methods Floral and vegetative scents and colours in floral oil- and non-floral oil-secreting Lysimachia species were studied by chemical and spectrophotometric analyses, respectively, compared between oil- and non-oil-secreting species, and analysed by phylogenetically controlled methods. Key Results Vegetative and floral scent was species specific, and variability in floral but not vegetative scent was lower in oil compared with non-oil species. Overall, oil species did not differ in their floral or vegetative scent from non-oil species. However, a correlation was found between oil secretion and six floral scent constituents specific to oil species, whereas the presence of four other floral compounds can be explained by phylogeny. Four of the five analysed oil species had bee-green flowers and the pattern of occurrence of this colour correlated with oil secretion. Non-oil species had different floral colours. The colour of leaves was similar among all species studied. Conclusions Evidence was found for correlated evolution between secretion of floral oils and floral but not vegetative visual and olfactory cues. The cues correlating with oil secretion were probably selected by Macropis bees, the specialized pollinators of oil-secreting Lysimachia species, and may have evolved in order to attract these bees. PMID:22634256

  14. Micromorphology and ultrastructure of the floral nectaries of Polemonium caeruleum L. (Polemoniaceae).

    PubMed

    Chwil, Mirosława; Chwil, Stanisław

    2012-10-01

    The Polemoniaceae family forms flowers diverse in the terms of pollination methods and nectar types. The micromorphology of the nectary surface and the tissue structures as well as the ultrastructure of the cells of the floral nectaries in Polemonium caeruleum L. were examined using light, scanning and transmission electron microscopy. A bowl-shaped nectary, detached from the ovary, grows at its base. Its contour shows folds with depressions in the places where the stamens grow, forming five-lobed disc (synapomorphic character). Nectar is secreted through modified anomocytic stomata, which are formed in the epidermis covering the tip and the lateral wall of the projection located between the staminal filaments. The undulate nectary consists of a single-layered epidermis and three to nine layers of parenchymal cells. The cells of the nectary contain a dense cytoplasm, numerous plastids with an osmophilic stroma and starch grains, well-developed endoplasmic reticulum, as well as a large number of mitochondria interacting with the Golgi bodies. The ultrastructure of nectary cells indicates the granulocrine secretion mechanism and diversified transport of nectar.

  15. Mechanisms of EDDHA effects on the promotion of floral induction in the long-day plant Lemna minor (L.).

    PubMed

    Krajncic, Bozidar; Nemec, Joze

    2003-02-01

    EDDHA added in an optimal concentration (20.5 mumol.L-1) to a modified Pirson-Seidel nutrient solution induces flowering in some clones of the species Lemna minor, Lemna gibba and Spirodela polyrrhiza, which in the absence of EDDHA in the same nutrient solution do not flower. By adding EDDHA (20.5 mumol.L-1), floral induction under LD conditions is optimally promoted in the long-day (LD) species Lemna minor. After adding EDDHA to the nutrient solution, before floral induction and during flowering, Zn, Mn and Cu content is significantly increased in plants. Zn-EDDHA (0.86 mumol.L-1), Mn-EDDHA (1.51 mumol.L-1) and Cu-EDDHA (0.12 mumol.L-1), when used individually, greatly promote flowering under LD conditions as compared to flowering in the same nutrient solution with an equivalent quantity of Zn, Mn or Cu in the nonchelate form. If, on the other hand, Zn-EDDHA and Mn-EDDHA are added to the nutrient solution together (instead of Zn and Mn in nonchelate form), their effect on the promotion of flowering is less than in the case of their individual use. This shows that there is antagonism between Zn-EDDHA and Mn-EDDHA that is eliminated by adding EDDHA to the nutrient solution. We obtained the highest percentage of flowering plants (i.e. 74%) if we added EDDHA (20.5 mumol.L-1) to the nutrient solution containing Mn, Zn and Cu in chelate form. 74% of flowering plants actually means that flowering was achieved in all physiologically mature plants. Our results show that EDDHA promotes floral induction in Lemna minor under LD conditions, especially through chelating Zn, Mn and Cu, and, in addition, through eliminating the antagonism between Mn and Zn chelates EDDHA. Zn-EDDHA (0.86 mumol.L-1) also promote floral differentiation, especially cell division of microspore mother cells into dyads and those into microspore tetrads, which can be seen in microphotographs. When investigating possible pathways through which Mn-EDDHA, Zn-EDDHA and Cu-EDDHA promote flowering, we studied the effects of various concentrations of IAA and sucrose added to the nutrient solution as well. The results support the hypothesis that one of the possible pathways in which Mn-EDDHA promotes floral induction is through auxin oxidase, whereas Zn-EDDHA and Cu-EDDHA probably promote it through the enhancement of the photosynthesis and synthesis of sucrose.

  16. The CesA Gene Family of Barley. Quantitative Analysis of Transcripts Reveals Two Groups of Co-Expressed Genes1

    PubMed Central

    Burton, Rachel A.; Shirley, Neil J.; King, Brendon J.; Harvey, Andrew J.; Fincher, Geoffrey B.

    2004-01-01

    Sequence data from cDNA and genomic clones, coupled with analyses of expressed sequence tag databases, indicate that the CesA (cellulose synthase) gene family from barley (Hordeum vulgare) has at least eight members, which are distributed across the genome. Quantitative polymerase chain reaction has been used to determine the relative abundance of mRNA transcripts for individual HvCesA genes in vegetative and floral tissues, at different stages of development. To ensure accurate expression profiling, geometric averaging of multiple internal control gene transcripts has been applied for the normalization of transcript abundance. Total HvCesA mRNA levels are highest in coleoptiles, roots, and stems and much lower in floral tissues, early developing grain, and in the elongation zone of leaves. In most tissues, HvCesA1, HvCesA2, and HvCesA6 predominate, and their relative abundance is very similar; these genes appear to be coordinately transcribed. A second group, comprising HvCesA4, HvCesA7, and HvCesA8, also appears to be coordinately transcribed, most obviously in maturing stem and root tissues. The HvCesA3 expression pattern does not fall into either of these two groups, and HvCesA5 transcript levels are extremely low in all tissues. Thus, the HvCesA genes fall into two general groups of three genes with respect to mRNA abundance, and the co-expression of the groups identifies their products as candidates for the rosettes that are involved in cellulose biosynthesis at the plasma membrane. Phylogenetic analysis allows the two groups of genes to be linked with orthologous Arabidopsis CesA genes that have been implicated in primary and secondary wall synthesis. PMID:14701917

  17. Nonsterol Triterpenoids as Major Constituents of Olea europaea

    PubMed Central

    Stiti, Naïm; Hartmann, Marie-Andrée

    2012-01-01

    Plant triterpenoids represent a large and structurally diverse class of natural products. A growing interest has been focused on triterpenoids over the past decade due to their beneficial effects on human health. We show here that these bioactive compounds are major constituents of several aerial parts (floral bud, leaf bud, stem, and leaf) of olive tree, a crop exploited so far almost exclusively for its fruit and oil. O. europaea callus cultures were analyzed as well. Twenty sterols and twenty-nine nonsteroidal tetra- and pentacyclic triterpenoids belonging to seven types of carbon skeletons (oleanane, ursane, lupane, taraxerane, taraxastane, euphane, and lanostane) were identified and quantified by GC and GC-MS as free and esterified compounds. The oleanane-type compounds, oleanolic acid and maslinic acid, were largely predominant in all the organs tested, whereas they are practically absent in olive oil. In floral buds, they represented as much as 2.7% of dry matter. In callus cultures, lanostane-type compounds were the most abundant triterpenoids. In all the tissues analyzed, free and esterified triterpene alcohols exhibited different distribution patterns of their carbon skeletons. Taken together, these data provide new insights into largely unknown triterpene secondary metabolism of Olea europaea. PMID:22523691

  18. Wild bees preferentially visit Rudbeckia flower heads with exaggerated ultraviolet absorbing floral guides

    PubMed Central

    Horth, Lisa; Campbell, Laura; Bray, Rebecca

    2014-01-01

    ABSTRACT Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent floral guides affect visitation rates and pollinator preference. PMID:24585774

  19. Wild bees preferentially visit Rudbeckia flower heads with exaggerated ultraviolet absorbing floral guides.

    PubMed

    Horth, Lisa; Campbell, Laura; Bray, Rebecca

    2014-03-15

    Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent floral guides affect visitation rates and pollinator preference.

  20. Types of Stem Cells

    MedlinePlus

    ... Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  1. miRNA-regulated cancer stem cells: understanding the property and the role of miRNA in carcinogenesis.

    PubMed

    Chakraborty, Chiranjib; Chin, Kok-Yong; Das, Srijit

    2016-10-01

    Over the last few years, microRNAs (miRNA)-controlled cancer stem cells have drawn enormous attention. Cancer stem cells are a small population of tumor cells that possess the stem cell property of self-renewal. Recent data shows that miRNA regulates this small population of stem cells. In the present review, we explained different characteristics of cancer stem cells as well as miRNA regulation of self-renewal and differentiation in cancer stem cells. We also described the migration and tumor formation. Finally, we described the different miRNAs that regulate various types of cancer stem cells, such as prostate cancer stem cells, head and neck cancer stem cells, breast cancer stem cells, colorectal cancer stem cells, lung cancer stem cells, gastric cancer stem cells, pancreatic cancer stem cells, etc. Extensive research is needed in order to employ miRNA-based therapeutics to control cancer stem cell population in various cancers in the future.

  2. What is a stem cell?

    PubMed

    Slack, Jonathan M W

    2018-05-15

    The historical roots of the stem cell concept are traced with respect to its usage in embryology and in hematology. The modern consensus definition of stem cells, comprising both pluripotent stem cells in culture and tissue-specific stem cells in vivo, is explained and explored. Methods for identifying stem cells are discussed with respect to cell surface markers, telomerase, label retention and transplantability, and properties of the stem cell niche are explored. The CreER method for identifying stem cells in vivo is explained, as is evidence in favor of a stochastic rather than an obligate asymmetric form of cell division. In conclusion, it is found that stem cells do not possess any unique and specific molecular markers; and stem cell behavior depends on the environment of the cell as well as the stem cell's intrinsic qualities. Furthermore, the stochastic mode of division implies that stem cell behavior is a property of a cell population not of an individual cell. In this sense, stem cells do not exist in isolation but only as a part of multicellular system. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Methods and Principles Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells. © 2018 Wiley Periodicals, Inc.

  3. Why Do Floral Perfumes Become Different? Region-Specific Selection on Floral Scent in a Terrestrial Orchid

    PubMed Central

    Gross, Karin; Sun, Mimi; Schiestl, Florian P.

    2016-01-01

    Geographically structured phenotypic selection can lead to adaptive divergence. However, in flowering plants, such divergent selection has rarely been shown, and selection on floral signals is generally little understood. In this study, we measured phenotypic selection on display size, floral color, and floral scent in four lowland and four mountain populations of the nectar-rewarding terrestrial orchid Gymnadenia odoratissima in two years. We also quantified population differences in these traits and pollinator community composition. Our results show positive selection on display size and positive, negative, or absence of selection on different scent compounds and floral color. Selection on the main scent compounds was consistently stronger in the lowlands than in the mountains, and lowland plants emitted higher amounts of most of these compounds. Pollinator community composition also differed between regions, suggesting different pollinators select for differences in floral volatiles. Overall, our study is the first to document consistent regional differences in selection on floral scent, suggesting this pattern of selection is one of the evolutionary forces contributing to regional divergence in floral chemical signaling. PMID:26886766

  4. Regulation of flower development in Arabidopsis by SCF complexes.

    PubMed

    Ni, Weimin; Xie, Daoxin; Hobbie, Lawrence; Feng, Baomin; Zhao, Dazhong; Akkara, Joseph; Ma, Hong

    2004-04-01

    SCF complexes are the largest and best studied family of E3 ubiquitin protein ligases that facilitate the ubiquitylation of proteins targeted for degradation. The SCF core components Skp1, Cul1, and Rbx1 serve in multiple SCF complexes involving different substrate-specific F-box proteins that are involved in diverse processes including cell cycle and development. In Arabidopsis, mutations in the F-box gene UNUSUAL FLORAL ORGANS (UFO) result in a number of defects in flower development. However, functions of the core components Cul1 and Rbx1 in flower development are poorly understood. In this study we analyzed floral phenotypes caused by altering function of Cul1 or Rbx1, as well as the effects of mutations in ASK1 and ASK2. Plants homozygous for a point mutation in the AtCUL1 gene showed reduced floral organ number and several defects in each of the four whorls. Similarly, plants with reduced AtRbx1 expression due to RNA interference also exhibited floral morphological defects. In addition, compared to the ask1 mutant, plants homozygous for ask1 and heterozygous for ask2 displayed enhanced reduction of B function, as well as other novel defects of flower development, including carpelloid sepals and an inhibition of petal development. Genetic analyses demonstrate that AGAMOUS (AG) is required for the novel phenotypes observed in the first and second whorls. Furthermore, the genetic interaction between UFO and AtCUL1 supports the idea that UFO regulates multiple aspects of flower development as a part of SCF complexes. These results suggest that SCF complexes regulate several aspects of floral development in Arabidopsis.

  5. Petunia Floral Defensins with Unique Prodomains as Novel Candidates for Development of Fusarium Wilt Resistance in Transgenic Banana Plants

    PubMed Central

    Ghag, Siddhesh B.; Shekhawat, Upendra K. Singh; Ganapathi, Thumballi R.

    2012-01-01

    Antimicrobial peptides are a potent group of defense active molecules that have been utilized in developing resistance against a multitude of plant pathogens. Floral defensins constitute a group of cysteine-rich peptides showing potent growth inhibition of pathogenic filamentous fungi especially Fusarium oxysporum in vitro. Full length genes coding for two Petunia floral defensins, PhDef1 and PhDef2 having unique C- terminal 31 and 27 amino acid long predicted prodomains, were overexpressed in transgenic banana plants using embryogenic cells as explants for Agrobacterium–mediated genetic transformation. High level constitutive expression of these defensins in elite banana cv. Rasthali led to significant resistance against infection of Fusarium oxysporum f. sp. cubense as shown by in vitro and ex vivo bioassay studies. Transgenic banana lines expressing either of the two defensins were clearly less chlorotic and had significantly less infestation and discoloration in the vital corm region of the plant as compared to untransformed controls. Transgenic banana plants expressing high level of full-length PhDef1 and PhDef2 were phenotypically normal and no stunting was observed. In conclusion, our results suggest that high-level constitutive expression of floral defensins having distinctive prodomains is an efficient strategy for development of fungal resistance in economically important fruit crops like banana. PMID:22745785

  6. Plant hormones including ethylene are recruited in calyx inflation in Solanaceous plants.

    PubMed

    Khan, Muhammad Ramzan; Hu, Jinyong; He, Chaoying

    2012-07-01

    Plant hormones direct many processes of floral and post-floral morphogenesis in Angiosperms. However, their role in shaping floral morphological novelties, such as inflated calyx syndrome (ICS) exhibited by a few genera of the Solanaceae, remains unknown. In Withania and Physalis, sepals resume growth after pollination and encapsulate the mature fruit to form a balloon-like structure, i.e. ICS. The epidermal cells of calyx show enlargement and lobation post-fertilization. Application of hormones to depistillated flower buds of Withania revealed that cytokinins and gibberellins mimic fertilization signals. The ICS development is a synchronous step with fruit development; both processes are under the control of more or less the same set of hormones, including cytokinins and gibberellic acids. Interestingly, inhibition of ethylene in the system is sufficient to yield inflated calyx in Withania. In contrast, Tubocapsicum, a closely related species and an evolutionary natural loss mutant of ICS - showed no response to applied hormones, and ethylene led to inflation of the receptacle indirectly. In addition to hormones, the expression of an MPF2-like MADS-box transcription factor in sepals is essential for ICS formation. Nevertheless, the interactions between MPF2-like genes and hormones are barely detectable at the transcript level. Our data provide insight into the role of hormones in generating floral morphological diversity during evolution. Copyright © 2012 Elsevier GmbH. All rights reserved.

  7. Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress.

    PubMed

    Li, Xia; Lawas, Lovely M F; Malo, Richard; Glaubitz, Ulrike; Erban, Alexander; Mauleon, Ramil; Heuer, Sigrid; Zuther, Ellen; Kopka, Joachim; Hincha, Dirk K; Jagadish, Krishna S V

    2015-10-01

    Heat and drought stress are projected to become major challenges to sustain rice (Oryza sativa L.) yields with global climate change. Both stresses lead to yield losses when they coincide with flowering. A significant knowledge gap exists in the mechanistic understanding of the responses of rice floral organs that determine reproductive success under stress. Our work connects the metabolomic and transcriptomic changes in anthers, pistils before pollination and pollinated pistils in a heat-tolerant (N22) and a heat-sensitive (Moroberekan) cultivar. Systematic analysis of the floral organs revealed contrasts in metabolic profiles across anthers and pistils. Constitutive metabolic markers were identified that can define reproductive success in rice under stress. Six out of nine candidate metabolites identified by intersection analysis of stressed anthers were differentially accumulated in N22 compared with Moroberekan under non-stress conditions. Sugar metabolism was identified to be the crucial metabolic and transcriptional component that differentiated floral organ tolerance or susceptibility to stress. While susceptible Moroberekan specifically showed high expression of the Carbon Starved Anthers (CSA) gene under combined heat and drought, tolerant N22 responded with high expression of genes encoding a sugar transporter (MST8) and a cell wall invertase (INV4) as markers of high sink strength. © 2015 John Wiley & Sons Ltd.

  8. Spatial and temporal transcriptome changes occurring during flower opening and senescence of the ephemeral hibiscus flower, Hibiscus rosa-sinensis.

    PubMed

    Trivellini, Alice; Cocetta, Giacomo; Hunter, Donald A; Vernieri, Paolo; Ferrante, Antonio

    2016-10-01

    Flowers are complex systems whose vegetative and sexual structures initiate and die in a synchronous manner. The rapidity of this process varies widely in flowers, with some lasting for months while others such as Hibiscus rosa-sinensis survive for only a day. The genetic regulation underlying these differences is unclear. To identify key genes and pathways that coordinate floral organ senescence of ephemeral flowers, we identified transcripts in H. rosa-sinensis floral organs by 454 sequencing. During development, 2053 transcripts increased and 2135 decreased significantly in abundance. The senescence of the flower was associated with increased abundance of many hydrolytic genes, including aspartic and cysteine proteases, vacuolar processing enzymes, and nucleases. Pathway analysis suggested that transcripts altering significantly in abundance were enriched in functions related to cell wall-, aquaporin-, light/circadian clock-, autophagy-, and calcium-related genes. Finding enrichment in light/circadian clock-related genes fits well with the observation that hibiscus floral development is highly synchronized with light and the hypothesis that ageing/senescence of the flower is orchestrated by a molecular clock. Further study of these genes will provide novel insight into how the molecular clock is able to regulate the timing of programmed cell death in tissues. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana).

    PubMed

    Kanno, Akira; Saeki, Hiroshi; Kameya, Toshiaki; Saedler, Heinz; Theissen, Günter

    2003-07-01

    In higher eudicotyledonous angiosperms the floral organs are typically arranged in four different whorls, containing sepals, petals, stamens and carpels. According to the ABC model, the identity of these organs is specified by floral homeotic genes of class A, A+B, B+C and C, respectively. In contrast to the sepal and petal whorls of eudicots, the perianths of many plants from the Liliaceae family have two outer whorls of almost identical petaloid organs, called tepals. To explain the Liliaceae flower morphology, van Tunen et al. (1993) proposed a modified ABC model, exemplified with tulip. According to this model, class B genes are not only expressed in whorls 2 and 3, but also in whorl 1. Thus the organs of both whorls 1 and 2 express class A plus class B genes and, therefore, get the same petaloid identity. To test this modified ABC model we have cloned and characterized putative class B genes from tulip. Two DEF- and one GLO-like gene were identified, named TGDEFA, TGDEFB and TGGLO. Northern hybridization analysis showed that all of these genes are expressed in whorls 1, 2 and 3 (outer and inner tepals and stamens), thus corroborating the modified ABC model. In addition, these experiments demonstrated that TGGLO is also weakly expressed in carpels, leaves, stems and bracts. Gel retardation assays revealed that TGGLO alone binds to DNA as a homodimer. In contrast, TGDEFA and TGDEFB cannot homodimerize, but make heterodimers with PI. Homodimerization of GLO-like protein has also been reported for lily, suggesting that this phenomenon is conserved within Liliaceae plants or even monocot species.

  10. PhDAHP1 is required for floral volatile benzenoid/phenylpropanoid biosynthesis in Petunia × hybrida cv 'Mitchell Diploid'.

    PubMed

    Langer, Kelly M; Jones, Correy R; Jaworski, Elizabeth A; Rushing, Gabrielle V; Kim, Joo Young; Clark, David G; Colquhoun, Thomas A

    2014-07-01

    Floral volatile benzenoid/phenylpropanoid (FVBP) biosynthesis consists of numerous enzymatic and regulatory processes. The initial enzymatic step bridging primary metabolism to secondary metabolism is the condensation of phosphoenolpyruvate (PEP) and erythrose-4-phosphate (E4P) carried out via 3-DEOXY-D-ARABINO-HEPTULOSONATE-7-PHOSPHATE (DAHP) synthase. Here, identified, cloned, localized, and functionally characterized were two DAHP synthases from the model plant species Petunia × hybrida cv 'Mitchell Diploid' (MD). Full-length transcript sequences for PhDAHP1 and PhDAHP2 were identified and cloned using cDNA SMART libraries constructed from pooled MD corolla and leaf total RNA. Predicted amino acid sequence of PhDAHP1 and PhDAHP2 proteins were 76% and 80% identical to AtDAHP1 and AtDAHP2 from Arabidopsis, respectively. PhDAHP1 transcript accumulated to relatively highest levels in petal limb and tube tissues, while PhDAHP2 accumulated to highest levels in leaf and stem tissues. Through floral development, PhDAHP1 transcript accumulated to highest levels during open flower stages, and PhDAHP2 transcript remained constitutive throughout. Radiolabeled PhDAHP1 and PhDAHP2 proteins localized to plastids, however, PhDAHP2 localization appeared less efficient. PhDAHP1 RNAi knockdown petunia lines were reduced in total FVBP emission compared to MD, while PhDAHP2 RNAi lines emitted 'wildtype' FVBP levels. These results demonstrate that PhDAHP1 is the principal DAHP synthase protein responsible for the coupling of metabolites from primary metabolism to secondary metabolism, and the ultimate biosynthesis of FVBPs in the MD flower. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Discussion of Yellow Starthistle Response to Irradiance, Photoperiod, and CO2

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    2016-01-01

    Yellow Starthistle (Centaurea solstitialis) is a native annual weed of Eurasia and since introduction into the US has become an invasive and noxious weed. It grows in a rosette habit during the vegetative state and usually bolts in summer to produce a large and branched flowering stem. Time to flowering in Yellow Starthistle has been attributed to photoperiod, nitrogen nutrition, temperature, and water stress. We executed a series of studies to investigate the role of light, both photoperiod and photosynthetic photon flux, on flowering and development in Yellow Starthistle. Treatments were presented in 4 ways: (1) Varying day length with constant photosynthetic photon flus (PPF) - providing increasing daily integrated Photosynthetic Photon (PP) exposure with longer day lengths, (2) Varying day length while adjusting PPF to maintain daily PP exposure for all treatments, (3) Extending photoperiod treatments beyond common 12-h photosynthetic period with low light levels to maintain both PPF and daily PP across all treatments; and (4) Reciprocal exchange of plant among photoperiod treatments. Yellow Starthistle appears to be a long-day plant with a critical day length requirement between 14-h and 16-h to induce transition from vegetative to floral stages in development. PPF and daily absorbed photons did not affect time to vegetative / floral stage transition, but did affect factors such as biomass accumulation and canopy parameters such as specific leaf mass. Reciprocal exchange of plants between floral inducing and inhibiting photoperiod treatments, starting at 2-weeks post germination, had no effect on to flower. Flowering was determined by photoperiod experienced during the first 2-weeks (or less) post germination. Yellow Starthistle net photosynthetic response to elevated atmospheric CO2 concentrations over a range of photosynthetically active radiation flux rates and temperatures will also be presented and discussed.

  12. Discussion of Yellow Starthistle Response to Photosynthetic Irradiance, Photoperiod, and CO2

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    2017-01-01

    Yellow Starthistle (Centaurea solstitialis) is a native annual weed of Eurasia and since introduction into the United STates has become an invasive and noxious weed. It grows in a rosette habit during the vegetative state and usually bolts in summer to produce a large and branched flowering stem. Time to flowering in Yellow Starthistle has been attributed to photoperiod, nitrogen nutrition, temperature, and water stress. We executed a series of studies to investigate the role of light, both photoperiod and photosynthetic photon flux, on flowering and development in Yellow Starthistle. Treatments were presented in 4 ways: 1) varying day length with constant photosynthetic photon flus (PPF) providing increasing daily integrated Photosynthetic Photon (PP) exposure with longer day lengths 2) varying day length while adjusting PPF to maintain daily PP exposure for all treatments 3) extending photoperiod treatments beyond common 12-h photosynthetic period with low light levels to maintain both PPF and daily PP across all treatments4)reciprocal exchange of plant among photoperiod treatments Yellow Starthistle appears to be a long-day plant with a critical day length requirement between 14-h and 16-h to induce transition from vegetative to floral stages in development. PPF and daily absorbed photons did not affect time to vegetative floral stage transition, but did affect factors such as biomass accumulation and canopy parameters such as specific leaf mass. Reciprocal exchange of plants between floral inducing and inhibiting photoperiod treatments, starting at 2-weeks post germination, had no effect on to flower. Flowering was determined by photoperiod experienced during the first 2-weeks (or less) post germination.Yellow Starthistle net photosynthetic response to elevated atmospheric CO2 concentrations over a range of photosynthetically active radiation flux rates and temperatures will also be presented and discussed.

  13. ULTRAPETALA1 and LEAFY pathways function independently in specifying identity and determinacy at the Arabidopsis floral meristem.

    PubMed

    Engelhorn, Julia; Moreau, Fanny; Fletcher, Jennifer C; Carles, Cristel C

    2014-11-01

    The morphological variability of the flower in angiosperms, combined with its relatively simple structure, makes it an excellent model to study cell specification and the establishment of morphogenetic patterns. Flowers are the products of floral meristems, which are determinate structures that generate four different types of floral organs before terminating. The precise organization of the flower in whorls, each defined by the identity and number of organs it contains, is controlled by a multi-layered network involving numerous transcriptional regulators. In particular, the AGAMOUS (AG) MADS domain-containing transcription factor plays a major role in controlling floral determinacy in Arabidopsis thaliana in addition to specifying reproductive organ identity. This study aims to characterize the genetic interactions between the ULTRAPETALA1 (ULT1) and LEAFY (LFY) transcriptional regulators during flower morphogenesis, with a focus on AG regulation. Genetic and molecular approaches were used to address the question of redundancy and reciprocal interdependency for the establishment of flower meristem initiation, identity and termination. In particular, the effects of loss of both ULT1 and LFY function were determined by analysing flower developmental phenotypes of double-mutant plants. The dependency of each factor on the other for activating developmental genes was also investigated in gain-of-function experiments. The ULT1 and LFY pathways, while both activating AG expression in the centre of the flower meristem, functioned independently in floral meristem determinacy. Ectopic transcriptional activation by ULT1 of AG and AP3, another gene encoding a MADS domain-containing flower architect, did not depend on LFY function. Similarly, LFY did not require ULT1 function to ectopically determine floral fate. The results indicate that the ULT1 and LFY pathways act separately in regulating identity and determinacy at the floral meristem. In particular, they independently induce AG expression in the centre of the flower to terminate meristem activity. A model is proposed whereby these independent contributions bring about a switch at the AG locus from an inactive to an active transcriptional state at the correct time and place during flower development. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Cryptic dioecy in Mussaenda pubescens (Rubiaceae): a species with stigma-height dimorphism.

    PubMed

    Li, Ai-Min; Wu, Xiao-Qin; Zhang, Dian-Xiang; Barrett, Spencer C H

    2010-10-01

    Evolutionary transitions from heterostyly to dioecy have been proposed in several angiosperm families, particularly in Rubiaceae. These transitions involve the spread of male and female sterility mutations resulting in modifications to the gender of ancestral hermaphrodites. Despite sustained interest in the gender strategies of plants, the structural and developmental bases for transitions in sexual systems are poorly understood. Here, floral morphology, patterns of fertility, pollen-tube growth and floral development are investigated in two populations of the scandent shrub Mussaenda pubescens (Rubiaceae), native to southern China, by means of experimental and open-pollinations, light microscopy, fluorescence microscopy and scanning electron microscopy combined with paraffin sectioning. Mussaenda pubescens has perfect (hermaphroditic) flowers and populations with two style-length morphs but only weak differentiation in anther position (stigma-height dimorphism). Experimental pollinations demonstrated that despite morphological hermaphroditism, the species is functionally dioecious. The long-styled (L) morph possesses sterile pollen and functions as a female, whereas the short-styled (S) morph is female sterile and functions as a male. Self- and intra-morph pollinations of the S-morph were consistent with those expected from dimorphic incompatibility. The two populations investigated were both S-morph (male) biased. Investigations of early stages of floral development indicated patterns typical of hermaphroditic flowers, with no significant differences in organ growth between the floral morphs. Meiosis of microspore mother cells was of the simultaneous type with tetrads isobilateral in shape. The tapetal cells in anther walls of the L-morph became vacuolized during meiosis I, ahead of the uninucleate microspore stage in the S-morph. In the L-morph, the microspore nucleus degenerated at the tetrad stage resulting in male sterility. Microsporogenesis and male gametophyte development was normal in the S-morph. Failure in the formation of megaspore mother cells and/or the development of megagametophytes resulted in female sterility in the S-morph, compared with normal megasporogenesis in the L-morph. In M. pubescens, cryptic dioecy has evolved from stigma-height dimorphism as a result of morph-specific sterility mutations.

  15. Floral polymorphism and the fitness implications of attracting pollinating and florivorous insects.

    PubMed

    de Jager, Marinus L; Ellis, Allan G

    2014-01-01

    Floral polymorphism is frequently attributed to pollinator-mediated selection. Multiple studies, however, have revealed the importance of non-pollinating visitors in floral evolution. Using the polymorphic annual daisy Ursinia calenduliflora, this study investigated the importance of different insect visitors, and their effects on fitness, in the maintenance of floral polymorphism. The spatial structure of a discrete floral polymorphism was characterized based on the presence/absence of anthocyanin floret spots in U. calenduliflora. A 3-year observational study was then conducted in polymorphic populations to investigate differences in visitation rates of dominant visitors to floral morphs. Experiments were performed to explore the floral preference of male and female Megapalpus capensis (the dominant insect visitor) and their effectiveness as pollinators. Next, floral damage by antagonistic florivores and the reproductive success of the two floral morphs were surveyed in multiple populations and years. Floral polymorphism in U. calenduliflora was structured spatially, as were insect visitation patterns. Megapalpus capensis males were the dominant visitors and exhibited strong preference for the spotted morph in natural and experimental observations. While this may indicate potential fitness benefits for the spotted morph, female fitness did not differ between floral morphs. However, as M. capensis males are very efficient at exporting U. calenduliflora pollen, their preference may likely increase the reproductive fitness of the spotted morph through male fitness components. The spotted morph, however, also suffered significantly greater costs due to ovule predation by florivores than the spotless morph. The results suggest that pollinators and florivores may potentially exert antagonistic selection that could contribute to the maintenance of floral polymorphism across the range of U. calenduliflora. The relative strength of selection imposed by each agent is potentially determined by insect community composition and abundance at each site, highlighting the importance of community context in the evolution of floral phenotypes.

  16. Differential marker expression by cultures rich in mesenchymal stem cells

    PubMed Central

    2013-01-01

    Background Mesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires standardized techniques for their specific isolation. To date, there are no conclusive marker (s) for the exclusive isolation of mesenchymal stem cells. Our aim was to identify markers differentially expressed between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. We compared and contrasted the phenotype of tissue cultures in which mesenchymal stem cells are rich and rare. By initially assessing mesenchymal stem cell differentiation, we established that bone marrow and breast adipose cultures are rich in mesenchymal stem cells while, in our hands, foreskin fibroblast and olfactory tissue cultures contain rare mesenchymal stem cells. In particular, olfactory tissue cells represent non-stem cell mesenchymal cells. Subsequently, the phenotype of the tissue cultures were thoroughly assessed using immuno-fluorescence, flow-cytometry, proteomics, antibody arrays and qPCR. Results Our analysis revealed that all tissue cultures, regardless of differentiation potential, demonstrated remarkably similar phenotypes. Importantly, it was also observed that common mesenchymal stem cell markers, and fibroblast-associated markers, do not discriminate between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. Examination and comparison of the phenotypes of mesenchymal stem cell and non-stem cell mesenchymal cell cultures revealed three differentially expressed markers – CD24, CD108 and CD40. Conclusion We indicate the importance of establishing differential marker expression between mesenchymal stem cells and non-stem cell mesenchymal cells in order to determine stem cell specific markers. PMID:24304471

  17. Floral colour versus phylogeny in structuring subalpine flowering communities.

    PubMed

    McEwen, Jamie R; Vamosi, Jana C

    2010-10-07

    The relative number of seeds produced by competing species can influence the community structure; yet, traits that influence seed production, such as pollinator attraction and floral colour, have received little attention in community ecology. Here, we analyse floral colour using reflectance spectra that include near-UV and examined the phylogenetic signal of floral colour. We found that coflowering species within communities tended to be more divergent in floral colour than expected by chance. However, coflowering species were not phylogenetically dispersed, in part due to our finding that floral colour is a labile trait with a weak phylogenetic signal. Furthermore, while we found that locally rare and common species exhibited equivalent floral colour distances from their coflowering neighbours, frequent species (those found in more communities) exhibited higher colour distances from their coflowering neighbours. Our findings support recent studies, which have found that (i) plant lineages exhibit frequent floral colour transitions; and (ii) traits that influence local population dynamics contribute to community structure.

  18. Petunia flowers solve the defence/apparency dilemma of pollinator attraction by deploying complex floral blends.

    PubMed

    Kessler, Danny; Diezel, Celia; Clark, David G; Colquhoun, Thomas A; Baldwin, Ian T

    2013-03-01

    Flowers recruit floral visitors for pollination services by emitting fragrances. These scent signals can be intercepted by antagonists such as florivores to locate host plants. Hence, as a consequence of interactions with both mutualists and antagonists, floral bouquets likely consist of both attractive and defensive components. While the attractive functions of floral bouquets have been studied, their defensive function has not, and field-based evidence for the deterrence of floral-scent constituents is lacking. In field and glasshouse experiments with five lines of transgenic Petunia x hybrida plants specifically silenced in their ability to release particular components of their floral volatile bouquet, we demonstrate that the emission of single floral-scent compounds can dramatically decrease damage from generalist florivores. While some compounds are used in host location, others prevent florivory. We conclude that the complex blends that comprise floral scents are likely sculpted by the selective pressures of both pollinators and herbivores. © 2012 Blackwell Publishing Ltd/CNRS.

  19. Disentangling the role of floral sensory stimuli in pollination networks.

    PubMed

    Kantsa, Aphrodite; Raguso, Robert A; Dyer, Adrian G; Olesen, Jens M; Tscheulin, Thomas; Petanidou, Theodora

    2018-03-12

    Despite progress in understanding pollination network structure, the functional roles of floral sensory stimuli (visual, olfactory) have never been addressed comprehensively in a community context, even though such traits are known to mediate plant-pollinator interactions. Here, we use a comprehensive dataset of floral traits and a novel dynamic data-pooling methodology to explore the impacts of floral sensory diversity on the structure of a pollination network in a Mediterranean scrubland. Our approach tracks transitions in the network behaviour of each plant species throughout its flowering period and, despite dynamism in visitor composition, reveals significant links to floral scent, and/or colour as perceived by pollinators. Having accounted for floral phenology, abundance and phylogeny, the persistent association between floral sensory traits and visitor guilds supports a deeper role for sensory bias and diffuse coevolution in structuring plant-pollinator networks. This knowledge of floral sensory diversity, by identifying the most influential phenotypes, could help prioritize efforts for plant-pollinator community restoration.

  20. Plasticity of floral longevity and floral display in the self-compatible biennial Sabatia angularis (Gentianaceae): untangling the role of multiple components of pollination.

    PubMed

    Spigler, Rachel B

    2017-01-01

    Plasticity of floral traits in response to pollination can enable plants to maximize opportunities for pollen import and export under poor pollination conditions, while minimizing costs under favourable ones. Both floral longevity and display are key traits influencing pollination. While pollination-induced flower wilting is widely documented, we lack an understanding of the multifactorial complexity of this response, including the influence of other pollination components, costs of extended longevity and subsequent impacts on floral display. Plasticity of floral longevity was experimentally evaluated in Sabatia angularis in response to multiple pollination factors: pollen addition, removal, and source (self, single-donor outcross, multiple-donor outcross) and timing of pollination. Effects of pollen quantity were further evaluated by exploiting variation in autonomous self-pollen deposition. Delayed pollination costs were tested comparing seed set from early versus late pollinations. Finally, I compared floral display metrics (peak floral display, time to peak flower, flowering duration, mean flowering rate) between experimentally pollinated and control plants. Floral longevity was highly plastic in response to pollen addition and its timing, and the response was dose-dependent but insensitive to pollen source. Pollen removal tended to extend floral longevity, but only insofar as it precluded pollination-induced wilting via autonomous self-pollination. Under delayed pollination, the wilting response was faster and no cost was detected. Pollination further led to reduced peak floral displays and condensed flowering periods. Floral longevity and display plasticity could optimize fitness in S. angularis, a species prone to pollen limitation and high inbreeding depression. Under pollinator scarcity, extended floral longevities offer greater opportunities for pollen receipt and export at no cost to seed set, reproductive assurance via autonomous self-pollination and larger, more attractive floral displays. Under high pollinator availability, shortened longevities lead to smaller displays that should lower the risk of geitonogamy. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. ASN1-encoded asparagine synthetase in floral organs contributes to nitrogen filling in Arabidopsis seeds.

    PubMed

    Gaufichon, Laure; Marmagne, Anne; Belcram, Katia; Yoneyama, Tadakatsu; Sakakibara, Yukiko; Hase, Toshiharu; Grandjean, Olivier; Clément, Gilles; Citerne, Sylvie; Boutet-Mercey, Stéphanie; Masclaux-Daubresse, Céline; Chardon, Fabien; Soulay, Fabienne; Xu, Xiaole; Trassaert, Marion; Shakiebaei, Maryam; Najihi, Amina; Suzuki, Akira

    2017-08-01

    Despite a general view that asparagine synthetase generates asparagine as an amino acid for long-distance transport of nitrogen to sink organs, its role in nitrogen metabolic pathways in floral organs during seed nitrogen filling has remained undefined. We demonstrate that the onset of pollination in Arabidopsis induces selected genes for asparagine metabolism, namely ASN1 (At3g47340), GLN2 (At5g35630), GLU1 (At5g04140), AapAT2 (At5g19950), ASPGA1 (At5g08100) and ASPGB1 (At3g16150), particularly at the ovule stage (stage 0), accompanied by enhanced asparagine synthetase protein, asparagine and total amino acids. Immunolocalization confined asparagine synthetase to the vascular cells of the silique cell wall and septum, but also to the outer and inner seed integuments, demonstrating the post-phloem transport of asparagine in these cells to developing embryos. In the asn1 mutant, aberrant embryo cell divisions in upper suspensor cell layers from globular to heart stages assign a role for nitrogen in differentiating embryos within the ovary. Induction of asparagine metabolic genes by light/dark and nitrate supports fine shifts of nitrogen metabolic pathways. In transgenic Arabidopsis expressing promoter Ca MV 35S ::ASN1 fusion, marked metabolomics changes at stage 0, including a several-fold increase in free asparagine, are correlated to enhanced seed nitrogen. However, specific promoter Napin2S ::ASN1 expression during seed formation and a six-fold increase in asparagine toward the desiccation stage result in wild-type seed nitrogen, underlining that delayed accumulation of asparagine impairs the timing of its use by releasing amide and amino nitrogen. Transcript and metabolite profiles in floral organs match the carbon and nitrogen partitioning to generate energy via the tricarboxylic acid cycle, GABA shunt and phosphorylated serine synthetic pathway. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  2. Learn About Stem Cells

    MedlinePlus

    ... Handbook Stem Cell Glossary Search Toggle Nav Stem Cell Basics Stem cells are the foundation from which ... Home > Learn About Stem Cells > Stem Cell Basics Cells in the human body The human body comprises ...

  3. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin.

    PubMed

    Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F; Psathaki, Olympia E; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R; Schlenke, Peter; Zaehres, Holm

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential. Copyright© Ferrata Storti Foundation.

  4. [Progress in stem cells and regenerative medicine].

    PubMed

    Wang, Libin; Zhu, He; Hao, Jie; Zhou, Qi

    2015-06-01

    Stem cells have the ability to differentiate into all types of cells in the body and therefore have great application potential in regenerative medicine, in vitro disease modelling and drug screening. In recent years, stem cell technology has made great progress, and induced pluripotent stem cell technology revolutionizes the whole stem cell field. At the same time, stem cell research in our country has also achieved great progress and becomes an indispensable power in the worldwide stem cell research field. This review mainly focuses on the research progress in stem cells and regenerative medicine in our country since the advent of induced pluripotent stem cell technology, including induced pluripotent stem cells, transdifferentiation, haploid stem cells, and new gene editing tools.

  5. Application of Graphene Based Nanotechnology in Stem Cells Research.

    PubMed

    Hu, Shanshan; Zeng, Yongxiang; Yang, Shuying; Qin, Han; Cai, He; Wang, Jian

    2015-09-01

    The past several years have witnessed significant advances in stem cell therapy, tissue engineering and regenerative medicine. Graphene, with its unique properties such as high electrical conductivity, elasticity and good molecule absorption, have potential for creating the next generation of biomaterials. This review summarizes the interrelationship between graphene and stem cells. The analysis of graphene when applied on mesenchymal stem cells, neural stem cells, induced pluripotent stem cells, embryonic stem cells, periodontal ligament stem cells, human adipose-derived stem cells and cancer stem cells, and how graphene influences cell behavior and differentiation are discussed in details.

  6. UNUSUAL FLORAL ORGANS Controls Meristem Identity and Organ Primordia Fate in Arabidopsis.

    PubMed

    Wilkinson, M. D.; Haughn, G. W.

    1995-09-01

    A novel gene that is involved in regulating flower initiation and development has been identified in Arabidopsis. This gene has been designated UNUSUAL FLORAL ORGANS (UFO), with five corresponding nuclear recessive alleles designated ufo[middot]1 to ufo[middot]5. Under short day-length conditions, ufo homozygotes generate more coflorescences than do the wild type, and coflorescences often appear apical to the first floral shoot, resulting in a period of inflorescence development in which regions of floral and coflorescence shoots are produced alternately. ufo enhances the phenotype of weak leafy alleles, and the double mutant Ufo-1 Apetala1-1 produces only coflorescence-like shoots, suggesting that these two genes control different aspects of floral initiation. Floral development was also altered in Ufo plants. Ufo flowers have an altered organ number in all whorls, and organs in the first, second, and third whorls exhibit variable homeotic transformations. Ufo single and double mutant phenotypes suggest that the floral changes result from reduction in class B floral homeotic gene expression and fluctuations in the expression boundaries of class C function and FLO10. Surprisingly, in situ hybridization analysis revealed no obvious differences in expression pattern or level in developing Ufo flowers compared with that of the wild type for any class B or C gene studied. We propose that UFO acts in concert with known floral initiation genes and regulates the domains of floral homeotic gene function.

  7. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem.

    PubMed

    Samach, A; Klenz, J E; Kohalmi, S E; Risseeuw, E; Haughn, G W; Crosby, W L

    1999-11-01

    Genetic and molecular studies have suggested that the UNUSUAL FLORAL ORGANS (UFO) gene, from Arabidopsis thaliana, is expressed in all shoot apical meristems, and is involved in the regulation of a complex set of developmental events during floral development, including floral meristem and floral organ identity. Results from in situ hybridization using genes expressed early in floral development as probes indicate that UFO controls growth of young floral primordia. Transgenic constructs were used to provide evidence that UFO regulates floral organ identity by activating or maintaining transcription of the class B organ-identity gene APETALA 3, but not PISTILLATA. In an attempt to understand the biochemical mode of action of the UFO gene product, we show here that UFO is an F-box protein that interacts with Arabidopsis SKP1-like proteins, both in the yeast two-hybrid system and in vitro. In yeast and other organisms both F-box proteins and SKP1 homologues are subunits of specific ubiquitin E3 enzyme complexes that target specific proteins for degradation. The protein selected for degradation by the complex is specified by the F-box proteins. It is therefore possible that the role of UFO is to target for degradation specific proteins controlling normal growth patterns in the floral primordia, as well as proteins that negatively regulate APETALA 3 transcription.

  8. Ecological relationship between floral thermogenesis and pollination in Nelumbo lutea (Nelumbonaceae).

    PubMed

    Dieringer, Gregg; Leticia Cabrera, R; Mottaleb, Mohammad

    2014-02-01

    Floral thermogenesis is an unusual floral trait with a well-documented physiological process, and yet, there is limited understanding of how this trait influences plant reproduction. The current study was undertaken to gain a better understanding of how floral thermogenesis in Nelumbo lutea impacts pollinator attraction and consequent plant reproduction. We conducted field studies on floral thermogenesis and thermoregulation, flower sexual development, floral visitation patterns, breeding system, pollen transfer dynamics, and floral scent production. The most abundant visitors to the thermoregulatory flowers included the Phoridae (Diptera), Chrysomelidae (Coleoptera), and Hymenoptera. Chrysomelid beetles, particularly Diabrotica, were frequent visitors to both first-day female- and second-day bisexual-phase flowers, while phorid flies were most common in bisexual-phase flowers. Pollen transfer experiments indicated that Diabrotica was equally effective in depositing pollen on stigmas, as were the less frequent, but pollen-loaded halictid bees. Flowers received a taxonomically wide assemblage of floral visitors and appear adapted to attract beetles, primarily Chrysomelidae and medium-sized bees. This study is the first to provide strong support that beetles can comprise the dominant portion of floral visitors and are as effective in pollen transfer as bees. Thermogenesis aids in dispersing the main floral scent component-1,4-dimethoxybenzene-attracting both chrysomelids and bees, while thermoregulation causes chrysomelid beetles to actively seek out new flowers for evening residence. This search behavior likely results in chrysomelids affecting cross-pollination.

  9. Macroevolutionary patterns of ultraviolet floral pigmentation explained by geography and associated bioclimatic factors.

    PubMed

    Koski, Matthew H; Ashman, Tia-Lynn

    2016-07-01

    Selection driven by biotic interactions can generate variation in floral traits. Abiotic selection, however, also contributes to floral diversity, especially with respect to patterns of pigmentation. Combining comparative studies of floral pigmentation and geography can reveal the bioclimatic factors that may drive macroevolutionary patterns of floral color. We create a molecular phylogeny and measure ultraviolet (UV) floral pattern for 177 species in the Potentilleae tribe (Rosaceae). Species are similar in flower shape and visible color but vary in UV floral pattern. We use comparative approaches to determine whether UV pigmentation variation is associated with geography and/or bioclimatic features (UV-B, precipitation, temperature). Floral UV pattern was present in half of the species, while others were uniformly UV-absorbing. Phylogenetic signal was detected for presence/absence of pattern, but among patterned species, quantitative variation in UV-absorbing area was evolutionarily labile. Uniformly UV-absorbing species tended to experience higher UV-B irradiance. Patterned species occurring at higher altitudes had larger UV-absorbing petal areas, corresponding with low temperature and high UV exposure. This analysis expands our understanding of the covariation of UV-B irradiance and UV floral pigmentation from within species to that among species, and supports the view that abiotic selection is associated with floral diversification among species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. A revisionist history of adult marrow stem cell biology or 'they forgot about the discard'.

    PubMed

    Quesenberry, P; Goldberg, L

    2017-08-01

    The adult marrow hematopoietic stem cell biology has largely been based on studies of highly purified stem cells. This is unfortunate because during the stem cell purification the great bulk of stem cells are discarded. These cells are actively proliferating. The final purified stem cell is dormant and not representative of the whole stem cell compartment. Thus, a large number of studies on the cellular characteristics, regulators and molecular details of stem cells have been carried on out of non-represented cells. Niche studies have largely pursued using these purified stem cells and these are largely un-interpretable. Other considerations include the distinction between baseline and transplant stem cells and the modulation of stem cell phenotype by extracellular vesicles, to cite a non-inclusive list. Work needs to proceed on characterizing the true stem cell population.

  11. The effect of polyploidy and hybridization on the evolution of floral colour in Nicotiana (Solanaceae)

    PubMed Central

    McCarthy, Elizabeth W.; Arnold, Sarah E. J.; Chittka, Lars; Le Comber, Steven C.; Verity, Robert; Dodsworth, Steven; Knapp, Sandra; Kelly, Laura J.; Chase, Mark W.; Baldwin, Ian T.; Kovařík, Aleš; Mhiri, Corinne; Taylor, Lin; Leitch, Andrew R.

    2015-01-01

    Background and Aims Speciation in angiosperms can be accompanied by changes in floral colour that may influence pollinator preference and reproductive isolation. This study investigates whether changes in floral colour can accompany polyploid and homoploid hybridization, important processes in angiosperm evolution. Methods Spectral reflectance of corolla tissue was examined for 60 Nicotiana (Solanaceae) accessions (41 taxa) based on spectral shape (corresponding to pigmentation) as well as bee and hummingbird colour perception in order to assess patterns of floral colour evolution. Polyploid and homoploid hybrid spectra were compared with those of their progenitors to evaluate whether hybridization has resulted in floral colour shifts. Key Results Floral colour categories in Nicotiana seem to have arisen multiple times independently during the evolution of the genus. Most younger polyploids displayed an unexpected floral colour, considering those of their progenitors, in the colour perception of at least one pollinator type, whereas older polyploids tended to resemble one or both of their progenitors. Conclusions Floral colour evolution in Nicotiana is weakly constrained by phylogeny, and colour shifts do occur in association with both polyploid and homoploid hybrid divergence. Transgressive floral colour in N. tabacum has arisen by inheritance of anthocyanin pigmentation from its paternal progenitor while having a plastid phenotype like its maternal progenitor. Potentially, floral colour evolution has been driven by, or resulted in, pollinator shifts. However, those polyploids that are not sympatric (on a regional scale) with their progenitor lineages are typically not divergent in floral colour from them, perhaps because of a lack of competition for pollinators. PMID:25979919

  12. Perspectives on stem cell therapy for cardiac regeneration. Advances and challenges.

    PubMed

    Choi, Sung Hyun; Jung, Seok Yun; Kwon, Sang-Mo; Baek, Sang Hong

    2012-01-01

    Ischemic heart disease (IHD) accelerates cardiomyocyte loss, but the developing stem cell research could be useful for regenerating a variety of tissue cells, including cardiomyocytes. Diverse sources of stem cells for IHD have been reported, including embryonic stem cells, induced pluripotent stem cells, skeletal myoblasts, bone marrow-derived stem cells, mesenchymal stem cells, and cardiac stem cells. However, stem cells have unique advantages and disadvantages for cardiac tissue regeneration, which are important considerations in determining the specific cells for improving cell survival and long-term engraftment after transplantation. Additionally, the dosage and administration method of stem cells need to be standardized to increase stability and efficacy for clinical applications. Accordingly, this review presents a summary of the stem cell therapies that have been studied for cardiac regeneration thus far, and discusses the direction of future cardiac regeneration research for stem cells.

  13. Stem Cells

    MedlinePlus

    Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  14. Specialist Osmia bees forage indiscriminately among hybridizing Balsamorhiza floral hosts

    Treesearch

    James H. Cane

    2011-01-01

    Pollinators, even floral generalists (=polyleges), typically specialize during individual foraging bouts, infrequently switching between floral hosts. Such transient floral constancy restricts pollen flow, and thereby gene flow, to conspecific flowers in mixed plant communities. Where incipient flowering species meet, however, weak cross-fertility and often similar...

  15. Floral features of two species of Bulbophyllum section Lepidorhiza Schltr.: B. levanae Ames and B. nymphopolitanum Kraenzl. (Bulbophyllinae Schltr., Orchidaceae).

    PubMed

    Wiśniewska, Natalia; Kowalkowska, Agnieszka K; Kozieradzka-Kiszkurno, Małgorzata; Krawczyńska, Agnieszka T; Bohdanowicz, Jerzy

    2018-03-01

    Two representatives of section Lepidorhiza, previously sometimes considered conspecific, Bulbophyllum levanae and Bulbophyllum nymphopolitanum, demonstrated both similarities and differences in floral features. There were significant differences in the length of sepals and micromorphological features of the labellum. In both species, osmophores are located on the extended apices of sepals and possibly on petals. An abundance of proteins in tepals is probably associated with the unpleasant scent of the flowers, whereas the thin wax layers on the epidermis are probably involved in the maintenance of the brilliance of floral tepals, which strongly attracts flies. In all tepals of both species, we noted the presence of dihydroxyphenolic globules in the cytoplasm after staining with FeCl 3 . Comparison with ultrastructure results revealed that they were associated with plastids containing plastoglobuli. The most remarkable feature was the presence of a prominent periplasmic space in the epidermal cells of both investigated species. Furthermore, in the labellum of B. levanae, the cuticle contained microchannels. The combination of periplasmic space and microchannels has not previously been recorded.

  16. The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice.

    PubMed

    Ren, Deyong; Rao, Yuchun; Wu, Liwen; Xu, Qiankun; Li, Zizhuang; Yu, Haiping; Zhang, Yu; Leng, Yujia; Hu, Jiang; Zhu, Li; Gao, Zhenyu; Dong, Guojun; Zhang, Guangheng; Guo, Longbiao; Zeng, Dali; Qian, Qian

    2016-06-01

    Moderate plant height and successful establishment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects including the dwarfism, long panicle, low seed setting and reduced grain yield. In addition, abnormal floral organs were also observed in the afd1 mutant including slender and thick hulls, and hull-like lodicules. AFD1 encoded a DUF640 domain protein and was expressed in all tested tissues and organs. Subcellular localization showed AFD1-green fluorescent fusion protein (GFP) was localized in the nucleus. Meantime, our results suggested that AFD1 regulated the expression of cell division and expansion related genes. © 2015 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  17. Inherited Biotic Protection in a Neotropical Pioneer Plant

    PubMed Central

    Dejean, Alain; Corbara, Bruno; Leroy, Céline; Delabie, Jacques H. C.; Rossi, Vivien; Céréghino, Régis

    2011-01-01

    Chelonanthus alatus is a bat-pollinated, pioneer Gentianaceae that clusters in patches where still-standing, dried-out stems are interspersed among live individuals. Flowers bear circum-floral nectaries (CFNs) that are attractive to ants, and seed dispersal is both barochorous and anemochorous. Although, in this study, live individuals never sheltered ant colonies, dried-out hollow stems - that can remain standing for 2 years - did. Workers from species nesting in dried-out stems as well as from ground-nesting species exploited the CFNs of live C. alatus individuals in the same patches during the daytime, but were absent at night (when bat pollination occurs) on 60.5% of the plants. By visiting the CFNs, the ants indirectly protect the flowers - but not the plant foliage - from herbivorous insects. We show that this protection is provided mostly by species nesting in dried-out stems, predominantly Pseudomyrmex gracilis. That dried-out stems remain standing for years and are regularly replaced results in an opportunistic, but stable association where colonies are sheltered by one generation of dead C. alatus while the live individuals nearby, belonging to the next generation, provide them with nectar; in turn, the ants protect their flowers from herbivores. We suggest that the investment in wood by C. alatus individuals permitting still-standing, dried-out stems to shelter ant colonies constitutes an extended phenotype because foraging workers protect the flowers of live individuals in the same patch. Also, through this process these dried-out stems indirectly favor the reproduction (and so the fitness) of the next generation including both their own offspring and that of their siblings, all adding up to a potential case of inclusive fitness in plants. PMID:21483861

  18. The Role of Integrin α6 (CD49f) in Stem Cells: More than a Conserved Biomarker.

    PubMed

    Krebsbach, Paul H; Villa-Diaz, Luis G

    2017-08-01

    Stem cells have the capacity for self-renewal and differentiation into specialized cells that form and repopulated all tissues and organs, from conception to adult life. Depending on their capacity for differentiation, stem cells are classified as totipotent (ie, zygote), pluripotent (ie, embryonic stem cells), multipotent (ie, neuronal stem cells, hematopoietic stem cells, epithelial stem cells, etc.), and unipotent (ie, spermatogonial stem cells). Adult or tissue-specific stem cells reside in specific niches located in, or nearby, their organ or tissue of origin. There, they have microenvironmental support to remain quiescent, to proliferate as undifferentiated cells (self-renewal), and to differentiate into progenitors or terminally differentiated cells that migrate from the niche to perform specialized functions. The presence of proteins at the cell surface is often used to identify, classify, and isolate stem cells. Among the diverse groups of cell surface proteins used for these purposes, integrin α6, also known as CD49f, may be the only biomarker commonly found in more than 30 different populations of stem cells, including some cancer stem cells. This broad expression among stem cell populations indicates that integrin α6 may play an important and conserved role in stem cell biology, which is reaffirmed by recent demonstrations of its role maintaining self-renewal of pluripotent stem cells and breast and glioblastoma cancer stem cells. Therefore, this review intends to highlight and synthesize new findings on the importance of integrin α6 in stem cell biology.

  19. Drosophila's contribution to stem cell research.

    PubMed

    Singh, Gyanesh

    2015-01-01

    The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs) are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub). Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd) proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila.

  20. Drosophila's contribution to stem cell research

    PubMed Central

    Singh, Gyanesh

    2016-01-01

    The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs) are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub). Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd) proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila. PMID:26180635

  1. Current overview on dental stem cells applications in regenerative dentistry.

    PubMed

    Bansal, Ramta; Jain, Aditya

    2015-01-01

    Teeth are the most natural, noninvasive source of stem cells. Dental stem cells, which are easy, convenient, and affordable to collect, hold promise for a range of very potential therapeutic applications. We have reviewed the ever-growing literature on dental stem cells archived in Medline using the following key words: Regenerative dentistry, dental stem cells, dental stem cells banking, and stem cells from human exfoliated deciduous teeth. Relevant articles covering topics related to dental stem cells were shortlisted and the facts are compiled. The objective of this review article is to discuss the history of stem cells, different stem cells relevant for dentistry, their isolation approaches, collection, and preservation of dental stem cells along with the current status of dental and medical applications.

  2. Transcriptome analysis of Cymbidium sinense and its application to the identification of genes associated with floral development

    PubMed Central

    2013-01-01

    Background Cymbidium sinense belongs to the Orchidaceae, which is one of the most abundant angiosperm families. C. sinense, a high-grade traditional potted flower, is most prevalent in China and some Southeast Asian countries. The control of flowering time is a major bottleneck in the industrialized development of C. sinense. Little is known about the mechanisms responsible for floral development in this orchid. Moreover, genome references for entire transcriptome sequences do not currently exist for C. sinense. Thus, transcriptome and expression profiling data for this species are needed as an important resource to identify genes and to better understand the biological mechanisms of floral development in C. sinense. Results In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. Transcriptome analysis assembles gene-related information related to vegetative and reproductive growth of C. sinense. Illumina sequencing generated 54,248,006 high quality reads that were assembled into 83,580 unigenes with an average sequence length of 612 base pairs, including 13,315 clusters and 70,265 singletons. A total of 41,687 (49.88%) unique sequences were annotated, 23,092 of which were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes (KEGG). Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with metabolic and cellular processes, cell and cell parts, catalytic activity and binding. Furthermore, 120 flowering-associated unigenes, 73 MADS-box unigenes and 28 CONSTANS-LIKE (COL) unigenes were identified from our collection. In addition, three digital gene expression (DGE) libraries were constructed for the vegetative phase (VP), floral differentiation phase (FDP) and reproductive phase (RP). The specific expression of many genes in the three development phases was also identified. 32 genes among three sub-libraries with high differential expression were selected as candidates connected with flower development. Conclusion RNA-seq and DGE profiling data provided comprehensive gene expression information at the transcriptional level that could facilitate our understanding of the molecular mechanisms of floral development at three development phases of C. sinense. This data could be used as an important resource for investigating the genetics of the flowering pathway and various biological mechanisms in this orchid. PMID:23617896

  3. Transcriptome analysis of Cymbidium sinense and its application to the identification of genes associated with floral development.

    PubMed

    Zhang, Jianxia; Wu, Kunlin; Zeng, Songjun; Teixeira da Silva, Jaime A; Zhao, Xiaolan; Tian, Chang-En; Xia, Haoqiang; Duan, Jun

    2013-04-24

    Cymbidium sinense belongs to the Orchidaceae, which is one of the most abundant angiosperm families. C. sinense, a high-grade traditional potted flower, is most prevalent in China and some Southeast Asian countries. The control of flowering time is a major bottleneck in the industrialized development of C. sinense. Little is known about the mechanisms responsible for floral development in this orchid. Moreover, genome references for entire transcriptome sequences do not currently exist for C. sinense. Thus, transcriptome and expression profiling data for this species are needed as an important resource to identify genes and to better understand the biological mechanisms of floral development in C. sinense. In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. Transcriptome analysis assembles gene-related information related to vegetative and reproductive growth of C. sinense. Illumina sequencing generated 54,248,006 high quality reads that were assembled into 83,580 unigenes with an average sequence length of 612 base pairs, including 13,315 clusters and 70,265 singletons. A total of 41,687 (49.88%) unique sequences were annotated, 23,092 of which were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes (KEGG). Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with metabolic and cellular processes, cell and cell parts, catalytic activity and binding. Furthermore, 120 flowering-associated unigenes, 73 MADS-box unigenes and 28 CONSTANS-LIKE (COL) unigenes were identified from our collection. In addition, three digital gene expression (DGE) libraries were constructed for the vegetative phase (VP), floral differentiation phase (FDP) and reproductive phase (RP). The specific expression of many genes in the three development phases was also identified. 32 genes among three sub-libraries with high differential expression were selected as candidates connected with flower development. RNA-seq and DGE profiling data provided comprehensive gene expression information at the transcriptional level that could facilitate our understanding of the molecular mechanisms of floral development at three development phases of C. sinense. This data could be used as an important resource for investigating the genetics of the flowering pathway and various biological mechanisms in this orchid.

  4. The longest telomeres: a general signature of adult stem cell compartments

    PubMed Central

    Flores, Ignacio; Canela, Andres; Vera, Elsa; Tejera, Agueda; Cotsarelis, George; Blasco, María A.

    2008-01-01

    Identification of adult stem cells and their location (niches) is of great relevance for regenerative medicine. However, stem cell niches are still poorly defined in most adult tissues. Here, we show that the longest telomeres are a general feature of adult stem cell compartments. Using confocal telomere quantitative fluorescence in situ hybridization (telomapping), we find gradients of telomere length within tissues, with the longest telomeres mapping to the known stem cell compartments. In mouse hair follicles, we show that cells with the longest telomeres map to the known stem cell compartments, colocalize with stem cell markers, and behave as stem cells upon treatment with mitogenic stimuli. Using K15-EGFP reporter mice, which mark hair follicle stem cells, we show that GFP-positive cells have the longest telomeres. The stem cell compartments in small intestine, testis, cornea, and brain of the mouse are also enriched in cells with the longest telomeres. This constitutes the description of a novel general property of adult stem cell compartments. Finally, we make the novel finding that telomeres shorten with age in different mouse stem cell compartments, which parallels a decline in stem cell functionality, suggesting that telomere loss may contribute to stem cell dysfunction with age. PMID:18283121

  5. Retail Florist: Selling the Floral Product, Maintenance and Delivery.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale.

    This retail florist unit guide is provided to help teachers teach units on sales of floral products and maintenance and delivery in a floral shop. Topics covered in the selling unit are basic mathematics; taxable items; sales etiquette; types of floral products; telephone etiquette; order form information; wire service regulations; care of floral…

  6. Herbivory by a Phloem-feeding insect inhibits floral volatile production.

    PubMed

    Pareja, Martin; Qvarfordt, Erika; Webster, Ben; Mayon, Patrick; Pickett, John; Birkett, Michael; Glinwood, Robert

    2012-01-01

    There is extensive knowledge on the effects of insect herbivory on volatile emission from vegetative tissue, but little is known about its impact on floral volatiles. We show that herbivory by phloem-feeding aphids inhibits floral volatile emission in white mustard Sinapis alba measured by gas chromatographic analysis of headspace volatiles. The effect of the Brassica specialist aphid Lipaphis erysimi was stronger than the generalist aphid Myzus persicae and feeding by chewing larvae of the moth Plutella xylostella caused no reduction in floral volatile emission. Field observations showed no effect of L. erysimi-mediated floral volatile emission on the total number of flower visits by pollinators. Olfactory bioassays suggested that although two aphid natural enemies could detect aphid inhibition of floral volatiles, their olfactory orientation to infested plants was not disrupted. This is the first demonstration that phloem-feeding herbivory can affect floral volatile emission, and that the outcome of interaction between herbivory and floral chemistry may differ depending on the herbivore's feeding mode and degree of specialisation. The findings provide new insights into interactions between insect herbivores and plant chemistry.

  7. Short Vegetative Phase-Like MADS-Box Genes Inhibit Floral Meristem Identity in Barley1[W][OA

    PubMed Central

    Trevaskis, Ben; Tadege, Million; Hemming, Megan N.; Peacock, W. James; Dennis, Elizabeth S.; Sheldon, Candice

    2007-01-01

    Analysis of the functions of Short Vegetative Phase (SVP)-like MADS-box genes in barley (Hordeum vulgare) indicated a role in determining meristem identity. Three SVP-like genes are expressed in vegetative tissues of barley: Barley MADS1 (BM1), BM10, and Vegetative to Reproductive Transition gene 2. These genes are induced by cold but are repressed during floral development. Ectopic expression of BM1 inhibited spike development and caused floral reversion in barley, with florets at the base of the spike replaced by tillers. Head emergence was delayed in plants that ectopically express BM1, primarily by delayed development after the floral transition, but expression levels of the barley VRN1 gene (HvVRN1) were not affected. Ectopic expression of BM10 inhibited spike development and caused partial floral reversion, where florets at the base of the spike were replaced by inflorescence-like structures, but did not affect heading date. Floral reversion occurred more frequently when BM1 and BM10 ectopic expression lines were grown in short-day conditions. BM1 and BM10 also inhibited floral development and caused floral reversion when expressed in Arabidopsis (Arabidopsis thaliana). We conclude that SVP-like genes function to suppress floral meristem identity in winter cereals. PMID:17114273

  8. UNUSUAL FLORAL ORGANS Controls Meristem Identity and Organ Primordia Fate in Arabidopsis.

    PubMed Central

    Wilkinson, M. D.; Haughn, G. W.

    1995-01-01

    A novel gene that is involved in regulating flower initiation and development has been identified in Arabidopsis. This gene has been designated UNUSUAL FLORAL ORGANS (UFO), with five corresponding nuclear recessive alleles designated ufo[middot]1 to ufo[middot]5. Under short day-length conditions, ufo homozygotes generate more coflorescences than do the wild type, and coflorescences often appear apical to the first floral shoot, resulting in a period of inflorescence development in which regions of floral and coflorescence shoots are produced alternately. ufo enhances the phenotype of weak leafy alleles, and the double mutant Ufo-1 Apetala1-1 produces only coflorescence-like shoots, suggesting that these two genes control different aspects of floral initiation. Floral development was also altered in Ufo plants. Ufo flowers have an altered organ number in all whorls, and organs in the first, second, and third whorls exhibit variable homeotic transformations. Ufo single and double mutant phenotypes suggest that the floral changes result from reduction in class B floral homeotic gene expression and fluctuations in the expression boundaries of class C function and FLO10. Surprisingly, in situ hybridization analysis revealed no obvious differences in expression pattern or level in developing Ufo flowers compared with that of the wild type for any class B or C gene studied. We propose that UFO acts in concert with known floral initiation genes and regulates the domains of floral homeotic gene function. PMID:12242408

  9. Floral abundance, richness, and spatial distribution drive urban garden bee communities.

    PubMed

    Plascencia, M; Philpott, S M

    2017-10-01

    In urban landscapes, gardens provide refuges for bee diversity, but conservation potential may depend on local and landscape features. Foraging and population persistence of bee species, as well as overall pollinator community structure, may be supported by the abundance, richness, and spatial distribution of floral resources. Floral resources strongly differ in urban gardens. Using hand netting and pan traps to survey bees, we examined whether abundance, richness, and spatial distribution of floral resources, as well as ground cover and garden landscape surroundings influence bee abundance, species richness, and diversity on the central coast of California. Differences in floral abundance and spatial distribution, as well as urban cover in the landscape, predicted different bee community variables. Abundance of all bees and of honeybees (Apis mellifera) was lower in sites with more urban land cover surrounding the gardens. Honeybee abundance was higher in sites with patchy floral resources, whereas bee species richness and bee diversity was higher in sites with more clustered floral resources. Surprisingly, bee species richness and bee diversity was lower in sites with very high floral abundance, possibly due to interactions with honeybees. Other studies have documented the importance of floral abundance and landscape surroundings for bees in urban gardens, but this study is the first to document that the spatial arrangement of flowers strongly predicts bee abundance and richness. Based on these findings, it is likely that garden managers may promote bee conservation by managing for floral connectivity and abundance within these ubiquitous urban habitats.

  10. The effect of flower position on variation and covariation in floral traits in a wild hermaphrodite plant

    PubMed Central

    2010-01-01

    Background Floral traits within plants can vary with flower position or flowering time. Within an inflorescence, sexual allocation of early produced basal flowers is often female-biased while later produced distal flowers are male-biased. Such temporal adjustment of floral resource has been considered one of the potential advantages of modularity (regarding a flower as a module) in hermaphrodites. However, flowers are under constraints of independent evolution of a given trait. To understand flower diversification within inflorescences, here we examine variation and covariation in floral traits within racemes at the individual and the maternal family level respectively in an alpine herb Aconitum gymnandrum (Ranunculaceae). Results We found that floral traits varied significantly with flower position and among families, and position effects were family-specific. Most of the variance of floral traits was among individuals rather than among flowers within individuals or among families. Significant phenotypic correlations between traits were not affected by position, indicating trait integration under shared developmental regulation. In contrast, positive family-mean correlations in floral traits declined gradually from basal to distal flowers (nine significant correlations among floral traits in basal flowers and only three in distal flowers), showing position-specificity. Therefore, the pattern and magnitude of genetic correlations decreased with flower position. Conclusions This finding on covariation pattern in floral reproductive structures within racemes has not been revealed before, providing insights into temporal variation and position effects in floral traits within plants and the potential advantages of modularity in hermaphrodites. PMID:20482889

  11. The effect of flower position on variation and covariation in floral traits in a wild hermaphrodite plant.

    PubMed

    Zhao, Zhi-Gang; Du, Guo-Zhen; Huang, Shuang-Quan

    2010-05-20

    Floral traits within plants can vary with flower position or flowering time. Within an inflorescence, sexual allocation of early produced basal flowers is often female-biased while later produced distal flowers are male-biased. Such temporal adjustment of floral resource has been considered one of the potential advantages of modularity (regarding a flower as a module) in hermaphrodites. However, flowers are under constraints of independent evolution of a given trait. To understand flower diversification within inflorescences, here we examine variation and covariation in floral traits within racemes at the individual and the maternal family level respectively in an alpine herb Aconitum gymnandrum (Ranunculaceae). We found that floral traits varied significantly with flower position and among families, and position effects were family-specific. Most of the variance of floral traits was among individuals rather than among flowers within individuals or among families. Significant phenotypic correlations between traits were not affected by position, indicating trait integration under shared developmental regulation. In contrast, positive family-mean correlations in floral traits declined gradually from basal to distal flowers (nine significant correlations among floral traits in basal flowers and only three in distal flowers), showing position-specificity. Therefore, the pattern and magnitude of genetic correlations decreased with flower position. This finding on covariation pattern in floral reproductive structures within racemes has not been revealed before, providing insights into temporal variation and position effects in floral traits within plants and the potential advantages of modularity in hermaphrodites.

  12. Context clues: the importance of stem cell-material interactions

    PubMed Central

    Murphy, William L.

    2014-01-01

    Understanding the processes by which stem cells give rise to de novo tissues is an active focus of stem cell biology and bioengineering disciplines. Instructive morphogenic cues surrounding the stem cell during morphogenesis create what is referred to as the stem cell microenvironment. An emerging paradigm in stem cell bioengineering involves “biologically driven assembly,” in which stem cells are encouraged to largely define their own morphogenesis processes. However, even in the case of biologically driven assembly, stem cells do not act alone. The properties of the surrounding microenvironment can be critical regulators of cell fate. Stem cell-material interactions are among the most well-characterized microenvironmental effectors of stem cell fate, and they establish a signaling “context” that can define the mode of influence for morphogenic cues. Here we describe illustrative examples of cell-material interactions that occur during in vitro stem cell studies, with an emphasis on how cell-material interactions create instructive contexts for stem cell differentiation and morphogenesis. PMID:24369691

  13. Cancer stem cells and differentiation therapy.

    PubMed

    Jin, Xiong; Jin, Xun; Kim, Hyunggee

    2017-10-01

    Cancer stem cells can generate tumors from only a small number of cells, whereas differentiated cancer cells cannot. The prominent feature of cancer stem cells is its ability to self-renew and differentiate into multiple types of cancer cells. Cancer stem cells have several distinct tumorigenic abilities, including stem cell signal transduction, tumorigenicity, metastasis, and resistance to anticancer drugs, which are regulated by genetic or epigenetic changes. Like normal adult stem cells involved in various developmental processes and tissue homeostasis, cancer stem cells maintain their self-renewal capacity by activating multiple stem cell signaling pathways and inhibiting differentiation signaling pathways during cancer initiation and progression. Recently, many studies have focused on targeting cancer stem cells to eradicate malignancies by regulating stem cell signaling pathways, and products of some of these strategies are in preclinical and clinical trials. In this review, we describe the crucial features of cancer stem cells related to tumor relapse and drug resistance, as well as the new therapeutic strategy to target cancer stem cells named "differentiation therapy."

  14. The effect of polyploidy and hybridization on the evolution of floral colour in Nicotiana (Solanaceae).

    PubMed

    McCarthy, Elizabeth W; Arnold, Sarah E J; Chittka, Lars; Le Comber, Steven C; Verity, Robert; Dodsworth, Steven; Knapp, Sandra; Kelly, Laura J; Chase, Mark W; Baldwin, Ian T; Kovařík, Aleš; Mhiri, Corinne; Taylor, Lin; Leitch, Andrew R

    2015-06-01

    Speciation in angiosperms can be accompanied by changes in floral colour that may influence pollinator preference and reproductive isolation. This study investigates whether changes in floral colour can accompany polyploid and homoploid hybridization, important processes in angiosperm evolution. Spectral reflectance of corolla tissue was examined for 60 Nicotiana (Solanaceae) accessions (41 taxa) based on spectral shape (corresponding to pigmentation) as well as bee and hummingbird colour perception in order to assess patterns of floral colour evolution. Polyploid and homoploid hybrid spectra were compared with those of their progenitors to evaluate whether hybridization has resulted in floral colour shifts. Floral colour categories in Nicotiana seem to have arisen multiple times independently during the evolution of the genus. Most younger polyploids displayed an unexpected floral colour, considering those of their progenitors, in the colour perception of at least one pollinator type, whereas older polyploids tended to resemble one or both of their progenitors. Floral colour evolution in Nicotiana is weakly constrained by phylogeny, and colour shifts do occur in association with both polyploid and homoploid hybrid divergence. Transgressive floral colour in N. tabacum has arisen by inheritance of anthocyanin pigmentation from its paternal progenitor while having a plastid phenotype like its maternal progenitor. Potentially, floral colour evolution has been driven by, or resulted in, pollinator shifts. However, those polyploids that are not sympatric (on a regional scale) with their progenitor lineages are typically not divergent in floral colour from them, perhaps because of a lack of competition for pollinators. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Clinical trials for stem cell transplantation: when are they needed?

    PubMed

    Van Pham, Phuc

    2016-04-27

    In recent years, both stem cell research and the clinical application of these promising cells have increased rapidly. About 1000 clinical trials using stem cells have to date been performed globally. More importantly, more than 10 stem cell-based products have been approved in some countries. With the rapid growth of stem cell applications, some countries have used clinical trials as a tool to diminish the rate of clinical stem cell applications. However, the point at which stem cell clinical trials are essential remains unclear. This commentary discusses when stem cell clinical trials are essential for stem cell transplantation therapies.

  16. Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees

    PubMed Central

    Rodriguez-Saona, Cesar; Parra, Leonardo; Quiroz, Andrés; Isaacs, Rufus

    2011-01-01

    Background and Aims Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined. Methods Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles. Key Results Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps. Conclusions Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers. PMID:21498566

  17. Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees.

    PubMed

    Rodriguez-Saona, Cesar; Parra, Leonardo; Quiroz, Andrés; Isaacs, Rufus

    2011-06-01

    Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined. Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles. Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps. Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers.

  18. Genetic Interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in Specifying Rice Floral Organ Identities and Meristem Determinacy1[W][OA

    PubMed Central

    Li, Haifeng; Liang, Wanqi; Yin, Changsong; Zhu, Lu; Zhang, Dabing

    2011-01-01

    Grass plants develop unique floral patterns that determine grain production. However, the molecular mechanism underlying the specification of floral organ identities and meristem determinacy, including the interaction among floral homeotic genes, remains largely unknown in grasses. Here, we report the interactions of rice (Oryza sativa) floral homeotic genes, OsMADS3 (a C-class gene), OsMADS13 (a D-class gene), and DROOPING LEAF (DL), in specifying floral organ identities and floral meristem determinacy. The interaction among these genes was revealed through the analysis of double mutants. osmads13-3 osmads3-4 displayed a loss of floral meristem determinacy and generated abundant carpelloid structures containing severe defective ovules in the flower center, which were not detectable in the single mutant. In addition, in situ hybridization and yeast two-hybrid analyses revealed that OsMADS13 and OsMADS3 did not regulate each other’s transcription or interact at the protein level. This indicates that OsMADS3 plays a synergistic role with OsMADS13 in both ovule development and floral meristem termination. Strikingly, osmads3-4 dl-sup6 displayed a severe loss of floral meristem determinacy and produced supernumerary whorls of lodicule-like organs at the forth whorl, suggesting that OsMADS3 and DL synergistically terminate the floral meristem. Furthermore, the defects of osmads13-3 dl-sup6 flowers appeared identical to those of dl-sup6, and the OsMADS13 expression was undetectable in dl-sup6 flowers. These observations suggest that DL and OsMADS13 may function in the same pathway specifying the identity of carpel/ovule and floral meristem. Collectively, we propose a model to illustrate the role of OsMADS3, DL, and OsMADS13 in the specification of flower organ identity and meristem determinacy in rice. PMID:21444646

  19. Stem cells - biological update and cell therapy progress

    PubMed Central

    GIRLOVANU, MIHAI; SUSMAN, SERGIU; SORITAU, OLGA; RUS-CIUCA, DAN; MELINCOVICI, CARMEN; CONSTANTIN, ANNE-MARIE; MIHU, CARMEN MIHAELA

    2015-01-01

    In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods to prevent teratoma formation or the ethical and religious issues regarding especially the embryonic stem cell research. The direct differentiation of stem cells into specialized cells: cardiac myocytes, neural cells, pancreatic islets cells, may represent an option in treating incurable diseases such as: neurodegenerative diseases, type I diabetes, hematologic or cardiac diseases. Nevertheless, stem cell-based therapies, based on stem cell transplantation, remain mainly at the experimental stages and their major limitation is the development of teratoma and cancer after transplantation. The induced pluripotent stem cells (hiPSCs) represent a prime candidate for future cell therapy research because of their significant self-renewal and differentiation potential and the lack of ethical issues. This article presents an overview of the biological advances in the study of stem cells and the current progress made in the field of regenerative medicine. PMID:26609255

  20. Establishment of mouse expanded potential stem cells

    PubMed Central

    Gao, Xuefei; Antunes, Liliana; Yu, Yong; Zhu, Zhexin; Wang, Juexuan; Kolodziejczyk, Aleksandra A.; Campos, Lia S.; Wang, Cui; Yang, Fengtang; Zhong, Zhen; Fu, Beiyuan; Eckersley-Maslin, Melanie A.; Woods, Michael; Tanaka, Yosuke; Chen, Xi; Wilkinson, Adam C.; Bussell, James; White, Jacqui; Ramirez-Solis, Ramiro; Reik, Wolf; Göttgens, Berthold; Teichmann, Sarah A.; Tam, Patrick P. L.; Nakauchi, Hiromitsu; Zou, Xiangang; Lu, Liming; Liu, Pentao

    2018-01-01

    Mouse embryonic stem cells derived from the epiblast1 contribute to the somatic lineages and the germline but are excluded from the extra-embryonic tissues that are derived from the trophectoderm and the primitive endoderm2 upon reintroduction to the blastocyst. Here we report that cultures of expanded potential stem cells can be established from individual eight-cell blastomeres, and by direct conversion of mouse embryonic stem cells and induced pluripotent stem cells. Remarkably, a single expanded potential stem cell can contribute both to the embryo proper and to the trophectoderm lineages in a chimaera assay. Bona fide trophoblast stem cell lines and extra-embryonic endoderm stem cells can be directly derived from expanded potential stem cells in vitro. Molecular analyses of the epigenome and single-cell transcriptome reveal enrichment for blastomere-specific signature and a dynamic DNA methylome in expanded potential stem cells. The generation of mouse expanded potential stem cells highlights the feasibility of establishing expanded potential stem cells for other mammalian species. PMID:29019987

  1. Interaction between Two Timing MicroRNAs Controls Trichome Distribution in Arabidopsis

    PubMed Central

    Xue, Xue-Yi; Zhao, Bo; Chao, Lu-Men; Chen, Dian-Yang; Cui, Wen-Rui; Mao, Ying-Bo; Wang, Ling-Jian; Chen, Xiao-Ya

    2014-01-01

    The miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) transcription factors function as an endogenous age cue in regulating plant phase transition and phase-dependent morphogenesis, but the control of SPL output remains poorly understood. In Arabidopsis thaliana the spatial pattern of trichome is a hallmark of phase transition and governed by SPLs. Here, by dissecting the regulatory network controlling trichome formation on stem, we show that the miR171-targeted LOST MERISTEMS 1 (LOM1), LOM2 and LOM3, encoding GRAS family members previously known to maintain meristem cell polarity, are involved in regulating the SPL activity. Reduced LOM abundance by overexpression of miR171 led to decreased trichome density on stems and floral organs, and conversely, constitutive expression of the miR171-resistant LOM (rLOM) genes promoted trichome production, indicating that LOMs enhance trichome initiation at reproductive stage. Genetic analysis demonstrated LOMs shaping trichome distribution is dependent on SPLs, which positively regulate trichome repressor genes TRICHOMELESS 1 (TCL1) and TRIPTYCHON (TRY). Physical interaction between the N-terminus of LOMs and SPLs underpins the repression of SPL activity. Importantly, other growth and developmental events, such as flowering, are also modulated by LOM-SPL interaction, indicating a broad effect of the LOM-SPL interplay. Furthermore, we provide evidence that MIR171 gene expression is regulated by its targeted LOMs, forming a homeostatic feedback loop. Our data uncover an antagonistic interplay between the two timing miRNAs in controlling plant growth, phase transition and morphogenesis through direct interaction of their targets. PMID:24699192

  2. Adult Stem Cell Therapy for Stroke: Challenges and Progress

    PubMed Central

    Bang, Oh Young; Kim, Eun Hee; Cha, Jae Min; Moon, Gyeong Joon

    2016-01-01

    Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell therapies include (a) the limited source of engraftable stem cells, (b) the presence of optimal time window for stem cell therapies, (c) inherited limitation of stem cells in terms of growth, trophic support, and differentiation potential, and (d) possible transplanted cell-mediated adverse effects, such as tumor formation. Here, we discuss recent advances that overcome these hurdles in adult stem cell therapy for stroke. PMID:27733032

  3. Two sides of the same coin? Unraveling subtle differences between human embryonic and induced pluripotent stem cells by Raman spectroscopy.

    PubMed

    Parrotta, Elvira; De Angelis, Maria Teresa; Scalise, Stefania; Candeloro, Patrizio; Santamaria, Gianluca; Paonessa, Mariagrazia; Coluccio, Maria Laura; Perozziello, Gerardo; De Vitis, Stefania; Sgura, Antonella; Coluzzi, Elisa; Mollace, Vincenzo; Di Fabrizio, Enzo Mario; Cuda, Giovanni

    2017-11-28

    Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, hold enormous promise for many biomedical applications, such as regenerative medicine, drug testing, and disease modeling. Although induced pluripotent stem cells resemble embryonic stem cells both morphologically and functionally, the extent to which these cell lines are truly equivalent, from a molecular point of view, remains controversial. Principal component analysis and K-means cluster analysis of collected Raman spectroscopy data were used for a comparative study of the biochemical fingerprint of human induced pluripotent stem cells and human embryonic stem cells. The Raman spectra analysis results were further validated by conventional biological assays. Raman spectra analysis revealed that the major difference between human embryonic stem cells and induced pluripotent stem cells is due to the nucleic acid content, as shown by the strong positive peaks at 785, 1098, 1334, 1371, 1484, and 1575 cm -1 , which is enriched in human induced pluripotent stem cells. Here, we report a nonbiological approach to discriminate human induced pluripotent stem cells from their native embryonic stem cell counterparts.

  4. Dt2 Is a Gain-of-Function MADS-Domain Factor Gene That Specifies Semideterminacy in Soybean[C][W

    PubMed Central

    Ping, Jieqing; Liu, Yunfeng; Sun, Lianjun; Zhao, Meixia; Li, Yinghui; She, Maoyun; Sui, Yi; Lin, Feng; Liu, Xiaodong; Tang, Zongxiang; Nguyen, Hanh; Tian, Zhixi; Qiu, Lijuan; Nelson, Randall L.; Clemente, Thomas E.; Specht, James E.; Ma, Jianxin

    2014-01-01

    Similar to Arabidopsis thaliana, the wild soybeans (Glycine soja) and many cultivars exhibit indeterminate stem growth specified by the shoot identity gene Dt1, the functional counterpart of Arabidopsis TERMINAL FLOWER1 (TFL1). Mutations in TFL1 and Dt1 both result in the shoot apical meristem (SAM) switching from vegetative to reproductive state to initiate terminal flowering and thus produce determinate stems. A second soybean gene (Dt2) regulating stem growth was identified, which, in the presence of Dt1, produces semideterminate plants with terminal racemes similar to those observed in determinate plants. Here, we report positional cloning and characterization of Dt2, a dominant MADS domain factor gene classified into the APETALA1/SQUAMOSA (AP1/SQUA) subfamily that includes floral meristem (FM) identity genes AP1, FUL, and CAL in Arabidopsis. Unlike AP1, whose expression is limited to FMs in which the expression of TFL1 is repressed, Dt2 appears to repress the expression of Dt1 in the SAMs to promote early conversion of the SAMs into reproductive inflorescences. Given that Dt2 is not the gene most closely related to AP1 and that semideterminacy is rarely seen in wild soybeans, Dt2 appears to be a recent gain-of-function mutation, which has modified the genetic pathways determining the stem growth habit in soybean. PMID:25005919

  5. Heterotopic expression of MPF2 is the key to the evolution of the Chinese lantern of Physalis, a morphological novelty in Solanaceae

    PubMed Central

    He, Chaoying; Saedler, Heinz

    2005-01-01

    Morphological novelties arise through changes in development, but the underlying causes of such changes are largely unknown. In the genus Physalis, sepals resume growth after pollination to encapsulate the mature fruit, forming the “Chinese lantern,” a trait also termed inflated-calyx syndrome (ICS). STMADS16, which encodes a MADS-box transcription factor, is expressed only in vegetative tissues in Solanum tuberosum. Its ortholog in Physalis pubescens, MPF2, is expressed in floral tissues. Knockdown of MPF2 function in Physalis by RNA interference (RNAi) reveals that MPF2 function is essential for the development of the ICS. The phenotypes of transgenic S. tuberosum plants that overexpress MPF2 or STMADS16 corroborate these findings: these plants display enlarged sepals. Although heterotopic expression of MPF2 is crucial for ICS, remarkably, fertilization is also required. Although the ICS is less prominent or absent in the knockdown transgenic plants, epidermal cells are larger, suggesting that MPF2 exerts its function by inhibiting cell elongation and promoting cell division. In addition, severely affected Physalis knockdown lines are male sterile. Thus, heterotopic expression of MPF2 in floral tissues is involved in two novel traits: expression of the ICS and control of male fertility. Sequence differences between the promoter regions of the MPF2 and STMADS16 genes perhaps reflect exposure to different selection pressures during evolution, and correlate with the observed differences in their expression patterns. In any case, the effects of heterotopic expression of MPF2 underline the importance of recruitment of preexisting transcription factors in the evolution of novel floral traits. PMID:15824316

  6. Floral morphology and anatomy of Ophiocaryon, a paedomorphic genus of Sabiaceae.

    PubMed

    Thaowetsuwan, P; Honorio Coronado, E N; Ronse De Craene, L P

    2017-11-10

    Ophiocaryon is a lesser known genus in Sabiaceae. This study examines flowers of six Ophiocaryon species in comparison with Meliosmaalba, to identify taxonomically informative characters for understanding relationships within the family Sabiaceae, to imply previously unknown pollination mechanisms of Ophiocaryon, and to contribute to the placement of Sabiaceae within the early-diverging eudicots. Floral morphology and anatomy of six Ophiocaryon species and M. alba were studied and described using scanning electron microscopy, clearing techniques and resin sectioning. Novel characters of Ophiocaryon were identified, e.g. conical cells on petals, different kinds of orbicules in anthers, stomata on nectary appendage tips and ovary, two distinct surface patterns on stamens and ovary, tanniferous cell layers in the ovary wall, and acorn-shaped unitegmic ovules with very short integuments. Comparison of floral characters between Ophiocaryon and Meliosma found that the calyx, corolla, androecium and gynoecium of Ophiocaryon resemble an undeveloped state of the latter taxon, reflecting a paedomorphic regression of the flower of Ophiocaryon. The flower morphology and anatomy of Ophiocaryon was compared with its putative sister species M. alba, but no clear shared derived characters could be detected. Moreover, the findings of scent, presence of conical cells on petals and a nectary suggest flowers are pollinated by small insects with a secondary pollen presentation on the cupula of fertile stamens. We found that Ophiocaryon may be derived from ancestors that were similar to extant Meliosma in their flower structure and pollination mechanism. However, the lack of shared derived characters between Ophiocaryon and its phylogenetic sister group M. alba is puzzling and requires further investigations on the diversity of the latter species. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  7. Isolation and characterization of a floral homeotic gene in Fraxinus nigra causing earlier flowering and homeotic alterations in transgenic Arabidopsis

    Treesearch

    Jun Hyung Lee; Paula M. Pijut

    2017-01-01

    Reproductive sterility, which can be obtained by manipulating floral organ identity genes, is an important tool for gene containment of genetically engineered trees. In Arabidopsis, AGAMOUS (AG) is the only C-class gene responsible for both floral meristem determinacy and floral organ identity, and its mutations produce...

  8. Isolation and Properties of Floral Defensins from Ornamental Tobacco and Petunia1

    PubMed Central

    Lay, Fung T.; Brugliera, Filippa; Anderson, Marilyn A.

    2003-01-01

    The flowers of the solanaceous plants ornamental tobacco (Nicotiana alata) and petunia (Petunia hybrida) produce high levels of defensins during the early stages of development. In contrast to the well-described seed defensins, these floral defensins are produced as precursors with C-terminal prodomains of 27 to 33 amino acids in addition to a typical secretion signal peptide and central defensin domain of 47 or 49 amino acids. Defensins isolated from N. alata and petunia flowers lack the C-terminal domain, suggesting that it is removed during or after transit through the secretory pathway. Immunogold electron microscopy has been used to demonstrate that the N. alata defensin is deposited in the vacuole. In addition to the eight canonical cysteine residues that define the plant defensin family, the two petunia defensins have an extra pair of cysteines that form a fifth disulfide bond and hence define a new subclass of this family of proteins. Expression of the N. alata defensin NaD1 is predominantly flower specific and is most active during the early stages of flower development. NaD1 transcripts accumulate in the outermost cell layers of petals, sepals, anthers, and styles, consistent with a role in protection of the reproductive organs against potential pathogens. The floral defensins inhibit the growth of Botrytis cinerea and Fusarium oxysporum in vitro, providing further support for a role in protection of floral tissues against pathogen invasion. PMID:12644678

  9. Flavonoid Accumulation Patterns of Transparent Testa Mutants of Arabidopsis1

    PubMed Central

    Peer, Wendy Ann; Brown, Dana E.; Tague, Brian W.; Muday, Gloria K.; Taiz, Lincoln; Murphy, Angus S.

    2001-01-01

    Flavonoids have been implicated in the regulation of auxin movements in Arabidopsis. To understand when and where flavonoids may be acting to control auxin movement, the flavonoid accumulation pattern was examined in young seedlings and mature tissues of wild-type Arabidopsis. Using a variety of biochemical and visualization techniques, flavonoid accumulation in mature plants was localized in cauline leaves, pollen, stigmata, and floral primordia, and in the stems of young, actively growing inflorescences. In young Landsberg erecta seedlings, aglycone flavonols accumulated developmentally in three regions, the cotyledonary node, the hypocotyl-root transition zone, and the root tip. Aglycone flavonols accumulated at the hypocotyl-root transition zone in a developmental and tissue-specific manner with kaempferol in the epidermis and quercetin in the cortex. Quercetin localized subcellularly in the nuclear region, plasma membrane, and endomembrane system, whereas kaempferol localized in the nuclear region and plasma membrane. The flavonoid accumulation pattern was also examined in transparent testa mutants blocked at different steps in the flavonoid biosynthesis pathway. The transparent testa mutants were shown to have precursor accumulation patterns similar to those of end product flavonoids in wild-type Landsberg erecta, suggesting that synthesis and end product accumulation occur in the same cells. PMID:11402185

  10. Flavonoid accumulation patterns of transparent testa mutants of arabidopsis

    NASA Technical Reports Server (NTRS)

    Peer, W. A.; Brown, D. E.; Tague, B. W.; Muday, G. K.; Taiz, L.; Murphy, A. S.

    2001-01-01

    Flavonoids have been implicated in the regulation of auxin movements in Arabidopsis. To understand when and where flavonoids may be acting to control auxin movement, the flavonoid accumulation pattern was examined in young seedlings and mature tissues of wild-type Arabidopsis. Using a variety of biochemical and visualization techniques, flavonoid accumulation in mature plants was localized in cauline leaves, pollen, stigmata, and floral primordia, and in the stems of young, actively growing inflorescences. In young Landsberg erecta seedlings, aglycone flavonols accumulated developmentally in three regions, the cotyledonary node, the hypocotyl-root transition zone, and the root tip. Aglycone flavonols accumulated at the hypocotyl-root transition zone in a developmental and tissue-specific manner with kaempferol in the epidermis and quercetin in the cortex. Quercetin localized subcellularly in the nuclear region, plasma membrane, and endomembrane system, whereas kaempferol localized in the nuclear region and plasma membrane. The flavonoid accumulation pattern was also examined in transparent testa mutants blocked at different steps in the flavonoid biosynthesis pathway. The transparent testa mutants were shown to have precursor accumulation patterns similar to those of end product flavonoids in wild-type Landsberg erecta, suggesting that synthesis and end product accumulation occur in the same cells.

  11. A family business: stem cell progeny join the niche to regulate homeostasis.

    PubMed

    Hsu, Ya-Chieh; Fuchs, Elaine

    2012-01-23

    Stem cell niches, the discrete microenvironments in which the stem cells reside, play a dominant part in regulating stem cell activity and behaviours. Recent studies suggest that committed stem cell progeny become indispensable components of the niche in a wide range of stem cell systems. These unexpected niche inhabitants provide versatile feedback signals to their stem cell parents. Together with other heterologous cell types that constitute the niche, they contribute to the dynamics of the microenvironment. As progeny are often located in close proximity to stem cell niches, similar feedback regulations may be the underlying principles shared by different stem cell systems.

  12. A family business: stem cell progeny join the niche to regulate homeostasis

    PubMed Central

    Hsu, Ya-Chieh; Fuchs, Elaine

    2012-01-01

    Stem cell niches, the discrete microenvironments in which the stem cells reside, play a dominant part in regulating stem cell activity and behaviours. Recent studies suggest that committed stem cell progeny become indispensable components of the niche in a wide range of stem cell systems. These unexpected niche inhabitants provide versatile feedback signals to their stem cell parents. Together with other heterologous cell types that constitute the niche, they contribute to the dynamics of the microenvironment. As progeny are often located in close proximity to stem cell niches, similar feedback regulations may be the underlying principles shared by different stem cell systems. PMID:22266760

  13. Stem Cell Therapy for Erectile Dysfunction.

    PubMed

    Matz, Ethan L; Terlecki, Ryan; Zhang, Yuanyuan; Jackson, John; Atala, Anthony

    2018-04-06

    The prevalence of erectile dysfunction (ED) is substantial and continues to rise. Current therapeutics for ED consist of oral medications, intracavernosal injections, vacuum erection devices, and penile implants. While such options may manage the disease state, none of these modalities, however, restore function. Stem cell therapy has been evaluated for erectile restoration in animal models. These cells have been derived from multiple tissues, have varied potential, and may function via local engraftment or paracrine signaling. Bone marrow-derived stem cells (BMSC) and adipose-derived stem cells (ASC) have both been used in these models with noteworthy effects. Herein, we will review the pathophysiology of ED, animal models, current and novel stem-cell based therapeutics, clinical trials and areas for future research. The relevant literature and contemporary data using keywords, "stem cells and erectile dysfunction" was reviewed. Examination of evidence supporting the association between erectile dysfunction and adipose derived stem cells, bone marrow derived stem cells, placental stem cells, urine stem cells and stem cell therapy respectively. Placental-derived stem cells and urine-derived stem cells possess many similar properties as BMSC and ASC, but the methods of acquisition are favorable. Human clinical trials have already demonstrated successful use of stem cells for improvement of erectile function. The future of stem cell research is constantly being evaluated, although, the evidence suggests a place for stem cells in erectile dysfunction therapeutics. Matz EL, Terlecki R, Zhang Y, et al. Stem Cell Therapy for Erectile Dysfunction. Sex Med Rev 2018;XX:XXX-XXX. Copyright © 2018 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  14. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer.

    PubMed

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-12-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research.

  15. Adult bone marrow-derived stem cells for organ regeneration and repair.

    PubMed

    Tögel, Florian; Westenfelder, Christof

    2007-12-01

    Stem cells have been recognized as a potential tool for the development of innovative therapeutic strategies. There are in general two types of stem cells, embryonic and adult stem cells. While embryonic stem cell therapy has been riddled with problems of allogeneic rejection and ethical concerns, adult stem cells have long been used in the treatment of hematological malignancies. With the recognition of additional, potentially therapeutic characteristics, bone marrow-derived stem cells have become a tool in regenerative medicine. The bone marrow is an ideal source of stem cells because it is easily accessible and harbors two types of stem cells. Hematopoietic stem cells give rise to all blood cell types and have been shown to exhibit plasticity, while multipotent marrow stromal cells are the source of osteocytes, chondrocytes, and fat cells and have been shown to support and generate a large number of different cell types. This review describes the general characteristics of these stem cell populations and their current and potential future applications in regenerative medicine. 2007 Wiley-Liss, Inc

  16. Stem cells.

    PubMed

    Behr, Björn; Ko, Sae Hee; Wong, Victor W; Gurtner, Geoffrey C; Longaker, Michael T

    2010-10-01

    Stem cells are self-renewing cells capable of differentiating into multiple cell lines and are classified according to their origin and their ability to differentiate. Enormous potential exists in use of stem cells for regenerative medicine. To produce effective stem cell-based treatments for a range of diseases, an improved understanding of stem cell biology and better control over stem cell fate are necessary. In addition, the barriers to clinical translation, such as potential oncologic properties of stem cells, need to be addressed. With renewed government support and continued refinement of current stem cell methodologies, the future of stem cell research is exciting and promises to provide novel reconstructive options for patients and surgeons limited by traditional paradigms.

  17. Some Ethical Concerns About Human Induced Pluripotent Stem Cells.

    PubMed

    Zheng, Yue Liang

    2016-10-01

    Human induced pluripotent stem cells can be obtained from somatic cells, and their derivation does not require destruction of embryos, thus avoiding ethical problems arising from the destruction of human embryos. This type of stem cell may provide an important tool for stem cell therapy, but it also results in some ethical concerns. It is likely that abnormal reprogramming occurs in the induction of human induced pluripotent stem cells, and that the stem cells generate tumors in the process of stem cell therapy. Human induced pluripotent stem cells should not be used to clone human beings, to produce human germ cells, nor to make human embryos. Informed consent should be obtained from patients in stem cell therapy.

  18. Laser biomodulation on stem cells

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Duan, Rui; Li, Yan; Li, Xue-Feng; Tan, Li-Ling; Liu, Songhao

    2001-08-01

    Stem cells are views from the perspectives of their function, evolution, development, and cause. Counterintuitively, most stem cells may arise late in development, to act principally in tissue renewal, thus ensuring an organisms long-term survival. Surprisingly, recent reports suggest that tissue-specific adult stem cells have the potential to contribute to replenishment of multiple adult tissues. Stem cells are currently in the news for two reasons: the successful cultivation of human embryonic stem cell lines and reports that adult stem cells can differentiate into developmentally unrelated cell types, such as nerve cells into blood cells. The spotlight on stem cells has revealed gaps in our knowledge that must be filled if we are to take advantage of their full potential for treating devastating degenerative diseases such as Parkinsons's disease and muscular dystrophy. We need to know more about the intrinsic controls that keep stem cells as stem cells or direct them along particular differentiation pathways. Such intrinsic regulators are, in turn, sensitive to the influences of the microenvironment, or niche, where stem cells normally reside. Both intrinsic and extrinsic signals regular stem cell fate and some of these signals have now been identified. Vacek et al and Wang et al have studied the effect of low intensity laser on the haemopoietic stem cells in vitro. There experiments show there is indeed the effect of low intensity laser on the haemopoietic stem cells in vitro, and the present effect is the promotion of haemopoietic stem cells proliferation. In other words, low intensity laser irradiation can act as an extrinsic signal regulating stem cell fate. In this paper, we study how low intensity laser can be used to regulate stem cell fate from the viewpoint of collective phototransduction.

  19. Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells.

    PubMed

    Kang, N-H; Hwang, K-A; Kim, S U; Kim, Y-B; Hyun, S-H; Jeung, E-B; Choi, K-C

    2012-08-01

    As stem cells are capable of self-renewal and can generate differentiated progenies for organ development, they are considered as potential source for regenerative medicine and tissue replacement after injury or disease. Along with this capacity, stem cells have the therapeutic potential for treating human diseases including cancers. According to the origins, stem cells are broadly classified into two types: embryonic stem cells (ESCs) and adult stem cells. In terms of differentiation potential, ESCs are pluripotent and adult stem cells are multipotent. Amnion, which is a membranous sac that contains the fetus and amniotic fluid and functions in protecting the developing embryo during gestation, is another stem cell source. Amnion-derived stem cells are classified as human amniotic membrane-derived epithelial stem cells, human amniotic membrane-derived mesenchymal stem cells and human amniotic fluid-derived stem cells. They are in an intermediate stage between pluripotent ESCs and lineage-restricted adult stem cells, non-tumorigenic, and contribute to low immunogenicity and anti-inflammation. Furthermore, they are easily available and do not cause any controversial issues in their recovery and applications. Not only are amnion-derived stem cells applicable in regenerative medicine, they have anticancer capacity. In non-engineered stem cells transplantation strategies, amnion-derived stem cells effectively target the tumor and suppressed the tumor growth by expressing cytotoxic cytokines. Additionally, they also have a potential as novel delivery vehicles transferring therapeutic genes to the cancer formation sites in gene-directed enzyme/prodrug combination therapy. Owing to their own advantageous properties, amnion-derived stem cells are emerging as a new candidate in anticancer therapy.

  20. In vitro differentiation of primordial germ cells and oocyte-like cells from stem cells.

    PubMed

    Costa, José J N; Souza, Glaucinete B; Soares, Maria A A; Ribeiro, Regislane P; van den Hurk, Robert; Silva, José R V

    2018-02-01

    Infertility is the result of failure due to an organic disorder of the reproductive organs, especially their gametes. Recently, much progress has been made on generating germ cells, including oocytes, from various types of stem cells. This review focuses on advances in female germ cell differentiation from different kinds of stem cells, with emphasis on embryonic stem cells, adult stem cells, and induced pluripotent stem cells. The advantages and disadvantages of the derivation of female germ cells from several types of stem cells are also highlighted, as well as the ability of stem cells to generate mature and functional female gametes. This review shows that stem cell therapies have opened new frontiers in medicine, especially in the reproductive area, with the possibility of regenerating fertility.

  1. Reduced hematopoietic stem cell frequency predicts outcome in acute myeloid leukemia.

    PubMed

    Wang, Wenwen; Stiehl, Thomas; Raffel, Simon; Hoang, Van T; Hoffmann, Isabel; Poisa-Beiro, Laura; Saeed, Borhan R; Blume, Rachel; Manta, Linda; Eckstein, Volker; Bochtler, Tilmann; Wuchter, Patrick; Essers, Marieke; Jauch, Anna; Trumpp, Andreas; Marciniak-Czochra, Anna; Ho, Anthony D; Lutz, Christoph

    2017-09-01

    In patients with acute myeloid leukemia and low percentages of aldehyde-dehydrogenase-positive cells, non-leukemic hematopoietic stem cells can be separated from leukemic cells. By relating hematopoietic stem cell frequencies to outcome we detected poor overall- and disease-free survival of patients with low hematopoietic stem cell frequencies. Serial analysis of matched diagnostic and follow-up samples further demonstrated that hematopoietic stem cells increased after chemotherapy in patients who achieved durable remissions. However, in patients who eventually relapsed, hematopoietic stem cell numbers decreased dramatically at the time of molecular relapse demonstrating that hematopoietic stem cell levels represent an indirect marker of minimal residual disease, which heralds leukemic relapse. Upon transplantation in immune-deficient mice cases with low percentages of hematopoietic stem cells of our cohort gave rise to leukemic or no engraftment, whereas cases with normal hematopoietic stem cell levels mostly resulted in multi-lineage engraftment. Based on our experimental data, we propose that leukemic stem cells have increased niche affinity in cases with low percentages of hematopoietic stem cells. To validate this hypothesis, we developed new mathematical models describing the dynamics of healthy and leukemic cells under different regulatory scenarios. These models suggest that the mechanism leading to decreases in hematopoietic stem cell frequencies before leukemic relapse must be based on expansion of leukemic stem cells with high niche affinity and the ability to dislodge hematopoietic stem cells. Thus, our data suggest that decreasing numbers of hematopoietic stem cells indicate leukemic stem cell persistence and the emergence of leukemic relapse. Copyright© 2017 Ferrata Storti Foundation.

  2. Evaluation of the secretion and release of vascular endothelial growth factor from two-dimensional culture and three-dimensional cell spheroids formed with stem cells and osteoprecursor cells.

    PubMed

    Lee, Hyunjin; Lee, Sung-Il; Ko, Youngkyung; Park, Jun-Beom

    2018-05-18

    Co-culture has been applied in cell therapy, including stem cells, and has been reported to give enhanced functionality. In this study, stem-cell spheroids were formed in concave micromolds at different ratios of stem cells to osteoprecursor cells, and the amount of secretion of vascular endothelial growth factor (VEGF) was evaluated. Gingiva-derived stem cells and osteoprecursor cells in the amount of 6 × 105 were seeded on a 24-well culture plate or concave micromolds. The ratios of stem cells to osteoprecursor cells included: 0:4 (group 1), 1:3 (group 2), 2:2 (group 3), 3:1 (group 4), and 4:0 (group 5). The morphology of cells in a 2-dimensional culture (groups 1-5) showed a fibroblast-like appearance. The secretion of VEGF increased with the increase in stem cells, and a statistically significant increase was noted in groups 3, 4 and 5 when compared with the media-only group (p < 0.05). Osteoprecursor cells formed spheroids in concave microwells, and no noticeable change in the morphology was noted with the increase in stem cells. Spheroids containing stem cells were positive for the stem-cell markers SSEA-4. The secretion of VEGF from cell spheroids increased with the increase in stem cells. This study showed that cell spheroids formed with stem cells and osteoprecursor cells with different ratios, using microwells, had paracrine effects on the stem cells. The secretion of VEGF increased with the increase in stem cells. This stem-cell spheroid may be applied for tissue-engineering purposes.

  3. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths.

    PubMed

    von Arx, Martin; Goyret, Joaquín; Davidowitz, Goggy; Raguso, Robert A

    2012-06-12

    Most research on plant-pollinator communication has focused on sensory and behavioral responses to relatively static cues. Floral rewards such as nectar, however, are dynamic, and foraging animals will increase their energetic profit if they can make use of floral cues that more accurately indicate nectar availability. Here we document such a cue--transient humidity gradients--using the night blooming flowers of Oenothera cespitosa (Onagraceae). The headspace of newly opened flowers reaches levels of about 4% above ambient relative humidity due to additive evapotranspirational water loss through petals and water-saturated air from the nectar tube. Floral humidity plumes differ from ambient levels only during the first 30 min after anthesis (before nectar is depleted in wild populations), whereas other floral traits (scent, shape, and color) persist for 12-24 h. Manipulative experiments indicated that floral humidity gradients are mechanistically linked to nectar volume and therefore contain information about energy rewards to floral visitors. Behavioral assays with Hyles lineata (Sphingidae) and artificial flowers with appropriate humidity gradients suggest that these hawkmoth pollinators distinguish between subtle differences in relative humidity when other floral cues are held constant. Moths consistently approached and probed flowers with elevated humidity over those with ambient humidity levels. Because floral humidity gradients are largely produced by the evaporation of nectar itself, they represent condition-informative cues that facilitate remote sensing of floral profitability by discriminating foragers. In a xeric environment, this level of honest communication should be adaptive when plant reproductive success is pollinator limited, due to intense competition for the attention of a specialized pollinator.

  4. Reproduction and survival of a solitary bee along native and exotic floral resource gradients.

    PubMed

    Palladini, Jennifer D; Maron, John L

    2014-11-01

    Native bee abundance has long been assumed to be limited by floral resources. This paradigm has been established in large measure because more bees are often found in areas supporting greater floral abundance. This could result from attraction to resource-rich sites as well as greater local demographic performance in sites supporting high floral abundance; however, demographic performance is usually unknown. Factors other than floral resources such as availability of nest sites, pressure from natural enemies, or whether floral resources are from a mixed native or mostly monodominant exotic assemblage might influence survival or fecundity and hence abundance. We examined how the survival and fecundity of the native solitary bee Osmia lignaria varied along a gradient in floral resource abundance. We released bees alongside a nest block at 27 grassland sites in Montana (USA) that varied in floral abundance and the extent of invasion by exotic forbs. We monitored nest construction and the fate of offspring within each nest. The number of nests established was positively related to native forb abundance and was negatively related to exotic forb species richness. Fecundity was positively related to native forb species richness; however, offspring mortality caused by the brood parasite Tricrania stansburyi was significantly greater in native-dominated sites. These results suggest that native floral resources can positively influence bee populations, but that the relationship between native floral resources and bee population performance is not straightforward. Rather, bees may face a trade-off between high offspring production and low offspring survival in native-dominated sites.

  5. Molecular interactions of orthologues of floral homeotic proteins from the gymnosperm Gnetum gnemon provide a clue to the evolutionary origin of 'floral quartets'.

    PubMed

    Wang, Yong-Qiang; Melzer, Rainer; Theissen, Günter

    2010-10-01

    Several lines of evidence suggest that the identity of floral organs in angiosperms is specified by multimeric transcription factor complexes composed of MADS-domain proteins. These bind to specific cis-regulatory elements ('CArG-boxes') of their target genes involving DNA-loop formation, thus constituting 'floral quartets'. Gymnosperms, angiosperms' closest relatives, contain orthologues of floral homeotic genes, but when and how the interactions constituting floral quartets were established during evolution has remained unknown. We have comprehensively studied the dimerization and DNA-binding of several classes of MADS-domain proteins from the gymnosperm Gnetum gnemon. Determination of protein-protein and protein-DNA interactions by yeast two-hybrid, in vitro pull-down and electrophoretic mobility shift assays revealed complex patterns of homo- and heterodimerization among orthologues of floral homeotic class B, class C and class E proteins and B(sister) proteins. Using DNase I footprint assays we demonstrate that both orthologues of class B with C proteins, and orthologues of class C proteins alone, but not orthologues of class B proteins alone can loop DNA in floral quartet-like complexes. This is in contrast to class B and class C proteins from angiosperms, which require other factors such as class E floral homeotic proteins to 'glue' them together in multimeric complexes. Our findings suggest that the evolutionary origin of floral quartet formation is based on the interaction of different DNA-bound homodimers, does not depend on class E proteins, and predates the origin of angiosperms. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  6. Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths

    PubMed Central

    von Arx, Martin; Goyret, Joaquín; Davidowitz, Goggy; Raguso, Robert A.

    2012-01-01

    Most research on plant–pollinator communication has focused on sensory and behavioral responses to relatively static cues. Floral rewards such as nectar, however, are dynamic, and foraging animals will increase their energetic profit if they can make use of floral cues that more accurately indicate nectar availability. Here we document such a cue—transient humidity gradients—using the night blooming flowers of Oenothera cespitosa (Onagraceae). The headspace of newly opened flowers reaches levels of about 4% above ambient relative humidity due to additive evapotranspirational water loss through petals and water-saturated air from the nectar tube. Floral humidity plumes differ from ambient levels only during the first 30 min after anthesis (before nectar is depleted in wild populations), whereas other floral traits (scent, shape, and color) persist for 12–24 h. Manipulative experiments indicated that floral humidity gradients are mechanistically linked to nectar volume and therefore contain information about energy rewards to floral visitors. Behavioral assays with Hyles lineata (Sphingidae) and artificial flowers with appropriate humidity gradients suggest that these hawkmoth pollinators distinguish between subtle differences in relative humidity when other floral cues are held constant. Moths consistently approached and probed flowers with elevated humidity over those with ambient humidity levels. Because floral humidity gradients are largely produced by the evaporation of nectar itself, they represent condition-informative cues that facilitate remote sensing of floral profitability by discriminating foragers. In a xeric environment, this level of honest communication should be adaptive when plant reproductive success is pollinator limited, due to intense competition for the attention of a specialized pollinator. PMID:22645365

  7. Transcriptional signatures of ancient floral developmental genetics in avocado (Persea americana; Lauraceae).

    PubMed

    Chanderbali, André S; Albert, Victor A; Leebens-Mack, Jim; Altman, Naomi S; Soltis, Douglas E; Soltis, Pamela S

    2009-06-02

    The debate on the origin and evolution of flowers has recently entered the field of developmental genetics, with focus on the design of the ancestral floral regulatory program. Flowers can differ dramatically among angiosperm lineages, but in general, male and female reproductive organs surrounded by a sterile perianth of sepals and petals constitute the basic floral structure. However, the basal angiosperm lineages exhibit spectacular diversity in the number, arrangement, and structure of floral organs, whereas the evolutionarily derived monocot and eudicot lineages share a far more uniform floral ground plan. Here we show that broadly overlapping transcriptional programs characterize the floral transcriptome of the basal angiosperm Persea americana (avocado), whereas floral gene expression domains are considerably more organ specific in the model eudicot Arabidopsis thaliana. Our findings therefore support the "fading borders" model for organ identity determination in basal angiosperm flowers and extend it from the action of regulatory genes to downstream transcriptional programs. Furthermore, the declining expression of components of the staminal transcriptome in central and peripheral regions of Persea flowers concurs with elements of a previous hypothesis for developmental regulation in a gymnosperm "floral progenitor." Accordingly, in contrast to the canalized organ-specific regulatory apparatus of Arabidopsis, floral development may have been originally regulated by overlapping transcriptional cascades with fading gradients of influence from focal to bordering organs.

  8. Air pollutants degrade floral scents and increase insect foraging times

    NASA Astrophysics Data System (ADS)

    Fuentes, Jose D.; Chamecki, Marcelo; Roulston, T.'ai; Chen, Bicheng; Pratt, Kenneth R.

    2016-09-01

    Flowers emit mixtures of scents that mediate plant-insect interactions such as attracting insect pollinators. Because of their volatile nature, however, floral scents readily react with ozone, nitrate radical, and hydroxyl radical. The result of such reactions is the degradation and the chemical modification of scent plumes downwind of floral sources. Large Eddy Simulations (LES) are developed to investigate dispersion and chemical degradation and modification of floral scents due to reactions with ozone, hydroxyl radical, and nitrate radical within the atmospheric surface layer. Impacts on foraging insects are investigated by utilizing a random walk model to simulate insect search behavior. Results indicate that even moderate air pollutant levels (e.g., ozone mixing ratios greater than 60 parts per billion on a per volume basis, ppbv) substantially degrade floral volatiles and alter the chemical composition of released floral scents. As a result, insect success rates of locating plumes of floral scents were reduced and foraging times increased in polluted air masses due to considerable degradation and changes in the composition of floral scents. Results also indicate that plant-pollinator interactions could be sensitive to changes in floral scent composition, especially if insects are unable to adapt to the modified scentscape. The increase in foraging time could have severe cascading and pernicious impacts on the fitness of foraging insects by reducing the time devoted to other necessary tasks.

  9. The Role of Stem Cells in Aesthetic Surgery: Fact or Fiction?

    PubMed Central

    McArdle, Adrian; Senarath-Yapa, Kshemendra; Walmsley, Graham G.; Hu, Michael; Atashroo, David A.; Tevlin, Ruth; Zielins, Elizabeth; Gurtner, Geoffrey C.; Wan, Derrick C.; Longaker, Michael T.

    2014-01-01

    Stem cells are attractive candidates for the development of novel therapies, targeting indications that involve functional restoration of defective tissue. Although most stem cell therapies are new and highly experimental, there are clinics around the world that exploit vulnerable patients with the hope of offering supposed stem cell therapies, many of which operate without credible scientific merit, oversight, or other patient protection. We review the potential, as well as drawbacks, for incorporation of stem cells in cosmetic procedures. A review of FDA-approved indications and ongoing clinical trials with adipose stem cells is provided. Furthermore, a “snapshot” analysis of websites using the search terms “stem cell therapy” or “stem cell treatment” or “stem cell facelift” was performed. Despite the protective net cast by regulatory agencies such as the FDA and professional societies such as the American Society of Plastic Surgeons, we are witnessing worrying advertisements for procedures such as stem cell facelifts, stem cell breast augmentations, and even stem cell vaginal rejuvenation. The marketing and promotion of stem cell procedures in aesthetic surgery is not adequately supported by clinical evidence in the majority of cases. Stem cells offer tremendous potential, but the marketplace is saturated with unsubstantiated and sometimes fraudulent claims that may place patients at risk. With plastic surgeons at the forefront of stem cell-based regenerative medicine, it is critically important that we provide an example of a rigorous approach to research, data collection, and advertising of stem cell therapies. PMID:24732654

  10. A WUSCHEL-Independent Stem Cell Specification Pathway Is Repressed by PHB, PHV and CNA in Arabidopsis.

    PubMed

    Lee, Chunghee; Clark, Steven E

    2015-01-01

    The homeostatic maintenance of stem cells that carry out continuous organogenesis at the shoot meristem is crucial for plant development. Key known factors act to signal between the stem cells and an underlying group of cells thought to act as the stem cell niche. In Arabidopsis thaliana the homeodomain transcription factor WUSCHEL (WUS) is essential for stem cell initiation and maintenance at shoot and flower meristems. Recent data suggest that the WUS protein may move from the niche cells directly into the stem cells to maintain stem cell identity. Here we provide evidence for a second, previously unknown, pathway for stem cell specification at shoot and flower meristems that bypasses the requirement for WUS. We demonstrate that this novel stem cell specification pathway is normally repressed by the activity of the HD-zip III transcription factors PHABULOSA (PHB), PHAVOLUTA (PHV) and CORONA (CNA). When de-repressed, this second stem cell pathway leads to an accumulation of stem cells and an enlargement of the stem cell niche. When de-repressed in a wus mutant background, this second stem cell pathway leads to functional meristems with largely normal cell layering and meristem morphology, activation of WUS cis regulatory elements, and extensive, but not indeterminate, organogenesis. Thus, WUS is largely dispensable for stem cell specification and meristem function, suggesting a set of key stem cell specification factors, competitively regulated by WUS and PHB/PHV/CNA, remain unidentified.

  11. A WUSCHEL-Independent Stem Cell Specification Pathway Is Repressed by PHB, PHV and CNA in Arabidopsis

    PubMed Central

    Lee, Chunghee; Clark, Steven E.

    2015-01-01

    The homeostatic maintenance of stem cells that carry out continuous organogenesis at the shoot meristem is crucial for plant development. Key known factors act to signal between the stem cells and an underlying group of cells thought to act as the stem cell niche. In Arabidopsis thaliana the homeodomain transcription factor WUSCHEL (WUS) is essential for stem cell initiation and maintenance at shoot and flower meristems. Recent data suggest that the WUS protein may move from the niche cells directly into the stem cells to maintain stem cell identity. Here we provide evidence for a second, previously unknown, pathway for stem cell specification at shoot and flower meristems that bypasses the requirement for WUS. We demonstrate that this novel stem cell specification pathway is normally repressed by the activity of the HD-zip III transcription factors PHABULOSA (PHB), PHAVOLUTA (PHV) and CORONA (CNA). When de-repressed, this second stem cell pathway leads to an accumulation of stem cells and an enlargement of the stem cell niche. When de-repressed in a wus mutant background, this second stem cell pathway leads to functional meristems with largely normal cell layering and meristem morphology, activation of WUS cis regulatory elements, and extensive, but not indeterminate, organogenesis. Thus, WUS is largely dispensable for stem cell specification and meristem function, suggesting a set of key stem cell specification factors, competitively regulated by WUS and PHB/PHV/CNA, remain unidentified. PMID:26011610

  12. Generation, characterization and potential therapeutic applications of mature and functional hepatocytes from stem cells.

    PubMed

    Zhang, Zhenzhen; Liu, Jianfang; Liu, Yang; Li, Zheng; Gao, Wei-Qiang; He, Zuping

    2013-02-01

    Liver cancer is the sixth most common tumor in the world and the majority of patients with this disease usually die within 1 year. The effective treatment for end-stage liver disease (also known as liver failure), including liver cancer or cirrhosis, is liver transplantation. However, there is a severe shortage of liver donors worldwide, which is the major handicap for the treatment of patients with liver failure. Scarcity of liver donors underscores the urgent need of using stem cell therapy to the end-stage liver disease. Notably, hepatocytes have recently been generated from hepatic and extra-hepatic stem cells. We have obtained mature and functional hepatocytes from rat hepatic stem cells. Here, we review the advancements on hepatic differentiation from various stem cells, including hepatic stem cells, embryonic stem cells, the induced pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, and probably spermatogonial stem cells. The advantages, disadvantages, and concerns on differentiation of these stem cells into hepatic cells are highlighted. We further address the methodologies, phenotypes, and functional characterization on the differentiation of numerous stem cells into hepatic cells. Differentiation of stem cells into mature and functional hepatocytes, especially from an extra-hepatic stem cell source, would circumvent the scarcity of liver donors and human hepatocytes, and most importantly it would offer an ideal and promising source of hepatocytes for cell therapy and tissue engineering in treating liver disease. Copyright © 2012 Wiley Periodicals, Inc.

  13. Herbivory as an important selective force in the evolution of floral traits and pollinator shifts

    PubMed Central

    Overson, Rick P.; Raguso, Robert A.; Skogen, Krissa A.

    2017-01-01

    Abstract Floral trait evolution is frequently attributed to pollinator-mediated selection but herbivores can play a key role in shaping plant reproductive biology. Here we examine the role of florivores in driving floral trait evolution and pollinator shifts in a recently radiated clade of flowering plants, Oenothera sect. Calylophus. We compare florivory by a specialist, internal feeder, Mompha, on closely related hawkmoth- and bee-pollinated species and document variation in damage based on floral traits within sites, species and among species. Our results show that flowers with longer floral tubes and decreased floral flare have increased Mompha damage. Bee-pollinated flowers, which have substantially smaller floral tubes, experience on average 13% less Mompha florivory than do hawkmoth-pollinated flowers. The positive association between tube length and Mompha damage is evident even within sites of some species, suggesting that Mompha can drive trait differentiation at microevolutionary scales. Given that there are at least two independent shifts from hawkmoth to bee pollination in this clade, florivore-mediated selection on floral traits may have played an important role in facilitating morphological changes associated with transitions from hawkmoth to bee pollination. PMID:28011456

  14. Volatile organic compounds of Thai honeys produced from several floral sources by different honey bee species.

    PubMed

    Pattamayutanon, Praetinee; Angeli, Sergio; Thakeow, Prodpran; Abraham, John; Disayathanoowat, Terd; Chantawannakul, Panuwan

    2017-01-01

    The volatile organic compounds (VOCs) of four monofloral and one multifloral of Thai honeys produced by Apis cerana, Apis dorsata and Apis mellifera were analyzed by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography and mass spectrometry (GC-MS). The floral sources were longan, sunflower, coffee, wild flowers (wild) and lychee. Honey originating from longan had more VOCs than all other floral sources. Sunflower honey had the least numbers of VOCs. cis-Linalool oxide, trans-linalool oxide, ho-trienol, and furan-2,5-dicarbaldehyde were present in all the honeys studied, independent of their floral origin. Interestingly, 2-phenylacetaldehyde was detected in all honey sample except longan honey produced by A. cerana. Thirty-two VOCs were identified as possible floral markers. After validating differences in honey volatiles from different floral sources and honeybee species, the results suggest that differences in quality and quantity of honey volatiles are influenced by both floral source and honeybee species. The group of honey volatiles detected from A. cerana was completely different from those of A. mellifera and A. dorsata. VOCs could therefore be applied as chemical markers of honeys and may reflect preferences of shared floral sources amongst different honeybee species.

  15. Pollinators exert natural selection on flower size and floral display in Penstemon digitalis.

    PubMed

    Parachnowitsch, Amy L; Kessler, André

    2010-10-01

    • A major gap in our understanding of floral evolution, especially micro-evolutionary processes, is the role of pollinators in generating patterns of natural selection on floral traits. Here we explicitly tested the role of pollinators in selecting floral traits in a herbaceous perennial, Penstemon digitalis. • We manipulated the effect of pollinators on fitness through hand pollinations and compared phenotypic selection in open- and hand-pollinated plants. • Despite the lack of pollen limitation in our population, pollinators mediated selection on floral size and floral display. Hand pollinations removed directional selection for larger flowers and stabilizing selection on flower number, suggesting that pollinators were the agents of selection on both of these traits. • We reviewed studies that measured natural selection on floral traits by biotic agents and generally found stronger signatures of selection imposed by pollinators than by herbivores and co-flowering plant species. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  16. Stem cells in dentistry--part I: stem cell sources.

    PubMed

    Egusa, Hiroshi; Sonoyama, Wataru; Nishimura, Masahiro; Atsuta, Ikiru; Akiyama, Kentaro

    2012-07-01

    Stem cells can self-renew and produce different cell types, thus providing new strategies to regenerate missing tissues and treat diseases. In the field of dentistry, adult mesenchymal stem/stromal cells (MSCs) have been identified in several oral and maxillofacial tissues, which suggests that the oral tissues are a rich source of stem cells, and oral stem and mucosal cells are expected to provide an ideal source for genetically reprogrammed cells such as induced pluripotent stem (iPS) cells. Furthermore, oral tissues are expected to be not only a source but also a therapeutic target for stem cells, as stem cell and tissue engineering therapies in dentistry continue to attract increasing clinical interest. Part I of this review outlines various types of intra- and extra-oral tissue-derived stem cells with regard to clinical availability and applications in dentistry. Additionally, appropriate sources of stem cells for regenerative dentistry are discussed with regard to differentiation capacity, accessibility and possible immunomodulatory properties. Copyright © 2012 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  17. Plant stem cell niches.

    PubMed

    Stahl, Yvonne; Simon, Rüdiger

    2005-01-01

    Stem cells are required to support the indeterminate growth style of plants. Meristems are a plants stem cell niches that foster stem cell survival and the production of descendants destined for differentiation. In shoot meristems, stem cell fate is decided at the populational level. The size of the stem cell domain at the meristem tip depends on signals that are exchanged with cells of the organizing centre underneath. In root meristems, individual stem cells are controlled by direct interaction with cells of the quiescent centre that lie in the immediate neighbourhood. Analysis of the interactions and signaling processes in the stem cell niches has delivered some insights into the molecules that are involved and revealed that the two major niches for plant stem cells are more similar than anticipated.

  18. Stem cells in the Drosophila digestive system.

    PubMed

    Zeng, Xiankun; Chauhan, Chhavi; Hou, Steven X

    2013-01-01

    Adult stem cells maintain tissue homeostasis by continuously replenishing damaged, aged and dead cells in any organism. Five types of region and organ-specific multipotent adult stem cells have been identified in the Drosophila digestive system: intestinal stem cells (ISCs) in the posterior midgut; hindgut intestinal stem cells (HISCs) at the midgut/hindgut junction; renal and nephric stem cells (RNSCs) in the Malpighian Tubules; type I gastric stem cells (GaSCs) at foregut/midgut junction; and type II gastric stem cells (GSSCs) at the middle of the midgut. Despite the fact that each type of stem cell is unique to a particular organ, they share common molecular markers and some regulatory signaling pathways. Due to the simpler tissue structure, ease of performing genetic analysis, and availability of abundant mutants, Drosophila serves as an elegant and powerful model system to study complex stem cell biology. The recent discoveries, particularly in the Drosophila ISC system, have greatly advanced our understanding of stem cell self-renewal, differentiation, and the role of stem cells play in tissue homeostasis/regeneration and adaptive tissue growth.

  19. Induced cancer stem cells generated by radiochemotherapy and their therapeutic implications.

    PubMed

    Chen, Xiewan; Liao, Rongxia; Li, Dezhi; Sun, Jianguo

    2017-03-07

    Local and distant recurrence of malignant tumors following radio- and/or chemotherapy correlates with poor prognosis of patients. Among the reasons for cancer recurrence, preexisting cancer stem cells (CSCs) are considered the most likely cause due to their properties of self-renewal, pluripotency, plasticity and tumorigenicity. It has been demonstrated that preexisting cancer stem cells derive from normal stem cells and differentiated somatic cells that undergo transformation and dedifferentiation respectively under certain conditions. However, recent studies have revealed that cancer stem cells can also be induced from non-stem cancer cells by radiochemotherapy, constituting the subpopulation of induced cancer stem cells (iCSCs). These findings suggest that radiochemotherapy has the side effect of directly transforming non-stem cancer cells into induced cancer stem cells, possibly contributing to tumor recurrence and metastasis. Therefore, drugs targeting cancer stem cells or preventing dedifferentiation of non-stem cancer cells can be combined with radiochemotherapy to improve its antitumor efficacy. The current review is to investigate the mechanisms by which induced cancer stem cells are generated by radiochemotherapy and hence provide new strategies for cancer treatment.

  20. Stem cells in gastroenterology and hepatology

    PubMed Central

    Quante, Michael; Wang, Timothy C.

    2010-01-01

    Cellular and tissue regeneration in the gastrointestinal tract and liver depends on stem cells with properties of longevity, self-renewal and multipotency. Progress in stem cell research and the identification of potential esophageal, gastric, intestinal, colonic, hepatic and pancreatic stem cells provides hope for the use of stem cells in regenerative medicine and treatments for disease. Embryonic stem cells and induced pluripotent stem cells have the potential to give rise to any cell type in the human body, but their therapeutic application remains challenging. The use of adult or tissue-restricted stem cells is emerging as another possible approach for the treatment of gastrointestinal diseases. The same self-renewal properties that allow stem cells to remain immortal and generate any tissue can occasionally make their proliferation difficult to control and make them susceptible to malignant transformation. This Review provides an overview of the different types of stem cell, focusing on tissue-restricted adult stem cells in the fields of gastroenterology and hepatology and summarizing the potential benefits and risks of using stems cells to treat gastroenterological and liver disorders. PMID:19884893

  1. Lower Oncogenic Potential of Human Mesenchymal Stem Cells Derived from Cord Blood Compared to Induced Pluripotent Stem Cells

    PubMed Central

    Foroutan, T.; Najmi, M.; Kazemi, N.; Hasanlou, M.; Pedram, A.

    2015-01-01

    Background: In regenerative medicine, use of each of the mesenchymal stem cells derived from bone marrow, cord blood, and adipose tissue, has several cons and pros. Mesenchymal stem cells derived from cord blood have been considered the best source for precursor transplantation. Direct reprogramming of a somatic cell into induced pluripotent stem cells by over-expression of 6 transcription factors Oct4, Sox2, Klf4, lin28, Nanog, and c-Myc has great potential for regenerative medicine, eliminating the ethical issues of embryonic stem cells and the rejection problems of using non-autologous cells. Objective: To compare reprogramming and pluripotent markers OCT4, Sox-2, c-Myc, Klf4, Nanog, and lin28 in mesenchymal stem cells derived from cord blood and induced pluripotent stem cells. Methods: We analyzed the expression level of OCT4, Sox-2, c-Myc, Klf4, Nanog and lin28 genes in human mesenchymal stem cells derived from cord blood and induced pluripotent stem cells by cell culture and RT-PCR. Results: The expression level of pluripotent genes OCT4 and Sox-2, Nanog and lin28 in mesenchymal stem cells derived from cord blood were significantly higher than those in induced pluripotent stem cells. In contrast to OCT-4A and Sox-2, Nanog and lin28, the expression level of oncogenic factors c-Myc and Klf4 were significantly higher in induced pluripotent stem cells than in mesenchymal stem cells derived from cord blood. Conclusion: It could be concluded that mesenchymal stem cells derived from human cord blood have lower oncogenic potential compared to induced pluripotent stem cells. PMID:26306155

  2. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, Kyung-Hwan; Yoon, Chang-Hwan; Kim, Rae-Kwon

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in themore » malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133{sup +} cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.« less

  3. Flagellin preconditioning enhances the efficacy of mesenchymal stem cells in an irradiation-induced proctitis model.

    PubMed

    Linard, Christine; Strup-Perrot, Carine; Lacave-Lapalun, Jean-Victor; Benderitter, Marc

    2016-09-01

    The success of mesenchymal stem cell transplantation for proctitis depends not only on cell donors but also on host microenvironmental factors, which play a major role in conditioning mesenchymal stem cell immunosuppressive action and repair. This study sought to determine if flagellin, a TLR5 ligand, can enhance the mesenchymal stem cell treatment efficacy in radiation-induced proctitis. With the use of a colorectal model of 27 Gy irradiation in rats, we investigated and compared the effects on immune capacity and remodeling at 28 d after irradiation of the following: 1) systemic mesenchymal stem cell (5 × 10(6)) administration at d 7 after irradiation, 2) administration of flagellin at d 3 and systemic mesenchymal stem cell administration at d 7, and 3) in vitro preconditioning of mesenchymal stem cells with flagellin, 24 h before their administration on d 7. The mucosal CD8(+) T cell population was normalized after treatment with flagellin-preconditioned mesenchymal stem cells or flagellin plus mesenchymal stem cells, whereas mesenchymal stem cells alone did not alter the radiation-induced elevation of CD8(+) T cell frequency. Mesenchymal stem cell treatment returned the irradiation-elevated frequency of CD25(+) cells in the mucosa-to-control levels, whereas both flagellin-preconditioned mesenchymal stem cell and flagellin-plus-mesenchymal stem cell treatment each significantly increased not only CD25(+) cell frequency but also forkhead box p3 and IL-2Rα expression. Specifically, IL-10 was overexpressed after flagellin-preconditioned mesenchymal stem cell treatment. Analysis of collagen expression showed that the collagen type 1/collagen type 3 ratio, an indicator of wound-healing maturation, was low in the irradiated and mesenchymal stem cell-treated groups and returned to the normal level only after the flagellin-preconditioned mesenchymal stem cell treatment. This was associated with a reduction in myofibroblast accumulation. In a proctitis model, flagellin-preconditioned mesenchymal stem cells improved colonic immune capacity and enhanced tissue remodeling. © Society for Leukocyte Biology.

  4. Epidermal stem cells: location, potential and contribution to cancer.

    PubMed

    Ambler, C A; Määttä, A

    2009-01-01

    Epidermal stem cells have been classically characterized as slow-cycling, long-lived cells that reside in discrete niches in the skin. Gene expression studies of niche-resident cells have revealed a number of stem cell markers and regulators, including the Wnt/beta-catenin, Notch, p63, c-Myc and Hedgehog pathways. A new study challenges the traditional developmental paradigm of slow-cycling stem cells and rapid-cycling transit amplifying cells in some epidermal regions, and there is mounting evidence to suggest that multi-lineage epidermal progenitors can be isolated from highly proliferative, non-niche regions. Whether there is a unique microenvironment surrounding these progenitors remains to be determined. Interestingly, cancer stem cells derived from epidermal tumours exist independent of the classic skin stem cell niche, yet also have stem cell properties, including multi-lineage differentiation. This review summarizes recent studies identifying the location and regulators of mouse and human epidermal stem cells and highlights the strategies used to identify cancer stem cells, including expression of normal epidermal stem cell markers, expression of cancer stem cell markers identified in other epidermal tumours and characterization of side-population tumour cells.

  5. MicroRNAs: key regulators of stem cells.

    PubMed

    Gangaraju, Vamsi K; Lin, Haifan

    2009-02-01

    The hallmark of a stem cell is its ability to self-renew and to produce numerous differentiated cells. This unique property is controlled by dynamic interplays between extrinsic signalling, epigenetic, transcriptional and post-transcriptional regulations. Recent research indicates that microRNAs (miRNAs) have an important role in regulating stem cell self-renewal and differentiation by repressing the translation of selected mRNAs in stem cells and differentiating daughter cells. Such a role has been shown in embryonic stem cells, germline stem cells and various somatic tissue stem cells. These findings reveal a new dimension of gene regulation in controlling stem cell fate and behaviour.

  6. Reproductive Ontogeny of Wheat Grown on the MIR Space Station

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Stieber, Joseph

    1997-01-01

    The reproductive ontogeny of 'Super-Dwarf' wheat grown on the space station Mir is chronicled from the vegetative phase through flower development. Changes in the apical meristem associated with transition From the vegetative phase to floral initiation and development of the reproductive spike were all typical of 'Super Dwarf' wheat up to the point of anthesis. Filament elongation, which characteristically occurs just prior to anthesis and moves the anthers through the stigmatic branches thus facilitating pollination, did no1 xcur in the flowers of spikes grown on Mir. While development of spikes on tillers typically occurs later :han that of spikes on the main stem, all flowers appear to be arrested at the same developmental point.

  7. [Progress in epidermal stem cells].

    PubMed

    Wang, Li-Juan; Wang, You-Liang; Yang, Xiao

    2010-03-01

    Mammalian skin epidermis contains different epidermal stem cell pools which contribute to the homeostasis and repair of skin epithelium. Epidermal stem cells possess two essential features common to all stem cells: self-renewal and differentiation. Disturbing the balance between self-renewal and differentiation of epidermal stem cell often causes tumors or other skin diseases. Epidermal stem cell niches provide a special microenvironment that maintains a balance of stem cell quiescence and activity. This review primarily concentrates on the following points of the epidermal stem cells: the existing evidences, the self-renewal and differentiation, the division pattern, the signal pathways regulating self-renewal and differentiation, and the microenvironment (niche) and macroenvironment maintaining the homeostasis of stem cells.

  8. [Research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration].

    PubMed

    Liang, Hang; Deng, Xiangyu; Shao, Zengwu

    2017-10-01

    To summarize the research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration and deduce the therapeutic potential of endogenous repair for intervertebral disc degeneration. The original articles about intervertebral disc endogenous stem cells for intervertebral disc regeneration were extensively reviewed; the reparative potential in vivo and the extraction and identification in vitro of intervertebral disc endogenous stem cells were analyzed; the prospect of endogenous stem cells for intervertebral disc regeneration was predicted. Stem cell niche present in the intervertebral discs, from which stem cells migrate to injured tissues and contribute to tissues regeneration under certain specific microenvironment. Moreover, the migration of stem cells is regulated by chemokines system. Tissue specific progenitor cells have been identified and successfully extracted and isolated. The findings provide the basis for biological therapy of intervertebral disc endogenous stem cells. Intervertebral disc endogenous stem cells play a crucial role in intervertebral disc regeneration. Therapeutic strategy of intervertebral disc endogenous stem cells is proven to be a promising biological approach for intervertebral disc regeneration.

  9. Amnion-derived stem cells: in quest of clinical applications

    PubMed Central

    2011-01-01

    In the promising field of regenerative medicine, human perinatal stem cells are of great interest as potential stem cells with clinical applications. Perinatal stem cells could be isolated from normally discarded human placentae, which are an ideal cell source in terms of availability, the fewer number of ethical concerns, less DNA damage, and so on. Numerous studies have demonstrated that some of the placenta-derived cells possess stem cell characteristics like pluripotent differentiation ability, particularly in amniotic epithelial (AE) cells. Term human amniotic epithelium contains a relatively large number of stem cell marker-positive cells as an adult stem cell source. In this review, we introduce a model theory of why so many AE cells possess stem cell characteristics. We also describe previous work concerning the therapeutic applications and discuss the pluripotency of the AE cells and potential pitfalls for amnion-derived stem cell research. PMID:21596003

  10. The role of stem cells in aesthetic surgery: fact or fiction?

    PubMed

    McArdle, Adrian; Senarath-Yapa, Kshemendra; Walmsley, Graham G; Hu, Michael; Atashroo, David A; Tevlin, Ruth; Zielins, Elizabeth; Gurtner, Geoffrey C; Wan, Derrick C; Longaker, Michael T

    2014-08-01

    Stem cells are attractive candidates for the development of novel therapies, targeting indications that involve functional restoration of defective tissue. Although most stem cell therapies are new and highly experimental, there are clinics around the world that exploit vulnerable patients with the hope of offering supposed stem cell therapies, many of which operate without credible scientific merit, oversight, or other patient protection. The authors review the potential and the drawbacks of incorporation of stem cells in cosmetic procedures. A review of U.S. Food and Drug Administration-approved indications and ongoing clinical trials with adipose stem cells is provided. Furthermore, a "snapshot" analysis of Web sites using the search terms "stem cell therapy" or "stem cell treatment" or "stem cell facelift" was performed. Despite the protective net cast by regulatory agencies such as the U.S. Food and Drug Administration and professional societies such as the American Society of Plastic Surgeons, the authors are witnessing worrying advertisements for procedures such as stem cell face lifts, stem cell breast augmentations, and even stem cell vaginal rejuvenation. The marketing and promotion of stem cell procedures in aesthetic surgery is not adequately supported by clinical evidence in the majority of cases. Stem cells offer tremendous potential, but the marketplace is saturated with unsubstantiated and sometimes fraudulent claims that may place patients at risk. With plastic surgeons at the forefront of stem cell-based regenerative medicine, it is critically important that they provide an example of a rigorous approach to research, data collection, and advertising of stem cell therapies.

  11. Polymer microarray technology for stem cell engineering

    PubMed Central

    Coyle, Robert; Jia, Jia; Mei, Ying

    2015-01-01

    Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. During the past decade, significant progress has been made in developing soluble factors (e.g., small molecules and growth factors) to direct stem cells into a desired phenotype. However, the current lack of suitable synthetic materials to regulate stem cell activity has limited the realization of the enormous potential of stem cells. This can be attributed to a large number of materials properties (e.g., chemical structures and physical properties of materials) that can affect stem cell fate. This makes it challenging to design biomaterials to direct stem cell behavior. To address this, polymer microarray technology has been developed to rapidly identify materials for a variety of stem cell applications. In this article, we summarize recent developments in polymer array technology and their applications in stem cell engineering. Statement of significance Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. In the last decade, significant progress has been made in developing chemically defined media to direct stem cells into a desired phenotype. However, the current lack of the suitable synthetic materials to regulate stem cell activities has been limiting the realization of the potential of stem cells. This can be attributed to the number of variables in material properties (e.g., chemical structures and physical properties) that can affect stem cells. Polymer microarray technology has shown to be a powerful tool to rapidly identify materials for a variety of stem cell applications. Here we summarize recent developments in polymer array technology and their applications in stem cell engineering. PMID:26497624

  12. Nocturnal bees are attracted by widespread floral scents.

    PubMed

    Carvalho, Airton Torres; Maia, Artur Campos Dalia; Ojima, Poliana Yumi; dos Santos, Adauto A; Schlindwein, Clemens

    2012-03-01

    Flower localization in darkness is a challenging task for nocturnal pollinators. Floral scents often play a crucial role in guiding them towards their hosts. Using common volatile compounds of floral scents, we trapped female nocturnal Megalopta-bees (Halictidae), thus uncovering olfactory cues involved in their search for floral resources. Applying a new sampling method hereby described, we offer novel perspectives on the investigation of nocturnal bees.

  13. Stem cells in kidney regeneration.

    PubMed

    Yokote, Shinya; Yokoo, Takashi

    2012-01-01

    Currently many efforts are being made to apply regenerative medicine to kidney diseases using several types of stem/progenitor cells, such as mesenchymal stem cells, renal stem/progenitor cells, embryonic stem cells and induced pluripotent stem cells. Stem cells have the ability to repair injured organs and ameliorate damaged function. The strategy for kidney tissue repair is the recruitment of stem cells and soluble reparative factors to the kidney to elicit tissue repair and the induction of dedifferentiation of resident renal cells. On the other hand, where renal structure is totally disrupted, absolute kidney organ regeneration is needed to rebuild a whole functional kidney. In this review, we describe current advances in stem cell research for kidney tissue repair and de novo organ regeneration.

  14. Stem Cell Sciences plc.

    PubMed

    Daniels, Sebnem

    2006-09-01

    Stem Cell Sciences' core objective is to develop safe and effective stem cell-based therapies for currently incurable diseases. In order to achieve this goal, Stem Cell Sciences recognizes the need for multiple technologies and a globally integrated stem cell initiative. The key challenges for the successful application of stem cells in the clinic is the need for a reproducible supply of pure, fully characterized stem cells that have been grown in suitable conditions for use in the clinic.

  15. Fusion with stem cell makes the hepatocellular carcinoma cells similar to liver tumor-initiating cells.

    PubMed

    Wang, Ran; Chen, Shuxun; Li, Changxian; Ng, Kevin Tak Pan; Kong, Chi-wing; Cheng, Jinping; Cheng, Shuk Han; Li, Ronald A; Lo, Chung Mau; Man, Kwan; Sun, Dong

    2016-02-04

    Cell fusion is a fast and highly efficient technique for cells to acquire new properties. The fusion of somatic cells with stem cells can reprogram somatic cells to a pluripotent state. Our research on the fusion of stem cells and cancer cells demonstrates that the fused cells can exhibit stemness and cancer cell-like characteristics. Thus, tumor-initiating cell-like cells are generated. We employed laser-induced single-cell fusion technique to fuse the hepatocellular carcinoma cells and human embryonic stem cells (hESC). Real-time RT-PCR, flow cytometry and in vivo tumorigenicity assay were adopted to identify the gene expression difference. We successfully produced a fused cell line that coalesces the gene expression information of hepatocellular carcinoma cells and stem cells. Experimental results showed that the fused cells expressed cancer and stemness markers as well as exhibited increased resistance to drug treatment and enhanced tumorigenesis. Fusion with stem cells transforms liver cancer cells into tumor initiating-like cells. Results indicate that fusion between cancer cell and stem cell may generate tumor initiating-like cells.

  16. Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine

    USDA-ARS?s Scientific Manuscript database

    Although a 'vascular stem cell' population has not been identified or generated, vascular endothelial and mural cells (smooth muscle cells and pericytes) can be derived from currently known pluripotent stem cell sources, including human embryonic stem cells and induced pluripotent stem cells. We rev...

  17. Digital Gene Expression Analysis Based on De Novo Transcriptome Assembly Reveals New Genes Associated with Floral Organ Differentiation of the Orchid Plant Cymbidium ensifolium

    PubMed Central

    Yang, Fengxi; Zhu, Genfa

    2015-01-01

    Cymbidium ensifolium belongs to the genus Cymbidium of the orchid family. Owing to its spectacular flower morphology, C. ensifolium has considerable ecological and cultural value. However, limited genetic data is available for this non-model plant, and the molecular mechanism underlying floral organ identity is still poorly understood. In this study, we characterize the floral transcriptome of C. ensifolium and present, for the first time, extensive sequence and transcript abundance data of individual floral organs. After sequencing, over 10 Gb clean sequence data were generated and assembled into 111,892 unigenes with an average length of 932.03 base pairs, including 1,227 clusters and 110,665 singletons. Assembled sequences were annotated with gene descriptions, gene ontology, clusters of orthologous group terms, the Kyoto Encyclopedia of Genes and Genomes, and the plant transcription factor database. From these annotations, 131 flowering-associated unigenes, 61 CONSTANS-LIKE (COL) unigenes and 90 floral homeotic genes were identified. In addition, four digital gene expression libraries were constructed for the sepal, petal, labellum and gynostemium, and 1,058 genes corresponding to individual floral organ development were identified. Among them, eight MADS-box genes were further investigated by full-length cDNA sequence analysis and expression validation, which revealed two APETALA1/AGL9-like MADS-box genes preferentially expressed in the sepal and petal, two AGAMOUS-like genes particularly restricted to the gynostemium, and four DEF-like genes distinctively expressed in different floral organs. The spatial expression of these genes varied distinctly in different floral mutant corresponding to different floral morphogenesis, which validated the specialized roles of them in floral patterning and further supported the effectiveness of our in silico analysis. This dataset generated in our study provides new insights into the molecular mechanisms underlying floral patterning of Cymbidium and supports a valuable resource for molecular breeding of the orchid plant. PMID:26580566

  18. Evidence that a herbivore tolerance response affects selection on floral traits and inflorescence architecture in purple loosestrife (Lythrum salicaria)

    PubMed Central

    Sargent, Risa D.

    2017-01-01

    Abstract Background and Aims The study of the evolution of floral traits has generally focused on pollination as the primary driver of selection. However, herbivores can also impose selection on floral traits through a variety of mechanisms, including florivory and parasitism. Less well understood is whether floral and inflorescence architecture traits that influence a plant’s tolerance to herbivory, such as compensatory regrowth, alter pollinator-mediated selection. Methods Because herbivore damage to Lythrum salicaria meristems typically leads to an increase in the number of inflorescences and the size of the floral display, an experiment was conducted to test whether simulated herbivory (i.e. clipping the developing meristem) could alter the magnitude or direction of pollinator-mediated selection on a suite of floral and inflorescence architecture traits. Using a pollen supplementation protocol, pollen limitation was compared in the presence and absence of meristem damage in order to quantify any interaction between pollinator and herbivore-mediated selection on floral traits. Key Results Surprisingly, in spite of an obvious impact on floral display and architecture, with clipped plants producing more inflorescences and more flowers, there was no difference in pollen limitation between clipped and unclipped plants. Correspondingly, there was no evidence that imposing herbivore damage altered pollinator-mediated selection in this system. Rather, the herbivory treatment alone was found to alter direct selection on floral display, with clipped plants experiencing greater selection for earlier flowering and weaker selection for number of inflorescences when compared with unclipped plants. Conclusions These findings imply that herbivory on its own can drive selection on plant floral traits and inflorescence architecture in this species, even more so than pollinators. Specifically, herbivory can impose selection on floral traits if such traits influence a plant’s tolerance to herbivory, such as through the timing of flowering and/or the compensatory regrowth response. PMID:28369263

  19. Possible role of jasmonic acid in the regulation of floral induction, evocation and floral differentiation in Lemna minor L.

    PubMed

    Krajncic, B; Kristl, J; Janzekovic, I

    2006-01-01

    Jasmonic acid (JA) is implicated in a wide variety of developmental and physiological processes in plants. Here, we studied the effects of JA and the combination of JA and ethylenediamine-dio-hydroxyphenyl-acetic acid (EDDHA) on flowering in Lemna minor in axenical cultures. JA (0.475-47.5 nmol l(-1)) enhanced floral induction in L. minor under long-day (LD) conditions. Under the same conditions, at a concentration of 237.5 nmol l(-1), JA inhibited floral induction, and at a concentration of 475 nmol l(-1) it prevented floral induction. Under LD conditions with LD preculture, a combination of EDDHA (20,500 nmol l(-1)) and JA (47.5 nmol l(-1)) had a synergistic effect on the promotion of floral induction. Floral induction was enhanced to the greatest extent in experiments with LD precultures. Microscopic examination of microphotographs of histological sections showed that JA and, to an even greater extent, JA+EDDHA at optimal concentrations promote apical floral induction (evocation). Furthermore, JA, and to an even greater extent JA in combination with EDDHA in an optimal concentration, also promote flower differentiation, especially the development of stamens, as is evident from the microphotographs. The experimental results show that JA promotes floral induction in other species of Lemnaceae from various groups according to their photoperiodic response. The results support our hypothesis that, in addition to previously ascribed functions, JA may regulate floral induction, evocation and floral differentiation. Our hypothesis is supported also by the results obtained by quantitative determination of endogenous JA levels in L. minor at three growth stages. The levels of endogenous JA decreased from 389 ng JA g(-1) (fresh weight) of L. minor during the vegetative stage to 217 ng JA g(-1) during the evocation stage, and to 37.5 ng JA g(-1) during the flowering stage, which proves that JA is used for flowering.

  20. Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells

    PubMed Central

    2013-01-01

    Pluripotent stem cells, both embryonic stem cells and induced pluripotent stem cells, are undifferentiated cells that can self-renew and potentially differentiate into all hematopoietic lineages, such as hematopoietic stem cells (HSCs), hematopoietic progenitor cells and mature hematopoietic cells in the presence of a suitable culture system. Establishment of pluripotent stem cells provides a comprehensive model to study early hematopoietic development and has emerged as a powerful research tool to explore regenerative medicine. Nowadays, HSC transplantation and hematopoietic cell transfusion have successfully cured some patients, especially in malignant hematological diseases. Owing to a shortage of donors and a limited number of the cells, hematopoietic cell induction from pluripotent stem cells has been regarded as an alternative source of HSCs and mature hematopoietic cells for intended therapeutic purposes. Pluripotent stem cells are therefore extensively utilized to facilitate better understanding in hematopoietic development by recapitulating embryonic development in vivo, in which efficient strategies can be easily designed and deployed for the generation of hematopoietic lineages in vitro. We hereby review the current progress of hematopoietic cell induction from embryonic stem/induced pluripotent stem cells. PMID:23796405

  1. Stem Cell Basics

    MedlinePlus

    ... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... Basics » Stem Cell Basics I. Back to top Stem Cell Basics I. Introduction: What are stem cells, and ...

  2. TOPICAL REVIEW: Stem cells engineering for cell-based therapy

    NASA Astrophysics Data System (ADS)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  3. From Banking to International Governance: Fostering Innovation in Stem Cell Research

    PubMed Central

    Isasi, Rosario; Knoppers, Bartha M.

    2011-01-01

    Stem cell banks are increasingly recognized as an essential resource of biological materials for both basic and translational stem cell research. By providing transnational access to quality controlled and ethically sourced stem cell lines, stem cell banks seek to foster international collaboration and innovation. However, given that national stem cell banks operate under different policy, regulatory and commercial frameworks, the transnational sharing of stem cell materials and data can be complicating. This paper will provide an overview of the most pressing challenges regarding the governance of stem cell banks, and the difficulties in designing regulatory and commercial frameworks that foster stem cell research. Moreover, the paper will shed light on the numerous international initiatives that have arisen to help harmonize and standardize stem cell banking and research processes to overcome such challenges. PMID:21904557

  4. Stem Cells Transplantation in the Treatment of Patients with Liver Failure.

    PubMed

    Tao, Ya-Chao; Wang, Meng-Lan; Chen, En-Qiang; Tang, Hong

    2018-02-23

    Liver failure is a life-threatening liver disease encompassing severe acute deterioration of liver function. Emergency liver transplantation is the only curative treatment for liver failure, but is restricted by the severe shortage of organ donors. Stem cell, including embroyonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells and hepatic progenitor cells, have capacity to proliferate and differentiate and could be used in a variety of liver diseases including hereditary liver diseases, cirrhosis and liver failure. We summarized the basic experimental and clinical advances of stem cell transplantation in liver failure treatment, and also discussed the advantages and disadvantage of different stem cells subtype in this field, aiming to provide a perspective on the stem cell-based therapy for liver failure. Stem cells, especially mesenchymal stem cells (mainly low immunogenicity and paracrine characteristics) and induced pluripotent stem cells (generation of desired cell type from somatic cell), are feasible candidates for cell therapy in the treatment of liver failure, but there are some drawbacks remaining to be resolved, such as low engraftment, cryotpreservation methods and tumorigenesis. Stem cell transplantation is a promising but challenging strategy and paves a new way for curing liver failure. But more efforts need to be made to overcome problems before this new strategy could be safely and effectively applied to humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Recent Progress in Stem Cell Modification for Cardiac Regeneration

    PubMed Central

    Voronina, Natalia; Steinhoff, Gustav

    2018-01-01

    During the past decades, stem cell-based therapy has acquired a promising role in regenerative medicine. The application of novel cell therapeutics for the treatment of cardiovascular diseases could potentially achieve the ambitious aim of effective cardiac regeneration. Despite the highly positive results from preclinical studies, data from phase I/II clinical trials are inconsistent and the improvement of cardiac remodeling and heart performance was found to be quite limited. The major issues which cardiac stem cell therapy is facing include inefficient cell delivery to the site of injury, accompanied by low cell retention and weak effectiveness of remaining stem cells in tissue regeneration. According to preclinical and clinical studies, various stem cells (adult stem cells, embryonic stem cells, and induced pluripotent stem cells) represent the most promising cell types so far. Beside the selection of the appropriate cell type, researchers have developed several strategies to produce “second-generation” stem cell products with improved regenerative capacity. Genetic and nongenetic modifications, chemical and physical preconditioning, and the application of biomaterials were found to significantly enhance the regenerative capacity of transplanted stem cells. In this review, we will give an overview of the recent developments in stem cell engineering with the goal to facilitate stem cell delivery and to promote their cardiac regenerative activity. PMID:29535769

  6. Eat, breathe, ROS: controlling stem cell fate through metabolism.

    PubMed

    Kubli, Dieter A; Sussman, Mark A

    2017-05-01

    Research reveals cardiac regeneration exists at levels previously deemed unattainable. Clinical trials using stem cells demonstrate promising cardiomyogenic and regenerative potential but insufficient contractile recovery. Incomplete understanding of the biology of administered cells likely contributes to inconsistent patient outcomes. Metabolism is a core component of many well-characterized stem cell types, and metabolic changes fundamentally alter stem cell fate from self-renewal to lineage commitment, and vice versa. However, the metabolism of stem cells currently studied for cardiac regeneration remains incompletely understood. Areas covered: Key metabolic features of stem cells are reviewed and unique stem cell metabolic characteristics are discussed. Metabolic changes altering stem cell fate are considered from quiescence and self-renewal to lineage commitment. Key metabolic concepts are applied toward examining cardiac regeneration through stem cell-based approaches, and clinical implications of current cell therapies are evaluated to identify potential areas of improvement. Expert commentary: The metabolism and biology of stem cells used for cardiac therapy remain poorly characterized. A growing appreciation for the fundamental relationship between stem cell functionality and metabolic phenotype is developing. Future studies unraveling links between cardiac stem cell metabolism and regenerative potential may considerably improve treatment strategies and therapeutic outcomes.

  7. Eat, breathe, ROS: controlling stem cell fate through metabolism

    PubMed Central

    Kubli, Dieter A.; Sussman, Mark A.

    2017-01-01

    Introduction Research reveals cardiac regeneration exists at levels previously deemed unattainable. Clinical trials using stem cells demonstrate promising cardiomyogenic and regenerative potential but insufficient contractile recovery. Incomplete understanding of the biology of administered cells likely contributes to inconsistent patient outcomes. Metabolism is a core component of many well-characterized stem cell types, and metabolic changes fundamentally alter stem cell fate from self-renewal to lineage commitment, and vice versa. However, the metabolism of stem cells currently studied for cardiac regeneration remains incompletely understood. Areas covered Key metabolic features of stem cells are reviewed and unique stem cell metabolic characteristics are discussed. Metabolic changes altering stem cell fate are considered from quiescence and self-renewal to lineage commitment. Key metabolic concepts are applied toward examining cardiac regeneration through stem cell-based approaches, and clinical implications of current cell therapies are evaluated to identify potential areas of improvement. Expert commentary The metabolism and biology of stem cells used for cardiac therapy remain poorly characterized. A growing appreciation for the fundamental relationship between stem cell functionality and metabolic phenotype is developing. Future studies unraveling links between cardiac stem cell metabolism and regenerative potential may considerably improve treatment strategies and therapeutic outcomes. PMID:28406333

  8. Duplication and Whorl-Specific Down-Regulation of the Obligate AP3-PI Heterodimer Genes Explain the Origin of Paeonia lactiflora Plants with Spontaneous Corolla Mutation.

    PubMed

    Gong, Pichang; Ao, Xiang; Liu, Gaixiu; Cheng, Fangyun; He, Chaoying

    2017-03-01

    Herbaceous peony (Paeonia lactiflora) is a globally important ornamental plant. Spontaneous floral mutations occur frequently during cultivation, and are selected as a way to release new cultivars, but the underlying evolutionary developmental genetics remain largely elusive. Here, we investigated a collection of spontaneous corolla mutational plants (SCMPs) whose other floral organs were virtually unaffected. Unlike the corolla in normal plants (NPs) that withered soon after fertilization, the transformed corolla (petals) in SCMPs was greenish and persistent similar to the calyx (sepals). Epidermal cellular morphology of the SCMP corolla was also similar to that of calyx cells, further suggesting a sepaloid corolla in SCMPs. Ten floral MADS-box genes from these Paeonia plants were comparatively characterized with respect to sequence and expression. Codogenic sequence variation of these MADS-box genes was not linked to corolla changes in SCMPs. However, we found that both APETALA3 (AP3) and PISTILLATA (PI) lineages of B-class MADS-box genes were duplicated, and subsequent selective expression alterations of these genes were closely associated with the origin of SCMPs. AP3-PI obligate heterodimerization, essential for organ identity of corolla and stamens, was robustly detected. However, selective down-regulation of these duplicated genes might result in a reduction of this obligate heterodimer concentration in a corolla-specific manner, leading to the sepaloid corolla in SCMPs, thus representing a new sepaloid corolla model taking advantage of gene duplication. Our work suggests that modifying floral MADS-box genes could facilitate the breeding of novel cultivars with distinct floral morphology in ornamental plants, and also provides new insights into the functional evolution of the MADS-box genes in plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Therapeutic strategies involving uterine stem cells in reproductive medicine.

    PubMed

    Simoni, Michael; Taylor, Hugh S

    2018-06-01

    The current review provides an update on recent advances in stem cell biology relevant to female reproduction. Stem cells are undifferentiated cells that often serve as a reservoir of cells to regenerate tissue in settings or injury or cell loss. The endometrium has progenitor stem cells that can replace all of the endometrium during each menstrual cycle. In addition, multipotent endometrial cells replace these progenitor cells when depleted. Recruitment of stem cells from outside of the uterus occurs in setting of increased demand such as ischemia or injury. Bone marrow-derived multipotent stem cells are recruited to the uterus by estrogen or injury-induced expression of the chemokine CXCL12. In the setting of overwhelming injury, especially in the setting of low estrogen levels, there may be insufficient stem cell recruitment to adequately repair the uterus resulting in conditions such as Asherman syndrome or other endometrial defects. In contrast, excessive recruitment of stem cells underlies endometriosis. Enhanced understanding of stem-cell mobilization, recruitment, and engraftment has created the possibility of improved therapy for endometrial defects and endometriosis through enhanced manipulation of stem-cell trafficking. Further, the normal endometrium is a rich source of multipotent stem cells that can be used for numerous applications in regenerative medicine beyond reproduction. A better understanding of reproductive stem-cell biology may allow improved treatment of endometrial disease such as Asherman syndrome and other endometrial receptivity defects. Inhibiting stem-cell mobilization may also be helpful in endometriosis therapy. Finally, endometrial derived multipotent stem cells may play a crucial role in cell therapy for regenerative medicine.

  10. Carbon allocation during fruiting in Rubus chamaemorus

    PubMed Central

    Gauci, R.; Otrysko, B.; Catford, J.-G.; Lapointe, L.

    2009-01-01

    Background and Aims Rubus chamaemorus (cloudberry) is a herbaceous clonal peatland plant that produces an extensive underground rhizome system with distant ramets. Most of these ramets are non-floral. The main objectives of this study were to determine: (a) if plant growth was source limited in cloudberry; (b) if the non-floral ramets translocated carbon (C) to the fruit; and (c) if there was competition between fruit, leaves and rhizomes for C during fruit development. Methods Floral and non-floral ramet activities were monitored during the period of flower and fruit development using three approaches: gas exchange measurements, 14CO2 labelling and dry mass accumulation in the different organs. Source and sink activity were manipulated by eliminating leaves or flowers or by reducing rhizome length. Key Results Photosynthetic rates were lower in floral than in deflowered ramets. Autoradiographs and 14C labelling data clearly indicated that fruit is a very strong sink for the floral ramet, whereas non-floral ramets translocated C toward the rhizome but not toward floral ramets. Nevertheless, rhizomes received some C from the floral ramet throughout the fruiting period. Ramets with shorter rhizomes produced smaller leaves and smaller fruits, and defoliated ramets produced very small fruits. Conclusions Plant growth appears to be source-limited in cloudberry since a reduction in sink strength did not induce a reduction in photosynthetic activity. Non-floral ramets did not participate directly to fruit development. Developing leaves appear to compete with the developing fruit but the intensity of this competition could vary with the specific timing of the two organs. The rhizome appears to act both as a source but also potentially as a sink during fruit development. Further studies are needed to characterize better the complex role played by the rhizome in fruit C nutrition. PMID:19520701

  11. Developmental transcriptome analysis of floral transition in Rosa odorata var. gigantea.

    PubMed

    Guo, Xuelian; Yu, Chao; Luo, Le; Wan, Huihua; Zhen, Ni; Li, Yushu; Cheng, Tangren; Wang, Jia; Pan, Huitang; Zhang, Qixiang

    2018-05-07

    Expression analyses revealed that floral transition of Rosa odorata var. gigantea is mainly regulated by VRN1, COLs, DELLA and KSN, with contributions by the effects of phytohormone and starch metabolism. Seasonal plants utilize changing environmental and developmental cues to control the transition from vegetative growth to flowering at the correct time of year. This study investigated global gene expression profiles at different developmental stages of Rosa odorata var. gigantea by RNA-sequencing, combined with phenotypic characterization and physiological changes. Gene ontology enrichment analysis of the differentially expressed genes (DEGs) between four different developmental stages (vegetative meristem, pre-floral meristem, floral meristem and secondary axillary buds) indicated that DNA methylation and the light reaction played a large role in inducing the rose floral transition. The expression of SUF and FLC, which are known to play a role in delaying flowering until vernalization, was down-regulated from the vegetative to the pre-floral meristem stage. In contrast, the expression of VRN1, which promotes flowering by repressing FLC expression, increased. The expression of DELLA proteins, which function as central nodes in hormone signaling pathways, and probably involve interactions between GA, auxin, and ABA to promote the floral transition, was well correlated with the expression of floral integrators, such as AGL24, COL4. We also identified DEGs associated with starch metabolism correlated with SOC1, AGL15, SPL3, AGL24, respectively. Taken together, our results suggest that vernalization and photoperiod are prominent cues to induce the rose floral transition, and that DELLA proteins also act as key regulators. The results summarized in the study on the floral transition of the seasonal rose lay a foundation for further functional demonstration, and have profound economic and ornamental values.

  12. Gene screening of Wharton's jelly derived stem cells.

    PubMed

    Mechiche Alami, S; Velard, F; Draux, F; Siu Paredes, F; Josse, J; Lemaire, F; Gangloff, S C; Graesslin, O; Laurent-Maquin, D; Kerdjoudj, H

    2014-01-01

    Stem cells are the most powerful candidate for the treatment of various diseases. Suitable stem cell source should be harvested with minimal invasive procedure, found in great quantity, and transplanted with no risk of immune response and tumor formation. Fetal derived stem cells have been introduced as an excellent alternative to adult and embryonic stem cells use, but unfortunately, their degree of "stemness" and molecular characterization is still unclear. Several studies have been performed deciphering whether fetal stem cells meet the needs of regenerative medicine. We believe that a transcriptomic screening of Wharton's jelly stem cells will bring insights on cell population features.

  13. Stem Cell Banking for Regenerative and Personalized Medicine

    PubMed Central

    Harris, David T.

    2014-01-01

    Regenerative medicine, tissue engineering and gene therapy offer the opportunity to treat and cure many of today’s intractable afflictions. These approaches to personalized medicine often utilize stem cells to accomplish these goals. However, stem cells can be negatively affected by donor variables such as age and health status at the time of collection, compromising their efficacy. Stem cell banking offers the opportunity to cryogenically preserve stem cells at their most potent state for later use in these applications. Practical stem cell sources include bone marrow, umbilical cord blood and tissue, and adipose tissue. Each of these sources contains stem cells that can be obtained from most individuals, without too much difficulty and in an economical fashion. This review will discuss the advantages and disadvantages of each stem cell source, factors to be considered when contemplating banking each stem cell source, the methodology required to bank each stem cell source, and finally, current and future clinical uses of each stem cell source. PMID:28548060

  14. Thermogenesis, Flowering and the Association with Variation in Floral Odour Attractants in Magnolia sprengeri (Magnoliaceae)

    PubMed Central

    Wang, Ruohan; Xu, Sai; Liu, Xiangyu; Zhang, Yiyuan; Wang, Jianzhong; Zhang, Zhixiang

    2014-01-01

    Magnolia sprengeri Pamp. is an ornamentally and ecologically important tree that blooms at cold temperatures in early spring. In this study, thermogenesis and variation in the chemical compounds of floral odours and insect visitation in relation to flowering cycles were studied to increase our understanding of the role of floral thermogenesis in the pollination biology of M. sprengeri. There were five distinct floral stages across the floral cycle of this species: pre-pistillate, pistillate, pre-staminate, staminate and post-staminate. Floral thermogenesis during anthesis and consisted of two distinct peaks: one at the pistillate stage and the other at the staminate stage. Insects of five families visited M. sprengeri during the floral cycle, and sap beetles (Epuraea sp., Nitidulidae) were determined to be the most effective pollinators, whereas bees (Apis cerana, Apidae) were considered to be occasional pollinators. A strong fragrance was released during thermogenesis, consisting of 18 chemical compounds. Although the relative proportions of these compounds varied at different floral stages across anthesis, linalool, 1-iodo-2-methylundecane and 2,2,6-trimethyl-6-vinyltetrahydro-2H-pyran-3-ol were dominant. Importantly, we found that the floral blends released during the pistillate and staminate stages were very similar, and coincided with flower visitation by sap beetles and the two thermogenic episodes. Based on these results, we propose that odour acts as a signal for a reward (pollen) and that an odour mimicry of staminate-stage flowers occurs during the pistillate stage. PMID:24922537

  15. Enantiostyly in Chamaecrista ramosa (Fabaceae-Caesalpinioideae): floral morphology, pollen transfer dynamics and breeding system.

    PubMed

    Almeida, N M de; Castro, C C de; Leite, A V de Lima; Novo, R R; Machado, I C

    2013-03-01

    Enantiostyly is a form of reciprocal herkogamy, in which floral morphs present reciprocal differences in the position of sexual elements, and occurs in monomorphic and dimorphic forms. This polymorphism maximises cross-pollination and reduces self-pollination, being very common within the subtribe Cassiinae (Fabaceae). Nevertheless, few studies have investigated the functionality of enantiostyly, particularly in this plant group. The present study aimed to investigate enantiostyly and its functionality in Chamaecrista ramosa, a monomorphic enantiostylous shrub, in an area of coastal vegetation in northeast Brazil. Pollen deposition and capture on the body of floral visitors, the relationship of these data with floral biology and breeding system, and morph ratio were evaluated. Pollen deposition and capture occurred in specific sites of the floral visitor body, showing the functionality of enantiostyly. The floral architecture, associated with the floral visitor behaviour, resulted in indirect pollen deposition on the floral visitor body. This occurred through a loop made by the pollen upon the inner petal surface, similar that generally reported for other Cassiinae. Chamaecrista ramosa is self-compatible, although no fruit set was observed through spontaneous self-pollination. The occurrence and number of floral morphs was similar within clumps. Enantiostyly seems to be advantageous for this species, as it results in efficient pollen capture and deposition, reduces the chances of autogamy and maximises intermorph pollen flow. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Floral scent composition predicts bee pollination system in five butterfly bush (Buddleja, Scrophulariaceae) species.

    PubMed

    Gong, W-C; Chen, G; Vereecken, N J; Dunn, B L; Ma, Y-P; Sun, W-B

    2015-01-01

    Traditionally, plant-pollinator interactions have been interpreted as pollination syndrome. However, the validity of pollination syndrome has been widely doubted in modern studies of pollination ecology. The pollination ecology of five Asian Buddleja species, B. asiatica, B. crispa, B. forrestii, B. macrostachya and B. myriantha, in the Sino-Himalayan region in Asia, flowering in different local seasons, with scented inflorescences were investigated during 2011 and 2012. These five species exhibited diverse floral traits, with narrow and long corolla tubes and concealed nectar. According to their floral morphology, larger bees and Lepidoptera were expected to be the major pollinators. However, field observations showed that only larger bees (honeybee/bumblebee) were the primary pollinators, ranging from 77.95% to 97.90% of total visits. In this study, floral scents of each species were also analysed using coupled gas chromatography and mass spectrometry (GC-MS). Although the five Buddleja species emitted differentiated floral scent compositions, our results showed that floral scents of the five species are dominated by substances that can serve as attractive signals to bees, including species-specific scent compounds and principal compounds with larger relative amounts. This suggests that floral scent compositions are closely associated with the principal pollinator assemblages in these five species. Therefore, we conclude that floral scent compositions rather than floral morphology traits should be used to interpret plant-pollinator interactions in these Asian Buddleja species. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Nine Things to Know About Stem Cell Treatments

    MedlinePlus

    ... Toggle Nav Nine Things To Know About Stem Cell Treatments Home > Stem Cells and Medicine > Nine Things ... About Stem Cell Treatments Many clinics offering stem cell treatments make claims that are not supported by ...

  18. Cancer (stem) cell differentiation: An inherent or acquired property?

    PubMed

    Mohr, Marieke; Zänker, Kurt S; Dittmar, Thomas

    2015-12-01

    There is a growing list of data indicating that cancer (stem) cells could functionally adapt foreign tissue features, such as endothelial-like cells or neuroendocrine cells, express lineage markers or could differentiate into various lineages in response to appropriate differentiation criteria. The finding that cancer (stem) cells may possess some kind of differentiation capacity poses the question whether this might be an inherent or acquired property. Cancer stem cells share stem cell characteristics and may thus possess an inherent differentiation capacity enabling the cells to respond to various differentiation stimuli. Considering the plasticity of cancer (stem) cells, even non-tumorigenic (and putatively non-differentiable) tumor cells could give rise to tumorigenic tumor stem cells, exhibiting stem cell characteristics including an inherent differentiation capacity. On the contrary, cancer (stem) cells may have acquired differentiation capacity as a consequence of a previous cell fusion event with cell types exhibiting differentiation potential and being fusogenic, such as macrophages or stem cells. Of pivotal interest in a tumor context are macrophages, which chiefly foster the chronically inflamed tumor microenvironment. Because chronically inflamed tissue is a well-known trigger for cell fusion and both macrophages and stem cells are highly fusogenic we conclude that cell fusion events between these cell types and cancer (stem) cells should frequently occur, thereby giving rise to hybrid cells exhibiting not only novel properties, like an enhanced metastatogenic phenotype, but also parental characteristics, such as differentiation capacity. Conceivably, the combination of both properties might be advantageous for metastasizing cancer (stem) cells to adapt better and faster to a foreign organ tissue environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization

    PubMed Central

    Wang, Dong; Wang, Aijun; Wu, Fan; Qiu, Xuefeng; Li, Ye; Chu, Julia; Huang, Wen-Chin; Xu, Kang; Gong, Xiaohua; Li, Song

    2017-01-01

    Implanted biomaterials and biomedical devices generally induce foreign body reaction and end up with encapsulation by a dense avascular fibrous layer enriched in extracellular matrix. Fibroblasts/myofibroblasts are thought to be the major cell type involved in encapsulation, but it is unclear whether and how stem cells contribute to this process. Here we show, for the first time, that Sox10+ adult stem cells contribute to both encapsulation and microvessel formation. Sox10+ adult stem cells were found sparsely in the stroma of subcutaneous loose connective tissues. Upon subcutaneous biomaterial implantation, Sox10+ stem cells were activated and recruited to the biomaterial scaffold, and differentiated into fibroblasts and then myofibroblasts. This differentiation process from Sox10+ stem cells to myofibroblasts could be recapitulated in vitro. On the other hand, Sox10+ stem cells could differentiate into perivascular cells to stabilize newly formed microvessels. Sox10+ stem cells and endothelial cells in three-dimensional co-culture self-assembled into microvessels, and platelet-derived growth factor had chemotactic effect on Sox10+ stem cells. Transplanted Sox10+ stem cells differentiated into smooth muscle cells to stabilize functional microvessels. These findings demonstrate the critical role of adult stem cells in tissue remodeling and unravel the complexity of stem cell fate determination. PMID:28071739

  20. Tumor suppressors Sav/Scrib and oncogene Ras regulate stem cell transformation in adult Drosophila Malpighian Tubules

    PubMed Central

    Zeng, Xiankun; Singh, Shree Ram; Hou, David; Hou, Steven X.

    2012-01-01

    An increasing body of evidence suggests that tumors might originate from a few transformed cells that share many properties with normal stem cells. However, it remains unclear how normal stem cells are transformed into cancer stem cells. Here, we demonstrated that mutations causing the loss of tumor suppressor Sav or Scrib or activation of the oncogene Ras transform normal stem cells into cancer stem cells through a multistep process in the adult Drosophila Malpighian Tubules (MTs). In wild-type MTs, each stem cell generates one self-renewing and one differentiating daughter cell. However, in flies with loss-of-function sav or scrib or gain-of-function Ras mutations, both daughter cells grew and behaved like stem cells, leading to the formation of tumors in MTs. Ras functioned downstream of Sav and Scrib in regulating the stem cell transformation. The Ras-transformed stem cells exhibited many of the hallmarks of cancer, such as increased proliferation, reduced cell death, and failure to differentiate. We further demonstrated that several signal transduction pathways (including MEK/MAPK, RhoA, PKA, and TOR) mediate Rasṕ function in the stem cell transformation. Therefore, we have identified a molecular mechanism that regulates stem cell transformation, and this finding may lead to strategies for preventing tumor formation in certain organs. PMID:20432470

  1. The king is dead, long live the king: entering a new era of stem cell research and clinical development.

    PubMed

    Ichim, Thomas; Riordan, Neil H; Stroncek, David F

    2011-12-20

    In mid November the biopharma industry was shocked by the announcement from Geron that they were ending work on embryonic stem cell research and therapy. For more than 10 years the public image of all stem cell research has been equated with embryonic stem cells. Unfortunately, a fundamentally important medical and financial fact was being ignored: embryonic stem cell therapy is extremely immature. In parallel to efforts in embryonic stem cell research and development, scientists and physicians in the field of adult stem cells realized that the natural role of adult stem cells in the body is to promote healing and to act like endogenous "repair cells" and, as a result, numerous companies have entered the field of adult stem cell therapy with the goal of expanding numbers of adult stem cells for administration to patients with various conditions. In contrast to embryonic stem cells, which are extremely expensive and potentially dangerous, adult cell cells are inexpensive and have an excellent safety record when used in humans. Many studies are now showing that adult stem cells are practical, patient-applicable, therapeutics that are very close to being available for incorporation into the practice of medicine. These events signal the entrance of the field of stem cells into a new era: an era where hype and misinformation no longer triumph over economic and medical realities.

  2. Control of stem cell fate by engineering their micro and nanoenvironment

    PubMed Central

    Griffin, Michelle F; Butler, Peter E; Seifalian, Alexander M; Kalaskar, Deepak M

    2015-01-01

    Stem cells are capable of long-term self-renewal and differentiation into specialised cell types, making them an ideal candidate for a cell source for regenerative medicine. The control of stem cell fate has become a major area of interest in the field of regenerative medicine and therapeutic intervention. Conventional methods of chemically inducing stem cells into specific lineages is being challenged by the advances in biomaterial technology, with evidence highlighting that material properties are capable of driving stem cell fate. Materials are being designed to mimic the clues stem cells receive in their in vivo stem cell niche including topographical and chemical instructions. Nanotopographical clues that mimic the extracellular matrix (ECM) in vivo have shown to regulate stem cell differentiation. The delivery of ECM components on biomaterials in the form of short peptides sequences has also proved successful in directing stem cell lineage. Growth factors responsible for controlling stem cell fate in vivo have also been delivered via biomaterials to provide clues to determine stem cell differentiation. An alternative approach to guide stem cells fate is to provide genetic clues including delivering DNA plasmids and small interfering RNAs via scaffolds. This review, aims to provide an overview of the topographical, chemical and molecular clues that biomaterials can provide to guide stem cell fate. The promising features and challenges of such approaches will be highlighted, to provide directions for future advancements in this exciting area of stem cell translation for regenerative medicine. PMID:25621104

  3. The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering

    PubMed Central

    Ratajczak, Jessica; Bronckaers, Annelies; Dillen, Yörg; Gervois, Pascal; Vangansewinkel, Tim; Driesen, Ronald B.; Wolfs, Esther; Lambrichts, Ivo

    2016-01-01

    Within the field of tissue engineering, natural tissues are reconstructed by combining growth factors, stem cells, and different biomaterials to serve as a scaffold for novel tissue growth. As adequate vascularization and innervation are essential components for the viability of regenerated tissues, there is a high need for easily accessible stem cells that are capable of supporting these functions. Within the human tooth and its surrounding tissues, different stem cell populations can be distinguished, such as dental pulp stem cells, stem cells from human deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and periodontal ligament stem cells. Given their straightforward and relatively easy isolation from extracted third molars, dental stem cells (DSCs) have become an attractive source of mesenchymal-like stem cells. Over the past decade, there have been numerous studies supporting the angiogenic, neuroprotective, and neurotrophic effects of the DSC secretome. Together with their ability to differentiate into endothelial cells and neural cell types, this makes DSCs suitable candidates for dental tissue engineering and nerve injury repair. PMID:27688777

  4. Multipotent Stem Cell and Reproduction.

    PubMed

    Khanlarkhani, Neda; Baazm, Maryam; Mohammadzadeh, Farzaneh; Najafi, Atefeh; Mehdinejadiani, Shayesteh; Sobhani, Aligholi

    Stem cells are self-renewing and undifferentiated cell types that can be differentiate into functional cells. Stem cells can be classified into two main types based on their source of origin: Embryonic and Adult stem cells. Stem cells also classified based on the range of differentiation potentials into Totipotent, Pluripotent, Multipotent, and Unipotent. Multipotent stem cells have the ability to differentiate into all cell types within one particular lineage. There are plentiful advantages and usages for multipotent stem cells. Multipotent Stem cells act as a significant key in procedure of development, tissue repair, and protection. The accessibility and adaptability of these amazing cells create them a great therapeutic choice for different part of medical approaches, and it becomes interesting topic in the scientific researches to found obvious method for the most advantageous use of MSC-based therapies. Recent studies in the field of stem cell biology have provided new perspectives and opportunities for the treatment of infertility disorders.

  5. Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy.

    PubMed

    Naderi-Meshkin, Hojjat; Bahrami, Ahmad Reza; Bidkhori, Hamid Reza; Mirahmadi, Mahdi; Ahmadiankia, Naghmeh

    2015-01-01

    Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies. © 2014 International Federation for Cell Biology.

  6. College Students' Conceptions of Stem Cells, Stem Cell Research, and Cloning

    ERIC Educational Resources Information Center

    Concannon, James P.; Siegel, Marcelle A.; Halverson, Kristy; Freyermuth, Sharyn

    2010-01-01

    In this study, we examined 96 undergraduate non-science majors' conceptions of stem cells, stem cell research, and cloning. This study was performed at a large, Midwest, research extensive university. Participants in the study were asked to answer 23 questions relating to stem cells, stem cell research, and cloning in an on-line assessment before…

  7. Stem cell biobanks.

    PubMed

    Bardelli, Silvana

    2010-04-01

    Stem cells contribute to innate healing and harbor a promising role for regenerative medicine. Stem cell banking through long-term storage of different stem cell platforms represents a fundamental source to preserve original features of stem cells for patient-specific clinical applications. Stem cell research and clinical translation constitute fundamental and indivisible modules catalyzed through biobanking activity, generating a return of investment.

  8. Muscle Stem Cells: A Model System for Adult Stem Cell Biology.

    PubMed

    Cornelison, Ddw; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.

  9. Redox regulation of plant stem cell fate.

    PubMed

    Zeng, Jian; Dong, Zhicheng; Wu, Haijun; Tian, Zhaoxia; Zhao, Zhong

    2017-10-02

    Despite the importance of stem cells in plant and animal development, the common mechanisms of stem cell maintenance in both systems have remained elusive. Recently, the importance of hydrogen peroxide (H 2 O 2 ) signaling in priming stem cell differentiation has been extensively studied in animals. Here, we show that different forms of reactive oxygen species (ROS) have antagonistic roles in plant stem cell regulation, which were established by distinct spatiotemporal patterns of ROS-metabolizing enzymes. The superoxide anion (O2·-) is markedly enriched in stem cells to activate WUSCHEL and maintain stemness, whereas H 2 O 2 is more abundant in the differentiating peripheral zone to promote stem cell differentiation. Moreover, H 2 O 2 negatively regulates O2·- biosynthesis in stem cells, and increasing H 2 O 2 levels or scavenging O2·- leads to the termination of stem cells. Our results provide a mechanistic framework for ROS-mediated control of plant stem cell fate and demonstrate that the balance between O2·- and H 2 O 2 is key to stem cell maintenance and differentiation. © 2017 The Authors.

  10. Ocular Stem Cell Research from Basic Science to Clinical Application: A Report from Zhongshan Ophthalmic Center Ocular Stem Cell Symposium

    PubMed Central

    Ouyang, Hong; Goldberg, Jeffrey L.; Chen, Shuyi; Li, Wei; Xu, Guo-Tong; Li, Wei; Zhang, Kang; Nussenblatt, Robert B.; Liu, Yizhi; Xie, Ting; Chan, Chi-Chao; Zack, Donald J.

    2016-01-01

    Stem cells hold promise for treating a wide variety of diseases, including degenerative disorders of the eye. The eye is an ideal organ for stem cell therapy because of its relative immunological privilege, surgical accessibility, and its being a self-contained system. The eye also has many potential target diseases amenable to stem cell-based treatment, such as corneal limbal stem cell deficiency, glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa (RP). Among them, AMD and glaucoma are the two most common diseases, affecting over 200 million people worldwide. Recent results on the clinical trial of retinal pigment epithelial (RPE) cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) in treating dry AMD and Stargardt’s disease in the US, Japan, England, and China have generated great excitement and hope. This marks the beginning of the ocular stem cell therapy era. The recent Zhongshan Ophthalmic Center Ocular Stem Cell Symposium discussed the potential applications of various stem cell types in stem cell-based therapies, drug discoveries and tissue engineering for treating ocular diseases. PMID:27102165

  11. Phenotypic selection to increase floral scent emission, but not flower size or colour in bee-pollinated Penstemon digitalis.

    PubMed

    Parachnowitsch, Amy L; Raguso, Robert A; Kessler, André

    2012-08-01

    Fragrance is a putatively important character in the evolution of flowering plants, but natural selection on scent is rarely studied and thus poorly understood. We characterized floral scent composition and emission in a common garden of Penstemon digitalis from three nearby source populations. We measured phenotypic selection on scent as well as floral traits more frequently examined, such as floral phenology, display size, corolla pigment, and inflorescence height. Scent differed among populations in a common garden, underscoring the potential for scent to be shaped by differential selection pressures. Phenotypic selection on flower number and display size was strong. However, selection favoured scent rather than flower size or colour, suggesting that smelling stronger benefits reproductive success in P. digitalis. Linalool was a direct target of selection and its high frequency in floral-scent bouquets suggests that further studies of both pollinator- and antagonist-mediated selection on this compound would further our understanding of scent evolution. Our results indicate that chemical dimensions of floral display are just as likely as other components to experience selective pressure in a nonspecialized flowering herb. Therefore, studies that integrate visual and chemical floral traits should better reflect the true nature of floral evolutionary ecology. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  12. The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice.

    PubMed

    Li, Haifeng; Liang, Wanqi; Jia, Ruidong; Yin, Changsong; Zong, Jie; Kong, Hongzhi; Zhang, Dabing

    2010-03-01

    Although AGAMOUS-LIKE6 (AGL6) MADS-box genes are ancient with wide distributions in gymnosperms and angiosperms, their functions remain poorly understood. Here, we show the biological role of the AGL6-like gene, OsMADS6, in specifying floral organ and meristem identities in rice (Oryza sativa L.). OsMADS6 was strongly expressed in the floral meristem at early stages. Subsequently, OsMADS6 transcripts were mainly detectable in paleas, lodicules, carpels and the integument of ovule, as well as in the receptacle. Compared to wild type plants, osmads6 mutants displayed altered palea identity, extra glume-like or mosaic organs, abnormal carpel development and loss of floral meristem determinacy. Strikingly, mutation of a SEPALLATA (SEP)-like gene, OsMADS1 (LHS1), enhanced the defect of osmads6 flowers, and no inner floral organs or glume-like structures were observed in whorls 2 and 3 of osmads1-z osmads6-1 flowers. Furthermore, the osmads1-z osmads6-1 double mutants developed severely indeterminate floral meristems. Our finding, therefore, suggests that the ancient OsMADS6 gene is able to specify "floral state" by determining floral organ and meristem identities in monocot crop rice together with OsMADS1.

  13. StemTextSearch: Stem cell gene database with evidence from abstracts.

    PubMed

    Chen, Chou-Cheng; Ho, Chung-Liang

    2017-05-01

    Previous studies have used many methods to find biomarkers in stem cells, including text mining, experimental data and image storage. However, no text-mining methods have yet been developed which can identify whether a gene plays a positive or negative role in stem cells. StemTextSearch identifies the role of a gene in stem cells by using a text-mining method to find combinations of gene regulation, stem-cell regulation and cell processes in the same sentences of biomedical abstracts. The dataset includes 5797 genes, with 1534 genes having positive roles in stem cells, 1335 genes having negative roles, 1654 genes with both positive and negative roles, and 1274 with an uncertain role. The precision of gene role in StemTextSearch is 0.66, and the recall is 0.78. StemTextSearch is a web-based engine with queries that specify (i) gene, (ii) category of stem cell, (iii) gene role, (iv) gene regulation, (v) cell process, (vi) stem-cell regulation, and (vii) species. StemTextSearch is available through http://bio.yungyun.com.tw/StemTextSearch.aspx. Copyright © 2017. Published by Elsevier Inc.

  14. Application of Stem Cell Technology in Dental Regenerative Medicine.

    PubMed

    Feng, Ruoxue; Lengner, Chistopher

    2013-07-01

    In this review, we summarize the current literature regarding the isolation and characterization of dental tissue-derived stem cells and address the potential of these cell types for use in regenerative cell transplantation therapy. Looking forward, platforms for the delivery of stem cells via scaffolds and the use of growth factors and cytokines for enhancing dental stem cell self-renewal and differentiation are discussed. We aim to understand the developmental origins of dental tissues in an effort to elucidate the molecular pathways governing the genesis of somatic dental stem cells. The advantages and disadvantages of several dental stem cells are discussed, including the developmental stage and specific locations from which these cells can be purified. In particular, stem cells from human exfoliated deciduous teeth may act as a very practical and easily accessibly reservoir for autologous stem cells and hold the most value in stem cell therapy. Dental pulp stem cells and periodontal ligament stem cells should also be considered for their triple lineage differentiation ability and relative ease of isolation. Further, we address the potentials and limitations of induced pluripotent stem cells as a cell source in dental regenerative. From an economical and a practical standpoint, dental stem cell therapy would be most easily applied in the prevention of periodontal ligament detachment and bone atrophy, as well as in the regeneration of dentin-pulp complex. In contrast, cell-based tooth replacement due to decay or other oral pathology seems, at the current time, an untenable approach.

  15. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli

    PubMed Central

    Lifschitz, Eliezer; Eviatar, Tamar; Rozman, Alexander; Shalit, Akiva; Goldshmidt, Alexander; Amsellem, Ziva; Alvarez, John Paul; Eshed, Yuval

    2006-01-01

    The systemic model for floral induction, dubbed florigen, was conceived in photoperiod-sensitive plants but implies, in its ultimate form, a graft-transmissible signal that, although activated by different stimuli in different flowering systems, is common to all plants. We show that SFT (SINGLE-FLOWER TRUSS), the tomato ortholog of FLOWERING LOCUS T (FT), induces flowering in day-neutral tomato and tobacco plants and is encoded by SFT. sft tomato mutant plants are late-flowering, with altered architecture and flower morphology. SFT-dependent graft-transmissible signals complement all developmental defects in sft plants and substitute for long-day stimuli in Arabidopsis, short-day stimuli in Maryland Mammoth tobacco, and light-dose requirements in tomato uniflora mutant plants. The absence of donor SFT RNA from flowering receptor shoots and the localization of the protein in leaf nuclei implicate florigen-like messages in tomato as a downstream pathway triggered by cell-autonomous SFT RNA transcripts. Flowering in tomato is synonymous with termination of the shoot apical meristems, and systemic SFT messages attenuate the growth of apical meristems before and independent of floral production. Floral enhancement by systemic SFT signals is therefore one pleiotropic effect of FT orthologs. PMID:16606827

  16. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli.

    PubMed

    Lifschitz, Eliezer; Eviatar, Tamar; Rozman, Alexander; Shalit, Akiva; Goldshmidt, Alexander; Amsellem, Ziva; Alvarez, John Paul; Eshed, Yuval

    2006-04-18

    The systemic model for floral induction, dubbed florigen, was conceived in photoperiod-sensitive plants but implies, in its ultimate form, a graft-transmissible signal that, although activated by different stimuli in different flowering systems, is common to all plants. We show that SFT (SINGLE-FLOWER TRUSS), the tomato ortholog of FLOWERING LOCUS T (FT), induces flowering in day-neutral tomato and tobacco plants and is encoded by SFT. sft tomato mutant plants are late-flowering, with altered architecture and flower morphology. SFT-dependent graft-transmissible signals complement all developmental defects in sft plants and substitute for long-day stimuli in Arabidopsis, short-day stimuli in Maryland Mammoth tobacco, and light-dose requirements in tomato uniflora mutant plants. The absence of donor SFT RNA from flowering receptor shoots and the localization of the protein in leaf nuclei implicate florigen-like messages in tomato as a downstream pathway triggered by cell-autonomous SFT RNA transcripts. Flowering in tomato is synonymous with termination of the shoot apical meristems, and systemic SFT messages attenuate the growth of apical meristems before and independent of floral production. Floral enhancement by systemic SFT signals is therefore one pleiotropic effect of FT orthologs.

  17. The UK Stem Cell Bank: a UK government-funded, international resource center for stem cell research.

    PubMed

    Stacey, Glyn; Hunt, Charles J

    2006-01-01

    The UK Stem Cell Bank is a UK Research Council-funded initiative that aims to provide ethically sourced and quality controlled stocks of cells for researchers and also establish seed stocks of cell lines for clinical trials. Whilst the Bank is prohibited from carrying out basic stem cell research (to avoid conflicts of interest) it is working to improve stem cell banking procedures including cryopreservation, characterization and quality control. The Bank also supports training activities and has provided the hub for the International Stem Cell Initiative, which includes 17 expert stem cell centers aiming to characterize a large number of human embryonic stem cell lines in a standardized way to improve our understanding of the characteristics of these cells.

  18. Methods for Stem Cell Production and Therapy

    NASA Technical Reports Server (NTRS)

    Valluri, Jagan V. (Inventor); Claudio, Pier Paolo (Inventor)

    2015-01-01

    The present invention relates to methods for rapidly expanding a stem cell population with or without culture supplements in simulated microgravity conditions. The present invention relates to methods for rapidly increasing the life span of stem cell populations without culture supplements in simulated microgravity conditions. The present invention also relates to methods for increasing the sensitivity of cancer stem cells to chemotherapeutic agents by culturing the cancer stem cells under microgravity conditions and in the presence of omega-3 fatty acids. The methods of the present invention can also be used to proliferate cancer cells by culturing them in the presence of omega-3 fatty acids. The present invention also relates to methods for testing the sensitivity of cancer cells and cancer stem cells to chemotherapeutic agents by culturing the cancer cells and cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce tissue for use in transplantation by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors to promote differentiation of cancer stem cells under microgravity conditions.

  19. Dental pulp stem cells in regenerative dentistry.

    PubMed

    Casagrande, Luciano; Cordeiro, Mabel M; Nör, Silvia A; Nör, Jacques E

    2011-01-01

    Stem cells constitute the source of differentiated cells for the generation of tissues during development, and for regeneration of tissues that are diseased or injured postnatally. In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that span from Alzheimer's disease to cardiac ischemia to bone or tooth loss. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental pulp is considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that dental pulp stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. The dental pulp stem cells are highly proliferative. This characteristic facilitates ex vivo expansion and enhances the translational potential of these cells. Notably, the dental pulp is arguably the most accessible source of postnatal stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental pulp an attractive source of mesenchymal stem cells for tissue regeneration. This review discusses fundamental concepts of stem cell biology and tissue engineering within the context of regenerative dentistry.

  20. Translating stem cell therapies: the role of companion animals in regenerative medicine

    PubMed Central

    Volk, Susan W.; Theoret, Christine

    2013-01-01

    Veterinarians and veterinary medicine have been integral to the development of stem cell therapies. The contributions of large animal experimental models to the development and refinement of modern hematopoietic stem cell transplantation were noted nearly five decades ago. More recent advances in adult stem cell/regenerative cell therapies continue to expand knowledge of the basic biology and clinical applications of stem cells. A relatively liberal legal and ethical regulation of stem cell research in veterinary medicine has facilitated the development and in some instances clinical translation of a variety of cell-based therapies involving hematopoietic (HSC) and mesenchymal stem cells (MSC) as well as other adult regenerative cells and recently embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC). In fact, many of the pioneering developments in these fields of stem cell research have been achieved through collaborations of veterinary and human scientists. This review aims to provide an overview of the contribution of large animal veterinary models in advancing stem cell therapies for both human and clinical veterinary applications. Moreover, in the context of the “One Health Initiative”, the role veterinary patients may play in the future evolution of stem cell therapies for both human and animal patients will be explored. PMID:23627495

  1. Wnt6 maintains anterior escort cells as an integral component of the germline stem cell niche

    PubMed Central

    2018-01-01

    ABSTRACT Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In Drosophila ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. When escort cells die from impaired Wnt signaling or hid expression, the loss of anterior escort cells causes loss of germline stem cells. Anterior escort cells function as an integral niche component by promoting DE-cadherin anchorage and by transiently expressing the Dpp ligand to promote full-strength BMP signaling in germline stem cells. Anterior escort cells are maintained by Wnt6 ligands produced by cap cells; without Wnt6 signaling, anterior escort cells die leaving vacancies in the niche, leading to loss of germline stem cells. Our data identify anterior escort cells as constituents of the germline stem cell niche, maintained by a cap cell-produced Wnt6 survival signal. PMID:29361569

  2. Wnt6 maintains anterior escort cells as an integral component of the germline stem cell niche.

    PubMed

    Wang, Xiaoxi; Page-McCaw, Andrea

    2018-02-07

    Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In Drosophila ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. When escort cells die from impaired Wnt signaling or hid expression, the loss of anterior escort cells causes loss of germline stem cells. Anterior escort cells function as an integral niche component by promoting DE-cadherin anchorage and by transiently expressing the Dpp ligand to promote full-strength BMP signaling in germline stem cells. Anterior escort cells are maintained by Wnt6 ligands produced by cap cells; without Wnt6 signaling, anterior escort cells die leaving vacancies in the niche, leading to loss of germline stem cells. Our data identify anterior escort cells as constituents of the germline stem cell niche, maintained by a cap cell-produced Wnt6 survival signal. © 2018. Published by The Company of Biologists Ltd.

  3. 21st Nantes Actualités Transplantation: "When Stem Cells Meet Immunology".

    PubMed

    Anegon, Ignacio; Nguyen, Tuan Huy

    2017-01-01

    "When Stem Cells Meet Immunology" has been the topic of the 21st annual "Nantes Actualités en Transplantation" meeting (June 9-10, 2016, Nantes, France). This meeting brought together pioneers and leading experts in the fields of stem cells, biomaterials and immunoregulation. Presentations covered multipotent (mesenchymal and hematopoietic) and pluripotent stem cells (embryonic and induced) for regenerative medicine of incurable diseases, immunotherapy and blood transfusions. An additional focus had been immune rejections and responses of allogeneic or autologous stem cells. Conversely, stem cells are also able to directly modulate the immune response through the production of immunoregulatory molecules. Moreover, stem cells may also provide an unlimited source of immune cells (DCs, NK cells, B cells, and T cells) that can operate as "super" immune cells, for example, through genetic engineering with chimeric antigen receptors.This meeting report puts presentations into an overall context highlighting new potential biomarkers for potency prediction of mesenchymal stem cell-derived and pluripotent stem cell-derived multicellular organoids. Finally, we propose future directions arising from the flourishing encounter of stem cell and immune biology.

  4. Differential sensitivity of Glioma stem cells to Aurora kinase A inhibitors: implications for stem cell mitosis and centrosome dynamics.

    PubMed

    Mannino, Mariella; Gomez-Roman, Natividad; Hochegger, Helfrid; Chalmers, Anthony J

    2014-07-01

    Glioma stem-cell-like cells are considered to be responsible for treatment resistance and tumour recurrence following chemo-radiation in glioblastoma patients, but specific targets by which to kill the cancer stem cell population remain elusive. A characteristic feature of stem cells is their ability to undergo both symmetric and asymmetric cell divisions. In this study we have analysed specific features of glioma stem cell mitosis. We found that glioma stem cells appear to be highly prone to undergo aberrant cell division and polyploidization. Moreover, we discovered a pronounced change in the dynamic of mitotic centrosome maturation in these cells. Accordingly, glioma stem cell survival appeared to be strongly dependent on Aurora A activity. Unlike differentiated cells, glioma stem cells responded to moderate Aurora A inhibition with spindle defects, polyploidization and a dramatic increase in cellular senescence, and were selectively sensitive to Aurora A and Plk1 inhibitor treatment. Our study proposes inhibition of centrosomal kinases as a novel strategy to selectively target glioma stem cells. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Effect of aging on stem cells

    PubMed Central

    Ahmed, Abu Shufian Ishtiaq; Sheng, Matilda HC; Wasnik, Samiksha; Baylink, David J; Lau, Kin-Hing William

    2017-01-01

    Pluripotent stem cells have the remarkable self-renewal ability and are capable of differentiating into multiple diverse cells. There is increasing evidence that the aging process can have adverse effects on stem cells. As stem cells age, their renewal ability deteriorates and their ability to differentiate into the various cell types is altered. Accordingly, it is suggested aging-induced deterioration of stem cell functions may play a key role in the pathophysiology of the various aging-associated disorders. Understanding the role of the aging process in deterioration of stem cell function is crucial, not only in understanding the pathophysiology of aging-associated disorders, but also in future development of novel effective stem cell-based therapies to treat aging-associated diseases. This review article first focuses on the basis of the various aging disease-related stem cell dysfunction. It then addresses the several concepts on the potential mechanism that causes aging-related stem cell dysfunction. It also briefly discusses the current potential therapies under development for aging-associated stem cell defects. PMID:28261550

  6. Pollinator shifts drive petal epidermal evolution on the Macaronesian Islands bird-flowered species.

    PubMed

    Ojeda, Dario I; Valido, Alfredo; Fernández de Castro, Alejandro G; Ortega-Olivencia, Ana; Fuertes-Aguilar, Javier; Carvalho, José A; Santos-Guerra, Arnoldo

    2016-04-01

    Pollinator shifts are considered to drive floral trait evolution, yet little is still known about the modifications of petal epidermal surface at a biogeographic region scale. Here we investigated how independent shifts from insects to passerine birds in the Macaronesian Islands consistently modified this floral trait (i.e. absence of papillate cells). Using current phylogenies and extensive evidence from field observations, we selected a total of 81 plant species and subspecies for petal microscopy and comparative analysis, including 19 of the 23 insular species pollinated by opportunistic passerine birds (Macaronesian bird-flowered element). Species relying on passerine birds as the most effective pollinators (bird-pollinated) independently evolved at least five times and in all instances associated with a loss of papillate cells, whereas species with a mixed pollination system (birds plus insects and/or other vertebrates) evolved at least five times in Macaronesia and papillate cells were lost in only 25% of these transitions. Our findings suggest that petal micromorphology is a labile trait during pollinator shifts and that papillate cells tend to be absent on those species where pollinators have limited mechanical interaction with flowers, including opportunistic passerine birds that forage by hovering or from the ground. © 2016 The Author(s).

  7. Engineering Stem Cells for Biomedical Applications

    PubMed Central

    Yin, Perry T.; Han, Edward

    2018-01-01

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. PMID:25772134

  8. Therapeutic potential of dental stem cells

    PubMed Central

    Chalisserry, Elna Paul; Nam, Seung Yun; Park, Sang Hyug; Anil, Sukumaran

    2017-01-01

    Stem cell biology has become an important field in regenerative medicine and tissue engineering therapy since the discovery and characterization of mesenchymal stem cells. Stem cell populations have also been isolated from human dental tissues, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla, dental follicle progenitor cells, and periodontal ligament stem cells. Dental stem cells are relatively easily obtainable and exhibit high plasticity and multipotential capabilities. The dental stem cells represent a gold standard for neural-crest-derived bone reconstruction in humans and can be used for the repair of body defects in low-risk autologous therapeutic strategies. The bioengineering technologies developed for tooth regeneration will make substantial contributions to understand the developmental process and will encourage future organ replacement by regenerative therapies in a wide variety of organs such as the liver, kidney, and heart. The concept of developing tooth banking and preservation of dental stem cells is promising. Further research in the area has the potential to herald a new dawn in effective treatment of notoriously difficult diseases which could prove highly beneficial to mankind in the long run. PMID:28616151

  9. Similar Genetic Mechanisms Underlie the Parallel Evolution of Floral Phenotypes

    PubMed Central

    Zhang, Wenheng; Kramer, Elena M.; Davis, Charles C.

    2012-01-01

    The repeated origin of similar phenotypes is invaluable for studying the underlying genetics of adaptive traits; molecular evidence, however, is lacking for most examples of such similarity. The floral morphology of neotropical Malpighiaceae is distinctive and highly conserved, especially with regard to symmetry, and is thought to result from specialization on oil-bee pollinators. We recently demonstrated that CYCLOIDEA2–like genes (CYC2A and CYC2B) are associated with the development of the stereotypical floral zygomorphy that is critical to this plant–pollinator mutualism. Here, we build on this developmental framework to characterize floral symmetry in three clades of Malpighiaceae that have independently lost their oil bee association and experienced parallel shifts in their floral morphology, especially in regard to symmetry. We show that in each case these species exhibit a loss of CYC2B function, and a strikingly similar shift in the expression of CYC2A that is coincident with their shift in floral symmetry. These results indicate that similar floral phenotypes in this large angiosperm clade have evolved via parallel genetic changes from an otherwise highly conserved developmental program. PMID:22558314

  10. Variation in resource limitation of plant reproduction influences natural selection on floral traits of Asclepias syriaca.

    PubMed

    Caruso, Christina M; Remington, Davin L D; Ostergren, Kate E

    2005-11-01

    The availability of both pollen and resources can influence natural selection on floral traits, but their relative importance in shaping floral evolution is unclear. We experimentally manipulated pollinator and resource (fertilizer and water) availability in the perennial wildflower Asclepias syriaca L. Nine floral traits, one male fitness component (number of pollinia removed), and two female fitness components (number of pollinia inserted and number of fruits initiated) were measured for plants in each of three treatments (unmanipulated control, decreased pollinator access, and resource supplementation). Although decreasing pollinators' access to flowers did result in fewer pollinia inserted and removed, fruit set and phenotypic selection on floral traits via female and male fitness did not differ from the control. In contrast, resource supplementation increased fruit set, and phenotypic selection on seven out of nine floral traits was stronger via female than male fitness, consistent with the prediction that selection via female fitness would be greater when reproduction was less resource-limited. Our results support the hypothesis that abiotic resource availability can influence floral evolution by altering gender-specific selection.

  11. Single-cell sequencing in stem cell biology.

    PubMed

    Wen, Lu; Tang, Fuchou

    2016-04-15

    Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.

  12. The Implications of the Cancer Stem Cell Hypothesis for Neuro-Oncology and Neurology.

    PubMed

    Rich, Jeremy N

    2008-05-01

    The cancer stem cell hypothesis posits that cancers contain a subset of neoplastic cells that propagate and maintain tumors through sustained self-renewal and potent tumorigenecity. Recent excitement has been generated by a number of reports that have demonstrated the existence of cancer stem cells in several types of brain tumors. Brain cancer stem cells - also called tumor initiating cells or tumor propagating cells - share features with normal neural stem cells but do not necessarily originate from stem cells. Although most cancers have only a small fraction of cancer stem cells, these tumor cells have been shown in laboratory studies to contribute to therapeutic resistance, formation of new blood vessels to supply the tumor, and tumor spread. As malignant brain tumors rank among the deadliest of all neurologic diseases, the identification of new cellular targets may have profound implications in neuro-oncology. Novel drugs that target stem cell pathways active in brain tumors have been efficacious against cancer stem cells suggesting that anti-cancer stem cell therapies may advance brain tumor therapy. The cancer stem cell hypothesis may have several implications for other neurologic diseases as caution must be exercised in activating stem cell maintenance pathways in cellular therapies for neurodegenerative diseases. The ability for a small fraction of cells to determine the overall course of a disease may also inform new paradigms of disease that may translate into improved patient outcomes.

  13. Can bone marrow differentiate into renal cells?

    PubMed

    Imai, Enyu; Ito, Takahito

    2002-10-01

    A considerable plasticity of adult stem cells has been confirmed in a wide variety of tissues. In particular, the pluripotency of bone marrow-derived stem cells may influence the regeneration of injured tissues and may provide novel avenues in regenerative medicine. Bone marrow contains at least hematopoietic and mesenchymal stem cells, and both can differentiate into a wide range of differentiated cells. Side population (SP) cells, which are originally defined in bone marrow cells by high efflux of DNA-binding dye, seem to be a new class of multipotent stem cells. Irrespective of the approach used to obtain stem cells, the fates of marrow-derived cells following bone marrow transplantation can be traced by labeling donor cells with green fluorescence protein or by identifying donor Y chromosome in female recipients. So far, bone marrow-derived cells have been reported to differentiate into renal cells, including mesangial cells, endothelial cells, podocytes, and tubular cells in the kidney, although controversy exists. Further studies are required to address this issue. Cell therapy will be promising when we learn to control stem cells such as bone marrow-derived stem cells, embryonic stem cells, and resident stem cells in the kidney. Identification of factors that support stem cells or promote their differentiation should provide a relevant step towards cell therapy.

  14. [The emerging technology of tissue engineering : Focus on stem cell niche].

    PubMed

    Schlötzer-Schrehardt, U; Freudenberg, U; Kruse, F E

    2017-04-01

    Limbal stem cells reside in a highly specialized complex microenvironment that is known as the stem cell niche, an anatomically protected region at the bottom of the Palisades of Vogt, where the stem cells are located and where their quiescence, proliferation and differentiation are maintained in balance. Besides the epithelial stem and progenitor cell clusters, the limbal niche comprises several types of supporting niche cells and a specific extracellular matrix mediating biochemical and biophysical signals. Stem cell-based tissue engineering aims to mimic the native stem cell niche and to present appropriate microenvironmental cues in a controlled and reproducible fashion in order to maintain stem cell function within the graft. Current therapeutic approaches for ex vivo expansion of limbal stem cells only take advantage of surrogate niches. However, new insights into the molecular composition of the limbal niche and innovative biosynthetic scaffolds have stimulated novel strategies for niche-driven stem cell cultivation. Promising experimental approaches include collagen-based organotypic coculture systems of limbal epithelial stem cells with their niche cells and biomimetic hydrogel platforms prefunctionalized with appropriate biomolecular and biophysical signals. Future translation of these novel regenerative strategies into clinical application is expected to improve long-term outcomes of limbal stem cell transplantation for ocular surface reconstruction.

  15. Arabidopsis JAGGED links floral organ patterning to tissue growth by repressing Kip-related cell cycle inhibitors.

    PubMed

    Schiessl, Katharina; Muiño, Jose M; Sablowski, Robert

    2014-02-18

    Plant morphogenesis requires coordinated cytoplasmic growth, oriented cell wall extension, and cell cycle progression, but it is debated which of these processes are primary drivers for tissue growth and directly targeted by developmental genes. Here, we used ChIP high-throughput sequencing combined with transcriptome analysis to identify global target genes of the Arabidopsis transcription factor JAGGED (JAG), which promotes growth of the distal region of floral organs. Consistent with the roles of JAG during organ initiation and subsequent distal organ growth, we found that JAG directly repressed genes involved in meristem development, such as CLAVATA1 and HANABA TARANU, and genes involved in the development of the basal region of shoot organs, such as BLADE ON PETIOLE 2 and the GROWTH REGULATORY FACTOR pathway. At the same time, JAG regulated genes involved in tissue polarity, cell wall modification, and cell cycle progression. In particular, JAG directly repressed KIP RELATED PROTEIN 4 (KRP4) and KRP2, which control the transition to the DNA synthesis phase (S-phase) of the cell cycle. The krp2 and krp4 mutations suppressed jag defects in organ growth and in the morphology of petal epidermal cells, showing that the interaction between JAG and KRP genes is functionally relevant. Our work reveals that JAG is a direct mediator between genetic pathways involved in organ patterning and cellular functions required for tissue growth, and it shows that a regulatory gene shapes plant organs by releasing a constraint on S-phase entry.

  16. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    PubMed

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  17. Application of Stem Cells in Oral Disease Therapy: Progresses and Perspectives

    PubMed Central

    Yang, Bo; Qiu, Yi; Zhou, Niu; Ouyang, Hong; Ding, Junjun; Cheng, Bin; Sun, Jianbo

    2017-01-01

    Stem cells are undifferentiated and pluripotent cells that can differentiate into specialized cells with a more specific function. Stem cell therapies become preferred methods for the treatment of multiple diseases. Oral and maxillofacial defect is one kind of the diseases that could be most possibly cured by stem cell therapies. Here we discussed oral diseases, oral adult stem cells, iPS cells, and the progresses/challenges/perspectives of application of stem cells for oral disease treatment. PMID:28421002

  18. Diploid, but not haploid, human embryonic stem cells can be derived from microsurgically repaired tripronuclear human zygotes

    PubMed Central

    Fan, Yong; Li, Rong; Huang, Jin; Yu, Yang; Qiao, Jie

    2013-01-01

    Human embryonic stem cells have shown tremendous potential in regenerative medicine, and the recent progress in haploid embryonic stem cells provides new insights for future applications of embryonic stem cells. Disruption of normal fertilized embryos remains controversial; thus, the development of a new source for human embryonic stem cells is important for their usefulness. Here, we investigated the feasibility of haploid and diploid embryo reconstruction and embryonic stem cell derivation using microsurgically repaired tripronuclear human zygotes. Diploid and haploid zygotes were successfully reconstructed, but a large proportion of them still had a tripolar spindle assembly. The reconstructed embryos developed to the blastocyst stage, although the loss of chromosomes was observed in these zygotes. Finally, triploid and diploid human embryonic stem cells were derived from tripronuclear and reconstructed zygotes (from which only one pronucleus was removed), but haploid human embryonic stem cells were not successfully derived from the reconstructed zygotes when two pronuclei were removed. Both triploid and diploid human embryonic stem cells showed the general characteristics of human embryonic stem cells. These results indicate that the lower embryo quality resulting from abnormal spindle assembly contributed to the failure of the haploid embryonic stem cell derivation. However, the successful derivation of diploid embryonic stem cells demonstrated that microsurgical tripronuclear zygotes are an alternative source of human embryonic stem cells. In the future, improving spindle assembly will facilitate the application of triploid zygotes to the field of haploid embryonic stem cells. PMID:23255130

  19. tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize

    USDA-ARS?s Scientific Manuscript database

    Sex determination in maize is controlled by a developmental cascade leading to the formation of unisexual florets derived from an initially bisexual floral meristem. Abortion of pistil primordia in staminate florets is controlled by a tasselseed-mediated cell death process. Here, we describe the pos...

  20. Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture

    USDA-ARS?s Scientific Manuscript database

    In the life cycle of higher plants, it is the fate of meristem cells that determines the pattern of growth and development, and therefore plant morphotype and fertility. Floral transition, the turning point from vegetative growth to reproductive development, is achieved via genetically-programmed s...

  1. Nano scaffolds and stem cell therapy in liver tissue engineering

    NASA Astrophysics Data System (ADS)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  2. Stem-Cell-Based Tumorigenesis in Adult Drosophila.

    PubMed

    Hou, S X; Singh, S R

    2017-01-01

    Recent studies suggest that a small subset of cells within a tumor, the so-called cancer stem cells (CSCs), are responsible for tumor propagation, relapse, and the eventual death of most cancer patients. CSCs may derive from a few tumor-initiating cells, which are either transformed normal stem cells or reprogrammed differentiated cells after acquiring initial cancer-causing mutations. CSCs and normal stem cells share some properties, but CSCs differ from normal stem cells in their tumorigenic ability. Notably, CSCs are usually resistant to chemo- and radiation therapies. Despite the apparent roles of CSCs in human cancers, the biology underlying their behaviors remains poorly understood. Over the past few years, studies in Drosophila have significantly contributed to this new frontier of cancer research. Here, we first review how stem-cell tumors are initiated and propagated in Drosophila, through niche appropriation in the posterior midgut and through stem-cell competition for niche occupancy in the testis. We then discuss the differences between normal and tumorigenic stem cells, revealed by studying Ras V12 -transformed stem-cell tumors in the Drosophila kidney. Finally, we review the biology behind therapy resistance, which has been elucidated through studies of stem-cell resistance and sensitivity to death inducers using female germline stem cells and intestinal stem cells of the posterior midgut. We expect that screens using adult Drosophila neoplastic stem-cell tumor models will be valuable for identifying novel and effective compounds for treating human cancers. © 2017 Elsevier Inc. All rights reserved.

  3. Stem cells with potential to generate insulin producing cells in man.

    PubMed

    Zulewski, Henryk

    2006-10-14

    Replacement of insulin-producing cells represents an almost ideal treatment for patients with diabetes mellitus type 1. Transplantation of pancreatic islets of Langerhans--although successful in experienced centres--is limited by the lack of donor organs. Generation of insulin-producing cells from stem cells represents an attractive alternative. Stem cells with the potential to differentiate into insulin-producing cells include embryonic stem cells (ESC) as well as adult stem cells from various tissues including the pancreas, liver, central nervous system, bone marrow and adipose tissue. The use of human ESC is hampered by ethical concerns and the inability to create patient specific ESC with therapeutic cloning. Among adult stem cells mesenchymal stem cells appear to have a particular developmental plasticity ex vivo that include their ability to adopt a pancreatic endocrine phenotype. The present review summarises the current knowledge on the development of insulin-producing cells from stem cells with special emphasis on human mesenchymal stem cells isolated from the pancreas and adipose tissue.

  4. Stem cells with potential to generate insulin-producing cells in man.

    PubMed

    Zulewski, Henryk

    2007-03-02

    Replacement of insulin-producing cells represents an almost ideal treatment for patients with diabetes mellitus type 1. Transplantation of pancreatic islets of Langerhans--although successful in experienced centres--is limited by the lack of donor organs. Generation of insulin-producing cells from stem cells represents an attractive alternative. Stem cells with the potential to differentiate into insulin-producing cells include embryonic stem cells (ESC) as well as adult stem cells from various tissues including the pancreas, liver, central nervous system, bone marrow and adipose tissue. The use of human ESC is hampered by ethical concerns and the inability to create patient specific ESC with therapeutic cloning. Among adult stem cells mesenchymal stem cells appear to have a particular developmental plasticity ex vivo that include their ability to adopt a pancreatic endocrine phenotype. The present review summarises the current knowledge on the development of insulin-producing cells from stem cells with special emphasis on human mesenchymal stem cells isolated from the pancreas and adipose tissue.

  5. Mechanical forces direct stem cell behaviour in development and regeneration

    PubMed Central

    Vining, Kyle H.; Mooney, David J.

    2018-01-01

    Stem cells and their local microenvironment, or niche, communicate through mechanical, cues to regulate cell fate and cell behaviour, and to guide developmental processes. During embryonic development, mechanical forces are involved in patterning and organogenesis. The physical environment of pluripotent stem cells regulates their differentiation and self-renewal. Mechanical and physical cues are also important in adult tissues, where adult stem cells require physical interactions with the extracellular matrix to maintain their potency. In vitro, synthetic models of the stem cell niche can be used to precisely control and manipulate the biophysical and biochemical properties of the stem cell microenvironment and examine how the mode and magnitude of mechanical cues, such as matrix stiffness or applied forces, direct stem cell differentiation and function. Fundamental insights on the mechanobiology of stem cells also inform the design of artificial niches to support stem cells for regenerative therapies. PMID:29115301

  6. Recent Advances towards the Clinical Application of Stem Cells for Retinal Regeneration

    PubMed Central

    Becker, Silke; Jayaram, Hari; Limb, G. Astrid

    2012-01-01

    Retinal degenerative diseases constitute a major cause of irreversible blindness in the world. Stem cell-based therapies offer hope for these patients at risk of or suffering from blindness due to the deterioration of the neural retina. Various sources of stem cells are currently being investigated, ranging from human embryonic stem cells to adult-derived induced pluripotent stem cells as well as human Müller stem cells, with the first clinical trials to investigate the safety and tolerability of human embryonic stem cell-derived retinal pigment epithelium cells having recently commenced. This review aims to summarize the latest advances in the development of stem cell strategies for the replacement of retinal neurons and their supportive cells, the retinal pigment epithelium (RPE) affected by retinal degenerative conditions. Particular emphasis will be given to the advances in stem cell transplantation and the challenges associated with their translation into clinical practice. PMID:24710533

  7. Stem-Cell Therapy Advances in China.

    PubMed

    Hu, Lei; Zhao, Bin; Wang, Songlin

    2018-02-01

    Stem-cell therapy is a promising method for treating patients with a wide range of diseases and injuries. Increasing government funding of scientific research has promoted rapid developments in stem-cell research in China, as evidenced by the substantial increase in the number and quality of publications in the past 5 years. Multiple high-quality studies have been performed in China that concern cell reprogramming, stem-cell homeostasis, gene modifications, and immunomodulation. The number of translation studies, including basic and preclinical investigations, has also increased. Around 100 stem-cell banks have been established in China, 10 stem-cell drugs are currently in the approval process, and >400 stem cell-based clinical trials are currently registered in China. With continued state funding, advanced biotechnical support, and the development of regulatory standards for the clinical application of stem cells, further innovations are expected that will lead to a boom in stem-cell therapies. This review highlights recent achievements in stem-cell research in China and discusses future prospects.

  8. New insights into mechanisms of stem cell daughter fate determination in regenerative tissues.

    PubMed

    Sada, Aiko; Tumbar, Tudorita

    2013-01-01

    Stem cells can self-renew and differentiate over extended periods of time. Understanding how stem cells acquire their fates is a central question in stem cell biology. Early work in Drosophila germ line and neuroblast showed that fate choice is achieved by strict asymmetric divisions that can generate each time one stem and one differentiated cell. More recent work suggests that during homeostasis, some stem cells can divide symmetrically to generate two differentiated cells or two identical stem cells to compensate for stem cell loss that occurred by direct differentiation or apoptosis. The interplay of all these factors ensures constant tissue regeneration and the maintenance of stem cell pool size. This interplay can be modeled as a population-deterministic dynamics that, at least in some systems, may be described as stochastic behavior. Here, we overview recent progress made on the characterization of stem cell dynamics in regenerative tissues. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Selection of Phage Display Peptides Targeting Human Pluripotent Stem Cell-Derived Progenitor Cell Lines.

    PubMed

    Bignone, Paola A; Krupa, Rachel A; West, Michael D; Larocca, David

    2016-01-01

    The ability of human pluripotent stem cells (hPS) to both self-renew and differentiate into virtually any cell type makes them a promising source of cells for cell-based regenerative therapies. However, stem cell identity, purity, and scalability remain formidable challenges that need to be overcome for translation of pluripotent stem cell research into clinical applications. Directed differentiation from hPS cells is inefficient and residual contamination with pluripotent cells that have the potential to form tumors remains problematic. The derivation of scalable (self-renewing) embryonic progenitor stem cell lines offers a solution because they are well defined and clonally pure. Clonally pure progenitor stem cell lines also provide a means for identifying cell surface targeting reagents that are useful for identification, tracking, and repeated derivation of the corresponding progenitor stem cell types from additional hPS cell sources. Such stem cell targeting reagents can then be applied to the manufacture of genetically diverse banks of human embryonic progenitor cell lines for drug screening, disease modeling, and cell therapy. Here we present methods to identify human embryonic progenitor stem cell targeting peptides by selection of phage display libraries on clonal embryonic progenitor cell lines and demonstrate their use for targeting quantum dots (Qdots) for stem cell labeling.

  10. SEPALLATA3: the 'glue' for MADS box transcription factor complex formation

    PubMed Central

    Immink, Richard GH; Tonaco, Isabella AN; de Folter, Stefan; Shchennikova, Anna; van Dijk, Aalt DJ; Busscher-Lange, Jacqueline; Borst, Jan W; Angenent, Gerco C

    2009-01-01

    Background Plant MADS box proteins play important roles in a plethora of developmental processes. In order to regulate specific sets of target genes, MADS box proteins dimerize and are thought to assemble into multimeric complexes. In this study a large-scale yeast three-hybrid screen is utilized to provide insight into the higher-order complex formation capacity of the Arabidopsis MADS box family. SEPALLATA3 (SEP3) has been shown to mediate complex formation and, therefore, special attention is paid to this factor in this study. Results In total, 106 multimeric complexes were identified; in more than half of these at least one SEP protein was present. Besides the known complexes involved in determining floral organ identity, various complexes consisting of combinations of proteins known to play a role in floral organ identity specification, and flowering time determination were discovered. The capacity to form this latter type of complex suggests that homeotic factors play essential roles in down-regulation of the MADS box genes involved in floral timing in the flower via negative auto-regulatory loops. Furthermore, various novel complexes were identified that may be important for the direct regulation of the floral transition process. A subsequent detailed analysis of the APETALA3, PISTILLATA, and SEP3 proteins in living plant cells suggests the formation of a multimeric complex in vivo. Conclusions Overall, these results provide strong indications that higher-order complex formation is a general and essential molecular mechanism for plant MADS box protein functioning and attribute a pivotal role to the SEP3 'glue' protein in mediating multimerization. PMID:19243611

  11. Microorganisms transported by ants induce changes in floral nectar composition of an ant-pollinated plant.

    PubMed

    de Vega, Clara; Herrera, Carlos M

    2013-04-01

    Interactions between plants and ants abound in nature and have significant consequences for ecosystem functioning. Recently, it has been suggested that nectar-foraging ants transport microorganisms to flowers; more specifically, they transport yeasts, which can potentially consume sugars and alter nectar composition. Therefore, ants could indirectly change nectar sugar profile, an important floral feature involved in the plant-pollinator mutualism. But this novel role for ants has never been tested. We here investigate the effects of nectarivorous ants and their associated yeasts on the floral nectar sugar composition of an ant-pollinated plant. Differences in the nectar sugar composition of ant-excluded and ant-visited flowers were examined in 278 samples by using high-performance liquid-chromatography. The importance of the genetic identity and density of ant-transported basidiomycetous and ascomycetous yeasts on the variation of nectar traits was also evaluated. Ant visitation had significant effects on nectar sugar composition. The nectar of ant-visited flowers contained significantly more fructose, more glucose, and less sucrose than the nectar of ant-excluded flowers, but these effects were context dependent. Nectar changes were correlated with the density of yeast cells in nectar. The magnitude of the effects of ant-transported ascomycetes was much higher than that of basiodiomycetes. Ants and their associated yeasts induce changes in nectar sugar traits, reducing the chemical control of the plant over this important floral trait. The potential relevance of this new role for ants as indirect nectar modifiers is a rich topic for future research into the ecology of ant-flower interactions.

  12. Effect of pollination and fertilization on the expression of genes related to floral transition, hormone synthesis and berry development in grapevine.

    PubMed

    Dauelsberg, Patricia; Matus, José Tomás; Poupin, María Josefina; Leiva-Ampuero, Andrés; Godoy, Francisca; Vega, Andrea; Arce-Johnson, Patricio

    2011-09-15

    In the present work, the effect of assisted fertilization on anatomical, morphological and gene expression changes occurring in carpels and during early stages of berry development in Vitis vinifera were studied. Inflorescences were emasculated before capfall, immediately manually pollinated (EP) and fruit development was compared to emasculated but non-pollinated (ENP) and self-pollinated inflorescences (NESP). The diameter of berries derived from pollinated flowers (EP and NESP) was significantly higher than from non-pollinated flowers (ENP) at 21 days after emasculation/pollination (DAE), and a rapid increase in the size of the inner mesocarp, together with the presence of an embryo-like structure, were observed. The expression of gibberellin oxidases (GA20ox and GA2ox), anthranilate synthase (related to auxin synthesis) and cytokinin synthase coding genes was studied to assess the relationship between hormone synthesis and early berry development, while flower patterning genes were analyzed to describe floral transition. Significant expression changes were found for hormone-related genes, suggesting that their expression at early stages of berry development (13 DAE) is related to cell division and differentiation of mesocarp tissue at a later stage (21 DAE). Expression of hormone-related genes also correlates with the expression of VvHB13, a gene related to mesocarp expansion, and with an increased repression of floral patterning genes (PISTILLATA and TM6), which may contribute to prevent floral transition inhibiting fruit growth before fertilization takes place. Copyright © 2011 Elsevier GmbH. All rights reserved.

  13. Extinction models for cancer stem cell therapy

    PubMed Central

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S.; Lange, Kenneth L.

    2012-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth–death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives. PMID:22001354

  14. Extinction models for cancer stem cell therapy.

    PubMed

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S; Lange, Kenneth L

    2011-12-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth-death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Aging and stem cell therapy: AMPK as an applicable pharmacological target for rejuvenation of aged stem cells and achieving higher efficacy in stem cell therapy.

    PubMed

    Khorraminejad-Shirazi, Mohammadhossein; Farahmandnia, Mohammad; Kardeh, Bahareh; Estedlal, Alireza; Kardeh, Sina; Monabati, Ahmad

    2017-10-19

    In recent years, tissue regeneration has become a promising field for developing stem cell-based transplantation therapies for human patients. Adult stem cells are affected by the same aging mechanisms that involve somatic cells. One of the mechanisms involved in cellular aging is hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) and disruption of 5' adenosine monophosphate-activated protein kinase (AMPK). Aging of stem cells results in their impaired regenerative capacity and depletion of stem cell pools in adult tissue, which results in lower efficacy of stem cell therapy. By utilizing an effective therapeutic intervention for aged stem cells, stem cell therapy can become more promising for future application. mTORC1 inhibition is a practical approach to preserve the stem cell pool. In this article, we review the dynamic interaction between sirtuin (silent mating type information regulation 2 homolog) 1, AMPK, and mTORC1. We propose that using AMPK activators such as 5-aminoimidazole-4-carboxamide ribonucleotide, A769662, metformin, and oxidized nicotinamide adenine dinucleotide (NAD + ) are practical ways to be employed for achieving better optimized results in stem cell-based transplantation therapies. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.

  16. Stemness of spermatogonial stem cells encapsulated in alginate hydrogel during cryopreservation.

    PubMed

    Pirnia, A; Parivar, K; Hemadi, M; Yaghmaei, P; Gholami, M

    2017-06-01

    This study investigated the effect of spermatogonial stem cell encapsulated in alginate hydrogel during cryopreservation, as cells were protected against damage during cryopreservation within the hydrogel. Spermatogonial stem cells were isolated from the testes of Balb/c mice pups (6 days old), purified in laminin-coated dishes and CD90.1 microbeads, encapsulated in alginate hydrogel and then cryopreserved. After thawing, cell viability and Spermatogonial stem cell (SSC) colony diameter were evaluated. After RNA was isolated and cDNA was synthesised, the expression of stemness genes was considered using RT real-time PCR. Finally, spermatogonial stem cells labelled with BrdU were transplanted to busulfan azoospermic mouse models. Lin28a and Sall4 genes were significantly upregulated after cryopreservation in alginate hydrogel. However, cell viability was significantly decreased. The diameter of colonies consisting of spermatogonial stem cells freeze-thawed in alginate microbeads showed no significant difference with fresh spermatogonial stem cells and the control group. The injection of freeze-thawed spermatogonial stem cells encapsulated in alginate hydrogel resulted in spermatogenesis recovery. Alginate mimics the extracellular matrices (ECM) for spermatogonial stem cells; therefore, it can support stemness potential during the cell cryopreservation process and restart spermatogenesis after transplantation. © 2016 Blackwell Verlag GmbH.

  17. Normal and cancer mammary stem cells evade interferon-induced constraint through the miR-199a-LCOR Axis

    PubMed Central

    Celià-Terrassa, Toni; Liu, Daniel; Choudhury, Abrar; Hang, Xiang; Wei, Yong; Zamalloa, Jose; Alfaro-Aco, Raymundo; Chakrabarti, Rumela; Jiang, Yi-Zhou; Koh, Bong Ihn; Smith, Heath; DeCoste, Christina; Li, Jun-Jing; Shao, Zhi-Ming; Kang, Yibin

    2017-01-01

    Tumor-initiating cells (TICs), or cancer stem cells (CSC), possess stem cell-like properties observed in normal adult tissue stem cells. Normal and cancerous stem cells may therefore share regulatory mechanisms for maintaining self-renewing capacity and resisting differentiation elicited by cell-intrinsic or microenvironmental cues. Here, we show that miR-199a promotes stem cell properties in mammary stem cells (MaSCs) and breast CSCs by directly repressing nuclear receptor corepressor LCOR, which primes interferon (IFN) responses. Elevated miR-199a expression in stem cell-enriched populations protects normal and malignant stem-like cells from differentiation and senescence induced by IFNs that are produced by epithelial and immune cells in the mammary gland. Importantly, the miR-199a-LCOR-IFN axis is activated in poorly differentiated ER− breast tumors, functionally promotes tumor initiation and metastasis, and is associated with poor clinical outcome. Our study therefore reveals a common mechanism shared by normal and malignant stem cells to protect them from suppressive immune cytokine signaling. PMID:28530657

  18. The Role of Epithelial-Mesenchymal Transition in the Formation of Normal and Neoplastic Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2011-09-01

    separating stem cell and non- stem cell populations of normal and breast cancer cells and identified EMT transcription factors most likely involved in... stem cell biology. Preliminary results directly demonstrate that transient induction of EMT increases the number of mammary epithelial stem cells...EMT and entrance into a stem - cell state. The outcome of these experiments holds important implications for the mechanisms controlling the formation of

  19. Role of the Stem Cell Niche in Hormone-Induced Tumorigenesis in Fetal Mouse Mammary Epithelium

    DTIC Science & Technology

    2005-08-01

    responsive, self renewing and pluripotent. A structure specialized to contain and regulate stem cell activity has been structurally and molecularly...described in Drosophila and some mammalian tissues. The structure, the stem cell niche, functions to 1) shield the stem cell from the burden of incoming...directing stem cell renewal and maturation, 3) prevent stem cells from wandering through the tissue and producing new cells inappropriately, 4) prevent

  20. Floral nectar production and carbohydrate composition and the structure of receptacular nectaries in the invasive plant Bunias orientalis L. (Brassicaceae).

    PubMed

    Denisow, Bożena; Masierowska, Marzena; Antoń, Sebastian

    2016-11-01

    The data relating to the nectaries and nectar secretion in invasive Brassicacean taxa are scarce. In the present paper, the nectar production and nectar carbohydrate composition as well as the morphology, anatomy and ultrastructure of the floral nectaries in Bunias orientalis were investigated. Nectary glands were examined using light, fluorescence, scanning electron and transmission electron microscopy. The quantities of nectar produced by flowers and total sugar mass in nectar were relatively low. Total nectar carbohydrate production per 10 flowers averaged 0.3 mg. Nectar contained exclusively glucose (G) and fructose (F) with overall G/F ratio greater than 1. The flowers of B. orientalis have four nectaries placed at the base of the ovary. The nectarium is intermediate between two nectary types: the lateral and median nectary type (lateral and median glands stay separated) and the annular nectary type (both nectaries are united into one). Both pairs of glands represent photosynthetic type and consist of epidermis and glandular tissue. However, they differ in their shape, size, secretory activity, dimensions of epidermal and parenchyma cells, thickness of secretory parenchyma, phloem supply, presence of modified stomata and cuticle ornamentation. The cells of nectaries contain dense cytoplasm, plastids with starch grains and numerous mitochondria. Companion cells of phloem lack cell wall ingrowths. The ultrastructure of secretory cells indicates an eccrine mechanism of secretion. Nectar is exuded throughout modified stomata.

  1. The Effect of Laser Irradiation on Adipose Derived Stem Cell Proliferation and Differentiation

    NASA Astrophysics Data System (ADS)

    Abrahamse, H.; de Villiers, J.; Mvula, B.

    2009-06-01

    There are two fundamental types of stem cells: Embryonic Stem cells and Adult Stem cells. Adult Stem cells have a more restricted potential and can usually differentiate into a few different cell types. In the body these cells facilitate the replacement or repair of damaged or diseased cells in organs. Low intensity laser irradiation was shown to increase stem cell migration and stimulate proliferation and it is thought that treatment of these cells with laser irradiation may increase the stem cell harvest and have a positive effect on the viability and proliferation. Our research is aimed at determining the effect of laser irradiation on differentiation of Adipose Derived Stem Cells (ADSCs) into different cell types using a diode laser with a wavelength of 636 nm and at 5 J/cm2. Confirmation of stem cell characteristics and well as subsequent differentiation were assessed using Western blot analysis and cellular morphology supported by fluorescent live cell imaging. Functionality of subsequent differentiated cells was confirmed by measuring adenosine triphosphate (ATP) production and cell viability.

  2. Alpha-fetoprotein, stem cells and cancer: how study of the production of alpha-fetoprotein during chemical hepatocarcinogenesis led to reaffirmation of the stem cell theory of cancer.

    PubMed

    Sell, Stewart

    2008-01-01

    Identification of the cells in the liver that produce alpha-fetoprotein during development, in response to liver injury and during the early stages of chemical hepatocarcinogenesis led to the conclusion that maturation arrest of liver-determined tissue stem cells was the cellular process that gives rise to hepatocellular carcinomas. When the cellular changes in these processes were compared to that of the formation of teratocarcinomas, the hypothesis arose that all cancers arise from maturation arrest of tissue-determined stem cells. This was essentially a reinterpretation of the embryonal rest theory of cancer whereby tissue stem cells take the role of embryonal rests. A corollary of the stem cell theory of the origin of cancer is that cancers contain the same functional cell populations as normal tissues: stem cells, transit-amplifying cells and mature cells. Cancer stem cells retain the essential feature of normal stem cells: the ability to self-renew. Growth of cancers is due to continued proliferation of cancer transit-amplifying cells that do not differentiate to mature cells (maturation arrest). On the other hand, cancer stem cells generally divide very rarely and contribute little to tumor growth. However, the presence of cancer stem cells in tumors is believed to be responsible for the properties of immortalization, transplantability and resistance to therapy characteristic of cancers. Current therapies for cancer (chemotherapy, radiotherapy, antiangiogenesis and differentiation therapy) are directed against the cancer transit-amplifying cells. When these therapies are discontinued, the cancer reforms from the cancer stem cells. Therapy directed toward interruption of the cell signaling pathways that maintain cancer stem cells could lead to new modalities to the prevention of regrowth of the cancer. Copyright 2008 S. Karger AG, Basel.

  3. ALPHA-FETOPROTEIN (AFP), STEM CELLS, AND CANCER: HOW STUDY OF THE PRODUCTION OF AFP DURING CHEMICAL HEPATOCARCINOGENESIS LED TO REAFFIRMATION OF THE STEM CELL THEORY OF CANCER

    PubMed Central

    Sell, Stewart

    2008-01-01

    Identification of the cells in the liver that produce alpha-fetoprotein (AFP) during development, in response to liver injury, and during the early stages of chemical hepatocarcinogenesis led to the conclusion that maturation arrest of liver-determined tissue stem cells was the cellular process that gives rise to hepatocellular carcinomas (HCC). When the cellular changes in these processes were compared that of the formation of teratocarcinomas, the hypothesis arose that all cancers arise from maturation arrest of tissue determined stem cells. This was essentially a reinterpretation of the embryonal rest theory of cancer whereby tissue stem cells take the role of embryonal rests. A corollary of the stem cell theory of the origin of cancer is that cancers contain the same functional cell populations as do normal tissues: stem cells, transit-amplifying cells, and mature cells. Cancer stem cells retain the essential feature of normal stem cells: the ability to self-renew. Growth of cancers is due to continued proliferation of cancer transit-amplifying cells that do not differentiate to mature cells (maturation arrest). On the other hand, cancer stem cells generally divide very rarely and contribute little to tumor growth. However, the presence of cancer stem cells in tumors is believed to be responsible for the properties of immortalization, transplantability and resistance to therapy characteristic of cancers. Current therapies for cancer (chemotherapy, radiotherapy, anti-angiogenesis and differentiation therapy) are directed against the cancer transit amplifying cells. When these therapies are discontinued, the cancer re-forms from the cancer stem cells. Therapy directed toward interruption of the cell-signaling pathways that maintain cancer stem cells could lead to new modalities to the prevention of re-growth of the cancer. PMID:18612221

  4. A Comparative Transcriptomic Analysis Reveals Conserved Features of Stem Cell Pluripotency in Planarians and Mammals

    PubMed Central

    Labbé, Roselyne M.; Irimia, Manuel; Currie, Ko W.; Lin, Alexander; Zhu, Shu Jun; Brown, David D.R.; Ross, Eric J.; Voisin, Veronique; Bader, Gary D.; Blencowe, Benjamin J.; Pearson, Bret J.

    2014-01-01

    Many long-lived species of animals require the function of adult stem cells throughout their lives. However, the transcriptomes of stem cells in invertebrates and vertebrates have not been compared, and consequently, ancestral regulatory circuits that control stem cell populations remain poorly defined. In this study, we have used data from high-throughput RNA sequencing to compare the transcriptomes of pluripotent adult stem cells from planarians with the transcriptomes of human and mouse pluripotent embryonic stem cells. From a stringently defined set of 4,432 orthologs shared between planarians, mice and humans, we identified 123 conserved genes that are ≥5-fold differentially expressed in stem cells from all three species. Guided by this gene set, we used RNAi screening in adult planarians to discover novel stem cell regulators, which we found to affect the stem cell-associated functions of tissue homeostasis, regeneration, and stem cell maintenance. Examples of genes that disrupted these processes included the orthologs of TBL3, PSD12, TTC27, and RACK1. From these analyses, we concluded that by comparing stem cell transcriptomes from diverse species, it is possible to uncover conserved factors that function in stem cell biology. These results provide insights into which genes comprised the ancestral circuitry underlying the control of stem cell self-renewal and pluripotency. PMID:22696458

  5. Patterns of chasmogamy and cleistogamy, a mixed-mating strategy in an endangered perennial.

    PubMed

    Koontz, Stephanie M; Weekley, Carl W; Haller Crate, Sarah J; Menges, Eric S

    2017-11-01

    Cleistogamy (CL) in angiosperms historically has been understudied; however, its co-occurrence with chasmogamy (CH) across many plant species suggests a fitness advantage to maintaining this mixed-mating strategy. Maintenance of mixed-mating has been attributed to reproductive assurance, resource allocation or genetic trade-offs. Our goals were to explore patterns of CH and CL, quantify reproductive contributions measured by fruit production and determine how CL is maintained in the endangered perennial Polygala lewtonii. This species exhibits CH and both above-ground cleistogamy (CL-AG) and below-ground cleistogamy (CL-BG). In monthly censuses from 2008 to 2012, we documented flowering patterns by counting CH flowering stems, CL-AG fruits and CL-BG rhizomes per plant. Monitoring of buds on CH flowering stems in 2004 provided an estimate of CH fruits per plant. Plant excavations in 2005 of CL-BG rhizomes provided an estimate of CL-BG fruits per plant. Floral morphs were temporally separated with CH flowers observed from January to May and CL flowers from June to February. Overall, 17.5 % of plants flowered; most plants expressed CH first in spring months (63.4 %) and the rest initiated CL-AG in fall months. Reproductive output was dominated by CH (median 26 fruits) compared to combined CL (median 3.5 fruits). Annual reproductive effort of CL-AG was positively correlated with plant age while CH had no relation. Our research shows CH as the dominant form of reproductive effort with most individuals expressing CH and through greater reproductive contributions. CL appears limited by plant size or resources based on the positive relationship with plant age. CL dependency on resource availability is common in other species found in dry or low-quality habitats; however, CL contributions in this species are comparatively low. This raises more questions related to energy requirements of both floral morphs, how this affects the production of viable progeny and why CL persists.

  6. Investigating the mincing method for isolation of adipose-derived stem cells from pregnant women fat.

    PubMed

    Li, Yuan-Sheng; Chen, Pao-Jen; Wu, Li-Wei; Chou, Pei-Wen; Sun, Li-Yi; Chiou, Tzyy-Wen

    2018-02-01

    The success of stem cell application in regenerative medicine, usually require a stable source of stem or progenitor cells. Fat tissue represents a good source of stem cells because it is rich in stem cells and there are fewer ethical issues related to the use of such stem cells, unlike embryonic stem cells. Therefore, there has been increased interest in adipose-derived stem cells (ADSCs) for tissue engineering applications. Here, we aim to provide an easy processing method for isolating adult stem cells from human adipose tissue harvested from the subcutaneous fat of the abdominal wall during gynecologic surgery. We used a homogenizer to mince fat and compared the results with those obtained from the traditional cut method involving a sterile scalpel and forceps. Our results showed that our method provides another stable and quality source of stem cells that could be used in cases with a large quantity of fat. Furthermore, we found that pregnancy adipose-derived stem cells (P-ADSCs) could be maintained in vitro for extended periods with a stable population doubling and low senescence levels. P-ADSCs could also differentiate in vitro into adipogenic, osteogenic, chondrogenic, and insulin-producing cells in the presence of lineage-specific induction factors. In conclusion, like human lipoaspirates, adipose tissues obtained from pregnant women contain multipotent cells with better proliferation and showed great promise for use in both stem cell banking studies as well as in stem cell therapy.

  7. Interactions of OsMADS1 with Floral Homeotic Genes in Rice Flower Development.

    PubMed

    Hu, Yun; Liang, Wanqi; Yin, Changsong; Yang, Xuelian; Ping, Baozhe; Li, Anxue; Jia, Ru; Chen, Mingjiao; Luo, Zhijing; Cai, Qiang; Zhao, Xiangxiang; Zhang, Dabing; Yuan, Zheng

    2015-09-01

    During reproductive development, rice plants develop unique flower organs which determine the final grain yield. OsMADS1, one of SEPALLATA-like MADS-box genes, has been unraveled to play critical roles in rice floral organ identity specification and floral meristem determinacy. However, the molecular mechanisms underlying interactions of OsMADS1 with other floral homeotic genes in regulating flower development remains largely elusive. In this work, we studied the genetic interactions of OsMADS1 with B-, C-, and D-class genes along with physical interactions among their proteins. We show that the physical and genetic interactions between OsMADS1 and OsMADS3 are essential for floral meristem activity maintenance and organ identity specification; while OsMADS1 physically and genetically interacts with OsMADS58 in regulating floral meristem determinacy and suppressing spikelet meristem reversion. We provided important genetic evidence to support the neofunctionalization of two rice C-class genes (OsMADS3 and OsMADS58) during flower development. Gene expression profiling and quantitative RT-PCR analyses further revealed that OsMADS1 affects the expression of many genes involved in floral identity and hormone signaling, and chromatin immunoprecipitation (ChIP)-PCR assay further demonstrated that OsMADS17 is a direct target gene of OsMADS1. Taken together, these results reveal that OsMADS1 has diversified regulatory functions in specifying rice floral organ and meristem identity, probably through its genetic and physical interactions with different floral homeotic regulators. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  8. Attracting mutualists and antagonists: plant trait variation explains the distribution of specialist floral herbivores and pollinators on crops and wild gourds.

    PubMed

    Theis, Nina; Barber, Nicholas A; Gillespie, Sandra D; Hazzard, Ruth V; Adler, Lynn S

    2014-08-01

    • Floral traits play important roles in pollinator attraction and defense against floral herbivory. However, plants may experience trade-offs between conspicuousness to pollinators and herbivore attraction. Comparative studies provide an excellent framework to examine the role of multiple traits shaping mutualist and antagonist interactions.• To assess whether putative defensive and attractive traits predict species interactions, we grew 20 different Cucurbitaceae species and varieties in the field to measure interactions with pollinators and herbivores and in the greenhouse to assess trait variation. Cucurbits are characterized by the production of cucurbitacins, bitter nonvolatile terpenoids that are effective against generalist herbivores but can attract specialist beetles. We determined whether plant traits such as cucurbitacins predict herbivore resistance and pollinator attraction using an information-theoretic approach.• Mutualists and floral antagonists were attracted to the same cucurbit varieties once they flowered. However, rather than cucurbitacin concentration, we found that the size of the flower and volatile emissions of floral sesquiterpenoids explained both pollinator and floral herbivore visitation preference across cucurbit taxa. This pattern held across cucurbit taxa and within the Cucurbita genus.• Surprisingly, floral sesquiterpenoid volatiles, which are associated with direct defense, indirect defense, and attraction, rather than defense traits such as cucurbitacins, appeared to drive interactions with both pollinators and floral herbivores across cucurbit taxa. Identifying the relevant plant traits for attraction and deterrence is important in this economically valuable crop, particularly if pollinators and floral herbivores use the same plant traits as cues. © 2014 Botanical Society of America, Inc.

  9. Are there pollination syndromes in the Australian epacrids (Ericaceae: Styphelioideae)? A novel statistical method to identify key floral traits per syndrome

    PubMed Central

    Johnson, Karen A.

    2013-01-01

    Background and Aims Convergent floral traits hypothesized as attracting particular pollinators are known as pollination syndromes. Floral diversity suggests that the Australian epacrid flora may be adapted to pollinator type. Currently there are empirical data on the pollination systems for 87 species (approx. 15 % of Australian epacrids). This provides an opportunity to test for pollination syndromes and their important morphological traits in an iconic element of the Australian flora. Methods Data on epacrid–pollinator relationships were obtained from published literature and field observation. A multivariate approach was used to test whether epacrid floral attributes related to pollinator profiles. Statistical classification was then used to rank floral attributes according to their predictive value. Data sets excluding mixed pollination systems were used to test the predictive power of statistical classification to identify pollination models. Key Results Floral attributes are correlated with bird, fly and bee pollination. Using floral attributes identified as correlating with pollinator type, bird pollination is classified with 86 % accuracy, red flowers being the most important predictor. Fly and bee pollination are classified with 78 and 69 % accuracy, but have a lack of individually important floral predictors. Excluding mixed pollination systems improved the accuracy of the prediction of both bee and fly pollination systems. Conclusions Although most epacrids have generalized pollination systems, a correlation between bird pollination and red, long-tubed epacrids is found. Statistical classification highlights the relative importance of each floral attribute in relation to pollinator type and proves useful in classifying epacrids to bird, fly and bee pollination systems. PMID:23681546

  10. Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential

    PubMed Central

    Worthley, Daniel L.; Churchill, Michael; Compton, Jocelyn T.; Tailor, Yagnesh; Rao, Meenakshi; Si, Yiling; Levin, Daniel; Schwartz, Matthew G.; Uygur, Aysu; Hayakawa, Yoku; Gross, Stefanie; Renz, Bernhard W.; Setlik, Wanda; Martinez, Ashley N.; Chen, Xiaowei; Nizami, Saqib; Lee, Heon Goo; Kang, H. Paco; Caldwell, Jon-Michael; Asfaha, Samuel; Westphalen, C. Benedikt; Graham, Trevor; Jin, Guangchun; Nagar, Karan; Wang, Hongshan; Kheirbek, Mazen A.; Kolhe, Alka; Carpenter, Jared; Glaire, Mark; Nair, Abhinav; Renders, Simon; Manieri, Nicholas; Muthupalani, Sureshkumar; Fox, James G.; Reichert, Maximilian; Giraud, Andrew S.; Schwabe, Robert F.; Pradere, Jean-Phillipe; Walton, Katherine; Prakash, Ajay; Gumucio, Deborah; Rustgi, Anil K.; Stappenbeck, Thaddeus S.; Friedman, Richard A.; Gershon, Michael D.; Sims, Peter; Grikscheit, Tracy; Lee, Francis Y.; Karsenty, Gerard; Mukherjee, Siddhartha; Wang, Timothy C.

    2014-01-01

    The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs). PMID:25594183

  11. Biochemistry of epidermal stem cells.

    PubMed

    Eckert, Richard L; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A; Vemuri, Mohan C; Boucher, Shayne E; Bickenbach, Jackie R; Kerr, Candace

    2013-02-01

    The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Basics and applications of stem cells in the pancreas.

    PubMed

    Sekine, Keisuke; Taniguchi, Hideki

    2012-11-01

    Enormous efforts have been made to establish pancreatic stem/progenitor cells as a source for regenerative medicine for the treatment of diabetes mellitus. In recent years, it has been recognized that the self-renewal of beta cells is the dominant process involved in postnatal beta-cell regeneration and expansion. Nevertheless, several in-vitro studies have suggested that ductal or as yet unidentified cells are candidates for pancreatic stem/progenitor cells that can differentiate into multilineage cells, including insulin(+) cells. The question remains as to whether beta cells are generated postnatally from stem/progenitor cells other than pre-existing beta cells. Furthermore, mutated pancreatic stem cells are considered to be prospective candidates for cancer stem cells or tumor-initiating cells. This review highlights recent progress in pancreatic stem/progenitor cell research.

  13. Ablation of proliferating neural stem cells during early life is sufficient to reduce adult hippocampal neurogenesis.

    PubMed

    Youssef, Mary; Krish, Varsha S; Kirshenbaum, Greer S; Atsak, Piray; Lass, Tamara J; Lieberman, Sophie R; Leonardo, E David; Dranovsky, Alex

    2018-05-09

    Environmental exposures during early life, but not during adolescence or adulthood, lead to persistent reductions in neurogenesis in the adult hippocampal dentate gyrus (DG). The mechanisms by which early life exposures lead to long-term deficits in neurogenesis remain unclear. Here, we investigated whether targeted ablation of dividing neural stem cells during early life is sufficient to produce long-term decreases in DG neurogenesis. Having previously found that the stem cell lineage is resistant to long-term effects of transient ablation of dividing stem cells during adolescence or adulthood (Kirshenbaum et al., 2014), we used a similar pharmacogenetic approach to target dividing neural stem cells for elimination during early life periods sensitive to environmental insults. We then assessed the Nestin stem cell lineage in adulthood. We found that the adult neural stem cell reservoir was depleted following ablation during the first postnatal week, when stem cells were highly proliferative, but not during the third postnatal week, when stem cells were more quiescent. Remarkably, ablating proliferating stem cells during either the first or third postnatal week led to reduced adult neurogenesis out of proportion to the changes in the stem cell pool, indicating a disruption of the stem cell function or niche following stem cell ablation in early life. These results highlight the first three postnatal weeks as a series of sensitive periods during which elimination of dividing stem cells leads to lasting alterations in adult DG neurogenesis and stem cell function. These findings contribute to our understanding of the relationship between DG development and adult neurogenesis, as well as suggest a possible mechanism by which early life experiences may lead to lasting deficits in adult hippocampal neurogenesis. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  14. State performance in pluripotent and adult stem cell research, 2009-2016.

    PubMed

    Surani, Sana H; Levine, Aaron D

    2018-04-01

    To examine how the geographic distribution of pluripotent and adult stem cell research publications within the USA differs from other areas of biomedical research. Publication count data for pluripotent stem cell research, adult stem cell research and a comparison group representative of biomedical research more broadly were collected and analyzed for each US state from 2009 to 2016. The distribution of pluripotent stem cell research differed from the other fields with overperformance in pluripotent stem cell research observed in California, as well as Wisconsin, Massachusetts, Maryland and Connecticut. Our analysis suggests that permissive state stem cell policy may be one of the several factors contributing to strong state performance in pluripotent stem cell research.

  15. Stem cell clinics online: the direct-to-consumer portrayal of stem cell medicine.

    PubMed

    Lau, Darren; Ogbogu, Ubaka; Taylor, Benjamin; Stafinski, Tania; Menon, Devidas; Caulfield, Timothy

    2008-12-04

    Despite the immature state of stem cell medicine, patients are seeking and accessing putative stem cell therapies in an "early market" in which direct-to-consumer advertising via the internet likely plays an important role. We analyzed stem cell clinic websites and appraised the relevant published clinical evidence of stem cell therapies to address three questions about the direct-to-consumer portrayal of stem cell medicine in this early market: What sorts of therapies are being offered? How are they portrayed? Is there clinical evidence to support the use of these therapies? We found that the portrayal of stem cell medicine on provider websites is optimistic and unsubstantiated by peer-reviewed literature.

  16. Effects of Telomerase and Telomere Length on Epidermal Stem Cell Behavior

    NASA Astrophysics Data System (ADS)

    Flores, Ignacio; Cayuela, María L.; Blasco, María A.

    2005-08-01

    A key process in organ homeostasis is the mobilization of stem cells out of their niches. We show through analysis of mouse models that telomere length, as well as the catalytic component of telomerase, Tert, are critical determinants in the mobilization of epidermal stem cells. Telomere shortening inhibited mobilization of stem cells out of their niche, impaired hair growth, and resulted in suppression of stem cell proliferative capacity in vitro. In contrast, Tert overexpression in the absence of changes in telomere length promoted stem cell mobilization, hair growth, and stem cell proliferation in vitro. The effects of telomeres and telomerase on stem cell biology anticipate their role in cancer and aging.

  17. Reproductive Organography of Bougainvillea spectabilis Willd

    USDA-ARS?s Scientific Manuscript database

    Bougainvillea spectabilis Willd. is of prime importance for horticulture, as well as potentially for pharmaceutical industries, agriculture and environmental industries. However, its floral development is not yet well understood. A detailed study on floral structure and floral organography in the sp...

  18. Prospects for neural stem cell-based therapies for neurological diseases.

    PubMed

    Imitola, Jaime

    2007-10-01

    Neural stem and progenitor cells have great potential for the treatment of neurological disorders. However, many obstacles remain to translate this field to the patient's bedside, including rationales for using neural stem cells in individual neurological disorders; the challenges of neural stem cell biology; and the caveats of current strategies of isolation and culturing neural precursors. Addressing these challenges is critical for the translation of neural stem cell biology to the clinic. Recent work using neural stem cells has yielded novel biologic concepts such as the importance of the reciprocal interaction between neural stem cells and the neurodegenerative environment. The prospect of using transplants of neural stem cells and progenitors to treat neurological diseases requires a better understanding of the molecular mechanisms of both neural stem cell behavior in experimental models and the intrinsic repair capacity of the injured brain.

  19. Impact of genomic damage and ageing on stem cell function

    PubMed Central

    Behrens, Axel; van Deursen, Jan M.; Rudolph, K. Lenhard; Schumacher, Björn

    2014-01-01

    Impairment of stem cell function contributes to the progressive deterioration of tissue maintenance and repair with ageing. Evidence is mounting that age-dependent accumulation of DNA damage in both stem cells and cells that comprise the stem cell microenvironment are partly responsible for stem cell dysfunction with ageing. Here, we review the impact of the various types of DNA damage that accumulate with ageing on stem cell functionality, as well as the development of cancer. We discuss DNA-damage-induced cell intrinsic and extrinsic alterations that influence these processes, and review recent advances in understanding systemic adjustments to DNA damage and how they affect stem cells. PMID:24576896

  20. Lgr proteins in epithelial stem cell biology.

    PubMed

    Barker, Nick; Tan, Shawna; Clevers, Hans

    2013-06-01

    The ultimate success of global efforts to exploit adult stem cells for regenerative medicine will depend heavily on the availability of robust, highly selective stem cell surface markers that facilitate the isolation of stem cells from human tissues. Any subsequent expansion or manipulation of isolated stem cells will also require an intimate knowledge of the mechanisms that regulate these cells, to ensure maintenance of their regenerative capacities and to minimize the risk of introducing undesirable growth traits that could pose health risks for patients. A subclass of leucine-rich repeat-containing G-protein-coupled receptor (Lgr) proteins has recently gained prominence as adult stem cell markers with crucial roles in maintaining stem cell functions. Here, we discuss the major impact that their discovery has had on our understanding of adult stem cell biology in various self-renewing tissues and in accelerating progress towards the development of effective stem cell therapies.

  1. Nanotechnology in the regulation of stem cell behavior

    NASA Astrophysics Data System (ADS)

    Wu, King-Chuen; Tseng, Ching-Li; Wu, Chi-Chang; Kao, Feng-Chen; Tu, Yuan-Kun; So, Edmund C.; Wang, Yang-Kao

    2013-10-01

    Stem cells are known for their potential to repair damaged tissues. The adhesion, growth and differentiation of stem cells are likely controlled by the surrounding microenvironment which contains both chemical and physical cues. Physical cues in the microenvironment, for example, nanotopography, were shown to play important roles in stem cell fate decisions. Thus, controlling stem cell behavior by nanoscale topography has become an important issue in stem cell biology. Nanotechnology has emerged as a new exciting field and research from this field has greatly advanced. Nanotechnology allows the manipulation of sophisticated surfaces/scaffolds which can mimic the cellular environment for regulating cellular behaviors. Thus, we summarize recent studies on nanotechnology with applications to stem cell biology, including the regulation of stem cell adhesion, growth, differentiation, tracking and imaging. Understanding the interactions of nanomaterials with stem cells may provide the knowledge to apply to cell-scaffold combinations in tissue engineering and regenerative medicine.

  2. Characterization of Amniotic Stem Cells

    PubMed Central

    Koike, Chika; Zhou, Kaixuan; Takeda, Yuji; Fathy, Moustafa; Okabe, Motonori; Yoshida, Toshiko; Nakamura, Yukio; Kato, Yukio

    2014-01-01

    Abstract The amnion membrane is developed from embryo-derived cells, and amniotic cells have been shown to exhibit multidifferentiation potential. These cells represent a desirable source for stem cells for a variety of reasons. However, to date very few molecular analyses of amnion-derived cells have been reported, and efficient markers for isolating the stem cells remain unclear. This paper assesses the characterization of amnion-derived cells as stem cells by examining stemness marker expressions for amnion-derived epithelial cells and mesenchymal cells by flow cytometry, immunocytochemistry, and quantitative PCR. Flow cytometry revealed that amnion epithelial cells expressed CD133, CD 271, and TRA-1-60, whereas mecenchymal cells expressed CD44, CD73, CD90, and CD105. Immunohistochemistry showed that both cells expressed the stemness markers Oct3/4, Sox2, Klf4, and SSEA4. Stemness genes' expression in amnion epithelial cells, mesenchymal cells, fibroblast, bone marrow–derived mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) was compared by quantitative reverse-transcription polymerase chain reaction (RT-PCR). Amnion-derived epithelial cells and mesenchymal cells expressed Oct3/4, Nanog, and Klf4 more than bone marrow–derived MSCs. The sorted TRA1-60–positive cells expressed Oct3/4, Nanog, and Klf4 more than unsorted cells or TRA1-60–negative cells. TRA1-60 can be a marker for isolating amnion epithelial stem cells. PMID:25068631

  3. Electroporation of the Testis

    NASA Astrophysics Data System (ADS)

    Yomogida, Kentaro

    The mature mammalian testis is a marvelous organ that produces numerous sperm cells during its reproductive phase. This biologically significant process consists of three steps: stem cell self-renewal and differentiation, meiosis and genetic recombination, and haploid cell morphogenesis into sperm (Russell et al., 1990). The first step provides a good model for investigating the molecular mechanism of stem cell regulation. Currently, the mechanism underlying sperm cell production is a very exciting topic in regenerative medicine (Lensch et al. 2007; Okita et al., 2007). The spermatogonial stem cell system has several advantages, including the easy histological identification of stem cells (Russell et al., 1990), a clear relationship between stem cells and the supporting Sertoli cells, which provide a stem cell niche (Tadokoro et al., 2002; Yomogida et al., 2003), and a transplantation assay for stem cell activity (Oatley & Brinster, 2006). Although germline stem (GS) cells derived from the gonocytes in newborn testis constitute a suitable in vitro system for investigating the properties of spermatogonial stem cells (Kanatsu-Shinohara et al., 2003, 2004), studies using living mammalian testes continue to provide information regarding the roles of the stem cell niche. In vivo electroporation of the supporting cells in the testis will expand our ability to study it.

  4. Current applications of human pluripotent stem cells: possibilities and challenges.

    PubMed

    Ho, Pai-Jiun; Yen, Men-Luh; Yet, Shaw-Fang; Yen, B Linju

    2012-01-01

    Stem cells are self-renewable cells with the differentiation capacity to develop into somatic cells with biological functions. This ability to sustain a renewable source of multi- and/or pluripotential differentiation has brought new hope to the field of regenerative medicine in terms of cell therapy and tissue engineering. Moreover, stem cells are invaluable tools as in vitro models for studying diverse fields, from basic scientific questions such as developmental processes and lineage commitment, to practical application including drug screening and testing. The stem cells with widest differentiation potential are pluripotent stem cells (PSCs), which are rare cells with the ability to generate somatic cells from all three germ layers. PSCs are considered the most optimal choice for therapeutic potential of stem cells, bringing new impetus to the field of regenerative medicine. In this article, we discuss the therapeutic potential of human PSCs (hPSCs) including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), reviewing the current preclinical and clinical data using these stem cells. We describe the classification of different sources of hPSCs, ongoing research, and currently encountered clinical obstacles of these novel and versatile human stem cells.

  5. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction.

    PubMed

    Miyahara, Yoshinori; Nagaya, Noritoshi; Kataoka, Masaharu; Yanagawa, Bobby; Tanaka, Koichi; Hao, Hiroyuki; Ishino, Kozo; Ishida, Hideyuki; Shimizu, Tatsuya; Kangawa, Kenji; Sano, Shunji; Okano, Teruo; Kitamura, Soichiro; Mori, Hidezo

    2006-04-01

    Mesenchymal stem cells are multipotent cells that can differentiate into cardiomyocytes and vascular endothelial cells. Here we show, using cell sheet technology, that monolayered mesenchymal stem cells have multipotent and self-propagating properties after transplantation into infarcted rat hearts. We cultured adipose tissue-derived mesenchymal stem cells characterized by flow cytometry using temperature-responsive culture dishes. Four weeks after coronary ligation, we transplanted the monolayered mesenchymal stem cells onto the scarred myocardium. After transplantation, the engrafted sheet gradually grew to form a thick stratum that included newly formed vessels, undifferentiated cells and few cardiomyocytes. The mesenchymal stem cell sheet also acted through paracrine pathways to trigger angiogenesis. Unlike a fibroblast cell sheet, the monolayered mesenchymal stem cells reversed wall thinning in the scar area and improved cardiac function in rats with myocardial infarction. Thus, transplantation of monolayered mesenchymal stem cells may be a new therapeutic strategy for cardiac tissue regeneration.

  6. Molecular mechanisms of floral mimicry in orchids.

    PubMed

    Schlüter, Philipp M; Schiestl, Florian P

    2008-05-01

    Deceptive plants do not produce floral rewards, but attract pollinators by mimicking signals of other organisms, such as food plants or female insects. Such floral mimicry is particularly common in orchids, in which flower morphology, coloration and odour play key roles in deceiving pollinators. A better understanding of the molecular bases for these traits should provide new insights into the occurrence, mechanisms and evolutionary consequences of floral mimicry. It should also reveal the molecular bases of pollinator-attracting signals, in addition to providing strategies for manipulating insect behaviour in general. Here, we review data on the molecular bases for traits involved in floral mimicry, and we describe methodological advances helpful for the functional evaluation of key genes.

  7. Genetic and epigenetic instability of stem cells.

    PubMed

    Rajamani, Karthyayani; Li, Yuan-Sheng; Hsieh, Dean-Kuo; Lin, Shinn-Zong; Harn, Horng-Jyh; Chiou, Tzyy-Wen

    2014-01-01

    Recently, research on stem cells has been receiving an increasing amount of attention, both for its advantages and disadvantages. Genetic and epigenetic instabilities among stem cells have been a recurring obstacle to progress in regenerative medicine using stem cells. Various reports have stated that these instabilities can transform stem cells when transferred in vivo and thus have the potential to develop tumors. Previous research has shown that various extrinsic and intrinsic factors can contribute to the stability of stem cells. The extrinsic factors include growth supplements, growth factors, oxygen tension, passage technique, and cryopreservation. Controlling these factors based on previous reports may assist researchers in developing strategies for the production and clinical application of "safe" stem cells. On the other hand, the intrinsic factors can be unpredictable and uncontrollable; therefore, to ensure the successful use of stem cells in regenerative medicine, it is imperative to develop and implement appropriate strategies and technique for culturing stem cells and to confirm the genetic and epigenetic safety of these stem cells before employing them in clinical trials.

  8. Dipeptide species regulate p38MAPK–Smad3 signalling to maintain chronic myelogenous leukaemia stem cells

    PubMed Central

    Naka, Kazuhito; Jomen, Yoshie; Ishihara, Kaori; Kim, Junil; Ishimoto, Takahiro; Bae, Eun-Jin; Mohney, Robert P.; Stirdivant, Steven M.; Oshima, Hiroko; Oshima, Masanobu; Kim, Dong-Wook; Nakauchi, Hiromitsu; Takihara, Yoshihiro; Kato, Yukio; Ooshima, Akira; Kim, Seong-Jin

    2015-01-01

    Understanding the specific survival of the rare chronic myelogenous leukaemia (CML) stem cell population could provide a target for therapeutics aimed at eradicating these cells. However, little is known about how survival signalling is regulated in CML stem cells. In this study, we survey global metabolic differences between murine normal haematopoietic stem cells (HSCs) and CML stem cells using metabolomics techniques. Strikingly, we show that CML stem cells accumulate significantly higher levels of certain dipeptide species than normal HSCs. Once internalized, these dipeptide species activate amino-acid signalling via a pathway involving p38MAPK and the stemness transcription factor Smad3, which promotes CML stem cell maintenance. Importantly, pharmacological inhibition of dipeptide uptake inhibits CML stem cell activity in vivo. Our results demonstrate that dipeptide species support CML stem cell maintenance by activating p38MAPK–Smad3 signalling in vivo, and thus point towards a potential therapeutic target for CML treatment. PMID:26289811

  9. Engineering Stem Cells for Biomedical Applications.

    PubMed

    Yin, Perry T; Han, Edward; Lee, Ki-Bum

    2016-01-07

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The evolution of floral sonication, a pollen foraging behavior used by bees (Anthophila)

    PubMed Central

    Cardinal, Sophie; Buchmann, Stephen L.; Russell, Avery L.

    2018-01-01

    Abstract Over 22,000 species of biotically pollinated flowering plants, including some major agricultural crops, depend primarily on bees capable of floral sonication for pollination services. The ability to sonicate (“buzz”) flowers is widespread in bees but not ubiquitous. Despite the prevalence of this pollinator behavior and its importance to natural and agricultural systems, the evolutionary history of floral sonication in bees has not been previously studied. Here, we reconstruct the evolutionary history of floral sonication in bees by generating a time‐calibrated phylogeny and reconstructing ancestral states for this pollen extraction behavior. We also test the hypothesis that the ability to sonicate flowers and thereby efficiently access pollen from a diverse assemblage of plant species, led to increased diversification among sonicating bee taxa. We find that floral sonication evolved on average 45 times within bees, possibly first during the Early Cretaceous (100–145 million years ago) in the common ancestor of bees. We find that sonicating lineages are significantly more species rich than nonsonicating sister lineages when comparing sister clades, but a probabilistic structured rate permutation on phylogenies approach failed to support the hypothesis that floral sonication is a key driver of bee diversification. This study provides the evolutionary framework needed to further study how floral sonication by bees may have facilitated the spread and common evolution of angiosperm species with poricidal floral morphology. PMID:29392714

  11. Microbial diversity in the floral nectar of seven Epipactis (Orchidaceae) species

    PubMed Central

    Jacquemyn, Hans; Lenaerts, Marijke; Tyteca, Daniel; Lievens, Bart

    2013-01-01

    Abstract Floral nectar of animal-pollinated plants is commonly infested with microorganisms, yet little is known about the microorganisms inhabiting the floral nectar of orchids. In this study, we investigated microbial communities occurring in the floral nectar of seven Epipactis (Orchidaceae) species. Culturable bacteria and yeasts were isolated and identified by partially sequencing the small subunit (SSU) ribosomal RNA (rRNA) gene and the D1/D2 domains of the large subunit (LSU) rRNA gene, respectively. Using three different culture media, we found that bacteria were common inhabitants of the floral nectar of Epipactis. The most widely distributed bacterial operational taxonomic units (OTUs) in nectar of Epipactis were representatives of the family of Enterobacteriaceae, with an unspecified Enterobacteriaceae bacterium as the most common. In contrast to previous studies investigating microbial communities in floral nectar, very few yeast species (mainly of the genus Cryptococcus) were observed, and most of them occurred in very low densities. Total OTU richness (i.e., the number of bacterial and yeast OTUs per orchid species) varied between 4 and 20. Cluster analysis revealed that microbial communities of allogamous species differed from those of autogamous and facultatively autogamous species. This study extends previous efforts to identify microbial communities in floral nectar and indicates that the floral nectar of the orchids investigated mainly contained bacterial communities with moderate phylogenetic diversity. PMID:23836678

  12. Convergent evolution of floral signals underlies the success of Neotropical orchids

    PubMed Central

    Papadopulos, Alexander S. T.; Powell, Martyn P.; Pupulin, Franco; Warner, Jorge; Hawkins, Julie A.; Salamin, Nicolas; Chittka, Lars; Williams, Norris H.; Whitten, W. Mark; Loader, Deniz; Valente, Luis M.; Chase, Mark W.; Savolainen, Vincent

    2013-01-01

    The great majority of plant species in the tropics require animals to achieve pollination, but the exact role of floral signals in attraction of animal pollinators is often debated. Many plants provide a floral reward to attract a guild of pollinators, and it has been proposed that floral signals of non-rewarding species may converge on those of rewarding species to exploit the relationship of the latter with their pollinators. In the orchid family (Orchidaceae), pollination is almost universally animal-mediated, but a third of species provide no floral reward, which suggests that deceptive pollination mechanisms are prevalent. Here, we examine floral colour and shape convergence in Neotropical plant communities, focusing on certain food-deceptive Oncidiinae orchids (e.g. Trichocentrum ascendens and Oncidium nebulosum) and rewarding species of Malpighiaceae. We show that the species from these two distantly related families are often more similar in floral colour and shape than expected by chance and propose that a system of multifarious floral mimicry—a form of Batesian mimicry that involves multiple models and is more complex than a simple one model–one mimic system—operates in these orchids. The same mimetic pollination system has evolved at least 14 times within the species-rich Oncidiinae throughout the Neotropics. These results help explain the extraordinary diversification of Neotropical orchids and highlight the complexity of plant–animal interactions. PMID:23804617

  13. Floral trait variation and integration as a function of sexual deception in Gorteria diffusa

    PubMed Central

    Ellis, Allan G.; Brockington, Samuel F.; de Jager, Marinus L.; Mellers, Gregory; Walker, Rachel H.; Glover, Beverley J.

    2014-01-01

    Phenotypic integration, the coordinated covariance of suites of morphological traits, is critical for proper functioning of organisms. Angiosperm flowers are complex structures comprising suites of traits that function together to achieve effective pollen transfer. Floral integration could reflect shared genetic and developmental control of these traits, or could arise through pollinator-imposed stabilizing correlational selection on traits. We sought to expose mechanisms underlying floral trait integration in the sexually deceptive daisy, Gorteria diffusa, by testing the hypothesis that stabilizing selection imposed by male pollinators on floral traits involved in mimicry has resulted in tighter integration. To do this, we quantified patterns of floral trait variance and covariance in morphologically divergent G. diffusa floral forms representing a continuum in the levels of sexual deception. We show that integration of traits functioning in visual attraction of male pollinators increases with pollinator deception, and is stronger than integration of non-mimicry trait modules. Consistent patterns of within-population trait variance and covariance across floral forms suggest that integration has not been built by stabilizing correlational selection on genetically independent traits. Instead pollinator specialization has selected for tightened integration within modules of linked traits. Despite potentially strong constraint on morphological evolution imposed by developmental genetic linkages between traits, we demonstrate substantial divergence in traits across G. diffusa floral forms and show that divergence has often occurred without altering within-population patterns of trait correlations. PMID:25002705

  14. Biotechnological Advancements for Improving Floral Attributes in Ornamental Plants

    PubMed Central

    Noman, Ali; Aqeel, Muhammad; Deng, Jianming; Khalid, Noreen; Sanaullah, Tayyaba; Shuilin, He

    2017-01-01

    Developing new ornamental cultivars with improved floral attributes is a major goal in floriculture. Biotechnological approach together with classical breeding methods has been used to modify floral color, appearance as well as for increasing disease resistance. Transgenic strategies possess immense potential to produce novel flower phenotypes that are not found in nature. Adoption of Genetic engineering has supported the idea of floral trait modification. Ornamental plant attributes like floral color, fragrance, disease resistance, and vase life can be improved by means of genetic manipulation. Therefore, we witness transgenic plant varieties of high aesthetic and commercial value. This review focuses on biotechnological advancements in manipulating key floral traits that contribute in development of diverse ornamental plant lines. Data clearly reveals that regulation of biosynthetic pathways related to characteristics like pigment production, flower morphology and fragrance is both possible and predictable. In spite of their great significance, small number of genetically engineered varieties of ornamental plants has been field tested. Today, novel flower colors production is regarded as chief commercial benefit obtained from transgenic plants. But certain other floral traits are much more important and have high commercial potential. Other than achievements such as novel architecture, modified flower color, etc., very few reports are available regarding successful transformation of other valuable horticultural characteristics. Our review also summarized biotechnological efforts related to enhancement of fragrance and induction of early flowering along with changes in floral anatomy and morphology. PMID:28473834

  15. Biotechnological Advancements for Improving Floral Attributes in Ornamental Plants.

    PubMed

    Noman, Ali; Aqeel, Muhammad; Deng, Jianming; Khalid, Noreen; Sanaullah, Tayyaba; Shuilin, He

    2017-01-01

    Developing new ornamental cultivars with improved floral attributes is a major goal in floriculture. Biotechnological approach together with classical breeding methods has been used to modify floral color, appearance as well as for increasing disease resistance. Transgenic strategies possess immense potential to produce novel flower phenotypes that are not found in nature. Adoption of Genetic engineering has supported the idea of floral trait modification. Ornamental plant attributes like floral color, fragrance, disease resistance, and vase life can be improved by means of genetic manipulation. Therefore, we witness transgenic plant varieties of high aesthetic and commercial value. This review focuses on biotechnological advancements in manipulating key floral traits that contribute in development of diverse ornamental plant lines. Data clearly reveals that regulation of biosynthetic pathways related to characteristics like pigment production, flower morphology and fragrance is both possible and predictable. In spite of their great significance, small number of genetically engineered varieties of ornamental plants has been field tested. Today, novel flower colors production is regarded as chief commercial benefit obtained from transgenic plants. But certain other floral traits are much more important and have high commercial potential. Other than achievements such as novel architecture, modified flower color, etc., very few reports are available regarding successful transformation of other valuable horticultural characteristics. Our review also summarized biotechnological efforts related to enhancement of fragrance and induction of early flowering along with changes in floral anatomy and morphology.

  16. Convergent evolution of floral signals underlies the success of Neotropical orchids.

    PubMed

    Papadopulos, Alexander S T; Powell, Martyn P; Pupulin, Franco; Warner, Jorge; Hawkins, Julie A; Salamin, Nicolas; Chittka, Lars; Williams, Norris H; Whitten, W Mark; Loader, Deniz; Valente, Luis M; Chase, Mark W; Savolainen, Vincent

    2013-08-22

    The great majority of plant species in the tropics require animals to achieve pollination, but the exact role of floral signals in attraction of animal pollinators is often debated. Many plants provide a floral reward to attract a guild of pollinators, and it has been proposed that floral signals of non-rewarding species may converge on those of rewarding species to exploit the relationship of the latter with their pollinators. In the orchid family (Orchidaceae), pollination is almost universally animal-mediated, but a third of species provide no floral reward, which suggests that deceptive pollination mechanisms are prevalent. Here, we examine floral colour and shape convergence in Neotropical plant communities, focusing on certain food-deceptive Oncidiinae orchids (e.g. Trichocentrum ascendens and Oncidium nebulosum) and rewarding species of Malpighiaceae. We show that the species from these two distantly related families are often more similar in floral colour and shape than expected by chance and propose that a system of multifarious floral mimicry--a form of Batesian mimicry that involves multiple models and is more complex than a simple one model-one mimic system--operates in these orchids. The same mimetic pollination system has evolved at least 14 times within the species-rich Oncidiinae throughout the Neotropics. These results help explain the extraordinary diversification of Neotropical orchids and highlight the complexity of plant-animal interactions.

  17. Modeling TSC and LAM Using Patient Derived Induced Pluripotent Stem Cells

    DTIC Science & Technology

    2016-10-01

    lentiviral knockdown, and CRISPR /Cas9 genome editing in embryonic stem cells (ESCs). We have characterized the iPSCs extensively and found that they display...induced pluripotent stem cells (iPSCs) embryonic stem cells (ESCs) reprogramming CRISPR /Cas9 genome editing neural stem cells (NSCs) neural crest... CRISPR /cas9 in two additional human pluripotent stem cell lines (WA07 (H7) – female cell line registry #0061; and a control male iPSC lines generated

  18. Biochemistry of epidermal stem cells☆

    PubMed Central

    Eckert, Richard L.; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A.; Vemuri, Mohan C.; Boucher, Shayne E.; Bickenbach, Jackie R.; Kerr, Candace

    2014-01-01

    Background The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. Scope of review A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. Major conclusions An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. General significance Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. PMID:22820019

  19. Cryopreservation of Human Stem Cells for Clinical Application: A Review

    PubMed Central

    Hunt, Charles J.

    2011-01-01

    Summary Stem cells have been used in a clinical setting for many years. Haematopoietic stem cells have been used for the treatment of both haematological and non-haematological disease; while more recently mesenchymal stem cells derived from bone marrow have been the subject of both laboratory and early clinical studies. Whilst these cells show both multipotency and expansion potential, they nonetheless do not form stable cell lines in culture which is likely to limit the breadth of their application in the field of regenerative medicine. Human embryonic stem cells are pluripotent cells, capable of forming stable cell lines which retain the capacity to differentiate into cells from all three germ layers. This makes them of special significance in both regenerative medicine and toxicology. Induced pluripotent stem (iPS) cells may also provide a similar breadth of utility without some of the confounding ethical issues surrounding embryonic stem cells. An essential pre-requisite to the commercial and clinical application of stem cells are suitable cryopreservation protocols for long-term storage. Whilst effective methods for cryopreservation and storage have been developed for haematopoietic and mesenchymal stem cells, embryonic cells and iPS cells have proved more refractory. This paper reviews the current state of cryopreservation as it pertains to stem cells and in particular the embryonic and iPS cell. PMID:21566712

  20. Cryopreservation of Human Stem Cells for Clinical Application: A Review.

    PubMed

    Hunt, Charles J

    2011-01-01

    SUMMARY: Stem cells have been used in a clinical setting for many years. Haematopoietic stem cells have been used for the treatment of both haematological and non-haematological disease; while more recently mesenchymal stem cells derived from bone marrow have been the subject of both laboratory and early clinical studies. Whilst these cells show both multipotency and expansion potential, they nonetheless do not form stable cell lines in culture which is likely to limit the breadth of their application in the field of regenerative medicine. Human embryonic stem cells are pluripotent cells, capable of forming stable cell lines which retain the capacity to differentiate into cells from all three germ layers. This makes them of special significance in both regenerative medicine and toxicology. Induced pluripotent stem (iPS) cells may also provide a similar breadth of utility without some of the confounding ethical issues surrounding embryonic stem cells. An essential pre-requisite to the commercial and clinical application of stem cells are suitable cryopreservation protocols for long-term storage. Whilst effective methods for cryopreservation and storage have been developed for haematopoietic and mesenchymal stem cells, embryonic cells and iPS cells have proved more refractory. This paper reviews the current state of cryopreservation as it pertains to stem cells and in particular the embryonic and iPS cell.

  1. YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Dasol; Byun, Sung-Hyun; Park, Soojeong

    Mammalian brain development is regulated by multiple signaling pathways controlling cell proliferation, migration and differentiation. Here we show that YAP/TAZ enhance embryonic neural stem cell characteristics in a cell autonomous fashion using diverse experimental approaches. Introduction of retroviral vectors expressing YAP or TAZ into the mouse embryonic brain induced cell localization in the ventricular zone (VZ), which is the embryonic neural stem cell niche. This change in cell distribution in the cortical layer is due to the increased stemness of infected cells; YAP-expressing cells were colabeled with Sox2, a neural stem cell marker, and YAP/TAZ increased the frequency and sizemore » of neurospheres, indicating enhanced self-renewal- and proliferative ability of neural stem cells. These effects appear to be TEA domain family transcription factor (Tead)–dependent; a Tead binding-defective YAP mutant lost the ability to promote neural stem cell characteristics. Consistently, in utero gene transfer of a constitutively active form of Tead2 (Tead2-VP16) recapitulated all the features of YAP/TAZ overexpression, and dominant negative Tead2-EnR resulted in marked cell exit from the VZ toward outer cortical layers. Taken together, these results indicate that the Tead-dependent YAP/TAZ signaling pathway plays important roles in neural stem cell maintenance by enhancing stemness of neural stem cells during mammalian brain development. - Highlights: • Roles of YAP and Tead in vivo during mammalian brain development are clarified. • Expression of YAP promotes embryonic neural stem cell characteristics in vivo in a cell autonomous fashion. • Enhancement of neural stem cell characteristics by YAP depends on Tead. • Transcriptionally active form of Tead alone can recapitulate the effects of YAP. • Transcriptionally repressive form of Tead severely reduces stem cell characteristics.« less

  2. Recent progress in stem cell differentiation directed by material and mechanical cues.

    PubMed

    Lin, Xunxun; Shi, Yuan; Cao, Yilin; Liu, Wei

    2016-02-02

    Stem cells play essential roles in tissue regeneration in vivo via specific lineage differentiation induced by environmental factors. In the past, biochemical signals were the focus of induced stem cell differentiation. As reported by Engler et al (2006 Cell 126 677-89), biophysical signal mediated stem cell differentiation could also serve as an important inducer. With the advancement of material science, it becomes a possible strategy to generate active biophysical signals for directing stem cell fate through specially designed material microstructures. In the past five years, significant progress has been made in this field, and these designed biophysical signals include material elasticity/rigidity, micropatterned structure, extracellular matrix (ECM) coated materials, material transmitted extracellular mechanical force etc. A large number of investigations involved material directed differentiation of mesenchymal stem cells, neural stem/progenitor cells, adipose derived stem cells, hematopoietic stem/progenitor cells, embryonic stem cells and other cells. Hydrogel based materials were commonly used to create varied mechanical properties via modifying the ratio of different components, crosslinking levels, matrix concentration and conjugation with other components. Among them, polyacrylamide (PAM) and polydimethylsiloxane (PDMS) hydrogels remained the major types of material. Specially designed micropatterning was not only able to create a unique topographical surface to control cell shape, alignment, cell-cell and cell-matrix contact for basic stem cell biology study, but also could be integrated with 3D bioprinting to generate micropattered 3D structure and thus to induce stem cell based tissue regeneration. ECM coating on a specific topographical structure was capable of inducing even more specific and potent stem cell differentiation along with soluble factors and mechanical force. The article overviews the progress of the past five years in this particular field.

  3. Engineering Hydrogel Microenvironments to Recapitulate the Stem Cell Niche.

    PubMed

    Madl, Christopher M; Heilshorn, Sarah C

    2018-06-04

    Stem cells are a powerful resource for many applications including regenerative medicine, patient-specific disease modeling, and toxicology screening. However, eliciting the desired behavior from stem cells, such as expansion in a naïve state or differentiation into a particular mature lineage, remains challenging. Drawing inspiration from the native stem cell niche, hydrogel platforms have been developed to regulate stem cell fate by controlling microenvironmental parameters including matrix mechanics, degradability, cell-adhesive ligand presentation, local microstructure, and cell-cell interactions. We survey techniques for modulating hydrogel properties and review the effects of microenvironmental parameters on maintaining stemness and controlling differentiation for a variety of stem cell types. Looking forward, we envision future hydrogel designs spanning a spectrum of complexity, ranging from simple, fully defined materials for industrial expansion of stem cells to complex, biomimetic systems for organotypic cell culture models.

  4. Incorporation of Biomaterials in Multicellular Aggregates Modulates Pluripotent Stem Cell Differentiation

    PubMed Central

    Bratt-Leal, Andrés M.; Carpenedo, Richard L.; Ungrin, Mark; Zandstra, Peter W.; McDevitt, Todd C.

    2010-01-01

    Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell-biomaterial interactions have largely been studied by introducing stem cells into artificial environments, such as 2D cell culture on biomaterial surfaces, encapsulation of cell suspensions within hydrogel materials, or cell seeding on 3D polymeric scaffolds. In this study, microparticles fabricated from different materials, such as agarose, PLGA and gelatin, were stably integrated, in a dose-dependent manner, within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell-biomaterial interactions in 3D. Interestingly, the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors, extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition, these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation, but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes. PMID:20864164

  5. Markers for the identification of tendon-derived stem cells in vitro and tendon stem cells in situ - update and future development.

    PubMed

    Lui, Pauline Po Yee

    2015-06-02

    The efficacy of tendon-derived stem cells (TDSCs) for the promotion of tendon and tendon-bone junction repair has been reported in animal studies. Modulation of the tendon stem cell niche in vivo has also been reported to influence tendon structure. There is a need to have specific and reliable markers that can define TDSCs in vitro and tendon stem cells in situ for several reasons: to understand the basic biology of TDSCs and their subpopulations in vitro; to understand the identity, niches and functions of tendon/progenitor stem cells in vivo; to meet the governmental regulatory requirements for quality of TDSCs when translating the exciting preclinical findings into clinical trial/practice; and to develop new treatment strategies for mobilizing endogenous stem/progenitor cells in tendon. TDSCs were reported to express the common mesenchymal stem cell (MSC) markers and some embryonic stem cell (ESC) markers, and there were attempts to use these markers to label tendon stem cells in situ. Are these stem cell markers useful for the identification of TDSCs in vitro and tracking of tendon stem cells in situ? This review aims to discuss the values of the panel of MSC, ESC and tendon-related markers for the identification of TDSCs in vitro. Important factors influencing marker expression by TDSCs are discussed. The usefulness and limitations of the panel of MSC, ESC and tendon-related markers for tracking stem cells in tendon, especially tendon stem cells, in situ are then reviewed. Future research directions are proposed.

  6. Haematopoietic stem and progenitor cells from human pluripotent stem cells

    PubMed Central

    Sugimura, Ryohichi; Jha, Deepak Kumar; Han, Areum; Soria-Valles, Clara; da Rocha, Edroaldo Lummertz; Lu, Yi-Fen; Goettel, Jeremy A.; Serrao, Erik; Rowe, R. Grant; Malleshaiah, Mohan; Wong, Irene; Sousa, Patricia; Zhu, Ted N.; Ditadi, Andrea; Keller, Gordon; Engelman, Alan N.; Snapper, Scott B.; Doulatov, Sergei; Daley, George Q.

    2018-01-01

    A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders. PMID:28514439

  7. Stem Cells in the Trabecular Meshwork for Regulating Intraocular Pressure.

    PubMed

    Yun, Hongmin; Zhou, Yi; Wills, Andrew; Du, Yiqin

    2016-06-01

    Intraocular pressure (IOP) is still the main treatment target for glaucoma. Outflow resistance mainly exists at the trabecular meshwork (TM) outflow pathway, which is responsible for IOP regulation. Changes of TM cellularity and TM extracellular matrix turnover may play important roles in IOP regulation. In this article, we review basic anatomy and physiology of the outflow pathway and TM stem cell characteristics regarding the location, isolation, identification and function. TM stem cells are localized at the insert region of the TM and are label-retaining in vivo. They can be isolated by side-population cell sorting, cloning culture, or sphere culture. TM stem cells are multipotent with the ability to home to the TM region and differentiate into TM cells in vivo. Other stem cell types, such as adipose-derived stem cells, mesenchymal stem cells and induced pluripotent stem cells have been discovered for TM cell differentiation and TM regeneration. We also review glaucomatous animal models, which are suitable to study stem cell-based therapies for TM regeneration.

  8. Stem Cells in the Trabecular Meshwork for Regulating Intraocular Pressure

    PubMed Central

    Yun, Hongmin; Zhou, Yi; Wills, Andrew

    2016-01-01

    Abstract Intraocular pressure (IOP) is still the main treatment target for glaucoma. Outflow resistance mainly exists at the trabecular meshwork (TM) outflow pathway, which is responsible for IOP regulation. Changes of TM cellularity and TM extracellular matrix turnover may play important roles in IOP regulation. In this article, we review basic anatomy and physiology of the outflow pathway and TM stem cell characteristics regarding the location, isolation, identification and function. TM stem cells are localized at the insert region of the TM and are label-retaining in vivo. They can be isolated by side-population cell sorting, cloning culture, or sphere culture. TM stem cells are multipotent with the ability to home to the TM region and differentiate into TM cells in vivo. Other stem cell types, such as adipose-derived stem cells, mesenchymal stem cells and induced pluripotent stem cells have been discovered for TM cell differentiation and TM regeneration. We also review glaucomatous animal models, which are suitable to study stem cell-based therapies for TM regeneration. PMID:27183473

  9. New perspectives in human stem cell therapeutic research.

    PubMed

    Trounson, Alan

    2009-06-11

    Human stem cells are in evaluation in clinical stem cell trials, primarily as autologous bone marrow studies, autologous and allogenic mesenchymal stem cell trials, and some allogenic neural stem cell transplantation projects. Safety and efficacy are being addressed for a number of disease state applications. There is considerable data supporting safety of bone marrow and mesenchymal stem cell transplants but the efficacy data are variable and of mixed benefit. Mechanisms of action of many of these cells are unknown and this raises the concern of unpredictable results in the future. Nevertheless there is considerable optimism that immune suppression and anti-inflammatory properties of mesenchymal stem cells will be of benefit for many conditions such as graft versus host disease, solid organ transplants and pulmonary fibrosis. Where bone marrow and mesenchymal stem cells are being studied for heart disease, stroke and other neurodegenerative disorders, again progress is mixed and mostly without significant benefit. However, correction of multiple sclerosis, at least in the short term is encouraging. Clinical trials on the use of embryonic stem cell derivatives for spinal injury and macular degeneration are beginning and a raft of other clinical trials can be expected soon, for example, the use of neural stem cells for killing inoperable glioma and embryonic stem cells for regenerating beta islet cells for diabetes. The change in attitude to embryonic stem cell research with the incoming Obama administration heralds a new co-operative environment for study and evaluation of stem cell therapies. The Californian stem cell initiative (California Institute for Regenerative Medicine) has engendered global collaboration for this new medicine that will now also be supported by the US Federal Government. The active participation of governments, academia, biotechnology, pharmaceutical companies, and private investment is a powerful consortium for advances in health.

  10. Invincible, but not invisible: imaging approaches toward in vivo detection of cancer stem cells.

    PubMed

    Hart, Lori S; El-Deiry, Wafik S

    2008-06-10

    With evidence emerging in support of a cancer stem-cell model of carcinogenesis, it is of paramount importance to identify and image these elusive cells in their natural environment. The cancer stem-cell hypothesis has the potential to explain unresolved questions of tumorigenesis, tumor heterogeneity, chemotherapeutic and radiation resistance, and even the metastatic phenotype. Intravital imaging of cancer stem cells could be of great value for determining prognosis, as well as monitoring therapeutic efficacy and influencing therapeutic protocols. Cancer stem cells represent a rare population of cells, as low as 0.1% of cells within a human tumor, and the phenotype of isolated cancer stem cells is easily altered when placed under in vitro conditions. This represents a challenge in studying cancer stem cells without manipulation or extraction from their natural environment. Advanced imaging techniques allow for the in vivo observation of physiological events at cellular resolution. Cancer stem-cell studies must take advantage of such technology to promote a better understanding of the cancer stem-cell model in relation to tumor growth and metastasis, as well as to potentially improve on the principles by which cancers are treated. This review examines the opportunities for in vivo imaging of putative cancer stem cells with regard to currently accepted cancer stem-cell characteristics and advanced imaging technologies.

  11. Neural stem cell-based treatment for neurodegenerative diseases.

    PubMed

    Kim, Seung U; Lee, Hong J; Kim, Yun B

    2013-10-01

    Human neurodegenerative diseases such as Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) are caused by a loss of neurons and glia in the brain or spinal cord. Neurons and glial cells have successfully been generated from stem cells such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and neural stem cells (NSCs), and stem cell-based cell therapies for neurodegenerative diseases have been developed. A recent advance in generation of a new class of pluripotent stem cells, induced pluripotent stem cells (iPSCs), derived from patients' own skin fibroblasts, opens doors for a totally new field of personalized medicine. Transplantation of NSCs, neurons or glia generated from stem cells in animal models of neurodegenerative diseases, including PD, HD, ALS and AD, demonstrates clinical improvement and also life extension of these animals. Additional therapeutic benefits in these animals can be provided by stem cell-mediated gene transfer of therapeutic genes such as neurotrophic factors and enzymes. Although further research is still needed, cell and gene therapy based on stem cells, particularly using neurons and glia derived from iPSCs, ESCs or NSCs, will become a routine treatment for patients suffering from neurodegenerative diseases and also stroke and spinal cord injury. © 2013 Japanese Society of Neuropathology.

  12. Constitutive Proteasomal Degradation of TWIST-1 in Epithelial Ovarian Cancer Stem Cells Impacts Differentiation and Metastatic Potential

    PubMed Central

    Yin, Gang; Alvero, Ayesha B.; Craveiro, Vinicius; Holmberg, Jennie C.; Fu, Han-Hsuan; Montagna, Michele K.; Yang, Yang; Chefetz-Menaker, Ilana; Nuti, Sudhakar; Rossi, Michael; Silasi, Dan-Arin; Rutherford, Thomas; Mor, Gil

    2013-01-01

    Epithelial-mesenchymal transition (EMT) is a critical process for embryogenesis but is abnormally activated during cancer metastasis and recurrence. This process enables epithelial cancer cells to acquire mobility and traits associated with stemness. It is unknown whether epithelial stem cells or epithelial cancer stem cells are able to undergo EMT, and what molecular mechanism regulates this process in these specific cell types. We found that Epithelial Ovarian Cancer Stem cells (EOC stem cells) are the source of metastatic progenitor cells through a differentiation process involving EMT and Mesenchymal-Epithelial Transition (MET). We demonstrate both in vivo and in vitro the differentiation of EOC stem cells into mesenchymal spheroid-forming cells (MSFCs) and their capacity to initiate an active carcinomatosis. Furthermore, we demonstrate that human EOC stem cells injected i.p in mice are able to form ovarian tumors, suggesting that the EOC stem cells have the ability to “home” to the ovaries and establish tumors. Most interestingly, we found that TWIST1 is constitutively degraded in EOC stem cells, and that the acquisition of TWIST1 requires additional signals that will trigger the differentiation process. These findings are relevant for understanding the differentiation and metastasis process in EOC stem cells. PMID:22349827

  13. Hepatic differentiation of pluripotent stem cells.

    PubMed

    Loya, Komal; Eggenschwiler, Reto; Ko, Kinarm; Sgodda, Malte; André, Francoise; Bleidissel, Martina; Schöler, Hans R; Cantz, Tobias

    2009-10-01

    In regenerative medicine pluripotent stem cells are considered to be a valuable self-renewing source for therapeutic cell transplantations, given that a functional organ-specific phenotype can be acquired by in vitro differentiation protocols. Furthermore, derivatives of pluripotent stem cells that mimic fetal progenitor stages could serve as an important tool to analyze organ development with in vitro approaches. Because of ethical issues regarding the generation of human embryonic stem (ES) cells, other sources for pluripotent stem cells are intensively studied. Like in less developed vertebrates, pluripotent stem cells can be generated from the female germline even in mammals, via parthenogenetic activation of oocytes. Recently, testis-derived pluripotent stem cells were derived from the male germline. Therefore, we compared two different hepatic differentiation approaches and analyzed the generation of definitive endoderm progenitor cells and their further maturation into a hepatic phenotype using murine parthenogenetic ES cells, germline-derived pluripotent stem cells, and ES cells. Applying quantitative RT-PCR, both germline-derived pluripotent cell lines show similar differentiation capabilities as normal murine ES cells and can be considered an alternative source for pluripotent stem cells in regenerative medicine.

  14. Structure-function relationships in highly modified shoots of cactaceae.

    PubMed

    Mauseth, James D

    2006-11-01

    Cacti are extremely diverse structurally and ecologically, and so modified as to be intimidating to many biologists. Yet all have the same organization as most dicots, none differs fundamentally from Arabidopsis or other model plants. This review explains cactus shoot structure, discusses relationships between structure, ecology, development and evolution, and indicates areas where research on cacti is necessary to test general theories of morphogenesis. Cactus leaves are diverse; all cacti have foliage leaves; many intermediate stages in evolutionary reduction of leaves are still present; floral shoots often have large, complex leaves whereas vegetative shoots have microscopic leaves. Spines are modified bud scales, some secrete sugar as extra-floral nectaries. Many cacti have juvenile/adult phases in which the flowering adult phase (a cephalium) differs greatly from the juvenile; in some, one side of a shoot becomes adult, all other sides continue to grow as the juvenile phase. Flowers are inverted: the exterior of a cactus 'flower' is a hollow vegetative shoot with internodes, nodes, leaves and spines, whereas floral organs occur inside, with petals physically above stamens. Many cacti have cortical bundles vascularizing the cortex, however broad it evolves to be, thus keeping surface tissues alive. Great width results in great weight of weak parenchymatous shoots, correlated with reduced branching. Reduced numbers of shoot apices is compensated by great increases in number of meristematic cells within individual SAMs. Ribs and tubercles allow shoots to swell without tearing during wet seasons. Shoot epidermis and cortex cells live and function for decades then convert to cork cambium. Many modifications permit water storage within cactus wood itself, adjacent to vessels.

  15. An overview on ethical considerations in stem cell research in Iran and ethical recommendations: A review.

    PubMed

    Farajkhoda, Tahmineh

    2017-02-01

    Conducting research on the stem cell lines might bring some worthy good to public. Human Stem Cells (hSCs) research has provided opportunities for scientific progresses and new therapies, but some complex ethical matters should be noticed to ensure that stem cell research is carried out in an ethically appropriate manner. The aim of this review article is to discuss the importance of stem cell research, code of ethics for stem cell research in Iran and ethical recommendation. Generation of stem cells for research from human embryo or adult stem cells, saving, maintenance and using of them are the main ethical, legal and jurisprudence concerns in Iran. Concerns regarding human reproduction or human cloning, breach of human dignity, genetic manipulation and probability of tumorogenisity are observed in adult/somatic stem cells. Destruction of embryo to generate stem cell is an important matter in Iran. In this regards, obtaining stem cell from donated frozen embryos through infertility treatment that would be discarded is an acceptable solution in Iran for generation of embryo for research. Ethical, legal, and jurisprudence strategies for using adult/somatic stem cells are determination of ownership of stem cells, trade prohibition of human body, supervision on bio banks and information of Oversight Committee on Stem Cell Research. Recommendations to handle ethical issues for conducting stem cell research are well-designed studies, compliance codes of ethics in biomedical research (specifically codes of ethics on stem cell research, codes of ethics on clinical trials studies and codes of ethics on animals studies), appropriate collaboration with ethics committees and respecting of rights of participants (including both of human and animal rights) in research. In addition, there is a necessity for extending global networks of bioethics for strengthening communications within organizations at both the regional and international level, strengthening legislation systems, designing and establishing convenient collaborative educational courses at different levels.

  16. An overview on ethical considerations in stem cell research in Iran and ethical recommendations: A review

    PubMed Central

    Farajkhoda, Tahmineh

    2017-01-01

    Conducting research on the stem cell lines might bring some worthy good to public. Human Stem Cells (hSCs) research has provided opportunities for scientific progresses and new therapies, but some complex ethical matters should be noticed to ensure that stem cell research is carried out in an ethically appropriate manner. The aim of this review article is to discuss the importance of stem cell research, code of ethics for stem cell research in Iran and ethical recommendation. Generation of stem cells for research from human embryo or adult stem cells, saving, maintenance and using of them are the main ethical, legal and jurisprudence concerns in Iran. Concerns regarding human reproduction or human cloning, breach of human dignity, genetic manipulation and probability of tumorogenisity are observed in adult/somatic stem cells. Destruction of embryo to generate stem cell is an important matter in Iran. In this regards, obtaining stem cell from donated frozen embryos through infertility treatment that would be discarded is an acceptable solution in Iran for generation of embryo for research. Ethical, legal, and jurisprudence strategies for using adult/somatic stem cells are determination of ownership of stem cells, trade prohibition of human body, supervision on bio banks and information of Oversight Committee on Stem Cell Research. Recommendations to handle ethical issues for conducting stem cell research are well-designed studies, compliance codes of ethics in biomedical research (specifically codes of ethics on stem cell research, codes of ethics on clinical trials studies and codes of ethics on animals studies), appropriate collaboration with ethics committees and respecting of rights of participants (including both of human and animal rights) in research. In addition, there is a necessity for extending global networks of bioethics for strengthening communications within organizations at both the regional and international level, strengthening legislation systems, designing and establishing convenient collaborative educational courses at different levels. PMID:28462397

  17. Effect of Dedifferentiation on Time to Mutation Acquisition in Stem Cell-Driven Cancers

    PubMed Central

    Jilkine, Alexandra; Gutenkunst, Ryan N.

    2014-01-01

    Accumulating evidence suggests that many tumors have a hierarchical organization, with the bulk of the tumor composed of relatively differentiated short-lived progenitor cells that are maintained by a small population of undifferentiated long-lived cancer stem cells. It is unclear, however, whether cancer stem cells originate from normal stem cells or from dedifferentiated progenitor cells. To address this, we mathematically modeled the effect of dedifferentiation on carcinogenesis. We considered a hybrid stochastic-deterministic model of mutation accumulation in both stem cells and progenitors, including dedifferentiation of progenitor cells to a stem cell-like state. We performed exact computer simulations of the emergence of tumor subpopulations with two mutations, and we derived semi-analytical estimates for the waiting time distribution to fixation. Our results suggest that dedifferentiation may play an important role in carcinogenesis, depending on how stem cell homeostasis is maintained. If the stem cell population size is held strictly constant (due to all divisions being asymmetric), we found that dedifferentiation acts like a positive selective force in the stem cell population and thus speeds carcinogenesis. If the stem cell population size is allowed to vary stochastically with density-dependent reproduction rates (allowing both symmetric and asymmetric divisions), we found that dedifferentiation beyond a critical threshold leads to exponential growth of the stem cell population. Thus, dedifferentiation may play a crucial role, the common modeling assumption of constant stem cell population size may not be adequate, and further progress in understanding carcinogenesis demands a more detailed mechanistic understanding of stem cell homeostasis. PMID:24603301

  18. PGE2 /EP4 Signaling Controls the Transfer of the Mammary Stem Cell State by Lipid Rafts in Extracellular Vesicles.

    PubMed

    Lin, Meng-Chieh; Chen, Shih-Yin; Tsai, Ho-Min; He, Pei-Lin; Lin, Yen-Chun; Herschman, Harvey; Li, Hua-Jung

    2017-02-01

    Prostaglandin E 2 (PGE 2 )-initiated signaling contributes to stem cell homeostasis and regeneration. However, it is unclear how PGE 2 signaling controls cell stemness. This study identifies a previously unknown mechanism by which PGE 2 /prostaglandin E receptor 4 (EP 4 ) signaling regulates multiple signaling pathways (e.g., PI3K/Akt signaling, TGFβ signaling, Wnt signaling, EGFR signaling) which maintain the basal mammary stem cell phenotype. A shift of basal mammary epithelial stem cells (MaSCs) from a mesenchymal/stem cell state to a non-basal-MaSC state occurs in response to prostaglandin E receptor 4 (EP 4 ) antagonism. EP 4 antagonists elicit release of signaling components, by controlling their trafficking into extracellular vesicles/exosomes in a lipid raft/caveolae-dependent manner. Consequently, EP 4 antagonism indirectly inactivates, through induced extracellular vesicle/exosome release, pathways required for mammary epithelial stem cell homeostasis, e.g. canonical/noncanonical Wnt, TGFβ and PI3K/Akt pathways. EP 4 antagonism causes signaling receptors and signaling components to shift from non-lipid raft fractions to lipid raft fractions, and to then be released in EP 4 antagonist-induced extracellular vesicles/exosomes, resulting in the loss of the stem cell state by mammary epithelial stem cells. In contrast, luminal mammary epithelial cells can acquire basal stem cell properties following ingestion of EP 4 antagonist-induced stem cell extracellular vesicles/exosomes, and can then form mammary glands. These findings demonstrate that PGE 2 /EP 4 signaling controls homeostasis of mammary epithelial stem cells through regulating extracellular vesicle/exosome release. Reprogramming of mammary epithelial cells can result from EP 4 -mediated stem cell property transfer by extracellular vesicles/exosomes containing caveolae-associated proteins, between mammary basal and luminal epithelial cells. Stem Cells 2017;35:425-444. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  19. Floral morphology of Gonocaryum with emphasis on the gynoecium

    USDA-ARS?s Scientific Manuscript database

    We investigated the floral development of Gonocaryum, a genus of Cardiopteridaceae that was segregated from Icacinaceae s.l., using scanning electron microscopy to clarify its gynoecial structure and facilitate morphological comparisons of Cardiopteridaceae. The key floral developmental characters i...

  20. The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals.

    PubMed

    Decotto, Eva; Spradling, Allan C

    2005-10-01

    The stem cell niches at the apex of Drosophila ovaries and testes have been viewed as distinct in two major respects. While both contain germline stem cells, the testis niche also contains "cyst progenitor" stem cells, which divide to produce somatic cells that encase developing germ cells. Moreover, while both niches utilize BMP signaling, the testis niche requires a key JAK/STAT signal. We now show, by lineage marking, that the ovarian niche also contains a second type of stem cell. These "escort stem cells" morphologically resemble testis cyst progenitor cells and their daughters encase developing cysts before undergoing apoptosis at the time of follicle formation. In addition, we show that JAK/STAT signaling also plays a critical role in ovarian niche function, and acts within escort cells. These observations reveal striking similarities in the stem cell niches of male and female gonads, and suggest that they are largely governed by common mechanisms.

  1. Placenta-an alternative source of stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matikainen, Tiina; Laine, Jarmo

    2005-09-01

    The two most promising practical applications of human stem cells are cellular replacement therapies in human disease and toxicological screening of candidate drug molecules. Both require a source of human stem cells that can be isolated, purified, expanded in number and differentiated into the cell type of choice in a controlled manner. Currently, uses of both embryonic and adult stem cells are investigated. While embryonic stem cells are pluripotent and can differentiate into any specialised cell type, their use requires establishment of embryonic stem cell lines using the inner cell mass of an early pre-implantation embryo. As the blastocyst ismore » destroyed during the process, ethical issues need to be carefully considered. The use of embryonic stem cells is also limited by the difficulties in growing large numbers of the cells without inducing spontaneous differentiation, and the problems in controlling directed differentiation of the cells. The use of adult stem cells, typically derived from bone marrow, but also from other tissues, is ethically non-controversial but their differentiation potential is more limited than that of the embryonic stem cells. Since human cord blood, umbilical cord, placenta and amnion are normally discarded at birth, they provide an easily accessible alternative source of stem cells. We review the potential and current status of the use of adult stem cells derived from the placenta or umbilical cord in therapeutic and toxicological applications.« less

  2. Pluripotent stem cells and reprogrammed cells in farm animals.

    PubMed

    Nowak-Imialek, Monika; Kues, Wilfried; Carnwath, Joseph W; Niemann, Heiner

    2011-08-01

    Pluripotent cells are unique because of their ability to differentiate into the cell lineages forming the entire organism. True pluripotent stem cells with germ line contribution have been reported for mice and rats. Human pluripotent cells share numerous features of pluripotentiality, but confirmation of their in vivo capacity for germ line contribution is impossible due to ethical and legal restrictions. Progress toward derivation of embryonic stem cells from domestic species has been made, but the derived cells were not able to produce germ line chimeras and thus are termed embryonic stem-like cells. However, domestic animals, in particular the domestic pig (Sus scrofa), are excellent large animals models, in which the clinical potential of stem cell therapies can be studied. Reprogramming technologies for somatic cells, including somatic cell nuclear transfer, cell fusion, in vitro culture in the presence of cell extracts, in vitro conversion of adult unipotent spermatogonial stem cells into germ line derived pluripotent stem cells, and transduction with reprogramming factors have been developed with the goal of obtaining pluripotent, germ line competent stem cells from domestic animals. This review summarizes the present state of the art in the derivation and maintenance of pluripotent stem cells in domestic animals.

  3. Covariance and decoupling of floral and vegetative traits in nine Neotropical plants: a re-evaluation of Berg's correlation-pleiades concept.

    PubMed

    Armbruster, W S; Di Stilio, V S; Tuxill, J D; Flores, T C; Velásquez Runk, J L

    1999-01-01

    Nearly forty years ago R. L. Berg proposed that plants with specialized pollination ecology evolve genetic and developmental systems that decouple floral morphology from phenotypic variation in vegetative traits. These species evolve separate floral and vegetative trait clusters, or as she termed them, "correlation pleiades." The predictions of this hypothesis have been generally supported, but only a small sample of temperate-zone herb and grass species has been tested. To further evaluate this hypothesis, especially its applicability to plants of other growth forms, we examined the patterns of phenotypic variation and covariation of floral and vegetative traits in nine species of Neotropical plants. We recognized seven specific predictions of Berg's hypothesis. Our results supported some predictions but not others. Species with specialized pollination systems usually had floral traits decoupled (weak correlation; Canna and Eichornia) or buffered (relationship with shallow proportional slope; Calathea and Canna) from variation in vegetative traits. However, the same trend was also observed in three species with unspecialized pollination systems (Echinodorus, Muntingia, and Wedelia). One species with unspecialized pollination (Croton) and one wind-pollinated species (Cyperus) showed no decoupling or buffering, as predicted. While species with specialized pollination usually showed lower coefficients of variation for floral traits than vegetative traits (as predicted), the same was also true of species with unspecialized or wind pollination (unlike our prediction). Species with specialized pollination showed less variation in floral traits than did species with unspecialized or wind pollination, as predicted. However, the same was true of the corresponding vegetative traits, which was unexpected. Also in contrast to our prediction, plants with specialized pollination systems did not exhibit tighter phenotypic integration of floral characters than did species with generalized pollination systems. We conclude that the patterns of morphological integration among floral traits and between floral and vegetative traits tend to be species specific, not easily predicted from pollination ecology, and generally more complicated than R. L. Berg envisaged.

  4. Nutrient availability affects floral scent much less than other floral and vegetative traits in Lithophragma bolanderi.

    PubMed

    Friberg, Magne; Waters, Mia T; Thompson, John N

    2017-09-01

    Many plant-pollinator interactions are mediated by floral scents that can vary among species, among populations within species and even among individuals within populations. This variation could be innate and unaffected by the environment, but, because many floral volatiles have amino-acid precursors, scent variation also could be affected by differences in nutrient availability among environments. In plants that have coevolved with specific pollinators, natural selection is likely to favour low phenotypic plasticity in floral scent even under different conditions of nutrient availability if particular scents or scent combinations are important for attracting local pollinators. Clonal pairs of multiple seed-families of two Lithophragma bolanderi (Saxifragaceae) populations were subjected to a high and a low nutrient treatment. These plants are pollinated primarily by host-specific Greya moths. It was evaluated how nutrient treatment affected variation in floral scent relative to other vegetative and reproductive traits. Floral scent strength (the per-flower emission rate) and composition were unaffected by nutrient treatment, but low-nutrient plants produced fewer and lighter leaves, fewer scapes and fewer flowers than high-nutrient plants. The results held in both populations, which differed greatly in the number and composition of floral scents produced. The results reveal a strong genetic component both to scent composition and emission level, and partly contrasts with the only previous study that has assessed the susceptibility of floral volatile signals to variation in the abundance of nutrients. These results, and the tight coevolutionary relationship between Lithophragma plants and their specialized Greya moth pollinators, indicate that reproductive traits important to coevolving interactions, such as the floral scent of L. bolanderi, may be locally specialized and more canalized than other traits important for plant fitness. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  5. Information on Stem Cell Research

    MedlinePlus

    ... of stem cells share similar properties there are differences as well. For example, ES cells and iPS cells are able to differentiate into any type of cell, whereas adult stem cells are more restricted in their potential. The promise of all stem cells for use ...

  6. The Development of Stem Cell-Based Treatment for Liver Failure.

    PubMed

    Zhu, Tiantian; Li, Yuwen; Guo, Yusheng; Zhu, Chuanlong

    2017-01-01

    Liver failure is a devastating clinical syndrome with a persistently mortality rate despite advanced care. Orthotopic liver transplantation protected patients from hepatic failure. Yet, limitations including postoperative complications, high costs, and shortages of donor organs defect its application. The development of stem cell therapy complements the deficiencies of liver transplantation, due to the inherent ability of stem cells to proliferate and differentiate. Understand the source of stem cells, as well as the advantages and disadvantages of stem cell therapy. Based on published papers, we discussed the cell sources and therapeutic effect of stem cells. We also summarized the pros and cons, as well as optimization of stem cell-based treatment. Finally outlook future prospects of stem cell therapy. Stem cells may be harvested from a variety of human tissues, and then used to promote the convalescence of hepatocellular function. The emergence of the co-cultured system, tissueengineered technology and genetic modfication has further enhanced the functionality of stem cells. However, the tumorigenicity, the low survival rate and the scarcity of long-term treatment effect are obstacles for the further development of stem cell therapy. In this review, we highlight current research findings and present the future prospects in the area of stem cell-based treatment for liver failure. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. 76 FR 11491 - Advisory Council on Blood Stem Cell Transplantation; Request for Nominations for Voting Members

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... Council on Blood Stem Cell Transplantation; Request for Nominations for Voting Members AGENCY: Health... on Blood Stem Cell Transplantation. The Advisory Council on Blood Stem Cell Transplantation was...: Nominations should be submitted to the Executive Secretary, Advisory Council on Blood Stem Cell...

  8. 3 CFR - Guidelines for Human Stem Cell Research

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Guidelines for Human Stem Cell Research Presidential Documents Other Presidential Documents Memorandum of July 30, 2009 Guidelines for Human Stem Cell Research..., scientifically worthy human stem cell research, including human embryonic stem cell research, to the extent...

  9. Aging, metabolism and stem cells: Spotlight on muscle stem cells.

    PubMed

    García-Prat, Laura; Muñoz-Cánoves, Pura

    2017-04-15

    All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. In vitro spatially organizing the differentiation in individual multicellular stem cell aggregates.

    PubMed

    Qi, Hao; Huang, Guoyou; Han, Yu Long; Lin, Wang; Li, Xiujun; Wang, Shuqi; Lu, Tian Jian; Xu, Feng

    2016-01-01

    With significant potential as a robust source to produce specific somatic cells for regenerative medicine, stem cells have attracted increasing attention from both academia and government. In vivo, stem cell differentiation is a process under complicated regulations to precisely build tissue with unique spatial structures. Since multicellular spheroidal aggregates of stem cells, commonly called as embryoid bodies (EBs), are considered to be capable of recapitulating the events in early stage of embryonic development, a variety of methods have been developed to form EBs in vitro for studying differentiation of embryonic stem cells. The regulation of stem cell differentiation is crucial in directing stem cells to build tissue with the correct spatial architecture for specific functions. However, stem cells within the three-dimensional multicellular aggregates undergo differentiation in a less unpredictable and spatially controlled manner in vitro than in vivo. Recently, various microengineering technologies have been developed to manipulate stem cells in vitro in a spatially controlled manner. Herein, we take the spotlight on these technologies and researches that bring us the new potential for manipulation of stem cells for specific purposes.

  11. Stem cells in nephrology: present status and future.

    PubMed

    Watorek, Ewa; Klinger, Marian

    2006-01-01

    Stem cell biology is currently developing rapidly because of the potential therapeutic utility of stem cells. The ability to acquire any desired phenotype raises hope for regenerative therapies. Manipulation of these cells is a potentially valuable tool; however, the mechanisms of stem cell differentiation and plasticity are currently beyond our control. In the field of nephrology, the presence of adult kidney stem cells has been debated. Renal adult stem cells may be descendants of some early kidney progenitors, or may be derived from bone marrow. Evidence of a hematopoietic stem-cell contribution to renal repair encourages the possibility of bone marrow or stem cell transplantation as a means of treating autoimmune glomerulopathies. The transplantation of fetal kidney tissue containing renal progenitors, which then develop into functional nephrons, is a step towards renal regeneration. According to recent reports, the development of functional nephrons from human mesenchymal stem cells in rodent whole-embryo culture is possible. Establishing in vitro self organs from autologous stem cells would be a promising therapeutic solution in light of the shortage of allogenic organs and the unresolved problem of chronic allograft rejection.

  12. Socializing with the neighbors: stem cells and their niche.

    PubMed

    Fuchs, Elaine; Tumbar, Tudorita; Guasch, Geraldine

    2004-03-19

    The potential of stem cells in regenerative medicine relies upon removing them from their natural habitat, propagating them in culture, and placing them into a foreign tissue environment. To do so, it is essential to understand how stem cells interact with their microenvironment, the so-called stem cell niche, to establish and maintain their properties. In this review, we examine adult stem cell niches and their impact on stem cell biology.

  13. Stem Cells News Update: A Personal Perspective

    PubMed Central

    Wong, SC

    2013-01-01

    This article is a follow-up to a previous Commentary published in 2011. It updates some of the events mentioned in that Commentary and continues with more interesting and exciting news on stem cell research and the emerging field of Regenerative Medicine. Some of the news includes: 1) the 2012 Nobel Prize for Medicine awarded to John B. Gurdon and Shinya Yamanaka; 2) the cloning of human embryonic stem cells; 3) the continued search for truly pluripotent adult stem cells via in vitro and in vivo protocols; 4) the breakthrough in organ replacements; 5) the global stem cell race; 6) the global stem cell cryo-preservation business; 7) the worldwide stem cell donor registries, and 8) the issue of government regulation on stem cell therapy. PMID:24778557

  14. Stem cells news update: a personal perspective.

    PubMed

    Wong, Sc

    2013-12-01

    This article is a follow-up to a previous Commentary published in 2011. It updates some of the events mentioned in that Commentary and continues with more interesting and exciting news on stem cell research and the emerging field of Regenerative Medicine. Some of the news includes: 1) the 2012 Nobel Prize for Medicine awarded to John B. Gurdon and Shinya Yamanaka; 2) the cloning of human embryonic stem cells; 3) the continued search for truly pluripotent adult stem cells via in vitro and in vivo protocols; 4) the breakthrough in organ replacements; 5) the global stem cell race; 6) the global stem cell cryo-preservation business; 7) the worldwide stem cell donor registries, and 8) the issue of government regulation on stem cell therapy.

  15. Platelet-rich plasma derived growth factors contribute to stem cell differentiation in musculoskeletal regeneration

    NASA Astrophysics Data System (ADS)

    Qian, Yun; Han, Qixin; Chen, Wei; Song, Jialin; Zhao, Xiaotian; Ouyang, Yuanming; Yuan, Weien; Fan, Cunyi

    2017-10-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of platelet-rich plasma derived growth factors with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  16. Elements of the niche for adult stem cell expansion

    PubMed Central

    Redondo, Patricia A; Pavlou, Marina; Loizidou, Marilena; Cheema, Umber

    2017-01-01

    Adult stem cells are crucial for tissue homeostasis. These cells reside within exclusive locations in tissues, termed niches, which protect adult stem cell fidelity and regulate their many functions through biophysical-, biochemical- and cellular-mediated mechanisms. There is a growing understanding of how these mechanisms and their components contribute towards maintaining stem cell quiescence, self-renewal, expansion and differentiation patterns. In vitro expansion of adult stem cells is a powerful tool for understanding stem cell biology, and for tissue engineering and regenerative medicine applications. However, it is technically challenging, since adult stem cell removal from their native microenvironment has negative repercussions on their sustainability. In this review, we overview specific elements of the biomimetic niche and how recreating such elements can help in vitro propagation of adult stem cells. PMID:28890779

  17. Platelet-Rich Plasma Derived Growth Factors Contribute to Stem Cell Differentiation in Musculoskeletal Regeneration.

    PubMed

    Qian, Yun; Han, Qixin; Chen, Wei; Song, Jialin; Zhao, Xiaotian; Ouyang, Yuanming; Yuan, Weien; Fan, Cunyi

    2017-01-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of PRP derived GFs with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  18. Elements of the niche for adult stem cell expansion.

    PubMed

    Redondo, Patricia A; Pavlou, Marina; Loizidou, Marilena; Cheema, Umber

    2017-01-01

    Adult stem cells are crucial for tissue homeostasis. These cells reside within exclusive locations in tissues, termed niches, which protect adult stem cell fidelity and regulate their many functions through biophysical-, biochemical- and cellular-mediated mechanisms. There is a growing understanding of how these mechanisms and their components contribute towards maintaining stem cell quiescence, self-renewal, expansion and differentiation patterns. In vitro expansion of adult stem cells is a powerful tool for understanding stem cell biology, and for tissue engineering and regenerative medicine applications. However, it is technically challenging, since adult stem cell removal from their native microenvironment has negative repercussions on their sustainability. In this review, we overview specific elements of the biomimetic niche and how recreating such elements can help in vitro propagation of adult stem cells.

  19. Stem cell maintenance by manipulating signaling pathways: past, current and future

    PubMed Central

    Chen, Xi; Ye, Shoudong; Ying, Qi-Long

    2015-01-01

    Pluripotent stem cells only exist in a narrow window during early embryonic development, whereas multipotent stem cells are abundant throughout embryonic development and are retainedin various adult tissues and organs. While pluripotent stem cell lines have been established from several species, including mouse, rat, and human, it is still challenging to establish stable multipotent stem cell lines from embryonic or adult tissues. Based on current knowledge, we anticipate that by manipulating extrinsic and intrinsic signaling pathways, most if not all types of stem cells can be maintained in a long-term culture. In this article, we summarize current culture conditions established for the long-term maintenance of authentic pluripotent and multipotent stem cells and the signaling pathways involved. We also discuss the general principles of stem cell maintenance and propose several strategies on the establishment of novel stem cell lines through manipulation of signaling pathways. [BMB Reports 2015; 48(12): 668-676] PMID:26497581

  20. Stem cells and female reproduction.

    PubMed

    Du, Hongling; Taylor, Hugh S

    2009-02-01

    Several recent findings in stem cell biology have resulted in new opportunities for the treatment of reproductive disease. Endometrial regeneration can be driven by bone marrow derived stem cells. This finding has potential implications for the treatment of uterine disorders. It also supports a new theory for the etiology of endometriosis. The ovaries have been shown to contain stem cells that form oocytes in adults and can be cultured in vitro to develop mature oocytes. Stem cells from the fetus have been demonstrated to lead to microchimerism in the mother and implicated in several maternal diseases. Additionally the placenta may be another source of hematopoietic stem cell. Finally endometrial derived stem cells have been demonstrated to differentiate into non-reproductive tissues. While we are just beginning to understand stem cells and many key questions remain, the potential advantages of stem cells in reproductive biology and medicine are apparent.

  1. The potential of nanofibers in tissue engineering and stem cell therapy.

    PubMed

    Gholizadeh-Ghaleh Aziz, Shiva; Gholizadeh-Ghaleh Aziz, Sara; Akbarzadeh, Abolfazl

    2016-08-01

    Electrospinning is a technique in which materials in solution are shaped into continuous nano- and micro-sized fibers. Combining stem cells with biomaterial scaffolds and nanofibers affords a favorable approach for bone tissue engineering, stem cell growth and transfer, ocular surface reconstruction, and treatment of congenital corneal diseases. This review seeks to describe the current examples of the use of scaffolds in stem cell therapy. Stem cells are classified as adult or embryonic stem (ES) cells, and the advantages and drawbacks of each group are detailed. The nanofibers and scaffolds are further classified in Tables I and II , which describe specific examples from the literature. Finally, the current applications of biomaterial scaffolds containing stem cells for tissue engineering applications are presented. Overall, this review seeks to give an overview of the biomaterials available for use in combination with stem cells, and the application of nanofibers in stem cell therapy.

  2. The stem cell patent landscape as relevant to cancer vaccines.

    PubMed

    Wang, Shyh-Jen

    2011-10-01

    Cancer vaccine targeting cancer stem cells is proposed to serve as a potent immunotherapy. Thus, it would be useful to examine the main trends in stem cell patenting activity as a guide for those seeking to develop such cancer vaccines. We found that a substantial number of stem cell patents were granted up to the end of 2010, including ~2000 issued in the US. Many of these have been filed since 2001, including 7,551 applications in the US. Stem cell development, as evidenced by the numbers of PubMed articles, has matured steadily in recent years. However, the other metrics, such as the number of patent applications, the technology-science linkage and the number of patent assignees, have been stagnant. Moreover, the ownership of stem cell patents is still quiet fragmented across multiple organizations, and the number of stem cell patent assignees from the business sector has not increased significantly. Academic and nonprofit institutions not only account for a large share of stem cell patents but also apply for patents continually. Based on this analysis, the strength of stem cell resources seems to remain stagnant in recent years due to the ban on government funding of embryonic stem cell research. Furthermore, the patent prosecution or technical barriers in the field of stem cells would be another main reason that the number of US-issued stem cell patents for each application have been in gradual decline since 2000. Therefore, we consider stem cell technology to still be under development.

  3. Fraudsters operate and officialdom turns a blind eye: a proposal for controlling stem cell therapy in China.

    PubMed

    Jiang, Li; Dong, Bing He

    2016-09-01

    Stem cell tourism-the flow of patients from home countries to destination countries to obtain stem cell treatment-is a growing business in China. Many concerns have been raised regarding fraudsters that operate unsafe stem cell therapies and an officialdom that turns a blind eye to the questionable technology. The Chinese regulatory approach to stem cell research is based on Guidelines and Administrative Measures, rather than legislation, and may have no binding force on certain institutions, such as military hospitals. There is no liability and traceability system and no visible set of penalties for non-compliance in the stem cell legal framework. In addition to the lack of safety and efficacy systems in the regulations, no specific expert authority has been established to monitor stem cell therapy to date. Recognizing the global nature of stem cell tourism, this article argues that resolving stem cell tourism issues may require not only the Chinese government but also an international mechanism for transparency and ethical oversight. A stringent set of international regulations that govern stem cell therapies can encourage China to improve stem cell regulation and enforcement to fulfill its obligations. Through an international consensus, a minimum standard for clinical stem cell research and a central enforcement system will be provided. As a result, rogue clinics that conduct unauthorized stem cell therapies can be penalized, and countries that are reluctant to implement the reconciled regulations should be sanctioned.

  4. Epigenetic Control of Stem Cell Potential During Homeostasis, Aging, and Disease

    PubMed Central

    Beerman, Isabel; Rossi, Derrick J.

    2015-01-01

    Stem cell decline is an important cellular driver of aging-associated pathophysiology in multiple tissues. Epigenetic regulation is central to establishing and maintaining stem cell function, and emerging evidence indicates that epigenetic dysregulation contributes to the altered potential of stem cells during aging. Unlike terminally differentiated cells, the impact of epigenetic dysregulation in stem cells is propagated beyond self; alterations can be heritably transmitted to differentiated progeny, in addition to being perpetuated and amplified within the stem cell pool through self-renewal divisions. This review focuses on recent studies examining epigenetic regulation of tissue-specific stem cells in homeostasis, aging, and aging-related disease. PMID:26046761

  5. Attitude of A Sample of Iranian Researchers toward The Future of Stem Cell Research.

    PubMed

    Lotfipanah, Mahdi; Azadeh, Fereydoon; Totonchi, Mehdi; Omani-Samani, Reza

    2018-10-01

    Stem cells that have unlimited proliferation potential as well as differentiation potency are considered to be a promising future treatment method for incurable diseases. The aim of the present study is to evaluate the future trend of stem cell researches from researchers' viewpoints. This was a cross-sectional descriptive study on researchers involved in stem cell research at Royan Institute. We designed a questionnaire using a qualitative study based on expert opinion and a literature review. Content validity was performed using three rounds of the Delphi method with experts. Face validity was undertaken by a Persian literature expert and a graphics designer. The questionnaire was distributed among 150 researchers involved in stem cell studies in Royan Institute biology laboratories. We collected 138 completed questionnaires. The mean age of participants was 31.13 ± 5.8 years; most (60.9%) were females. Participants (76.1%) considered the budget to be the most important issue in stem cell research, 79.7% needed financial support from the government, and 77.5% felt that charities could contribute substantially to stem cell research. A total of 90.6% of participants stated that stem cells should lead to commercial usage which could support future researches (86.2%). The aim of stem cell research was stipulated as increasing health status of the society according to 92.8% of the participants. At present, among cell types, importance was attached to cord blood and adult stem cells. Researchers emphasized the importance of mesenchymal stem cells (MSCs) rather than hematopoietic stem cells (HSCs, 57.73%). The prime priorities were given to cancer so that stem cell research could be directed to sphere stem cell research whereas the least preference was given to skin research. Regenerative medicine is considered the future of stem cell research with emphasis on application of these cells, especially in cancer treatment. Copyright© by Royan Institute. All rights reserved.

  6. Translating stem cell research: challenges at the research frontier.

    PubMed

    Magnus, David

    2010-01-01

    This paper will address the translation of basic stem cell research into clinical research. While "stem cell" trials are sometimes used to describe established practices of bone marrow transplantation or transplantation of primary cells derived from bone marrow, for the purposes of this paper, I am primarily focusing on stem cell trials which are far less established, including use of hESC derived stem cells. The central ethical challenges in stem cell clinical trials arise in frontier research, not in standard, well-established areas of research.

  7. Murine hepatocellular carcinoma derived stem cells reveal epithelial-to-mesenchymal plasticity.

    PubMed

    Jayachandran, Aparna; Shrestha, Ritu; Dhungel, Bijay; Huang, I-Tao; Vasconcelos, Marianna Yumi Kawashima; Morrison, Brian J; Ramlogan-Steel, Charmaine A; Steel, Jason C

    2017-09-26

    To establish a model to enrich and characterize stem-like cells from murine normal liver and hepatocellular carcinoma (HCC) cell lines and to further investigate stem-like cell association with epithelial-to-mesenchymal transition (EMT). In this study, we utilized a stem cell conditioned serum-free medium to enrich stem-like cells from mouse HCC and normal liver cell lines, Hepa 1-6 and AML12, respectively. We isolated the 3-dimensional spheres and assessed their stemness characteristics by evaluating the RNA levels of stemness genes and a cell surface stem cell marker by quantitative reverse transcriptase-PCR (qRT-PCR). Next, we examined the relationship between stem cells and EMT using qRT-PCR. Three-dimensional spheres were enriched by culturing murine HCC and normal hepatocyte cell lines in stem cell conditioned serum-free medium supplemented with epidermal growth factor, basic fibroblast growth factor and heparin sulfate. The 3-dimensional spheres had enhanced stemness markers such as Klf4 and Bmi1 and hepatic cancer stem cell (CSC) marker Cd44 compared to parental cells grown as adherent cultures. We report that epithelial markers E-cadherin and ZO-1 were downregulated, while mesenchymal markers Vimentin and Fibronectin were upregulated in 3-dimensional spheres. The 3-dimensional spheres also exhibited changes in expression of Snai , Zeb and Twist family of EMT transcription factors. Our novel method successfully enriched stem-like cells which possessed an EMT phenotype. The isolation and characterization of murine hepatic CSCs could establish a precise target for the development of more effective therapies for HCC.

  8. Wnt/β-Catenin Signaling Determines the Vasculogenic Fate of Postnatal Mesenchymal Stem Cells.

    PubMed

    Zhang, Zhaocheng; Nör, Felipe; Oh, Min; Cucco, Carolina; Shi, Songtao; Nör, Jacques E

    2016-06-01

    Vasculogenesis is the process of de novo blood vessel formation observed primarily during embryonic development. Emerging evidence suggest that postnatal mesenchymal stem cells are capable of recapitulating vasculogenesis when these cells are engaged in tissue regeneration. However, the mechanisms underlining the vasculogenic differentiation of mesenchymal stem cells remain unclear. Here, we used stem cells from human permanent teeth (dental pulp stem cells [DPSC]) or deciduous teeth (stem cells from human exfoliated deciduous teeth [SHED]) as models of postnatal primary human mesenchymal stem cells to understand mechanisms regulating their vasculogenic fate. GFP-tagged mesenchymal stem cells seeded in human tooth slice/scaffolds and transplanted into immunodeficient mice differentiate into human blood vessels that anastomize with the mouse vasculature. In vitro, vascular endothelial growth factor (VEGF) induced the vasculogenic differentiation of DPSC and SHED via potent activation of Wnt/β-catenin signaling. Further, activation of Wnt signaling is sufficient to induce the vasculogenic differentiation of postnatal mesenchymal stem cells, while Wnt inhibition blocked this process. Notably, β-catenin-silenced DPSC no longer differentiate into endothelial cells in vitro, and showed impaired vasculogenesis in vivo. Collectively, these data demonstrate that VEGF signaling through the canonical Wnt/β-catenin pathway defines the vasculogenic fate of postnatal mesenchymal stem cells. Stem Cells 2016;34:1576-1587. © 2016 AlphaMed Press.

  9. MiR-7 inhibited peripheral nerve injury repair by affecting neural stem cells migration and proliferation through cdc42.

    PubMed

    Zhou, Nan; Hao, Shuang; Huang, Zongqiang; Wang, Weiwei; Yan, Penghui; Zhou, Wei; Zhu, Qihang; Liu, Xiaokang

    2018-01-01

    Objective Neural stem cells play an important role in the recovery and regeneration of peripheral nerve injury, and the microRNA-7 (miR-7) regulates differentiation of neural stem cells. This study aimed to explore the role of miR-7 in neural stem cells homing and proliferation and its influence on peripheral nerve injury repair. Methods The mice model of peripheral nerve injury was created by segmental sciatic nerve defect (sciatic nerve injury), and neural stem cells treatment was performed with a gelatin hydrogel conduit containing neural stem cells inserted into the sciatic nerve injury mice. The Sciatic Function Index was used to quantify sciatic nerve functional recovery in the mice. The messenger RNA and protein expression were detected by reverse transcription polymerase chain reaction and Western blot, respectively. Luciferase reporter assay was used to confirm the binding between miR-7 and the 3'UTR of cell division cycle protein 42 (cdc42). The neural stem cells migration and proliferation were analyzed by transwell assay and a Cell-LightTM EdU DNA Cell Proliferation kit, respectively. Results Neural stem cells treatment significantly promoted nerve repair in sciatic nerve injury mice. MiR-7 expression was decreased in sciatic nerve injury mice with neural stem cells treatment, and miR-7 mimic transfected into neural stem cells suppressed migration and proliferation, while miR-7 inhibitor promoted migration and proliferation. The expression level and effect of cdc42 on neural stem cells migration and proliferation were opposite to miR-7, and the luciferase reporter assay proved that cdc42 was a target of miR-7. Using co-transfection into neural stem cells, we found pcDNA3.1-cdc42 and si-cdc42 could reverse respectively the role of miR-7 mimic and miR-7 inhibitor on neural stem cells migration and proliferation. In addition, miR-7 mimic-transfected neural stem cells could abolish the protective role of neural stem cells on peripheral nerve injury. Conclusion MiR-7 inhibited peripheral nerve injury repair by affecting neural stem cells migration and proliferation through cdc42.

  10. Floral homeotic proteins modulate the genetic program for leaf development to suppress trichome formation in flowers.

    PubMed

    Ó'Maoiléidigh, Diarmuid S; Stewart, Darragh; Zheng, Beibei; Coupland, George; Wellmer, Frank

    2018-02-13

    As originally proposed by Goethe in 1790, floral organs are derived from leaf-like structures. The conversion of leaves into different types of floral organ is mediated by floral homeotic proteins, which, as described by the ABCE model of flower development, act in a combinatorial manner. However, how these transcription factors bring about this transformation process is not well understood. We have previously shown that floral homeotic proteins are involved in suppressing the formation of branched trichomes, a hallmark of leaf development, on reproductive floral organs of Arabidopsis Here, we present evidence that the activities of the C function gene AGAMOUS ( AG ) and the related SHATTERPROOF1 / 2 genes are superimposed onto the regulatory network that controls the distribution of trichome formation in an age-dependent manner. We show that AG regulates cytokinin responses and genetically interacts with the organ polarity gene KANADI1 to suppress trichome initiation on gynoecia. Thus, our results show that parts of the genetic program for leaf development remain active during flower formation but have been partially rewired through the activities of the floral homeotic proteins. © 2018. Published by The Company of Biologists Ltd.

  11. International Society for Stem Cell Research

    MedlinePlus

    ... cell and regenerative medicine community. More stem cell research Take a closer look Recent Blogs View All ... nonprofit organization & the voice of the stem cell research community The International Society for Stem Cell Research ( ...

  12. Stem cell regenerative potential combined with nanotechnology and tissue engineering for myocardial regeneration.

    PubMed

    Calin, Manuela; Stan, Daniela; Simion, Viorel

    2013-07-01

    The stem cell-based therapy for post-infarction myocardial regeneration has been introduced more than a decade ago, but the functional improvement obtained is limited due to the poor retention and short survival rate of transplanted cells into the damaged myocardium. More recently, the emerging nanotechnology concepts for advanced diagnostics and therapy provide promising opportunities of using stem cells for myocardial regeneration. In this paper will be provided an overview of the use of nanotechnology approaches in stem cell research for: 1) cell labeling to track the distribution of stem cells after transplantation, 2) nanoparticle-mediated gene delivery to stem cells to promote their homing, engraftment, survival and differentiation in the ischemic myocardium and 3) obtaining of bio-inspired materials to provide suitable myocardial scaffolds for delivery of stem cells or stem cell-derived factors.

  13. Advances in Bone Marrow Stem Cell Therapy for Retinal Dysfunction

    PubMed Central

    Park, Susanna S.; Moisseiev, Elad; Bauer, Gerhard; Anderson, Johnathon D.; Grant, Maria B.; Zam, Azhar; Zawadzki, Robert J.; Werner, John S.; Nolta, Jan A.

    2016-01-01

    The most common cause of untreatable vision loss is dysfunction of the retina. Conditions, such as age-related macular degeneration, diabetic retinopathy and glaucoma remain leading causes of untreatable blindness worldwide. Various stem cell approaches are being explored for treatment of retinal regeneration. The rationale for using bone marrow stem cells to treat retinal dysfunction is based on preclinical evidence showing that bone marrow stem cells can rescue degenerating and ischemic retina. These stem cells have primarily paracrine trophic effects although some cells can directly incorporate into damaged tissue. Since the paracrine trophic effects can have regenerative effects on multiple cells in the retina, the use of this cell therapy is not limited to a particular retinal condition. Autologous bone marrow-derived stem cells are being explored in early clinical trials as therapy for various retinal conditions. These bone marrow stem cells include mesenchymal stem cells, mononuclear cells and CD34+ cells. Autologous therapy requires no systemic immunosuppression or donor matching. Intravitreal delivery of CD34+ cells and mononuclear cells appears to be tolerated and is being explored since some of these cells can home into the damaged retina after intravitreal administration. The safety of intravitreal delivery of mesenchymal stem cells has not been well established. This review provides an update of the current evidence in support of the use of bone marrow stem cells as treatment for retinal dysfunction. The potential limitations and complications of using certain forms of bone marrow stem cells as therapy are discussed. Future directions of research include methods to optimize the therapeutic potential of these stem cells, non-cellular alternatives using extracellular vesicles, and in vivo high-resolution retinal imaging to detect cellular changes in the retina following cell therapy. PMID:27784628

  14. Role of stem cell derived exosomes in tumor biology.

    PubMed

    Sharma, Aman

    2018-03-15

    Exosomes are nano-scale messengers loaded with bio-molecular cargo of RNA, DNA, and Proteins. As a master regulator of cellular signaling, stem cell (both normal, and cancer stem cells) secreted exosome orchestrate various autocrine and paracrine functions which alter tumor micro-environment, growth and progression. Exosomes secreted by one of the two important stem cell phenotypes in cancers a) Mesenchymal stem cells, and b) Cancer stem cells not only promote cancerous growth but also impart therapy resistance in cancer cells. In tumors, normal or mesenchymal stem cell (MSCs) derived exosomes (MSC-exo) modulate tumor hallmarks by delivering unique miRNA species to neighboring cells and help in tumor progression. Apart from regulating tumor cell fate, MSC-exo are also capable of inducing physiological processes, for example, angiogenesis, metastasis and so forth. Similarly, cancer stem cells (CSCs) derived exosomes (CSC-exo) contain stemness-specific proteins, self-renewal promoting regulatory miRNAs, and survival factors. CSC-exo specific cargo maintains tumor heterogeneity and alters tumor progression. In this review we critically discuss the importance of stem cell specific exosomes in tumor cell signaling pathways with their role in tumor biology. © 2017 UICC.

  15. Stochasticity and Spatial Interaction Govern Stem Cell Differentiation Dynamics

    NASA Astrophysics Data System (ADS)

    Smith, Quinton; Stukalin, Evgeny; Kusuma, Sravanti; Gerecht, Sharon; Sun, Sean X.

    2015-07-01

    Stem cell differentiation underlies many fundamental processes such as development, tissue growth and regeneration, as well as disease progression. Understanding how stem cell differentiation is controlled in mixed cell populations is an important step in developing quantitative models of cell population dynamics. Here we focus on quantifying the role of cell-cell interactions in determining stem cell fate. Toward this, we monitor stem cell differentiation in adherent cultures on micropatterns and collect statistical cell fate data. Results show high cell fate variability and a bimodal probability distribution of stem cell fraction on small (80-140 μm diameter) micropatterns. On larger (225-500 μm diameter) micropatterns, the variability is also high but the distribution of the stem cell fraction becomes unimodal. Using a stochastic model, we analyze the differentiation dynamics and quantitatively determine the differentiation probability as a function of stem cell fraction. Results indicate that stem cells can interact and sense cellular composition in their immediate neighborhood and adjust their differentiation probability accordingly. Blocking epithelial cadherin (E-cadherin) can diminish this cell-cell contact mediated sensing. For larger micropatterns, cell motility adds a spatial dimension to the picture. Taken together, we find stochasticity and cell-cell interactions are important factors in determining cell fate in mixed cell populations.

  16. NANOS2 acts downstream of glial cell line-derived neurotrophic factor signaling to suppress differentiation of spermatogonial stem cells.

    PubMed

    Sada, Aiko; Hasegawa, Kazuteru; Pin, Pui Han; Saga, Yumiko

    2012-02-01

    Stem cells are maintained by both stem cell-extrinsic niche signals and stem cell-intrinsic factors. During murine spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) signal emanated from Sertoli cells and germ cell-intrinsic factor NANOS2 represent key regulators for the maintenance of spermatogonial stem cells. However, it remains unclear how these factors intersect in stem cells to control their cellular state. Here, we show that GDNF signaling is essential to maintain NANOS2 expression, and overexpression of Nanos2 can alleviate the stem cell loss phenotype caused by the depletion of Gfra1, a receptor for GDNF. By using an inducible Cre-loxP system, we show that NANOS2 expression is downregulated upon the conditional knockout (cKO) of Gfra1, while ectopic expression of Nanos2 in GFRA1-negative spermatogonia does not induce de novo GFRA1 expression. Furthermore, overexpression of Nanos2 in the Gfra1-cKO testes prevents precocious differentiation of the Gfra1-knockout stem cells and partially rescues the stem cell loss phenotypes of Gfra1-deficient mice, indicating that the stem cell differentiation can be suppressed by NANOS2 even in the absence of GDNF signaling. Taken together, we suggest that NANOS2 acts downstream of GDNF signaling to maintain undifferentiated state of spermatogonial stem cells. Copyright © 2011 AlphaMed Press.

  17. Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution.

    PubMed

    Hu, Wen-Yang; Hu, Dan-Ping; Xie, Lishi; Li, Ye; Majumdar, Shyama; Nonn, Larisa; Hu, Hong; Shioda, Toshi; Prins, Gail S

    2017-08-01

    Using primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was corroborated using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 levels without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to isolate label-retaining stem cells from label-free progenitors, RNA-seq identified unique gene signatures for the separate populations which may serve as useful biomarkers. Knockdown of KRT13 or PRAC1 reduced sphere formation and symmetric self-renewal highlighting their role in stem cell maintenance. Pathways analysis identified ribosome biogenesis and membrane estrogen-receptor signaling enriched in stem cells with NF-ĸB signaling enriched in progenitors; activities that were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. A Floral Transcriptome for Hippeastrum (Amaryllidaceae)

    USDA-ARS?s Scientific Manuscript database

    Two transcriptomes have been constructed from floral tissue of two Hippeastrum (Amaryllidaceae) species, H. brasilianum (Traub & J.L.Doran) Dutilh and H. papilio (Ravenna) Van Scheepan. The former has fragrant flowers, while flowers of the latter do not produce floral fragrance. RNA was isolated a...

  19. Materials as stem cell regulators

    PubMed Central

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-01-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine. PMID:24845994

  20. Stem cells in genetically-engineered mouse models of prostate cancer

    PubMed Central

    Shibata, Maho; Shen, Michael M.

    2015-01-01

    The cancer stem cell model proposes that tumors have a hierarchical organization in which tumorigenic cells give rise to non-tumorigenic cells, with only a subset of stem-like cells able to propagate the tumor. In the case of prostate cancer, recent analyses of genetically engineered mouse (GEM) models have provided evidence supporting the existence of cancer stem cells in vivo. These studies suggest that cancer stem cells capable of tumor propagation exist at various stages of tumor progression from prostatic intraepithelial neoplasia (PIN) to advanced metastatic and castration-resistant disease. However, studies of stem cells in prostate cancer have been limited by available approaches for evaluating their functional properties in cell culture and transplantation assays. Given the role of the tumor microenvironment and the putative cancer stem cell niche, future studies using GEM models to analyze cancer stem cells in their native tissue microenvironment are likely to be highly informative. PMID:26341780

  1. The evolution of chicken stem cell culture methods.

    PubMed

    Farzaneh, M; Attari, F; Mozdziak, P E; Khoshnam, S E

    2017-12-01

    1. The avian embryo is an excellent model for studying embryology and the production of pharmaceutical proteins in transgenic chickens. Furthermore, chicken stem cells have the potential for proliferation and differentiation and emerged as an attractive tool for various cell-based technologies. 2. The objective of these studies is the derivation and culture of these stem cells is the production of transgenic birds for recombinant biomaterials and vaccine manufacture, drug and cytotoxicity testing, as well as to gain insight into basic science, including cell tracking. 3. Despite similarities among the established chicken stem cell lines, fundamental differences have been reported between their culture conditions and applications. Recent conventional protocols used for expansion and culture of chicken stem cells mostly depend on feeder cells, serum-containing media and static culture. 4. Utilising chicken stem cells for generation of cell-based transgenic birds and a variety of vaccines requires large-scale cell production. However, scaling up the conventional adherent chicken stem cells is challenging and labour intensive. Development of a suspension cell culture process for chicken embryonic stem cells (cESCs), chicken primordial germ cells (PGCs) and chicken induced pluripotent stem cells (ciPSCs) will be an important advance for increasing the growth kinetics of these cells. 6. This review describes various approaches and suggestions to achieve optimal cell growth for defined chicken stem cells cultures and use in future manufacturing applications.

  2. Development of hematopoietic stem and progenitor cells from human pluripotent stem cells.

    PubMed

    Chen, Tong; Wang, Fen; Wu, Mengyao; Wang, Zack Z

    2015-07-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), provide a new cell source for regenerative medicine, disease modeling, drug discovery, and preclinical toxicity screening. Understanding of the onset and the sequential process of hematopoietic cells from differentiated hPSCs will enable the achievement of personalized medicine and provide an in vitro platform for studying of human hematopoietic development and disease. During embryogenesis, hemogenic endothelial cells, a specified subset of endothelial cells in embryonic endothelium, are the primary source of multipotent hematopoietic stem cells. In this review, we discuss current status in the generation of multipotent hematopoietic stem and progenitor cells from hPSCs via hemogenic endothelial cells. We also review the achievements in direct reprogramming from non-hematopoietic cells to hematopoietic stem and progenitor cells. Further characterization of hematopoietic differentiation in hPSCs will improve our understanding of blood development and expedite the development of hPSC-derived blood products for therapeutic purpose. © 2015 Wiley Periodicals, Inc.

  3. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome

    PubMed Central

    Tang, Junnan; Shen, Deliang; Caranasos, Thomas George; Wang, Zegen; Vandergriff, Adam C.; Allen, Tyler A.; Hensley, Michael Taylor; Dinh, Phuong-Uyen; Cores, Jhon; Li, Tao-Sheng; Zhang, Jinying; Kan, Quancheng; Cheng, Ke

    2017-01-01

    Stem cell therapy represents a promising strategy in regenerative medicine. However, cells need to be carefully preserved and processed before usage. In addition, cell transplantation carries immunogenicity and/or tumourigenicity risks. Mounting lines of evidence indicate that stem cells exert their beneficial effects mainly through secretion (of regenerative factors) and membrane-based cell–cell interaction with the injured cells. Here, we fabricate a synthetic cell-mimicking microparticle (CMMP) that recapitulates stem cell functions in tissue repair. CMMPs carry similar secreted proteins and membranes as genuine cardiac stem cells do. In a mouse model of myocardial infarction, injection of CMMPs leads to the preservation of viable myocardium and augmentation of cardiac functions similar to cardiac stem cell therapy. CMMPs (derived from human cells) do not stimulate T-cell infiltration in immuno-competent mice. In conclusion, CMMPs act as ‘synthetic stem cells’ which mimic the paracrine and biointerfacing activities of natural stem cells in therapeutic cardiac regeneration. PMID:28045024

  4. Stem cell plasticity enables hair regeneration following Lgr5+ cell loss.

    PubMed

    Hoeck, Joerg D; Biehs, Brian; Kurtova, Antonina V; Kljavin, Noelyn M; de Sousa E Melo, Felipe; Alicke, Bruno; Koeppen, Hartmut; Modrusan, Zora; Piskol, Robert; de Sauvage, Frederic J

    2017-06-01

    Under injury conditions, dedicated stem cell populations govern tissue regeneration. However, the molecular mechanisms that induce stem cell regeneration and enable plasticity are poorly understood. Here, we investigate stem cell recovery in the context of the hair follicle to understand how two molecularly distinct stem cell populations are integrated. Utilizing diphtheria-toxin-mediated cell ablation of Lgr5 + (leucine-rich repeat-containing G-protein-coupled receptor 5) stem cells, we show that killing of Lgr5 + cells in mice abrogates hair regeneration but this is reversible. During recovery, CD34 + (CD34 antigen) stem cells activate inflammatory response programs and start dividing. Pharmacological attenuation of inflammation inhibits CD34 + cell proliferation. Subsequently, the Wnt pathway controls the recovery of Lgr5 + cells and inhibition of Wnt signalling prevents Lgr5 + cell and hair germ recovery. Thus, our study uncovers a compensatory relationship between two stem cell populations and the underlying molecular mechanisms that enable hair follicle regeneration.

  5. SILAC proteomics of planarians identifies Ncoa5 as a conserved component of pluripotent stem cells.

    PubMed

    Böser, Alexander; Drexler, Hannes C A; Reuter, Hanna; Schmitz, Henning; Wu, Guangming; Schöler, Hans R; Gentile, Luca; Bartscherer, Kerstin

    2013-11-27

    Planarian regeneration depends on the presence of pluripotent stem cells in the adult. We developed an in vivo stable isotope labeling by amino acids in cell culture (SILAC) protocol in planarians to identify proteins that are enriched in planarian stem cells. Through a comparison of SILAC proteomes of normal and stem cell-depleted planarians and of a stem cell-enriched population of sorted cells, we identified hundreds of stem cell proteins. One of these is an ortholog of nuclear receptor coactivator-5 (Ncoa5/CIA), which is known to regulate estrogen-receptor-mediated transcription in human cells. We show that Ncoa5 is essential for the maintenance of the pluripotent stem cell population in planarians and that a putative mouse ortholog is expressed in pluripotent cells of the embryo. Our study thus identifies a conserved component of pluripotent stem cells, demonstrating that planarians, in particular, when combined with in vivo SILAC, are a powerful model in stem cell research. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Stem cells in reproductive medicine: ready for the patient?

    PubMed

    Vassena, R; Eguizabal, C; Heindryckx, B; Sermon, K; Simon, C; van Pelt, A M M; Veiga, A; Zambelli, F

    2015-09-01

    Are there effective and clinically validated stem cell-based therapies for reproductive diseases? At the moment, clinically validated stem cell treatments for reproductive diseases and alterations are not available. Research in stem cells and regenerative medicine is growing in scope, and its translation to the clinic is heralded by the recent initiation of controlled clinical trials with pluripotent derived cells. Unfortunately, stem cell 'treatments' are currently offered to patients outside of the controlled framework of scientifically sound research and regulated clinical trials. Both physicians and patients in reproductive medicine are often unsure about stem cells therapeutic options. An international working group was assembled to review critically the available scientific literature in both the human species and animal models. This review includes work published in English until December 2014, and available through Pubmed. A few areas of research in stem cell and reproductive medicine were identified: in vitro gamete production, endometrial regeneration, erectile dysfunction amelioration, vaginal reconstruction. The stem cells studied range from pluripotent (embryonic stem cells and induced pluripotent stem cells) to monopotent stem cells, such as spermatogonial stem cells or mesenchymal stem cells. The vast majority of studies have been carried out in animal models, with data that are preliminary at best. This review was not conducted in a systematic fashion, and reports in publications not indexed in Pubmed were not analyzed. A much broader clinical knowledge will have to be acquired before translation to the clinic of stem cell therapies in reproductive medicine; patients and physicians should be wary of unfounded claims of improvement of existing medical conditions; at the moment, effective stem cell treatment for reproductive diseases and alterations is not available. None. NA. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Floral longevity and autonomous selfing are altered by pollination and water availability in Collinsia heterophylla.

    PubMed

    Jorgensen, Rachael; Arathi, H S

    2013-09-01

    A plant investing in reproduction partitions resources between flowering and seed production. Under resource limitation, altered allocations may result in floral trait variations, leading to compromised fecundity. Floral longevity and timing of selfing are often the traits most likely to be affected. The duration of corolla retention determines whether fecundity results from outcrossing or by delayed selfing-mediated reproductive assurance. In this study, the role of pollination schedules and soil water availability on floral longevity and seed production is tested in Collinsia heterophylla (Plantaginaceae). Using three different watering regimes and pollination schedules, effects on floral longevity and seed production were studied in this protandrous, flowering annual. The results reveal that soil water status and pollination together influence floral longevity with low soil water and hand-pollinations early in the floral lifespan reducing longevity. However, early pollinations under excess water did not extend longevity, implying that resource surplus does not lengthen the outcrossing period. The results also indicate that pollen receipt, a reliable cue for fecundity, accelerates flower drop. Early corolla abscission under drought stress could potentially exacerbate sexual conflict in this protandrous, hermaphroditic species by ensuring self-pollen paternity and enabling male control of floral longevity. While pollination schedules did not affect fecundity, water stress reduced per-capita seed numbers. Unmanipulated flowers underwent delayed autonomous selfing, producing very few seeds, suggesting that inbreeding depression may limit benefits of selfing. In plants where herkogamy and dichogamy facilitate outcrossing, floral longevity determines reproductive success and mating system. Reduction in longevity under drought suggests a strong environmental effect that could potentially alter the preferred breeding mode in this mixed-mated species. Extrapolating the findings to unpredictable global drought cycles, it is suggested that in addition to reducing yield, water stress may influence the evolutionary trajectory of plant mating system.

  8. Floral Development of Berberidopsis corallina: a Crucial Link in the Evolution of Flowers in the Core Eudicots

    PubMed Central

    RONSE DE CRAENE, LOUIS P.

    2004-01-01

    • Background and Aims On the basis of molecular evidence Berberidopsidaceae have been linked with Aextoxicaceae in an order Berberidopsidales at the base of the core Eudicots. The floral development of Berberidopsis is central to the understanding of the evolution of floral configurations at the transition of the basal Eudicots to the core Eudicots. It lies at the transition of trimerous or dimerous, simplified apetalous forms into pentamerous, petaliferous flowers. • Methods The floral ontogeny of Berberidopsis was studied with a scanning electron microscope. • Key Results Flowers are grouped in terminal racemes with variable development. The relationship between the number of tepals, stamens and carpels is more or less fixed and floral initiation follows a strict 2/5 phyllotaxis. Two bracteoles, 12 tepals, eight stamens and three carpels are initiated in a regular sequence. The number of stamens can be increased by a doubling of stamen positions. • Conclusions The floral ontogeny of Berberidopsis provides support for the shift in floral bauplan from the basal Eudicots to the core Eudicots as a transition of a spiral flower with a 2/5 phyllotaxis to pentamerous flowers with two perianth whorls, two stamen whorls and a single carpel whorl. The differentiation of sepals and petals from bracteotepals is discussed and a comparison is made with other Eudicots with a similar configuration and development. Depending on the resolution of the relationships among the basalmost core Eudicots it is suggested that Berberidopsis either represents a critical stage in the evolution of pentamerous flowers of major clades of Eudicots, or has a floral prototype that may be at the base of evolution of flowers of other core Eudicots. The distribution of a floral Bauplan in other clades of Eudicots similar to Berberidopsidales is discussed. PMID:15451722

  9. Floral nectary, nectar production dynamics and chemical composition in five nocturnal Oenothera species (Onagraceae) in relation to floral visitors.

    PubMed

    Antoń, Sebastian; Komoń-Janczara, Elwira; Denisow, Bożena

    2017-12-01

    Main conclusion The floral nectars were sucrose-dominant; however, nectar protein and amino acid contents differed, indicating that composition of nitrogenous compounds may vary considerably even between closely related plant species, irrespectively of nectary structure. Numerous zoophilous plants attract their pollinators by offering floral nectar; an aqueous solution produced by specialized secretory tissues, known as floral nectaries. Although many papers on nectaries and nectar already exist, there has been a little research into the structure of nectaries and/or nectar production and composition in species belonging to the same genus. To redress this imbalance, we sought, in the present paper, to describe the floral nectary, nectar production, and nectar composition in five nocturnal Oenothera species with respect to their floral visitors. The structure of nectaries was similar for all the species investigated, and comprised the epidermis (with nectarostomata), numerous layers of nectary parenchyma, and subsecretory parenchyma. Anthesis for a single flower was short (ca. 10-12 h), and flowers lasted only one night. The release of floral nectar commenced at the bud stage (approx. 4 h before anthesis) and nectar was available to pollinators until petal closure. Nectar concentration was relatively low (ca. 27%) and the nectar was sucrose-dominant, and composed mainly of sucrose, glucose and fructose. The protein content of the nectar was also relatively low (on average, 0.31 µg ml -1 ). Nevertheless, a great variety of amino acids, including both protein and non-protein types, was detected in the nectar profile of the investigated taxa. We noted both diurnal and nocturnal generalist, opportunistic floral insect visitors.

  10. Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ-specific manner.

    PubMed

    Himeno, Misako; Neriya, Yutaro; Minato, Nami; Miura, Chihiro; Sugawara, Kyoko; Ishii, Yoshiko; Yamaji, Yasuyuki; Kakizawa, Shigeyuki; Oshima, Kenro; Namba, Shigetou

    2011-09-01

    Abnormal flowers are often induced by infection of certain plant pathogens, e.g. phytoplasma, but the molecular mechanisms underlying these malformations have remained poorly understood. Here, we show that infection with OY-W phytoplasma (Candidatus Phytoplasma asteris, onion yellows phytoplasma strain, line OY-W) affects the expression of the floral homeotic genes of petunia plants in an organ-specific manner. Upon infection with OY-W phytoplasma, floral morphological changes, including conversion to leaf-like structures, were observed in sepals, petals and pistils, but not in stamens. As the expression levels of homeotic genes differ greatly between floral organs, we examined the expression levels of homeotic genes in each floral organ infected by OY-W phytoplasma, compared with healthy plants. The expression levels of several homeotic genes required for organ development, such as PFG, PhGLO1 and FBP7, were significantly downregulated by the phytoplasma infection in floral organs, except the stamens, suggesting that the unique morphological changes caused by the phytoplasma infection might result from the significant decrease in expression of some crucial homeotic genes. Moreover, the expression levels of TER, ALF and DOT genes, which are known to participate in floral meristem identity, were significantly downregulated in the phytoplasma-infected petunia meristems, implying that phytoplasma would affect an upstream signaling pathway of floral meristem identity. Our results suggest that phytoplasma infection may have complex effects on floral development, resulting in the unique phenotypes that were clearly distinct from the mutant flower phenotypes produced by the knock-out or the overexpression of certain homeotic genes. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  11. Molecular characterization and expression analysis of the critical floral genes in hickory (Carya cathayensis Sarg.).

    PubMed

    Shen, Chen; Xu, Yingwu; Huang, Jianqin; Wang, Zhengjia; Qiu, Jiani; Huang, Youjun

    2014-10-01

    The full ORFs of three floral genes in hickory (Carya cathayensis Sarg.), CcAGL24 (the AGAMOUS-LIKE24 homolog), CcSOC1 (the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 homolog) and CcAP1 (the APETALA1 homolog) are derived using a 5' RACE PCR protocol. Through sequence alignment and phylogenetic analysis, it is demonstrated that the three genes belong to the MADS-Box family. According to the evolutionary trees of the three genes, the homologous genes from the same family cluster well together, while those from different orders doesn't match evolutionary regularity of individual organisms. The result of Quantitative RT-PCR analysis shows that the transcriptional levels of the three genes are up-regulated in early stage and down-regulated in late stage in pistillate floral development. However, it takes different time to reach respective expression peak among the three genes. In staminate floral development, the transcription trend of the three genes is up-regulated, subsequently down-regulated, and then up-regulated again. Nevertheless, those trajectories, peaks, expression levels, inflection points are different in pistillate floral development. The result suggests that their functions are different in between pistillate and staminate floral development. The probable ordinal site of the three genes in the flowering network from top down is CcAGL24, CcSOC1, and CcAP1, which is identical to that in herbaceous plants. Moreover, several adverse environmental factors trigger several negative genes and then confine the development of staminate floral buds. Our results suggest the possible relationship among the three critical floral genes and their functions throughout the floral development in hickory. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. The sweet cherry (Prunus avium) FLOWERING LOCUS T gene is expressed during floral bud determination and can promote flowering in a winter-annual Arabidopsis accession.

    PubMed

    Yarur, Antonia; Soto, Esteban; León, Gabriel; Almeida, Andrea Miyasaka

    2016-12-01

    FT gene is expressed in leaves and buds and is involved in floral meristem determination and bud development in sweet cherry. In woody fruit perennial trees, floral determination, dormancy and bloom, depends on perception of different environmental and endogenous cues which converge to a systemic signaling gene known as FLOWERING LOCUS T (FT). In long-day flowering plants, FT is expressed in the leaves on long days. The protein travels through the phloem to the shoot apical meristem, where it induces flower determination. In perennial plants, meristem determination and flowering are separated by a dormancy period. Meristem determination takes place in summer, but flowering occurs only after a dormancy period and cold accumulation during winter. The roles of FT are not completely clear in meristem determination, dormancy release, and flowering in perennial plants. We cloned FT from sweet cherry (Prunus avium) and analyzed its expression pattern in leaves and floral buds during spring and summer. Phylogenetic analysis shows high identity of the FT cloned sequence with orthologous genes from other Rosaceae species. Our results show that FT is expressed in both leaves and floral buds and increases when the daylight reached 12 h. The peak in FT expression was coincident with floral meristem identity genes expression and morphological changes typical of floral meristem determination. The Edi-0 Arabidopsis ecotype, which requires vernalization to flower, was transformed with a construct for overexpression of PavFT. These transgenic plants showed an early-flowering phenotype without cold treatment. Our results suggest that FT is involved in floral meristem determination and bud development in sweet cherry. Moreover, we show that FT is expressed in both leaves and floral buds in this species, in contrast to annual plants.

  13. Extreme variation in floral characters and its consequences for pollinator attraction among populations of an Andean cactus

    PubMed Central

    Schlumpberger, Boris O.; Cocucci, Andrea A.; Moré, Marcela; Sérsic, Alicia N.; Raguso, Robert A.

    2009-01-01

    Background and aims A South American cactus species, Echinopsis ancistrophora (Cactaceae), with dramatic among-population variation in floral traits is presented. Methods Eleven populations of E. ancistrophora were studied in their habitats in northern Argentina, and comparisons were made of relevant floral traits such as depth, stigma position, nectar volume and sugar concentration, and anthesis time. Diurnal and nocturnal pollinator assemblages were evaluated for populations with different floral trait combinations. Key Results Remarkable geographical variations in floral traits were recorded among the 11 populations throughout the distribution range of E. ancistrophora, with flower lengths ranging from 4·5 to 24·1 cm. Other floral traits associated with pollinator attraction also varied in a population-specific manner, in concert with floral depth. Populations with the shortest flowers showed morning anthesis and those with the longest flowers opened at dusk, whereas those with flowers of intermediate length opened at unusual times (2300–0600 h). Nectar production varied non-linearly with floral length; it was absent to low (population means up to 15 µL) in short- to intermediate-length flowers, but was high (population means up to 170 µL) in the longest tubed flowers. Evidence from light-trapping of moths, pollen carriage on their bodies and moth scale deposition on stigmas suggests that sphingid pollination is prevalent only in the four populations with the longest flowers, in which floral morphological traits and nectar volumes match the classic expectations for the hawkmoth pollination syndrome. All other populations, with flowers 4·5–15 cm long, were pollinated exclusively by solitary bees. Conclusions The results suggest incipient differentiation at the population level and local adaptation to either bee or hawkmoth (potentially plus bee) pollination. PMID:19342397

  14. Small RNA-Sequencing Links Physiological Changes and RdDM Process to Vegetative-to-Floral Transition in Apple.

    PubMed

    Guo, Xinwei; Ma, Zeyang; Zhang, Zhonghui; Cheng, Lailiang; Zhang, Xiuren; Li, Tianhong

    2017-01-01

    Transition from vegetative to floral buds is a critical physiological change during flower induction that determines fruit productivity. Small non-coding RNAs (sRNAs) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) are pivotal regulators of plant growth and development. Although the key role of sRNAs in flowering regulation has been well-described in Arabidopsis and some other annual plants, their relevance to vegetative-to-floral transition (hereafter, referred to floral transition) in perennial woody trees remains under defined. Here, we performed Illumina sequencing of sRNA libraries prepared from vegetative and floral bud during flower induction of the apple trees. A large number of sRNAs exemplified by 33 previously annotated miRNAs and six novel members display significant differential expression (DE) patterns. Notably, most of these DE-miRNAs in floral transition displayed opposite expression changes in reported phase transition in apple trees. Bioinformatics analysis suggests most of the DE-miRNAs targeted transcripts involved in SQUAMOSA PROMOTER BINDING PROTEIN-LIKE ( SPL ) gene regulation, stress responses, and auxin and gibberellin (GA) pathways, with further suggestion that there is an inherent link between physiological stress response and metabolism reprogramming during floral transition. We also observed significant changes in 24 nucleotide (nt) sRNAs that are hallmarks for RNA-dependent DNA methylation (RdDM) pathway, suggestive of the correlation between epigenetic modifications and the floral transition. The study not only provides new insight into our understanding of fundamental mechanism of poorly studied floral transition in apple and other woody plants, but also presents important sRNA resource for future in-depth research in the apple flowering physiology.

  15. Small RNA-Sequencing Links Physiological Changes and RdDM Process to Vegetative-to-Floral Transition in Apple

    PubMed Central

    Guo, Xinwei; Ma, Zeyang; Zhang, Zhonghui; Cheng, Lailiang; Zhang, Xiuren; Li, Tianhong

    2017-01-01

    Transition from vegetative to floral buds is a critical physiological change during flower induction that determines fruit productivity. Small non-coding RNAs (sRNAs) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) are pivotal regulators of plant growth and development. Although the key role of sRNAs in flowering regulation has been well-described in Arabidopsis and some other annual plants, their relevance to vegetative-to-floral transition (hereafter, referred to floral transition) in perennial woody trees remains under defined. Here, we performed Illumina sequencing of sRNA libraries prepared from vegetative and floral bud during flower induction of the apple trees. A large number of sRNAs exemplified by 33 previously annotated miRNAs and six novel members display significant differential expression (DE) patterns. Notably, most of these DE-miRNAs in floral transition displayed opposite expression changes in reported phase transition in apple trees. Bioinformatics analysis suggests most of the DE-miRNAs targeted transcripts involved in SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene regulation, stress responses, and auxin and gibberellin (GA) pathways, with further suggestion that there is an inherent link between physiological stress response and metabolism reprogramming during floral transition. We also observed significant changes in 24 nucleotide (nt) sRNAs that are hallmarks for RNA-dependent DNA methylation (RdDM) pathway, suggestive of the correlation between epigenetic modifications and the floral transition. The study not only provides new insight into our understanding of fundamental mechanism of poorly studied floral transition in apple and other woody plants, but also presents important sRNA resource for future in-depth research in the apple flowering physiology. PMID:28611800

  16. The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies.

    PubMed

    O'Rourke, Jamie A; Fu, Fengli; Bucciarelli, Bruna; Yang, S Sam; Samac, Deborah A; Lamb, JoAnn F S; Monteros, Maria J; Graham, Michelle A; Gronwald, John W; Krom, Nick; Li, Jun; Dai, Xinbin; Zhao, Patrick X; Vance, Carroll P

    2015-07-07

    Alfalfa (Medicago sativa L.) is the primary forage legume crop species in the United States and plays essential economic and ecological roles in agricultural systems across the country. Modern alfalfa is the result of hybridization between tetraploid M. sativa ssp. sativa and M. sativa ssp. falcata. Due to its large and complex genome, there are few genomic resources available for alfalfa improvement. A de novo transcriptome assembly from two alfalfa subspecies, M. sativa ssp. sativa (B47) and M. sativa ssp. falcata (F56) was developed using Illumina RNA-seq technology. Transcripts from roots, nitrogen-fixing root nodules, leaves, flowers, elongating stem internodes, and post-elongation stem internodes were assembled into the Medicago sativa Gene Index 1.2 (MSGI 1.2) representing 112,626 unique transcript sequences. Nodule-specific and transcripts involved in cell wall biosynthesis were identified. Statistical analyses identified 20,447 transcripts differentially expressed between the two subspecies. Pair-wise comparisons of each tissue combination identified 58,932 sequences differentially expressed in B47 and 69,143 sequences differentially expressed in F56. Comparing transcript abundance in floral tissues of B47 and F56 identified expression differences in sequences involved in anthocyanin and carotenoid synthesis, which determine flower pigmentation. Single nucleotide polymorphisms (SNPs) unique to each M. sativa subspecies (110,241) were identified. The Medicago sativa Gene Index 1.2 increases the expressed sequence data available for alfalfa by ninefold and can be expanded as additional experiments are performed. The MSGI 1.2 transcriptome sequences, annotations, expression profiles, and SNPs were assembled into the Alfalfa Gene Index and Expression Database (AGED) at http://plantgrn.noble.org/AGED/ , a publicly available genomic resource for alfalfa improvement and legume research.

  17. I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat.

    PubMed

    Nomura, T; Honmou, O; Harada, K; Houkin, K; Hamada, H; Kocsis, J D

    2005-01-01

    I.V. delivery of mesenchymal stem cells prepared from adult bone marrow reduces infarction size and ameliorates functional deficits in rat cerebral ischemia models. Administration of the brain-derived neurotrophic factor to the infarction site has also been demonstrated to be neuroprotective. To test the hypothesis that brain-derived neurotrophic factor contributes to the therapeutic benefits of mesenchymal stem cell delivery, we compared the efficacy of systemic delivery of human mesenchymal stem cells and human mesenchymal stem cells transfected with a fiber-mutant F/RGD adenovirus vector with a brain-derived neurotrophic factor gene (brain-derived neurotrophic factor-human mesenchymal stem cells). A permanent middle cerebral artery occlusion was induced by intraluminal vascular occlusion with a microfilament. Human mesenchymal stem cells and brain-derived neurotrophic factor-human mesenchymal stem cells were i.v. injected into the rats 6 h after middle cerebral artery occlusion. Lesion size was assessed at 6 h, 1, 3 and 7 days using MR imaging, and histological methods. Functional outcome was assessed using the treadmill stress test. Both human mesenchymal stem cells and brain-derived neurotrophic factor-human mesenchymal stem cells reduced lesion volume and elicited functional improvement compared with the control sham group, but the effect was greater in the brain-derived neurotrophic factor-human mesenchymal stem cell group. ELISA analysis of the infarcted hemisphere revealed an increase in brain-derived neurotrophic factor in the human mesenchymal stem cell groups, but a greater increase in the brain-derived neurotrophic factor-human mesenchymal stem cell group. These data support the hypothesis that brain-derived neurotrophic factor contributes to neuroprotection in cerebral ischemia and cellular delivery of brain-derived neurotrophic factor can be achieved by i.v. delivery of human mesenchymal stem cells.

  18. Distinct roles of neuroepithelial-like and radial glia-like progenitor cells in cerebellar regeneration.

    PubMed

    Kaslin, Jan; Kroehne, Volker; Ganz, Julia; Hans, Stefan; Brand, Michael

    2017-04-15

    Zebrafish can regenerate after brain injury, and the regenerative process is driven by resident stem cells. Stem cells are heterogeneous in the vertebrate brain, but the significance of having heterogeneous stem cells in regeneration is not understood. Limited availability of specific stem cells might impair the regeneration of particular cell lineages. We studied regeneration of the adult zebrafish cerebellum, which contains two major stem and progenitor cell types: ventricular zone and neuroepithelial cells. Using conditional lineage tracing we demonstrate that cerebellar regeneration depends on the availability of specific stem cells. Radial glia-like cells are thought to be the predominant stem cell type in homeostasis and after injury. However, we find that radial glia-like cells play a minor role in adult cerebellar neurogenesis and in recovery after injury. Instead, we find that neuroepithelial cells are the predominant stem cell type supporting cerebellar regeneration after injury. Zebrafish are able to regenerate many, but not all, cell types in the cerebellum, which emphasizes the need to understand the contribution of different adult neural stem and progenitor cell subtypes in the vertebrate central nervous system. © 2017. Published by The Company of Biologists Ltd.

  19. Role of the Stem Cell Niche in Hormone-induced Tumorigenesis in Fetal Mouse Mammary Epithelium

    DTIC Science & Technology

    2006-08-01

    Develop an immunohistochemical method for identifying stem cells and stem cell niches, and to use this to determine if in utero estrogenic...overstimulation causes changes in the number of stem cells or their niches. To extend the power of ex vivo stem cell isolation and enumeration by providing a...marginal success due primarily to 1) most antibodies previously reputed to be stem cell specific turned out to be present in differentiated mammary

  20. Wnt and BMP Signaling Crosstalk in Regulating Dental Stem Cells: Implications in Dental Tissue Engineering

    PubMed Central

    Zhang, Fugui; Song, Jinglin; Zhang, Hongmei; Huang, Enyi; Song, Dongzhe; Tollemar, Viktor; Wang, Jing; Wang, Jinhua; Mohammed, Maryam; Wei, Qiang; Fan, Jiaming; Liao, Junyi; Zou, Yulong; Liu, Feng; Hu, Xue; Qu, Xiangyang; Chen, Liqun; Yu, Xinyi; Luu, Hue H.; Lee, Michael J.; He, Tong-Chuan; Ji, Ping

    2016-01-01

    Tooth is a complex hard tissue organ and consists of multiple cell types that are regulated by important signaling pathways such as Wnt and BMP signaling. Serious injuries and/or loss of tooth or periodontal tissues may significantly impact aesthetic appearance, essential oral functions and the quality of life. Regenerative dentistry holds great promise in treating oral/dental disorders. The past decade has witnessed a rapid expansion of our understanding of the biological features of dental stem cells, along with the signaling mechanisms governing stem cell self-renewal and differentiation. In this review, we first summarize the biological characteristics of seven types of dental stem cells, including dental pulp stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, periodontal ligament stem cells, alveolar bone-derived mesenchymal stem cells (MSCs), and MSCs from gingiva. We then focus on how these stem cells are regulated by bone morphogenetic protein (BMP) and/or Wnt signaling by examining the interplays between these pathways. Lastly, we analyze the current status of dental tissue engineering strategies that utilize oral/dental stem cells by harnessing the interplays between BMP and Wnt pathways. We also highlight the challenges that must be addressed before the dental stem cells may reach any clinical applications. Thus, we can expect to witness significant progresses to be made in regenerative dentistry in the coming decade. PMID:28491933

  1. Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate.

    PubMed

    Chermnykh, Elina; Kalabusheva, Ekaterina; Vorotelyak, Ekaterina

    2018-03-27

    Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.

  2. Knowledge and Attitude about Stem Cells and Their Application in Medicine among Nursing Students in Universiti Sains Malaysia, Malaysia

    PubMed Central

    LYE, Jee Leng; SOON, Lean Keng; WAN AHMAD, Wan Amir Nizam; TAN, Suat Cheng

    2015-01-01

    Background: Stem cell research has been extensively explored worldwide to enhance human health in medical setting. Nevertheless, there is currently no full understanding of the stem cell knowledge and attitude levels among student nurses in Malaysia. This study aimed to assess the level of stem cell knowledge, attitude toward stem cell application in medicine, and its association with years of education, among Universiti Sains Malaysia (USM) undergraduate nursing students. Methods: A cross-sectional study (n = 88) was conducted using self-administered questionnaire consisted of demographic information, stem cells knowledge and attitude statements. Data was analysed using Statistical Package Social Software 20.0. Results: The majority of participants (92%) had moderate knowledge score about stem cells. Many students (33%) worried that stem cell application might cause a harm to humanity yet had a positive (76.1%) attitude towards its therapeutic potential (45.5%). Poor correlation between knowledge and attitude (r = 0.08) indicated that acceptance towards stem cell is not solely based on the knowledge level but also on other factors including religion and culture. Conclusion: Therefore, this study suggests that various educational programs on stem cell should be implemented considering the religion, cultural, social, and behavioural determinants in the population to improve stem cell knowledge and encourage a more positive attitude towards stem cells in medicine among these nursing students. PMID:26715905

  3. Knowledge and Attitude about Stem Cells and Their Application in Medicine among Nursing Students in Universiti Sains Malaysia, Malaysia.

    PubMed

    Lye, Jee Leng; Soon, Lean Keng; Wan Ahmad, Wan Amir Nizam; Tan, Suat Cheng

    2015-01-01

    Stem cell research has been extensively explored worldwide to enhance human health in medical setting. Nevertheless, there is currently no full understanding of the stem cell knowledge and attitude levels among student nurses in Malaysia. This study aimed to assess the level of stem cell knowledge, attitude toward stem cell application in medicine, and its association with years of education, among Universiti Sains Malaysia (USM) undergraduate nursing students. A cross-sectional study (n = 88) was conducted using self-administered questionnaire consisted of demographic information, stem cells knowledge and attitude statements. Data was analysed using Statistical Package Social Software 20.0. The majority of participants (92%) had moderate knowledge score about stem cells. Many students (33%) worried that stem cell application might cause a harm to humanity yet had a positive (76.1%) attitude towards its therapeutic potential (45.5%). Poor correlation between knowledge and attitude (r = 0.08) indicated that acceptance towards stem cell is not solely based on the knowledge level but also on other factors including religion and culture. Therefore, this study suggests that various educational programs on stem cell should be implemented considering the religion, cultural, social, and behavioural determinants in the population to improve stem cell knowledge and encourage a more positive attitude towards stem cells in medicine among these nursing students.

  4. Stem cell motility enables a density-dependent rate of fate commitment during scaled resizing of adult organs

    NASA Astrophysics Data System (ADS)

    Du, Xinxin; O'Brien, Lucy; Riedel-Kruse, Ingmar

    Many adult organs grow or shrink to accommodate fluctuating levels of physiological demand. Specifically, the intestine of the fruit fly (the midgut) expands four-fold in the number of mature cells and, proportionally, the number of stem cells when the fly eats. However, the cellular behaviors that give rise to this stem scaling are not well-understood. Here we present a biophysical model of the adult fly midgut. A set of differential equations can recapitulate the physiological kinetics of cells during midgut growth and shrinkage as long as the rate of stem cell fate commitment depends on the stem cell number density in the tissue. To elucidate the source of this dependence, we model the tissue in a 2D simulation with soft spheres, where stem cells choose fate commitment through Delta-Notch pathway interactions with other stem cells, a known process in fly midguts. We find that as long as stem cells exhibit a large enough amplitude of random motion through the tissue (`stem cell motility'), and explore a large enough `territory' in their lifetime, stem cell scaling can occur. These model observations are confirmed through in vivo live-imaging, where we indeed see that stem cells are motile in the fly midgut.

  5. Ethics and Policy Issues for Stem Cell Research and Pulmonary Medicine

    PubMed Central

    Lowenthal, Justin

    2015-01-01

    Stem cell research and related initiatives in regenerative medicine, cell-based therapy, and tissue engineering have generated considerable scientific and public interest. Researchers are applying stem cell technologies to chest medicine in a variety of ways: using stem cells as models for drug discovery, testing stem cell-based therapies for conditions as diverse as COPD and cystic fibrosis, and producing functional lung and tracheal tissue for physiologic modeling and potential transplantation. Although significant scientific obstacles remain, it is likely that stem cell-based regenerative medicine will have a significant clinical impact in chest medicine. However, stem cell research has also generated substantial controversy, posing a variety of ethical and regulatory challenges for research and clinical practice. Some of the most prominent ethical questions related to the use of stem cell technologies in chest medicine include (1) implications for donors, (2) scientific prerequisites for clinical testing and use, (3) stem cell tourism, (4) innovation and clinical use of emerging stem cell-based interventions, (5) responsible translation of stem cell-based therapies to clinical use, and (6) appropriate and equitable access to emerging therapies. Having a sense of these issues should help to put emerging scientific advances into appropriate context and to ensure the responsible clinical translation of promising therapeutics. PMID:25732448

  6. A Survey of Italian Physicians' Opinion about Stem Cells Research: What Doctors Prefer and What the Law Requires

    PubMed Central

    Frati, Paola; Pacchiarotti, Arianna; D'Errico, Stefano

    2014-01-01

    To evaluate the Italian physicians' knowledge/information level about the therapeutic potential of stem cells, the research choice between embryonic and cordonal stem cells, and the preference between autologous and heterologous storage of cordonal stem cells, we performed a national survey. The questionnaire—distributed to 3361 physicians—involved physicians of different religious orientations and of different medical specialities. Most of the physicians involved (67%) were Catholics, and the majority were gynaecologists and paediatricians (43%) who are mainly in charge to inform future mothers about the possibility of cordonal stem cells conservation. The majority of the physicians interviewed do not have specific knowledge about stem cells (59%), most of them having only generic information (92%). The largest part of physicians prefer to use umbilical cord blood cells rather than embryonic stem cells. Nevertheless, a large percentage of physicians were in favour of embryo research, especially when embryos are supernumerary (44% versus 34%). Eighty-seven % of the physicians interviewed proved to have a general knowledge about stem cells and believe in their therapeutic potential. They prefer research on cordonal stem cells rather than on embryo stem cells. Although they are in favour of heterologous stem cells donation, they still prefer cryopreservation for personal use. PMID:24877099

  7. Ethics and policy issues for stem cell research and pulmonary medicine.

    PubMed

    Lowenthal, Justin; Sugarman, Jeremy

    2015-03-01

    Stem cell research and related initiatives in regenerative medicine, cell-based therapy, and tissue engineering have generated considerable scientific and public interest. Researchers are applying stem cell technologies to chest medicine in a variety of ways: using stem cells as models for drug discovery, testing stem cell-based therapies for conditions as diverse as COPD and cystic fibrosis, and producing functional lung and tracheal tissue for physiologic modeling and potential transplantation. Although significant scientific obstacles remain, it is likely that stem cell-based regenerative medicine will have a significant clinical impact in chest medicine. However, stem cell research has also generated substantial controversy, posing a variety of ethical and regulatory challenges for research and clinical practice. Some of the most prominent ethical questions related to the use of stem cell technologies in chest medicine include (1) implications for donors, (2) scientific prerequisites for clinical testing and use, (3) stem cell tourism, (4) innovation and clinical use of emerging stem cell-based interventions, (5) responsible translation of stem cell-based therapies to clinical use, and (6) appropriate and equitable access to emerging therapies. Having a sense of these issues should help to put emerging scientific advances into appropriate context and to ensure the responsible clinical translation of promising therapeutics.

  8. Propagation of human spermatogonial stem cells in vitro.

    PubMed

    Sadri-Ardekani, Hooman; Mizrak, Sefika C; van Daalen, Saskia K M; Korver, Cindy M; Roepers-Gajadien, Hermien L; Koruji, Morteza; Hovingh, Suzanne; de Reijke, Theo M; de la Rosette, Jean J M C H; van der Veen, Fulco; de Rooij, Dirk G; Repping, Sjoerd; van Pelt, Ans M M

    2009-11-18

    Young boys treated with high-dose chemotherapy are often confronted with infertility once they reach adulthood. Cryopreserving testicular tissue before chemotherapy and autotransplantation of spermatogonial stem cells at a later stage could theoretically allow for restoration of fertility. To establish in vitro propagation of human spermatogonial stem cells from small testicular biopsies to obtain an adequate number of cells for successful transplantation. Study performed from April 2007 to July 2009 using testis material donated by 6 adult men who underwent orchidectomy as part of prostate cancer treatment. Testicular cells were isolated and cultured in supplemented StemPro medium; germline stem cell clusters that arose were subcultured on human placental laminin-coated dishes in the same medium. Presence of spermatogonia was determined by reverse transcriptase polymerase chain reaction and immunofluorescence for spermatogonial markers. To test for the presence of functional spermatogonial stem cells in culture, xenotransplantation to testes of immunodeficient mice was performed, and migrated human spermatogonial stem cells after transplantation were detected by COT-1 fluorescence in situ hybridization. The number of colonized spermatogonial stem cells transplanted at early and later points during culture were counted to determine propagation. Propagation of spermatogonial stem cells over time. Testicular cells could be cultured and propagated up to 15 weeks. Germline stem cell clusters arose in the testicular cell cultures from all 6 men and could be subcultured and propagated up to 28 weeks. Expression of spermatogonial markers on both the RNA and protein level was maintained throughout the entire culture period. In 4 of 6 men, xenotransplantation to mice demonstrated the presence of functional spermatogonial stem cells, even after prolonged in vitro culture. Spermatogonial stem cell numbers increased 53-fold within 19 days in the testicular cell culture and increased 18,450-fold within 64 days in the germline stem cell subculture. Long-term culture and propagation of human spermatogonial stem cells in vitro is achievable.

  9. Sources of floral scent variation

    PubMed Central

    Raguso, Robert A; Ashman, Tia-Lynn

    2009-01-01

    Studies of floral scent generally assume that genetic adaptation due to pollinator-mediated natural selection explains a significant amount of phenotypic variance, ignoring the potential for phenotypic plasticity in this trait. In this paper, we assess this latter possibility, looking first at previous studies of floral scent variation in relation to abiotic environmental factors. We then present data from our own research that suggests among-population floral scent variation is determined, in part, by environmental conditions and thus displays phenotypic plasticity. Such an outcome has strong ramifications for the study of floral scent variation; we conclude by presenting some fundamental questions that should lead to greater insight into our understanding of the evolution of this trait, which is important to plant-animal interactions. PMID:19649189

  10. Phosphatidic acid is a major phospholipid class in reproductive organs of Arabidopsis thaliana.

    PubMed

    Yunus, Ian Sofian; Cazenave-Gassiot, Amaury; Liu, Yu-Chi; Lin, Ying-Chen; Wenk, Markus R; Nakamura, Yuki

    2015-01-01

    Phospholipids are the crucial components of biological membranes and signal transduction. Among different tissues, flower phospholipids are one of the least characterized features of plant lipidome. Here, we report that floral reproductive organs of Arabidopsis thaliana contain high levels of phosphatidic acid (PA), a known lipid second messenger. By using floral homeotic mutants enriched with specific floral organs, lipidomics study showed increased levels of PA species in ap3-3 mutant with enriched pistils. Accompanied gene expression study for 7 diacylglycerol kinases and 11 PA phosphatases revealed distinct floral organ specificity, suggesting an active phosphorylation/dephosphorylation between PA and diacylglycerol in flowers. Our results suggest that PA is a major phospholipid class in floral reproductive organs of A. thaliana.

  11. Cytokinin Regulates the Activity of Reproductive Meristems, Flower Organ Size, Ovule Formation, and Thus Seed Yield in Arabidopsis thaliana[C][W][OA

    PubMed Central

    Bartrina, Isabel; Otto, Elisabeth; Strnad, Miroslav; Werner, Tomáš; Schmülling, Thomas

    2011-01-01

    The size and activity of the shoot apical meristem is regulated by transcription factors and low molecular mass signals, including the plant hormone cytokinin. The cytokinin status of the meristem depends on different factors, including metabolic degradation of the hormone, which is catalyzed by cytokinin oxidase/dehydrogenase (CKX) enzymes. Here, we show that CKX3 and CKX5 regulate the activity of the reproductive meristems of Arabidopsis thaliana. CKX3 is expressed in the central WUSCHEL (WUS) domain, while CKX5 shows a broader meristematic expression. ckx3 ckx5 double mutants form larger inflorescence and floral meristems. An increased size of the WUS domain and enhanced primordia formation indicate a dual function for cytokinin in defining the stem cell niche and delaying cellular differentiation. Consistent with this, mutation of a negative regulator gene of cytokinin signaling, ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6, which is expressed at the meristem flanks, caused a further delay of differentiation. Terminal cellular differentiation was also retarded in ckx3 ckx5 flowers, which formed more cells and became larger, corroborating the role of cytokinin in regulating flower organ size. Furthermore, higher activity of the ckx3 ckx5 placenta tissue established supernumerary ovules leading to an increased seed set per silique. Together, the results underpin the important role of cytokinin in reproductive development. The increased cytokinin content caused an ~55% increase in seed yield, highlighting the relevance of sink strength as a yield factor. PMID:21224426

  12. Stem cell technology for drug discovery and development.

    PubMed

    Hook, Lilian A

    2012-04-01

    Stem cells have enormous potential to revolutionise the drug discovery process at all stages, from target identification through to toxicology studies. Their ability to generate physiologically relevant cells in limitless supply makes them an attractive alternative to currently used recombinant cell lines or primary cells. However, realisation of the full potential of stem cells is currently hampered by the difficulty in routinely directing stem cell differentiation to reproducibly and cost effectively generate pure populations of specific cell types. In this article we discuss how stem cells have already been used in the drug discovery process and how novel technologies, particularly in relation to stem cell differentiation, can be applied to attain widespread adoption of stem cell technology by the pharmaceutical industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. College Students' Conceptions of Stem Cells, Stem Cell Research, and Cloning

    NASA Astrophysics Data System (ADS)

    Concannon, James P.; Siegel, Marcelle A.; Halverson, Kristy; Freyermuth, Sharyn

    2010-04-01

    In this study, we examined 96 undergraduate non-science majors' conceptions of stem cells, stem cell research, and cloning. This study was performed at a large, Midwest, research extensive university. Participants in the study were asked to answer 23 questions relating to stem cells, stem cell research, and cloning in an on-line assessment before and after instruction. Two goals of the instruction were to: (1) help students construct accurate scientific ideas, and (2) enhance their reasoning about socioscientific issues. The course structure included interactive lectures, case discussions, hands-on activities, and independent projects. Overall, students' understandings of stem cells, stem cell research, and cloning increased from pre-test to post-test. For example, on the post-test, students gained knowledge concerning the age of an organism related to the type of stem cell it possesses. However, we found that some incorrect ideas that were evident on the pre-test persisted after instruction. For example, before and after instruction several students maintained the idea that stem cells can currently be used to produce organs.

  14. Advances and Prospects in Stem Cells for Cartilage Regeneration

    PubMed Central

    Wang, Mingjie; Yuan, Zhiguo; Ma, Ning; Hao, Chunxiang; Guo, Weimin; Zou, Gengyi; Zhang, Yu; Chen, Mingxue; Gao, Shuang; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Xu, Wenjing; Lu, Shibi

    2017-01-01

    The histological features of cartilage call attention to the fact that cartilage has a little capacity to repair itself owing to the lack of a blood supply, nerves, or lymphangion. Stem cells have emerged as a promising option in the field of cartilage tissue engineering and regenerative medicine and could lead to cartilage repair. Much research has examined cartilage regeneration utilizing stem cells. However, both the potential and the limitations of this procedure remain controversial. This review presents a summary of emerging trends with regard to using stem cells in cartilage tissue engineering and regenerative medicine. In particular, it focuses on the characterization of cartilage stem cells, the chondrogenic differentiation of stem cells, and the various strategies and approaches involving stem cells that have been used in cartilage repair and clinical studies. Based on the research into chondrocyte and stem cell technologies, this review discusses the damage and repair of cartilage and the clinical application of stem cells, with a view to increasing our systematic understanding of the application of stem cells in cartilage regeneration; additionally, several advanced strategies for cartilage repair are discussed. PMID:28246531

  15. Stem Cell-Derived Exosome in Cardiovascular Diseases: Macro Roles of Micro Particles.

    PubMed

    Yuan, Ye; Du, Weijie; Liu, Jiaqi; Ma, Wenya; Zhang, Lai; Du, Zhimin; Cai, Benzhi

    2018-01-01

    The stem cell-based therapy has emerged as the promising therapeutic strategies for cardiovascular diseases (CVDs). Recently, increasing evidence suggest stem cell-derived active exosomes are important communicators among cells in the heart via delivering specific substances to the adjacent/distant target cells. These exosomes and their contents such as certain proteins, miRNAs and lncRNAs exhibit huge beneficial effects on preventing heart damage and promoting cardiac repair. More importantly, stem cell-derived exosomes are more effective and safer than stem cell transplantation. Therefore, administration of stem cell-derived exosomes will expectantly be an alternative stem cell-based therapy for the treatment of CVDs. Furthermore, modification of stem cell-derived exosomes or artificial synthesis of exosomes will be the new therapeutic tools for CVDs in the future. In addition, stem cell-derived exosomes also have been implicated in the diagnosis and prognosis of CVDs. In this review, we summarize the current advances of stem cell-derived exosome-based treatment and prognosis for CVDs, including their potential benefits, underlying mechanisms and limitations, which will provide novel insights of exosomes as a new tool in clinical therapeutic translation in the future.

  16. Stem cells and reproduction.

    PubMed

    Du, Hongling; Taylor, Hugh S

    2010-06-01

    To review the latest developments in reproductive tract stem cell biology. In 2004, two studies indicated that ovaries contain stem cells which form oocytes in adults and that can be cultured in vitro into mature oocytes. A live birth after orthotopic transplantation of cryopreserved ovarian tissue in a woman whose ovaries were damaged by chemotherapy demonstrates the clinical potential of these cells. In the same year, another study provided novel evidence of endometrial regeneration by stem cells in women who received bone marrow transplants. This finding has potential for the use in treatment of uterine disorders. It also supports a new theory for the cause of endometriosis, which may have its origin in ectopic transdifferentiation of stem cells. Several recent studies have demonstrated that fetal cells enter the maternal circulation and generate microchimerism in the mother. The uterus is a dynamic organ permeable to fetal stem cells, capable of transdifferentiation and an end organ in which bone marrow stem cells may differentiate. Finally stem cell transformation can be an underlying cause of ovarian cancer. Whereas we are just beginning to understand stem cells, the potential implications of stem cells to reproductive biology and medicine are apparent.

  17. Biliary tract cancer stem cells - translational options and challenges

    PubMed Central

    Mayr, Christian; Ocker, Matthias; Ritter, Markus; Pichler, Martin; Neureiter, Daniel; Kiesslich, Tobias

    2017-01-01

    Management of biliary tract cancer remains challenging. Tumors show high recurrence rates and therapeutic resistance, leading to dismal prognosis and short survival. The cancer stem cell model states that a tumor is a heterogeneous conglomerate of cells, in which a certain subpopulation of cells - the cancer stem cells - possesses stem cell properties. Cancer stem cells have high clinical relevance due to their potential contributions to development, progression and aggressiveness as well as recurrence and metastasis of malignant tumors. Consequently, reliable identification of as well as pharmacological intervention with cancer stem cells is an intensively investigated and promising research field. The involvement of cancer stem cells in biliary tract cancer is likely as a number of studies demonstrated their existence and the obvious clinical relevance of several established cancer stem cell markers in biliary tract cancer models and tissues. In the present article, we review and discuss the currently available literature addressing the role of putative cancer stem cells in biliary tract cancer as well as the connection between known contributors of biliary tract tumorigenesis such as oncogenic signaling pathways, micro-RNAs and the tumor microenvironment with cancer stem cells. PMID:28465631

  18. Ultraviolet Radiation-Induced Skin Aging: The Role of DNA Damage and Oxidative Stress in Epidermal Stem Cell Damage Mediated Skin Aging

    PubMed Central

    Panich, Uraiwan; Sittithumcharee, Gunya; Rathviboon, Natwarath

    2016-01-01

    Skin is the largest human organ. Skin continually reconstructs itself to ensure its viability, integrity, and ability to provide protection for the body. Some areas of skin are continuously exposed to a variety of environmental stressors that can inflict direct and indirect damage to skin cell DNA. Skin homeostasis is maintained by mesenchymal stem cells in inner layer dermis and epidermal stem cells (ESCs) in the outer layer epidermis. Reduction of skin stem cell number and function has been linked to impaired skin homeostasis (e.g., skin premature aging and skin cancers). Skin stem cells, with self-renewal capability and multipotency, are frequently affected by environment. Ultraviolet radiation (UVR), a major cause of stem cell DNA damage, can contribute to depletion of stem cells (ESCs and mesenchymal stem cells) and damage of stem cell niche, eventually leading to photoinduced skin aging. In this review, we discuss the role of UV-induced DNA damage and oxidative stress in the skin stem cell aging in order to gain insights into the pathogenesis and develop a way to reduce photoaging of skin cells. PMID:27148370

  19. Identification of Metastatic Tumor Stem Cell

    DTIC Science & Technology

    2010-09-01

    addition to a tumor stem cell , an existence of a metastatic stem cell is predicted. Despite the critical importance of the concept, this idea has not been...isolating stem cell population from a unique set of breast tumor cell lines and by examining their metastatic behavior in an animal model. The overall...will (i) isolate stem - cell population from non-metastatic and metastatic cells of a pair of syngenic breast tumor cell lines, and test their metastatic

  20. Roles of neural stem cells in the repair of peripheral nerve injury.

    PubMed

    Wang, Chong; Lu, Chang-Feng; Peng, Jiang; Hu, Cheng-Dong; Wang, Yu

    2017-12-01

    Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article reviews recent research progress of the role of neural stem cells in the repair of peripheral nerve injury. Neural stem cells can not only differentiate into neurons, astrocytes and oligodendrocytes, but can also differentiate into Schwann-like cells, which promote neurite outgrowth around the injury. Transplanted neural stem cells can differentiate into motor neurons that innervate muscles and promote the recovery of neurological function. To promote the repair of peripheral nerve injury, neural stem cells secrete various neurotrophic factors, including brain-derived neurotrophic factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor and hepatocyte growth factor. In addition, neural stem cells also promote regeneration of the axonal myelin sheath, angiogenesis, and immune regulation. It can be concluded that neural stem cells promote the repair of peripheral nerve injury through a variety of ways.

  1. Day-night cycles and the sleep-promoting factor, Sleepless, affect stem cell activity in the Drosophila testis.

    PubMed

    Tulina, Natalia M; Chen, Wen-Feng; Chen, Jung Hsuan; Sowcik, Mallory; Sehgal, Amita

    2014-02-25

    Adult stem cells maintain tissue integrity and function by renewing cellular content of the organism through regulated mitotic divisions. Previous studies showed that stem cell activity is affected by local, systemic, and environmental cues. Here, we explore a role of environmental day-night cycles in modulating cell cycle progression in populations of adult stem cells. Using a classic stem cell system, the Drosophila spermatogonial stem cell niche, we reveal daily rhythms in division frequencies of germ-line and somatic stem cells that act cooperatively to produce male gametes. We also examine whether behavioral sleep-wake cycles, which are driven by the environmental day-night cycles, regulate stem cell function. We find that flies lacking the sleep-promoting factor Sleepless, which maintains normal sleep in Drosophila, have increased germ-line stem cell (GSC) division rates, and this effect is mediated, in part, through a GABAergic signaling pathway. We suggest that alterations in sleep can influence the daily dynamics of GSC divisions.

  2. IL-17B activated mesenchymal stem cells enhance proliferation and migration of gastric cancer cells.

    PubMed

    Bie, Qingli; Zhang, Bin; Sun, Caixia; Ji, Xiaoyun; Barnie, Prince Amoah; Qi, Chen; Peng, Jingjing; Zhang, Danyi; Zheng, Dong; Su, Zhaoliang; Wang, Shengjun; Xu, Huaxi

    2017-03-21

    Mesenchymal stem cells are important cells in tumor microenvironment. We have previously demonstrated that IL-17B/IL-17RB signal promoted progression of gastric cancer. In this study, we further explored the effect of IL-17B on mesenchymal stem cells in tumor microenvironment and its impact on the tumor progression. The results showed that IL-17B induced the expression of stemness-related genes Nanog, Sox2, and Oct4 in mesenchymal stem cells and enhanced its tumor-promoting effect. The supernatant from cultured mesenchymal stem cells after treating with exogenous rIL-17B promoted the proliferation and migration of MGC-803, therefor suggesting that rIL-17B might promote mesenchymal stem cells to produce soluble factors. In addition, rIL-17B also activated the NF-κΒ, STAT3, β-catenin pathway in mesenchymal stem cells. Our data revealed a new mechanism that IL-17B enhanced the progression of gastric cancer by activating mesenchymal stem cells.

  3. A Phenotype-Based RNAi Screening for Ras-ERK/MAPK Signaling-Associated Stem Cell Regulators in C. elegans.

    PubMed

    Lee, Myon-Hee; Yoon, Dong Suk

    2017-01-01

    Stem cells have the ability to self-renew and to generate differentiated cell types. A regulatory network that controls this balance is critical for stem cell homeostasis and normal animal development. Particularly, Ras-ERK/MAPK signaling pathway is critical for stem cell self-renewal and differentiation in mammals, including humans. Aberrant regulation of Ras-ERK/MAPK signaling pathway results in either stem cell or overproliferation. Therefore, the identification of Ras-ERK/MAPK signaling pathway-associated regulators is critical to understand the mechanism of stem cell (possibly cancer stem cell) control. In this report, using the nematode C. elegans mutants, we developed a methodology for a phenotype-based RNAi screening that identifies stem cell regulator genes associated with Ras-ERK/MAPK signaling within the context of a whole organism. Importantly, this phenotype-based RNAi screening can be applied for other stem cell-associated signaling pathways such as Wnt/β-catenin and Notch using the C. elegans.

  4. Adipose-derived mesenchymal stem cells and regenerative medicine.

    PubMed

    Konno, Masamitsu; Hamabe, Atsushi; Hasegawa, Shinichiro; Ogawa, Hisataka; Fukusumi, Takahito; Nishikawa, Shimpei; Ohta, Katsuya; Kano, Yoshihiro; Ozaki, Miyuki; Noguchi, Yuko; Sakai, Daisuke; Kudoh, Toshihiro; Kawamoto, Koichi; Eguchi, Hidetoshi; Satoh, Taroh; Tanemura, Masahiro; Nagano, Hiroaki; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2013-04-01

    Adipose tissue-derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow-derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells. Therefore, ADSCs are a useful resource for drug screening and regenerative medicine. Here we present the methods and mechanisms underlying the induction of multilineage cells from ADSCs. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  5. A dual role of p21 in stem cell aging.

    PubMed

    Ju, Zhenyu; Choudhury, Aaheli Roy; Rudolph, K Lenhard

    2007-04-01

    A decline in adult stem cell function occurs during aging, likely contributing to the decline in organ homeostasis and regeneration with age. An emerging field in aging research is to analyze molecular pathways limiting adult stem cell function in response to macromolecular damage accumulation during aging. Current data suggest that the p21 cell cycle inhibitor has a dual role in stem cell aging: On one hand, p21 protects adult stem cells from acute genotoxic stress by preventing inappropriate cycling of acutely damaged stem cells. On the other hand, p21 activation impairs stem cell function and survival of aging telomere dysfunctional mice indicating that p21 checkpoint function is disadvantageous in the context of chronic and persistent damage, which accumulates during aging. This article focuses on these dual roles of p21 in aging stem cells.

  6. Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology.

    PubMed

    Ogilvie, Jane E; Griffin, Sean R; Gezon, Zachariah J; Inouye, Brian D; Underwood, Nora; Inouye, David W; Irwin, Rebecca E

    2017-12-01

    Climate change can influence consumer populations both directly, by affecting survival and reproduction, and indirectly, by altering resources. However, little is known about the relative importance of direct and indirect effects, particularly for species important to ecosystem functioning, like pollinators. We used structural equation modelling to test the importance of direct and indirect (via floral resources) climate effects on the interannual abundance of three subalpine bumble bee species. In addition, we used long-term data to examine how climate and floral resources have changed over time. Over 8 years, bee abundances were driven primarily by the indirect effects of climate on the temporal distribution of floral resources. Over 43 years, aspects of floral phenology changed in ways that indicate species-specific effects on bees. Our study suggests that climate-driven alterations in floral resource phenology can play a critical role in governing bee population responses to global change. © 2017 John Wiley & Sons Ltd/CNRS.

  7. Pollen sensitivity to ultraviolet-B (UV-B) suggests floral structure evolution in alpine plants.

    PubMed

    Zhang, Chan; Yang, Yong-Ping; Duan, Yuan-Wen

    2014-03-31

    Various biotic and abiotic factors are known to exert selection pressures on floral traits, but the influence of ultraviolet-B (UV-B) light on the evolution of flower structure remains relatively unexplored. We have examined the effectiveness of flower structure in blocking radiation and the effects of UV-B on pollen viability in 42 species of alpine plants in the Hengduan Mountains, China. Floral forms were categorized as either protecting or exposing pollen grains to UV-B. The floral materials of plants with exposed and protected pollen grains were able to block UV-B at similar levels. Exposure to UV-B radiation in vitro resulted in a significantly greater loss of viability in pollen from plant species with protective floral structures. The pronounced sensitivity of protected pollen to UV-B radiation was associated with the type of flower structure. These findings demonstrate that UV-B plays an important role in the evolution of protective floral forms in alpine plants.

  8. Stem Cell Pathology.

    PubMed

    Fu, Dah-Jiun; Miller, Andrew D; Southard, Teresa L; Flesken-Nikitin, Andrea; Ellenson, Lora H; Nikitin, Alexander Yu

    2018-01-24

    Rapid advances in stem cell biology and regenerative medicine have opened new opportunities for better understanding disease pathogenesis and the development of new diagnostic, prognostic, and treatment approaches. Many stem cell niches are well defined anatomically, thereby allowing their routine pathological evaluation during disease initiation and progression. Evaluation of the consequences of genetic manipulations in stem cells and investigation of the roles of stem cells in regenerative medicine and pathogenesis of various diseases such as cancer require significant expertise in pathology for accurate interpretation of novel findings. Therefore, there is an urgent need for developing stem cell pathology as a discipline to facilitate stem cell research and regenerative medicine. This review provides examples of anatomically defined niches suitable for evaluation by diagnostic pathologists, describes neoplastic lesions associated with them, and discusses further directions of stem cell pathology.

  9. The clinical use of regenerative therapy in COPD

    PubMed Central

    Lipsi, Roberto; Rogliani, Paola; Calzetta, Luigino; Segreti, Andrea; Cazzola, Mario

    2014-01-01

    Regenerative or stem cell therapy is an emerging field of treatment based on stimulation of endogenous resident stem cells or administration of exogenous stem cells to treat diseases or injury and to replace malfunctioning or damaged tissues. Current evidence suggests that in the lung, these cells may participate in tissue homeostasis and regeneration after injury. Animal and human studies have demonstrated that tissue-specific stem cells and bone marrow-derived cells contribute to lung tissue regeneration and protection, and thus administration of exogenous stem/progenitor cells or humoral factors responsible for the activation of endogenous stem/progenitor cells may be a potent next-generation therapy for chronic obstructive pulmonary disease. The use of bone marrow-derived stem cells could allow repairing and regenerate the damaged tissue present in chronic obstructive pulmonary disease by means of their engraftment into the lung. Another approach could be the stimulation of resident stem cells by means of humoral factors or photobiostimulation. PMID:25548520

  10. Plant stem cell niches.

    PubMed

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  11. Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M.

    PubMed

    Sampath, Srinath C; Sampath, Srihari C; Ho, Andrew T V; Corbel, Stéphane Y; Millstone, Joshua D; Lamb, John; Walker, John; Kinzel, Bernd; Schmedt, Christian; Blau, Helen M

    2018-04-18

    The balance between stem cell quiescence and proliferation in skeletal muscle is tightly controlled, but perturbed in a variety of disease states. Despite progress in identifying activators of stem cell proliferation, the niche factor(s) responsible for quiescence induction remain unclear. Here we report an in vivo imaging-based screen which identifies Oncostatin M (OSM), a member of the interleukin-6 family of cytokines, as a potent inducer of muscle stem cell (MuSC, satellite cell) quiescence. OSM is produced by muscle fibers, induces reversible MuSC cell cycle exit, and maintains stem cell regenerative capacity as judged by serial transplantation. Conditional OSM receptor deletion in satellite cells leads to stem cell depletion and impaired regeneration following injury. These results identify Oncostatin M as a secreted niche factor responsible for quiescence induction, and for the first time establish a direct connection between induction of quiescence, stemness, and transplantation potential in solid organ stem cells.

  12. Nuclear Mechanics and Stem Cell Differentiation.

    PubMed

    Mao, Xinjian; Gavara, Nuria; Song, Guanbin

    2015-12-01

    Stem cells are characterized by their self-renewal and multi-lineage differentiation potential. Stem cell differentiation is a prerequisite for the application of stem cells in regenerative medicine and clinical therapy. In addition to chemical stimulation, mechanical cues play a significant role in regulating stem cell differentiation. The integrity of mechanical sensors is necessary for the ability of cells to respond to mechanical signals. The nucleus, the largest and stiffest cellular organelle, interacts with the cytoskeleton as a key mediator of cell mechanics. Nuclear mechanics are involved in the complicated interactions of lamins, chromatin and nucleoskeleton-related proteins. Thus, stem cell differentiation is intimately associated with nuclear mechanics due to its indispensable role in mechanotransduction and mechanical response. This paper reviews several main contributions of nuclear mechanics, highlights the hallmarks of the nuclear mechanics of stem cells, and provides insight into the relationship between nuclear mechanics and stem cell differentiation, which may guide clinical applications in the future.

  13. Parthenogenesis-derived Multipotent Stem Cells Adapted for Tissue Engineering Applications

    PubMed Central

    Koh, Chester J.; Delo, Dawn M.; Lee, Jang Won; Siddiqui, M. Minhaj; Lanza, Robert P.; Soker, Shay; Yoo, James J.; Atala, Anthony

    2009-01-01

    Embryonic stem cells are envisioned as a viable source of pluripotent cells for use in regenerative medicine applications when donor tissue is not available. However, most current harvest techniques for embryonic stem cells require the destruction of embryos, which has led to significant political and ethical limitations on their usage. Parthenogenesis, the process by which an egg can develop into an embryo in the absence of sperm, may be a potential source of embryonic stem cells that may avoid some of the political and ethical concerns surrounding embryonic stem cells. Here we provide the technical aspects of embryonic stem cell isolation and expansion from the parthenogenetic activation of oocytes. These cells were characterized for their stem-cell properties. In addition, these cells were induced to differentiate to the myogenic, osteogenic, adipogenic, and endothelial lineages, and were able to form muscle-like and bony-like tissue in vivo. Furthermore, parthenogenetic stem cells were able to integrate into injured muscle tissue. Together, these results demonstrate that parthenogenetic stem cells can be successfully isolated and utilized for various tissue engineering applications. PMID:18799133

  14. The human stem cell hierarchy is defined by a functional dependence on Mcl-1 for self-renewal capacity.

    PubMed

    Campbell, Clinton J V; Lee, Jung Bok; Levadoux-Martin, Marilyne; Wynder, Tracy; Xenocostas, Anargyros; Leber, Brian; Bhatia, Mickie

    2010-09-02

    The molecular basis for the unique proliferative and self-renewal properties that hierarchically distinguish human stem cells from progenitors and terminally differentiated cells remains largely unknown. We report a role for the Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) as an indispensable regulator of self-renewal in human stem cells and show that a functional dependence on Mcl-1 defines the human stem cell hierarchy. In vivo pharmacologic targeting of the Bcl-2 family members in human hematopoietic stem cells (HSCs) and human leukemic stem cells reduced stem cell regenerative and self-renewal function. Subsequent protein expression studies showed that, among the Bcl-2 family members, only Mcl-1 was up-regulated exclusively in the human HSC fraction on in vivo regeneration of hematopoiesis. Short hairpin RNA-knockdown of Mcl-1 in human cord blood cells did not affect survival in the HSC or hematopoietic progenitor cell fractions in vitro but specifically reduced the in vivo self-renewal function of human HSCs. Moreover, knockdown of Mcl-1 in ontogenetically primitive human pluripotent stem cells resulted in almost complete ablation of stem cell self-renewal function. Our findings show that Mcl-1 is an essential regulator of stem cell self-renewal in humans and therefore represents an axis for therapeutic interventions.

  15. Fake news portrayals of stem cells and stem cell research.

    PubMed

    Marcon, Alessandro R; Murdoch, Blake; Caulfield, Timothy

    2017-10-01

    This study examines how stem cells and stem cell research are portrayed on websites deemed to be purveyors of distorted and dubious information. Content analysis was conducted on 224 articles from 2015 to 2016, compiled by searching with the keywords 'stem cell(s)' on a list of websites flagged for containing either 'fake' or 'junk science' news. Articles contained various exaggerated positive and negative claims about stem cells and stem cell science, health and science related conspiracy theories, and statements promoting fear and mistrust of conventional medicine. Findings demonstrate the existence of organized misinformation networks, which may lead the public away from accurate information and facilitate a polarization of public discourse.

  16. Skin appendage-derived stem cells: cell biology and potential for wound repair.

    PubMed

    Xie, Jiangfan; Yao, Bin; Han, Yutong; Huang, Sha; Fu, Xiaobing

    2016-01-01

    Stem cells residing in the epidermis and skin appendages are imperative for skin homeostasis and regeneration. These stem cells also participate in the repair of the epidermis after injuries, inducing restoration of tissue integrity and function of damaged tissue. Unlike epidermis-derived stem cells, comprehensive knowledge about skin appendage-derived stem cells remains limited. In this review, we summarize the current knowledge of skin appendage-derived stem cells, including their fundamental characteristics, their preferentially expressed biomarkers, and their potential contribution involved in wound repair. Finally, we will also discuss current strategies, future applications, and limitations of these stem cells, attempting to provide some perspectives on optimizing the available therapy in cutaneous repair and regeneration.

  17. Paracrine Engineering of Human Explant-Derived Cardiac Stem Cells to Over-Express Stromal-Cell Derived Factor 1α Enhances Myocardial Repair.

    PubMed

    Tilokee, Everad L; Latham, Nicholas; Jackson, Robyn; Mayfield, Audrey E; Ye, Bin; Mount, Seth; Lam, Buu-Khanh; Suuronen, Erik J; Ruel, Marc; Stewart, Duncan J; Davis, Darryl R

    2016-07-01

    First generation cardiac stem cell products provide indirect cardiac repair but variably produce key cardioprotective cytokines, such as stromal-cell derived factor 1α, which opens the prospect of maximizing up-front paracrine-mediated repair. The mesenchymal subpopulation within explant derived human cardiac stem cells underwent lentiviral mediated gene transfer of stromal-cell derived factor 1α. Unlike previous unsuccessful attempts to increase efficacy by boosting the paracrine signature of cardiac stem cells, cytokine profiling revealed that stromal-cell derived factor 1α over-expression prevented lv-mediated "loss of cytokines" through autocrine stimulation of CXCR4+ cardiac stem cells. Stromal-cell derived factor 1α enhanced angiogenesis and stem cell recruitment while priming cardiac stem cells to readily adopt a cardiac identity. As compared to injection with unmodified cardiac stem cells, transplant of stromal-cell derived factor 1α enhanced cells into immunodeficient mice improved myocardial function and angiogenesis while reducing scarring. Increases in myocardial stromal-cell derived factor 1α content paralleled reductions in myocyte apoptosis but did not influence long-term engraftment or the fate of transplanted cells. Transplantation of stromal-cell derived factor 1α transduced cardiac stem cells increased the generation of new myocytes, recruitment of bone marrow cells, new myocyte/vessel formation and the salvage of reversibly damaged myocardium to enhance cardiac repair after experimental infarction. Stem Cells 2016;34:1826-1835. © 2016 AlphaMed Press.

  18. Basic Science and Clinical Application of Stem Cells in Veterinary Medicine

    NASA Astrophysics Data System (ADS)

    Ribitsch, I.; Burk, J.; Delling, U.; Geißler, C.; Gittel, C.; Jülke, H.; Brehm, W.

    Stem cells play an important role in veterinary medicine in different ways. Currently several stem cell therapies for animal patients are being developed and some, like the treatment of equine tendinopathies with mesenchymal stem cells (MSCs), have already successfully entered the market. Moreover, animal models are widely used to study the properties and potential of stem cells for possible future applications in human medicine. Therefore, in the young and emerging field of stem cell research, human and veterinary medicine are intrinsically tied to one another. Many of the pioneering innovations in the field of stem cell research are achieved by cooperating teams of human and veterinary medical scientists.

  19. CD34+ Testicular Stromal Cells Support Long-Term Expansion of Embryonic and Adult Stem and Progenitor Cells

    PubMed Central

    Kim, Jiyeon; Seandel, Marco; Falciatori, Ilaria; Wen, Duancheng; Rafii, Shahin

    2010-01-01

    Stem cells reside in specialized microenvironments created by supporting stromal cells that orchestrate self-renewal and lineage-specific differentiation. However, the precise identity of the cellular and molecular pathways that support self-renewal of stem cells is not known. For example, long-term culture of prototypical stem cells, such as adult spermatogonial stem and progenitor cells (SPCs), in vitro has been impeded by the lack of an optimal stromal cell line that initiates and sustains proliferation of these cells. Indeed, current methods, including the use of mouse embryonic fibroblasts (MEFs), have not been efficient and have generally led to inconsistent results. Here, we report the establishment of a novel CD34-positive cell line, referred to as JK1, derived from mouse testicular stromal cells that not only facilitated long-term SPC culture but also allowed faithful generation of SPCs and multipotent stem cells. SPCs generated on JK1 maintained key features of germ line stem cells, including expression of PLZF, DAZL, and GCNA. Furthermore, these feeders also promoted the long-term cultivation of other types of primitive cells including multi-potent adult spermatogonial-derived stem cells, pluripotent murine embryonic stem cells, and embryonic germ cells derived from primordial germ cells. Stem cells could be passaged serially and still maintained expression of characteristic markers such as OCT4 and NANOG in vitro, as well as the ability to generate all three germ layers in vivo. These results indicate that the JK1 cell line is capable of promoting long-term culture of primitive cells. As such, this cell line allows for identification of stromal-derived factors that support long-term proliferation of various types of stem cells and constitutes a convenient alternative to other types of feeder layers. PMID:18669907

  20. Personalizing Stem Cell Research and Therapy: The Arduous Road Ahead or Missed Opportunity?

    PubMed Central

    Patel, S.A.; King, C.C.; Lim, P.K.; Habiba, U.; Dave, M.; Porecha, R.; Rameshwar, P.

    2010-01-01

    The euphoria of stem cell therapy has diminished, allowing scientists, clinicians and the general public to seriously re-examine how and what types of stem cells would effectively repair damaged tissue, prevent further tissue damage and/or replace lost cells. Importantly, there is a growing recognition that there are substantial person-to-person differences in the outcome of stem cell therapy. Even though the small molecule pharmaceuticals have long remained a primary focus of the personalized medicine research, individualized or targeted use of stem cells to suit a particular individual could help forecast potential failures of the therapy or identify, early on, the individuals who might benefit from stem cell interventions. This would however demand collaboration among several specialties such as pharmacology, immunology, genomics and transplantation medicine. Such transdisciplinary work could also inform how best to achieve efficient and predictable stem cell migration to sites of tissue damage, thereby facilitating tissue repair. This paper discusses the possibility of polarizing immune responses to rationalize and individualize therapy with stem cell interventions, since generalized “one-size-fits-all” therapy is difficult to achieve in the face of the diverse complexities posed by stem cell biology. We also present the challenges to stem cell delivery in the context of the host related factors. Although we focus on the mesenchymal stem cells in this paper, the overarching rationale can be extrapolated to other types of stem cells as well. Hence, the broader purpose of this paper is to initiate a dialogue within the personalized medicine community by expanding the scope of inquiry in the field from pharmaceuticals to stem cells and related cell-based health interventions. PMID:20563265

  1. Genetics of Gonadal Stem Cell Renewal

    PubMed Central

    Greenspan, Leah Joy; de Cuevas, Margaret

    2015-01-01

    Stem cells are necessary for the maintenance of many adult tissues. Signals within the stem cell microenvironment, or niche, regulate the self-renewal and differentiation capability of these cells. Misregulation of these signals through mutation or damage can lead to overgrowth or depletion of different stem cell pools. In this review, we focus on the Drosophila testis and ovary, both of which contain well-defined niches, as well as the mouse testis, which has become a more approachable stem cell system with recent technical advances. We discuss the signals that regulate gonadal stem cells in their niches, how these signals mediate self-renewal and differentiation under homeostatic conditions, and how stress, whether from mutations or damage, can cause changes in cell fate and drive stem cell competition. PMID:26355592

  2. Multifaceted Roles of Connexin 43 in Stem Cell Niches.

    PubMed

    Genet, Nafiisha; Bhatt, Neha; Bourdieu, Antonin; Hirschi, Karen K

    2018-01-01

    Considerable progress has been made in the field of stem cell research; nonetheless, the use of stem cells for regenerative medicine therapies, for either endogenous tissue repair or cellular grafts post injury, remains a challenge. To better understand how to maintain stem cell potential in vivo and promote differentiation ex vivo, it is fundamentally important to elucidate the interactions between stem cells and their surrounding partners within their distinct niches. Among the vast array of proteins depicted as mediators for cell-to-cell interactions, connexin-comprised gap junctions play pivotal roles in the regulation of stem cell fate both in vivo and in vitro. This review summarizes and illustrates the current knowledge regarding the multifaceted roles of Cx43, specifically, in various stem cell niches.

  3. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    DTIC Science & Technology

    2015-07-01

    dominant role over some oncogene function.In addition, we recently reported that cancer stem cells (CSCs)- stem cell like cells in tumors that have stem ... cell properties and tumor initiating ability- retain epigenetic memories of their cells of origin (Chow et al., 2014). We showed that CSCs derived from

  4. Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing.

    PubMed

    Ahn, Eun Hyun; Hirohata, Kensen; Kohrn, Brendan F; Fox, Edward J; Chang, Chia-Cheng; Loeb, Lawrence A

    2015-01-01

    Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic) mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS) methods have high error rates. We have established a new method termed Duplex Sequencing (DS), which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G) are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G) are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles.

  5. Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome.

    PubMed

    Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M

    2018-02-01

    Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue. Additionally, mesenchymal stem cells differently modulated the secretion of biomarkers by macrophages depending on their source. Mesenchymal stem cells from different sources led to variable responses in lungs and distal organs. Bone marrow and adipose tissue mesenchymal stem cells yielded greater beneficial effects than lung tissue mesenchymal stem cells. These findings may be regarded as promising in clinical trials.

  6. Floral trait variation and integration as a function of sexual deception in Gorteria diffusa.

    PubMed

    Ellis, Allan G; Brockington, Samuel F; de Jager, Marinus L; Mellers, Gregory; Walker, Rachel H; Glover, Beverley J

    2014-08-19

    Phenotypic integration, the coordinated covariance of suites of morphological traits, is critical for proper functioning of organisms. Angiosperm flowers are complex structures comprising suites of traits that function together to achieve effective pollen transfer. Floral integration could reflect shared genetic and developmental control of these traits, or could arise through pollinator-imposed stabilizing correlational selection on traits. We sought to expose mechanisms underlying floral trait integration in the sexually deceptive daisy, Gorteria diffusa, by testing the hypothesis that stabilizing selection imposed by male pollinators on floral traits involved in mimicry has resulted in tighter integration. To do this, we quantified patterns of floral trait variance and covariance in morphologically divergent G. diffusa floral forms representing a continuum in the levels of sexual deception. We show that integration of traits functioning in visual attraction of male pollinators increases with pollinator deception, and is stronger than integration of non-mimicry trait modules. Consistent patterns of within-population trait variance and covariance across floral forms suggest that integration has not been built by stabilizing correlational selection on genetically independent traits. Instead pollinator specialization has selected for tightened integration within modules of linked traits. Despite potentially strong constraint on morphological evolution imposed by developmental genetic linkages between traits, we demonstrate substantial divergence in traits across G. diffusa floral forms and show that divergence has often occurred without altering within-population patterns of trait correlations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. The evolution of floral sonication, a pollen foraging behavior used by bees (Anthophila).

    PubMed

    Cardinal, Sophie; Buchmann, Stephen L; Russell, Avery L

    2018-03-01

    Over 22,000 species of biotically pollinated flowering plants, including some major agricultural crops, depend primarily on bees capable of floral sonication for pollination services. The ability to sonicate ("buzz") flowers is widespread in bees but not ubiquitous. Despite the prevalence of this pollinator behavior and its importance to natural and agricultural systems, the evolutionary history of floral sonication in bees has not been previously studied. Here, we reconstruct the evolutionary history of floral sonication in bees by generating a time-calibrated phylogeny and reconstructing ancestral states for this pollen extraction behavior. We also test the hypothesis that the ability to sonicate flowers and thereby efficiently access pollen from a diverse assemblage of plant species, led to increased diversification among sonicating bee taxa. We find that floral sonication evolved on average 45 times within bees, possibly first during the Early Cretaceous (100-145 million years ago) in the common ancestor of bees. We find that sonicating lineages are significantly more species rich than nonsonicating sister lineages when comparing sister clades, but a probabilistic structured rate permutation on phylogenies approach failed to support the hypothesis that floral sonication is a key driver of bee diversification. This study provides the evolutionary framework needed to further study how floral sonication by bees may have facilitated the spread and common evolution of angiosperm species with poricidal floral morphology. © 2018 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  8. Rice MADS6 Interacts with the Floral Homeotic Genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in Specifying Floral Organ Identities and Meristem Fate[C][W][OA

    PubMed Central

    Li, Haifeng; Liang, Wanqi; Hu, Yun; Zhu, Lu; Yin, Changsong; Xu, Jie; Dreni, Ludovico; Kater, Martin M.; Zhang, Dabing

    2011-01-01

    AGAMOUS-LIKE6 (AGL6) genes play essential roles in flower development, but whether and how they work with floral organ identity genes remain less understood. Here, we describe interactions of the rice (Oryza sativa) AGL6 gene MADS6 with other rice floral homeotic genes in flower development. Genetic analyses revealed that MADS6 specifies the identity of the three inner whorls and floral meristem determinacy redundantly with SUPERWOMAN1/MADS16 (B-gene) or MADS3 (C-gene). MADS6 was shown to define carpel/ovule development and floral determinacy by interacting with MADS13 (D-gene) and control the palea and floral meristem identities together with the YABBY gene DROOPING LEAF. Expression analyses revealed that the transcript levels of six B-, C-, and E-class genes were reduced in mads6-1 at the early flower developmental stage, suggesting that MADS6 is a key regulator of early flower development. Moreover, MADS6 can directly bind to a putative regulatory motif on MADS58 (C-gene), and mads6-1 mads58 displayed phenotypes similar to that of mads6-1. These results suggest that MADS6 is a key player in specifying flower development via interacting with other floral homeotic genes in rice, thus providing new insights into the mechanism by which flower development is controlled. PMID:21784949

  9. The Role of Tumor Associated Macrophage in Recurrent Growth of Tumor Stem Cell

    DTIC Science & Technology

    2011-09-01

    recent cancer stem cell (CSC) theory, recurrent tumor must arise from a dormant tumor stem cell whose re-growth is triggered by shifting of...microenvironment. This project aims at clarifying the roles of TAM in recurrent growth of dormant stem cell in breast cancer. We hypothesize that the balance of...dormancy and recurrence is determined by the ability of the tumor stem cells to recruit TAM which in turn promotes self-renewal of the stem cell . We

  10. 3D modeling of cancer stem cell niche

    PubMed Central

    He, Jun; Xiong, Li; Li, Qinglong; Lin, Liangwu; Miao, Xiongying; Yan, Shichao; Hong, Zhangyong; Yang, Leping; Wen, Yu; Deng, Xiyun

    2018-01-01

    Cancer stem cells reside in a distinct microenvironment called niche. The reciprocal interactions between cancer stem cells and niche contribute to the maintenance and enrichment of cancer stem cells. In order to simulate the interactions between cancer stem cells and niche, three-dimensional models have been developed. These in vitro culture systems recapitulate the spatial dimension, cellular heterogeneity, and the molecular networks of the tumor microenvironment and show great promise in elucidating the pathophysiology of cancer stem cells and designing more clinically relavant treatment modalites. PMID:29416698

  11. Stem cells for the treatment of neurodegenerative diseases

    PubMed Central

    2010-01-01

    Stem cells offer an enormous pool of resources for the understanding of the human body. One proposed use of stem cells has been as an autologous therapy. The use of stem cells for neurodegenerative diseases has become of interest. Clinical applications of stem cells for Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis will increase in the coming years, and although great care will need to be taken when moving forward with prospective treatments, the application of stem cells is highly promising. PMID:21144012

  12. Stem Cell-based Tissue Engineering Approaches for Musculoskeletal Regeneration

    PubMed Central

    Brown, Patrick T.; Handorf, Andrew M.; Jeon, Won Bae; Li, Wan-Ju

    2014-01-01

    The field of regenerative medicine and tissue engineering is an ever evolving field that holds promise in treating numerous musculoskeletal diseases and injuries. An important impetus in the development of the field was the discovery and implementation of stem cells. The utilization of mesenchymal stem cells, and later embryonic and induced pluripotent stem cells, opens new arenas for tissue engineering and presents the potential of developing stem cell-based therapies for disease treatment. Multipotent and pluripotent stem cells can produce various lineage tissues, and allow for derivation of a tissue that may be comprised of multiple cell types. As the field grows, the combination of biomaterial scaffolds and bioreactors provides methods to create an environment for stem cells that better represent their microenvironment for new tissue formation. As technologies for the fabrication of biomaterial scaffolds advance, the ability of scaffolds to modulate stem cell behavior advances as well. The composition of scaffolds could be of natural or synthetic materials and could be tailored to enhance cell self-renewal and/or direct cell fates. In addition to biomaterial scaffolds, studies of tissue development and cellular microenvironments have determined other factors, such as growth factors and oxygen tension, that are crucial to the regulation of stem cell activity. The overarching goal of stem cell-based tissue engineering research is to precisely control differentiation of stem cells in culture. In this article, we review current developments in tissue engineering, focusing on several stem cell sources, induction factors including growth factors, oxygen tension, biomaterials, and mechanical stimulation, and the internal and external regulatory mechanisms that govern proliferation and differentiation. PMID:23432679

  13. Stem Cells for Skeletal Muscle Tissue Engineering.

    PubMed

    Pantelic, Molly N; Larkin, Lisa M

    2018-04-19

    Volumetric muscle loss (VML) is a debilitating condition wherein muscle loss overwhelms the body's normal physiological repair mechanism. VML is particularly common among military service members who have sustained war injuries. Because of the high social and medical cost associated with VML and suboptimal current surgical treatments, there is great interest in developing better VML therapies. Skeletal muscle tissue engineering (SMTE) is a promising alternative to traditional VML surgical treatments that use autogenic tissue grafts, and rather uses isolated stem cells with myogenic potential to generate de novo skeletal muscle tissues to treat VML. Satellite cells are the native precursors to skeletal muscle tissue, and are thus the most commonly studied starting source for SMTE. However, satellite cells are difficult to isolate and purify, and it is presently unknown whether they would be a practical source in clinical SMTE applications. Alternative myogenic stem cells, including adipose-derived stem cells, bone marrow-derived mesenchymal stem cells, perivascular stem cells, umbilical cord mesenchymal stem cells, induced pluripotent stem cells, and embryonic stem cells, each have myogenic potential and have been identified as possible starting sources for SMTE, although they have yet to be studied in detail for this purpose. These alternative stem cell varieties offer unique advantages and disadvantages that are worth exploring further to advance the SMTE field toward highly functional, safe, and practical VML treatments. The following review summarizes the current state of satellite cell-based SMTE, details the properties and practical advantages of alternative myogenic stem cells, and offers guidance to tissue engineers on how alternative myogenic stem cells can be incorporated into SMTE research.

  14. Ocular stem cells: a status update!

    PubMed Central

    2014-01-01

    Stem cells are unspecialized cells that have been a major focus of the field of regenerative medicine, opening new frontiers and regarded as the future of medicine. The ophthalmology branch of the medical sciences was the first to directly benefit from stem cells for regenerative treatment. The success stories of regenerative medicine in ophthalmology can be attributed to its accessibility, ease of follow-up and the eye being an immune-privileged organ. Cell-based therapies using stem cells from the ciliary body, iris and sclera are still in animal experimental stages but show potential for replacing degenerated photoreceptors. Limbal, corneal and conjunctival stem cells are still limited for use only for surface reconstruction, although they might have potential beyond this. Iris pigment epithelial, ciliary body epithelial and choroidal epithelial stem cells in laboratory studies have shown some promise for retinal or neural tissue replacement. Trabecular meshwork, orbital and sclera stem cells have properties identical to cells of mesenchymal origin but their potential has yet to be experimentally determined and validated. Retinal and retinal pigment epithelium stem cells remain the most sought out stem cells for curing retinal degenerative disorders, although treatments using them have resulted in variable outcomes. The functional aspects of the therapeutic application of lenticular stem cells are not known and need further attention. Recently, embryonic stem cell-derived retinal pigment epithelium has been used for treating patients with Stargardts disease and age-related macular degeneration. Overall, the different stem cells residing in different components of the eye have shown some success in clinical and animal studies in the field of regenerative medicine. PMID:25158127

  15. Maintenance of sweat glands by stem cells located in the acral epithelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohe, Shuichi; Department of Dermatology, Kansai Medical University, Osaka 573-1010; Tanaka, Toshihiro

    The skin is responsible for a variety of physiological functions and is critical for wound healing and repair. Therefore, the regenerative capacity of the skin is important. However, stem cells responsible for maintaining the acral epithelium had not previously been identified. In this study, we identified the specific stem cells in the acral epithelium that participate in the long-term maintenance of sweat glands, ducts, and interadnexal epidermis and that facilitate the regeneration of these structures following injury. Lgr6-positive cells and Bmi1-positive cells were found to function as long-term multipotent stem cells that maintained the entire eccrine unit and the interadnexalmore » epidermis. However, while Lgr6-positive cells were rapidly cycled and constantly supplied differentiated cells, Bmi1-positive cells were slow to cycle and occasionally entered the cell cycle under physiological conditions. Upon irradiation-induced injury, Bmi1-positive cells rapidly proliferated and regenerated injured epithelial tissue. Therefore, Bmi1-positive stem cells served as reservoir stem cells. Lgr5-positive cells were rapidly cycled and maintained only sweat glands; therefore, we concluded that these cells functioned as lineage-restricted progenitors. Taken together, our data demonstrated the identification of stem cells that maintained the entire acral epithelium and supported the different roles of three cellular classes. - Highlights: • The acral epithelium have two types of stem cells. • Lgr6-positive cells are rapid-cycling, short-term stem cells. • Bmi1-positive cells are slow-cycling stem cells that act as reserver stem cells. • Lgr5 may be a useful sweat gland marker in mice.« less

  16. Challenges and Opportunities to Harnessing the (Hematopoietic) Stem Cell Niche

    PubMed Central

    Choi, Ji Sun; Harley, Brendan A. C.

    2016-01-01

    In our body, stem cells reside in a microenvironment termed the niche. While the exact composition and therefore the level of complexity of a stem cell niche can vary significantly tissue-to-tissue, the stem cell niche microenvironment is dynamic, typically containing spatial and temporal variations in both cellular, extracellular matrix, and biomolecular components. This complex flow of secreted or bound biomolecules, cytokines, extracellular matrix components, and cellular constituents all contribute to the regulation of stem cell fate specification events, making engineering approaches at the nano- and micro-scale of particular interest for creating an artificial niche environment in vitro. Recent advances in fabrication approaches have enabled biomedical researchers to capture and recreate the complexity of stem cell niche microenvironments in vitro. Such engineered platforms show promise as a means to enhance our understanding of the mechanisms underlying niche-mediated stem cell regulation as well as offer opportunities to precisely control stem cell expansion and differentiation events for clinical applications. While these principles generally apply to all adult stem cells and niches, in this review, we focus on recent developments in engineering synthetic niche microenvironments for one of the best-characterized stem cell populations, hematopoietic stem cells (HSC). Specifically, we highlight recent advances in platforms designed to facilitate the extrinsic control of HSC fate decisions. PMID:27134819

  17. [Morphofunctional organization of reserve stem cells providing for asexual and sexual reproduction of invertebrates].

    PubMed

    Isaeva, V V; Akhmadieva, A V; Aleksandriova, Ia N; Shukaliuk, A I

    2009-01-01

    Published and original data indicating evolutionary conservation of the morphofunctional organization of reserve stem cells providing for asexual and sexual reproduction of invertebrates are reviewed. Stem cells were studied in representatives of five animal types: archeocytes in sponge Oscarella malakhovi (Porifera), large interstitial cells in colonial hydroid Obelia longissima (Cnidaria), neoblasts in an asexual race of planarian Girardia tigrina (Platyhelmintes), stem cells in colonial rhizocephalans Peltogasterella gracilis, Polyascus polygenea, and Thylacoplethus isaevae (Arthropoda), and colonial ascidian Botryllus tuberatus (Chordata). Stem cells in animals of such diverse taxa feature the presence of germinal granules, are positive for proliferating cell nuclear antigen, demonstrate alkaline phosphatase activity (at marker of embryonic stem cells and primary germ cells in vertebrates), and rhizocephalan stem cells express the vasa-like gene (such genes are expressed in germline cells of different metazoans). The self-renewing pool of stem cells is the cellular basis of the reproductive strategy including sexual and asexual reproduction.

  18. The neural stem cell fate determinant TLX promotes tumorigenesis and genesis of cells resembling glioma stem cells.

    PubMed

    Park, Hyo-Jung; Kim, Jun-Kyum; Jeon, Hye-Min; Oh, Se-Yeong; Kim, Sung-Hak; Nam, Do-Hyun; Kim, Hyunggee

    2010-11-01

    A growing body of evidence indicates that deregulation of stem cell fate determinants is a hallmark of many types of malignancies. The neural stem cell fate determinant TLX plays a pivotal role in neurogenesis in the adult brain by maintaining neural stem cells. Here, we report a tumorigenic role of TLX in brain tumor initiation and progression. Increased TLX expression was observed in a number of glioma cells and glioma stem cells, and correlated with poor survival of patients with gliomas. Ectopic expression of TLX in the U87MG glioma cell line and Ink4a/Arf-deficient mouse astrocytes (Ink4a/Arf(-/-) astrocytes) induced cell proliferation with a concomitant increase in cyclin D expression, and accelerated foci formation in soft agar and tumor formation in in vivo transplantation assays. Furthermore, overexpression of TLX in Ink4a/Arf(-/-) astrocytes inhibited cell migration and invasion and promoted neurosphere formation and Nestin expression, which are hallmark characteristics of glioma stem cells, under stem cell culture conditions. Our results indicate that TLX is involved in glioma stem cell genesis and represents a potential therapeutic target for this type of malignancy.

  19. First steps to define murine amniotic fluid stem cell microenvironment.

    PubMed

    Bertin, E; Piccoli, M; Franzin, C; Spiro, G; Donà, S; Dedja, A; Schiavi, F; Taschin, E; Bonaldo, P; Braghetta, P; De Coppi, P; Pozzobon, M

    2016-11-15

    Stem cell niche refers to the microenvironment where stem cells reside in living organisms. Several elements define the niche and regulate stem cell characteristics, such as stromal support cells, gap junctions, soluble factors, extracellular matrix proteins, blood vessels and neural inputs. In the last years, different studies demonstrated the presence of cKit + cells in human and murine amniotic fluid, which have been defined as amniotic fluid stem (AFS) cells. Firstly, we characterized the murine cKit + cells present both in the amniotic fluid and in the amnion. Secondly, to analyze the AFS cell microenvironment, we injected murine YFP + embryonic stem cells (ESC) into the amniotic fluid of E13.5 wild type embryos. Four days after transplantation we found that YFP + sorted cells maintained the expression of pluripotency markers and that ESC adherent to the amnion were more similar to original ESC in respect to those isolated from the amniotic fluid. Moreover, cytokines evaluation and oxygen concentration analysis revealed in this microenvironment the presence of factors that are considered key regulators in stem cell niches. This is the first indication that AFS cells reside in a microenvironment that possess specific characteristics able to maintain stemness of resident and exogenous stem cells.

  20. Identification and isolation of adult liver stem/progenitor cells.

    PubMed

    Tanaka, Minoru; Miyajima, Atsushi

    2012-01-01

    Hepatoblasts are considered to be liver stem/progenitor cells in the fetus because they propagate and differentiate into two types of liver epithelial cells, hepatocytes and cholangiocytes. In adults, oval cells that emerge in severely injured liver are considered facultative hepatic stem/progenitor cells. However, the nature of oval cells has remained unclear for long time due to the lack of a method to isolate them. It has also been unclear whether liver stem/progenitor cells exist in normal adult liver. Recently, we and others have successfully identified oval cells and adult liver stem/progenitor cells. Here, we describe the identification and isolation of mouse liver stem/progenitor cells by utilizing antibodies against specific cell surface marker molecules.

Top