Sample records for flow analysis method

  1. A Review of Flow Analysis Methods for Determination of Radionuclides in Nuclear Wastes and Nuclear Reactor Coolants

    DOE PAGES

    Trojanowicz, Marek; Kolacinska, Kamila; Grate, Jay W.

    2018-02-13

    Here, the safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. Themore » benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β–radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection.« less

  2. A Review of Flow Analysis Methods for Determination of Radionuclides in Nuclear Wastes and Nuclear Reactor Coolants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trojanowicz, Marek; Kolacinska, Kamila; Grate, Jay W.

    Here, the safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. Themore » benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β–radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection.« less

  3. A review of flow analysis methods for determination of radionuclides in nuclear wastes and nuclear reactor coolants.

    PubMed

    Trojanowicz, Marek; Kołacińska, Kamila; Grate, Jay W

    2018-06-01

    The safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. The benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β-radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A critical evaluation of various methods for the analysis of flow-solid interaction in a nest of thin cylinders subjected to cross flows

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook

    1987-01-01

    Various experimental, analytical, and numerical analysis methods for flow-solid interaction of a nest of cylinders subjected to cross flows are reviewed. A nest of cylinders subjected to cross flows can be found in numerous engineering applications including the Space Shuttle Maine Engine-Main Injector Assembly (SSME-MIA) and nuclear reactor heat exchangers. Despite its extreme importance in engineering applications, understanding of the flow-solid interaction process is quite limited and design of the tube banks are mostly dependent on experiments and/or experimental correlation equations. For future development of major numerical analysis methods for the flow-solid interaction of a nest of cylinders subjected to cross flow, various turbulence models, nonlinear structural dynamics, and existing laminar flow-solid interaction analysis methods are included.

  5. Method of analysis for compressible flow through mixed-flow centrifugal impellers of arbitrary design

    NASA Technical Reports Server (NTRS)

    Hamrick, Joseph T; Ginsburg, Ambrose; Osborn, Walter M

    1952-01-01

    A method is presented for analysis of the compressible flow between the hub and the shroud of mixed-flow impellers of arbitrary design. Axial symmetry was assumed, but the forces in the meridional (hub to shroud) plane, which are derived from tangential pressure gradients, were taken into account. The method was applied to an experimental mixed-flow impeller. The analysis of the flow in the meridional plane of the impeller showed that the rotational forces, the blade curvature, and the hub-shroud profile can introduce severe velocity gradients along the hub and the shroud surfaces. Choked flow at the impeller inlet as determined by the analysis was verified by experimental results.

  6. Parametric and experimental analysis using a power flow approach

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1988-01-01

    Having defined and developed a structural power flow approach for the analysis of structure-borne transmission of structural vibrations, the technique is used to perform an analysis of the influence of structural parameters on the transmitted energy. As a base for comparison, the parametric analysis is first performed using a Statistical Energy Analysis approach and the results compared with those obtained using the power flow approach. The advantages of using structural power flow are thus demonstrated by comparing the type of results obtained by the two methods. Additionally, to demonstrate the advantages of using the power flow method and to show that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental investigation of structural power flow is also presented. Results are presented for an L-shaped beam for which an analytical solution has already been obtained. Furthermore, the various methods available to measure vibrational power flow are compared to investigate the advantages and disadvantages of each method.

  7. The experimental verification of a streamline curvature numerical analysis method applied to the flow through an axial flow fan

    NASA Technical Reports Server (NTRS)

    Pierzga, M. J.

    1981-01-01

    The experimental verification of an inviscid, incompressible through-flow analysis method is presented. The primary component of this method is an axisymmetric streamline curvature technique which is used to compute the hub-to-tip flow field of a given turbomachine. To analyze the flow field in the blade-to-blade plane of the machine, the potential flow solution of an infinite cascade of airfoils is also computed using a source model technique. To verify the accuracy of such an analysis method an extensive experimental verification investigation was conducted using an axial flow research fan. Detailed surveys of the blade-free regions of the machine along with intra-blade surveys using rotating pressure sensing probes and blade surface static pressure taps provide a one-to-one relationship between measured and predicted data. The results of this investigation indicate the ability of this inviscid analysis method to predict the design flow field of the axial flow fan test rotor to within a few percent of the measured values.

  8. Finite element analysis and computer graphics visualization of flow around pitching and plunging airfoils

    NASA Technical Reports Server (NTRS)

    Bratanow, T.; Ecer, A.

    1973-01-01

    A general computational method for analyzing unsteady flow around pitching and plunging airfoils was developed. The finite element method was applied in developing an efficient numerical procedure for the solution of equations describing the flow around airfoils. The numerical results were employed in conjunction with computer graphics techniques to produce visualization of the flow. The investigation involved mathematical model studies of flow in two phases: (1) analysis of a potential flow formulation and (2) analysis of an incompressible, unsteady, viscous flow from Navier-Stokes equations.

  9. [Clinical usefulness of urine-formed elements' information obtained from bacteria detection by flow cytometry method that uses nucleic acid staining].

    PubMed

    Nakagawa, Hiroko; Yuno, Tomoji; Itho, Kiichi

    2009-03-01

    Recently, specific detection method for Bacteria, by flow cytometry method using nucleic acid staining, was developed as a function of automated urine formed elements analyzer for routine urine testing. Here, we performed a basic study on this bacteria analysis method. In addition, we also have a comparison among urine sediment analysis, urine Gram staining and urine quantitative cultivation, the conventional methods performed up to now. As a result, the bacteria analysis with flow cytometry method that uses nucleic acid staining was excellent in reproducibility, and higher sensitivity compared with microscopic urinary sediment analysis. Based on the ROC curve analysis, which settled urine culture method as standard, cut-off level of 120/microL was defined and its sensitivity = 85.7%, specificity = 88.2%. In the analysis of scattergram, accompanied with urine culture method, among 90% of rod positive samples, 80% of dots were appeared in the area of 30 degrees from axis X. In addition, one case even indicated that analysis of bacteria by flow cytometry and scattergram of time series analysis might be helpful to trace the progress of causative bacteria therefore the information supposed to be clinically significant. Reporting bacteria information with nucleic acid staining flow cytometry method is expected to contribute to a rapid diagnostics and treatment of urinary tract infections. Besides, the contribution to screening examination of microbiology and clinical chemistry, will deliver a more efficient solution to urine analysis.

  10. Development of an automated analysis system for data from flow cytometric intracellular cytokine staining assays from clinical vaccine trials

    PubMed Central

    Shulman, Nick; Bellew, Matthew; Snelling, George; Carter, Donald; Huang, Yunda; Li, Hongli; Self, Steven G.; McElrath, M. Juliana; De Rosa, Stephen C.

    2008-01-01

    Background Intracellular cytokine staining (ICS) by multiparameter flow cytometry is one of the primary methods for determining T cell immunogenicity in HIV-1 clinical vaccine trials. Data analysis requires considerable expertise and time. The amount of data is quickly increasing as more and larger trials are performed, and thus there is a critical need for high throughput methods of data analysis. Methods A web based flow cytometric analysis system, LabKey Flow, was developed for analyses of data from standardized ICS assays. A gating template was created manually in commercially-available flow cytometric analysis software. Using this template, the system automatically compensated and analyzed all data sets. Quality control queries were designed to identify potentially incorrect sample collections. Results Comparison of the semi-automated analysis performed by LabKey Flow and the manual analysis performed using FlowJo software demonstrated excellent concordance (concordance correlation coefficient >0.990). Manual inspection of the analyses performed by LabKey Flow for 8-color ICS data files from several clinical vaccine trials indicates that template gates can appropriately be used for most data sets. Conclusions The semi-automated LabKey Flow analysis system can analyze accurately large ICS data files. Routine use of the system does not require specialized expertise. This high-throughput analysis will provide great utility for rapid evaluation of complex multiparameter flow cytometric measurements collected from large clinical trials. PMID:18615598

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasdekis, Andreas E.; Stephanopoulos, Gregory

    The sampling and manipulation of cells down to the individual has been of substantial interest since the very beginning of Life Sciences. Herein, our objective is to highlight the most recent developments in single cell manipulation, as well as pioneering ones. First, flow-through methods will be discussed, namely methods in which the single cells flow continuously in an ordered manner during their analysis. This section will be followed by confinement techniques that enable cell isolation and confinement in one, two- or three-dimensions. Flow cytometry and droplet microfluidics are the two most common methods of flow-through analysis. While both are high-throughputmore » techniques, their difference lays in the fact that the droplet encapsulated cells experience a restricted and personal microenvironment, while in flow cytometry cells experience similar nutrient and stimuli initial concentrations. These methods are rather well established; however, they recently enabled immense strides in single cell phenotypic analysis, namely the identification and analysis of metabolically distinct individuals from an isogenic population using both droplet microfluidics and flow cytometry.« less

  12. The wire-mesh sensor as a two-phase flow meter

    NASA Astrophysics Data System (ADS)

    Shaban, H.; Tavoularis, S.

    2015-01-01

    A novel gas and liquid flow rate measurement method is proposed for use in vertical upward and downward gas-liquid pipe flows. This method is based on the analysis of the time history of area-averaged void fraction that is measured using a conductivity wire-mesh sensor (WMS). WMS measurements were collected in vertical upward and downward air-water flows in a pipe with an internal diameter of 32.5 mm at nearly atmospheric pressure. The relative frequencies and the power spectral density of area-averaged void fraction were calculated and used as representative properties. Independent features, extracted from these properties using Principal Component Analysis and Independent Component Analysis, were used as inputs to artificial neural networks, which were trained to give the gas and liquid flow rates as outputs. The present method was shown to be accurate for all four encountered flow regimes and for a wide range of flow conditions. Besides providing accurate predictions for steady flows, the method was also tested successfully in three flows with transient liquid flow rates. The method was augmented by the use of the cross-correlation function of area-averaged void fraction determined from the output of a dual WMS unit as an additional representative property, which was found to improve the accuracy of flow rate prediction.

  13. Review of methods to probe single cell metabolism and bioenergetics

    DOE PAGES

    Vasdekis, Andreas E.; Stephanopoulos, Gregory

    2014-10-31

    The sampling and manipulation of cells down to the individual has been of substantial interest since the very beginning of Life Sciences. Herein, our objective is to highlight the most recent developments in single cell manipulation, as well as pioneering ones. First, flow-through methods will be discussed, namely methods in which the single cells flow continuously in an ordered manner during their analysis. This section will be followed by confinement techniques that enable cell isolation and confinement in one, two- or three-dimensions. Flow cytometry and droplet microfluidics are the two most common methods of flow-through analysis. While both are high-throughputmore » techniques, their difference lays in the fact that the droplet encapsulated cells experience a restricted and personal microenvironment, while in flow cytometry cells experience similar nutrient and stimuli initial concentrations. These methods are rather well established; however, they recently enabled immense strides in single cell phenotypic analysis, namely the identification and analysis of metabolically distinct individuals from an isogenic population using both droplet microfluidics and flow cytometry.« less

  14. Influence analysis of fluctuation parameters on flow stability based on uncertainty method

    NASA Astrophysics Data System (ADS)

    Meng, Tao; Fan, Shangchun; Wang, Chi; Shi, Huichao

    2018-05-01

    The relationship between flow fluctuation and pressure in a flow facility is studied theoretically and experimentally in this paper, and a method for measuring the flow fluctuation is proposed. According to the synchronicity of pressure and flow fluctuation, the amplitude of the flow fluctuation is calculated using the pressure measured in the flow facility and measurement of the flow fluctuation in a wide range of frequency is realized. Based on the method proposed, uncertainty analysis is used to evaluate the influences of different parameters on the flow fluctuation by the help of a sample-based stochastic model established and the parameters that have great influence are found, which can be a reference for the optimization design and the stability improvement of the flow facility.

  15. Parametric and experimental analysis using a power flow approach

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1990-01-01

    A structural power flow approach for the analysis of structure-borne transmission of vibrations is used to analyze the influence of structural parameters on transmitted power. The parametric analysis is also performed using the Statistical Energy Analysis approach and the results are compared with those obtained using the power flow approach. The advantages of structural power flow analysis are demonstrated by comparing the type of results that are obtained by the two analytical methods. Also, to demonstrate that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental study of structural power flow is presented. This experimental study presents results for an L shaped beam for which an available solution was already obtained. Various methods to measure vibrational power flow are compared to study their advantages and disadvantages.

  16. Flow Injection Technique for Biochemical Analysis with Chemiluminescence Detection in Acidic Media

    PubMed Central

    Chen, Jing; Fang, Yanjun

    2007-01-01

    A review with 90 references is presented to show the development of acidic chemiluminescence methods for biochemical analysis by use of flow injection technique in the last 10 years. A brief discussion of both the chemiluminescence and flow injection technique is given. The proposed methods for biochemical analysis are described and compared according to the used chemiluminescence system.

  17. Adjoint Sensitivity Analysis for Scale-Resolving Turbulent Flow Solvers

    NASA Astrophysics Data System (ADS)

    Blonigan, Patrick; Garai, Anirban; Diosady, Laslo; Murman, Scott

    2017-11-01

    Adjoint-based sensitivity analysis methods are powerful design tools for engineers who use computational fluid dynamics. In recent years, these engineers have started to use scale-resolving simulations like large-eddy simulations (LES) and direct numerical simulations (DNS), which resolve more scales in complex flows with unsteady separation and jets than the widely-used Reynolds-averaged Navier-Stokes (RANS) methods. However, the conventional adjoint method computes large, unusable sensitivities for scale-resolving simulations, which unlike RANS simulations exhibit the chaotic dynamics inherent in turbulent flows. Sensitivity analysis based on least-squares shadowing (LSS) avoids the issues encountered by conventional adjoint methods, but has a high computational cost even for relatively small simulations. The following talk discusses a more computationally efficient formulation of LSS, ``non-intrusive'' LSS, and its application to turbulent flows simulated with a discontinuous-Galkerin spectral-element-method LES/DNS solver. Results are presented for the minimal flow unit, a turbulent channel flow with a limited streamwise and spanwise domain.

  18. Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models

    NASA Astrophysics Data System (ADS)

    Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.

    2013-12-01

    Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.

  19. Unsteady RANS/DES analysis of flow around helicopter rotor blades at forword flight conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu; Qian, Yaoru

    2018-05-01

    In this paper, the complex flows around forward-flying helicopter blades are numerically investigated. Both the Reynolds-averaged Navier-Stokes (RANS) and the Detached Eddy Simulation (DES) methods are used for the analysis of characteristics like local dynamic flow separation, effects of radial sweeping and reversed flow. The flow was solved by a highly efficient finite volume solver with multi-block structured grids. Focusing upon the complexity of the advance ratio effects, above properties are fully recognized. The current results showed significant agreements between both RANS and DES methods at phases with attached flow phases. Detailed information of separating flow near the withdrawal phases are given by DES results. The flow analysis of these blades under reversed flow reveals a significant interaction between the reversed flow and the span-wise sweeping.

  20. Capital investment analysis: three methods.

    PubMed

    Gapenski, L C

    1993-08-01

    Three cash flow/discount rate methods can be used when conducting capital budgeting financial analyses: the net operating cash flow method, the net cash flow to investors method, and the net cash flow to equity holders method. The three methods differ in how the financing mix and the benefits of debt financing are incorporated. This article explains the three methods, demonstrates that they are essentially equivalent, and recommends which method to use under specific circumstances.

  1. Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Eleshaky, Mohamed E.

    1991-01-01

    A new and efficient method is presented for aerodynamic design optimization, which is based on a computational fluid dynamics (CFD)-sensitivity analysis algorithm. The method is applied to design a scramjet-afterbody configuration for an optimized axial thrust. The Euler equations are solved for the inviscid analysis of the flow, which in turn provides the objective function and the constraints. The CFD analysis is then coupled with the optimization procedure that uses a constrained minimization method. The sensitivity coefficients, i.e. gradients of the objective function and the constraints, needed for the optimization are obtained using a quasi-analytical method rather than the traditional brute force method of finite difference approximations. During the one-dimensional search of the optimization procedure, an approximate flow analysis (predicted flow) based on a first-order Taylor series expansion is used to reduce the computational cost. Finally, the sensitivity of the optimum objective function to various design parameters, which are kept constant during the optimization, is computed to predict new optimum solutions. The flow analysis of the demonstrative example are compared with the experimental data. It is shown that the method is more efficient than the traditional methods.

  2. LFSTAT - Low-Flow Analysis in R

    NASA Astrophysics Data System (ADS)

    Koffler, Daniel; Laaha, Gregor

    2013-04-01

    The calculation of characteristic stream flow during dry conditions is a basic requirement for many problems in hydrology, ecohydrology and water resources management. As opposed to floods, a number of different indices are used to characterise low flows and streamflow droughts. Although these indices and methods of calculation have been well documented in the WMO Manual on Low-flow Estimation and Prediction [1], a comprehensive software was missing which enables a fast and standardized calculation of low flow statistics. We present the new software package lfstat to fill in this obvious gap. Our software package is based on the statistical open source software R, and expands it to analyse daily stream flow data records focusing on low-flows. As command-line based programs are not everyone's preference, we also offer a plug-in for the R-Commander, an easy to use graphical user interface (GUI) provided for R which is based on tcl/tk. The functionality of lfstat includes estimation methods for low-flow indices, extreme value statistics, deficit characteristics, and additional graphical methods to control the computation of complex indices and to illustrate the data. Beside the basic low flow indices, the baseflow index and recession constants can be computed. For extreme value statistics, state-of-the-art methods for L-moment based local and regional frequency analysis (RFA) are available. The tools for deficit characteristics include various pooling and threshold selection methods to support the calculation of drought duration and deficit indices. The most common graphics for low flow analysis are available, and the plots can be modified according to the user preferences. Graphics include hydrographs for different periods, flexible streamflow deficit plots, baseflow visualisation, recession diagnostic, flow duration curves as well as double mass curves, and many more. From a technical point of view, the package uses a S3-class called lfobj (low-flow objects). This objects are usual R-data-frames including date, flow, hydrological year and possibly baseflow information. Once these objects are created, analysis can be performed by mouse-click and a script can be saved to make the analysis easily reproducible. At the moment we are offering implementation of all major methods proposed in the WMO manual on Low-flow Estimation and Predictions [1]. Future plans include a dynamic low flow report in odt-file format using odf-weave which allows automatic updates if data or analysis change. We hope to offer a tool to ease and structure the analysis of stream flow data focusing on low-flows and to make analysis transparent and communicable. The package can also be used in teaching students the first steps in low-flow hydrology. The software packages can be installed from CRAN (latest stable) and R-Forge: http://r-forge.r-project.org (development version). References: [1] Gustard, Alan; Demuth, Siegfried, (eds.) Manual on Low-flow Estimation and Prediction. Geneva, Switzerland, World Meteorological Organization, (Operational Hydrology Report No. 50, WMO-No. 1029).

  3. A diameter-sensitive flow entropy method for reliability consideration in water distribution system design

    NASA Astrophysics Data System (ADS)

    Liu, Haixing; Savić, Dragan; Kapelan, Zoran; Zhao, Ming; Yuan, Yixing; Zhao, Hongbin

    2014-07-01

    Flow entropy is a measure of uniformity of pipe flows in water distribution systems. By maximizing flow entropy one can identify reliable layouts or connectivity in networks. In order to overcome the disadvantage of the common definition of flow entropy that does not consider the impact of pipe diameter on reliability, an extended definition of flow entropy, termed as diameter-sensitive flow entropy, is proposed. This new methodology is then assessed by using other reliability methods, including Monte Carlo Simulation, a pipe failure probability model, and a surrogate measure (resilience index) integrated with water demand and pipe failure uncertainty. The reliability assessment is based on a sample of WDS designs derived from an optimization process for each of the two benchmark networks. Correlation analysis is used to evaluate quantitatively the relationship between entropy and reliability. To ensure reliability, a comparative analysis between the flow entropy and the new method is conducted. The results demonstrate that the diameter-sensitive flow entropy shows consistently much stronger correlation with the three reliability measures than simple flow entropy. Therefore, the new flow entropy method can be taken as a better surrogate measure for reliability and could be potentially integrated into the optimal design problem of WDSs. Sensitivity analysis results show that the velocity parameters used in the new flow entropy has no significant impact on the relationship between diameter-sensitive flow entropy and reliability.

  4. Methods of measurement signal acquisition from the rotational flow meter for frequency analysis

    NASA Astrophysics Data System (ADS)

    Świsulski, Dariusz; Hanus, Robert; Zych, Marcin; Petryka, Leszek

    One of the simplest and commonly used instruments for measuring the flow of homogeneous substances is the rotational flow meter. The main part of such a device is a rotor (vane or screw) rotating at a speed which is the function of the fluid or gas flow rate. A pulse signal with a frequency proportional to the speed of the rotor is obtained at the sensor output. For measurements in dynamic conditions, a variable interval between pulses prohibits the analysis of the measuring signal. Therefore, the authors of the article developed a method involving the determination of measured values on the basis of the last inter-pulse interval preceding the moment designated by the timing generator. For larger changes of the measured value at a predetermined time, the value can be determined by means of extrapolation of the two adjacent interpulse ranges, assuming a linear change in the flow. The proposed methods allow analysis which requires constant spacing between measurements, allowing for an analysis of the dynamics of changes in the test flow, eg. using a Fourier transform. To present the advantages of these methods simulations of flow measurement were carried out with a DRH-1140 rotor flow meter from the company Kobold.

  5. Development of parallel algorithms for electrical power management in space applications

    NASA Technical Reports Server (NTRS)

    Berry, Frederick C.

    1989-01-01

    The application of parallel techniques for electrical power system analysis is discussed. The Newton-Raphson method of load flow analysis was used along with the decomposition-coordination technique to perform load flow analysis. The decomposition-coordination technique enables tasks to be performed in parallel by partitioning the electrical power system into independent local problems. Each independent local problem represents a portion of the total electrical power system on which a loan flow analysis can be performed. The load flow analysis is performed on these partitioned elements by using the Newton-Raphson load flow method. These independent local problems will produce results for voltage and power which can then be passed to the coordinator portion of the solution procedure. The coordinator problem uses the results of the local problems to determine if any correction is needed on the local problems. The coordinator problem is also solved by an iterative method much like the local problem. The iterative method for the coordination problem will also be the Newton-Raphson method. Therefore, each iteration at the coordination level will result in new values for the local problems. The local problems will have to be solved again along with the coordinator problem until some convergence conditions are met.

  6. The Effect of Laminar Flow on Rotor Hover Performance

    NASA Technical Reports Server (NTRS)

    Overmeyer, Austin D.; Martin, Preston B.

    2017-01-01

    The topic of laminar flow effects on hover performance is introduced with respect to some historical efforts where laminar flow was either measured or attempted. An analysis method is outlined using combined blade element, momentum method coupled to an airfoil analysis method, which includes the full e(sup N) transition model. The analysis results compared well with the measured hover performance including the measured location of transition on both the upper and lower blade surfaces. The analysis method is then used to understand the upper limits of hover efficiency as a function of disk loading. The impact of laminar flow is higher at low disk loading, but significant improvement in terms of power loading appears possible even up to high disk loading approaching 20 ps f. A optimum planform design equation is derived for cases of zero profile drag and finite drag levels. These results are intended to be a guide for design studies and as a benchmark to compare higher fidelity analysis results. The details of the analysis method are given to enable other researchers to use the same approach for comparison to other approaches.

  7. Global Qualitative Flow-Path Modeling for Local State Determination in Simulation and Analysis

    NASA Technical Reports Server (NTRS)

    Malin, Jane T. (Inventor); Fleming, Land D. (Inventor)

    1998-01-01

    For qualitative modeling and analysis, a general qualitative abstraction of power transmission variables (flow and effort) for elements of flow paths includes information on resistance, net flow, permissible directions of flow, and qualitative potential is discussed. Each type of component model has flow-related variables and an associated internal flow map, connected into an overall flow network of the system. For storage devices, the implicit power transfer to the environment is represented by "virtual" circuits that include an environmental junction. A heterogeneous aggregation method simplifies the path structure. A method determines global flow-path changes during dynamic simulation and analysis, and identifies corresponding local flow state changes that are effects of global configuration changes. Flow-path determination is triggered by any change in a flow-related device variable in a simulation or analysis. Components (path elements) that may be affected are identified, and flow-related attributes favoring flow in the two possible directions are collected for each of them. Next, flow-related attributes are determined for each affected path element, based on possibly conflicting indications of flow direction. Spurious qualitative ambiguities are minimized by using relative magnitudes and permissible directions of flow, and by favoring flow sources over effort sources when comparing flow tendencies. The results are output to local flow states of affected components.

  8. Power flow as a complement to statistical energy analysis and finite element analysis

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1987-01-01

    Present methods of analysis of the structural response and the structure-borne transmission of vibrational energy use either finite element (FE) techniques or statistical energy analysis (SEA) methods. The FE methods are a very useful tool at low frequencies where the number of resonances involved in the analysis is rather small. On the other hand SEA methods can predict with acceptable accuracy the response and energy transmission between coupled structures at relatively high frequencies where the structural modal density is high and a statistical approach is the appropriate solution. In the mid-frequency range, a relatively large number of resonances exist which make finite element method too costly. On the other hand SEA methods can only predict an average level form. In this mid-frequency range a possible alternative is to use power flow techniques, where the input and flow of vibrational energy to excited and coupled structural components can be expressed in terms of input and transfer mobilities. This power flow technique can be extended from low to high frequencies and this can be integrated with established FE models at low frequencies and SEA models at high frequencies to form a verification of the method. This method of structural analysis using power flo and mobility methods, and its integration with SEA and FE analysis is applied to the case of two thin beams joined together at right angles.

  9. A better understanding of long-range temporal dependence of traffic flow time series

    NASA Astrophysics Data System (ADS)

    Feng, Shuo; Wang, Xingmin; Sun, Haowei; Zhang, Yi; Li, Li

    2018-02-01

    Long-range temporal dependence is an important research perspective for modelling of traffic flow time series. Various methods have been proposed to depict the long-range temporal dependence, including autocorrelation function analysis, spectral analysis and fractal analysis. However, few researches have studied the daily temporal dependence (i.e. the similarity between different daily traffic flow time series), which can help us better understand the long-range temporal dependence, such as the origin of crossover phenomenon. Moreover, considering both types of dependence contributes to establishing more accurate model and depicting the properties of traffic flow time series. In this paper, we study the properties of daily temporal dependence by simple average method and Principal Component Analysis (PCA) based method. Meanwhile, we also study the long-range temporal dependence by Detrended Fluctuation Analysis (DFA) and Multifractal Detrended Fluctuation Analysis (MFDFA). The results show that both the daily and long-range temporal dependence exert considerable influence on the traffic flow series. The DFA results reveal that the daily temporal dependence creates crossover phenomenon when estimating the Hurst exponent which depicts the long-range temporal dependence. Furthermore, through the comparison of the DFA test, PCA-based method turns out to be a better method to extract the daily temporal dependence especially when the difference between days is significant.

  10. Physically consistent data assimilation method based on feedback control for patient-specific blood flow analysis.

    PubMed

    Ii, Satoshi; Adib, Mohd Azrul Hisham Mohd; Watanabe, Yoshiyuki; Wada, Shigeo

    2018-01-01

    This paper presents a novel data assimilation method for patient-specific blood flow analysis based on feedback control theory called the physically consistent feedback control-based data assimilation (PFC-DA) method. In the PFC-DA method, the signal, which is the residual error term of the velocity when comparing the numerical and reference measurement data, is cast as a source term in a Poisson equation for the scalar potential field that induces flow in a closed system. The pressure values at the inlet and outlet boundaries are recursively calculated by this scalar potential field. Hence, the flow field is physically consistent because it is driven by the calculated inlet and outlet pressures, without any artificial body forces. As compared with existing variational approaches, although this PFC-DA method does not guarantee the optimal solution, only one additional Poisson equation for the scalar potential field is required, providing a remarkable improvement for such a small additional computational cost at every iteration. Through numerical examples for 2D and 3D exact flow fields, with both noise-free and noisy reference data as well as a blood flow analysis on a cerebral aneurysm using actual patient data, the robustness and accuracy of this approach is shown. Moreover, the feasibility of a patient-specific practical blood flow analysis is demonstrated. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Analytical method for predicting the pressure distribution about a nacelle at transonic speeds

    NASA Technical Reports Server (NTRS)

    Keith, J. S.; Ferguson, D. R.; Merkle, C. L.; Heck, P. H.; Lahti, D. J.

    1973-01-01

    The formulation and development of a computer analysis for the calculation of streamlines and pressure distributions around two-dimensional (planar and axisymmetric) isolated nacelles at transonic speeds are described. The computerized flow field analysis is designed to predict the transonic flow around long and short high-bypass-ratio fan duct nacelles with inlet flows and with exhaust flows having appropriate aerothermodynamic properties. The flow field boundaries are located as far upstream and downstream as necessary to obtain minimum disturbances at the boundary. The far-field lateral flow field boundary is analytically defined to exactly represent free-flight conditions or solid wind tunnel wall effects. The inviscid solution technique is based on a Streamtube Curvature Analysis. The computer program utilizes an automatic grid refinement procedure and solves the flow field equations with a matrix relaxation technique. The boundary layer displacement effects and the onset of turbulent separation are included, based on the compressible turbulent boundary layer solution method of Stratford and Beavers and on the turbulent separation prediction method of Stratford.

  12. Integrated analysis on static/dynamic aeroelasticity of curved panels based on a modified local piston theory

    NASA Astrophysics Data System (ADS)

    Yang, Zhichun; Zhou, Jian; Gu, Yingsong

    2014-10-01

    A flow field modified local piston theory, which is applied to the integrated analysis on static/dynamic aeroelastic behaviors of curved panels, is proposed in this paper. The local flow field parameters used in the modification are obtained by CFD technique which has the advantage to simulate the steady flow field accurately. This flow field modified local piston theory for aerodynamic loading is applied to the analysis of static aeroelastic deformation and flutter stabilities of curved panels in hypersonic flow. In addition, comparisons are made between results obtained by using the present method and curvature modified method. It shows that when the curvature of the curved panel is relatively small, the static aeroelastic deformations and flutter stability boundaries obtained by these two methods have little difference, while for curved panels with larger curvatures, the static aeroelastic deformation obtained by the present method is larger and the flutter stability boundary is smaller compared with those obtained by the curvature modified method, and the discrepancy increases with the increasing of curvature of panels. Therefore, the existing curvature modified method is non-conservative compared to the proposed flow field modified method based on the consideration of hypersonic flight vehicle safety, and the proposed flow field modified local piston theory for curved panels enlarges the application range of piston theory.

  13. Analysis of internal flow characteristics of a smooth-disk water-brake dynamometer

    NASA Technical Reports Server (NTRS)

    Evans, D. G.

    1973-01-01

    The principal of absorbing power with an enclosed partially submerged rotating disk through the turbulent viscous shearing of water is discussed. Reference information is used to develop a flow model of the water brake. A method is then presented that uses vector diagrams to relate the effects of rotational flow, through flow, and secondary flow to power absorption. The method is used to describe the operating characteristics of an example 111-cm (43.7-in.) diameter water brake. Correlating performance parameters are developed in a dimensional analysis.

  14. MIXING QUANTIFICATION BY VISUAL IMAGING ANALYSIS

    EPA Science Inventory

    This paper reports on development of a method for quantifying two measures of mixing, the scale and intensity of segregation, through flow visualization, video recording, and software analysis. This non-intrusive method analyzes a planar cross section of a flowing system from an ...

  15. Lagrangian analysis of multiscale particulate flows with the particle finite element method

    NASA Astrophysics Data System (ADS)

    Oñate, Eugenio; Celigueta, Miguel Angel; Latorre, Salvador; Casas, Guillermo; Rossi, Riccardo; Rojek, Jerzy

    2014-05-01

    We present a Lagrangian numerical technique for the analysis of flows incorporating physical particles of different sizes. The numerical approach is based on the particle finite element method (PFEM) which blends concepts from particle-based techniques and the FEM. The basis of the Lagrangian formulation for particulate flows and the procedure for modelling the motion of small and large particles that are submerged in the fluid are described in detail. The numerical technique for analysis of this type of multiscale particulate flows using a stabilized mixed velocity-pressure formulation and the PFEM is also presented. Examples of application of the PFEM to several particulate flows problems are given.

  16. Analysis of magnitude and duration of floods and droughts in the context of climate change

    NASA Astrophysics Data System (ADS)

    Eshetu Debele, Sisay; Bogdanowicz, Ewa; Strupczewski, Witold

    2016-04-01

    Research and scientific information are key elements of any decision-making process. There is also a strong need for tools to describe and compare in a concise way the regime of hydrological extreme events in the context of presumed climate change. To meet these demands, two complementary methods for estimating high and low-flow frequency characteristics are proposed. Both methods deal with duration and magnitude of extreme events. The first one "flow-duration-frequency" (known as QdF) has already been applied successfully to low-flow analysis, flood flows and rainfall intensity. The second one called "duration-flow-frequency" (DqF) was proposed by Strupczewski et al. in 2010 to flood frequency analysis. The two methods differ in the treatment of flow and duration. In the QdF method the duration (d-consecutive days) is a chosen fixed value and the frequency analysis concerns the annual or seasonal series of mean value of flows exceeded (in the case of floods) or non-exceeded (in the case of droughts) within d-day period. In the second method, DqF, the flows are treated as fixed thresholds and the duration of flows exceeding (floods) and non-exceeding (droughts) these thresholds are a subject of frequency analysis. The comparison of characteristics of floods and droughts in reference period and under future climate conditions for catchments studied within the CHIHE project is presented and a simple way to show the results to non-professionals and decision-makers is proposed. The work was undertaken within the project "Climate Change Impacts on Hydrological Extremes (CHIHE)", which is supported by the Norway-Poland Grants Program administered by the Norwegian Research Council. The observed time series were provided by the Institute of Meteorology and Water Management (IMGW), Poland. Strupczewski, W. G., Kochanek, K., Markiewicz, I., Bogdanowicz, E., Weglarczyk, S., & Singh V. P. (2010). On the Tails of Distributions of Annual Peak Flow. Hydrology Research, 42, 171-192. http://dx.doi.org/10.2166/nh.2011.062

  17. On the relationship between competitive flow and FFT analysis of the flow waves in the left internal mammary artery graft in the process of CABG.

    PubMed

    Mao, Boyan; Wang, Wenxin; Zhao, Zhou; Zhao, Xi; Li, Lanlan; Zhang, Huixia; Liu, Youjun

    2016-12-28

    During coronary artery bypass grafting (CABG), the ratio of powers of the fundamental frequency and its first harmonic (F0/H1) in fast Fourier transformation (FFT) analysis of the graft's flow waves has been used in the field of evaluation of the patency in anastomosis. But there is no report about using the FFT method to evaluate the magnitude of competitive flow. This study is aiming at exploring the relationship between competitive flow and FFT analysis of the flow waves in left internal mammary artery (LIMA) graft, and finding a new method to evaluate the magnitude of competitive flow. At first, establishing the CABG multiscale models of different stenosis in left anterior descending artery (LAD) to get different magnitude of competitive flows. Then, calculating the models by ANSYS-CFX and getting the flow waves in LIMA. Finally, analyzing the flow waves by FFT method and comparing the FFT results with the magnitude of competitive flow. There is no relationship between competitive flow and F0/H1. As for F0/H2 and F0/H3, they both increase with the reduction of the stenosis in LAD. But the increase of F0/H3 is not obviously enough and it can't identify the significant competitive flow clearly, so it can't be used as the evaluation index. It is found that F0/H2 increases obviously with the increase of the competitive flow and can identify the significant competitive flow. The FFT method can be used in the evaluation of competitive flow and the F0/H2 is the ideal index. High F0/H2 refers to the significant competitive flow. This method can be used during CABG to avoid the risk of competitive flow.

  18. Optimized and validated flow-injection spectrophotometric analysis of topiramate, piracetam and levetiracetam in pharmaceutical formulations.

    PubMed

    Hadad, Ghada M; Abdel-Salam, Randa A; Emara, Samy

    2011-12-01

    Application of a sensitive and rapid flow injection analysis (FIA) method for determination of topiramate, piracetam, and levetiracetam in pharmaceutical formulations has been investigated. The method is based on the reaction with ortho-phtalaldehyde and 2-mercaptoethanol in a basic buffer and measurement of absorbance at 295 nm under flow conditions. Variables affecting the determination such as sample injection volume, pH, ionic strength, reagent concentrations, flow rate of reagent and other FIA parameters were optimized to produce the most sensitive and reproducible results using a quarter-fraction factorial design, for five factors at two levels. Also, the method has been optimized and fully validated in terms of linearity and range, limit of detection and quantitation, precision, selectivity and accuracy. The method was successfully applied to the analysis of pharmaceutical preparations.

  19. Numerical analysis of flow instability in the water wall of a supercritical CFB boiler with annular furnace

    NASA Astrophysics Data System (ADS)

    Xie, Beibei; Yang, Dong; Xie, Haiyan; Nie, Xin; Liu, Wanyu

    2016-08-01

    In order to expand the study on flow instability of supercritical circulating fluidized bed (CFB) boiler, a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper. The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability. Based on the time-domain method, a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established. To verify the code, calculation results were respectively compared with data of commercial software. According to the comparisons, the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability. Based on the new program, the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method. When 1.2 times heat load disturbance was applied on the loop, results showed that the inlet flow rate, outlet flow rate and wall temperature fluctuated with time eventually remained at constant values, suggesting that the hydrodynamic flow was stable. The results also showed that in the case of considering the heat storage, the flow in the water wall is easier to return to stable state than without considering heat storage.

  20. Computational Design and Analysis of a Transonic Natural Laminar Flow Wing for a Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Lynde, Michelle N.; Campbell, Richard L.

    2017-01-01

    A natural laminar flow (NLF) wind tunnel model has been designed and analyzed for a wind tunnel test in the National Transonic Facility (NTF) at the NASA Langley Research Center. The NLF design method is built into the CDISC design module and uses a Navier-Stokes flow solver, a boundary layer profile solver, and stability analysis and transition prediction software. The NLF design method alters the pressure distribution to support laminar flow on the upper surface of wings with high sweep and flight Reynolds numbers. The method addresses transition due to attachment line contamination/transition, Gortler vortices, and crossflow and Tollmien-Schlichting modal instabilities. The design method is applied to the wing of the Common Research Model (CRM) at transonic flight conditions. Computational analysis predicts significant extents of laminar flow on the wing upper surface, which results in drag savings. A 5.2 percent scale semispan model of the CRM NLF wing will be built and tested in the NTF. This test will aim to validate the NLF design method, as well as characterize the laminar flow testing capabilities in the wind tunnel facility.

  1. Flow-gated radial phase-contrast imaging in the presence of weak flow.

    PubMed

    Peng, Hsu-Hsia; Huang, Teng-Yi; Wang, Fu-Nien; Chung, Hsiao-Wen

    2013-01-01

    To implement a flow-gating method to acquire phase-contrast (PC) images of carotid arteries without use of an electrocardiography (ECG) signal to synchronize the acquisition of imaging data with pulsatile arterial flow. The flow-gating method was realized through radial scanning and sophisticated post-processing methods including downsampling, complex difference, and correlation analysis to improve the evaluation of flow-gating times in radial phase-contrast scans. Quantitatively comparable results (R = 0.92-0.96, n = 9) of flow-related parameters, including mean velocity, mean flow rate, and flow volume, with conventional ECG-gated imaging demonstrated that the proposed method is highly feasible. The radial flow-gating PC imaging method is applicable in carotid arteries. The proposed flow-gating method can potentially avoid the setting up of ECG-related equipment for brain imaging. This technique has potential use in patients with arrhythmia or weak ECG signals.

  2. Theoretical analysis of incompressible flow through a radial-inlet centrifugal impeller at various weight flows

    NASA Technical Reports Server (NTRS)

    Kramer, James J; Prian, Vasily D; Wu, Chung-Hua

    1956-01-01

    A method for the solution of the incompressible nonviscous flow through a centrifugal impeller, including the inlet region, is presented. Several numerical solutions are obtained for four weight flows through an impeller at one operating speed. These solutions are refined in the leading-edge region. The results are presented in a series of figures showing streamlines and relative velocity contours. A comparison is made with the results obtained by using a rapid approximate method of analysis.

  3. Ultrasound SIV measurement of helical valvular flow behind the great saphenous vein

    NASA Astrophysics Data System (ADS)

    Park, Jun Hong; Kim, Jeong Ju; Lee, Sang Joon; Yeom, Eunseop; Experimental Fluid Mechanics Laboratory Team; LaboratoryMicrothermal; Microfluidic Measurements Collaboration

    2017-11-01

    Dysfunction of venous valve and induced secondary abnormal flow are closely associated with venous diseases. Thus, detailed analysis of venous valvular flow is invaluable from biological and medical perspectives. However, most previous studies on venous perivalvular flows were based on qualitative analyses. On the contrary, quantitative analysis on the perivalvular flows has not been fully understood yet. In this study, 3D valvular flows under in vitro and in vivo conditions were experimentally investigated using ultrasound speckle image velocimetry (SIV) for analyzing their flow characteristics. The results for in vitro model obtained by the SIV technique were compared with those derived by numerical simulation and color Doppler method to validate its measurement accuracy. Then blood flow in the human great saphenous vein was measured using the SIV with respect to the dimensionless index, helical intensity. The results obtained by the SIV method are well matched well with those obtained by the numerical simulation and color Doppler method. The hemodynamic characteristics of 3D valvular flows measured by the validated SIV method would be helpful in diagnosis of valve-related venous diseases. None.

  4. Separated flows near the nose of a body of revolution

    NASA Technical Reports Server (NTRS)

    Lin, S. P.

    1986-01-01

    The solution of the Navier-Stokes equations for the problem of cross-flow separataion about a deforming cylinder was achieved by iteration. It was shown that the separation starts at the rear stagnation point and the point of primary separation moves upstram along the cylinder surface. A general method of linear stability analysis for nonparallel external flows was constructed, which consists of representing the eigenfunctions with complete orthogonal sets and forms characteristic equations with the Galerkin method. The method was applied to the Kovasznay flow which is an exact solution of the Navier-Stokes equation. The results show that when the critical parameter is exceeded, there are only a few isolated unstable eigen-frequencies. Another exact solution is shown to be absolutely and monotonically stable with respect to infinitesimal disturbances of all frequencies. The flow is also globally, asymptotically, and monotonically stable in the mean with respect o three-dimensional disturbances. This result forms the sound foundation of rigorous stability analysis for nonparallel flows, and provides an invaluable test ground for future studies of nonparallel flows in which the basic states do not posses exact solutions. The application of this method to the study of the formation of spiral vorticies near the nose of a rotating body of revolution is underway. The same method will be applied to the stability analysis of reversed flow over a plate with suction.

  5. On accelerated flow of MHD powell-eyring fluid via homotopy analysis method

    NASA Astrophysics Data System (ADS)

    Salah, Faisal; Viswanathan, K. K.; Aziz, Zainal Abdul

    2017-09-01

    The aim of this article is to obtain the approximate analytical solution for incompressible magnetohydrodynamic (MHD) flow for Powell-Eyring fluid induced by an accelerated plate. Both constant and variable accelerated cases are investigated. Approximate analytical solution in each case is obtained by using the Homotopy Analysis Method (HAM). The resulting nonlinear analysis is carried out to generate the series solution. Finally, Graphical outcomes of different values of the material constants parameters on the velocity flow field are discussed and analyzed.

  6. Solid rocket booster internal flow analysis by highly accurate adaptive computational methods

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Tworzydlo, W.; Oden, J. T.; Bass, J. M.; Cullen, C.; Vadaketh, S.

    1991-01-01

    The primary objective of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket booster. Described here is a unique flow simulator code for analyzing highly complex flow phenomena in the solid rocket booster. New methodologies and features incorporated into this analysis tool are described.

  7. Flow analysis system and method

    NASA Technical Reports Server (NTRS)

    Hill, Wayne S. (Inventor); Barck, Bruce N. (Inventor)

    1998-01-01

    A non-invasive flow analysis system and method wherein a sensor, such as an acoustic sensor, is coupled to a conduit for transmitting a signal which varies depending on the characteristics of the flow in the conduit. The signal is amplified and there is a filter, responsive to the sensor signal, and tuned to pass a narrow band of frequencies proximate the resonant frequency of the sensor. A demodulator generates an amplitude envelope of the filtered signal and a number of flow indicator quantities are calculated based on variations in amplitude of the amplitude envelope. A neural network, or its equivalent, is then used to determine the flow rate of the flow in the conduit based on the flow indicator quantities.

  8. Applicability of linearized-theory attached-flow methods to design and analysis of flap systems at low speeds for thin swept wings with sharp leading edges

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Darden, Christine M.

    1987-01-01

    Low-speed experimental force and data on a series of thin swept wings with sharp leading edges and leading and trailing-edge flaps are compared with predictions made using a linearized-theory method which includes estimates of vortex forces. These comparisons were made to assess the effectiveness of linearized-theory methods for use in the design and analysis of flap systems in subsonic flow. Results demonstrate that linearized-theory, attached-flow methods (with approximate representation of vortex forces) can form the basis of a rational system for flap design and analysis. Even attached-flow methods that do not take vortex forces into account can be used for the selection of optimized flap-system geometry, but design-point performance levels tend to be underestimated unless vortex forces are included. Illustrative examples of the use of these methods in the design of efficient low-speed flap systems are included.

  9. Parallel processing methods for space based power systems

    NASA Technical Reports Server (NTRS)

    Berry, F. C.

    1993-01-01

    This report presents a method for doing load-flow analysis of a power system by using a decomposition approach. The power system for the Space Shuttle is used as a basis to build a model for the load-flow analysis. To test the decomposition method for doing load-flow analysis, simulations were performed on power systems of 16, 25, 34, 43, 52, 61, 70, and 79 nodes. Each of the power systems was divided into subsystems and simulated under steady-state conditions. The results from these tests have been found to be as accurate as tests performed using a standard serial simulator. The division of the power systems into different subsystems was done by assigning a processor to each area. There were 13 transputers available, therefore, up to 13 different subsystems could be simulated at the same time. This report has preliminary results for a load-flow analysis using a decomposition principal. The report shows that the decomposition algorithm for load-flow analysis is well suited for parallel processing and provides increases in the speed of execution.

  10. The effect of unsteadiness on the time-mean thermal loads in a turbine stage

    NASA Technical Reports Server (NTRS)

    Kirtley, K. R.; Celestina, M. L.; Adamczyk, J. J.

    1993-01-01

    Two steady numerical analysis methods and one unsteady method are used to study the viscous three-dimensional flow in the middle stage of the Pratt & Whitney alternate design Space Shuttle Main Engine fuel turbine. The principal characteristic of this flow is that the secondary flows generated in the rotor blade reconfigure a radial inlet total temperature distortion into one with a pitchwise exit hot streak distortion. Secondary flows in the following vane redistribute the radial variation while unsteadiness causes a segregation of hot and cold flow from the hot streak within the vane. Such redistribution and segregation can lead to unexpected thermal loads and reduced durability. The physical phenomena and the ability of a steady analysis to capture them are investigated by performing a numerical experiment whereby the results of the two steady analysis methods are compared to the time-mean of the unsteady simulation. The flow physics related to the segregation and mixing of total temperature are discussed.

  11. SWToolbox: A surface-water tool-box for statistical analysis of streamflow time series

    USGS Publications Warehouse

    Kiang, Julie E.; Flynn, Kate; Zhai, Tong; Hummel, Paul; Granato, Gregory

    2018-03-07

    This report is a user guide for the low-flow analysis methods provided with version 1.0 of the Surface Water Toolbox (SWToolbox) computer program. The software combines functionality from two software programs—U.S. Geological Survey (USGS) SWSTAT and U.S. Environmental Protection Agency (EPA) DFLOW. Both of these programs have been used primarily for computation of critical low-flow statistics. The main analysis methods are the computation of hydrologic frequency statistics such as the 7-day minimum flow that occurs on average only once every 10 years (7Q10), computation of design flows including biologically based flows, and computation of flow-duration curves and duration hydrographs. Other annual, monthly, and seasonal statistics can also be computed. The interface facilitates retrieval of streamflow discharge data from the USGS National Water Information System and outputs text reports for a record of the analysis. Tools for graphing data and screening tests are available to assist the analyst in conducting the analysis.

  12. High PRF ultrafast sliding compound doppler imaging: fully qualitative and quantitative analysis of blood flow

    NASA Astrophysics Data System (ADS)

    Kang, Jinbum; Jang, Won Seuk; Yoo, Yangmo

    2018-02-01

    Ultrafast compound Doppler imaging based on plane-wave excitation (UCDI) can be used to evaluate cardiovascular diseases using high frame rates. In particular, it provides a fully quantifiable flow analysis over a large region of interest with high spatio-temporal resolution. However, the pulse-repetition frequency (PRF) in the UCDI method is limited for high-velocity flow imaging since it has a tradeoff between the number of plane-wave angles (N) and acquisition time. In this paper, we present high PRF ultrafast sliding compound Doppler imaging method (HUSDI) to improve quantitative flow analysis. With the HUSDI method, full scanline images (i.e. each tilted plane wave data) in a Doppler frame buffer are consecutively summed using a sliding window to create high-quality ensemble data so that there is no reduction in frame rate and flow sensitivity. In addition, by updating a new compounding set with a certain time difference (i.e. sliding window step size or L), the HUSDI method allows various Doppler PRFs with the same acquisition data to enable a fully qualitative, retrospective flow assessment. To evaluate the performance of the proposed HUSDI method, simulation, in vitro and in vivo studies were conducted under diverse flow circumstances. In the simulation and in vitro studies, the HUSDI method showed improved hemodynamic representations without reducing either temporal resolution or sensitivity compared to the UCDI method. For the quantitative analysis, the root mean squared velocity error (RMSVE) was measured using 9 angles (-12° to 12°) with L of 1-9, and the results were found to be comparable to those of the UCDI method (L  =  N  =  9), i.e.  ⩽0.24 cm s-1, for all L values. For the in vivo study, the flow data acquired from a full cardiac cycle of the femoral vessels of a healthy volunteer were analyzed using a PW spectrogram, and arterial and venous flows were successfully assessed with high Doppler PRF (e.g. 5 kHz at L  =  4). These results indicate that the proposed HUSDI method can improve flow visualization and quantification with a higher frame rate, PRF and flow sensitivity in cardiovascular imaging.

  13. High PRF ultrafast sliding compound doppler imaging: fully qualitative and quantitative analysis of blood flow.

    PubMed

    Kang, Jinbum; Jang, Won Seuk; Yoo, Yangmo

    2018-02-09

    Ultrafast compound Doppler imaging based on plane-wave excitation (UCDI) can be used to evaluate cardiovascular diseases using high frame rates. In particular, it provides a fully quantifiable flow analysis over a large region of interest with high spatio-temporal resolution. However, the pulse-repetition frequency (PRF) in the UCDI method is limited for high-velocity flow imaging since it has a tradeoff between the number of plane-wave angles (N) and acquisition time. In this paper, we present high PRF ultrafast sliding compound Doppler imaging method (HUSDI) to improve quantitative flow analysis. With the HUSDI method, full scanline images (i.e. each tilted plane wave data) in a Doppler frame buffer are consecutively summed using a sliding window to create high-quality ensemble data so that there is no reduction in frame rate and flow sensitivity. In addition, by updating a new compounding set with a certain time difference (i.e. sliding window step size or L), the HUSDI method allows various Doppler PRFs with the same acquisition data to enable a fully qualitative, retrospective flow assessment. To evaluate the performance of the proposed HUSDI method, simulation, in vitro and in vivo studies were conducted under diverse flow circumstances. In the simulation and in vitro studies, the HUSDI method showed improved hemodynamic representations without reducing either temporal resolution or sensitivity compared to the UCDI method. For the quantitative analysis, the root mean squared velocity error (RMSVE) was measured using 9 angles (-12° to 12°) with L of 1-9, and the results were found to be comparable to those of the UCDI method (L  =  N  =  9), i.e.  ⩽0.24 cm s -1 , for all L values. For the in vivo study, the flow data acquired from a full cardiac cycle of the femoral vessels of a healthy volunteer were analyzed using a PW spectrogram, and arterial and venous flows were successfully assessed with high Doppler PRF (e.g. 5 kHz at L  =  4). These results indicate that the proposed HUSDI method can improve flow visualization and quantification with a higher frame rate, PRF and flow sensitivity in cardiovascular imaging.

  14. Multivariate data analysis methods for the interpretation of microbial flow cytometric data.

    PubMed

    Davey, Hazel M; Davey, Christopher L

    2011-01-01

    Flow cytometry is an important technique in cell biology and immunology and has been applied by many groups to the analysis of microorganisms. This has been made possible by developments in hardware that is now sensitive enough to be used routinely for analysis of microbes. However, in contrast to advances in the technology that underpin flow cytometry, there has not been concomitant progress in the software tools required to analyse, display and disseminate the data and manual analysis, of individual samples remains a limiting aspect of the technology. We present two new data sets that illustrate common applications of flow cytometry in microbiology and demonstrate the application of manual data analysis, automated visualisation (including the first description of a new piece of software we are developing to facilitate this), genetic programming, principal components analysis and artificial neural nets to these data. The data analysis methods described here are equally applicable to flow cytometric applications with other cell types.

  15. Statistical analysis on the signals monitoring multiphase flow patterns in pipeline-riser system

    NASA Astrophysics Data System (ADS)

    Ye, Jing; Guo, Liejin

    2013-07-01

    The signals monitoring petroleum transmission pipeline in offshore oil industry usually contain abundant information about the multiphase flow on flow assurance which includes the avoidance of most undesirable flow pattern. Therefore, extracting reliable features form these signals to analyze is an alternative way to examine the potential risks to oil platform. This paper is focused on characterizing multiphase flow patterns in pipeline-riser system that is often appeared in offshore oil industry and finding an objective criterion to describe the transition of flow patterns. Statistical analysis on pressure signal at the riser top is proposed, instead of normal prediction method based on inlet and outlet flow conditions which could not be easily determined during most situations. Besides, machine learning method (least square supported vector machine) is also performed to classify automatically the different flow patterns. The experiment results from a small-scale loop show that the proposed method is effective for analyzing the multiphase flow pattern.

  16. A zonal method for modeling powered-lift aircraft flow fields

    NASA Technical Reports Server (NTRS)

    Roberts, D. W.

    1989-01-01

    A zonal method for modeling powered-lift aircraft flow fields is based on the coupling of a three-dimensional Navier-Stokes code to a potential flow code. By minimizing the extent of the viscous Navier-Stokes zones the zonal method can be a cost effective flow analysis tool. The successful coupling of the zonal solutions provides the viscous/inviscid interations that are necessary to achieve convergent and unique overall solutions. The feasibility of coupling the two vastly different codes is demonstrated. The interzone boundaries were overlapped to facilitate the passing of boundary condition information between the codes. Routines were developed to extract the normal velocity boundary conditions for the potential flow zone from the viscous zone solution. Similarly, the velocity vector direction along with the total conditions were obtained from the potential flow solution to provide boundary conditions for the Navier-Stokes solution. Studies were conducted to determine the influence of the overlap of the interzone boundaries and the convergence of the zonal solutions on the convergence of the overall solution. The zonal method was applied to a jet impingement problem to model the suckdown effect that results from the entrainment of the inviscid zone flow by the viscous zone jet. The resultant potential flow solution created a lower pressure on the base of the vehicle which produces the suckdown load. The feasibility of the zonal method was demonstrated. By enhancing the Navier-Stokes code for powered-lift flow fields and optimizing the convergence of the coupled analysis a practical flow analysis tool will result.

  17. Determination of Total Selenium in Infant Formulas: Comparison of the Performance of FIA and MCFA Flow Systems

    PubMed Central

    Pistón, Mariela; Knochen, Moisés

    2012-01-01

    Two flow methods, based, respectively, on flow-injection analysis (FIA) and on multicommutated flow analysis (MCFA), were compared with regard to their use for the determination of total selenium in infant formulas by hydride-generation atomic absorption spectrometry. The method based on multicommutation provided lower detection and quantification limits (0.08 and 0.27 μg L−1 compared to 0.59 and 1.95 μ L−1, resp.), higher sampling frequency (160 versus. 70 samples per hour), and reduced reagent consumption. Linearity, precision, and accuracy were similar for the two methods compared. It was concluded that, while both methods proved to be appropriate for the purpose, the MCFA-based method exhibited a better performance. PMID:22505923

  18. Comparison of wind tunnel test results at free stream Mach 0.7 with results from the Boeing TEA-230 subsonic flow method. [wing flow method tests

    NASA Technical Reports Server (NTRS)

    Mohn, L. W.

    1975-01-01

    The use of the Boeing TEA-230 Subsonic Flow Analysis method as a primary design tool in the development of cruise overwing nacelle configurations is presented. Surface pressure characteristics at 0.7 Mach number were determined by the TEA-230 method for a selected overwing flow-through nacelle configuration. Results of this analysis show excellent overall agreement with corresponding wind tunnel data. Effects of the presence of the nacelle on the wing pressure field were predicted accurately by the theoretical method. Evidence is provided that differences between theoretical and experimental pressure distributions in the present study would not result in significant discrepancies in the nacelle lines or nacelle drag estimates.

  19. Boolean logic analysis for flow regime recognition of gas-liquid horizontal flow

    NASA Astrophysics Data System (ADS)

    Ramskill, Nicholas P.; Wang, Mi

    2011-10-01

    In order to develop a flowmeter for the accurate measurement of multiphase flows, it is of the utmost importance to correctly identify the flow regime present to enable the selection of the optimal method for metering. In this study, the horizontal flow of air and water in a pipeline was studied under a multitude of conditions using electrical resistance tomography but the flow regimes that are presented in this paper have been limited to plug and bubble air-water flows. This study proposes a novel method for recognition of the prevalent flow regime using only a fraction of the data, thus rendering the analysis more efficient. By considering the average conductivity of five zones along the central axis of the tomogram, key features can be identified, thus enabling the recognition of the prevalent flow regime. Boolean logic and frequency spectrum analysis has been applied for flow regime recognition. Visualization of the flow using the reconstructed images provides a qualitative comparison between different flow regimes. Application of the Boolean logic scheme enables a quantitative comparison of the flow patterns, thus reducing the subjectivity in the identification of the prevalent flow regime.

  20. Instream-Flow Analysis for the Luquillo Experimental Forest, Puerto Rico: Methods and Analysis

    Treesearch

    F.N. Scatena; S.L. Johnson

    2001-01-01

    This study develops two habitat-based approaches for evaluating instream-flow requirements within the Luquillo Experimental Forest in northeastern Puerto Rico. The analysis is restricted to instream-flow requirements in upland streams dominated by the common communities of freshwater decapods. In headwater streams, pool volume was the most consistent factor...

  1. Flow visualization V; Proceedings of the 5th International Symposium, Prague, Czechoslovakia, Aug. 21-25, 1989

    NASA Astrophysics Data System (ADS)

    Reznicek, R.

    The present conference on flow visualization encompasses methods exploiting tracing particles, surface tracing methods, methods exploiting the effects of streaming fluid on passing radiation/field, computer-aided flow visualization, and applications to fluid mechanics, aerodynamics, flow devices, shock tubes, and heat/mass transfer. Specific issues include visualizing velocity distribution by stereo photography, dark-field Fourier quasiinterferometry, speckle tomography of an open flame, a fast eye for real-time image analysis, and velocity-field determination based on flow-image analysis. Also addressed are flows around rectangular prisms with oscillating flaps at the leading edges, the tomography of aerodynamic objects, the vapor-screen technique applied to a delta-wing aircraft, flash-lamp planar imaging, IR-thermography applications in convective heat transfer, and the visualization of marangoni effects in evaporating sessile drops.

  2. A collection of flow visualization techniques used in the Aerodynamic Research Branch

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Theoretical and experimental research on unsteady aerodynamic flows is discussed. Complex flow fields that involve separations, vortex interactions, and transonic flow effects were investigated. Flow visualization techniques are used to obtain a global picture of the flow phenomena before detailed quantitative studies are undertaken. A wide variety of methods are used to visualize fluid flow and a sampling of these methods is presented. It is emphasized that the visualization technique is a thorough quantitative analysis and subsequent physical understanding of these flow fields.

  3. DIFFERENTIATION OF AURANTII FRUCTUS IMMATURUS AND FRUCTUS PONICIRI TRIFOLIATAE IMMATURUS BY FLOW-INJECTION WITH ULTRAVIOLET SPECTROSCOPIC DETECTION AND PROTON NUCLEAR MAGNETIC RESONANCE USING PARTIAL LEAST-SQUARES DISCRIMINANT ANALYSIS.

    PubMed

    Zhang, Mengliang; Zhao, Yang; Harrington, Peter de B; Chen, Pei

    2016-03-01

    Two simple fingerprinting methods, flow-injection coupled to ultraviolet spectroscopy and proton nuclear magnetic resonance, were used for discriminating between Aurantii fructus immaturus and Fructus poniciri trifoliatae immaturus . Both methods were combined with partial least-squares discriminant analysis. In the flow-injection method, four data representations were evaluated: total ultraviolet absorbance chromatograms, averaged ultraviolet spectra, absorbance at 193, 205, 225, and 283 nm, and absorbance at 225 and 283 nm. Prediction rates of 100% were achieved for all data representations by partial least-squares discriminant analysis using leave-one-sample-out cross-validation. The prediction rate for the proton nuclear magnetic resonance data by partial least-squares discriminant analysis with leave-one-sample-out cross-validation was also 100%. A new validation set of data was collected by flow-injection with ultraviolet spectroscopic detection two weeks later and predicted by partial least-squares discriminant analysis models constructed by the initial data representations with no parameter changes. The classification rates were 95% with the total ultraviolet absorbance chromatograms datasets and 100% with the other three datasets. Flow-injection with ultraviolet detection and proton nuclear magnetic resonance are simple, high throughput, and low-cost methods for discrimination studies.

  4. Characterization of winemaking yeast by cell number-size distribution analysis through flow field-flow fractionation with multi-wavelength turbidimetric detection.

    PubMed

    Zattoni, Andrea; Melucci, Dora; Reschiglian, Pierluigi; Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa

    2004-10-29

    Yeasts are widely used in several areas of food industry, e.g. baking, beer brewing, and wine production. Interest in new analytical methods for quality control and characterization of yeast cells is thus increasing. The biophysical properties of yeast cells, among which cell size, are related to yeast cell capabilities to produce primary and secondary metabolites during the fermentation process. Biophysical properties of winemaking yeast strains can be screened by field-flow fractionation (FFF). In this work we present the use of flow FFF (FlFFF) with turbidimetric multi-wavelength detection for the number-size distribution analysis of different commercial winemaking yeast varieties. The use of a diode-array detector allows to apply to dispersed samples like yeast cells the recently developed method for number-size (or mass-size) analysis in flow-assisted separation techniques. Results for six commercial winemaking yeast strains are compared with data obtained by a standard method for cell sizing (Coulter counter). The method here proposed gives, at short analysis time, accurate information on the number of cells of a given size, and information on the total number of cells.

  5. A novel potential/viscous flow coupling technique for computing helicopter flow fields

    NASA Technical Reports Server (NTRS)

    Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul

    1990-01-01

    Because of the complexity of helicopter flow field, a zonal method of analysis of computational aerodynamics is required. Here, a new procedure for coupling potential and viscous flow is proposed. An overlapping, velocity coupling technique is to be developed with the unique feature that the potential flow surface singularity strengths are obtained directly from the Navier-Stokes at a smoother inner fluid boundary. The closed-loop iteration method proceeds until the velocity field is converged. This coupling should provide the means of more accurate viscous computations of the near-body and rotor flow fields with resultant improved analysis of such important performance parameters as helicopter fuselage drag and rotor airloads.

  6. Estimating the vibration level of an L-shaped beam using power flow techniques

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.; Mccollum, M.; Rassineux, J. L.; Gilbert, T.

    1986-01-01

    The response of one component of an L-shaped beam, with point force excitation on the other component, is estimated using the power flow method. The transmitted power from the source component to the receiver component is expressed in terms of the transfer and input mobilities at the excitation point and the joint. The response is estimated both in narrow frequency bands, using the exact geometry of the beams, and as a frequency averaged response using infinite beam models. The results using this power flow technique are compared to the results obtained using finite element analysis (FEA) of the L-shaped beam for the low frequency response and to results obtained using statistical energy analysis (SEA) for the high frequencies. The agreement between the FEA results and the power flow method results at low frequencies is very good. SEA results are in terms of frequency averaged levels and these are in perfect agreement with the results obtained using the infinite beam models in the power flow method. The narrow frequency band results from the power flow method also converge to the SEA results at high frequencies. The advantage of the power flow method is that detail of the response can be retained while reducing computation time, which will allow the narrow frequency band analysis of the response to be extended to higher frequencies.

  7. Laser speckle imaging of rat retinal blood flow with hybrid temporal and spatial analysis method

    NASA Astrophysics Data System (ADS)

    Cheng, Haiying; Yan, Yumei; Duong, Timothy Q.

    2009-02-01

    Noninvasive monitoring of blood flow in retinal circulation will reveal the progression and treatment of ocular disorders, such as diabetic retinopathy, age-related macular degeneration and glaucoma. A non-invasive and direct BF measurement technique with high spatial-temporal resolution is needed for retinal imaging. Laser speckle imaging (LSI) is such a method. Currently, there are two analysis methods for LSI: spatial statistics LSI (SS-LSI) and temporal statistical LSI (TS-LSI). Comparing these two analysis methods, SS-LSI has higher signal to noise ratio (SNR) and TSLSI is less susceptible to artifacts from stationary speckle. We proposed a hybrid temporal and spatial analysis method (HTS-LSI) to measure the retinal blood flow. Gas challenge experiment was performed and images were analyzed by HTS-LSI. Results showed that HTS-LSI can not only remove the stationary speckle but also increase the SNR. Under 100% O2, retinal BF decreased by 20-30%. This was consistent with the results observed with laser Doppler technique. As retinal blood flow is a critical physiological parameter and its perturbation has been implicated in the early stages of many retinal diseases, HTS-LSI will be an efficient method in early detection of retina diseases.

  8. An efficient and rapid transgenic pollen screening and detection method using flow cytometry.

    PubMed

    Moon, Hong S; Eda, Shigetoshi; Saxton, Arnold M; Ow, David W; Stewart, C Neal

    2011-01-01

    Assaying for transgenic pollen, a major vector of transgene flow, provides valuable information and essential data for the study of gene flow and assessing the effectiveness of transgene containment. Most studies have employed microscopic screening methods or progeny analyses to estimate the frequency of transgenic pollen. However, these methods are time-consuming and laborious when large numbers of pollen grains must be analyzed to look for rare transgenic pollen grains. Thus, there is an urgent need for the development of a simple, rapid, and high throughput analysis method for transgenic pollen analysis. In this study, our objective was to determine the accuracy of using flow cytometry technology for transgenic pollen quantification in practical application where transgenic pollen is not frequent. A suspension of non-transgenic tobacco pollen was spiked with a known amount of verified transgenic tobacco pollen synthesizing low or high amounts of green fluorescent protein (GFP). The flow cytometric method detected approximately 75% and 100% of pollen grains synthesizing low and high amounts of GFP, respectively. The method is rapid, as it is able to count 5000 pollen grains per minute-long run. Our data indicate that this flow cytometric method is useful to study gene flow and assessment of transgene containment.

  9. Research on software behavior trust based on hierarchy evaluation

    NASA Astrophysics Data System (ADS)

    Long, Ke; Xu, Haishui

    2017-08-01

    In view of the correlation software behavior, we evaluate software behavior credibility from two levels of control flow and data flow. In control flow level, method of the software behavior of trace based on support vector machine (SVM) is proposed. In data flow level, behavioral evidence evaluation based on fuzzy decision analysis method is put forward.

  10. Simultaneous Aerodynamic and Structural Design Optimization (SASDO) for a 3-D Wing

    NASA Technical Reports Server (NTRS)

    Gumbert, Clyde R.; Hou, Gene J.-W.; Newman, Perry A.

    2001-01-01

    The formulation and implementation of an optimization method called Simultaneous Aerodynamic and Structural Design Optimization (SASDO) is shown as an extension of the Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) method. It is extended by the inclusion of structure element sizing parameters as design variables and Finite Element Method (FEM) analysis responses as constraints. The method aims to reduce the computational expense. incurred in performing shape and sizing optimization using state-of-the-art Computational Fluid Dynamics (CFD) flow analysis, FEM structural analysis and sensitivity analysis tools. SASDO is applied to a simple. isolated, 3-D wing in inviscid flow. Results show that the method finds the saine local optimum as a conventional optimization method with some reduction in the computational cost and without significant modifications; to the analysis tools.

  11. Numerical Solution of the Flow of a Perfect Gas Over A Circular Cylinder at Infinite Mach Number

    NASA Technical Reports Server (NTRS)

    Hamaker, Frank M.

    1959-01-01

    A solution for the two-dimensional flow of an inviscid perfect gas over a circular cylinder at infinite Mach number is obtained by numerical methods of analysis. Nonisentropic conditions of curved shock waves and vorticity are included in the solution. The analysis is divided into two distinct regions, the subsonic region which is analyzed by the relaxation method of Southwell and the supersonic region which was treated by the method of characteristics. Both these methods of analysis are inapplicable on the sonic line which is therefore considered separately. The shapes of the sonic line and the shock wave are obtained by iteration techniques. The striking result of the solution is the strong curvature of the sonic line and of the other lines of constant Mach number. Because of this the influence of the supersonic flow on the sonic line is negligible. On comparison with Newtonian flow methods, it is found that the approximate methods show a larger variation of surface pressure than is given by the present solution.

  12. Key Technology of Real-Time Road Navigation Method Based on Intelligent Data Research

    PubMed Central

    Tang, Haijing; Liang, Yu; Huang, Zhongnan; Wang, Taoyi; He, Lin; Du, Yicong; Ding, Gangyi

    2016-01-01

    The effect of traffic flow prediction plays an important role in routing selection. Traditional traffic flow forecasting methods mainly include linear, nonlinear, neural network, and Time Series Analysis method. However, all of them have some shortcomings. This paper analyzes the existing algorithms on traffic flow prediction and characteristics of city traffic flow and proposes a road traffic flow prediction method based on transfer probability. This method first analyzes the transfer probability of upstream of the target road and then makes the prediction of the traffic flow at the next time by using the traffic flow equation. Newton Interior-Point Method is used to obtain the optimal value of parameters. Finally, it uses the proposed model to predict the traffic flow at the next time. By comparing the existing prediction methods, the proposed model has proven to have good performance. It can fast get the optimal value of parameters faster and has higher prediction accuracy, which can be used to make real-time traffic flow prediction. PMID:27872637

  13. Fast interactive exploration of 4D MRI flow data

    NASA Astrophysics Data System (ADS)

    Hennemuth, A.; Friman, O.; Schumann, C.; Bock, J.; Drexl, J.; Huellebrand, M.; Markl, M.; Peitgen, H.-O.

    2011-03-01

    1- or 2-directional MRI blood flow mapping sequences are an integral part of standard MR protocols for diagnosis and therapy control in heart diseases. Recent progress in rapid MRI has made it possible to acquire volumetric, 3-directional cine images in reasonable scan time. In addition to flow and velocity measurements relative to arbitrarily oriented image planes, the analysis of 3-dimensional trajectories enables the visualization of flow patterns, local features of flow trajectories or possible paths into specific regions. The anatomical and functional information allows for advanced hemodynamic analysis in different application areas like stroke risk assessment, congenital and acquired heart disease, aneurysms or abdominal collaterals and cranial blood flow. The complexity of the 4D MRI flow datasets and the flow related image analysis tasks makes the development of fast comprehensive data exploration software for advanced flow analysis a challenging task. Most existing tools address only individual aspects of the analysis pipeline such as pre-processing, quantification or visualization, or are difficult to use for clinicians. The goal of the presented work is to provide a software solution that supports the whole image analysis pipeline and enables data exploration with fast intuitive interaction and visualization methods. The implemented methods facilitate the segmentation and inspection of different vascular systems. Arbitrary 2- or 3-dimensional regions for quantitative analysis and particle tracing can be defined interactively. Synchronized views of animated 3D path lines, 2D velocity or flow overlays and flow curves offer a detailed insight into local hemodynamics. The application of the analysis pipeline is shown for 6 cases from clinical practice, illustrating the usefulness for different clinical questions. Initial user tests show that the software is intuitive to learn and even inexperienced users achieve good results within reasonable processing times.

  14. A theoretical method for the analysis and design of axisymmetric bodies. [flow distribution and incompressible fluids

    NASA Technical Reports Server (NTRS)

    Beatty, T. D.

    1975-01-01

    A theoretical method is presented for the computation of the flow field about an axisymmetric body operating in a viscous, incompressible fluid. A potential flow method was used to determine the inviscid flow field and to yield the boundary conditions for the boundary layer solutions. Boundary layer effects in the forces of displacement thickness and empirically modeled separation streamlines are accounted for in subsequent potential flow solutions. This procedure is repeated until the solutions converge. An empirical method was used to determine base drag allowing configuration drag to be computed.

  15. Continuous particle separation using pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE).

    PubMed

    Jeon, Hyungkook; Kim, Youngkyu; Lim, Geunbae

    2016-01-28

    In this paper, we introduce pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE), a novel continuous separation method. In our separation system, the external flow and electric field are applied to particles, such that particle movement is affected by pressure-driven flow, electroosmosis, and electrophoresis. We then analyzed the hydrodynamic drag force and electrophoretic force applied to the particles in opposite directions. Based on this analysis, micro- and nano-sized particles were separated according to their electrophoretic mobilities with high separation efficiency. Because the separation can be achieved in a simple T-shaped microchannel, without the use of internal electrodes, it offers the advantages of low-cost, simple device fabrication and bubble-free operation, compared with conventional μ-FFE methods. Therefore, we expect the proposed separation method to have a wide range of filtering/separation applications in biochemical analysis.

  16. Continuous particle separation using pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE)

    PubMed Central

    Jeon, Hyungkook; Kim, Youngkyu; Lim, Geunbae

    2016-01-01

    In this paper, we introduce pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE), a novel continuous separation method. In our separation system, the external flow and electric field are applied to particles, such that particle movement is affected by pressure-driven flow, electroosmosis, and electrophoresis. We then analyzed the hydrodynamic drag force and electrophoretic force applied to the particles in opposite directions. Based on this analysis, micro- and nano-sized particles were separated according to their electrophoretic mobilities with high separation efficiency. Because the separation can be achieved in a simple T-shaped microchannel, without the use of internal electrodes, it offers the advantages of low-cost, simple device fabrication and bubble-free operation, compared with conventional μ-FFE methods. Therefore, we expect the proposed separation method to have a wide range of filtering/separation applications in biochemical analysis. PMID:26819221

  17. Passenger flow analysis of Beijing urban rail transit network using fractal approach

    NASA Astrophysics Data System (ADS)

    Li, Xiaohong; Chen, Peiwen; Chen, Feng; Wang, Zijia

    2018-04-01

    To quantify the spatiotemporal distribution of passenger flow and the characteristics of an urban rail transit network, we introduce four radius fractal dimensions and two branch fractal dimensions by combining a fractal approach with passenger flow assignment model. These fractal dimensions can numerically describe the complexity of passenger flow in the urban rail transit network and its change characteristics. Based on it, we establish a fractal quantification method to measure the fractal characteristics of passenger follow in the rail transit network. Finally, we validate the reasonability of our proposed method by using the actual data of Beijing subway network. It has been shown that our proposed method can effectively measure the scale-free range of the urban rail transit network, network development and the fractal characteristics of time-varying passenger flow, which further provides a reference for network planning and analysis of passenger flow.

  18. An advanced panel method for analysis of arbitrary configurations in unsteady subsonic flow

    NASA Technical Reports Server (NTRS)

    Dusto, A. R.; Epton, M. A.

    1980-01-01

    An advanced method is presented for solving the linear integral equations for subsonic unsteady flow in three dimensions. The method is applicable to flows about arbitrary, nonplanar boundary surfaces undergoing small amplitude harmonic oscillations about their steady mean locations. The problem is formulated with a wake model wherein unsteady vorticity can be convected by the steady mean component of flow. The geometric location of the unsteady source and doublet distributions can be located on the actual surfaces of thick bodies in their steady mean locations. The method is an outgrowth of a recently developed steady flow panel method and employs the linear source and quadratic doublet splines of that method.

  19. Nozzle Free Jet Flows Within the Strong Curved Shock Regime

    NASA Technical Reports Server (NTRS)

    Shih, Tso-Shin

    1975-01-01

    A study based on inviscid analysis was conducted to examine the flow field produced from a convergent-divergent nozzle when a strong curved shock occurs. It was found that a certain constraint is imposed on the flow solution of the problem which is the unique feature of the flow within this flow regime, and provides the reason why the inverse method of calculation cannot be employed for these problems. An approximate method was developed to calculate the flow field, and results were obtained for two-dimensional flows. Analysis and calculations were performed for flows with axial symmetry. It is shown that under certain conditions, the vorticity generated at the jet boundary may become infinite and the viscous effect becomes important. Under other conditions, the asymptotic free jet height as well as the corresponding shock geometry were determined.

  20. Finite element analysis in fluids; Proceedings of the Seventh International Conference on Finite Element Methods in Flow Problems, University of Alabama, Huntsville, Apr. 3-7, 1989

    NASA Technical Reports Server (NTRS)

    Chung, T. J. (Editor); Karr, Gerald R. (Editor)

    1989-01-01

    Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.

  1. A study of the viscous and nonadiabatic flow in radial turbines

    NASA Technical Reports Server (NTRS)

    Khalil, I.; Tabakoff, W.

    1981-01-01

    A method for analyzing the viscous nonadiabatic flow within turbomachine rotors is presented. The field analysis is based upon the numerical integration of the incompressible Navier-Stokes equations together with the energy equation over the rotors blade-to-blade stream channels. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system that suits the most complicated blade geometries. Effects of turbulence are modeled with two equations; one expressing the development of the turbulence kinetic energy and the other its dissipation rate. The method of analysis is applied to a radial inflow turbine. The solution obtained indicates the severity of the complex interaction mechanism that occurs between different flow regimes (i.e., boundary layers, recirculating eddies, separation zones, etc.). Comparison with nonviscous flow solutions tend to justify strongly the inadequacy of using the latter with standard boundary layer techniques to obtain viscous flow details within turbomachine rotors. Capabilities and limitations of the present method of analysis are discussed.

  2. Flow analysis and design optimization methods for nozzle-afterbody of a hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Baysal, O.

    1992-01-01

    This report summarizes the methods developed for the aerodynamic analysis and the shape optimization of the nozzle-afterbody section of a hypersonic vehicle. Initially, exhaust gases were assumed to be air. Internal-external flows around a single scramjet module were analyzed by solving the 3D Navier-Stokes equations. Then, exhaust gases were simulated by a cold mixture of Freon and Ar. Two different models were used to compute these multispecies flows as they mixed with the hypersonic airflow. Surface and off-surface properties were successfully compared with the experimental data. The Aerodynamic Design Optimization with Sensitivity analysis was then developed. Pre- and postoptimization sensitivity coefficients were derived and used in this quasi-analytical method. These coefficients were also used to predict inexpensively the flow field around a changed shape when the flow field of an unchanged shape was given. Starting with totally arbitrary initial afterbody shapes, independent computations were converged to the same optimum shape, which rendered the maximum axial thrust.

  3. Flow analysis and design optimization methods for nozzle afterbody of a hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1991-01-01

    This report summarizes the methods developed for the aerodynamic analysis and the shape optimization of the nozzle-afterbody section of a hypersonic vehicle. Initially, exhaust gases were assumed to be air. Internal-external flows around a single scramjet module were analyzed by solving the three dimensional Navier-Stokes equations. Then, exhaust gases were simulated by a cold mixture of Freon and Argon. Two different models were used to compute these multispecies flows as they mixed with the hypersonic airflow. Surface and off-surface properties were successfully compared with the experimental data. In the second phase of this project, the Aerodynamic Design Optimization with Sensitivity analysis (ADOS) was developed. Pre and post optimization sensitivity coefficients were derived and used in this quasi-analytical method. These coefficients were also used to predict inexpensively the flow field around a changed shape when the flow field of an unchanged shape was given. Starting with totally arbitrary initial afterbody shapes, independent computations were converged to the same optimum shape, which rendered the maximum axial thrust.

  4. Channel flow analysis. [velocity distribution throughout blade flow field

    NASA Technical Reports Server (NTRS)

    Katsanis, T.

    1973-01-01

    The design of a proper blade profile requires calculation of the blade row flow field in order to determine the velocities on the blade surfaces. An analysis theory is presented for several methods used for this calculation and associated computer programs that were developed are discussed.

  5. Finite element flow analysis; Proceedings of the Fourth International Symposium on Finite Element Methods in Flow Problems, Chuo University, Tokyo, Japan, July 26-29, 1982

    NASA Astrophysics Data System (ADS)

    Kawai, T.

    Among the topics discussed are the application of FEM to nonlinear free surface flow, Navier-Stokes shallow water wave equations, incompressible viscous flows and weather prediction, the mathematical analysis and characteristics of FEM, penalty function FEM, convective, viscous, and high Reynolds number FEM analyses, the solution of time-dependent, three-dimensional and incompressible Navier-Stokes equations, turbulent boundary layer flow, FEM modeling of environmental problems over complex terrain, and FEM's application to thermal convection problems and to the flow of polymeric materials in injection molding processes. Also covered are FEMs for compressible flows, including boundary layer flows and transonic flows, hybrid element approaches for wave hydrodynamic loadings, FEM acoustic field analyses, and FEM treatment of free surface flow, shallow water flow, seepage flow, and sediment transport. Boundary element methods and FEM computational technique topics are also discussed. For individual items see A84-25834 to A84-25896

  6. A linearized Euler analysis of unsteady flows in turbomachinery

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Crawley, Edward F.

    1987-01-01

    A method for calculating unsteady flows in cascades is presented. The model, which is based on the linearized unsteady Euler equations, accounts for blade loading shock motion, wake motion, and blade geometry. The mean flow through the cascade is determined by solving the full nonlinear Euler equations. Assuming the unsteadiness in the flow is small, then the Euler equations are linearized about the mean flow to obtain a set of linear variable coefficient equations which describe the small amplitude, harmonic motion of the flow. These equations are discretized on a computational grid via a finite volume operator and solved directly subject to an appropriate set of linearized boundary conditions. The steady flow, which is calculated prior to the unsteady flow, is found via a Newton iteration procedure. An important feature of the analysis is the use of shock fitting to model steady and unsteady shocks. Use of the Euler equations with the unsteady Rankine-Hugoniot shock jump conditions correctly models the generation of steady and unsteady entropy and vorticity at shocks. In particular, the low frequency shock displacement is correctly predicted. Results of this method are presented for a variety of test cases. Predicted unsteady transonic flows in channels are compared to full nonlinear Euler solutions obtained using time-accurate, time-marching methods. The agreement between the two methods is excellent for small to moderate levels of flow unsteadiness. The method is also used to predict unsteady flows in cascades due to blade motion (flutter problem) and incoming disturbances (gust response problem).

  7. Viscoelastic stability in a single-screw channel flow

    NASA Astrophysics Data System (ADS)

    Agbessi, Y.; Bu, L. X.; Béreaux, Y.; Charmeau, J.-Y.

    2018-05-01

    In this work, we perform a linear stability analysis on pressure and drag flows of an Upper Convected Maxwell viscoelastic fluid. We use the well-recognised method of expanding the disturbances in Chebyschev polynomials and solve the resulting generalized eigenvalues problem with a collocation spectra method. Both the level of elasticity and the back-pressure vary. In a second stage, recent analytic solutions of viscoelastic fluid flows in slowly varying sections [1] are used to extend this stability analysis to flows in a compression or in a diverging section of a single screw channel, for example a wave mixing screw.

  8. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Adumitroaie, V.; Colucci, P. J.; Taulbee, D. B.; Givi, P.

    1995-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Aug. 1994 - 31 Jul. 1995, we have focused our efforts on two programs: (1) developments of explicit algebraic moment closures for statistical descriptions of compressible reacting flows and (2) development of Monte Carlo numerical methods for LES of chemically reacting flows.

  9. Computer program for preliminary design analysis of axial-flow turbines

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1972-01-01

    The program method is based on a mean-diameter flow analysis. Input design requirements include power or pressure ratio, flow, temperature, pressure, and speed. Turbine designs are generated for any specified number of stages and for any of three types of velocity diagrams (symmetrical, zero exit swirl, or impulse). Exit turning vanes can be included in the design. Program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, blading angles, and last-stage critical velocity ratios. The report presents the analysis method, a description of input and output with sample cases, and the program listing.

  10. Experimental and simulation flow rate analysis of the 3/2 directional pneumatic valve

    NASA Astrophysics Data System (ADS)

    Blasiak, Slawomir; Takosoglu, Jakub E.; Laski, Pawel A.; Pietrala, Dawid S.; Zwierzchowski, Jaroslaw; Bracha, Gabriel; Nowakowski, Lukasz; Blasiak, Malgorzata

    The work includes a study on the comparative analysis of two test methods. The first method - numerical method, consists in determining the flow characteristics with the use of ANSYS CFX. A modeled poppet directional valve 3/2 3D CAD software - SolidWorks was used for this purpose. Based on the solid model that was developed, simulation studies of the air flow through the way valve in the software for computational fluid dynamics Ansys CFX were conducted. The second method - experimental, entailed conducting tests on a specially constructed test stand. The comparison of the test results obtained on the basis of both methods made it possible to determine the cross-correlation. High compatibility of the results confirms the usefulness of the numerical procedures. Thus, they might serve to determine the flow characteristics of directional valves as an alternative to a costly and time-consuming test stand.

  11. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman

    1994-01-01

    The objective of this research is to continue our efforts in advancing the state of knowledge in Large Eddy Simulation (LES), Direct Numerical Simulation (DNS), and Reynolds Averaged Navier Stokes (RANS) methods for the analysis of high-speed reacting turbulent flows. In the first phase of this research, conducted within the past six months, focus was in three directions: RANS of turbulent reacting flows by Probability Density Function (PDF) methods, RANS of non-reacting turbulent flows by advanced turbulence closures, and LES of mixing dominated reacting flows by a dynamics subgrid closure. A summary of our efforts within the past six months of this research is provided in this semi-annual progress report.

  12. Computational Methods Development at Ames

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Smith, Charles A. (Technical Monitor)

    1998-01-01

    This viewgraph presentation outlines the development at Ames Research Center of advanced computational methods to provide appropriate fidelity computational analysis/design capabilities. Current thrusts of the Ames research include: 1) methods to enhance/accelerate viscous flow simulation procedures, and the development of hybrid/polyhedral-grid procedures for viscous flow; 2) the development of real time transonic flow simulation procedures for a production wind tunnel, and intelligent data management technology; and 3) the validation of methods and the flow physics study gives historical precedents to above research, and speculates on its future course.

  13. Mach Reflection, Mach Disc, and the Associated Nozzle Free Jet Flows. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chang, I.

    1973-01-01

    The numerical method involving both the method of integral relations and the method of characteristics have been applied to investigate the steady flow phenomena associated with the accurrence of Mach reflection and Mach disc from nozzle flows. The solutions of triple-shock intersection are presented. The regime where Mach configuration appears is defines for the inviscid analysis. The method of integral relations developed for the blunt body problem is modified and extended to the attached shock wave and to internal nozzle flow problems.

  14. Determination of tannin in green tea infusion by flow-injection analysis based on quenching the fluorescence of 3-aminophthalate.

    PubMed

    Chen, Richie L C; Lin, Chun-Hsun; Chung, Chien-Yu; Cheng, Tzong-Jih

    2005-11-02

    A flow-injection analytical system was developed to determine tannin content in green tea infusions. The flow-injection system is based on measuring the quenching effect of tannin on the fluorescence of 3-aminophthalate. Fluorophore was obtained by auto-oxidation of luminol during solution preparation. System performance was satisfactory for routine analysis (sample throughput >20 h(-1); linear dynamic range for tannic acid, 0.005-0.3 mg/mL; linear dynamic range for green tea tannin, 0.02-1.0 mg/mL; CV < 3%). The flow-injection method is immune from interference by coexisting ascorbate in green tea infusion. Analytical results were verified by the ferrous tartrate method, the Japanese official analytical method.

  15. Calculating Flow Through A Helicopter Rotor

    NASA Technical Reports Server (NTRS)

    Kunz, Donald L.; Hodges, Dewey H.

    1991-01-01

    New method for calculating flow of air through and around helicopter rotor incorporated into General Rotorcraft Aeromechanical Stability Program (GRASP) (computer program for aeroelastic analysis). Flow about helicopter rotor represented by axisymmetric flow field in cylindrical region with actuator disk as source of flow.

  16. Analysis of the three dimensional flow in a turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Baskharone, E.

    1979-01-01

    The present analysis describes the three-dimensional compressible inviscid flow in the scroll and the vaneless nozzle of a radial inflow turbine. The solution to this flow field, which is further complicated by the geometrical shape of the boundaries, is obtained using the finite element method. Symmetric and nonsymmetric scroll cross sectional geometries are investigated to determine their effect on the general flow field and on the exit flow conditions.

  17. A direct-inverse method for transonic and separated flows about airfoils

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1990-01-01

    A direct-inverse technique and computer program called TAMSEP that can be used for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicting the flow field about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.

  18. Analysis of methods to estimate spring flows in a karst aquifer

    USGS Publications Warehouse

    Sepulveda, N.

    2009-01-01

    Hydraulically and statistically based methods were analyzed to identify the most reliable method to predict spring flows in a karst aquifer. Measured water levels at nearby observation wells, measured spring pool altitudes, and the distance between observation wells and the spring pool were the parameters used to match measured spring flows. Measured spring flows at six Upper Floridan aquifer springs in central Florida were used to assess the reliability of these methods to predict spring flows. Hydraulically based methods involved the application of the Theis, Hantush-Jacob, and Darcy-Weisbach equations, whereas the statistically based methods were the multiple linear regressions and the technology of artificial neural networks (ANNs). Root mean square errors between measured and predicted spring flows using the Darcy-Weisbach method ranged between 5% and 15% of the measured flows, lower than the 7% to 27% range for the Theis or Hantush-Jacob methods. Flows at all springs were estimated to be turbulent based on the Reynolds number derived from the Darcy-Weisbach equation for conduit flow. The multiple linear regression and the Darcy-Weisbach methods had similar spring flow prediction capabilities. The ANNs provided the lowest residuals between measured and predicted spring flows, ranging from 1.6% to 5.3% of the measured flows. The model prediction efficiency criteria also indicated that the ANNs were the most accurate method predicting spring flows in a karst aquifer. ?? 2008 National Ground Water Association.

  19. Analysis of methods to estimate spring flows in a karst aquifer.

    PubMed

    Sepúlveda, Nicasio

    2009-01-01

    Hydraulically and statistically based methods were analyzed to identify the most reliable method to predict spring flows in a karst aquifer. Measured water levels at nearby observation wells, measured spring pool altitudes, and the distance between observation wells and the spring pool were the parameters used to match measured spring flows. Measured spring flows at six Upper Floridan aquifer springs in central Florida were used to assess the reliability of these methods to predict spring flows. Hydraulically based methods involved the application of the Theis, Hantush-Jacob, and Darcy-Weisbach equations, whereas the statistically based methods were the multiple linear regressions and the technology of artificial neural networks (ANNs). Root mean square errors between measured and predicted spring flows using the Darcy-Weisbach method ranged between 5% and 15% of the measured flows, lower than the 7% to 27% range for the Theis or Hantush-Jacob methods. Flows at all springs were estimated to be turbulent based on the Reynolds number derived from the Darcy-Weisbach equation for conduit flow. The multiple linear regression and the Darcy-Weisbach methods had similar spring flow prediction capabilities. The ANNs provided the lowest residuals between measured and predicted spring flows, ranging from 1.6% to 5.3% of the measured flows. The model prediction efficiency criteria also indicated that the ANNs were the most accurate method predicting spring flows in a karst aquifer.

  20. Differentiation of the two major species of Echinacea (E. augustifolia and E. purpurea) using a flow injection mass spectrometric (FIMS) fingerprinting method and chemometric analysis

    USDA-ARS?s Scientific Manuscript database

    A rapid, simple, and reliable flow-injection mass spectrometric (FIMS) method was developed to discriminate two major Echinacea species (E. purpurea and E. angustifolia) samples. Fifty-eight Echinacea samples collected from United States were analyzed using FIMS. Principle component analysis (PCA) a...

  1. Discrimination of Aurantii Fructus Immaturus and Fructus Poniciri Trifoliatae Immaturus by Flow Injection UV Spectroscopy (FIUV) and 1H NMR using Partial Least-squares Discriminant Analysis (PLS-DA)

    USDA-ARS?s Scientific Manuscript database

    Two simple fingerprinting methods, flow-injection UV spectroscopy (FIUV) and 1H nuclear magnetic resonance (NMR), for discrimination of Aurantii FructusImmaturus and Fructus Poniciri TrifoliataeImmaturususing were described. Both methods were combined with partial least-squares discriminant analysis...

  2. Analysis of the STS-126 Flow Control Valve Structural-Acoustic Coupling Failure

    NASA Technical Reports Server (NTRS)

    Jones, Trevor M.; Larko, Jeffrey M.; McNelis, Mark E.

    2010-01-01

    During the Space Transportation System mission STS-126, one of the main engine's flow control valves incurred an unexpected failure. A section of the valve broke off during liftoff. It is theorized that an acoustic mode of the flowing fuel, coupled with a structural mode of the valve, causing a high cycle fatigue failure. This report documents the analysis efforts conducted in an attempt to verify this theory. Hand calculations, computational fluid dynamics, and finite element methods are all implemented and analyses are performed using steady-state methods in addition to transient analysis methods. The conclusion of the analyses is that there is a critical acoustic mode that aligns with a structural mode of the valve

  3. Numerical simulation of rarefied gas flow through a slit

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Jeng, Duen-Ren; De Witt, Kenneth J.; Chung, Chan-Hong

    1990-01-01

    Two different approaches, the finite-difference method coupled with the discrete-ordinate method (FDDO), and the direct-simulation Monte Carlo (DSMC) method, are used in the analysis of the flow of a rarefied gas from one reservoir to another through a two-dimensional slit. The cases considered are for hard vacuum downstream pressure, finite pressure ratios, and isobaric pressure with thermal diffusion, which are not well established in spite of the simplicity of the flow field. In the FDDO analysis, by employing the discrete-ordinate method, the Boltzmann equation simplified by a model collision integral is transformed to a set of partial differential equations which are continuous in physical space but are point functions in molecular velocity space. The set of partial differential equations are solved by means of a finite-difference approximation. In the DSMC analysis, three kinds of collision sampling techniques, the time counter (TC) method, the null collision (NC) method, and the no time counter (NTC) method, are used.

  4. Analysis and calculation by integral methods of laminar compressible boundary-layer with heat transfer and with and without pressure gradient

    NASA Technical Reports Server (NTRS)

    Morduchow, Morris

    1955-01-01

    A survey of integral methods in laminar-boundary-layer analysis is first given. A simple and sufficiently accurate method for practical purposes of calculating the properties (including stability) of the laminar compressible boundary layer in an axial pressure gradient with heat transfer at the wall is presented. For flow over a flat plate, the method is applicable for an arbitrarily prescribed distribution of temperature along the surface and for any given constant Prandtl number close to unity. For flow in a pressure gradient, the method is based on a Prandtl number of unity and a uniform wall temperature. A simple and accurate method of determining the separation point in a compressible flow with an adverse pressure gradient over a surface at a given uniform wall temperature is developed. The analysis is based on an extension of the Karman-Pohlhausen method to the momentum and the thermal energy equations in conjunction with fourth- and especially higher degree velocity and stagnation-enthalpy profiles.

  5. Power flows and Mechanical Intensities in structural finite element analysis

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.

    1989-01-01

    The identification of power flow paths in dynamically loaded structures is an important, but currently unavailable, capability for the finite element analyst. For this reason, methods for calculating power flows and mechanical intensities in finite element models are developed here. Formulations for calculating input and output powers, power flows, mechanical intensities, and power dissipations for beam, plate, and solid element types are derived. NASTRAN is used to calculate the required velocity, force, and stress results of an analysis, which a post-processor then uses to calculate power flow quantities. The SDRC I-deas Supertab module is used to view the final results. Test models include a simple truss and a beam-stiffened cantilever plate. Both test cases showed reasonable power flow fields over low to medium frequencies, with accurate power balances. Future work will include testing with more complex models, developing an interactive graphics program to view easily and efficiently the analysis results, applying shape optimization methods to the problem with power flow variables as design constraints, and adding the power flow capability to NASTRAN.

  6. Methods for peak-flow frequency analysis and reporting for streamgages in or near Montana based on data through water year 2015

    USGS Publications Warehouse

    Sando, Steven K.; McCarthy, Peter M.

    2018-05-10

    This report documents the methods for peak-flow frequency (hereinafter “frequency”) analysis and reporting for streamgages in and near Montana following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for selected streamgages operated by the U.S. Geological Survey Wyoming-Montana Water Science Center (WY–MT WSC). These annual exceedance probabilities correspond to 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.Standard procedures specific to the WY–MT WSC for implementing the Bulletin 17C guidelines include (1) the use of the Expected Moments Algorithm analysis for fitting the log-Pearson Type III distribution, incorporating historical information where applicable; (2) the use of weighted skew coefficients (based on weighting at-site station skew coefficients with generalized skew coefficients from the Bulletin 17B national skew map); and (3) the use of the Multiple Grubbs-Beck Test for identifying potentially influential low flows. For some streamgages, the peak-flow records are not well represented by the standard procedures and require user-specified adjustments informed by hydrologic judgement. The specific characteristics of peak-flow records addressed by the informed-user adjustments include (1) regulated peak-flow records, (2) atypical upper-tail peak-flow records, and (3) atypical lower-tail peak-flow records. In all cases, the informed-user adjustments use the Expected Moments Algorithm fit of the log-Pearson Type III distribution using the at-site station skew coefficient, a manual potentially influential low flow threshold, or both.Appropriate methods can be applied to at-site frequency estimates to provide improved representation of long-term hydroclimatic conditions. The methods for improving at-site frequency estimates by weighting with regional regression equations and by Maintenance of Variance Extension Type III record extension are described.Frequency analyses were conducted for 99 example streamgages to indicate various aspects of the frequency-analysis methods described in this report. The frequency analyses and results for the example streamgages are presented in a separate data release associated with this report consisting of tables and graphical plots that are structured to include information concerning the interpretive decisions involved in the frequency analyses. Further, the separate data release includes the input files to the PeakFQ program, version 7.1, including the peak-flow data file and the analysis specification file that were used in the peak-flow frequency analyses. Peak-flow frequencies are also reported in separate data releases for selected streamgages in the Beaverhead River and Clark Fork Basins and also for selected streamgages in the Ruby, Jefferson, and Madison River Basins.

  7. Climate Informed Low Flow Frequency Analysis Using Nonstationary Modeling

    NASA Astrophysics Data System (ADS)

    Liu, D.; Guo, S.; Lian, Y.

    2014-12-01

    Stationarity is often assumed for frequency analysis of low flows in water resources management and planning. However, many studies have shown that flow characteristics, particularly the frequency spectrum of extreme hydrologic events,were modified by climate change and human activities and the conventional frequency analysis without considering the non-stationary characteristics may lead to costly design. The analysis presented in this paper was based on the more than 100 years of daily flow data from the Yichang gaging station 44 kilometers downstream of the Three Gorges Dam. The Mann-Kendall trend test under the scaling hypothesis showed that the annual low flows had significant monotonic trend, whereas an abrupt change point was identified in 1936 by the Pettitt test. The climate informed low flow frequency analysis and the divided and combined method are employed to account for the impacts from related climate variables and the nonstationarities in annual low flows. Without prior knowledge of the probability density function for the gaging station, six distribution functions including the Generalized Extreme Values (GEV), Pearson Type III, Gumbel, Gamma, Lognormal, and Weibull distributions have been tested to find the best fit, in which the local likelihood method is used to estimate the parameters. Analyses show that GEV had the best fit for the observed low flows. This study has also shown that the climate informed low flow frequency analysis is able to exploit the link between climate indices and low flows, which would account for the dynamic feature for reservoir management and provide more accurate and reliable designs for infrastructure and water supply.

  8. Aeroacoustic directivity via wave-packet analysis of mean or base flows

    NASA Astrophysics Data System (ADS)

    Edstrand, Adam; Schmid, Peter; Cattafesta, Louis

    2017-11-01

    Noise pollution is an ever-increasing problem in society, and knowledge of the directivity patterns of the sound radiation is required for prediction and control. Directivity is frequently determined through costly numerical simulations of the flow field combined with an acoustic analogy. We introduce a new computationally efficient method of finding directivity for a given mean or base flow field using wave-packet analysis (Trefethen, PRSA 2005). Wave-packet analysis approximates the eigenvalue spectrum with spectral accuracy by modeling the eigenfunctions as wave packets. With the wave packets determined, we then follow the method of Obrist (JFM, 2009), which uses Lighthill's acoustic analogy to determine the far-field sound radiation and directivity of wave-packet modes. We apply this method to a canonical jet flow (Gudmundsson and Colonius, JFM 2011) and determine the directivity of potentially unstable wave packets. Furthermore, we generalize the method to consider a three-dimensional flow field of a trailing vortex wake. In summary, we approximate the disturbances as wave packets and extract the directivity from the wave-packet approximation in a fraction of the time of standard aeroacoustic solvers. ONR Grant N00014-15-1-2403.

  9. A nonintrusive laser interferometer method for measurement of skin friction

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1982-01-01

    A method is described for monitoring the changing thickness of a thin oil film subject to an aerodynamic shear stress using two focused laser beams. The measurement is then simply analyzed in terms of the surface skin friction of the flow. The analysis includes the effects of arbitrarily large pressure and skin friction gradients, gravity, and time varying oil temperature. It may also be applied to three dimensional flows with unknown direction. Applications are presented for a variety of flows including two dimensional flows, three dimensional swirling flows, separated flow, supersonic high Reynolds number flows, and delta wing vortical flows.

  10. GLOBAL HELIOSEISMIC EVIDENCE FOR A DEEPLY PENETRATING SOLAR MERIDIONAL FLOW CONSISTING OF MULTIPLE FLOW CELLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schad, A.; Roth, M.; Timmer, J., E-mail: ariane.schad@kis.uni-freiburg.de

    2013-12-01

    We use a novel global helioseismic analysis method to infer the meridional flow in the deep Solar interior. The method is based on the perturbation of eigenfunctions of Solar p modes due to meridional flow. We apply this method to time series obtained from Dopplergrams measured by the Michelson Doppler Imager aboard the Solar and Heliospheric Observatory covering the observation period 2004-2010. Our results show evidence that the meridional flow reaches down to the base of the convection zone. The flow profile has a complex spatial structure consisting of multiple flow cells distributed in depth and latitude. Toward the Solarmore » surface, our results are in good agreement with flow measurements from local helioseismology.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendenhall, M.R.

    The present volume discusses tactical missile aerodynamic drag, drag-prediction methods for axisymmetric missile bodies, an aerodynamic heating analysis for supersonic missiles, a component buildup method for engineering analysis of missiles at low-to-high angles of attack, experimental and analytical methods for missiles with noncircular fuselages, and a vortex-cloud model for body vortex shedding and tracking. Also discussed are panel methods with vorticity effects and corrections for nonlinear compressibility, supersonic full-potential methods for missile body analysis, space-marching Euler solvers, the time-asymptotic Euler/Navier-Stokes methods for subsonic and transonic flows, 3D boundary layers on missiles, Navier-Stokes analyses of flows over slender airframes, and themore » interaction of exhaust plumes with missile airframes.« less

  12. Open Rotor Computational Aeroacoustic Analysis with an Immersed Boundary Method

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    Reliable noise prediction capabilities are essential to enable novel fuel efficient open rotor designs that can meet the community and cabin noise standards. Toward this end, immersed boundary methods have reached a level of maturity where more and more complex flow problems can be tackled with this approach. This paper demonstrates that our higher-order immersed boundary method provides the ability for aeroacoustic analysis of wake-dominated flow fields generated by a contra-rotating open rotor. This is the first of a kind aeroacoustic simulation of an open rotor propulsion system employing an immersed boundary method. In addition to discussing the methodologies of how to apply the immersed boundary method to this moving boundary problem, we will provide a detailed validation of the aeroacoustic analysis approach employing the Launch Ascent and Vehicle Aerodynamics (LAVA) solver. Two free-stream Mach numbers with M=0.2 and M=0.78 are considered in this analysis that are based on the nominally take-off and cruise flow conditions. The simulation data is compared to available experimental data and other computational results employing more conventional CFD methods. Spectral analysis is used to determine the dominant wave propagation pattern in the acoustic near-field.

  13. Application of effective discharge analysis to environmental flow decision-making

    USGS Publications Warehouse

    McKay, S. Kyle; Freeman, Mary C.; Covich, A.P.

    2016-01-01

    Well-informed river management decisions rely on an explicit statement of objectives, repeatable analyses, and a transparent system for assessing trade-offs. These components may then be applied to compare alternative operational regimes for water resource infrastructure (e.g., diversions, locks, and dams). Intra- and inter-annual hydrologic variability further complicates these already complex environmental flow decisions. Effective discharge analysis (developed in studies of geomorphology) is a powerful tool for integrating temporal variability of flow magnitude and associated ecological consequences. Here, we adapt the effectiveness framework to include multiple elements of the natural flow regime (i.e., timing, duration, and rate-of-change) as well as two flow variables. We demonstrate this analytical approach using a case study of environmental flow management based on long-term (60 years) daily discharge records in the Middle Oconee River near Athens, GA, USA. Specifically, we apply an existing model for estimating young-of-year fish recruitment based on flow-dependent metrics to an effective discharge analysis that incorporates hydrologic variability and multiple focal taxa. We then compare three alternative methods of environmental flow provision. Percentage-based withdrawal schemes outcompete other environmental flow methods across all levels of water withdrawal and ecological outcomes.

  14. Application of Effective Discharge Analysis to Environmental Flow Decision-Making.

    PubMed

    McKay, S Kyle; Freeman, Mary C; Covich, Alan P

    2016-06-01

    Well-informed river management decisions rely on an explicit statement of objectives, repeatable analyses, and a transparent system for assessing trade-offs. These components may then be applied to compare alternative operational regimes for water resource infrastructure (e.g., diversions, locks, and dams). Intra- and inter-annual hydrologic variability further complicates these already complex environmental flow decisions. Effective discharge analysis (developed in studies of geomorphology) is a powerful tool for integrating temporal variability of flow magnitude and associated ecological consequences. Here, we adapt the effectiveness framework to include multiple elements of the natural flow regime (i.e., timing, duration, and rate-of-change) as well as two flow variables. We demonstrate this analytical approach using a case study of environmental flow management based on long-term (60 years) daily discharge records in the Middle Oconee River near Athens, GA, USA. Specifically, we apply an existing model for estimating young-of-year fish recruitment based on flow-dependent metrics to an effective discharge analysis that incorporates hydrologic variability and multiple focal taxa. We then compare three alternative methods of environmental flow provision. Percentage-based withdrawal schemes outcompete other environmental flow methods across all levels of water withdrawal and ecological outcomes.

  15. Design optimization of natural laminar flow bodies in compressible flow

    NASA Technical Reports Server (NTRS)

    Dodbele, Simha S.

    1992-01-01

    An optimization method has been developed to design axisymmetric body shapes such as fuselages, nacelles, and external fuel tanks with increased transition Reynolds numbers in subsonic compressible flow. The new design method involves a constraint minimization procedure coupled with analysis of the inviscid and viscous flow regions and linear stability analysis of the compressible boundary-layer. In order to reduce the computer time, Granville's transition criterion is used to predict boundary-layer transition and to calculate the gradients of the objective function, and linear stability theory coupled with the e(exp n)-method is used to calculate the objective function at the end of each design iteration. Use of a method to design an axisymmetric body with extensive natural laminar flow is illustrated through the design of a tiptank of a business jet. For the original tiptank, boundary layer transition is predicted to occur at a transition Reynolds number of 6.04 x 10(exp 6). For the designed body shape, a transition Reynolds number of 7.22 x 10(exp 6) is predicted using compressible linear stability theory coupled with the e(exp n)-method.

  16. Automated measurement and classification of pulmonary blood-flow velocity patterns using phase-contrast MRI and correlation analysis.

    PubMed

    van Amerom, Joshua F P; Kellenberger, Christian J; Yoo, Shi-Joon; Macgowan, Christopher K

    2009-01-01

    An automated method was evaluated to detect blood flow in small pulmonary arteries and classify each as artery or vein, based on a temporal correlation analysis of their blood-flow velocity patterns. The method was evaluated using velocity-sensitive phase-contrast magnetic resonance data collected in vitro with a pulsatile flow phantom and in vivo in 11 human volunteers. The accuracy of the method was validated in vitro, which showed relative velocity errors of 12% at low spatial resolution (four voxels per diameter), but was reduced to 5% at increased spatial resolution (16 voxels per diameter). The performance of the method was evaluated in vivo according to its reproducibility and agreement with manual velocity measurements by an experienced radiologist. In all volunteers, the correlation analysis was able to detect and segment peripheral pulmonary vessels and distinguish arterial from venous velocity patterns. The intrasubject variability of repeated measurements was approximately 10% of peak velocity, or 2.8 cm/s root-mean-variance, demonstrating the high reproducibility of the method. Excellent agreement was obtained between the correlation analysis and radiologist measurements of pulmonary velocities, with a correlation of R2=0.98 (P<.001) and a slope of 0.99+/-0.01.

  17. Flow cytometric analysis of microbial contamination in food industry technological lines--initial study.

    PubMed

    Józwa, Wojciech; Czaczyk, Katarzyna

    2012-04-02

    Flow cytometry constitutes an alternative for traditional methods of microorganisms identification and analysis, including methods requiring cultivation step. It enables the detection of pathogens and other microorganisms contaminants without the need to culture microbial cells meaning that the sample (water, waste or food e.g. milk, wine, beer) may be analysed directly. This leads to a significant reduction of time required for analysis allowing monitoring of production processes and immediate reaction in case of contamination or any disruption occurs. Apart from the analysis of raw materials or products on different stages of manufacturing process, the flow cytometry seems to constitute an ideal tool for the assessment of microbial contamination on the surface of technological lines. In the present work samples comprising smears from 3 different surfaces of technological lines from fruit and vegetable processing company from Greater Poland were analysed directly with flow cytometer. The measured parameters were forward and side scatter of laser light signals allowing the estimation of microbial cell contents in each sample. Flow cytometric analysis of the surface of food industry production lines enable the preliminary evaluation of microbial contamination within few minutes from the moment of sample arrival without the need of sample pretreatment. The presented method of fl ow cytometric initial evaluation of microbial state of food industry technological lines demonstrated its potential for developing a robust, routine method for the rapid and labor-saving detection of microbial contamination in food industry.

  18. Development of a graphical method for choosing the optimal mode of traffic light

    NASA Astrophysics Data System (ADS)

    Novikov, A. N.; Katunin, A. A.; Novikov, I. A.; Kravchenko, A. A.; Shevtsova, A. G.

    2018-05-01

    Changing the transportation infrastructure for improving the main characteristics of the transportation flow is the key problem in transportation planning, therefore the main question lies in the ability to plan the change of the main indicators for the long term. In this investigation, an analysis of the city’s population has been performed and the most difficult transportation segment has been identified. During its identification, the main characteristics of the transportation flow have been established. For the evaluation of these characteristics until 2025, an analysis of the available methods of establishing changes in their values has been conducted. During the analysis of the above mentioned methods of evaluation of the change in intensity, based on the method of extrapolation, three scenarios of the development of the transportation system have been identified. It has been established that the most favorable method of controlling the transportation flow in the entrance to the city is the long term control of the traffic system. For the first time, with the help of the authors, based on the investigations of foreign scientists and the mathematical analysis of the changes in intensiveness on the main routes of the given road, the method of graphically choosing the required control plan has been put forward. The effectiveness of said organization scheme of the transportation system has been rated in the Transyt-14 program, with the analysis of changes in the main characteristics of the transportation flow.

  19. U.S. Geological Survey groundwater toolbox, a graphical and mapping interface for analysis of hydrologic data (version 1.0): user guide for estimation of base flow, runoff, and groundwater recharge from streamflow data

    USGS Publications Warehouse

    Barlow, Paul M.; Cunningham, William L.; Zhai, Tong; Gray, Mark

    2015-01-01

    This report is a user guide for the streamflow-hydrograph analysis methods provided with version 1.0 of the U.S. Geological Survey (USGS) Groundwater Toolbox computer program. These include six hydrograph-separation methods to determine the groundwater-discharge (base-flow) and surface-runoff components of streamflow—the Base-Flow Index (BFI; Standard and Modified), HYSEP (Fixed Interval, Sliding Interval, and Local Minimum), and PART methods—and the RORA recession-curve displacement method and associated RECESS program to estimate groundwater recharge from streamflow data. The Groundwater Toolbox is a customized interface built on the nonproprietary, open source MapWindow geographic information system software. The program provides graphing, mapping, and analysis capabilities in a Microsoft Windows computing environment. In addition to the four hydrograph-analysis methods, the Groundwater Toolbox allows for the retrieval of hydrologic time-series data (streamflow, groundwater levels, and precipitation) from the USGS National Water Information System, downloading of a suite of preprocessed geographic information system coverages and meteorological data from the National Oceanic and Atmospheric Administration National Climatic Data Center, and analysis of data with several preprocessing and postprocessing utilities. With its data retrieval and analysis tools, the Groundwater Toolbox provides methods to estimate many of the components of the water budget for a hydrologic basin, including precipitation; streamflow; base flow; runoff; groundwater recharge; and total, groundwater, and near-surface evapotranspiration.

  20. Sensing and Active Flow Control for Advanced BWB Propulsion-Airframe Integration Concepts

    NASA Technical Reports Server (NTRS)

    Fleming, John; Anderson, Jason; Ng, Wing; Harrison, Neal

    2005-01-01

    In order to realize the substantial performance benefits of serpentine boundary layer ingesting diffusers, this study investigated the use of enabling flow control methods to reduce engine-face flow distortion. Computational methods and novel flow control modeling techniques were utilized that allowed for rapid, accurate analysis of flow control geometries. Results were validated experimentally using the Techsburg Ejector-based wind tunnel facility; this facility is capable of simulating the high-altitude, high subsonic Mach number conditions representative of BWB cruise conditions.

  1. Comparison and Validation of Hydrological E-Flow Methods through Hydrodynamic Modelling

    NASA Astrophysics Data System (ADS)

    Kuriqi, Alban; Rivaes, Rui; Sordo-Ward, Alvaro; Pinheiro, António N.; Garrote, Luis

    2017-04-01

    Flow regime determines physical habitat conditions and local biotic configuration. The development of environmental flow guidelines to support the river integrity is becoming a major concern in water resources management. In this study, we analysed two sites located in southern part of Portugal, respectively at Odelouca and Ocreza Rivers, characterised by the Mediterranean climate. Both rivers are almost in pristine condition, not regulated by dams or other diversion construction. This study presents an analysis of the effect on fish habitat suitability by the implementation of different hydrological e-flow methods. To conduct this study we employed certain hydrological e-flow methods recommended by the European Small Hydropower Association (ESHA). River hydrology assessment was based on approximately 30 years of mean daily flow data, provided by the Portuguese Water Information System (SNIRH). The biological data, bathymetry, physical and hydraulic features, and the Habitat Suitability Index for fish species were collected from extensive field works. We followed the Instream Flow Incremental Methodology (IFIM) to assess the flow-habitat relationship taking into account the habitat suitability of different instream flow releases. Initially, we analysed fish habitat suitability based on natural conditions, and we used it as reference condition for other scenarios considering the chosen hydrological e-flow methods. We accomplished the habitat modelling through hydrodynamic analysis by using River-2D model. The same methodology was applied to each scenario by considering as input the e-flows obtained from each of the hydrological method employed in this study. This contribution shows the significance of ecohydrological studies in establishing a foundation for water resources management actions. Keywords: ecohydrology, e-flow, Mediterranean rivers, river conservation, fish habitat, River-2D, Hydropower.

  2. The dispersion analysis of drift velocity in the study of solar wind flows

    NASA Astrophysics Data System (ADS)

    Olyak, Maryna

    2013-09-01

    In this work I consider a method for the study of the solar wind flows at distances from the Sun more than 1 AU. The method is based on the analysis of drift velocity dispersion that was obtained from the simultaneous scintillation observations in two antennas. I considered dispersion dependences for different models of the solar wind, and I defined its specificity for each model. I have determined that the presence of several solar wind flows significantly affects the shape and the slope of the dispersion curve. The maximum slope angle is during the passage of the fast solar wind flow near the Earth. If a slow flow passes near the Earth, the slope of the dispersion curve decreases. This allows a more precise definition of the velocity and flow width compared to the traditional scintillation method. Using the comparison of experimental and theoretical dispersion curves, I calculated the velocity and width of solar wind flows and revealed the presence of significant velocity fluctuations which accounted for about 60% of the average velocity.

  3. Illustration of cross flow of polystyrene melts through a coathanger die

    NASA Astrophysics Data System (ADS)

    Schöppner, V.; Henke, B.

    2015-05-01

    To design an optimal coathanger die with a uniform flow rate distribution and low pressure drop, it is essential to understand the flow conditions in the die. This is important because the quality of the product is influenced by the flow velocity and the flow rate distribution. In extrusion dies, cross flows also occur in addition to the main flow, which flow perpendicular to the main flow. This results in pressure gradients in the extrusion direction, which have an influence on flow distribution and pressure drop in the die. In recent decades, quantitative representation and analysis of physical flow processes have made considerable progress in predicting the weather, developing drive technologies and designing aircraft using simulation methods and lab trials. Using the flow-line method, the flow is analyzed in flat film extrusion dies with a rectangular cross-section, in particular cross flows. The simplest method to visualize the flow is based on the measurement of obstacle orientation in the flow field by adding individual particles. A near-surface flow field can be visualized by using wool or textile yarns. By sticking thin, frayed at the ends of strands of wool surface that is to be examined cross flows, near-wall profiles of the flow and vortex and separation regions can be visualized. A further possibility is to add glass fibers and analyze the fiber orientation by microscopy and x-ray analysis. In this paper the influence of process parameters (e.g. melt temperatures and throughput) on cross flow and fiber orientation is described.

  4. Simultaneous injection-effective mixing analysis of palladium.

    PubMed

    Teshima, Norio; Noguchi, Daisuke; Joichi, Yasutaka; Lenghor, Narong; Ohno, Noriko; Sakai, Tadao; Motomizu, Shoji

    2010-01-01

    A novel concept of simultaneous injection-effective mixing analysis (SIEMA) is proposed, and a SIEMA method applied to the spectrophotometric determination of palladium using a water-soluble chromogenic reagent has been demonstrated. The flow configuration of SIEMA is a hybrid format of flow injection analysis (FIA), sequential injection analysis (SIA) and multicommutation in flow-based analysis. Sample and reagent solutions are aspirated into each holding coil through each solenoid valve by a syringe pump, and then the zones are simultaneously dispensed (injected) into a mixing coil by reversed flow toward a detector through a confluence point. This results in effective mixing and rapid detection with low reagent consumption.

  5. Identification of varying time scales in sediment transport using the Hilbert-Huang Transform method

    NASA Astrophysics Data System (ADS)

    Kuai, Ken Z.; Tsai, Christina W.

    2012-02-01

    SummarySediment transport processes vary at a variety of time scales - from seconds, hours, days to months and years. Multiple time scales exist in the system of flow, sediment transport and bed elevation change processes. As such, identification and selection of appropriate time scales for flow and sediment processes can assist in formulating a system of flow and sediment governing equations representative of the dynamic interaction of flow and particles at the desired details. Recognizing the importance of different varying time scales in the fluvial processes of sediment transport, we introduce the Hilbert-Huang Transform method (HHT) to the field of sediment transport for the time scale analysis. The HHT uses the Empirical Mode Decomposition (EMD) method to decompose a time series into a collection of the Intrinsic Mode Functions (IMFs), and uses the Hilbert Spectral Analysis (HSA) to obtain instantaneous frequency data. The EMD extracts the variability of data with different time scales, and improves the analysis of data series. The HSA can display the succession of time varying time scales, which cannot be captured by the often-used Fast Fourier Transform (FFT) method. This study is one of the earlier attempts to introduce the state-of-the-art technique for the multiple time sales analysis of sediment transport processes. Three practical applications of the HHT method for data analysis of both suspended sediment and bedload transport time series are presented. The analysis results show the strong impact of flood waves on the variations of flow and sediment time scales at a large sampling time scale, as well as the impact of flow turbulence on those time scales at a smaller sampling time scale. Our analysis reveals that the existence of multiple time scales in sediment transport processes may be attributed to the fractal nature in sediment transport. It can be demonstrated by the HHT analysis that the bedload motion time scale is better represented by the ratio of the water depth to the settling velocity, h/ w. In the final part, HHT results are compared with an available time scale formula in literature.

  6. NASA-Ames three-dimensional potential flow analysis system (POTFAN) equation solver code (SOLN) version 1

    NASA Technical Reports Server (NTRS)

    Davis, J. E.; Bonnett, W. S.; Medan, R. T.

    1976-01-01

    A computer program known as SOLN was developed as an independent segment of the NASA-Ames three-dimensional potential flow analysis systems of linear algebraic equations. Methods used include: LU decomposition, Householder's method, a partitioning scheme, and a block successive relaxation method. Due to the independent modular nature of the program, it may be used by itself and not necessarily in conjunction with other segments of the POTFAN system.

  7. Linear model describing three components of flow in karst aquifers using 18O data

    USGS Publications Warehouse

    Long, Andrew J.; Putnam, L.D.

    2004-01-01

    The stable isotope of oxygen, 18O, is used as a naturally occurring ground-water tracer. Time-series data for ??18O are analyzed to model the distinct responses and relative proportions of the conduit, intermediate, and diffuse flow components in karst aquifers. This analysis also describes mathematically the dynamics of the transient fluid interchange between conduits and diffusive networks. Conduit and intermediate flow are described by linear-systems methods, whereas diffuse flow is described by mass-balance methods. An automated optimization process estimates parameters of lognormal, Pearson type III, and gamma distributions, which are used as transfer functions in linear-systems analysis. Diffuse flow and mixing parameters also are estimated by these optimization methods. Results indicate the relative proximity of a well to a main conduit flowpath and can help to predict the movement and residence times of potential contaminants. The three-component linear model is applied to five wells, which respond to changes in the isotopic composition of point recharge water from a sinking stream in the Madison aquifer in the Black Hills of South Dakota. Flow velocities as much as 540 m/d and system memories of as much as 71 years are estimated by this method. Also, the mean, median, and standard deviation of traveltimes; time to peak response; and the relative fraction of flow for each of the three components are determined for these wells. This analysis infers that flow may branch apart and rejoin as a result of an anastomotic (or channeled) karst network.

  8. Flow injection analysis simulations and diffusion coefficient determination by stochastic and deterministic optimization methods.

    PubMed

    Kucza, Witold

    2013-07-25

    Stochastic and deterministic simulations of dispersion in cylindrical channels on the Poiseuille flow have been presented. The random walk (stochastic) and the uniform dispersion (deterministic) models have been used for computations of flow injection analysis responses. These methods coupled with the genetic algorithm and the Levenberg-Marquardt optimization methods, respectively, have been applied for determination of diffusion coefficients. The diffusion coefficients of fluorescein sodium, potassium hexacyanoferrate and potassium dichromate have been determined by means of the presented methods and FIA responses that are available in literature. The best-fit results agree with each other and with experimental data thus validating both presented approaches. Copyright © 2013 The Author. Published by Elsevier B.V. All rights reserved.

  9. A general panel method for the analysis and design of arbitrary configurations in incompressible flows. [boundary value problem

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.

    1980-01-01

    A method for solving the linear integral equations of incompressible potential flow in three dimensions is presented. Both analysis (Neumann) and design (Dirichlet) boundary conditions are treated in a unified approach to the general flow problem. The method is an influence coefficient scheme which employs source and doublet panels as boundary surfaces. Curved panels possessing singularity strengths, which vary as polynomials are used, and all influence coefficients are derived in closed form. These and other features combine to produce an efficient scheme which is not only versatile but eminently suited to the practical realities of a user-oriented environment. A wide variety of numerical results demonstrating the method is presented.

  10. Coupled parametric design of flow control and duct shape

    NASA Technical Reports Server (NTRS)

    Florea, Razvan (Inventor); Bertuccioli, Luca (Inventor)

    2009-01-01

    A method for designing gas turbine engine components using a coupled parametric analysis of part geometry and flow control is disclosed. Included are the steps of parametrically defining the geometry of the duct wall shape, parametrically defining one or more flow control actuators in the duct wall, measuring a plurality of performance parameters or metrics (e.g., flow characteristics) of the duct and comparing the results of the measurement with desired or target parameters, and selecting the optimal duct geometry and flow control for at least a portion of the duct, the selection process including evaluating the plurality of performance metrics in a pareto analysis. The use of this method in the design of inter-turbine transition ducts, serpentine ducts, inlets, diffusers, and similar components provides a design which reduces pressure losses and flow profile distortions.

  11. Identification of Preferential Groundwater Flow Pathways from Local Tracer Breakthrough Curves

    NASA Astrophysics Data System (ADS)

    Kokkinaki, A.; Sleep, B. E.; Dearden, R.; Wealthall, G.

    2009-12-01

    Characterizing preferential groundwater flow paths in the subsurface is a key factor in the design of in situ remediation technologies. When applying reaction-based remediation methods, such as enhanced bioremediation, preferential flow paths result in fast solute migration and potentially ineffective delivery of reactants, thereby adversely affecting treatment efficiency. The presence of such subsurface conduits was observed at the SABRe (Source Area Bioremediation) research site. Non-uniform migration of contaminants and electron donor during the field trials of enhanced bioremediation supported this observation. To better determine the spatial flow field of the heterogeneous aquifer, a conservative tracer test was conducted. Breakthrough curves were obtained at a reference plane perpendicular to the principal groundwater flow direction. The resulting dataset was analyzed using three different methods: peak arrival times, analytical solution fitting and moment analysis. Interpretation using the peak arrival time method indicated areas of fast plume migration. However, some of the high velocities are supported by single data points, thus adding considerable uncertainty to the estimated velocity distribution. Observation of complete breakthrough curves indicated different types of solute breakthrough, corresponding to different transport mechanisms. Sharp peaks corresponded to high conductivity preferential flow pathways, whereas more dispersed breakthrough curves with long tails were characteristic of significant dispersive mixing and dilution. While analytical solutions adequately quantified flow characteristics for the first type of curves, they failed to do so for the second type, in which case they gave unrealistic results. Therefore, a temporal moment analysis was performed to obtain complete spatial distributions of mass recovery, velocity and dispersivity. Though the results of moment analysis qualitatively agreed with the results of previous methods, more realistic estimates of velocities were obtained and the presence of one major preferential flow pathway was confirmed. However, low mass recovery and deviations from the 10% scaling rule for dispersivities indicate that insufficient spatial and temporal monitoring, as well as interpolation and truncation errors introduced uncertainty in the flow and transport parameters estimated by the method of moments. The results of the three analyses are valuable for enhancing the understanding of mass transport and remediation performance. Comparing the different interpretation methods, increasing the amount of concentration data considered in the analysis, the derived velocity fields were smoother and the estimated local velocities and dispersivities became more realistic. In conclusion, moment analysis is a method that represents a smoothed average of the velocity across the entire breakthrough curve, whereas the peak arrival time, which may be a less well constrained estimate, represents the physical peak arrival and typically yields a higher velocity than the moment analysis. This is an important distinction when applying the results of the tracer test to field sites.

  12. A network-analysis-based comparative study of the throughput behavior of polymer melts in barrier screw geometries

    NASA Astrophysics Data System (ADS)

    Aigner, M.; Köpplmayr, T.; Kneidinger, C.; Miethlinger, J.

    2014-05-01

    Barrier screws are widely used in the plastics industry. Due to the extreme diversity of their geometries, describing the flow behavior is difficult and rarely done in practice. We present a systematic approach based on networks that uses tensor algebra and numerical methods to model and calculate selected barrier screw geometries in terms of pressure, mass flow, and residence time. In addition, we report the results of three-dimensional simulations using the commercially available ANSYS Polyflow software. The major drawbacks of three-dimensional finite-element-method (FEM) simulations are that they require vast computational power and, large quantities of memory, and consume considerable time to create a geometric model created by computer-aided design (CAD) and complete a flow calculation. Consequently, a modified 2.5-dimensional finite volume method, termed network analysis is preferable. The results obtained by network analysis and FEM simulations correlated well. Network analysis provides an efficient alternative to complex FEM software in terms of computing power and memory consumption. Furthermore, typical barrier screw geometries can be parameterized and used for flow calculations without timeconsuming CAD-constructions.

  13. Turbofan forced mixer lobe flow modeling. 2: Three-dimensional inviscid mixer analysis (FLOMIX)

    NASA Technical Reports Server (NTRS)

    Barber, T.

    1988-01-01

    A three-dimensional potential analysis (FLOMIX) was formulated and applied to the inviscid flow over a turbofan foced mixer. The method uses a small disturbance formulation to analytically uncouple the circumferential flow from the radial and axial flow problem, thereby reducing the analysis to the solution of a series of axisymmetric problems. These equations are discretized using a flux volume formulation along a Cartesian grid. The method extends earlier applications of the Cartesian method to complex cambered geometries. The effects of power addition are also included within the potential formulation. Good agreement is obtained with an alternate small disturbance analysis for a high penetration symmetric mixer in a planar duct. In addition, calculations showing pressure distributions and induced secondary vorticity fields are presented for practical trubofan mixer configurations, and where possible, comparison was made with available experimental data. A detailed description of the required data input and coordinate definition is presented along with a sample data set for a practical forced mixer configuration. A brief description of the program structure and subroutines is also provided.

  14. The synthesis method for design of electron flow sources

    NASA Astrophysics Data System (ADS)

    Alexahin, Yu I.; Molodozhenzev, A. Yu

    1997-01-01

    The synthesis method to design a relativistic magnetically - focused beam source is described in this paper. It allows to find a shape of electrodes necessary to produce laminar space charge flows. Electron guns with shielded cathodes designed with this method were analyzed using the EGUN code. The obtained results have shown the coincidence of the synthesis and analysis calculations [1]. This method of electron gun calculation may be applied for immersed electron flows - of interest for the EBIS electron gun design.

  15. Methods and results of peak-flow frequency analyses for streamgages in and bordering Minnesota, through water year 2011

    USGS Publications Warehouse

    Kessler, Erich W.; Lorenz, David L.; Sanocki, Christopher A.

    2013-01-01

    Peak-flow frequency analyses were completed for 409 streamgages in and bordering Minnesota having at least 10 systematic peak flows through water year 2011. Selected annual exceedance probabilities were determined by fitting a log-Pearson type III probability distribution to the recorded annual peak flows. A detailed explanation of the methods that were used to determine the annual exceedance probabilities, the historical period, acceptable low outliers, and analysis method for each streamgage are presented. The final results of the analyses are presented.

  16. Flow Analysis Tool White Paper

    NASA Technical Reports Server (NTRS)

    Boscia, Nichole K.

    2012-01-01

    Faster networks are continually being built to accommodate larger data transfers. While it is intuitive to think that implementing faster networks will result in higher throughput rates, this is often not the case. There are many elements involved in data transfer, many of which are beyond the scope of the network itself. Although networks may get bigger and support faster technologies, the presence of other legacy components, such as older application software or kernel parameters, can often cause bottlenecks. Engineers must be able to identify when data flows are reaching a bottleneck that is not imposed by the network and then troubleshoot it using the tools available to them. The current best practice is to collect as much information as possible on the network traffic flows so that analysis is quick and easy. Unfortunately, no single method of collecting this information can sufficiently capture the whole endto- end picture. This becomes even more of a hurdle when large, multi-user systems are involved. In order to capture all the necessary information, multiple data sources are required. This paper presents a method for developing a flow analysis tool to effectively collect network flow data from multiple sources and provide that information to engineers in a clear, concise way for analysis. The purpose of this method is to collect enough information to quickly (and automatically) identify poorly performing flows along with the cause of the problem. The method involves the development of a set of database tables that can be populated with flow data from multiple sources, along with an easyto- use, web-based front-end interface to help network engineers access, organize, analyze, and manage all the information.

  17. Comparing model-based and model-free analysis methods for QUASAR arterial spin labeling perfusion quantification.

    PubMed

    Chappell, Michael A; Woolrich, Mark W; Petersen, Esben T; Golay, Xavier; Payne, Stephen J

    2013-05-01

    Amongst the various implementations of arterial spin labeling MRI methods for quantifying cerebral perfusion, the QUASAR method is unique. By using a combination of labeling with and without flow suppression gradients, the QUASAR method offers the separation of macrovascular and tissue signals. This permits local arterial input functions to be defined and "model-free" analysis, using numerical deconvolution, to be used. However, it remains unclear whether arterial spin labeling data are best treated using model-free or model-based analysis. This work provides a critical comparison of these two approaches for QUASAR arterial spin labeling in the healthy brain. An existing two-component (arterial and tissue) model was extended to the mixed flow suppression scheme of QUASAR to provide an optimal model-based analysis. The model-based analysis was extended to incorporate dispersion of the labeled bolus, generally regarded as the major source of discrepancy between the two analysis approaches. Model-free and model-based analyses were compared for perfusion quantification including absolute measurements, uncertainty estimation, and spatial variation in cerebral blood flow estimates. Major sources of discrepancies between model-free and model-based analysis were attributed to the effects of dispersion and the degree to which the two methods can separate macrovascular and tissue signal. Copyright © 2012 Wiley Periodicals, Inc.

  18. Projected Changes in Hydrological Extremes in a Cold Region Watershed: Sensitivity of Results to Statistical Methods of Analysis

    NASA Astrophysics Data System (ADS)

    Dibike, Y. B.; Eum, H. I.; Prowse, T. D.

    2017-12-01

    Flows originating from alpine dominated cold region watersheds typically experience extended winter low flows followed by spring snowmelt and summer rainfall driven high flows. In a warmer climate, there will be temperature- induced shift in precipitation from snow towards rain as well as changes in snowmelt timing affecting the frequency of extreme high and low flow events which could significantly alter ecosystem services. This study examines the potential changes in the frequency and severity of hydrologic extremes in the Athabasca River watershed in Alberta, Canada based on the Variable Infiltration Capacity (VIC) hydrologic model and selected and statistically downscaled climate change scenario data from the latest Coupled Model Intercomparison Project (CMIP5). The sensitivity of these projected changes is also examined by applying different extreme flow analysis methods. The hydrological model projections show an overall increase in mean annual streamflow in the watershed and a corresponding shift in the freshet timing to earlier period. Most of the streams are projected to experience increases during the winter and spring seasons and decreases during the summer and early fall seasons, with an overall projected increases in extreme high flows, especially for low frequency events. While the middle and lower parts of the watershed are characterised by projected increases in extreme high flows, the high elevation alpine region is mainly characterised by corresponding decreases in extreme low flow events. However, the magnitude of projected changes in extreme flow varies over a wide range, especially for low frequent events, depending on the climate scenario and period of analysis, and sometimes in a nonlinear way. Nonetheless, the sensitivity of the projected changes to the statistical method of analysis is found to be relatively small compared to the inter-model variability.

  19. A nonintrusive laser interferometer method for measurement of skin friction

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1983-01-01

    A method is described for monitoring the changing thickness of a thin oil film subject to an aerodynamic shear stress using two focused laser beams. The measurement is then simply analyzed in terms of the surface skin friction of the flow. The analysis includes the effects of arbitrarily large pressure and skin friction gradients, gravity, and time varying oil temperature. It may also be applied to three dimensional flows with unknown direction. Applications are presented for a variety of flows, including two dimensional flows, three dimensional swirling flows, separated flow, supersonic high Reynolds number flows, and delta wing vortical flows. Previously announced in STAR as N83-12393

  20. Analysis of supersonic combustion flow fields with embedded subsonic regions

    NASA Technical Reports Server (NTRS)

    Dash, S.; Delguidice, P.

    1972-01-01

    The viscous characteristic analysis for supersonic chemically reacting flows was extended to include provisions for analyzing embedded subsonic regions. The numerical method developed to analyze this mixed subsonic-supersonic flow fields is described. The boundary conditions are discussed related to the supersonic-subsonic and subsonic-supersonic transition, as well as a heuristic description of several other numerical schemes for analyzing this problem. An analysis of shock waves generated either by pressure mismatch between the injected fluid and surrounding flow or by chemical heat release is also described.

  1. Solution of magnetohydrodynamic flow and heat transfer of radiative viscoelastic fluid with temperature dependent viscosity in wire coating analysis

    PubMed Central

    Khan, Muhammad Altaf; Siddiqui, Nasir; Ullah, Murad; Shah, Qayyum

    2018-01-01

    Wire coating process is a continuous extrusion process for primary insulation of conducting wires with molten polymers for mechanical strength and protection in aggressive environments. In the present study, radiative melt polymer satisfying third grade fluid model is used for wire coating process. The effect of magnetic parameter, thermal radiation parameter and temperature dependent viscosity on wire coating analysis has been investigated. Reynolds model and Vogel’s models have been incorporated for variable viscosity. The governing equations characterizing the flow and heat transfer phenomena are solved analytically by utilizing homotopy analysis method (HAM). The computed results are also verified by ND-Solve method (Numerical technique) and Adomian Decomposition Method (ADM). The effect of pertinent parameters is shown graphically. In addition, the instability of the flow in the flows of the wall of the extrusion die is well marked in the case of the Vogel model as pointed by Nhan-Phan-Thien. PMID:29596448

  2. Analysis of high vacuum systems using SINDA'85

    NASA Technical Reports Server (NTRS)

    Spivey, R. A.; Clanton, S. E.; Moore, J. D.

    1993-01-01

    The theory, algorithms, and test data correlation analysis of a math model developed to predict performance of the Space Station Freedom Vacuum Exhaust System are presented. The theory used to predict the flow characteristics of viscous, transition, and molecular flow is presented in detail. Development of user subroutines which predict the flow characteristics in conjunction with the SINDA'85/FLUINT analysis software are discussed. The resistance-capacitance network approach with application to vacuum system analysis is demonstrated and results from the model are correlated with test data. The model was developed to predict the performance of the Space Station Freedom Vacuum Exhaust System. However, the unique use of the user subroutines developed in this model and written into the SINDA'85/FLUINT thermal analysis model provides a powerful tool that can be used to predict the transient performance of vacuum systems and gas flow in tubes of virtually any geometry. This can be accomplished using a resistance-capacitance (R-C) method very similar to the methods used to perform thermal analyses.

  3. Development of direct-inverse 3-D methods for applied transonic aerodynamic wing design and analysis

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1989-01-01

    An inverse wing design method was developed around an existing transonic wing analysis code. The original analysis code, TAWFIVE, has as its core the numerical potential flow solver, FLO30, developed by Jameson and Caughey. Features of the analysis code include a finite-volume formulation; wing and fuselage fitted, curvilinear grid mesh; and a viscous boundary layer correction that also accounts for viscous wake thickness and curvature. The development of the inverse methods as an extension of previous methods existing for design in Cartesian coordinates is presented. Results are shown for inviscid wing design cases in super-critical flow regimes. The test cases selected also demonstrate the versatility of the design method in designing an entire wing or discontinuous sections of a wing.

  4. Detection of Abnormal Events via Optical Flow Feature Analysis

    PubMed Central

    Wang, Tian; Snoussi, Hichem

    2015-01-01

    In this paper, a novel algorithm is proposed to detect abnormal events in video streams. The algorithm is based on the histogram of the optical flow orientation descriptor and the classification method. The details of the histogram of the optical flow orientation descriptor are illustrated for describing movement information of the global video frame or foreground frame. By combining one-class support vector machine and kernel principal component analysis methods, the abnormal events in the current frame can be detected after a learning period characterizing normal behaviors. The difference abnormal detection results are analyzed and explained. The proposed detection method is tested on benchmark datasets, then the experimental results show the effectiveness of the algorithm. PMID:25811227

  5. Transport induced by mean-eddy interaction: II. Analysis of transport processes

    NASA Astrophysics Data System (ADS)

    Ide, Kayo; Wiggins, Stephen

    2015-03-01

    We present a framework for the analysis of transport processes resulting from the mean-eddy interaction in a flow. The framework is based on the Transport Induced by the Mean-Eddy Interaction (TIME) method presented in a companion paper (Ide and Wiggins, 2014) [1]. The TIME method estimates the (Lagrangian) transport across stationary (Eulerian) boundaries defined by chosen streamlines of the mean flow. Our framework proceeds after first carrying out a sequence of preparatory steps that link the flow dynamics to the transport processes. This includes the construction of the so-called "instantaneous flux" as the Hovmöller diagram. Transport processes are studied by linking the signals of the instantaneous flux field to the dynamical variability of the flow. This linkage also reveals how the variability of the flow contributes to the transport. The spatio-temporal analysis of the flux diagram can be used to assess the efficiency of the variability in transport processes. We apply the method to the double-gyre ocean circulation model in the situation where the Rossby-wave mode dominates the dynamic variability. The spatio-temporal analysis shows that the inter-gyre transport is controlled by the circulating eddy vortices in the fast eastward jet region, whereas the basin-scale Rossby waves have very little impact.

  6. A direct-inverse method for transonic and separated flows about airfoils

    NASA Technical Reports Server (NTRS)

    Carlson, K. D.

    1985-01-01

    A direct-inverse technique and computer program called TAMSEP that can be sued for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicing the flowfield about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.

  7. On the peculiarities of LDA method in two-phase flows with high concentrations of particles

    NASA Astrophysics Data System (ADS)

    Poplavski, S. V.; Boiko, V. M.; Nesterov, A. U.

    2016-10-01

    Popular applications of laser Doppler anemometry (LDA) in gas dynamics are reviewed. It is shown that the most popular method cannot be used in supersonic flows and two-phase flows with high concentrations of particles. A new approach to implementation of the known LDA method based on direct spectral analysis, which offers better prospects for such problems, is presented. It is demonstrated that the method is suitable for gas-liquid jets. Owing to the progress in laser engineering, digital recording of spectra, and computer processing of data, the method is implemented at a higher technical level and provides new prospects of diagnostics of high-velocity dense two-phase flows.

  8. A novel method for automated grid generation of ice shapes for local-flow analysis

    NASA Astrophysics Data System (ADS)

    Ogretim, Egemen; Huebsch, Wade W.

    2004-02-01

    Modelling a complex geometry, such as ice roughness, plays a key role for the computational flow analysis over rough surfaces. This paper presents two enhancement ideas in modelling roughness geometry for local flow analysis over an aerodynamic surface. The first enhancement is use of the leading-edge region of an airfoil as a perturbation to the parabola surface. The reasons for using a parabola as the base geometry are: it resembles the airfoil leading edge in the vicinity of its apex and it allows the use of a lower apparent Reynolds number. The second enhancement makes use of the Fourier analysis for modelling complex ice roughness on the leading edge of airfoils. This method of modelling provides an analytical expression, which describes the roughness geometry and the corresponding derivatives. The factors affecting the performance of the Fourier analysis were also investigated. It was shown that the number of sine-cosine terms and the number of control points are of importance. Finally, these enhancements are incorporated into an automated grid generation method over the airfoil ice accretion surface. The validations for both enhancements demonstrate that they can improve the current capability of grid generation and computational flow field analysis around airfoils with ice roughness.

  9. TOWARD QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY: Visualizing Blood Flow Speeds in Ocular Pathology Using Variable Interscan Time Analysis.

    PubMed

    Ploner, Stefan B; Moult, Eric M; Choi, WooJhon; Waheed, Nadia K; Lee, ByungKun; Novais, Eduardo A; Cole, Emily D; Potsaid, Benjamin; Husvogt, Lennart; Schottenhamml, Julia; Maier, Andreas; Rosenfeld, Philip J; Duker, Jay S; Hornegger, Joachim; Fujimoto, James G

    2016-12-01

    Currently available optical coherence tomography angiography systems provide information about blood flux but only limited information about blood flow speed. The authors develop a method for mapping the previously proposed variable interscan time analysis (VISTA) algorithm into a color display that encodes relative blood flow speed. Optical coherence tomography angiography was performed with a 1,050 nm, 400 kHz A-scan rate, swept source optical coherence tomography system using a 5 repeated B-scan protocol. Variable interscan time analysis was used to compute the optical coherence tomography angiography signal from B-scan pairs having 1.5 millisecond and 3.0 milliseconds interscan times. The resulting VISTA data were then mapped to a color space for display. The authors evaluated the VISTA visualization algorithm in normal eyes (n = 2), nonproliferative diabetic retinopathy eyes (n = 6), proliferative diabetic retinopathy eyes (n = 3), geographic atrophy eyes (n = 4), and exudative age-related macular degeneration eyes (n = 2). All eyes showed blood flow speed variations, and all eyes with pathology showed abnormal blood flow speeds compared with controls. The authors developed a novel method for mapping VISTA into a color display, allowing visualization of relative blood flow speeds. The method was found useful, in a small case series, for visualizing blood flow speeds in a variety of ocular diseases and serves as a step toward quantitative optical coherence tomography angiography.

  10. Systems and methods for analyzing liquids under vacuum

    DOEpatents

    Yu, Xiao-Ying; Yang, Li; Cowin, James P.; Iedema, Martin J.; Zhu, Zihua

    2013-10-15

    Systems and methods for supporting a liquid against a vacuum pressure in a chamber can enable analysis of the liquid surface using vacuum-based chemical analysis instruments. No electrical or fluid connections are required to pass through the chamber walls. The systems can include a reservoir, a pump, and a liquid flow path. The reservoir contains a liquid-phase sample. The pump drives flow of the sample from the reservoir, through the liquid flow path, and back to the reservoir. The flow of the sample is not substantially driven by a differential between pressures inside and outside of the liquid flow path. An aperture in the liquid flow path exposes a stable portion of the liquid-phase sample to the vacuum pressure within the chamber. The radius, or size, of the aperture is less than or equal to a critical value required to support a meniscus of the liquid-phase sample by surface tension.

  11. Meridional Flow Measurements: Comparisons Between Ring Diagram Analysis and Fourier-Hankel Analysis

    NASA Astrophysics Data System (ADS)

    Zaatri, A.; Roth, M.

    2008-09-01

    The meridional circulation is a weak flow with amplitude in the order of 10 m/s on the solar surface. As this flow could be responsible for the transport of magnetic flux during the solar cycle it has become a crucial ingredient in some dynamo models. However, only less is known about the overall structure of the meridional circulation. Helioseismology is able to provide information on the structure of this flow in the solar interior. One widely used helioseismic technique for measuring frequency shifts due to horizontal flows in the subsurface layers of the sun is the ring diagram analyis (Corbard et al. 2003). It is based on the analysis of frequency shifts in the solar oscillation power spectrum as a function of the orientation of the wave vector. This then allows drawing conclusions on the strength of meridional flow, too. Ring diagram analysis is currently limited to the analysis of the wave field in only a small region on the solar surface. Consequently, information on the solar interior can only be inferred down to a depth of about 16 Mm. Another helioseismology method that promises to estimate the meridional flow strength down to greater depths is the Fourier-Hankel analysis (Krieger et al. 2007). This technique is based on a decomposition of the wave field in poleward and equatorward propagating waves. A possible frequency shift between them is then due to the meridional flow. We have been motivated for carrying out a comparative study between the two techniques to measure the meridional flow. We investigate the degree of coherence between the two methods by analyzing the same data sets recorded by the SOHO-MDI and GONG instruments.

  12. A Study of the Effects of High Power Pulsed 2450 MHz Microwaves, ELF modulated Microwaves, and ELF Fields on Human Lymphocytes and Selected Cell Lines

    DTIC Science & Technology

    1993-01-27

    Considerable effect was expended in investigating shifts in intercellular calcium of one particular cell line, Jurket, using flow cytometry methods. No...culture. The following analysis were used to characterize the immortalized cell lines: flow cytometry , electron microscopy, two-dimensional protein gel...further characterized by flow cytometry , electron microscopy, two dimensional protein electrophoresis and nuclear run-off assay. Flow cytometric analysis of

  13. The Chimera Method of Simulation for Unsteady Three-Dimensional Viscous Flow

    NASA Technical Reports Server (NTRS)

    Meakin, Robert L.

    1996-01-01

    The Chimera overset grid method is reviewed and discussed in the context of a method of solution and analysis of unsteady three-dimensional viscous flows. The state of maturity of the various pieces of support software required to use the approach is discussed. A variety of recent applications of the method is presented. Current limitations of the approach are defined.

  14. Method and apparatus for measuring the mass flow rate of a fluid

    DOEpatents

    Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.

    2002-01-01

    A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.

  15. Analysis and design of three dimensional supersonic nozzles. Volume 1: Nozzle-exhaust flow field analysis by a reference plane characteristics technique

    NASA Technical Reports Server (NTRS)

    Dash, S.; Delguidice, P.

    1972-01-01

    A second order numerical method employing reference plane characteristics has been developed for the calculation of geometrically complex three dimensional nozzle-exhaust flow fields, heretofore uncalculable by existing methods. The nozzles may have irregular cross sections with swept throats and may be stacked in modules using the vehicle undersurface for additional expansion. The nozzles may have highly nonuniform entrance conditions, the medium considered being an equilibrium hydrogen-air mixture. The program calculates and carries along the underexpansion shock and contact as discrete discontinuity surfaces, for a nonuniform vehicle external flow.

  16. Determination of Reaction Stoichiometries by Flow Injection Analysis.

    ERIC Educational Resources Information Center

    Rios, Angel; And Others

    1986-01-01

    Describes a method of flow injection analysis intended for calculation of complex-formation and redox reaction stoichiometries based on a closed-loop configuration. The technique is suitable for use in undergraduate laboratories. Information is provided for equipment, materials, procedures, and sample results. (JM)

  17. Recent theoretical developments and experimental studies pertinent to vortex flow aerodynamics - With a view towards design

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.; Luckring, J. M.

    1978-01-01

    A review is presented of recent progress in a research program directed towards the development of an improved vortex-flow technology base. It is pointed out that separation induced vortex-flows from the leading and side edges play an important role in the high angle-of-attack aerodynamic characteristics of a wide range of modern aircraft. In the analysis and design of high-speed aircraft, a detailed knowledge of this type of separation is required, particularly with regard to critical wind loads and the stability and performance at various off-design conditions. A description of analytical methods is presented. The theoretical methods employed are divided into two classes which are dependent upon the underlying aerodynamic assumptions. One conical flow method is considered along with three different nonconical flow methods. Comparisons are conducted between the described methods and available aerodynamic data. Attention is also given to a vortex flow drag study and a vortex flow wing design using suction analogy.

  18. Modelling the Solid Waste Flow into Sungai Ikan Landfill Sites by Material Flow Analysis Method

    NASA Astrophysics Data System (ADS)

    Ghani, Latifah A.; Ali, Nora'aini; Hassan, Nur Syafiqah A.

    2017-12-01

    The purpose of this paper is to model the material flow of solid waste flows at Kuala Terengganu by using Material Flow Analysis (MFA) method, generated by STAN Software Analysis. Sungai Ikan Landfill has been operated for about 10 years. Average, Sungai Ikan Landfill receive an amount around 260 tons per day of solid waste. As for the variety source of the solid waste coming from, leachates that accumulated has been tested and measured. Highest reading of pH of the leachate is 8.29 which is still in the standard level before discharging the leachate to open water which pH in between 8.0-9.0. The percentages of the solid waste has been calculated and seven different types of solid waste has been segregated. That is, plastics, organic waste, paper, polystyrene, wood, fabric and can. The estimation of the solid waste that will be end as a residue are around 244 tons per day.

  19. Vibrational Power Flow Analysis of Rods and Beams

    NASA Technical Reports Server (NTRS)

    Wohlever, James Christopher; Bernhard, R. J.

    1988-01-01

    A new method to model vibrational power flow and predict the resulting energy density levels in uniform rods and beams is investigated. This method models the flow of vibrational power in a manner analogous to the flow of thermal power in a heat conduction problem. The classical displacement solutions for harmonically excited, hysteretically damped rods and beams are used to derive expressions for the vibrational power flow and energy density in the rod and beam. Under certain conditions, the power flow in these two structural elements will be shown to be proportional to the energy density gradient. Using the relationship between power flow and energy density, an energy balance on differential control volumes in the rod and beam leads to a Poisson's equation which models the energy density distribution in the rod and beam. Coupling the energy density and power flow solutions for rods and beams is also discussed. It is shown that the resonant behavior of finite structures complicates the coupling of solutions, especially when the excitations are single frequency inputs. Two coupling formulations are discussed, the first based on the receptance method, and the second on the travelling wave approach used in Statistical Energy Analysis. The receptance method is the more computationally intensive but is capable of analyzing single frequency excitation cases. The traveling wave approach gives a good approximation of the frequency average of energy density and power flow in coupled systems, and thus, is an efficient technique for use with broadband frequency excitation.

  20. Analysis of Self-Potential Response beyond the Fixed Geometry Technique

    NASA Astrophysics Data System (ADS)

    Mahardika, Harry

    2018-03-01

    The self-potential (SP) method is one of the oldest geophysical methods that are still available for today’s application. Since its early days SP data interpretation has been done qualitatively until the emerging of the fixed geometry analysis that was used to characterize the orientation and the electric-dipole properties of a mineral ore structure. Through the expansion of fundamental theories, computational methods, field-and-lab experiments in the last fifteen years, SP method has emerge from its low-class reputation to become more respectable. It became a complementary package alongside electric-resistivity tomography (ERT) for detecting groundwater flow in the subsurface, and extends to the hydrothermal flow in geothermal areas. As the analysis of SP data becomes more quantitative, its potential applications become more diverse. In this paper, we will show examples of our current SP studies such as the groundwater flow characterization inside a fault area. Lastly we will introduce the application of the "active" SP method - that is the seismoelectric method - which can be used for 4D real-time monitoring systems.

  1. Computational methods for unsteady transonic flows

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Thomas, J. L.

    1987-01-01

    Computational methods for unsteady transonic flows are surveyed with emphasis on prediction. Computational difficulty is discussed with respect to type of unsteady flow; attached, mixed (attached/separated) and separated. Significant early computations of shock motions, aileron buzz and periodic oscillations are discussed. The maturation of computational methods towards the capability of treating complete vehicles with reasonable computational resources is noted and a survey of recent comparisons with experimental results is compiled. The importance of mixed attached and separated flow modeling for aeroelastic analysis is discussed, and recent calculations of periodic aerodynamic oscillations for an 18 percent thick circular arc airfoil are given.

  2. Application of an Upwind High Resolution Finite-Differencing Scheme and Multigrid Method in Steady-State Incompressible Flow Simulations

    NASA Technical Reports Server (NTRS)

    Yang, Cheng I.; Guo, Yan-Hu; Liu, C.- H.

    1996-01-01

    The analysis and design of a submarine propulsor requires the ability to predict the characteristics of both laminar and turbulent flows to a higher degree of accuracy. This report presents results of certain benchmark computations based on an upwind, high-resolution, finite-differencing Navier-Stokes solver. The purpose of the computations is to evaluate the ability, the accuracy and the performance of the solver in the simulation of detailed features of viscous flows. Features of interest include flow separation and reattachment, surface pressure and skin friction distributions. Those features are particularly relevant to the propulsor analysis. Test cases with a wide range of Reynolds numbers are selected; therefore, the effects of the convective and the diffusive terms of the solver can be evaluated separately. Test cases include flows over bluff bodies, such as circular cylinders and spheres, at various low Reynolds numbers, flows over a flat plate with and without turbulence effects, and turbulent flows over axisymmetric bodies with and without propulsor effects. Finally, to enhance the iterative solution procedure, a full approximation scheme V-cycle multigrid method is implemented. Preliminary results indicate that the method significantly reduces the computational effort.

  3. A viscous flow analysis for the tip vortex generation process

    NASA Technical Reports Server (NTRS)

    Shamroth, S. J.; Briley, W. R.

    1979-01-01

    A three dimensional, forward-marching, viscous flow analysis is applied to the tip vortex generation problem. The equations include a streamwise momentum equation, a streamwise vorticity equation, a continuity equation, and a secondary flow stream function equation. The numerical method used combines a consistently split linearized scheme for parabolic equations with a scalar iterative ADI scheme for elliptic equations. The analysis is used to identify the source of the tip vortex generation process, as well as to obtain detailed flow results for a rectangular planform wing immersed in a high Reynolds number free stream at 6 degree incidence.

  4. Evaluation of the platelet counting by Abbott CELL-DYN SAPPHIRE haematology analyser compared with flow cytometry.

    PubMed

    Grimaldi, E; Del Vecchio, L; Scopacasa, F; Lo Pardo, C; Capone, F; Pariante, S; Scalia, G; De Caterina, M

    2009-04-01

    The Abbot Cell-Dyn Sapphire is a new generation haematology analyser. The system uses optical/fluorescence flow cytometry in combination with electronic impedance to produce a full blood count. Optical and impedance are the default methods for platelet counting while automated CD61-immunoplatelet analysis can be run as selectable test. The aim of this study was to determine the platelet count performance of the three counting methods available on the instrument and to compare the results with those provided by Becton Dickinson FACSCalibur flow cytometer used as reference method. A lipid interference experiment was also performed. Linearity, carryover and precision were good, and satisfactory agreement with reference method was found for the impedance, optical and CD61-immunoplatelet analysis, although this latter provided the closest results in comparison with flow cytometry. In the lipid interference experiment, a moderate inaccuracy of optical and immunoplatelet counts was observed starting from a very high lipid value.

  5. Aerodynamic design of turbomachinery blading in three-dimensional flow - An application to radial inflow turbines

    NASA Technical Reports Server (NTRS)

    Yang, Y. L.; Tan, C. S.; Hawthorne, W. R.

    1992-01-01

    A computational method, based on a theory for turbomachinery blading design in three-dimensional inviscid flow, is applied to a parametric design study of a radial inflow turbine wheel. As the method requires the specification of swirl distribution, a technique for its smooth generation within the blade region is proposed. Excellent agreements have been obtained between the computed results from this design method and those from direct Euler computations, demonstrating the correspondence and consistency between the two. The computed results indicate the sensitivity of the pressure distribution to a lean in the stacking axis and a minor alteration in the hub/shroud profiles. Analysis based on Navier-Stokes solver shows no breakdown of flow within the designed blade passage and agreement with that from design calculation; thus the flow in the designed turbine rotor closely approximates that of an inviscid one. These calculations illustrate the use of a design method coupled to an analysis tool for establishing guidelines and criteria for designing turbomachinery blading.

  6. Pressure measurements in a low-density nozzle plume for code verification

    NASA Technical Reports Server (NTRS)

    Penko, Paul F.; Boyd, Iain D.; Meissner, Dana L.; Dewitt, Kenneth J.

    1991-01-01

    Measurements of Pitot pressure were made in the exit plane and plume of a low-density, nitrogen nozzle flow. Two numerical computer codes were used to analyze the flow, including one based on continuum theory using the explicit MacCormack method, and the other on kinetic theory using the method of direct-simulation Monte Carlo (DSMC). The continuum analysis was carried to the nozzle exit plane and the results were compared to the measurements. The DSMC analysis was extended into the plume of the nozzle flow and the results were compared with measurements at the exit plane and axial stations 12, 24 and 36 mm into the near-field plume. Two experimental apparatus were used that differed in design and gave slightly different profiles of pressure measurements. The DSMC method compared well with the measurements from each apparatus at all axial stations and provided a more accurate prediction of the flow than the continuum method, verifying the validity of DSMC for such calculations.

  7. Verification of rain-flow reconstructions of a variable amplitude load history. M.S. Thesis, 1990 Final Report

    NASA Technical Reports Server (NTRS)

    Clothiaux, John D.; Dowling, Norman E.

    1992-01-01

    The suitability of using rain-flow reconstructions as an alternative to an original loading spectrum for component fatigue life testing is investigated. A modified helicopter maneuver history is used for the rain-flow cycle counting and history regenerations. Experimental testing on a notched test specimen over a wide range of loads produces similar lives for the original history and the reconstructions. The test lives also agree with a simplified local strain analysis performed on the specimen utilizing the rain-flow cycle count. The rain-flow reconstruction technique is shown to be a viable test spectrum alternative to storing the complete original load history, especially in saving computer storage space and processing time. A description of the regeneration method, the simplified life prediction analysis, and the experimental methods are included in the investigation.

  8. Formulation for Simultaneous Aerodynamic Analysis and Design Optimization

    NASA Technical Reports Server (NTRS)

    Hou, G. W.; Taylor, A. C., III; Mani, S. V.; Newman, P. A.

    1993-01-01

    An efficient approach for simultaneous aerodynamic analysis and design optimization is presented. This approach does not require the performance of many flow analyses at each design optimization step, which can be an expensive procedure. Thus, this approach brings us one step closer to meeting the challenge of incorporating computational fluid dynamic codes into gradient-based optimization techniques for aerodynamic design. An adjoint-variable method is introduced to nullify the effect of the increased number of design variables in the problem formulation. The method has been successfully tested on one-dimensional nozzle flow problems, including a sample problem with a normal shock. Implementations of the above algorithm are also presented that incorporate Newton iterations to secure a high-quality flow solution at the end of the design process. Implementations with iterative flow solvers are possible and will be required for large, multidimensional flow problems.

  9. Velocity filtering applied to optical flow calculations

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1990-01-01

    Optical flow is a method by which a stream of two-dimensional images obtained from a forward-looking passive sensor is used to map the three-dimensional volume in front of a moving vehicle. Passive ranging via optical flow is applied here to the helicopter obstacle-avoidance problem. Velocity filtering is used as a field-based method to determine range to all pixels in the initial image. The theoretical understanding and performance analysis of velocity filtering as applied to optical flow is expanded and experimental results are presented.

  10. Time-dependent solution for axisymmetric flow over a blunt body with ideal gas, CF4, or equilibrium air chemistry

    NASA Technical Reports Server (NTRS)

    Hamilton, H. H., II; Spall, J. R.

    1986-01-01

    A time-asymptotic method has been used to obtain steady-flow solutions for axisymmetric inviscid flow over several blunt bodies including spheres, paraboloids, ellipsoids, and spherically blunted cones. Comparisons with experimental data and results of other computational methods have demonstrated that accurate solutions can be obtained using this approach. The method should prove useful as an analysis tool for comparing with experimental data and for making engineering calculations for blunt reentry vehicles.

  11. Time-dependent solution for axisymmetric flow over a blunt body with ideal gas, CF4, or equilibrium air chemistry

    NASA Astrophysics Data System (ADS)

    Hamilton, H. H., II; Spall, J. R.

    1986-07-01

    A time-asymptotic method has been used to obtain steady-flow solutions for axisymmetric inviscid flow over several blunt bodies including spheres, paraboloids, ellipsoids, and spherically blunted cones. Comparisons with experimental data and results of other computational methods have demonstrated that accurate solutions can be obtained using this approach. The method should prove useful as an analysis tool for comparing with experimental data and for making engineering calculations for blunt reentry vehicles.

  12. Flow cytometry and conventional enumeration of microorganisms in ships' ballast water and marine samples.

    PubMed

    Joachimsthal, Eva L; Ivanov, Volodymyr; Tay, Joo-Hwa; Tay, Stephen T-L

    2003-03-01

    Conventional methods for bacteriological testing of water quality take long periods of time to complete. This makes them inappropriate for a shipping industry that is attempting to comply with the International Maritime Organization's anticipated regulations for ballast water discharge. Flow cytometry for the analysis of marine and ship's ballast water is a comparatively fast and accurate method. Compared to a 5% standard error for flow cytometry analysis the standard methods of culturing and epifluorescence analysis have errors of 2-58% and 10-30%, respectively. Also, unlike culturing methods, flow cytometry is capable of detecting both non-viable and viable but non-culturable microorganisms which can still pose health risks. The great variability in both cell concentrations and microbial content for the samples tested is an indication of the difficulties facing microbial monitoring programmes. The concentration of microorganisms in the ballast tank was generally lower than in local seawater. The proportion of aerobic, microaerophilic, and facultative anaerobic microorganisms present appeared to be influenced by conditions in the ballast tank. The gradual creation of anaerobic conditions in a ballast tank could lead to the accumulation of facultative anaerobic microorganisms, which might represent a potential source of pathogenic species.

  13. Theoretical analysis of stack gas emission velocity measurement by optical scintillation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Dong, Feng-Zhong; Ni, Zhi-Bo; Pang, Tao; Zeng, Zong-Yong; Wu, Bian; Zhang, Zhi-Rong

    2014-04-01

    Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spectral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously.

  14. Methods of computing steady-state voltage stability margins of power systems

    DOEpatents

    Chow, Joe Hong; Ghiocel, Scott Gordon

    2018-03-20

    In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.

  15. Investigation and Verification of the Aerodynamic Performance of a Fan/Booster with Through-flow Method

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoheng; Jin, Donghai; Gui, Xingmin

    2018-04-01

    Through-flow method is still widely applied in the revolution of the design of a turbomachinery, which can provide not merely the performance characteristic but also the flow field. In this study, a program based on the through-flow method was proposed, which had been verified by many other numerical examples. So as to improve the accuracy of the calculation, abundant loss and deviation models dependent on the real geometry of engine were put into use, such as: viscous losses, overflow in gaps, leakage from a flow path through seals. By means of this program, the aerodynamic performance of a certain high through-flow commercial fan/booster was investigated. On account of the radial distributions of the relevant parameters, flow deterioration in this machine was speculated. To confirm this surmise, 3-D numerical simulation was carried out with the help of the NUMECA software. Through detailed analysis, the speculation above was demonstrated, which provide sufficient evidence for the conclusion that the through-flow method is an essential and effective method for the performance prediction of the fan/booster.

  16. Efficiency of the Thermal Jacket on the Delivered Temperature of Prewarmed Crystalloid Intravenous Fluid

    DTIC Science & Technology

    1989-01-01

    intervals over a 60 minute period at flow rates of 100, 250, 500, 750, and 1,000 ml/hr. Analysis of variance showed a highly significant group effect with a...significant difference between all groups except Group 3 and Group 4. Analysis of - .riance aiso showed a highly significant flow rate effect on...as effective as the conventional method of delivering warmed fluids. Also, within the range of flow rates studied, faster flow rates tended to yield a

  17. Super-convergence of Discontinuous Galerkin Method Applied to the Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Atkins, Harold L.

    2009-01-01

    The practical benefits of the hyper-accuracy properties of the discontinuous Galerkin method are examined. In particular, we demonstrate that some flow attributes exhibit super-convergence even in the absence of any post-processing technique. Theoretical analysis suggest that flow features that are dominated by global propagation speeds and decay or growth rates should be super-convergent. Several discrete forms of the discontinuous Galerkin method are applied to the simulation of unsteady viscous flow over a two-dimensional cylinder. Convergence of the period of the naturally occurring oscillation is examined and shown to converge at 2p+1, where p is the polynomial degree of the discontinuous Galerkin basis. Comparisons are made between the different discretizations and with theoretical analysis.

  18. Analysis of a Stabilized CNLF Method with Fast Slow Wave Splittings for Flow Problems

    DOE PAGES

    Jiang, Nan; Tran, Hoang A.

    2015-04-01

    In this work, we study Crank-Nicolson leap-frog (CNLF) methods with fast-slow wave splittings for Navier-Stokes equations (NSE) with a rotation/Coriolis force term, which is a simplification of geophysical flows. We propose a new stabilized CNLF method where the added stabilization completely removes the method's CFL time step condition. A comprehensive stability and error analysis is given. We also prove that for Oseen equations with the rotation term, the unstable mode (for which u(n+1) + u(n-1) equivalent to 0) of CNLF is asymptotically stable. Numerical results are provided to verify the stability and the convergence of the methods.

  19. Application of the CSCM method to the design of wedge cavities. [Conservative Supra Characteristic Method

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Nystrom, G. A.; Bardina, J.; Lombard, C. K.

    1987-01-01

    This paper describes the application of the conservative supra characteristic method (CSCM) to predict the flow around two-dimensional slot injection cooled cavities in hypersonic flow. Seven different numerical solutions are presented that model three different experimental designs. The calculations manifest outer flow conditions including the effects of nozzle/lip geometry, angle of attack, nozzle inlet conditions, boundary and shear layer growth and turbulance on the surrounding flow. The calculations were performed for analysis prior to wind tunnel testing for sensitivity studies early in the design process. Qualitative and quantitative understanding of the flows for each of the cavity designs and design recommendations are provided. The present paper demonstrates the ability of numerical schemes, such as the CSCM method, to play a significant role in the design process.

  20. Accuracy and Numerical Stabilty Analysis of Lattice Boltzmann Method with Multiple Relaxation Time for Incompressible Flows

    NASA Astrophysics Data System (ADS)

    Pradipto; Purqon, Acep

    2017-07-01

    Lattice Boltzmann Method (LBM) is the novel method for simulating fluid dynamics. Nowadays, the application of LBM ranges from the incompressible flow, flow in the porous medium, until microflows. The common collision model of LBM is the BGK with a constant single relaxation time τ. However, BGK suffers from numerical instabilities. These instabilities could be eliminated by implementing LBM with multiple relaxation time. Both of those scheme have implemented for incompressible 2 dimensions lid-driven cavity. The stability analysis has done by finding the maximum Reynolds number and velocity for converged simulations. The accuracy analysis is done by comparing the velocity profile with the benchmark results from Ghia, et al and calculating the net velocity flux. The tests concluded that LBM with MRT are more stable than BGK, and have a similar accuracy. The maximum Reynolds number that converges for BGK is 3200 and 7500 for MRT respectively.

  1. Sampling Scattered Data Onto Rectangular Grids for Volume Visualization

    DTIC Science & Technology

    1989-12-01

    30 4.4 Building A Rectangular Grid ..... ................ 30 4.5 Sampling Methds ...... ...................... 34 4.6...dimensional data have been developed recently. In computational fluid flow analysis, methods for constructing three dimen- sional numerical grids are...structure of rectangular grids. Because finite element analysis is useful in fields other than fluid flow analysis and the numerical grid has promising

  2. Top-down and bottom-up lipidomic analysis of rabbit lipoproteins under different metabolic conditions using flow field-flow fractionation, nanoflow liquid chromatography and mass spectrometry.

    PubMed

    Byeon, Seul Kee; Kim, Jin Yong; Lee, Ju Yong; Chung, Bong Chul; Seo, Hong Seog; Moon, Myeong Hee

    2015-07-31

    This study demonstrated the performances of top-down and bottom-up approaches in lipidomic analysis of lipoproteins from rabbits raised under different metabolic conditions: healthy controls, carrageenan-induced inflammation, dehydration, high cholesterol (HC) diet, and highest cholesterol diet with inflammation (HCI). In the bottom-up approach, the high density lipoproteins (HDL) and the low density lipoproteins (LDL) were size-sorted and collected on a semi-preparative scale using a multiplexed hollow fiber flow field-flow fractionation (MxHF5), followed by nanoflow liquid chromatography-ESI-MS/MS (nLC-ESI-MS/MS) analysis of the lipids extracted from each lipoprotein fraction. In the top-down method, size-fractionated lipoproteins were directly infused to MS for quantitative analysis of targeted lipids using chip-type asymmetrical flow field-flow fractionation-electrospray ionization-tandem mass spectrometry (cAF4-ESI-MS/MS) in selected reaction monitoring (SRM) mode. The comprehensive bottom-up analysis yielded 122 and 104 lipids from HDL and LDL, respectively. Rabbits within the HC and HCI groups had lipid patterns that contrasted most substantially from those of controls, suggesting that HC diet significantly alters the lipid composition of lipoproteins. Among the identified lipids, 20 lipid species that exhibited large differences (>10-fold) were selected as targets for the top-down quantitative analysis in order to compare the results with those from the bottom-up method. Statistical comparison of the results from the two methods revealed that the results were not significantly different for most of the selected species, except for those species with only small differences in concentration between groups. The current study demonstrated that top-down lipid analysis using cAF4-ESI-MS/MS is a powerful high-speed analytical platform for targeted lipidomic analysis that does not require the extraction of lipids from blood samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Flow chemistry vs. flow analysis.

    PubMed

    Trojanowicz, Marek

    2016-01-01

    The flow mode of conducting chemical syntheses facilitates chemical processes through the use of on-line analytical monitoring of occurring reactions, the application of solid-supported reagents to minimize downstream processing and computerized control systems to perform multi-step sequences. They are exactly the same attributes as those of flow analysis, which has solid place in modern analytical chemistry in several last decades. The following review paper, based on 131 references to original papers as well as pre-selected reviews, presents basic aspects, selected instrumental achievements and developmental directions of a rapidly growing field of continuous flow chemical synthesis. Interestingly, many of them might be potentially employed in the development of new methods in flow analysis too. In this paper, examples of application of flow analytical measurements for on-line monitoring of flow syntheses have been indicated and perspectives for a wider application of real-time analytical measurements have been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A PDF closure model for compressible turbulent chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Kollmann, W.

    1992-01-01

    The objective of the proposed research project was the analysis of single point closures based on probability density function (pdf) and characteristic functions and the development of a prediction method for the joint velocity-scalar pdf in turbulent reacting flows. Turbulent flows of boundary layer type and stagnation point flows with and without chemical reactions were be calculated as principal applications. Pdf methods for compressible reacting flows were developed and tested in comparison with available experimental data. The research work carried in this project was concentrated on the closure of pdf equations for incompressible and compressible turbulent flows with and without chemical reactions.

  5. Flow analysis techniques for phosphorus: an overview.

    PubMed

    Estela, José Manuel; Cerdà, Víctor

    2005-04-15

    A bibliographical review on the implementation and the results obtained in the use of different flow analytical techniques for the determination of phosphorus is carried out. The sources, occurrence and importance of phosphorus together with several aspects regarding the analysis and terminology used in the determination of this element are briefly described. A classification as well as a brief description of the basis, advantages and disadvantages of the different existing flow techniques, namely; segmented flow analysis (SFA), flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA) and multipumped FIA (MPFIA) is also carried out. The most relevant manuscripts regarding the analysis of phosphorus by means of flow techniques are herein classified according to the detection instrumental technique used with the aim to facilitate their study and obtain an overall scope. Finally, the analytical characteristics of numerous flow-methods reported in the literature are provided in the form of a table and their applicability to samples with different matrixes, namely water samples (marine, river, estuarine, waste, industrial, drinking, etc.), soils leachates, plant leaves, toothpaste, detergents, foodstuffs (wine, orange juice, milk), biological samples, sugars, fertilizer, hydroponic solutions, soils extracts and cyanobacterial biofilms are tabulated.

  6. Sensitivity analysis for aeroacoustic and aeroelastic design of turbomachinery blades

    NASA Technical Reports Server (NTRS)

    Lorence, Christopher B.; Hall, Kenneth C.

    1995-01-01

    A new method for computing the effect that small changes in the airfoil shape and cascade geometry have on the aeroacoustic and aeroelastic behavior of turbomachinery cascades is presented. The nonlinear unsteady flow is assumed to be composed of a nonlinear steady flow plus a small perturbation unsteady flow that is harmonic in time. First, the full potential equation is used to describe the behavior of the nonlinear mean (steady) flow through a two-dimensional cascade. The small disturbance unsteady flow through the cascade is described by the linearized Euler equations. Using rapid distortion theory, the unsteady velocity is split into a rotational part that contains the vorticity and an irrotational part described by a scalar potential. The unsteady vorticity transport is described analytically in terms of the drift and stream functions computed from the steady flow. Hence, the solution of the linearized Euler equations may be reduced to a single inhomogeneous equation for the unsteady potential. The steady flow and small disturbance unsteady flow equations are discretized using bilinear quadrilateral isoparametric finite elements. The nonlinear mean flow solution and streamline computational grid are computed simultaneously using Newton iteration. At each step of the Newton iteration, LU decomposition is used to solve the resulting set of linear equations. The unsteady flow problem is linear, and is also solved using LU decomposition. Next, a sensitivity analysis is performed to determine the effect small changes in cascade and airfoil geometry have on the mean and unsteady flow fields. The sensitivity analysis makes use of the nominal steady and unsteady flow LU decompositions so that no additional matrices need to be factored. Hence, the present method is computationally very efficient. To demonstrate how the sensitivity analysis may be used to redesign cascades, a compressor is redesigned for improved aeroelastic stability and two different fan exit guide vanes are redesigned for reduced downstream radiated noise. In addition, a framework detailing how the two-dimensional version of the method may be used to redesign three-dimensional geometries is presented.

  7. Improved radiation dose efficiency in solution SAXS using a sheath flow sample environment

    PubMed Central

    Kirby, Nigel; Cowieson, Nathan; Hawley, Adrian M.; Mudie, Stephen T.; McGillivray, Duncan J.; Kusel, Michael; Samardzic-Boban, Vesna; Ryan, Timothy M.

    2016-01-01

    Radiation damage is a major limitation to synchrotron small-angle X-ray scattering analysis of biomacromolecules. Flowing the sample during exposure helps to reduce the problem, but its effectiveness in the laminar-flow regime is limited by slow flow velocity at the walls of sample cells. To overcome this limitation, the coflow method was developed, where the sample flows through the centre of its cell surrounded by a flow of matched buffer. The method permits an order-of-magnitude increase of X-ray incident flux before sample damage, improves measurement statistics and maintains low sample concentration limits. The method also efficiently handles sample volumes of a few microlitres, can increase sample throughput, is intrinsically resistant to capillary fouling by sample and is suited to static samples and size-exclusion chromatography applications. The method unlocks further potential of third-generation synchrotron beamlines to facilitate new and challenging applications in solution scattering. PMID:27917826

  8. APPLICATION OF FLOW SIMULATION FOR EVALUATION OF FILLING-ABILITY OF SELF-COMPACTING CONCRETE

    NASA Astrophysics Data System (ADS)

    Urano, Shinji; Nemoto, Hiroshi; Sakihara, Kohei

    In this paper, MPS method was applied to fluid an alysis of self-compacting concrete. MPS method is one of the particle method, and it is suitable for the simulation of moving boundary or free surface problems and large deformation problems. The constitutive equation of self-compacting concrete is assumed as bingham model. In order to investigate flow Stoppage and flow speed of self-compacting concrete, numerical analysis examples of slump flow and L-flow test were performed. In addition, to evaluate verification of compactability of self-compacting concrete, numerical analys is examples of compaction at the part of CFT diaphragm were performed. As a result, it was found that the MPS method was suitable for the simulation of compaction of self-compacting concrete, and a just appraisal was obtained by setting shear strain rate of flow-limit πc and limitation point of segregation.

  9. Supersonic nonlinear potential analysis

    NASA Technical Reports Server (NTRS)

    Siclari, M. J.

    1984-01-01

    The NCOREL computer code was established to compute supersonic flow fields of wings and bodies. The method encompasses an implicit finite difference transonic relaxation method to solve the full potential equation in a spherical coordinate system. Two basic topic to broaden the applicability and usefulness of the present method which is encompassed within the computer code NCOREL for the treatment of supersonic flow problems were studied. The first topic is that of computing efficiency. Accelerated schemes are in use for transonic flow problems. One such scheme is the approximate factorization (AF) method and an AF scheme to the supersonic flow problem is developed. The second topic is the computation of wake flows. The proper modeling of wake flows is important for multicomponent configurations such as wing-body and multiple lifting surfaces where the wake of one lifting surface has a pronounced effect on a downstream body or other lifting surfaces.

  10. A steady and oscillatory kernel function method for interfering surfaces in subsonic, transonic and supersonic flow. [prediction analysis techniques for airfoils

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1976-01-01

    The theory, results and user instructions for an aerodynamic computer program are presented. The theory is based on linear lifting surface theory, and the method is the kernel function. The program is applicable to multiple interfering surfaces which may be coplanar or noncoplanar. Local linearization was used to treat nonuniform flow problems without shocks. For cases with imbedded shocks, the appropriate boundary conditions were added to account for the flow discontinuities. The data describing nonuniform flow fields must be input from some other source such as an experiment or a finite difference solution. The results are in the form of small linear perturbations about nonlinear flow fields. The method was applied to a wide variety of problems for which it is demonstrated to be significantly superior to the uniform flow method. Program user instructions are given for easy access.

  11. Novel Quantitative Autophagy Analysis by Organelle Flow Cytometry after Cell Sonication

    PubMed Central

    Degtyarev, Michael; Reichelt, Mike; Lin, Kui

    2014-01-01

    Autophagy is a dynamic process of bulk degradation of cellular proteins and organelles in lysosomes. Current methods of autophagy measurement include microscopy-based counting of autophagic vacuoles (AVs) in cells. We have developed a novel method to quantitatively analyze individual AVs using flow cytometry. This method, OFACS (organelle flow after cell sonication), takes advantage of efficient cell disruption with a brief sonication, generating cell homogenates with fluorescently labeled AVs that retain their integrity as confirmed with light and electron microscopy analysis. These AVs could be detected directly in the sonicated cell homogenates on a flow cytometer as a distinct population of expected organelle size on a cytometry plot. Treatment of cells with inhibitors of autophagic flux, such as chloroquine or lysosomal protease inhibitors, increased the number of particles in this population under autophagy inducing conditions, while inhibition of autophagy induction with 3-methyladenine or knockdown of ATG proteins prevented this accumulation. This assay can be easily performed in a high-throughput format and opens up previously unexplored avenues for autophagy analysis. PMID:24489953

  12. Flow Pattern Phenomena in Two-Phase Flow in Microchannels

    NASA Astrophysics Data System (ADS)

    Keska, Jerry K.; Simon, William E.

    2004-02-01

    Space transportation systems require high-performance thermal protection and fluid management techniques for systems ranging from cryogenic fluid management devices to primary structures and propulsion systems exposed to extremely high temperatures, as well as for other space systems such as cooling or environment control for advanced space suits and integrated circuits. Although considerable developmental effort is being expended to bring potentially applicable technologies to a readiness level for practical use, new and innovative methods are still needed. One such method is the concept of Advanced Micro Cooling Modules (AMCMs), which are essentially compact two-phase heat exchangers constructed of microchannels and designed to remove large amounts of heat rapidly from critical systems by incorporating phase transition. The development of AMCMs requires fundamental technological advancement in many areas, including: (1) development of measurement methods/systems for flow-pattern measurement/identification for two-phase mixtures in microchannels; (2) development of a phenomenological model for two-phase flow which includes the quantitative measure of flow patterns; and (3) database development for multiphase heat transfer/fluid dynamics flows in microchannels. This paper focuses on the results of experimental research in the phenomena of two-phase flow in microchannels. The work encompasses both an experimental and an analytical approach to incorporating flow patterns for air-water mixtures flowing in a microchannel, which are necessary tools for the optimal design of AMCMs. Specifically, the following topics are addressed: (1) design and construction of a sensitive test system for two-phase flow in microchannels, one which measures ac and dc components of in-situ physical mixture parameters including spatial concentration using concomitant methods; (2) data acquisition and analysis in the amplitude, time, and frequency domains; and (3) analysis of results including evaluation of data acquisition techniques and their validity for application in flow pattern determination.

  13. Exploring the use of optical flow for the study of functional NIRS signals

    NASA Astrophysics Data System (ADS)

    Fernandez Rojas, Raul; Huang, Xu; Ou, Keng-Liang; Hernandez-Juarez, Jesus

    2017-03-01

    Near infrared spectroscopy (NIRS) is an optical imaging technique that allows real-time measurements of Oxy and Deoxy-hemoglobin concentrations in human body tissue. In functional NIRS (fNIRS), this technique is used to study cortical activation in response to changes in neural activity. However, analysis of activation regions using NIRS is a challenging task in the field of medical image analysis and despite existing solutions, no homogeneous analysis method has yet been determined. For that reason, the aim of our present study is to report the use of an optical flow method for the analysis of cortical activation using near-infrared spectroscopy signals. We used real fNIRS data recorded from a noxious stimulation experiment as base of our implementation. To compute the optical flow algorithm, we first arrange NIRS signals (Oxy-hemoglobin) following our 24 channels (12 channels per hemisphere) head-probe configuration to create image-like samples. We then used two consecutive fNIRS samples per hemisphere as input frames for the optical flow algorithm, making one computation per hemisphere. The output from these two computations is the velocity field representing cortical activation from each hemisphere. The experimental results showed that the radial structure of flow vectors exhibited the origin of cortical activity, the development of stimulation as expansion or contraction of such flow vectors, and the flow of activation patterns may suggest prediction in cortical activity. The present study demonstrates that optical flow provides a power tool for the analysis of NIRS signals. Finally, we suggested a novel idea to identify pain status in nonverbal patients by using optical flow motion vectors; however, this idea will be study further in our future research.

  14. Comparative analysis of minimal residual disease detection using four-color flow cytometry, consensus IgH-PCR, and quantitative IgH PCR in CLL after allogeneic and autologous stem cell transplantation.

    PubMed

    Böttcher, S; Ritgen, M; Pott, C; Brüggemann, M; Raff, T; Stilgenbauer, S; Döhner, H; Dreger, P; Kneba, M

    2004-10-01

    The clinically most suitable method for minimal residual disease (MRD) detection in chronic lymphocytic leukemia is still controversial. We prospectively compared MRD assessment in 158 blood samples of 74 patients with CLL after stem cell transplantation (SCT) using four-color flow cytometry (MRD flow) in parallel with consensus IgH-PCR and ASO IgH real-time PCR (ASO IgH RQ-PCR). In 25 out of 106 samples (23.6%) with a polyclonal consensus IgH-PCR pattern, MRD flow still detected CLL cells, proving higher sensitivity of flow cytometry over PCR-genescanning with consensus IgH-primers. Of 92 samples, 14 (15.2%) analyzed in parallel by MRD flow and by ASO IgH RQ-PCR were negative by our flow cytometric assay but positive by PCR, thus demonstrating superior sensitivity of RQ-PCR with ASO primers. Quantitative MRD levels measured by both methods correlated well (r=0.93). MRD detection by flow and ASO IgH RQ-PCR were equally suitable to monitor MRD kinetics after allogeneic SCT, but the PCR method detected impending relapses after autologous SCT earlier. An analysis of factors that influence sensitivity and specificity of flow cytometry for MRD detection allowed to devise further improvements of this technique.

  15. Automated analysis of flow cytometric data for measuring neutrophil CD64 expression using a multi-instrument compatible probability state model.

    PubMed

    Wong, Linda; Hill, Beth L; Hunsberger, Benjamin C; Bagwell, C Bruce; Curtis, Adam D; Davis, Bruce H

    2015-01-01

    Leuko64™ (Trillium Diagnostics) is a flow cytometric assay that measures neutrophil CD64 expression and serves as an in vitro indicator of infection/sepsis or the presence of a systemic acute inflammatory response. Leuko64 assay currently utilizes QuantiCALC, a semiautomated software that employs cluster algorithms to define cell populations. The software reduces subjective gating decisions, resulting in interanalyst variability of <5%. We evaluated a completely automated approach to measuring neutrophil CD64 expression using GemStone™ (Verity Software House) and probability state modeling (PSM). Four hundred and fifty-seven human blood samples were processed using the Leuko64 assay. Samples were analyzed on four different flow cytometer models: BD FACSCanto II, BD FACScan, BC Gallios/Navios, and BC FC500. A probability state model was designed to identify calibration beads and three leukocyte subpopulations based on differences in intensity levels of several parameters. PSM automatically calculates CD64 index values for each cell population using equations programmed into the model. GemStone software uses PSM that requires no operator intervention, thus totally automating data analysis and internal quality control flagging. Expert analysis with the predicate method (QuantiCALC) was performed. Interanalyst precision was evaluated for both methods of data analysis. PSM with GemStone correlates well with the expert manual analysis, r(2) = 0.99675 for the neutrophil CD64 index values with no intermethod bias detected. The average interanalyst imprecision for the QuantiCALC method was 1.06% (range 0.00-7.94%), which was reduced to 0.00% with the GemStone PSM. The operator-to-operator agreement in GemStone was a perfect correlation, r(2) = 1.000. Automated quantification of CD64 index values produced results that strongly correlate with expert analysis using a standard gate-based data analysis method. PSM successfully evaluated flow cytometric data generated by multiple instruments across multiple lots of the Leuko64 kit in all 457 cases. The probability-based method provides greater objectivity, higher data analysis speed, and allows for greater precision for in vitro diagnostic flow cytometric assays. © 2015 International Clinical Cytometry Society.

  16. Static aeroelastic analysis of wings using Euler/Navier-Stokes equations coupled with improved wing-box finite element structures

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; MacMurdy, Dale E.; Kapania, Rakesh K.

    1994-01-01

    Strong interactions between flow about an aircraft wing and the wing structure can result in aeroelastic phenomena which significantly impact aircraft performance. Time-accurate methods for solving the unsteady Navier-Stokes equations have matured to the point where reliable results can be obtained with reasonable computational costs for complex non-linear flows with shock waves, vortices and separations. The ability to combine such a flow solver with a general finite element structural model is key to an aeroelastic analysis in these flows. Earlier work involved time-accurate integration of modal structural models based on plate elements. A finite element model was developed to handle three-dimensional wing boxes, and incorporated into the flow solver without the need for modal analysis. Static condensation is performed on the structural model to reduce the structural degrees of freedom for the aeroelastic analysis. Direct incorporation of the finite element wing-box structural model with the flow solver requires finding adequate methods for transferring aerodynamic pressures to the structural grid and returning deflections to the aerodynamic grid. Several schemes were explored for handling the grid-to-grid transfer of information. The complex, built-up nature of the wing-box complicated this transfer. Aeroelastic calculations for a sample wing in transonic flow comparing various simple transfer schemes are presented and discussed.

  17. Inferring common cognitive mechanisms from brain blood-flow lateralization data: a new methodology for fTCD analysis.

    PubMed

    Meyer, Georg F; Spray, Amy; Fairlie, Jo E; Uomini, Natalie T

    2014-01-01

    Current neuroimaging techniques with high spatial resolution constrain participant motion so that many natural tasks cannot be carried out. The aim of this paper is to show how a time-locked correlation-analysis of cerebral blood flow velocity (CBFV) lateralization data, obtained with functional TransCranial Doppler (fTCD) ultrasound, can be used to infer cerebral activation patterns across tasks. In a first experiment we demonstrate that the proposed analysis method results in data that are comparable with the standard Lateralization Index (LI) for within-task comparisons of CBFV patterns, recorded during cued word generation (CWG) at two difficulty levels. In the main experiment we demonstrate that the proposed analysis method shows correlated blood-flow patterns for two different cognitive tasks that are known to draw on common brain areas, CWG, and Music Synthesis. We show that CBFV patterns for Music and CWG are correlated only for participants with prior musical training. CBFV patterns for tasks that draw on distinct brain areas, the Tower of London and CWG, are not correlated. The proposed methodology extends conventional fTCD analysis by including temporal information in the analysis of cerebral blood-flow patterns to provide a robust, non-invasive method to infer whether common brain areas are used in different cognitive tasks. It complements conventional high resolution imaging techniques.

  18. An Electroacoustic Hearing Protector Simulator That Accurately Predicts Pressure Levels in the Ear Based on Standard Performance Metrics

    DTIC Science & Technology

    2013-08-01

    earplug and earmuff showing HPD simulator elements for energy flow paths...unprotected or protected ear traditionally start with analysis of energy flow through schematic diagrams based on electroacoustic (EA) analogies between...Schröter, 1983; Schröter and Pösselt, 1986; Shaw and Thiessen, 1958, 1962; Zwislocki, 1957). The analysis method tracks energy flow through fluid and

  19. An Ejector Air Intake Design Method for a Novel Rocket-Based Combined-Cycle Rocket Nozzle

    NASA Astrophysics Data System (ADS)

    Waung, Timothy S.

    Rocket-based combined-cycle (RBCC) vehicles have the potential to reduce launch costs through the use of several different air breathing engine cycles, which reduce fuel consumption. The rocket-ejector cycle, in which air is entrained into an ejector section by the rocket exhaust, is used at flight speeds below Mach 2. This thesis develops a design method for an air intake geometry around a novel RBCC rocket nozzle design for the rocket-ejector engine cycle. This design method consists of a geometry creation step in which a three-dimensional intake geometry is generated, and a simple flow analysis step which predicts the air intake mass flow rate. The air intake geometry is created using the rocket nozzle geometry and eight primary input parameters. The input parameters are selected to give the user significant control over the air intake shape. The flow analysis step uses an inviscid panel method and an integral boundary layer method to estimate the air mass flow rate through the intake geometry. Intake mass flow rate is used as a performance metric since it directly affects the amount of thrust a rocket-ejector can produce. The design method results for the air intake operating at several different points along the subsonic portion of the Ariane 4 flight profile are found to under predict mass flow rate by up to 8.6% when compared to three-dimensional computational fluid dynamics simulations for the same air intake.

  20. Detection of early changes in lung cell cytology by flow-systems analysis techniques. [Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinkamp, J.A.; Wilson, J.S.; Svitra, Z.V.

    1980-03-01

    Ongoing experiments designed to develop automated flow-analysis methods for assaying damage to pulmonary lavage cells in experimental animals exposed by inhalation to environmental pollutants are summarized. Pulmonary macrophages were characterized on their ability to phagocytize polystyrene latex fluorescent spheres. Lung cells consisting primarily of macrophages and leukocytes were analyzed for fluorescence (phagocytosis of spheres) and size using flow cytometric methods. Studies also concentrated on combining phagocytosis with other cellular parameters (DNA content, cell viability, and B-glucuronidase activity). As baseline studies are completed in normal animals, experimental animals will be exposed to gaseous and particulate environmental pollutants. (ERB

  1. Flow cells for bioanalytical and bioprocess applications with optimized dynamic response and flow characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancaster, V.R.; Modlin, D.N.

    1994-12-31

    In this study, the authors present a method for design and characterization of flow cells developed for minimum flow volume and optimal dynamic response with a given central observation area. The dynamic response of a circular shaped dual ported flow cell was compared to that obtained from a flow cell whose optimized shape was determined using this method. In the optimized flow cell design, the flow rate at the nominal operating pressure increased by 50% whereas the flow cell volume was reduced by 70%. In addition, the dynamic response of the new flow cell was found to be 200% fastermore » than the circular flow cell. The fluid dynamic analysis included simple graphical techniques utilizing free stream vorticity functions and Hagen-Poiseuille relationships. The flow cell dynamic response was measured using a fluorescence detection system. The fluoresce in emission from a 400{micro}m spot located at the exit port was measured as a function of time after switching the input to the flow cell between fluorescent and non-fluorescent solutions. Analysis of results revealed the system could be reasonably characterized as a first order dynamic system. Although some evidence of second order behavior was also observed, it is reasonable to assume that a first order model will provide adequate predictive capability for many real world applications. Given a set of flow cell requirements, the methods presented in this study can be used to design and characterize flow cells with lower reagent consumption and reduced purging times. These improvements can be readily translated into reduced process times and/or lower usage of high cost reagents.« less

  2. Stability investigations of airfoil flow by global analysis

    NASA Technical Reports Server (NTRS)

    Morzynski, Marek; Thiele, Frank

    1992-01-01

    As the result of global, non-parallel flow stability analysis the single value of the disturbance growth-rate and respective frequency is obtained. This complex value characterizes the stability of the whole flow configuration and is not referred to any particular flow pattern. The global analysis assures that all the flow elements (wake, boundary and shear layer) are taken into account. The physical phenomena connected with the wake instability are properly reproduced by the global analysis. This enhances the investigations of instability of any 2-D flows, including ones in which the boundary layer instability effects are known to be of dominating importance. Assuming fully 2-D disturbance form, the global linear stability problem is formulated. The system of partial differential equations is solved for the eigenvalues and eigenvectors. The equations, written in the pure stream function formulation, are discretized via FDM using a curvilinear coordinate system. The complex eigenvalues and corresponding eigenvectors are evaluated by an iterative method. The investigations performed for various Reynolds numbers emphasize that the wake instability develops into the Karman vortex street. This phenomenon is shown to be connected with the first mode obtained from the non-parallel flow stability analysis. The higher modes are reflecting different physical phenomena as for example Tollmien-Schlichting waves, originating in the boundary layer and having the tendency to emerge as instabilities for the growing Reynolds number. The investigations are carried out for a circular cylinder, oblong ellipsis and airfoil. It is shown that the onset of the wake instability, the waves in the boundary layer, the shear layer instability are different solutions of the same eigenvalue problem, formulated using the non-parallel theory. The analysis offers large potential possibilities as the generalization of methods used till now for the stability analysis.

  3. Two MIS Analysis Methods: An Experimental Comparison.

    ERIC Educational Resources Information Center

    Wang, Shouhong

    1996-01-01

    In China, 24 undergraduate business students applied data flow diagrams (DFD) to a mini-case, and 20 used object-oriented analysis (OOA). DFD seemed easier to learn, but after training, those using the OOA method for systems analysis made fewer errors. (SK)

  4. [Application of three heat pulse technique-based methods to determine the stem sap flow].

    PubMed

    Wang, Sheng; Fan, Jun

    2015-08-01

    It is of critical importance to acquire tree transpiration characters through sap flow methodology to understand tree water physiology, forest ecology and ecosystem water exchange. Tri-probe heat pulse sensors, which are widely utilized in soil thermal parameters and soil evaporation measurement, were applied to implement Salix matsudana sap flow density (Vs) measurements via heat-ratio method (HRM), T-Max method (T-Max) and single-probe heat pulse probe (SHPP) method, and comparative analysis was conducted with additional Grainer's thermal diffusion probes (TDP) measured results. The results showed that, it took about five weeks to reach a stable measurement stage after TPHP installation, Vs measured with three methods in the early stage after installation was 135%-220% higher than Vs in the stable measurement stage, and Vs estimated via HRM, T-Max and SHPP methods were significantly linearly correlated with Vs estimated via TDP method, with R2 of 0.93, 0.73 and 0.91, respectively, and R2 for Vs measured by SHPP and HRM reached 0.94. HRM had relatively higher precision in measuring low rates and reverse sap flow. SHPP method seemed to be very promising to measure sap flow for configuration simplicity and high measuring accuracy, whereas it couldn' t distinguish directions of flow. T-Max method had relatively higher error in sap flow measurement, and it couldn' t measure sap flow below 5 cm3 · cm(-2) · h(-1), thus this method could not be used alone, however it could measure thermal diffusivity for calculating sap flow when other methods were imposed. It was recommended to choose a proper method or a combination of several methods to measure stem sap flow, based on specific research purpose.

  5. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 1; Validation

    NASA Technical Reports Server (NTRS)

    Chen, Shu-cheng, S.

    2009-01-01

    For the preliminary design and the off-design performance analysis of axial flow turbines, a pair of intermediate level-of-fidelity computer codes, TD2-2 (design; reference 1) and AXOD (off-design; reference 2), are being evaluated for use in turbine design and performance prediction of the modern high performance aircraft engines. TD2-2 employs a streamline curvature method for design, while AXOD approaches the flow analysis with an equal radius-height domain decomposition strategy. Both methods resolve only the flows in the annulus region while modeling the impact introduced by the blade rows. The mathematical formulations and derivations involved in both methods are documented in references 3, 4 for TD2-2) and in reference 5 (for AXOD). The focus of this paper is to discuss the fundamental issues of applicability and compatibility of the two codes as a pair of companion pieces, to perform preliminary design and off-design analysis for modern aircraft engine turbines. Two validation cases for the design and the off-design prediction using TD2-2 and AXOD conducted on two existing high efficiency turbines, developed and tested in the NASA/GE Energy Efficient Engine (GE-E3) Program, the High Pressure Turbine (HPT; two stages, air cooled) and the Low Pressure Turbine (LPT; five stages, un-cooled), are provided in support of the analysis and discussion presented in this paper.

  6. An Analysis of Prospective Chemistry Teachers' Cognitive Structures through Flow Map Method: The Subject of Oxidation and Reduction

    ERIC Educational Resources Information Center

    Temel, Senar

    2016-01-01

    This study aims to analyse prospective chemistry teachers' cognitive structures related to the subject of oxidation and reduction through a flow map method. Purposeful sampling method was employed in this study, and 8 prospective chemistry teachers from a group of students who had taken general chemistry and analytical chemistry courses were…

  7. Multiscale analysis and computation for flows in heterogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efendiev, Yalchin; Hou, T. Y.; Durlofsky, L. J.

    Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scalemore » basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics. Below, we present a brief overview of each of these contributions.« less

  8. Extension of transonic flow computational concepts in the analysis of cavitated bearings

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, D.; Keith, T. G., Jr.; Brewe, D. E.

    1990-01-01

    An analogy between the mathematical modeling of transonic potential flow and the flow in a cavitating bearing is described. Based on the similarities, characteristics of the cavitated region and jump conditions across the film reformation and rupture fronts are developed using the method of weak solutions. The mathematical analogy is extended by utilizing a few computational concepts of transonic flow to numerically model the cavitating bearing. Methods of shock fitting and shock capturing are discussed. Various procedures used in transonic flow computations are adapted to bearing cavitation applications, for example, type differencing, grid transformation, an approximate factorization technique, and Newton's iteration method. These concepts have proved to be successful and have vastly improved the efficiency of numerical modeling of cavitated bearings.

  9. Analysis of subsonic wind tunnel with variation shape rectangular and octagonal on test section

    NASA Astrophysics Data System (ADS)

    Rhakasywi, D.; Ismail; Suwandi, A.; Fadhli, A.

    2018-02-01

    The need for good design in the aerodynamics field required a wind tunnel design. The wind tunnel design required in this case is capable of generating laminar flow. In this research searched for wind tunnel models with rectangular and octagonal variations with objectives to generate laminar flow in the test section. The research method used numerical approach of CFD (Computational Fluid Dynamics) and manual analysis to analyze internal flow in test section. By CFD simulation results and manual analysis to generate laminar flow in the test section is a design that has an octagonal shape without filled for optimal design.

  10. Open Rotor Computational Aeroacoustic Analysis with an Immersed Boundary Method

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    Reliable noise prediction capabilities are essential to enable novel fuel efficient open rotor designs that can meet the community and cabin noise standards. Toward this end, immersed boundary methods have reached a level of maturity so that they are being frequently employed for specific real world applications within NASA. This paper demonstrates that our higher-order immersed boundary method provides the ability for aeroacoustic analysis of wake-dominated flow fields generated by highly complex geometries. This is the first of a kind aeroacoustic simulation of an open rotor propulsion system employing an immersed boundary method. In addition to discussing the peculiarities of applying the immersed boundary method to this moving boundary problem, we will provide a detailed aeroacoustic analysis of the noise generation mechanisms encountered in the open rotor flow. The simulation data is compared to available experimental data and other computational results employing more conventional CFD methods. The noise generation mechanisms are analyzed employing spectral analysis, proper orthogonal decomposition and the causality method.

  11. A study of the river velocity measurement techniques and analysis methods

    NASA Astrophysics Data System (ADS)

    Chung Yang, Han; Lun Chiang, Jie

    2013-04-01

    Velocity measurement technology can be traced back to the pitot tube velocity measurement method in the 18th century and today's velocity measurement technology use the acoustic and radar technology, with the Doppler principle developed technology advances, in order to develop the measurement method is more suitable for the measurement of velocity, the purpose is to get a more accurate measurement data and with the surface velocity theory, the maximum velocity theory and the indicator theory to obtain the mean velocity. As the main research direction of this article is to review the literature of the velocity measurement techniques and analysis methods, and to explore the applicability of the measurement method of the velocity measurement instruments, and then to describe the advantages and disadvantages of the different mean velocity profiles analysis method. Adequate review of the references of this study will be able to provide a reference for follow-up study of the velocity measurement. Review velocity measurement literature that different velocity measurement is required to follow the different flow conditions measured be upgraded its accuracy, because each flow rate measurement method has its advantages and disadvantages. Traditional velocity instrument can be used at low flow and RiverRAD microwave radar or imaging technology measurement method may be applied in high flow. In the tidal river can use the ADCP to quickly measure river vertical velocity distribution. In addition, urban rivers may be used the CW radar to set up on the bridge, and wide rivers can be used RiverRAD microwave radar to measure the velocities. Review the relevant literature also found that using Ultrasonic Doppler Current Profiler with the Chiu's theory to the velocity of observing automation work can save manpower and resources to improve measurement accuracy, reduce the risk of measurement, but the great variability of river characteristics in Taiwan and a lot of drifting floating objects in water in high flow, resulting in measurement automation work still needs further study. If the priority for the safety of personnel and instruments, we can use the non-contact velocity measurement method with the theoretical analysis method to achieve real-time monitoring.

  12. Collection, Storage, and Preparation of Human Blood Cells

    PubMed Central

    Dagur, Pradeep K.; McCoy, J. Philip

    2015-01-01

    Human peripheral blood is often studied by flow cytometry in both the research and clinical laboratories. The methods for collection, storage, and preparation of peripheral blood will vary depending on the cell lineage to be examined as well as the type of assay to be performed. This unit presents protocols for collection of blood, separation of leukocytes from whole blood by lysis of erythrocytes, isolating mononuclear cells by density gradient separation, and assorted non-flow sorting methods, such as magnetic bead separations, for enriching specific cell populations, including monocytes, T lymphocytes, B lymphocytes, neutrophils,, , and platelets prior to flow cytometric analysis. A protocol is also offered for cryopreservation of cells since clinical research often involves retrospective flow cytometric analysis of samples stored over a period of months or years. PMID:26132177

  13. Smoothed particle hydrodynamics method for simulating waterfall flow

    NASA Astrophysics Data System (ADS)

    Suwardi, M. G.; Jondri; Tarwidi, D.

    2018-03-01

    The existence of waterfall in many nations, such as Indonesia has a potential to develop and to fulfill the electricity demand in the nation. By utilizing mechanical flow energy of the waterfall, it would be able to generate electricity. The study of mechanical energy could be done by simulating waterfall flow using 2-D smoothed particle hydrodynamics (SPH) method. The SPH method is suitable to simulate the flow of the waterfall, because it has an advantage which could form particles movement that mimic the characteristics of fluid. In this paper, the SPH method is used to solve Navier-Stokes and continuity equation which are the main cores of fluid motion. The governing equations of fluid flow are used to obtain the acceleration, velocity, density, and position of the SPH particles as well as the completion of Leapfrog time-stepping method. With these equations, simulating a waterfall flow would be more attractive and able to complete the analysis of mechanical energy as desired. The mechanical energy that generated from the waterfall flow is calculated and analyzed based on the mass, height, and velocity of each SPH particle.

  14. Extension of vibrational power flow techniques to two-dimensional structures

    NASA Technical Reports Server (NTRS)

    Cuschieri, Joseph M.

    1988-01-01

    In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or finite element analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid frequencies between the optimum frequency regimes for SEA and FEA. Power flow analysis has in general been used on 1-D beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to 2-D plate-like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA results at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.

  15. Extension of vibrational power flow techniques to two-dimensional structures

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1987-01-01

    In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or Finite Element Analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid- frequencies between the optimum frequency regimes for FEA and SEA. Power flow analysis has in general been used on one-dimensional beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to two-dimensional plate like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.

  16. Assessment of numerical techniques for unsteady flow calculations

    NASA Technical Reports Server (NTRS)

    Hsieh, Kwang-Chung

    1989-01-01

    The characteristics of unsteady flow motions have long been a serious concern in the study of various fluid dynamic and combustion problems. With the advancement of computer resources, numerical approaches to these problems appear to be feasible. The objective of this paper is to assess the accuracy of several numerical schemes for unsteady flow calculations. In the present study, Fourier error analysis is performed for various numerical schemes based on a two-dimensional wave equation. Four methods sieved from the error analysis are then adopted for further assessment. Model problems include unsteady quasi-one-dimensional inviscid flows, two-dimensional wave propagations, and unsteady two-dimensional inviscid flows. According to the comparison between numerical and exact solutions, although second-order upwind scheme captures the unsteady flow and wave motions quite well, it is relatively more dissipative than sixth-order central difference scheme. Among various numerical approaches tested in this paper, the best performed one is Runge-Kutta method for time integration and six-order central difference for spatial discretization.

  17. A general multiblock Euler code for propulsion integration. Volume 1: Theory document

    NASA Technical Reports Server (NTRS)

    Chen, H. C.; Su, T. Y.; Kao, T. J.

    1991-01-01

    A general multiblock Euler solver was developed for the analysis of flow fields over geometrically complex configurations either in free air or in a wind tunnel. In this approach, the external space around a complex configuration was divided into a number of topologically simple blocks, so that surface-fitted grids and an efficient flow solution algorithm could be easily applied in each block. The computational grid in each block is generated using a combination of algebraic and elliptic methods. A grid generation/flow solver interface program was developed to facilitate the establishment of block-to-block relations and the boundary conditions for each block. The flow solver utilizes a finite volume formulation and an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. The generality of the method was demonstrated through the analysis of two complex configurations at various flow conditions. Results were compared to available test data. Two accompanying volumes, user manuals for the preparation of multi-block grids (vol. 2) and for the Euler flow solver (vol. 3), provide information on input data format and program execution.

  18. Dysphagia in Children with Esophageal Atresia: Current Diagnostic Options.

    PubMed

    Rayyan, Maissa; Allegaert, Karel; Omari, Taher; Rommel, Nathalie

    2015-08-01

    Dysphagia or swallowing disorder is very common (range, 15-52%) in patients with esophageal atresia. Children present with a wide range of symptoms. The most common diagnostic tools to evaluate esophageal dysphagia, such as upper barium study and manometry, aim to characterize anatomy and function of the esophageal body and the esophagogastric junction (EGJ). Using these technologies, a variety of pathological motor patterns have been identified in children with esophageal atresia. However, the most challenging part of diagnosing patients with esophageal dysphagia lies in the fact that these methods fail to link functional symptoms such as dysphagia with the esophageal motor disorders observed. A recent method, called pressure-flow analysis (PFA), uses simultaneously acquired impedance and manometry measurements, and applies an integrated analysis of these recordings to derive quantitative pressure-flow metrics. These pressure-flow metrics allow detection of the interplay between bolus flow, motor patterns, and symptomatology by combining data on bolus transit and bolus flow resistance. Based on a dichotomous categorization, flow resistance at the EGJ and ineffective esophageal bolus transit can be determined. This method has the potential to guide therapeutic decisions for esophageal dysmotility in pediatric patients with esophageal atresia. Georg Thieme Verlag KG Stuttgart · New York.

  19. The Azimuth Structure of Nuclear Collisions — I

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.; Kettler, David T.

    We describe azimuth structure commonly associated with elliptic and directed flow in the context of 2D angular autocorrelations for the purpose of precise separation of so-called nonflow (mainly minijets) from flow. We extend the Fourier-transform description of azimuth structure to include power spectra and autocorrelations related by the Wiener-Khintchine theorem. We analyze several examples of conventional flow analysis in that context and question the relevance of reaction plane estimation to flow analysis. We introduce the 2D angular autocorrelation with examples from data analysis and describe a simulation exercise which demonstrates precise separation of flow and nonflow using the 2D autocorrelation method. We show that an alternative correlation measure based on Pearson's normalized covariance provides a more intuitive measure of azimuth structure.

  20. To flow or not to flow : a study of elliptic flow and nonflow in proton-proton collisions in ALICE

    NASA Astrophysics Data System (ADS)

    van der Kolk, N.

    2012-01-01

    The standard model of particle physics describes all known elementary particles and the forces between them. The strong force, which binds quarks inside hadrons and nucleons inside nuclei, is described by the theory of Quantum Chromodynamics. This theory predicts a new state of matter at extreme temperatures and densities: the Quark Gluon plasma. The ALICE experiment at the Large Hadron Collider near Geneva was build to study this QGP by looking at collisions of the most heavy stable ions: lead (Pb) ions. In such collisions one hopes to achieve sufficient energy density for the creation of a QGP. One of the signatures of QGP formation in high energy heavy ion collisions is the presence of collective behaviour in the system formed during the collision. This collectivity manifests itself in a common velocity in all produced particles: a collective flow. The most dominant contribution to collective flow is elliptic flow, which originates from the anisotropic overlap region of the two nuclei in non-central collisions and is visible in the azimuthal distribution of the produced particles. Elliptic flow is related to the equation of state of the system and its degree of thermalisation. The analysis of elliptic flow is complicated by the presence of correlations between particles from other sources, summarised in the term nonflow. Several analysis methods have become available over the years and have been implemented for elliptic flow analysis within the ALICE computing framework. These methods have different sensitivities to these nonflow correlations. Because the centre of mass energy at the LHC is so high, predictions have been made of collective behaviour even in proton-proton collisions. These predictions are very divers and give values between 0 and 0.2 for elliptic flow using different models. To constrain these predictions proton-proton data, recorded with the ALICE experiment at the LHC in the 2010 7 TeV proton-proton run, was studied. In proton-proton collisions large nonflow correlations are certainly present and might mask the elliptic flow correlation. The nonflow correlations have to be suppressed sufficiently such that the elliptic flow signal becomes detectable. Therefor an analysis method was choosen that can suppress nonflow correlations by increasing the separation in pseudorapidity of two subevents. This method is called the scalar product method. How much nonflow is suppressed is shown to depend on the pseudorapidity range of the nonflow. The dependence on the pseudorapidity gap size between the subevents, in 7 TeV proton-proton collisions, points to a strong nonflow component, because the signal decreases with increasing gap size. The corresponding Monte Carlo data set shows the same dependence, while it only includes nonflow correlations. This enforces the conclusion that nonflow is the dominant or the only correlation in 7 TeV proton-proton data at the LHC. The conclusion from this analysis is that elliptic flow in 7 TeV proton-proton collisions with at least 10 particles is less than 0.05. Predictions of a higher elliptic flow for these events can be excluded. To exclude or confirm lower predicted values the nonflow contribution has to be further reduced.

  1. Comparison of Peak-Flow Estimation Methods for Small Drainage Basins in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Hebson, Charles; Lombard, Pamela J.; Mann, Alexander

    2007-01-01

    Understanding the accuracy of commonly used methods for estimating peak streamflows is important because the designs of bridges, culverts, and other river structures are based on these flows. Different methods for estimating peak streamflows were analyzed for small drainage basins in Maine. For the smallest basins, with drainage areas of 0.2 to 1.0 square mile, nine peak streamflows from actual rainfall events at four crest-stage gaging stations were modeled by the Rational Method and the Natural Resource Conservation Service TR-20 method and compared to observed peak flows. The Rational Method had a root mean square error (RMSE) of -69.7 to 230 percent (which means that approximately two thirds of the modeled flows were within -69.7 to 230 percent of the observed flows). The TR-20 method had an RMSE of -98.0 to 5,010 percent. Both the Rational Method and TR-20 underestimated the observed flows in most cases. For small basins, with drainage areas of 1.0 to 10 square miles, modeled peak flows were compared to observed statistical peak flows with return periods of 2, 50, and 100 years for 17 streams in Maine and adjoining parts of New Hampshire. Peak flows were modeled by the Rational Method, the Natural Resources Conservation Service TR-20 method, U.S. Geological Survey regression equations, and the Probabilistic Rational Method. The regression equations were the most accurate method of computing peak flows in Maine for streams with drainage areas of 1.0 to 10 square miles with an RMSE of -34.3 to 52.2 percent for 50-year peak flows. The Probabilistic Rational Method was the next most accurate method (-38.5 to 62.6 percent). The Rational Method (-56.1 to 128 percent) and particularly the TR-20 method (-76.4 to 323 percent) had much larger errors. Both the TR-20 and regression methods had similar numbers of underpredictions and overpredictions. The Rational Method overpredicted most peak flows and the Probabilistic Rational Method tended to overpredict peak flows from the smaller (less than 5 square miles) drainage basins and underpredict peak flows from larger drainage basins. The results of this study are consistent with the most comprehensive analysis of observed and modeled peak streamflows in the United States, which analyzed statistical peak flows from 70 drainage basins in the Midwest and the Northwest.

  2. Gravity flow of powder in a lunar environment. Part 2: Analysis of flow initiation

    NASA Technical Reports Server (NTRS)

    Pariseau, W. G.

    1971-01-01

    A small displacement-small strain finite element technique utilizing the constant strain triangle and incremental constitutive equations for elasticplastic (media nonhardening and obeying a Coulomb yield condition) was applied to the analysis of gravity flow initiation. This was done in a V-shaped hopper containing a powder under lunar environmental conditions. Three methods of loading were examined. Of the three, the method of computing the initial state of stress in a filled hopper prior to drawdown, by adding material to the hopper layer by layer, was the best. Results of the analysis of a typical hopper problem show that the initial state of stress, the elastic moduli, and the strength parameters have an important influence on material response subsequent to the opening of the hopper outlet.

  3. Visualizing vector field topology in fluid flows

    NASA Technical Reports Server (NTRS)

    Helman, James L.; Hesselink, Lambertus

    1991-01-01

    Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.

  4. Alternatives to current flow cytometry data analysis for clinical and research studies.

    PubMed

    Gondhalekar, Carmen; Rajwa, Bartek; Patsekin, Valery; Ragheb, Kathy; Sturgis, Jennifer; Robinson, J Paul

    2018-02-01

    Flow cytometry has well-established methods for data analysis based on traditional data collection techniques. These techniques typically involved manual insertion of tube samples into an instrument that, historically, could only measure 1-3 colors. The field has since evolved to incorporate new technologies for faster and highly automated sample preparation and data collection. For example, the use of microwell plates on benchtop instruments is now a standard on virtually every new instrument, and so users can easily accumulate multiple data sets quickly. Further, because the user must carefully define the layout of the plate, this information is already defined when considering the analytical process, expanding the opportunities for automated analysis. Advances in multi-parametric data collection, as demonstrated by the development of hyperspectral flow-cytometry, 20-40 color polychromatic flow cytometry, and mass cytometry (CyTOF), are game-changing. As data and assay complexity increase, so too does the complexity of data analysis. Complex data analysis is already a challenge to traditional flow cytometry software. New methods for reviewing large and complex data sets can provide rapid insight into processes difficult to define without more advanced analytical tools. In settings such as clinical labs where rapid and accurate data analysis is a priority, rapid, efficient and intuitive software is needed. This paper outlines opportunities for analysis of complex data sets using examples of multiplexed bead-based assays, drug screens and cell cycle analysis - any of which could become integrated into the clinical environment. Copyright © 2017. Published by Elsevier Inc.

  5. Analysis and Calculation of the Fluid Flow and the Temperature Field by Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Dhamodaran, M.; Jegadeesan, S.; Kumar, R. Praveen

    2018-04-01

    This paper presents a fundamental and accurate approach to study numerical analysis of fluid flow and heat transfer inside a channel. In this study, the Finite Element Method is used to analyze the channel, which is divided into small subsections. The small subsections are discretized using higher number of domain elements and the corresponding number of nodes. MATLAB codes are developed to be used in the analysis. Simulation results showed that the analyses of fluid flow and temperature are influenced significantly by the changing entrance velocity. Also, there is an apparent effect on the temperature fields due to the presence of an energy source in the middle of the domain. In this paper, the characteristics of flow analysis and heat analysis in a channel have been investigated.

  6. Quasi-three-dimensional flow solution by meridional plane analysis

    NASA Technical Reports Server (NTRS)

    Katsanis, T.; Mcnally, W. D.

    1974-01-01

    A computer program has been developed to obtain subsonic or shockfree transonic, nonviscous flow analysis on the hub-shroud mid-channel flow surface of a turbomachine. The analysis may be for any annular passage, with or without blades. The blades may be fixed or rotating and may be twisted and leaned. The flow may be axial, radial or mixed. Blade surface velocities over the entire blade are approximated based on the rate of change of angular momentum. This gives a 3-D flow picture based on a 2-D analysis. The paper discusses the method used for the program and shows examples of the type of passages and blade rows which can be analyzed. Also, some numerical examples are given to show how the program can be used for practical assistance in design of blading, annular passages, and annular diffusers.

  7. Least Squares Shadowing Sensitivity Analysis of Chaotic Flow Around a Two-Dimensional Airfoil

    NASA Technical Reports Server (NTRS)

    Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris

    2016-01-01

    Gradient-based sensitivity analysis has proven to be an enabling technology for many applications, including design of aerospace vehicles. However, conventional sensitivity analysis methods break down when applied to long-time averages of chaotic systems. This breakdown is a serious limitation because many aerospace applications involve physical phenomena that exhibit chaotic dynamics, most notably high-resolution large-eddy and direct numerical simulations of turbulent aerodynamic flows. A recently proposed methodology, Least Squares Shadowing (LSS), avoids this breakdown and advances the state of the art in sensitivity analysis for chaotic flows. The first application of LSS to a chaotic flow simulated with a large-scale computational fluid dynamics solver is presented. The LSS sensitivity computed for this chaotic flow is verified and shown to be accurate, but the computational cost of the current LSS implementation is high.

  8. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, C.; Steinkamp, J.A.

    1999-06-01

    Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.

  9. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, Chiranjit; Steinkamp, John A.

    1999-01-01

    Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.

  10. Determination of dipyrone in pharmaceutical preparations based on the chemiluminescent reaction of the quinolinic hydrazide-H2O2-vanadium(IV) system and flow-injection analysis.

    PubMed

    Pradana Pérez, Juan A; Durand Alegría, Jesús S; Hernando, Pilar Fernández; Sierra, Adolfo Narros

    2012-01-01

    A rapid, economic and sensitive chemiluminescent method involving flow-injection analysis was developed for the determination of dipyrone in pharmaceutical preparations. The method is based on the chemiluminescent reaction between quinolinic hydrazide and hydrogen peroxide in a strongly alkaline medium, in which vanadium(IV) acts as a catalyst. Principal chemical and physical variables involved in the flow-injection system were optimized using a modified simplex method. The variations in the quantum yield observed when dipyrone was present in the reaction medium were used to determine the concentration of this compound. The proposed method requires no preconcentration steps and reliably quantifies dipyrone over the linear range 1-50 µg/mL. In addition, a sample throughput of 85 samples/h is possible. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Simulation of Vortex Structure in Supersonic Free Shear Layer Using Pse Method

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Wang, Qiang

    The method of parabolized stability equations (PSE) are applied in the analysis of nonlinear stability and the simulation of flow structure in supersonic free shear layer. High accuracy numerical techniques including self-similar basic flow, high order differential method, appropriate transformation and decomposition of nonlinear terms are adopted and developed to solve the PSE effectively for free shear layer. The spatial evolving unstable waves which dominate the flow structure are investigated through nonlinear coupling spatial marching methods. The nonlinear interactions between harmonic waves are further analyzed and instantaneous flow field are obtained by adding the harmonic waves into basic flow. Relevant data agree well with that of DNS. The results demonstrate that T-S wave does not keeping growing exponential as the linear evolution, the energy transfer to high order harmonic modes and finally all harmonic modes get saturation due to the nonlinear interaction; Mean flow distortion is produced by the nonlinear interaction between the harmonic and its conjugate harmonic, makes great change to the average flow and increases the thickness of shear layer; PSE methods can well capture the large scale nonlinear flow structure in the supersonic free shear layer such as vortex roll-up, vortex pairing and nonlinear saturation.

  12. High-resolution manometry combined with impedance measurements discriminates the cause of dysphagia in children.

    PubMed

    Rommel, Nathalie; Omari, Taher I; Selleslagh, Margot; Kritas, Stamatiki; Cock, Charles; Rosan, Rachel; Rodriguez, Leonel; Nurko, Samuel

    2015-12-01

    Pressure-flow analysis allows assessing esophageal bolus transport in relation to esophageal pressures. This study aimed to characterize pressure-flow metrics in relation to dysphagia in paediatric patients. We analysed esophageal pressure-impedance recordings of 5 ml liquid and viscous swallows from 35 children (17 M, mean 10.5 ± 0.8 years). Primary indication for referral was gastroesophageal reflux disease (GERD) (9), post-fundoplication dysphagia (5), idiopathic dysphagia (16), trachea-esophageal fistula (2) and other (3). Peristaltic function was assessed using the 20 mmHg iso-contour defect and the timing between bolus pressure and flow was assessed using the Pressure Flow Index, a metric elevated in relation to dysphagia. Patients were stratified in relation to dysphagia and to peristaltic defect size. Dysphagia was characterized by a weaker peristalsis for liquids and higher Pressure Flow Index for viscous. When patients were stratified based on weak or normal peristalsis, dysphagia with weak peristalsis related to a larger iso-contour defect size and dysphagia with normal peristalsis related to higher Pressure Flow Index. Pressure-flow analysis enables differentiation of patients with dysphagia due to weak peristalsis (poor bolus clearance) from abnormal bolus flow resistance (esophageal outflow obstruction). This new dichotomous categorization of esophageal function may help guide the selection of optimal treatment such as pharmacological or endoscopic therapy. • Pressure-flow analysis (PFA) can detect abnormalities in esophageal motility using integrated analysis of bolus propulsion and bolus flow during swallowing. • AIM analysis has recently been reported to be useful in identifying subtle pre-operative esophageal dysfunction in adult patients who developed post-fundoplication dysphagia as well as in patients with non-obstructive dysphagia. • Pressure-flow parameters can distinguish the cause of dysphagia in paediatric patients. • Combined high-resolution manometry and impedance measurements with pressure-flow analysis can differentiate paediatric patients with dysphagia symptoms in relation to either weak peristalsis (poor bolus clearance) or over-pressurization (abnormal bolus flow resistance). HOW MIGHT IT IMPACT ON CLINICAL PRACTICE IN THE FUTURE? • This study supports the use of a novel objective analysis method on recordings that are readily used in paediatric clinical practice. • The pressure-flow approach allows discriminating esophageal dysfunction in relation to dysphagia symptoms in children. This has not been achieved in children with current analysis methods. • The new findings of this study allow a dichotomous categorization of esophageal function, which may help to guide the selection of the most optimal treatment such as pharmacological or endoscopic therapy.

  13. A variational multiscale method for particle-cloud tracking in turbomachinery flows

    NASA Astrophysics Data System (ADS)

    Corsini, A.; Rispoli, F.; Sheard, A. G.; Takizawa, K.; Tezduyar, T. E.; Venturini, P.

    2014-11-01

    We present a computational method for simulation of particle-laden flows in turbomachinery. The method is based on a stabilized finite element fluid mechanics formulation and a finite element particle-cloud tracking method. We focus on induced-draft fans used in process industries to extract exhaust gases in the form of a two-phase fluid with a dispersed solid phase. The particle-laden flow causes material wear on the fan blades, degrading their aerodynamic performance, and therefore accurate simulation of the flow would be essential in reliable computational turbomachinery analysis and design. The turbulent-flow nature of the problem is dealt with a Reynolds-Averaged Navier-Stokes model and Streamline-Upwind/Petrov-Galerkin/Pressure-Stabilizing/Petrov-Galerkin stabilization, the particle-cloud trajectories are calculated based on the flow field and closure models for the turbulence-particle interaction, and one-way dependence is assumed between the flow field and particle dynamics. We propose a closure model utilizing the scale separation feature of the variational multiscale method, and compare that to the closure utilizing the eddy viscosity model. We present computations for axial- and centrifugal-fan configurations, and compare the computed data to those obtained from experiments, analytical approaches, and other computational methods.

  14. Lunar soil properties and soil mechanics. Flow in porous media under rarefied gas conditions. Research phase: Fluid conductivity of lunar surface materials

    NASA Technical Reports Server (NTRS)

    Hurlbut, F. C.; Jih, C. R.

    1972-01-01

    Theoretical and experimental research on fluid conductivity of lunar surface materials is summarized. Theoretical methods were developed for the analysis of transitional and free-molecular flows, and for analysis of lunar permeability probe data in general. Experimental studies of rarefied flows under conditions of a large pressure gradient show flows in the continuum regime to be responsible for the largest portion of the pressure drop between source and sink for one dimensional flow, provided the entrance Knudsen number is sufficiently small. The concept of local similarity leading to a universal nondimensional function of Knudsen number was shown to have approximate validity; flows in all regimes may be described in terms of an area fraction and a single length parameter. Synthetic porous media prepared from glass beads exhibited flow behavior similar in many regards to that of a natural sandstone; studies using artificial stones with known pore configurations may lead to new insight concerning the structure of natural materials. The experimental method involving the use of segmented specimens of large permeability is shown to be fruitful.

  15. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry. Final report, September 1988--November 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows.more » A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.« less

  16. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows.more » A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.« less

  17. Experimental investigation of gas flow rate and electric field effect on refractive index and electron density distribution of cold atmospheric pressure-plasma by optical method, Moiré deflectometry

    NASA Astrophysics Data System (ADS)

    Khanzadeh, Mohammad; Jamal, Fatemeh; Shariat, Mahdi

    2018-04-01

    Nowadays, cold atmospheric-pressure (CAP) helium plasma jets are widely used in material processing devices in various industries. Researchers often use indirect and spectrometric methods for measuring the plasma parameters which are very expensive. In this paper, for the first time, characterization of CAP, i.e., finding its parameters such as refractive index and electron density distribution, was carried out using an optical method, Moiré deflectometry. This method is a wave front analysis technique based on geometric optics. The advantages of this method are simplicity, high accuracy, and low cost along with the non-contact, non-destructive, and direct measurement of CAP parameters. This method demonstrates that as the helium gas flow rate decreases, the refractive index increases. Also, we must note that the refractive index is larger in the gas flow consisting of different flow rates of plasma comparing with the gas flow without the plasma.

  18. The Montaguto earth flow: nine years of observation and analysis

    USGS Publications Warehouse

    Guerriero, L.; Revellino, R; Grelle, G.; Diodato, N; Guadagno, F.M.; Coe, Jeffrey A.

    2016-01-01

    This paper summarizes the methods, results, and interpretation of analyses carried out between 2006 and 2015 at the Montaguto earth flow in southern Italy. We conducted a multi-temporal analysis of earth-flow activity to reconstruct the morphological and structural evolution of the flow. Data from field mapping were combined with a geometric reconstruction of the basal slip surface in order to investigate relations between basal-slip surface geometry and deformation styles of earth-flow material. Moreover, we reconstructed the long-term pattern of earth-flow movement using both historical observations and modeled hydrologic and climatic data. Hydrologic and climatic data were used to develop a Landslide Hydrological Climatological (LHC) indicator model.

  19. Advanced stability analysis for laminar flow control

    NASA Technical Reports Server (NTRS)

    Orszag, S. A.

    1981-01-01

    Five classes of problems are addressed: (1) the extension of the SALLY stability analysis code to the full eighth order compressible stability equations for three dimensional boundary layer; (2) a comparison of methods for prediction of transition using SALLY for incompressible flows; (3) a study of instability and transition in rotating disk flows in which the effects of Coriolis forces and streamline curvature are included; (4) a new linear three dimensional instability mechanism that predicts Reynolds numbers for transition to turbulence in planar shear flows in good agreement with experiment; and (5) a study of the stability of finite amplitude disturbances in axisymmetric pipe flow showing the stability of this flow to all nonlinear axisymmetric disturbances.

  20. Development of an automated flow injection analysis system for determination of phosphate in nutrient solutions.

    PubMed

    Karadağ, Sevinç; Görüşük, Emine M; Çetinkaya, Ebru; Deveci, Seda; Dönmez, Koray B; Uncuoğlu, Emre; Doğu, Mustafa

    2018-01-25

    A fully automated flow injection analysis (FIA) system was developed for determination of phosphate ion in nutrient solutions. This newly developed FIA system is a portable, rapid and sensitive measuring instrument that allows on-line analysis and monitoring of phosphate ion concentration in nutrient solutions. The molybdenum blue method, which is widely used in FIA phosphate analysis, was adapted to the developed FIA system. The method is based on the formation of ammonium Mo(VI) ion by reaction of ammonium molybdate with the phosphate ion present in the medium. The Mo(VI) ion then reacts with ascorbic acid and is reduced to the spectrometrically measurable Mo(V) ion. New software specific for flow analysis was developed in the LabVIEW development environment to control all the components of the FIA system. The important factors affecting the analytical signal were identified as reagent flow rate, injection volume and post-injection flow path length, and they were optimized using Box-Behnken experimental design and response surface methodology. The optimum point for the maximum analytical signal was calculated as 0.50 mL min -1 reagent flow rate, 100 µL sample injection volume and 60 cm post-injection flow path length. The proposed FIA system had a sampling frequency of 100 samples per hour over a linear working range of 3-100 mg L -1 (R 2  = 0.9995). The relative standard deviation (RSD) was 1.09% and the limit of detection (LOD) was 0.34 mg L -1 . Various nutrient solutions from a tomato-growing hydroponic greenhouse were analyzed with the developed FIA system and the results were found to be in good agreement with vanadomolybdate chemical method findings. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  1. Estimating Jupiter’s Gravity Field Using Juno Measurements, Trajectory Estimation Analysis, and a Flow Model Optimization

    NASA Astrophysics Data System (ADS)

    Galanti, Eli; Durante, Daniele; Finocchiaro, Stefano; Iess, Luciano; Kaspi, Yohai

    2017-07-01

    The upcoming Juno spacecraft measurements have the potential of improving our knowledge of Jupiter’s gravity field. The analysis of the Juno Doppler data will provide a very accurate reconstruction of spatial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity field of Jupiter, additional information needs to be incorporated into the analysis, especially regarding the Jovian flow structure and its depth, which can influence the measured gravity field. In this study we propose a new iterative method for the estimation of the Jupiter gravity field, using a simulated Juno trajectory, a trajectory estimation model, and an adjoint-based inverse model for the flow dynamics. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that this method can fit some of the gravitational harmonics better to the “measured” harmonics, mainly because of the added information from the dynamical model, which includes the flow structure. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity harmonics estimated from the Juno and Cassini radio science experiments.

  2. Estimating Jupiter’s Gravity Field Using Juno Measurements, Trajectory Estimation Analysis, and a Flow Model Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galanti, Eli; Kaspi, Yohai; Durante, Daniele

    The upcoming Juno spacecraft measurements have the potential of improving our knowledge of Jupiter’s gravity field. The analysis of the Juno Doppler data will provide a very accurate reconstruction of spatial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity field of Jupiter, additional information needs to be incorporated into the analysis, especially regarding the Jovian flow structure and its depth, which can influence the measured gravity field. In this study we propose a new iterative method for the estimation of the Jupiter gravity field, using a simulatedmore » Juno trajectory, a trajectory estimation model, and an adjoint-based inverse model for the flow dynamics. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that this method can fit some of the gravitational harmonics better to the “measured” harmonics, mainly because of the added information from the dynamical model, which includes the flow structure. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity harmonics estimated from the Juno and Cassini radio science experiments.« less

  3. A novel method to measure regional muscle blood flow continuously using NIRS kinetics information

    PubMed Central

    Nioka, Shoko; Kime, Ryotaro; Sunar, Ulas; Im, Joohee; Izzetoglu, Meltem; Zhang, Jun; Alacam, Burak; Chance, Britton

    2006-01-01

    Background This article introduces a novel method to continuously monitor regional muscle blood flow by using Near Infrared Spectroscopy (NIRS). We demonstrate the feasibility of the new method in two ways: (1) by applying this new method of determining blood flow to experimental NIRS data during exercise and ischemia; and, (2) by simulating muscle oxygenation and blood flow values using these newly developed equations during recovery from exercise and ischemia. Methods Deoxy (Hb) and oxyhemoglobin (HbO2), located in the blood ofthe skeletal muscle, carry two internal relationships between blood flow and oxygen consumption. One is a mass transfer principle and the other describes a relationship between oxygen consumption and Hb kinetics in a two-compartment model. To monitor blood flow continuously, we transfer these two relationships into two equations and calculate the blood flow with the differential information of HbO2 and Hb. In addition, these equations are used to simulate the relationship between blood flow and reoxygenation kinetics after cuff ischemia and a light exercise. Nine healthy subjects volunteered for the cuff ischemia, light arm exercise and arm exercise with cuff ischemia for the experimental study. Results Analysis of experimental data of both cuff ischemia and light exercise using the new equations show greater blood flow (four to six times more than resting values) during recovery, agreeing with previous findings. Further, the simulation and experimental studies of cuff ischemia and light exercise agree with each other. Conclusion We demonstrate the accuracy of this new method by showing that the blood flow obtained from the method agrees with previous data as well as with simulated data. We conclude that this novel continuous blood flow monitoring method can provide blood flow information non-invasively with NIRS. PMID:16704736

  4. Transonic propulsion system integration analysis at McDonnell Aircraft Company

    NASA Technical Reports Server (NTRS)

    Cosner, Raymond R.

    1989-01-01

    The technology of Computational Fluid Dynamics (CFD) is becoming an important tool in the development of aircraft propulsion systems. Two of the most valuable features of CFD are: (1) quick acquisition of flow field data; and (2) complete description of flow fields, allowing detailed investigation of interactions. Current analysis methods complement wind tunnel testing in several ways. Herein, the discussion is focused on CFD methods. However, aircraft design studies need data from both CFD and wind tunnel testing. Each approach complements the other.

  5. Lattice Boltzmann methods for global linear instability analysis

    NASA Astrophysics Data System (ADS)

    Pérez, José Miguel; Aguilar, Alfonso; Theofilis, Vassilis

    2017-12-01

    Modal global linear instability analysis is performed using, for the first time ever, the lattice Boltzmann method (LBM) to analyze incompressible flows with two and three inhomogeneous spatial directions. Four linearization models have been implemented in order to recover the linearized Navier-Stokes equations in the incompressible limit. Two of those models employ the single relaxation time and have been proposed previously in the literature as linearization of the collision operator of the lattice Boltzmann equation. Two additional models are derived herein for the first time by linearizing the local equilibrium probability distribution function. Instability analysis results are obtained in three benchmark problems, two in closed geometries and one in open flow, namely the square and cubic lid-driven cavity flow and flow in the wake of the circular cylinder. Comparisons with results delivered by classic spectral element methods verify the accuracy of the proposed new methodologies and point potential limitations particular to the LBM approach. The known issue of appearance of numerical instabilities when the SRT model is used in direct numerical simulations employing the LBM is shown to be reflected in a spurious global eigenmode when the SRT model is used in the instability analysis. Although this mode is absent in the multiple relaxation times model, other spurious instabilities can also arise and are documented herein. Areas of potential improvements in order to make the proposed methodology competitive with established approaches for global instability analysis are discussed.

  6. Analysis of radiometric signal in sedimentating suspension flow in open channel

    NASA Astrophysics Data System (ADS)

    Zych, Marcin; Hanus, Robert; Petryka, Leszek; Świsulski, Dariusz; Doktor, Marek; Mastej, Wojciech

    2015-05-01

    The article discusses issues related to the estimation of the sedimentating solid particles average flow velocity in an open channel using radiometric methods. Due to the composition of the compound, which formed water and diatomite, received data have a very weak signal to noise ratio. In the process analysis the known determining of the solid phase transportation time delay the classical cross-correlation function is the most reliable method. The use of advanced frequency analysis based on mutual spectral density function and wavelet transform of recorded signals allows a reduction of the noise contribution.

  7. Finite element methods and Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Cuvelier, C.; Segal, A.; van Steenhoven, A. A.

    This book is devoted to two and three-dimensional FEM analysis of the Navier-Stokes (NS) equations describing one flow of a viscous incompressible fluid. Three different approaches to the NS equations are described: a direct method, a penalty method, and a method that constructs discrete solenoidal vector fields. Subjects of current research which are important from the industrial/technological viewpoint are considered, including capillary-free boundaries, nonisothermal flows, turbulence, and non-Newtonian fluids.

  8. Building a Practical Natural Laminar Flow Design Capability

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Lynde, Michelle N.

    2017-01-01

    A preliminary natural laminar flow (NLF) design method that has been developed and applied to supersonic and transonic wings with moderate-to-high leading-edge sweeps at flight Reynolds numbers is further extended and evaluated in this paper. The modular design approach uses a knowledge-based design module linked with different flow solvers and boundary layer stability analysis methods to provide a multifidelity capability for NLF analysis and design. An assessment of the effects of different options for stability analysis is included using pressures and geometry from an NLF wing designed for the Common Research Model (CRM). Several extensions to the design module are described, including multiple new approaches to design for controlling attachment line contamination and transition. Finally, a modification to the NLF design algorithm that allows independent control of Tollmien-Schlichting (TS) and cross flow (CF) modes is proposed. A preliminary evaluation of the TS-only option applied to the design of an NLF nacelle for the CRM is performed that includes the use of a low-fidelity stability analysis directly in the design module.

  9. Multiresolution and Explicit Methods for Vector Field Analysis and Visualization

    NASA Technical Reports Server (NTRS)

    Nielson, Gregory M.

    1997-01-01

    This is a request for a second renewal (3d year of funding) of a research project on the topic of multiresolution and explicit methods for vector field analysis and visualization. In this report, we describe the progress made on this research project during the second year and give a statement of the planned research for the third year. There are two aspects to this research project. The first is concerned with the development of techniques for computing tangent curves for use in visualizing flow fields. The second aspect of the research project is concerned with the development of multiresolution methods for curvilinear grids and their use as tools for visualization, analysis and archiving of flow data. We report on our work on the development of numerical methods for tangent curve computation first.

  10. Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases

    PubMed Central

    Su, Yan; Guengerich, F. Peter

    2016-01-01

    Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. PMID:27248785

  11. Development and comparison of Bayesian modularization method in uncertainty assessment of hydrological models

    NASA Astrophysics Data System (ADS)

    Li, L.; Xu, C.-Y.; Engeland, K.

    2012-04-01

    With respect to model calibration, parameter estimation and analysis of uncertainty sources, different approaches have been used in hydrological models. Bayesian method is one of the most widely used methods for uncertainty assessment of hydrological models, which incorporates different sources of information into a single analysis through Bayesian theorem. However, none of these applications can well treat the uncertainty in extreme flows of hydrological models' simulations. This study proposes a Bayesian modularization method approach in uncertainty assessment of conceptual hydrological models by considering the extreme flows. It includes a comprehensive comparison and evaluation of uncertainty assessments by a new Bayesian modularization method approach and traditional Bayesian models using the Metropolis Hasting (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions are used in combination with traditional Bayesian: the AR (1) plus Normal and time period independent model (Model 1), the AR (1) plus Normal and time period dependent model (Model 2) and the AR (1) plus multi-normal model (Model 3). The results reveal that (1) the simulations derived from Bayesian modularization method are more accurate with the highest Nash-Sutcliffe efficiency value, and (2) the Bayesian modularization method performs best in uncertainty estimates of entire flows and in terms of the application and computational efficiency. The study thus introduces a new approach for reducing the extreme flow's effect on the discharge uncertainty assessment of hydrological models via Bayesian. Keywords: extreme flow, uncertainty assessment, Bayesian modularization, hydrological model, WASMOD

  12. High throughput analysis of samples in flowing liquid

    DOEpatents

    Ambrose, W. Patrick; Grace, W. Kevin; Goodwin, Peter M.; Jett, James H.; Orden, Alan Van; Keller, Richard A.

    2001-01-01

    Apparatus and method enable imaging multiple fluorescent sample particles in a single flow channel. A flow channel defines a flow direction for samples in a flow stream and has a viewing plane perpendicular to the flow direction. A laser beam is formed as a ribbon having a width effective to cover the viewing plane. Imaging optics are arranged to view the viewing plane to form an image of the fluorescent sample particles in the flow stream, and a camera records the image formed by the imaging optics.

  13. Measurements of Reynolds stress profiles in unstratified tidal flow

    USGS Publications Warehouse

    Stacey, M.T.; Monismith, Stephen G.; Burau, J.R.

    1999-01-01

    In this paper we present a method for measuring profiles of turbulence quantities using a broadband acoustic doppler current profiler (ADCP). The method follows previous work on the continental shelf and extends the analysis to develop estimates of the errors associated with the estimation methods. ADCP data was collected in an unstratified channel and the results of the analysis are compared to theory. This comparison shows that the method provides an estimate of the Reynolds stresses, which is unbiased by Doppler noise, and an estimate of the turbulent kinetic energy (TKE) which is biased by an amount proportional to the Doppler noise. The noise in each of these quantities as well as the bias in the TKE match well with the theoretical values produced by the error analysis. The quantification of profiles of Reynolds stresses simultaneous with the measurement of mean velocity profiles allows for extensive analysis of the turbulence of the flow. In this paper, we examine the relation between the turbulence and the mean flow through the calculation of u*, the friction velocity, and Cd, the coefficient of drag. Finally, we calculate quantities of particular interest in turbulence modeling and analysis, the characteristic lengthscales, including a lengthscale which represents the stream-wise scale of the eddies which dominate the Reynolds stresses. Copyright 1999 by the American Geophysical Union.

  14. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Madnia, C. K.; Steinberger, C. J.; Frankel, S. H.

    1992-01-01

    The basic objective of this research is to extend the capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. In the efforts related to LES, we were primarily involved with assessing the performance of the various modern methods based on the Probability Density Function (PDF) methods for providing closures for treating the subgrid fluctuation correlations of scalar quantities in reacting turbulent flows. In the work on DNS, we concentrated on understanding some of the relevant physics of compressible reacting flows by means of statistical analysis of the data generated by DNS of such flows. In the research conducted in the second year of this program, our efforts focused on the modeling of homogeneous compressible turbulent flows by PDF methods, and on DNS of non-equilibrium reacting high speed mixing layers. Some preliminary work is also in progress on PDF modeling of shear flows, and also on LES of such flows.

  15. Optical coherence tomography angiography-based capillary velocimetry

    NASA Astrophysics Data System (ADS)

    Wang, Ruikang K.; Zhang, Qinqin; Li, Yuandong; Song, Shaozhen

    2017-06-01

    Challenge persists in the field of optical coherence tomography (OCT) when it is required to quantify capillary blood flow within tissue beds in vivo. We propose a useful approach to statistically estimate the mean capillary flow velocity using a model-based statistical method of eigendecomposition (ED) analysis of the complex OCT signals obtained with the OCT angiography (OCTA) scanning protocol. ED-based analysis is achieved by the covariance matrix of the ensemble complex OCT signals, upon which the eigenvalues and eigenvectors that represent the subsets of the signal makeup are calculated. From this analysis, the signals due to moving particles can be isolated by employing an adaptive regression filter to remove the eigencomponents that represent static tissue signals. The mean frequency (MF) of moving particles can be estimated by the first lag-one autocorrelation of the corresponding eigenvectors. Three important parameters are introduced, including the blood flow signal power representing the presence of blood flow (i.e., OCTA signals), the MF indicating the mean velocity of blood flow, and the frequency bandwidth describing the temporal flow heterogeneity within a scanned tissue volume. The proposed approach is tested using scattering phantoms, in which microfluidic channels are used to simulate the functional capillary vessels that are perfused with the scattering intralipid solution. The results indicate a linear relationship between the MF and mean flow velocity. In vivo animal experiments are also conducted by imaging mouse brain with distal middle cerebral artery ligation to test the capability of the method to image the changes in capillary flows in response to an ischemic insult, demonstrating the practical usefulness of the proposed method for providing important quantifiable information about capillary tissue beds in the investigations of neurological conditions in vivo.

  16. Analysis of lignans in Magnoliae Flos by turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry.

    PubMed

    Zhou, Xuan; Chen, Cen; Ye, Xiaolan; Song, Fenyun; Fan, Guorong; Wu, Fuhai

    2016-04-01

    In this study, a method coupling turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry was developed for analyzing the lignans in Magnoliae Flos. By the online pretreatment of turbulent flow chromatography solid-phase extraction, the impurities removal and analytes concentration were automatically processed, and the lignans were separated rapidly and well. Seven lignans of Magnoliae Flos including epieudesmin, magnolin, 1-irioresinol-B-dimethyl ether, epi-magnolin, fargesin aschantin, and demethoxyaschantin were identified by comparing their retention behavior, UV spectra, and mass spectra with those of reference substances or literature data. The developed method was validated, and the good results showed that the method was not only automatic and rapid, but also accurate and reliable. The turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry method holds a high potential to become an effective method for the quality control of lignans in Magnoliae Flos and a useful tool for the analysis of other complex mixtures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cross Flow Parameter Calculation for Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Norman, David, Jr. (Inventor)

    2014-01-01

    A system and method for determining a cross flow angle for a feature on a structure. A processor unit receives location information identifying a location of the feature on the structure, determines an angle of the feature, identifies flow information for the location, determines a flow angle using the flow information, and determines the cross flow angle for the feature using the flow angle and the angle of the feature. The flow information describes a flow of fluid across the structure. The flow angle comprises an angle of the flow of fluid across the structure for the location of the feature.

  18. Method and apparatus for fringe-scanning chromosome analysis

    DOEpatents

    Norgren, R.M.; Gray, J.W.; Hirschfeld, T.B.

    1983-08-31

    Apparatus and method are provided for analyzing sub-micron-sized features of microscopic particles. Two central features of the invention are (1) constraining microscopic particles to flow with substantially constant orientation through a predetermined interference fringe pattern, and (2) estimating particle structure by analyzing its fringe profile. The invention allows nearly an order of magnitude higher resolution of chromosome structure than possible with currently available flow system techniques. The invention allows rapid and accurate flow karyotyping of chromosomes.

  19. Image analysis method for the measurement of water saturation in a two-dimensional experimental flow tank

    NASA Astrophysics Data System (ADS)

    Belfort, Benjamin; Weill, Sylvain; Lehmann, François

    2017-04-01

    A novel, non-invasive imaging technique that determines 2D maps of water content in unsaturated porous media is presented. This method directly relates digitally measured intensities to the water content of the porous medium. This method requires the classical image analysis steps, i.e., normalization, filtering, background subtraction, scaling and calibration. The main advantages of this approach are that no calibration experiment is needed and that no tracer or dye is injected into the flow tank. The procedure enables effective processing of a large number of photographs and thus produces 2D water content maps at high temporal resolution. A drainage / imbibition experiment in a 2D flow tank with inner dimensions of 40 cm x 14 cm x 6 cm (L x W x D) is carried out to validate the methodology. The accuracy of the proposed approach is assessed using numerical simulations with a state-of-the-art computational code that solves the Richards. Comparison of the cumulative mass leaving and entering the flow tank and water content maps produced by the photographic measurement technique and the numerical simulations demonstrate the efficiency and high accuracy of the proposed method for investigating vadose zone flow processes. Application examples to a larger flow tank with various boundary conditions are finally presented to illustrate the potential of the methodology.

  20. Pulsed single-blow regenerator testing

    NASA Technical Reports Server (NTRS)

    Oldson, J. C.; Knowles, T. R.; Rauch, J.

    1992-01-01

    A pulsed single-blow method has been developed for testing of Stirling regenerator materials performance. The method uses a tubular flow arrangement with a steady gas flow passing through a regenerator matrix sample that packs the flow channel for a short distance. A wire grid heater spanning the gas flow channel is used to heat a plug of gas by approximately 2 K for approximately 350 ms. Foil thermocouples monitor the gas temperature entering and leaving the sample. Data analysis based on a 1D incompressible-flow thermal model allows the extraction of Stanton number. A figure of merit involving heat transfer and pressure drop is used to present results for steel screens and steel felt. The observations show a lower figure of merit for the materials tested than is expected based on correlations obtained by other methods.

  1. Blockade of Tumor Cell TGF-Betas: A Strategy to Reverse Antiestrogen Resistance in Human Breast Cancer

    DTIC Science & Technology

    2002-01-01

    the TM- FKHRL1 construct exhibited exclusive nuclear localization Cell Cycle Analysis by Flow Cytometry of the HA-tagged mutant under any experimental...distribution as measured by flow cytometry (Figure 8A). ALS AND METHODS. Consistent with its antiapoptotic effect, these results, addi- tion of TGFI3... flow cytometry . Under these conditions more than 95% of selected cells expressed GFP at the time of experiments. Immunoblot Analysis. Cells were

  2. Multi-Scale Morphological Analysis of Conductance Signals in Vertical Upward Gas-Liquid Two-Phase Flow

    NASA Astrophysics Data System (ADS)

    Lian, Enyang; Ren, Yingyu; Han, Yunfeng; Liu, Weixin; Jin, Ningde; Zhao, Junying

    2016-11-01

    The multi-scale analysis is an important method for detecting nonlinear systems. In this study, we carry out experiments and measure the fluctuation signals from a rotating electric field conductance sensor with eight electrodes. We first use a recurrence plot to recognise flow patterns in vertical upward gas-liquid two-phase pipe flow from measured signals. Then we apply a multi-scale morphological analysis based on the first-order difference scatter plot to investigate the signals captured from the vertical upward gas-liquid two-phase flow loop test. We find that the invariant scaling exponent extracted from the multi-scale first-order difference scatter plot with the bisector of the second-fourth quadrant as the reference line is sensitive to the inhomogeneous distribution characteristics of the flow structure, and the variation trend of the exponent is helpful to understand the process of breakup and coalescence of the gas phase. In addition, we explore the dynamic mechanism influencing the inhomogeneous distribution of the gas phase in terms of adaptive optimal kernel time-frequency representation. The research indicates that the system energy is a factor influencing the distribution of the gas phase and the multi-scale morphological analysis based on the first-order difference scatter plot is an effective method for indicating the inhomogeneous distribution of the gas phase in gas-liquid two-phase flow.

  3. Numerical analysis of the performance of rock weirs: Effects of structure configuration on local hydraulics

    USGS Publications Warehouse

    Holmquist-Johnson, C. L.

    2009-01-01

    River spanning rock structures are being constructed for water delivery as well as to enable fish passage at barriers and provide or improve the aquatic habitat for endangered fish species. Current design methods are based upon anecdotal information applicable to a narrow range of channel conditions. The complex flow patterns and performance of rock weirs is not well understood. Without accurate understanding of their hydraulics, designers cannot address the failure mechanisms of these structures. Flow characteristics such as jets, near bed velocities, recirculation, eddies, and plunging flow govern scour pool development. These detailed flow patterns can be replicated using a 3D numerical model. Numerical studies inexpensively simulate a large number of cases resulting in an increased range of applicability in order to develop design tools and predictive capability for analysis and design. The analysis and results of the numerical modeling, laboratory modeling, and field data provide a process-based method for understanding how structure geometry affects flow characteristics, scour development, fish passage, water delivery, and overall structure stability. Results of the numerical modeling allow designers to utilize results of the analysis to determine the appropriate geometry for generating desirable flow parameters. The end product of this research will develop tools and guidelines for more robust structure design or retrofits based upon predictable engineering and hydraulic performance criteria. ?? 2009 ASCE.

  4. Computation and analysis of backward ray-tracing in aero-optics flow fields.

    PubMed

    Xu, Liang; Xue, Deting; Lv, Xiaoyi

    2018-01-08

    A backward ray-tracing method is proposed for aero-optics simulation. Different from forward tracing, the backward tracing direction is from the internal sensor to the distant target. Along this direction, the tracing in turn goes through the internal gas region, the aero-optics flow field, and the freestream. The coordinate value, the density, and the refractive index are calculated at each tracing step. A stopping criterion is developed to ensure the tracing stops at the outer edge of the aero-optics flow field. As a demonstration, the analysis is carried out for a typical blunt nosed vehicle. The backward tracing method and stopping criterion greatly simplify the ray-tracing computations in the aero-optics flow field, and they can be extended to our active laser illumination aero-optics study because of the reciprocity principle.

  5. Geometry of thin liquid sheet flows

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1994-01-01

    Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.

  6. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms

    PubMed Central

    Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami

    2016-01-01

    This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in “patient-specific” geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q-criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments. PMID:27891172

  7. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms.

    PubMed

    Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami; Jiang, Jingfeng

    2016-01-01

    This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in "patient-specific" geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q -criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments.

  8. Analysis of artery blood flow before and after angioplasty

    NASA Astrophysics Data System (ADS)

    Tomaszewski, Michał; Baranowski, Paweł; Małachowski, Jerzy; Damaziak, Krzysztof; Bukała, Jakub

    2018-01-01

    The study presents a comparison of results obtained from numerical simulations of blood flow in two different arteries. One of them was considered to be narrowed in order to simulate an arteriosclerosis obstructing the blood flow in the vessel, whereas the second simulates the vessel after angioplasty treatment. During the treatment, a biodegradable stent is inserted into the artery, which prevents the vessel walls from collapsing. The treatment was simulated through the use of numerical simulation using the finite element method. The final mesh geometry obtained from the analysis was exported to the dedicated software in order to create geometry in which a flow domain inside the artery with the stent was created. The flow analysis was conducted in ANSYS Fluent software with non-deformable vessel walls.

  9. Numerical determination of lateral loss coefficients for subchannel analysis in nuclear fuel bundles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sin Kim; Goon-Cherl Park

    1995-09-01

    An accurate prediction of cross-flow based on detailed knowledge of the velocity field in subchannels of a nuclear fuel assembly is of importance in nuclear fuel performance analysis. In this study, the low-Reynolds number {kappa}-{epsilon} turbulence model has been adopted in two adjacent subchannels with cross-flow. The secondary flow is estimated accurately by the anisotropic algebraic Reynolds stress model. This model was numerically calculated by the finite element method and has been verified successfully through comparison with existing experimental data. Finally, with the numerical analysis of the velocity field in such subchannel domain, an analytical correlation of the lateral lossmore » coefficient is obtained to predict the cross-flow rate in subchannel analysis codes. The correlation is expressed as a function of the ratio of the lateral flow velocity to the donor subchannel axial velocity, recipient channel Reynolds number and pitch-to-diameter.« less

  10. Role of regression analysis and variation of rheological data in calculation of pressure drop for sludge pipelines.

    PubMed

    Farno, E; Coventry, K; Slatter, P; Eshtiaghi, N

    2018-06-15

    Sludge pumps in wastewater treatment plants are often oversized due to uncertainty in calculation of pressure drop. This issue costs millions of dollars for industry to purchase and operate the oversized pumps. Besides costs, higher electricity consumption is associated with extra CO 2 emission which creates huge environmental impacts. Calculation of pressure drop via current pipe flow theory requires model estimation of flow curve data which depends on regression analysis and also varies with natural variation of rheological data. This study investigates impact of variation of rheological data and regression analysis on variation of pressure drop calculated via current pipe flow theories. Results compare the variation of calculated pressure drop between different models and regression methods and suggest on the suitability of each method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Plasma and magnetospheric research

    NASA Technical Reports Server (NTRS)

    Comfort, R. H.; Horwitz, J. L.

    1984-01-01

    Methods employed in the analysis of plasmas and the magnetosphere are examined. Computer programs which generate distribution functions are used in the analysis of charging phenomena and non maxwell plasmas in terms of density and average energy. An analytical model for spin curve analysis is presented. A program for the analysis of the differential ion flux probe on the space shuttle mission is complete. Satellite data analysis for ion heating, plasma flows in the polar cap, polar wind flow, and density and temperature profiles for several plasmasphere transits are included.

  12. FDDO and DSMC analyses of rarefied gas flow through 2D nozzles

    NASA Technical Reports Server (NTRS)

    Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren; Penko, Paul F.

    1992-01-01

    Two different approaches, the finite-difference method coupled with the discrete-ordinate method (FDDO), and the direct-simulation Monte Carlo (DSMC) method, are used in the analysis of the flow of a rarefied gas expanding through a two-dimensional nozzle and into a surrounding low-density environment. In the FDDO analysis, by employing the discrete-ordinate method, the Boltzmann equation simplified by a model collision integral is transformed to a set of partial differential equations which are continuous in physical space but are point functions in molecular velocity space. The set of partial differential equations are solved by means of a finite-difference approximation. In the DSMC analysis, the variable hard sphere model is used as a molecular model and the no time counter method is employed as a collision sampling technique. The results of both the FDDO and the DSMC methods show good agreement. The FDDO method requires less computational effort than the DSMC method by factors of 10 to 40 in CPU time, depending on the degree of rarefaction.

  13. Evaluation of environmental flow requirements using eco-hydrologic-hydraulic methods in perennial rivers.

    PubMed

    Abdi, Reza; Yasi, Mehdi

    2015-01-01

    The assessment of environmental flows in rivers is of vital importance for preserving riverine ecosystem processes. This paper addresses the evaluation of environmental flow requirements in three reaches along a typical perennial river (the Zab transboundary river, in north-west Iran), using different hydraulic, hydrological and ecological methods. The main objective of this study came from the construction of three dams and inter-basin transfer of water from the Zab River to the Urmia Lake. Eight hydrological methods (i.e. Tennant, Tessman, flow duration curve analysis, range of variability approach, Smakhtin, flow duration curve shifting, desktop reserve and 7Q2&10 (7-day low flow with a 2- and 10-year return period)); two hydraulic methods (slope value and maximum curvature); and two habitat simulation methods (hydraulic-ecologic, and Q Equation based on water quality indices) were used. Ecological needs of the riverine key species (mainly Barbus capito fish), river geometries, natural flow regime and the environmental status of river management were the main indices for determining the minimum flow requirements. The results indicate that the order of 35%, 17% and 18% of the mean annual flow are to be maintained for the upper, middle and downstream river reaches, respectively. The allocated monthly flow rates in the three Dams steering program are not sufficient to preserve the Zab River life.

  14. A qualitative and quantitative laser-based computer-aided flow visualization method. M.S. Thesis, 1992 Final Report

    NASA Technical Reports Server (NTRS)

    Canacci, Victor A.; Braun, M. Jack

    1994-01-01

    The experimental approach presented here offers a nonintrusive, qualitative and quantitative evaluation of full field flow patterns applicable in various geometries in a variety of fluids. This Full Flow Field Tracking (FFFT) Particle Image Velocimetry (PIV) technique, by means of particle tracers illuminated by a laser light sheet, offers an alternative to Laser Doppler Velocimetry (LDV), and intrusive systems such as Hot Wire/Film Anemometry. The method makes obtainable the flow patterns, and allows quantitative determination of the velocities, accelerations, and mass flows of an entire flow field. The method uses a computer based digitizing system attached through an imaging board to a low luminosity camera. A customized optical train allows the system to become a long distance microscope (LDM), allowing magnifications of areas of interest ranging up to 100 times. Presented in addition to the method itself, are studies in which the flow patterns and velocities were observed and evaluated in three distinct geometries, with three different working fluids. The first study involved pressure and flow analysis of a brush seal in oil. The next application involved studying the velocity and flow patterns in a cowl lip cooling passage of an air breathing aircraft engine using water as the working fluid. Finally, the method was extended to a study in air to examine the flows in a staggered pin arrangement located on one side of a branched duct.

  15. Aerodynamic shape optimization using control theory

    NASA Technical Reports Server (NTRS)

    Reuther, James

    1996-01-01

    Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.

  16. Conference on Fluid Machinery, 8th, Budapest, Hungary, Sept. 1987, Proceedings. Volumes 1 & 2

    NASA Astrophysics Data System (ADS)

    Szabo, A.; Kisbocskoi, L.

    The present conference on turbomachine fluid mechanics gives attention to the analysis of labyrinth seals, irrigation turbomachinery, axial-flow fans, poppet valves, the generation of Karman vortices, self-rectifying Wells-type air turbines, computer simulations for water-supply systems, the computation of meridional flow in turbomachines, entrained air effects on vortex pump performance, the three-dimensional potential flow in a draft tube, and hydro powerplant diagnostic methods. Also discussed are a mathematical model for the initiation of cavitation wear, cryogenic flow in ejectors, flow downstream of guide vanes in a Kaplan turbine, unsteady flow in rotating cascades, novel methods for turbomachine vibration monitoring, cavitation breakdown in centrifugal pumps, test results for Banki turbines, centrifugal compressor return-channel flow, performance predictions for regenerative turbomachines, and secondary flows in a centrifugal pump.

  17. A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes.

    PubMed

    Aghaeepour, Nima; Chattopadhyay, Pratip; Chikina, Maria; Dhaene, Tom; Van Gassen, Sofie; Kursa, Miron; Lambrecht, Bart N; Malek, Mehrnoush; McLachlan, G J; Qian, Yu; Qiu, Peng; Saeys, Yvan; Stanton, Rick; Tong, Dong; Vens, Celine; Walkowiak, Sławomir; Wang, Kui; Finak, Greg; Gottardo, Raphael; Mosmann, Tim; Nolan, Garry P; Scheuermann, Richard H; Brinkman, Ryan R

    2016-01-01

    The Flow Cytometry: Critical Assessment of Population Identification Methods (FlowCAP) challenges were established to compare the performance of computational methods for identifying cell populations in multidimensional flow cytometry data. Here we report the results of FlowCAP-IV where algorithms from seven different research groups predicted the time to progression to AIDS among a cohort of 384 HIV+ subjects, using antigen-stimulated peripheral blood mononuclear cell (PBMC) samples analyzed with a 14-color staining panel. Two approaches (FlowReMi.1 and flowDensity-flowType-RchyOptimyx) provided statistically significant predictive value in the blinded test set. Manual validation of submitted results indicated that unbiased analysis of single cell phenotypes could reveal unexpected cell types that correlated with outcomes of interest in high dimensional flow cytometry datasets. © 2015 International Society for Advancement of Cytometry.

  18. The diagnostic plot analysis of artesian aquifers with case studies in Table Mountain Group of South Africa

    NASA Astrophysics Data System (ADS)

    Sun, Xiaobin; Xu, Yongxin; Lin, Lixiang

    2015-05-01

    Parameter estimates of artesian aquifers where piezometric head is above ground level are largely made through free-flowing and recovery tests. The straight-line method proposed by Jacob-Lohman is often used for interpretation of flow rate measured at flowing artesian boreholes. However, the approach fails to interpret the free-flowing test data from two artesian boreholes in the fractured-rock aquifer in Table Mountain Group (TMG) of South Africa. The diagnostic plot method using the reciprocal rate derivative is adapted to evaluate the artesian aquifer properties. The variation of the derivative helps not only identify flow regimes and discern the boundary conditions, but also facilitates conceptualization of the aquifer system and selection of an appropriate model for data interpretation later on. Test data from two free-flowing tests conducted in different sites in TMG are analysed using the diagnostic plot method. Based on the results, conceptual models and appropriate approaches are developed to evaluate the aquifer properties. The advantages and limitations of using the diagnostic plot method on free-flowing test data are discussed.

  19. Regression modeling of ground-water flow

    USGS Publications Warehouse

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  20. Development of Conductivity Sensors for Multi-Phase Flow Local Measurements at the Polytechnic University of Valencia (UPV) and University Jaume I of Castellon (UJI).

    PubMed

    Muñoz-Cobo, José Luis; Chiva, Sergio; Méndez, Santos; Monrós, Guillem; Escrivá, Alberto; Cuadros, José Luis

    2017-05-10

    This paper describes all the procedures and methods currently used at UPV (Universitat Politécnica de Valencia) and UJI (University Jaume I) for the development and use of sensors for multi-phase flow analysis in vertical pipes. This paper also describes the methods that we use to obtain the values of the two-phase flow magnitudes from the sensor signals and the validation and cross-verification methods developed to check the consistency of the results obtained for these magnitudes with the sensors. First, we provide information about the procedures used to build the multi-sensor conductivity probes and some of the tests performed with different materials to avoid sensor degradation issues. In addition, we provide information about the characteristics of the electric circuits that feed the sensors. Then the data acquisition of the conductivity probe, the signal conditioning and the data processing including the device that have been designed to automatize all the measurement process of moving the sensors inside the channels by means of stepper electric motors controlled by computer are shown in operation. Then, we explain the methods used for bubble identification and categorization. Finally, we describe the methodology used to obtain the two-phase flow information from the sensor signals. This includes the following items: void fraction, gas velocity, Sauter mean diameter and interfacial area concentration. The last part of this paper is devoted to the conductance probes developed for the annular flow analysis, which includes the analysis of the interfacial waves produced in annular flow and that requires a different type of sensor.

  1. Development of Conductivity Sensors for Multi-Phase Flow Local Measurements at the Polytechnic University of Valencia (UPV) and University Jaume I of Castellon (UJI)

    PubMed Central

    Muñoz-Cobo, José Luis; Chiva, Sergio; Méndez, Santos; Monrós, Guillem; Escrivá, Alberto; Cuadros, José Luis

    2017-01-01

    This paper describes all the procedures and methods currently used at UPV (Universitat Politécnica de Valencia) and UJI (University Jaume I) for the development and use of sensors for multi-phase flow analysis in vertical pipes. This paper also describes the methods that we use to obtain the values of the two-phase flow magnitudes from the sensor signals and the validation and cross-verification methods developed to check the consistency of the results obtained for these magnitudes with the sensors. First, we provide information about the procedures used to build the multi-sensor conductivity probes and some of the tests performed with different materials to avoid sensor degradation issues. In addition, we provide information about the characteristics of the electric circuits that feed the sensors. Then the data acquisition of the conductivity probe, the signal conditioning and the data processing including the device that have been designed to automatize all the measurement process of moving the sensors inside the channels by means of stepper electric motors controlled by computer are shown in operation. Then, we explain the methods used for bubble identification and categorization. Finally, we describe the methodology used to obtain the two-phase flow information from the sensor signals. This includes the following items: void fraction, gas velocity, Sauter mean diameter and interfacial area concentration. The last part of this paper is devoted to the conductance probes developed for the annular flow analysis, which includes the analysis of the interfacial waves produced in annular flow and that requires a different type of sensor. PMID:28489035

  2. An optical flow-based method for velocity field of fluid flow estimation

    NASA Astrophysics Data System (ADS)

    Głomb, Grzegorz; Świrniak, Grzegorz; Mroczka, Janusz

    2017-06-01

    The aim of this paper is to present a method for estimating flow-velocity vector fields using the Lucas-Kanade algorithm. The optical flow measurements are based on the Particle Image Velocimetry (PIV) technique, which is commonly used in fluid mechanics laboratories in both research institutes and industry. Common approaches for an optical characterization of velocity fields base on computation of partial derivatives of the image intensity using finite differences. Nevertheless, the accuracy of velocity field computations is low due to the fact that an exact estimation of spatial derivatives is very difficult in presence of rapid intensity changes in the PIV images, caused by particles having small diameters. The method discussed in this paper solves this problem by interpolating the PIV images using Gaussian radial basis functions. This provides a significant improvement in the accuracy of the velocity estimation but, more importantly, allows for the evaluation of the derivatives in intermediate points between pixels. Numerical analysis proves that the method is able to estimate even a separate vector for each particle with a 5× 5 px2 window, whereas a classical correlation-based method needs at least 4 particle images. With the use of a specialized multi-step hybrid approach to data analysis the method improves the estimation of the particle displacement far above 1 px.

  3. Flow Synthesis of Silver Nanowires for Semitransparent Solar Cell Electrodes: A Life Cycle Perspective.

    PubMed

    Espinosa, Nieves; Søndergaard, Roar R; Jørgensen, Mikkel; Krebs, Frederik C

    2016-04-21

    Silver nanowires (AgNWs) were prepared on a 5 g scale using either the well-known batch synthesis following the polyol method or a new flow synthesis method. The AgNWs were employed as semitransparent electrode materials in organic photovoltaics and compared to traditional printed silver electrodes based on micron sized silver flakes using life cycle analysis and environmental impact analysis methods. The life cycle analysis of AgNWs confirms that they provide an avenue to low-impact semitransparent electrodes. We find that the benefit of AgNWs in terms of embodied energy is less pronounced than generally assumed but that the toxicological and environmental benefits are significant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. New techniques for experimental generation of two-dimensional blade-vortex interaction at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Booth, E., Jr.; Yu, J. C.

    1986-01-01

    An experimental investigation of two dimensional blade vortex interaction was held at NASA Langley Research Center. The first phase was a flow visualization study to document the approach process of a two dimensional vortex as it encountered a loaded blade model. To accomplish the flow visualization study, a method for generating two dimensional vortex filaments was required. The numerical study used to define a new vortex generation process and the use of this process in the flow visualization study were documented. Additionally, photographic techniques and data analysis methods used in the flow visualization study are examined.

  5. Volume of the steady-state space of financial flows in a monetary stock-flow-consistent model

    NASA Astrophysics Data System (ADS)

    Hazan, Aurélien

    2017-05-01

    We show that a steady-state stock-flow consistent macro-economic model can be represented as a Constraint Satisfaction Problem (CSP). The set of solutions is a polytope, which volume depends on the constraints applied and reveals the potential fragility of the economic circuit, with no need to study the dynamics. Several methods to compute the volume are compared, inspired by operations research methods and the analysis of metabolic networks, both exact and approximate. We also introduce a random transaction matrix, and study the particular case of linear flows with respect to money stocks.

  6. Investigation of chemically-reacting supersonic internal flows

    NASA Technical Reports Server (NTRS)

    Chitsomboon, T.; Tiwari, S. N.

    1985-01-01

    This report covers work done on the research project Analysis and Computation of Internal Flow Field in a Scramjet Engine. The work is supported by the NASA Langley Research Center (Computational Methods Branch of the High-Speed Aerodynamics Division) through research grant NAG1-423. The governing equations of two-dimensional chemically-reacting flows are presented together with the global two-step chemistry model. The finite-difference algorithm used is illustrated and the method of circumventing the stiffness is discussed. The computer program developed is used to solve two model problems of a premixed chemically-reacting flow. The results obtained are physically reasonable.

  7. Method for a quantitative investigation of the frozen flow hypothesis

    PubMed

    Schock; Spillar

    2000-09-01

    We present a technique to test the frozen flow hypothesis quantitatively, using data from wave-front sensors such as those found in adaptive optics systems. Detailed treatments of the theoretical background of the method and of the error analysis are presented. Analyzing data from the 1.5-m and 3.5-m telescopes at the Starfire Optical Range, we find that the frozen flow hypothesis is an accurate description of the temporal development of atmospheric turbulence on time scales of the order of 1-10 ms but that significant deviations from the frozen flow behavior are present for longer time scales.

  8. Analysis and Inverse Design of the HSR Arrow Wing Configuration with Fuselage, Wing, and Flow Through Nacelles

    NASA Technical Reports Server (NTRS)

    Krist, Steven E.; Bauer, Steven X. S.

    1999-01-01

    The design process for developing the natural flow wing design on the HSR arrow wing configuration utilized several design tools and analysis methods. Initial fuselage/wing designs were generated with inviscid analysis and optimization methods in conjunction with the natural flow wing design philosophy. A number of designs were generated, satisfying different system constraints. Of the three natural flow wing designs developed, the NFWAc2 configuration is the design which satisfies the constraints utilized by McDonnell Douglas Aerospace (MDA) in developing a series of optimized configurations; a wind tunnel model of the MDA designed OPT5 configuration was constructed and tested. The present paper is concerned with the viscous analysis and inverse design of the arrow wing configurations, including the effects of the installed diverters/nacelles. Analyses were conducted with OVERFLOW, a Navier-Stokes flow solver for overset grids. Inverse designs were conducted with OVERDISC, which couples OVERFLOW with the CDISC inverse design method. An initial system of overset grids was generated for the OPT5 configuration with installed diverters/nacelles. An automated regridding process was then developed to use the OPT5 component grids to create grids for the natural flow wing designs. The inverse design process was initiated using the NFWAc2 configuration as a starting point, eventually culminating in the NFWAc4 design-for which a wind tunnel model was constructed. Due to the time constraints on the design effort, initial analyses and designs were conducted with a fairly coarse grid; subsequent analyses have been conducted on a refined system of grids. Comparisons of the computational results to experiment are provided at the end of this paper.

  9. Flow analysis of human chromosome sets by means of mixing-stirring device

    NASA Astrophysics Data System (ADS)

    Zenin, Valeri V.; Aksenov, Nicolay D.; Shatrova, Alla N.; Klopov, Nicolay V.; Cram, L. Scott; Poletaev, Andrey I.

    1997-05-01

    A new mixing and stirring device (MSD) was used to perform flow karyotype analysis of single human mitotic chromosomes analyzed so as to maintain the identity of chromosomes derived from the same cell. An improved method for cell preparation and intracellular staining of chromosomes was developed. The method includes enzyme treatment, incubation with saponin and separation of prestained cells from debris on a sucrose gradient. Mitotic cells are injected one by one in the MSD which is located inside the flow chamber where cells are ruptured, thereby releasing chromosomes. The set of chromosomes proceeds to flow in single file fashion to the point of analysis. The device works in a stepwise manner. The concentration of cells in the sample must be kept low to ensure that only one cell at a time enters the breaking chamber. Time-gated accumulation of data in listmode files makes it possible to separate chromosome sets comprising of single cells. The software that was developed classifies chromosome sets according to different criteria: total number of chromosomes, overall DNA content in the set, and the number of chromosomes of certain types. This approach combines the high performance of flow cytometry with the advantages of image analysis. Examples obtained with different human cell lines are presented.

  10. Benzene-induced myelotoxicity: application of flow cytofluorometry for the evaluation of early proliferative change in bone marrow.

    PubMed Central

    Irons, R D

    1981-01-01

    A detailed description of flow cytofluorometric DNA cell cycle analysis is presented. A number of studies by the author and other investigators are reviewed in which a method is developed for the analysis of cell cycle phase in bone marrow of experimental animals. Bone marrow cell cycle analysis is a sensitive indicator of changes in bone marrow proliferative activity occurring early in chemically-induced myelotoxicity. Cell cycle analysis, used together with other hematologic methods, has revealed benzene-induced toxicity in proliferating bone marrow cells to be cycle specific, appearing to affect a population in late S phase which then accumulate in G2/M. PMID:7016521

  11. Evidence flow graph methods for validation and verification of expert systems

    NASA Technical Reports Server (NTRS)

    Becker, Lee A.; Green, Peter G.; Bhatnagar, Jayant

    1989-01-01

    The results of an investigation into the use of evidence flow graph techniques for performing validation and verification of expert systems are given. A translator to convert horn-clause rule bases into evidence flow graphs, a simulation program, and methods of analysis were developed. These tools were then applied to a simple rule base which contained errors. It was found that the method was capable of identifying a variety of problems, for example that the order of presentation of input data or small changes in critical parameters could affect the output from a set of rules.

  12. Plane waves and structures in turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Sirovich, L.; Ball, K. S.; Keefe, L. R.

    1990-01-01

    A direct simulation of turbulent flow in a channel is analyzed by the method of empirical eigenfunctions (Karhunen-Loeve procedure, proper orthogonal decomposition). This analysis reveals the presence of propagating plane waves in the turbulent flow. The velocity of propagation is determined by the flow velocity at the location of maximal Reynolds stress. The analysis further suggests that the interaction of these waves appears to be essential to the local production of turbulence via bursting or sweeping events in the turbulent boundary layer, with the additional suggestion that the fast acting plane waves act as triggers.

  13. Study of flow structure in a four-vortex furnace model

    NASA Astrophysics Data System (ADS)

    Anufriev, I. S.; Sharypov, O. V.; Dekterev, A. A.; Shadrin, E. Yu.; Papulov, A. P.

    2017-11-01

    The flow pattern was studied for a four-vortex furnace of a coal-dust boiler. The paper presents results of experimental study of inner aerodynamics performed on a lab-scale isothermal model of the furnace device. The PIV method was used to receive the flow velocity fields for several cross sections. The analysis was performed for the spatial structure of the flow comprising four stable closed vortices with vertical axes of flow swirling.

  14. [A method for the analysis of overlapped peaks in the high performance liquid chromatogram based on spectrum analysis].

    PubMed

    Liu, Bao; Fan, Xiaoming; Huo, Shengnan; Zhou, Lili; Wang, Jun; Zhang, Hui; Hu, Mei; Zhu, Jianhua

    2011-12-01

    A method was established to analyse the overlapped chromatographic peaks based on the chromatographic-spectra data detected by the diode-array ultraviolet detector. In the method, the three-dimensional data were de-noised and normalized firstly; secondly the differences and clustering analysis of the spectra at different time points were calculated; then the purity of the whole chromatographic peak were analysed and the region were sought out in which the spectra of different time points were stable. The feature spectra were extracted from the spectrum-stable region as the basic foundation. The nonnegative least-square method was chosen to separate the overlapped peaks and get the flow curve which was based on the feature spectrum. The three-dimensional divided chromatographic-spectrum peak could be gained by the matrix operations of the feature spectra with the flow curve. The results displayed that this method could separate the overlapped peaks.

  15. Unsteady transonic flow analysis for low aspect ratio, pointed wings.

    NASA Technical Reports Server (NTRS)

    Kimble, K. R.; Ruo, S. Y.; Wu, J. M.; Liu, D. Y.

    1973-01-01

    Oswatitsch and Keune's parabolic method for steady transonic flow is applied and extended to thin slender wings oscillating in the sonic flow field. The parabolic constant for the wing was determined from the equivalent body of revolution. Laplace transform methods were used to derive the asymptotic equations for pressure coefficient, and the Adams-Sears iterative procedure was employed to solve the equations. A computer program was developed to find the pressure distributions, generalized force coefficients, and stability derivatives for delta, convex, and concave wing planforms.

  16. Development and application of traffic flow information collecting and analysis system based on multi-type video

    NASA Astrophysics Data System (ADS)

    Lu, Mujie; Shang, Wenjie; Ji, Xinkai; Hua, Mingzhuang; Cheng, Kuo

    2015-12-01

    Nowadays, intelligent transportation system (ITS) has already become the new direction of transportation development. Traffic data, as a fundamental part of intelligent transportation system, is having a more and more crucial status. In recent years, video observation technology has been widely used in the field of traffic information collecting. Traffic flow information contained in video data has many advantages which is comprehensive and can be stored for a long time, but there are still many problems, such as low precision and high cost in the process of collecting information. This paper aiming at these problems, proposes a kind of traffic target detection method with broad applicability. Based on three different ways of getting video data, such as aerial photography, fixed camera and handheld camera, we develop a kind of intelligent analysis software which can be used to extract the macroscopic, microscopic traffic flow information in the video, and the information can be used for traffic analysis and transportation planning. For road intersections, the system uses frame difference method to extract traffic information, for freeway sections, the system uses optical flow method to track the vehicles. The system was applied in Nanjing, Jiangsu province, and the application shows that the system for extracting different types of traffic flow information has a high accuracy, it can meet the needs of traffic engineering observations and has a good application prospect.

  17. Progress Toward Efficient Laminar Flow Analysis and Design

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.; Campbell, Matthew L.; Streit, Thomas

    2011-01-01

    A multi-fidelity system of computer codes for the analysis and design of vehicles having extensive areas of laminar flow is under development at the NASA Langley Research Center. The overall approach consists of the loose coupling of a flow solver, a transition prediction method and a design module using shell scripts, along with interface modules to prepare the input for each method. This approach allows the user to select the flow solver and transition prediction module, as well as run mode for each code, based on the fidelity most compatible with the problem and available resources. The design module can be any method that designs to a specified target pressure distribution. In addition to the interface modules, two new components have been developed: 1) an efficient, empirical transition prediction module (MATTC) that provides n-factor growth distributions without requiring boundary layer information; and 2) an automated target pressure generation code (ATPG) that develops a target pressure distribution that meets a variety of flow and geometry constraints. The ATPG code also includes empirical estimates of several drag components to allow the optimization of the target pressure distribution. The current system has been developed for the design of subsonic and transonic airfoils and wings, but may be extendable to other speed ranges and components. Several analysis and design examples are included to demonstrate the current capabilities of the system.

  18. Solving phase appearance/disappearance two-phase flow problems with high resolution staggered grid and fully implicit schemes by the Jacobian-free Newton–Krylov Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-04-01

    The phase appearance/disappearance issue presents serious numerical challenges in two-phase flow simulations. Many existing reactor safety analysis codes use different kinds of treatments for the phase appearance/disappearance problem. However, to our best knowledge, there are no fully satisfactory solutions. Additionally, the majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many situations, it is desirable to use high-resolution spatial discretization and fully implicit time integration schemes to reduce numerical errors. In this work, we adapted a high-resolution spatial discretization scheme on staggered grid mesh and fully implicit time integrationmore » methods (such as BDF1 and BDF2) to solve the two-phase flow problems. The discretized nonlinear system was solved by the Jacobian-free Newton Krylov (JFNK) method, which does not require the derivation and implementation of analytical Jacobian matrix. These methods were tested with a few two-phase flow problems with phase appearance/disappearance phenomena considered, such as a linear advection problem, an oscillating manometer problem, and a sedimentation problem. The JFNK method demonstrated extremely robust and stable behaviors in solving the two-phase flow problems with phase appearance/disappearance. No special treatments such as water level tracking or void fraction limiting were used. High-resolution spatial discretization and second- order fully implicit method also demonstrated their capabilities in significantly reducing numerical errors.« less

  19. A Supersonic Tunnel for Laser and Flow-Seeding Techniques

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Lepicovsky, Jan

    1994-01-01

    A supersonic wind tunnel with flow conditions of 3 lbm/s (1.5 kg/s) at a free-stream Mach number of 2.5 was designed and tested to provide an arena for future development work on laser measurement and flow-seeding techniques. The hybrid supersonic nozzle design that was used incorporated the rapid expansion method of propulsive nozzles while it maintained the uniform, disturbance-free flow required in supersonic wind tunnels. A viscous analysis was performed on the tunnel to determine the boundary layer growth characteristics along the flowpath. Appropriate corrections were then made to the contour of the nozzle. Axial pressure distributions were measured and Mach number distributions were calculated based on three independent data reduction methods. A complete uncertainty analysis was performed on the precision error of each method. Complex shock-wave patterns were generated in the flow field by wedges mounted near the roof and floor of the tunnel. The most stable shock structure was determined experimentally by the use of a focusing schlieren system and a novel, laser based dynamic shock position sensor. Three potential measurement regions for future laser and flow-seeding studies were created in the shock structure: deceleration through an oblique shock wave of 50 degrees, strong deceleration through a normal shock wave, and acceleration through a supersonic expansion fan containing 25 degrees of flow turning.

  20. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  1. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Reid, Ray D. (Inventor); Hug, William F. (Inventor)

    2010-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  2. Stopped-in-loop flow analysis of trace vanadium in water.

    PubMed

    Teshima, Norio; Ohno, Shinsuke; Sakai, Tadao

    2007-01-01

    The new concept of stopped-in-loop flow analysis (SIL-FA) is proposed, and an SIL-FA method for the catalytic determination of vanadium is demonstrated. In an SIL format, a sample solution merges with reagent(s), and the well-mixed solution is loaded into a loop. The solution in the loop is separated by a six-way switching valve from the main stream. While the reaction proceeds in the stationary loop, the SIL-FA system does not need to establish a baseline continuously. This leads to a reduction in reagent consumption and waste generation compared with traditional flow injection analysis.

  3. In Vivo Myeloperoxidase Imaging and Flow Cytometry Analysis of Intestinal Myeloid Cells.

    PubMed

    Hülsdünker, Jan; Zeiser, Robert

    2016-01-01

    Myeloperoxidase (MPO) imaging is a non-invasive method to detect cells that produce the enzyme MPO that is most abundant in neutrophils, macrophages, and inflammatory monocytes. While lacking specificity for any of these three cell types, MPO imaging can provide guidance for further flow cytometry-based analysis of tissues where these cell types reside. Isolation of leukocytes from the intestinal tract is an error-prone procedure. Here, we describe a protocol for intestinal leukocyte isolation that works reliable in our hands and allows for flow cytometry-based analysis, in particular of neutrophils.

  4. PageRank versatility analysis of multilayer modality-based network for exploring the evolution of oil-water slug flow.

    PubMed

    Gao, Zhong-Ke; Dang, Wei-Dong; Li, Shan; Yang, Yu-Xuan; Wang, Hong-Tao; Sheng, Jing-Ran; Wang, Xiao-Fan

    2017-07-14

    Numerous irregular flow structures exist in the complicated multiphase flow and result in lots of disparate spatial dynamical flow behaviors. The vertical oil-water slug flow continually attracts plenty of research interests on account of its significant importance. Based on the spatial transient flow information acquired through our designed double-layer distributed-sector conductance sensor, we construct multilayer modality-based network to encode the intricate spatial flow behavior. Particularly, we calculate the PageRank versatility and multilayer weighted clustering coefficient to quantitatively explore the inferred multilayer modality-based networks. Our analysis allows characterizing the complicated evolution of oil-water slug flow, from the opening formation of oil slugs, to the succedent inter-collision and coalescence among oil slugs, and then to the dispersed oil bubbles. These properties render our developed method particularly powerful for mining the essential flow features from the multilayer sensor measurements.

  5. Dynamic three-dimensional phase-contrast technique in MRI: application to complex flow analysis around the artificial heart valve

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jeong; Lee, Dong Hyuk; Song, Inchang; Kim, Nam Gook; Park, Jae-Hyeung; Kim, JongHyo; Han, Man Chung; Min, Byong Goo

    1998-07-01

    Phase-contrast (PC) method of magnetic resonance imaging (MRI) has bee used for quantitative measurements of flow velocity and volume flow rate. It is a noninvasive technique which provides an accurate two-dimensional velocity image. Moreover, Phase Contrast Cine magnetic resonance imaging combines the flow dependent contrast of PC-MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. However, the accuracy of the data acquired from the single through-plane velocity encoding can be reduced by the effect of flow direction, because in many practical cases flow directions are not uniform throughout the whole region of interest. In this study, we present dynamic three-dimensional velocity vector mapping method using PC-MRI which can visualize the complex flow pattern through 3D volume rendered images displayed dynamically. The direction of velocity mapping can be selected along any three orthogonal axes. By vector summation, the three maps can be combined to form a velocity vector map that determines the velocity regardless of the flow direction. At the same time, Cine method is used to observe the dynamic change of flow. We performed a phantom study to evaluate the accuracy of the suggested PC-MRI in continuous and pulsatile flow measurement. Pulsatile flow wave form is generated by the ventricular assistant device (VAD), HEMO-PULSA (Biomedlab, Seoul, Korea). We varied flow velocity, pulsatile flow wave form, and pulsing rate. The PC-MRI-derived velocities were compared with Doppler-derived results. The velocities of the two measurements showed a significant linear correlation. Dynamic three-dimensional velocity vector mapping was carried out for two cases. First, we applied to the flow analysis around the artificial heart valve in a flat phantom. We could observe the flow pattern around the valve through the 3-dimensional cine image. Next, it is applied to the complex flow inside the polymer sac that is used as ventricle in totally implantable artificial heart (TAH). As a result we could observe the flow pattern around the valves of the sac, though complex flow can not be detected correctly in the conventional phase contrast method. In addition, we could calculate the cardiac output from TAH sac by quantitative measurement of the volume of flow across the outlet valve.

  6. Space shuttle booster multi-engine base flow analysis

    NASA Technical Reports Server (NTRS)

    Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.

    1972-01-01

    A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.

  7. Design of pressure-driven microfluidic networks using electric circuit analogy.

    PubMed

    Oh, Kwang W; Lee, Kangsun; Ahn, Byungwook; Furlani, Edward P

    2012-02-07

    This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.

  8. A Method for the Interpretation of Flow Cytometry Data Using Genetic Algorithms.

    PubMed

    Angeletti, Cesar

    2018-01-01

    Flow cytometry analysis is the method of choice for the differential diagnosis of hematologic disorders. It is typically performed by a trained hematopathologist through visual examination of bidimensional plots, making the analysis time-consuming and sometimes too subjective. Here, a pilot study applying genetic algorithms to flow cytometry data from normal and acute myeloid leukemia subjects is described. Initially, Flow Cytometry Standard files from 316 normal and 43 acute myeloid leukemia subjects were transformed into multidimensional FITS image metafiles. Training was performed through introduction of FITS metafiles from 4 normal and 4 acute myeloid leukemia in the artificial intelligence system. Two mathematical algorithms termed 018330 and 025886 were generated. When tested against a cohort of 312 normal and 39 acute myeloid leukemia subjects, both algorithms combined showed high discriminatory power with a receiver operating characteristic (ROC) curve of 0.912. The present results suggest that machine learning systems hold a great promise in the interpretation of hematological flow cytometry data.

  9. Modeling intracavitary heating of the uterus by means of a balloon catheter

    NASA Astrophysics Data System (ADS)

    Olsrud, Johan; Friberg, Britt; Rioseco, Juan; Ahlgren, Mats; Persson, Bertil R. R.

    1999-01-01

    Balloon thermal endometrial destruction (TED) is a recently developed method to treat heavy menstrual bleeding (menorrhagia). Numerical simulations of this treatment by use of the finite element method were performed. The mechanical deformation and the resulting stress distribution when a balloon catheter is expanded within the uterine cavity was estimated from structural analysis. Thermal analysis was then performed to estimate the depth of tissue coagulation (temperature > 55 degree(s)C) in the uterus during TED. The estimated depth of coagulation, after 30 min heating with an intracavity temperature of 75 degree(s)C, was approximately 9 mm when blood flow was disregarded. With uniform normal blood flow, the depth of coagulation decreased to 3 - 4 mm. Simulations with varying intracavity temperatures and blood flow rates showed that both parameters should be of major importance to the depth of coagulation. The influence of blood flow was less when the pressure due to the balloon was also considered (5 - 6 mm coagulation depth with normal blood flow).

  10. "Batch" kinetics in flow: online IR analysis and continuous control.

    PubMed

    Moore, Jason S; Jensen, Klavs F

    2014-01-07

    Currently, kinetic data is either collected under steady-state conditions in flow or by generating time-series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic data because of the ability to collect data from many time points in a single experiment. Now, a method that rapidly generates time-series reaction data from flow reactors by continuously manipulating the flow rate and reaction temperature has been developed. This approach makes use of inline IR analysis and an automated microreactor system, which allowed for rapid and tight control of the operating conditions. The conversion/residence time profiles at several temperatures were used to fit parameters to a kinetic model. This method requires significantly less time and a smaller amount of starting material compared to one-at-a-time flow experiments, and thus allows for the rapid generation of kinetic data. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evidence of climate change impact on stream low flow from the tropical mountain rainforest watershed in Hainan Island, China

    Treesearch

    Z. Zhou; Y. Ouyang; Z. Qiu; G. Zhou; M. Lin; Y. Li

    2017-01-01

    Stream low flow estimates are central to assessing climate change impact, water resource management, and ecosystem restoration. This study investigated the impacts of climate change upon stream low flows from a rainforest watershed in Jianfengling (JFL) Mountain, Hainan Island, China, using the low flow selection method as well as the frequency and probability analysis...

  12. Finite element analysis of transonic flows in cascades: Importance of computational grids in improving accuracy and convergence

    NASA Technical Reports Server (NTRS)

    Ecer, A.; Akay, H. U.

    1981-01-01

    The finite element method is applied for the solution of transonic potential flows through a cascade of airfoils. Convergence characteristics of the solution scheme are discussed. Accuracy of the numerical solutions is investigated for various flow regions in the transonic flow configuration. The design of an efficient finite element computational grid is discussed for improving accuracy and convergence.

  13. Application of Jacobian-free Newton–Krylov method in implicitly solving two-fluid six-equation two-phase flow problems: Implementation, validation and benchmark

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-03-09

    This work represents a first-of-its-kind successful application to employ advanced numerical methods in solving realistic two-phase flow problems with two-fluid six-equation two-phase flow model. These advanced numerical methods include high-resolution spatial discretization scheme with staggered grids (high-order) fully implicit time integration schemes, and Jacobian-free Newton–Krylov (JFNK) method as the nonlinear solver. The computer code developed in this work has been extensively validated with existing experimental flow boiling data in vertical pipes and rod bundles, which cover wide ranges of experimental conditions, such as pressure, inlet mass flux, wall heat flux and exit void fraction. Additional code-to-code benchmark with the RELAP5-3Dmore » code further verifies the correct code implementation. The combined methods employed in this work exhibit strong robustness in solving two-phase flow problems even when phase appearance (boiling) and realistic discrete flow regimes are considered. Transitional flow regimes used in existing system analysis codes, normally introduced to overcome numerical difficulty, were completely removed in this work. As a result, this in turn provides the possibility to utilize more sophisticated flow regime maps in the future to further improve simulation accuracy.« less

  14. Turbulent Chemically Reacting Flows According to a Kinetic Theory. Ph.D. Thesis; [statistical analysis/gas flow

    NASA Technical Reports Server (NTRS)

    Hong, Z. C.

    1975-01-01

    A review of various methods of calculating turbulent chemically reacting flow such as the Green Function, Navier-Stokes equation, and others is presented. Nonequilibrium degrees of freedom were employed to study the mixing behavior of a multiscale turbulence field. Classical and modern theories are discussed.

  15. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of arsenic and selenium in water and sediment by graphite furnace atomic absorption spectrometry

    USGS Publications Warehouse

    Jones, Sandra R.; Garbarino, John R.

    1999-01-01

    Graphite furnace-atomic absorption spectrometry (GF-AAS) is a sensitive, precise, and accurate technique that can be used to determine arsenic and selenium in samples of water and sediment. The GF-AAS method has been developed to replace the hydride generation-atomic absorption spectrometry (HG-AAS) methods because the method detection limits are similar, bias and variability are comparable, and interferences are minimal. Advantages of the GF-AAS method include shorter sample preparation time, increased sample throughput from simultaneous multielement analysis, reduced amount of chemical waste, reduced sample volume requirements, increased linear concentration range, and the use of a more accurate digestion procedure. The linear concentration range for arsenic and selenium is 1 to 50 micrograms per liter in solution; the current method detection limit for arsenic in solution is 0.9 microgram per liter; the method detection limit for selenium in solution is 1 microgram per liter. This report describes results that were obtained using stop-flow and low-flow conditions during atomization. The bias and variability of the simultaneous determination of arsenic and selenium by GF-AAS under both conditions are supported with results from standard reference materials--water and sediment, real water samples, and spike recovery measurements. Arsenic and selenium results for all Standard Reference Water Samples analyzed were within one standard deviation of the most probable values. Long-term spike recoveries at 6.25, 25.0, 37.5 micrograms per liter in reagent-, ground-, and surface-water samples for arsenic averaged 103 plus or minus 2 percent using low-flow conditions and 104 plus or minus 4 percent using stop-flow conditions. Corresponding recoveries for selenium were 98 plus or minus 13 percent using low-flow conditions and 87 plus or minus 24 percent using stop-flow conditions. Spike recoveries at 25 micrograms per liter in 120 water samples ranged from 97 to 99 percent for arsenic and from 82 to 93 percent for selenium, depending on the flow conditions used. Statistical analysis of dissolved and whole-water recoverable analytical results for the same set of water samples indicated that there is no significant difference between the GF-AAS and HG-AAS methods. Interferences related to various chemical constituents were also identified. Although sulfate and chloride in association with various cations might interfere with the determination of arsenic and selenium by GF-AAS, the use of a magnesium nitrate/palladium matrix modifier and low-flow argon during atomization helped to minimize such interferences. When using stabilized temperature platform furnace conditions where stop flow is used during atomization, the addition of hydrogen (5 percent volume/volume) to the argon minimized chemical interferences. Nevertheless, stop flow during atomization was found to be less effective than low flow in reducing interference effects.

  16. Nonlinear model-order reduction for compressible flow solvers using the Discrete Empirical Interpolation Method

    NASA Astrophysics Data System (ADS)

    Fosas de Pando, Miguel; Schmid, Peter J.; Sipp, Denis

    2016-11-01

    Nonlinear model reduction for large-scale flows is an essential component in many fluid applications such as flow control, optimization, parameter space exploration and statistical analysis. In this article, we generalize the POD-DEIM method, introduced by Chaturantabut & Sorensen [1], to address nonlocal nonlinearities in the equations without loss of performance or efficiency. The nonlinear terms are represented by nested DEIM-approximations using multiple expansion bases based on the Proper Orthogonal Decomposition. These extensions are imperative, for example, for applications of the POD-DEIM method to large-scale compressible flows. The efficient implementation of the presented model-reduction technique follows our earlier work [2] on linearized and adjoint analyses and takes advantage of the modular structure of our compressible flow solver. The efficacy of the nonlinear model-reduction technique is demonstrated to the flow around an airfoil and its acoustic footprint. We could obtain an accurate and robust low-dimensional model that captures the main features of the full flow.

  17. Transition in Pulsatile Pipe Flow

    NASA Astrophysics Data System (ADS)

    Vlachos, Pavlos; Brindise, Melissa

    2016-11-01

    Transition has been observed to occur in the aorta, and stenotic vessels, where pulsatile flow exists. However, few studies have investigated the characteristics and effects of transition in oscillating or pulsatile flow and none have utilized a physiological waveform. In this work, we explore transition in pipe flow using three pulsatile waveforms which all maintain the same mean and maximum flow rates and range to zero flow, as is physiologically typical. Velocity fields were obtained using planar particle image velocimetry for each pulsatile waveform at six mean Reynolds numbers ranging between 500 and 4000. Turbulent statistics including turbulent kinetic energy (TKE) and Reynolds stresses were computed. Quadrant analysis was used to identify characteristics of the production and dissipation of turbulence. Coherent structures were identified using the λci method. We developed a wavelet-Hilbert time-frequency analysis method to identify high frequency structures and compared these to the coherent structures. The results of this study demonstrate that the different pulsatile waveforms induce different levels of TKE and high frequency structures, suggesting that the rates of acceleration and deceleration influence the onset and development of transition.

  18. Variability of Currents in Great South Channel and Over Georges Bank: Observation and Modeling

    DTIC Science & Technology

    1992-06-01

    Rizzoli motivated me to study the driv:,: mechanism of stratified tidal rectification using diagnostic analysis methods . Conversations with Glen...drifter trajectories in the 1988 and 1989 surveys give further encouragement that the analysis method yields an accurate picture of the nontidal flow...harmonic truncation method . Scaling analysis argues that this method is not appropriate for a step topography because it is valid only when the

  19. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    PubMed Central

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-01

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488

  20. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    PubMed

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  1. High resolution flow field prediction for tail rotor aeroacoustics

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.

    1989-01-01

    The prediction of tail rotor noise due to the impingement of the main rotor wake poses a significant challenge to current analysis methods in rotorcraft aeroacoustics. This paper describes the development of a new treatment of the tail rotor aerodynamic environment that permits highly accurate resolution of the incident flow field with modest computational effort relative to alternative models. The new approach incorporates an advanced full-span free wake model of the main rotor in a scheme which reconstructs high-resolution flow solutions from preliminary, computationally inexpensive simulations with coarse resolution. The heart of the approach is a novel method for using local velocity correction terms to capture the steep velocity gradients characteristic of the vortex-dominated incident flow. Sample calculations have been undertaken to examine the principal types of interactions between the tail rotor and the main rotor wake and to examine the performance of the new method. The results of these sample problems confirm the success of this approach in capturing the high-resolution flows necessary for analysis of rotor-wake/rotor interactions with dramatically reduced computational cost. Computations of radiated sound are also carried out that explore the role of various portions of the main rotor wake in generating tail rotor noise.

  2. Novel flow cytometric analysis of the progress and route of internalization of a monoclonal anti-carcinoembryonic antigen (CEA) antibody.

    PubMed

    Ford, C H; Tsaltas, G C; Osborne, P A; Addetia, K

    1996-03-01

    A flow cytometric method of studying the internalization of a monoclonal antibody (Mab) directed against carcinoembryonic antigen (CEA) has been compared with Western blotting, using three human colonic cancer cell lines which express varying amounts of the target antigen. Cell samples incubated for increasing time intervals with fluoresceinated or unlabelled Mab were analyzed using flow cytometry or polyacrylamide gel electrophoresis and Western blotting. SDS/PAGE analysis of cytosolic and membrane components of solubilized cells from the cell lines provided evidence of non-degraded internalized anti-CEA Mab throughout seven half hour intervals, starting at 5 min. Internalized anti-CEA was detected in the case of high CEA expressing cell lines (LS174T, SKCO1). Very similar results were obtained with an anti-fluorescein flow cytometric assay. Given that these two methods consistently provided comparable results, use of flow cytometry for the detection of internalized antibody is suggested as a rapid alternative to most currently used methods for assessing antibody internalization. The question of the endocytic route followed by CEA-anti-CEA complexes was addressed by using hypertonic medium to block clathrin mediated endocytosis.

  3. What drives high flow events in the Swiss Alps? Recent developments in wavelet spectral analysis and their application to hydrology

    NASA Astrophysics Data System (ADS)

    Schaefli, B.; Maraun, D.; Holschneider, M.

    2007-12-01

    Extreme hydrological events are often triggered by exceptional co-variations of the relevant hydrometeorological processes and in particular by exceptional co-oscillations at various temporal scales. Wavelet and cross wavelet spectral analysis offers promising time-scale resolved analysis methods to detect and analyze such exceptional co-oscillations. This paper presents the state-of-the-art methods of wavelet spectral analysis, discusses related subtleties, potential pitfalls and recently developed solutions to overcome them and shows how wavelet spectral analysis, if combined to a rigorous significance test, can lead to reliable new insights into hydrometeorological processes for real-world applications. The presented methods are applied to detect potentially flood triggering situations in a high Alpine catchment for which a recent re-estimation of design floods encountered significant problems simulating the observed high flows. For this case study, wavelet spectral analysis of precipitation, temperature and discharge offers a powerful tool to help detecting potentially flood producing meteorological situations and to distinguish between different types of floods with respect to the prevailing critical hydrometeorological conditions. This opens very new perspectives for the analysis of model performances focusing on the occurrence and non-occurrence of different types of high flow events. Based on the obtained results, the paper summarizes important recommendations for future applications of wavelet spectral analysis in hydrology.

  4. Methods for estimating peak-flow frequencies at ungaged sites in Montana based on data through water year 2011: Chapter F in Montana StreamStats

    USGS Publications Warehouse

    Sando, Roy; Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.

    2016-04-05

    The U.S. Geological Survey (USGS), in cooperation with the Montana Department of Natural Resources and Conservation, completed a study to update methods for estimating peak-flow frequencies at ungaged sites in Montana based on peak-flow data at streamflow-gaging stations through water year 2011. The methods allow estimation of peak-flow frequencies (that is, peak-flow magnitudes, in cubic feet per second, associated with annual exceedance probabilities of 66.7, 50, 42.9, 20, 10, 4, 2, 1, 0.5, and 0.2 percent) at ungaged sites. The annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.Regional regression analysis is a primary focus of Chapter F of this Scientific Investigations Report, and regression equations for estimating peak-flow frequencies at ungaged sites in eight hydrologic regions in Montana are presented. The regression equations are based on analysis of peak-flow frequencies and basin characteristics at 537 streamflow-gaging stations in or near Montana and were developed using generalized least squares regression or weighted least squares regression.All of the data used in calculating basin characteristics that were included as explanatory variables in the regression equations were developed for and are available through the USGS StreamStats application (http://water.usgs.gov/osw/streamstats/) for Montana. StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. The primary purpose of the Montana StreamStats application is to provide estimates of basin characteristics and streamflow characteristics for user-selected ungaged sites on Montana streams. The regional regression equations presented in this report chapter can be conveniently solved using the Montana StreamStats application.Selected results from this study were compared with results of previous studies. For most hydrologic regions, the regression equations reported for this study had lower mean standard errors of prediction (in percent) than the previously reported regression equations for Montana. The equations presented for this study are considered to be an improvement on the previously reported equations primarily because this study (1) included 13 more years of peak-flow data; (2) included 35 more streamflow-gaging stations than previous studies; (3) used a detailed geographic information system (GIS)-based definition of the regulation status of streamflow-gaging stations, which allowed better determination of the unregulated peak-flow records that are appropriate for use in the regional regression analysis; (4) included advancements in GIS and remote-sensing technologies, which allowed more convenient calculation of basin characteristics and investigation of many more candidate basin characteristics; and (5) included advancements in computational and analytical methods, which allowed more thorough and consistent data analysis.This report chapter also presents other methods for estimating peak-flow frequencies at ungaged sites. Two methods for estimating peak-flow frequencies at ungaged sites located on the same streams as streamflow-gaging stations are described. Additionally, envelope curves relating maximum recorded annual peak flows to contributing drainage area for each of the eight hydrologic regions in Montana are presented and compared to a national envelope curve. In addition to providing general information on characteristics of large peak flows, the regional envelope curves can be used to assess the reasonableness of peak-flow frequency estimates determined using the regression equations.

  5. Flow field analysis of aircraft configurations using a numerical solution to the three-dimensional unified supersonic/hypersonic small disturbance equations, part 1

    NASA Technical Reports Server (NTRS)

    Gunness, R. C., Jr.; Knight, C. J.; Dsylva, E.

    1972-01-01

    The unified small disturbance equations are numerically solved using the well-known Lax-Wendroff finite difference technique. The method allows complete determination of the inviscid flow field and surface properties as long as the flow remains supersonic. Shock waves and other discontinuities are accounted for implicity in the numerical method. This technique was programed for general application to the three-dimensional case. The validity of the method is demonstrated by calculations on cones, axisymmetric bodies, lifting bodies, delta wings, and a conical wing/body combination. Part 1 contains the discussion of problem development and results of the study. Part 2 contains flow charts, subroutine descriptions, and a listing of the computer program.

  6. An analysis method for two-dimensional transonic viscous flow

    NASA Technical Reports Server (NTRS)

    Bavitz, P. C.

    1975-01-01

    A method for the approximate calculation of transonic flow over airfoils, including shock waves and viscous effects, is described. Numerical solutions are obtained by use of a computer program which is discussed in the appendix. The importance of including the boundary layer in the analysis is clearly demonstrated, as well as the need to improve on existing procedures near the trailing edge. Comparisons between calculations and experimental data are presented for both conventional and supercritical airfoils, emphasis being on the surface pressure distribution, and good agreement is indicated.

  7. Comprehensive Approach to Verification and Validation of CFD Simulations Applied to Backward Facing Step-Application of CFD Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Groves, Curtis E.; LLie, Marcel; Shallhorn, Paul A.

    2012-01-01

    There are inherent uncertainties and errors associated with using Computational Fluid Dynamics (CFD) to predict the flow field and there is no standard method for evaluating uncertainty in the CFD community. This paper describes an approach to -validate the . uncertainty in using CFD. The method will use the state of the art uncertainty analysis applying different turbulence niodels and draw conclusions on which models provide the least uncertainty and which models most accurately predict the flow of a backward facing step.

  8. Gene flow analysis method, the D-statistic, is robust in a wide parameter space.

    PubMed

    Zheng, Yichen; Janke, Axel

    2018-01-08

    We evaluated the sensitivity of the D-statistic, a parsimony-like method widely used to detect gene flow between closely related species. This method has been applied to a variety of taxa with a wide range of divergence times. However, its parameter space and thus its applicability to a wide taxonomic range has not been systematically studied. Divergence time, population size, time of gene flow, distance of outgroup and number of loci were examined in a sensitivity analysis. The sensitivity study shows that the primary determinant of the D-statistic is the relative population size, i.e. the population size scaled by the number of generations since divergence. This is consistent with the fact that the main confounding factor in gene flow detection is incomplete lineage sorting by diluting the signal. The sensitivity of the D-statistic is also affected by the direction of gene flow, size and number of loci. In addition, we examined the ability of the f-statistics, [Formula: see text] and [Formula: see text], to estimate the fraction of a genome affected by gene flow; while these statistics are difficult to implement to practical questions in biology due to lack of knowledge of when the gene flow happened, they can be used to compare datasets with identical or similar demographic background. The D-statistic, as a method to detect gene flow, is robust against a wide range of genetic distances (divergence times) but it is sensitive to population size. The D-statistic should only be applied with critical reservation to taxa where population sizes are large relative to branch lengths in generations.

  9. Environmental and economic assessment methods for waste management decision-support: possibilities and limitations.

    PubMed

    Finnveden, Göran; Björklund, Anna; Moberg, Asa; Ekvall, Tomas

    2007-06-01

    A large number of methods and approaches that can be used for supporting waste management decisions at different levels in society have been developed. In this paper an overview of methods is provided and preliminary guidelines for the choice of methods are presented. The methods introduced include: Environmental Impact Assessment, Strategic Environmental Assessment, Life Cycle Assessment, Cost-Benefit Analysis, Cost-effectiveness Analysis, Life-cycle Costing, Risk Assessment, Material Flow Accounting, Substance Flow Analysis, Energy Analysis, Exergy Analysis, Entropy Analysis, Environmental Management Systems, and Environmental Auditing. The characteristics used are the types of impacts included, the objects under study and whether the method is procedural or analytical. The different methods can be described as systems analysis methods. Waste management systems thinking is receiving increasing attention. This is, for example, evidenced by the suggested thematic strategy on waste by the European Commission where life-cycle analysis and life-cycle thinking get prominent positions. Indeed, life-cycle analyses have been shown to provide policy-relevant and consistent results. However, it is also clear that the studies will always be open to criticism since they are simplifications of reality and include uncertainties. This is something all systems analysis methods have in common. Assumptions can be challenged and it may be difficult to generalize from case studies to policies. This suggests that if decisions are going to be made, they are likely to be made on a less than perfect basis.

  10. Fault-tolerant continuous flow systems modelling

    NASA Astrophysics Data System (ADS)

    Tolbi, B.; Tebbikh, H.; Alla, H.

    2017-01-01

    This paper presents a structural modelling of faults with hybrid Petri nets (HPNs) for the analysis of a particular class of hybrid dynamic systems, continuous flow systems. HPNs are first used for the behavioural description of continuous flow systems without faults. Then, faults' modelling is considered using a structural method without having to rebuild the model to new. A translation method is given in hierarchical way, it gives a hybrid automata (HA) from an elementary HPN. This translation preserves the behavioural semantics (timed bisimilarity), and reflects the temporal behaviour by giving semantics for each model in terms of timed transition systems. Thus, advantages of the power modelling of HPNs and the analysis ability of HA are taken. A simple example is used to illustrate the ideas.

  11. Lyapunov exponents, covariant vectors and shadowing sensitivity analysis of 3D wakes: from laminar to chaotic regimes

    NASA Astrophysics Data System (ADS)

    Wang, Qiqi; Rigas, Georgios; Esclapez, Lucas; Magri, Luca; Blonigan, Patrick

    2016-11-01

    Bluff body flows are of fundamental importance to many engineering applications involving massive flow separation and in particular the transport industry. Coherent flow structures emanating in the wake of three-dimensional bluff bodies, such as cars, trucks and lorries, are directly linked to increased aerodynamic drag, noise and structural fatigue. For low Reynolds laminar and transitional regimes, hydrodynamic stability theory has aided the understanding and prediction of the unstable dynamics. In the same framework, sensitivity analysis provides the means for efficient and optimal control, provided the unstable modes can be accurately predicted. However, these methodologies are limited to laminar regimes where only a few unstable modes manifest. Here we extend the stability analysis to low-dimensional chaotic regimes by computing the Lyapunov covariant vectors and their associated Lyapunov exponents. We compare them to eigenvectors and eigenvalues computed in traditional hydrodynamic stability analysis. Computing Lyapunov covariant vectors and Lyapunov exponents also enables the extension of sensitivity analysis to chaotic flows via the shadowing method. We compare the computed shadowing sensitivities to traditional sensitivity analysis. These Lyapunov based methodologies do not rely on mean flow assumptions, and are mathematically rigorous for calculating sensitivities of fully unsteady flow simulations.

  12. Theoretical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Shivamoggi, B. K.

    This book is concerned with a discussion of the dynamical behavior of a fluid, and is addressed primarily to graduate students and researchers in theoretical physics and applied mathematics. A review of basic concepts and equations of fluid dynamics is presented, taking into account a fluid model of systems, the objective of fluid dynamics, the fluid state, description of the flow field, volume forces and surface forces, relative motion near a point, stress-strain relation, equations of fluid flows, surface tension, and a program for analysis of the governing equations. The dynamics of incompressible fluid flows is considered along with the dynamics of compressible fluid flows, the dynamics of viscous fluid flows, hydrodynamic stability, and dynamics of turbulence. Attention is given to the complex-variable method, three-dimensional irrotational flows, vortex flows, rotating flows, water waves, applications to aerodynamics, shock waves, potential flows, the hodograph method, flows at low and high Reynolds numbers, the Jeffrey-Hamel flow, and the capillary instability of a liquid jet.

  13. Thermal imaging for cold air flow visualisation and analysis

    NASA Astrophysics Data System (ADS)

    Grudzielanek, M.; Pflitsch, A.; Cermak, J.

    2012-04-01

    In this work we present first applications of a thermal imaging system for animated visualization and analysis of cold air flow in field studies. The development of mobile thermal imaging systems advanced very fast in the last decades. The surface temperature of objects, which is detected with long-wave infrared radiation, affords conclusions in different problems of research. Modern thermal imaging systems allow infrared picture-sequences and a following data analysis; the systems are not exclusive imaging methods like in the past. Thus, the monitoring and analysing of dynamic processes became possible. We measured the cold air flow on a sloping grassland area with standard methods (sonic anemometers and temperature loggers) plus a thermal imaging system measuring in the range from 7.5 to 14µm. To analyse the cold air with the thermal measurements, we collected the surface infrared temperatures at a projection screen, which was located in cold air flow direction, opposite the infrared (IR) camera. The intention of using a thermal imaging system for our work was: 1. to get a general idea of practicability in our problem, 2. to assess the value of the extensive and more detailed data sets and 3. to optimise visualisation. The results were very promising. Through the possibility of generating time-lapse movies of the image sequences in time scaling, processes of cold air flow, like flow waves, turbulence and general flow speed, can be directly identified. Vertical temperature gradients and near-ground inversions can be visualised very well. Time-lapse movies will be presented. The extensive data collection permits a higher spatial resolution of the data than standard methods, so that cold air flow attributes can be explored in much more detail. Time series are extracted from the IR data series, analysed statistically, and compared to data obtained using traditional systems. Finally, we assess the usefulness of the additional measurement of cold air flow with thermal imaging systems.

  14. An impact of environmental changes on flows in the reach scale under a range of climatic conditions

    NASA Astrophysics Data System (ADS)

    Karamuz, Emilia; Romanowicz, Renata J.

    2016-04-01

    The present paper combines detection and adequate identification of causes of changes in flow regime at cross-sections along the Middle River Vistula reach using different methods. Two main experimental set ups (designs) have been applied to study the changes, a moving three-year window and low- and high-flow event based approach. In the first experiment, a Stochastic Transfer Function (STF) model and a quantile-based statistical analysis of flow patterns were compared. These two methods are based on the analysis of changes of the STF model parameters and standardised differences of flow quantile values. In the second experiment, in addition to the STF-based also a 1-D distributed model, MIKE11 was applied. The first step of the procedure used in the study is to define the river reaches that have recorded information on land use and water management changes. The second task is to perform the moving window analysis of standardised differences of flow quantiles and moving window optimisation of the STF model for flow routing. The third step consists of an optimisation of the STF and MIKE11 models for high- and low-flow events. The final step is to analyse the results and relate the standardised quantile changes and model parameter changes to historical land use changes and water management practices. Results indicate that both models give consistent assessment of changes in the channel for medium and high flows. ACKNOWLEDGEMENTS This research was supported by the Institute of Geophysics Polish Academy of Sciences through the Young Scientist Grant no. 3b/IGF PAN/2015.

  15. Image analysis method for the measurement of water saturation in a two-dimensional experimental flow tank

    NASA Astrophysics Data System (ADS)

    Belfort, Benjamin; Weill, Sylvain; Lehmann, François

    2017-07-01

    A novel, non-invasive imaging technique is proposed that determines 2D maps of water content in unsaturated porous media. This method directly relates digitally measured intensities to the water content of the porous medium. This method requires the classical image analysis steps, i.e., normalization, filtering, background subtraction, scaling and calibration. The main advantages of this approach are that no calibration experiment is needed, because calibration curve relating water content and reflected light intensities is established during the main monitoring phase of each experiment and that no tracer or dye is injected into the flow tank. The procedure enables effective processing of a large number of photographs and thus produces 2D water content maps at high temporal resolution. A drainage/imbibition experiment in a 2D flow tank with inner dimensions of 40 cm × 14 cm × 6 cm (L × W × D) is carried out to validate the methodology. The accuracy of the proposed approach is assessed using a statistical framework to perform an error analysis and numerical simulations with a state-of-the-art computational code that solves the Richards' equation. Comparison of the cumulative mass leaving and entering the flow tank and water content maps produced by the photographic measurement technique and the numerical simulations demonstrate the efficiency and high accuracy of the proposed method for investigating vadose zone flow processes. Finally, the photometric procedure has been developed expressly for its extension to heterogeneous media. Other processes may be investigated through different laboratory experiments which will serve as benchmark for numerical codes validation.

  16. LFSTAT - An R-Package for Low-Flow Analysis

    NASA Astrophysics Data System (ADS)

    Koffler, D.; Laaha, G.

    2012-04-01

    When analysing daily streamflow data focusing on low flow and drought, the state of the art is well documented in the Manual on Low-Flow Estimation and Prediction [1] published by the WMO. While it is clear what has to be done, it is not so clear how to preform the analysis and make the calculation as reproducible as possible. Our software solution expands the high preforming statistical open source software package R to analyse daily stream flow data focusing on low-flows. As command-line based programs are not everyone's preference, we also offer a plug-in for the R-Commander, an easy to use graphical user interface (GUI) to analyse data in R. Functionality includes estimation of the most important low-flow indices. Beside standardly used flow indices also BFI and Recession constants can be computed. The main applications of L-moment based Extreme value analysis and regional frequency analysis (RFA) are available. Calculation of streamflow deficits is another important feature. The most common graphics are prepared and can easily be modified according to the users preferences. Graphics include hydrographs for different periods, flexible streamflow deficit plots, baseflow visualisation, flow duration curves as well as double mass curves just to name a few. The package uses a S3-class called lfobj (low-flow objects). Once this objects are created, analysis can be preformed by mouse-click, and a script can be saved to make the analysis easy reproducible. At the moment we are offering implementation of all major methods proposed in the WMO manual on Low-flow Estimation and Predictions. Future plans include e.g. report export in odt-file using odf-weave. We hope to offer a tool to ease and structure the analysis of stream flow data focusing on low-flows and to make analysis transparent and communicable. The package is designed for hydrological research and water management practice, but can also be used in teaching students the first steps in low-flow hydrology.

  17. On the accuracy of Whitham's method. [for steady ideal gas flow past cones

    NASA Technical Reports Server (NTRS)

    Zahalak, G. I.; Myers, M. K.

    1974-01-01

    The steady flow of an ideal gas past a conical body is studied by the method of matched asymptotic expansions and by Whitham's method in order to assess the accuracy of the latter. It is found that while Whitham's method does not yield a correct asymptotic representation of the perturbation field to second order in regions where the flow ahead of the Mach cone of the apex is disturbed, it does correctly predict the changes of the second-order perturbation quantities across a shock (the first-order shock strength). The results of the analysis are illustrated by a special case of a flat, rectangular plate at incidence.

  18. Development of Modal Analysis for the Study of Global Modes in High Speed Boundary Layer Flows

    NASA Astrophysics Data System (ADS)

    Brock, Joseph Michael

    Boundary layer transition for compressible flows remains a challenging and unsolved problem. In the context of high-speed compressible flow, transitional and turbulent boundary-layers produce significantly higher surface heating caused by an increase in skin-friction. The higher heating associated with transitional and turbulent boundary layers drives thermal protection systems (TPS) and mission trajectory bounds. Proper understanding of the mechanisms that drive transition is crucial to the successful design and operation of the next generation spacecraft. Currently, prediction of boundary-layer transition is based on experimental efforts and computational stability analysis. Computational analysis, anchored by experimental correlations, offers an avenue to assess/predict stability at a reduced cost. Classical methods of Linearized Stability Theory (LST) and Parabolized Stability Equations (PSE) have proven to be very useful for simple geometries/base flows. Under certain conditions the assumptions that are inherent to classical methods become invalid and the use of LST/PSE is inaccurate. In these situations, a global approach must be considered. A TriGlobal stability analysis code, Global Mode Analysis in US3D (GMAUS3D), has been developed and implemented into the unstructured solver US3D. A discussion of the methodology and implementation will be presented. Two flow configurations are presented in an effort to validate/verify the approach. First, stability analysis for a subsonic cylinder wake is performed and results compared to literature. Second, a supersonic blunt cone is considered to directly compare LST/PSE analysis and results generated by GMAUS3D.

  19. DNS of Flows over Periodic Hills using a Discontinuous-Galerkin Spectral-Element Method

    NASA Technical Reports Server (NTRS)

    Diosady, Laslo T.; Murman, Scott M.

    2014-01-01

    Direct numerical simulation (DNS) of turbulent compressible flows is performed using a higher-order space-time discontinuous-Galerkin finite-element method. The numerical scheme is validated by performing DNS of the evolution of the Taylor-Green vortex and turbulent flow in a channel. The higher-order method is shown to provide increased accuracy relative to low-order methods at a given number of degrees of freedom. The turbulent flow over a periodic array of hills in a channel is simulated at Reynolds number 10,595 using an 8th-order scheme in space and a 4th-order scheme in time. These results are validated against previous large eddy simulation (LES) results. A preliminary analysis provides insight into how these detailed simulations can be used to improve Reynoldsaveraged Navier-Stokes (RANS) modeling

  20. A flow study in radial inflow turbine scroll-nozzle assembly

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Baskharone, E.; Tabakoff, W.

    1978-01-01

    The present analysis describes the flow behavior in the combined scroll-nozzle assembly of a radial inflow turbine. This model was chosen to provide a better understanding of the mutual interaction effects of these two components on the flow. The finite element method is used in the solution of the flow field in this multiply connected domain. The mass flow rates in the different nozzle channels is not presumed constant, but is determined from the solution.

  1. Numerical Analysis of Flood modeling of upper Citarum River under Extreme Flood Condition

    NASA Astrophysics Data System (ADS)

    Siregar, R. I.

    2018-02-01

    This paper focuses on how to approach the numerical method and computation to analyse flood parameters. Water level and flood discharge are the flood parameters solved by numerical methods approach. Numerical method performed on this paper for unsteady flow conditions have strengths and weaknesses, among others easily applied to the following cases in which the boundary irregular flow. The study area is in upper Citarum Watershed, Bandung, West Java. This paper uses computation approach with Force2 programming and HEC-RAS to solve the flow problem in upper Citarum River, to investigate and forecast extreme flood condition. Numerical analysis based on extreme flood events that have occurred in the upper Citarum watershed. The result of water level parameter modeling and extreme flood discharge compared with measurement data to analyse validation. The inundation area about flood that happened in 2010 is about 75.26 square kilometres. Comparing two-method show that the FEM analysis with Force2 programs has the best approach to validation data with Nash Index is 0.84 and HEC-RAS that is 0.76 for water level. For discharge data Nash Index obtained the result analysis use Force2 is 0.80 and with use HEC-RAS is 0.79.

  2. Chromatographic-ICPMS methods for trace element and isotope analysis of water and biogenic calcite

    NASA Astrophysics Data System (ADS)

    Klinkhammer, G. P.; Haley, B. A.; McManus, J.; Palmer, M. R.

    2003-04-01

    ICP-MS is a powerful technique because of its sensitivity and speed of analysis. This is especially true for refractory elements that are notoriously difficult using TIMS and less energetic techniques. However, as ICP-MS instruments become more sensitive to elements of interest they also become more sensitive to interference. This becomes a pressing issue when analyzing samples with high total dissolved solids. This paper describes two trace element methods that overcome these problems by using chromatographic techniques to precondition samples prior to analysis by ICP-MS: separation of rare earth elements (REEs) from seawater using HPLC-ICPMS, and flow-through dissolution of foraminiferal calcite. Using HPLC in combination with ICP-MS it is possible to isolate the REEs from matrix, other transition elements, and each other. This method has been developed for small volume samples (5ml) making it possible to analyze sediment pore waters. As another example, subjecting foram shells to flow-through reagent addition followed by time-resolved analysis in the ICP-MS allows for systematic cleaning and dissolution of foram shells. This method provides information about the relationship between dissolution tendency and elemental composition. Flow-through is also amenable to automation thus yielding the high sample throughput required for paleoceanography, and produces a highly resolved elemental matrix that can be statistically analyzed.

  3. A cluster analysis method for identification of subpopulations of cells in flow cytometric list-mode arrays

    NASA Technical Reports Server (NTRS)

    Li, Z. K.

    1985-01-01

    A specialized program was developed for flow cytometric list-mode data using an heirarchical tree method for identifying and enumerating individual subpopulations, the method of principal components for a two-dimensional display of 6-parameter data array, and a standard sorting algorithm for characterizing subpopulations. The program was tested against a published data set subjected to cluster analysis and experimental data sets from controlled flow cytometry experiments using a Coulter Electronics EPICS V Cell Sorter. A version of the program in compiled BASIC is usable on a 16-bit microcomputer with the MS-DOS operating system. It is specialized for 6 parameters and up to 20,000 cells. Its two-dimensional display of Euclidean distances reveals clusters clearly, as does its 1-dimensional display. The identified subpopulations can, in suitable experiments, be related to functional subpopulations of cells.

  4. How long will the traffic flow time series keep efficacious to forecast the future?

    NASA Astrophysics Data System (ADS)

    Yuan, PengCheng; Lin, XuXun

    2017-02-01

    This paper investigate how long will the historical traffic flow time series keep efficacious to forecast the future. In this frame, we collect the traffic flow time series data with different granularity at first. Then, using the modified rescaled range analysis method, we analyze the long memory property of the traffic flow time series by computing the Hurst exponent. We calculate the long-term memory cycle and test its significance. We also compare it with the maximum Lyapunov exponent method result. Our results show that both of the freeway traffic flow time series and the ground way traffic flow time series demonstrate positively correlated trend (have long-term memory property), both of their memory cycle are about 30 h. We think this study is useful for the short-term or long-term traffic flow prediction and management.

  5. [Quantitative Evaluation of Intracardiac Blood Flow by Left Ventricle Dynamic Anatovy Based On Exact Solutions of Non-Stationary Navier-Stocks Equations for Selforganized tornado-Like Flows of Viscous Incompresssible Fluid].

    PubMed

    Talygin, E A; Zazybo, N A; Zhorzholiany, S T; Krestinich, I M; Mironov, A A; Kiknadze, G I; Bokerya, L A; Gorodkov, A Y; Makarenko, V N; Alexandrova, S A

    2016-01-01

    New approach to intracardiac blood flow condition analysis based on geometric parameters of left ventricle flow channel has been suggested. Parameters, that used in this method, follow from exact solutions of nonstationary Navier-Stocks equations for selforganized tornado-like flows of viscous incompressible fluid. The main advantage of this method is considering dynamic anatomy of intracardiac cavity and trabeculae relief of left ventricle streamlined surface, both registered in a common mri-process, as flow condition indicator. Calculated quantity options that characterizes blood flow condition can be use as diagnostic criterias for estimation of violation in blood circulation function which entails heart ejection reduction. Developed approach allows to clarify heart jet organization mechanism and estimate the share of the tornado-like flow self-organization in heart ejection structure.

  6. Numerical methods in laminar and turbulent flow; Proceedings of the 7th International Conference, Stanford Univ., CA, July 15-19, 1991. Vol. 7, pts. 1 & 2

    NASA Technical Reports Server (NTRS)

    Taylor, C. (Editor); Chin, J. H. (Editor); Homsy, G. M. (Editor)

    1991-01-01

    Consideration is given to the impulse response of a laminar boundary layer and receptivity; numerical transition to turbulence in plane Poiseuille flow; large eddy simulation of turbulent wake flow; a viscous model and loss calculation of a multisplitter cascade; vortex initiation during dynamic stall of an airfoil; a numerical analysis of isothermal flow in a combustion chamber; and compressible flow calculations with a two-equation turbulence model and unstructured grids. Attention is also given to a 2D calculation of a buoyant flow around a burning sphere, a fast multigrid method for 3D turbulent incompressible flows, a streaming flow induced by an oscillating cascade of circular cylinders, an algebraic multigrid scheme for solving the Navier-Stokes equations on unstructured meshes; and nonlinear coupled multigrid solutions to thermal problems employing different nodal grid arrangements and convective transport approximations.

  7. Computational domain discretization in numerical analysis of flow within granular materials

    NASA Astrophysics Data System (ADS)

    Sosnowski, Marcin

    2018-06-01

    The discretization of computational domain is a crucial step in Computational Fluid Dynamics (CFD) because it influences not only the numerical stability of the analysed model but also the agreement of obtained results and real data. Modelling flow in packed beds of granular materials is a very challenging task in terms of discretization due to the existence of narrow spaces between spherical granules contacting tangentially in a single point. Standard approach to this issue results in a low quality mesh and unreliable results in consequence. Therefore the common method is to reduce the diameter of the modelled granules in order to eliminate the single-point contact between the individual granules. The drawback of such method is the adulteration of flow and contact heat resistance among others. Therefore an innovative method is proposed in the paper: single-point contact is extended to a cylinder-shaped volume contact. Such approach eliminates the low quality mesh elements and simultaneously introduces only slight distortion to the flow as well as contact heat transfer. The performed analysis of numerous test cases prove the great potential of the proposed method of meshing the packed beds of granular materials.

  8. Modal element method for potential flow in non-uniform ducts: Combining closed form analysis with CFD

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Baumeister, Joseph F.

    1994-01-01

    An analytical procedure is presented, called the modal element method, that combines numerical grid based algorithms with eigenfunction expansions developed by separation of variables. A modal element method is presented for solving potential flow in a channel with two-dimensional cylindrical like obstacles. The infinite computational region is divided into three subdomains; the bounded finite element domain, which is characterized by the cylindrical obstacle and the surrounding unbounded uniform channel entrance and exit domains. The velocity potential is represented approximately in the grid based domain by a finite element solution and is represented analytically by an eigenfunction expansion in the uniform semi-infinite entrance and exit domains. The calculated flow fields are in excellent agreement with exact analytical solutions. By eliminating the grid surrounding the obstacle, the modal element method reduces the numerical grid size, employs a more precise far field boundary condition, as well as giving theoretical insight to the interaction of the obstacle with the mean flow. Although the analysis focuses on a specific geometry, the formulation is general and can be applied to a variety of problems as seen by a comparison to companion theories in aeroacoustics and electromagnetics.

  9. Detection of water quality trends at high, median, and low flow in a Catskill Mountain stream, New York, through a new statistical method

    USGS Publications Warehouse

    Murdoch, Peter S.; Shanley, James B.

    2006-01-01

    The effects of changes in acid deposition rates resulting from the Clean Air Act Amendments of 1990 should first appear in stream waters during rainstorms and snowmelt, when the surface of the watershed is most hydrologically connected to the stream. Early detection of improved stream water quality is possible if trends at high flow could be separately determined. Trends in concentrations of sulfate (SO42−), nitrate (NO3−), calcium plus magnesium (Ca2++Mg2+), and acid‐neutralizing capacity (ANC) in Biscuit Brook, Catskill Mountains, New York, were assessed through segmented regression analysis (SRA). The method uses annual concentration‐to‐discharge relations to predict concentrations for specific discharges, then compares those annual values to determine trends at specific discharge levels. Median‐flow trends using SRA were comparable to those predicted by the seasonal Kendall tau test and a multiple regression residual analysis. All of these methods show that stream water SO42− concentrations have decreased significantly since 1983; Ca2++Mg2+ concentrations have decreased at a steady but slower rate than SO42−; and ANC shows no trend. The new SRA method, however, reveals trends that differ at specified flow levels. ANC has increased, and NO3−concentrations have decreased at high flows, but neither has changed as significantly at low flows. The general downward trend in SO42− flattened at median flow and reversed at high flow between 1997 and 2002. The reversal of the high‐flow SO42− trend is consistent with increases in SO42− concentrations in both precipitation and soil solutions at Biscuit Brook. Separate calculation of high‐flow trends provides resource managers with an early detection system for assessing changes in water quality resulting from changes in acidic deposition.

  10. Effects of Perfusion on Radiofrequency Ablation in Swine Kidneys1

    PubMed Central

    Chang, Isaac; Mikityansky, Igor; Wray-Cahen, Diane; Pritchard, William F.; Karanian, John W.; Wood, Bradford J.

    2008-01-01

    PURPOSE: To evaluate the effect of vascular occlusion on the size of radiofrequency (RF) ablation lesions and to evaluate embolization as an occlusion method. MATERIALS AND METHODS: The kidneys of six swine were surgically exposed. Fifteen RF ablation lesions were created in nine kidneys by using a 2-cm-tip single-needle ablation probe in varying conditions: Seven lesions were created with normal blood flow and eight were created with blood flow obstructed by means of vascular clamping (n = 5) or renal artery embolization (n = 3). The temperature, applied voltage, current, and impedance were recorded during RF ablation. Tissue-cooling curves acquired for 2 minutes immediately after the ablation were compared by using regression analysis. Lesions were bisected, and their maximum diameters were measured and compared by using analysis of variance. RESULTS: The mean diameter of ablation lesions created when blood flow was obstructed was 60% greater than that of lesions created when blood flow was normal (1.38 cm ± 0.05 [standard error of mean] vs 0.86 cm ± 0.07, P < .001). The two methods of flow obstruction yielded lesions of similar mean sizes: 1.40 cm ± 0.06 with vascular clamping and 1.33 cm ± 0.07 with embolization. The temperature at the probe tip when lesions were ablated with normal blood flow decreased more rapidly than did the temperature when lesions were ablated after flow obstruction (P < .001), but no significant differences in tissue-cooling curves between the two flow obstruction methods were observed. CONCLUSION: Obstruction of renal blood flow before and during RF ablation resulted in larger thermal lesions with potentially less variation in size compared with the lesions created with normal nonobstructed blood flow. Selective arterial embolization of the kidney vessels may be a useful adjunct to RF ablation of kidney tumors. PMID:15128994

  11. Potential applications of computational fluid dynamics to biofluid analysis

    NASA Technical Reports Server (NTRS)

    Kwak, D.; Chang, J. L. C.; Rogers, S. E.; Rosenfeld, M.; Kwak, D.

    1988-01-01

    Computational fluid dynamics was developed to the stage where it has become an indispensable part of aerospace research and design. In view of advances made in aerospace applications, the computational approach can be used for biofluid mechanics research. Several flow simulation methods developed for aerospace problems are briefly discussed for potential applications to biofluids, especially to blood flow analysis.

  12. Method 365.5 Determination of Orthophosphate in Estuarine and Coastal Waters by Automated Colorimetric Analysis

    EPA Science Inventory

    This method provides a procedure for the determination of low-level orthophosphate concentrations normally found in estuarine and/or coastal waters. It is based upon the method of Murphy and Riley1 adapted for automated segmented flow analysis2 in which the two reagent solutions ...

  13. Non-contrast-enhanced MR portography with balanced steady-state free-precession sequence and time-spatial labeling inversion pulses: comparison of imaging with flow-in and flow-out methods.

    PubMed

    Furuta, Akihiro; Isoda, Hiroyoshi; Yamashita, Rikiya; Ohno, Tsuyoshi; Kawahara, Seiya; Shimizu, Hironori; Fujimoto, Koji; Kido, Aki; Kusahara, Hiroshi; Togashi, Kaori

    2014-09-01

    To compare and evaluate images of non-contrast-enhanced MR portography acquired with two different methods, the flow-in and flow-out methods. Twenty-five healthy volunteers were examined using respiratory-triggered three-dimensional balanced steady-state free-precession (SSFP) with two selective inversion recovery pulses (flow-in method) and one tagging pulse and one nonselective inversion recovery pulse (flow-out method). For quantitative analysis, vessel-to-liver contrast (Cv-l) ratios of the main portal vein (MPV), right portal vein (RPV), and left portal vein (LPV) were measured. The quality of portal vein visualization was scored using a four-point scale. The Cv-ls of the MPV, RPV, and LPV were all significantly higher with the flow-out than flow-in method (MPV = 0.834 ± 0.06 versus 0.711 ± 0.10; RPV = 0.861 ± 0.04 versus 0.729 ± 0.11; LPV = 0.786 ± 0.08 versus 0.545 ± 0.22; P < 0.0001). In all analyses of vessel visibility, non-contrast-enhanced MR portography with the flow-out method showed higher scores than with the flow-in method. With the flow-out method, visual scores of the MPV, RPV, portal vein branches of segments 4 (P4), and 8 (P8) were significantly better than with the flow-in method (MPV = 3.4 ± 0.7 versus 2.6 ± 0.9; RPV = 4.0 ± 0.0 versus 3.5 ± 0.9; P4 = 2.8 ± 1.3 versus 1.6 ± 1.0; P8 = 4.0 ± 0.0 versus 2.9 ± 1.1; P < 0.05). Non-contrast-enhanced MR portography with the flow-out method improves the visualization of the intrahepatic portal vein in comparison with the flow-in method. J. Magn. Reson. Imaging 2014;40:583-587. © 2013 Wiley Periodicals, Inc. © 2013 Wiley Periodicals, Inc.

  14. Direct numerical simulation of reactor two-phase flows enabled by high-performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.

    Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent researchmore » progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.« less

  15. Transonic CFD applications at Boeing

    NASA Technical Reports Server (NTRS)

    Tinoco, E. N.

    1989-01-01

    The use of computational methods for three dimensional transonic flow design and analysis at the Boeing Company is presented. A range of computational tools consisting of production tools for every day use by project engineers, expert user tools for special applications by computational researchers, and an emerging tool which may see considerable use in the near future are described. These methods include full potential and Euler solvers, some coupled to three dimensional boundary layer analysis methods, for transonic flow analysis about nacelle, wing-body, wing-body-strut-nacelle, and complete aircraft configurations. As the examples presented show, such a toolbox of codes is necessary for the variety of applications typical of an industrial environment. Such a toolbox of codes makes possible aerodynamic advances not previously achievable in a timely manner, if at all.

  16. Probabilistic power flow using improved Monte Carlo simulation method with correlated wind sources

    NASA Astrophysics Data System (ADS)

    Bie, Pei; Zhang, Buhan; Li, Hang; Deng, Weisi; Wu, Jiasi

    2017-01-01

    Probabilistic Power Flow (PPF) is a very useful tool for power system steady-state analysis. However, the correlation among different random injection power (like wind power) brings great difficulties to calculate PPF. Monte Carlo simulation (MCS) and analytical methods are two commonly used methods to solve PPF. MCS has high accuracy but is very time consuming. Analytical method like cumulants method (CM) has high computing efficiency but the cumulants calculating is not convenient when wind power output does not obey any typical distribution, especially when correlated wind sources are considered. In this paper, an Improved Monte Carlo simulation method (IMCS) is proposed. The joint empirical distribution is applied to model different wind power output. This method combines the advantages of both MCS and analytical method. It not only has high computing efficiency, but also can provide solutions with enough accuracy, which is very suitable for on-line analysis.

  17. Viscous/potential flow about multi-element two-dimensional and infinite-span swept wings: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Olson, L. E.; Dvorak, F. A.

    1975-01-01

    The viscous subsonic flow past two-dimensional and infinite-span swept multi-component airfoils is studied theoretically and experimentally. The computerized analysis is based on iteratively coupled boundary layer and potential flow analysis. The method, which is restricted to flows with only slight separation, gives surface pressure distribution, chordwise and spanwise boundary layer characteristics, lift, drag, and pitching moment for airfoil configurations with up to four elements. Merging confluent boundary layers are treated. Theoretical predictions are compared with an exact theoretical potential flow solution and with experimental measures made in the Ames 40- by 80-Foot Wind Tunnel for both two-dimensional and infinite-span swept wing configurations. Section lift characteristics are accurately predicted for zero and moderate sweep angles where flow separation effects are negligible.

  18. A calculation procedure for viscous flow in turbomachines, volume 2

    NASA Technical Reports Server (NTRS)

    Khalil, J.; Tabakoff, W.

    1980-01-01

    Turbulent flow within turbomachines having arbitrary blade geometries is examined. Effects of turbulence are modeled using two equations, one expressing the development of the turbulence kinetic energy and the other its dissipation rate. To account for complicated blade geometries, the flow equations are formulated in terms of a nonorthogonal boundary fitted coordinate system. The analysis is applied to a radial inflow turbine. The solution obtained indicates the severity of the complex interaction mechanism that occurs between the different flow regimes (i.e., boundary layers, recirculating eddies, separation zones, etc.). Comparison with nonviscous flow solutions tend to justify strongly the inadequacy of using the latter with standard boundary layer techniques to obtain viscous flow details within turbomachine rotors. Capabilities and limitations of the present method of analysis are discussed.

  19. Initial assessment of facial nerve paralysis based on motion analysis using an optical flow method.

    PubMed

    Samsudin, Wan Syahirah W; Sundaraj, Kenneth; Ahmad, Amirozi; Salleh, Hasriah

    2016-01-01

    An initial assessment method that can classify as well as categorize the severity of paralysis into one of six levels according to the House-Brackmann (HB) system based on facial landmarks motion using an Optical Flow (OF) algorithm is proposed. The desired landmarks were obtained from the video recordings of 5 normal and 3 Bell's Palsy subjects and tracked using the Kanade-Lucas-Tomasi (KLT) method. A new scoring system based on the motion analysis using area measurement is proposed. This scoring system uses the individual scores from the facial exercises and grades the paralysis based on the HB system. The proposed method has obtained promising results and may play a pivotal role towards improved rehabilitation programs for patients.

  20. Extension of a three-dimensional viscous wing flow analysis

    NASA Technical Reports Server (NTRS)

    Weinberg, Bernard C.; Chen, Shyi-Yaung; Thoren, Stephen J.; Shamroth, Stephen J.

    1990-01-01

    Three-dimensional unsteady viscous effects can significantly influence the performance of fixed and rotary wing aircraft. These effects are important in both flows about helicopter rotors in forward flight and flows about 3-D (swept and tapered) supercritical wings. A computational procedure for calculating such flow field is developed, and therefore would be of great value in the design process as well as in understanding the corresponding flow phenomena. The procedure is based upon an alternating direction technique employing the Linearized Block Implicit method for solving 3-D viscous flow problems. In order to demonstrate the viability of this method, 2-D and 3-D problems are computed. These include the flow over a 2-D NACA 0012 airfoil under steady and oscillating conditions, and the steady, skewed, 3-D flow on a flat plate. Although actual 3-D flows over wings were not obtained, the ground work was laid for considering such flows. The description of the computational procedure and results are given.

  1. An analysis method for multi-component airfoils in separated flow

    NASA Technical Reports Server (NTRS)

    Rao, B. M.; Duorak, F. A.; Maskew, B.

    1980-01-01

    The multi-component airfoil program (Langley-MCARF) for attached flow is modified to accept the free vortex sheet separation-flow model program (Analytical Methods, Inc.-CLMAX). The viscous effects are incorporated into the calculation by representing the boundary layer displacement thickness with an appropriate source distribution. The separation flow model incorporated into MCARF was applied to single component airfoils. Calculated pressure distributions for angles of attack up to the stall are in close agreement with experimental measurements. Even at higher angles of attack beyond the stall, correct trends of separation, decrease in lift coefficients, and increase in pitching moment coefficients are predicted.

  2. Application of Chimera Grid Scheme to Combustor Flowfields at all Speeds

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Chen, Kuo-Huey

    1997-01-01

    A CFD method for solving combustor flowfields at all speeds on complex configurations is presented. The approach is based on the ALLSPD-3D code which uses the compressible formulation of the flow equations including real gas effects, nonequilibrium chemistry and spray combustion. To facilitate the analysis of complex geometries, the chimera grid method is utilized. To the best of our knowledge, this is the first application of the chimera scheme to reacting flows. In order to evaluate the effectiveness of this numerical approach, several benchmark calculations of subsonic flows are presented. These include steady and unsteady flows, and bluff-body stabilized spray and premixed combustion flames.

  3. Development and evaluation of methods for starch dissolution using asymmetrical flow field-flow fractionation. Part II: Dissolution of amylose.

    PubMed

    Perez-Rea, Daysi; Bergenståhl, Björn; Nilsson, Lars

    2016-02-01

    In this paper, we investigate whether dissolution in water under autoclaving conditions (140 °C, 20 min) or in dimethyl sulfoxide, DMSO (100 °C, 1 h), is preferable for characterization of amylose. Two types of amylose, potato and maize, were dissolved either in water using an autoclave or in DMSO. On the aqueous solutions obtained, the extent of molecular dissolution of the sample (referred to as the dissolution yield) was determined by enzymatic analysis as well as the molecular properties, such as molar mass and root-mean-square radius, obtained with asymmetrical flow field-flow fractionation coupled to multi-angle light scattering and differential refractive index detection (AF4-MALS-dRI). The results showed that both dissolution methods are efficient at dissolving amylose. However, AF4-MALS-dRI analysis revealed substantial differences. Amylose aqueous solutions obtained by dissolution in DMSO were relatively stable over time, but the dissolution method in autoclave caused some degradation of the molecules, and their solutions display a high tendency to retrograde.

  4. Determination of relative amounts of ribosome and subunits in Escherichia coli using asymmetrical flow field-flow fractionation.

    PubMed

    Nilsson, M; Birnbaum, S; Wahlund, K G

    1996-10-15

    The 30S and 50S subunits and the 70S ribosome of Escherichia coli were separated in 6 minutes by using asymmetrical flow field-flow fractionation (FFF). The total analysis time for determination of the relative amounts of ribosomes and free subunits in a preparation from a cell suspension was 8 min. The method can detect a change in the mass fraction of ribosomes if it exceeds approx, 10%. The separation is based on differences in diffusion coefficients, i.e., hydrodynamic diameters, and these can be determined from observed retention times. The hydrodynamic diameters were in good agreement with literature values obtained from electron microscopy. The mass fraction of ribosomes changed as a function of the magnesium ion concentration which confirms previous knowledge and shows the accuracy of the method. The method appears as an alternative to ultracentrifugation analysis and avoids some of its drawbacks and artefacts. An obvious application can be the optimisation of cell design in metabolic engineering in order to maximise translation and protein production.

  5. Dynamic leaching and fractionation of trace elements from environmental solids exploiting a novel circulating-flow platform.

    PubMed

    Mori, Masanobu; Nakano, Koji; Sasaki, Masaya; Shinozaki, Haruka; Suzuki, Shiho; Okawara, Chitose; Miró, Manuel; Itabashi, Hideyuki

    2016-02-01

    A dynamic flow-through microcolumn extraction system based on extractant re-circulation is herein proposed as a novel analytical approach for simplification of bioaccessibility tests of trace elements in sediments. On-line metal leaching is undertaken in the format of all injection (AI) analysis, which is a sequel of flow injection analysis, but involving extraction under steady-state conditions. The minimum circulation times and flow rates required to determine the maximum bioaccessible pools of target metals (viz., Cu, Zn, Cd, and Pb) from lake and river sediment samples were estimated using Tessier's sequential extraction scheme and an acid single extraction test. The on-line AIA method was successfully validated by mass balance studies of CRM and real sediment samples. Tessier's test in on-line AI format demonstrated to be carried out by one third of extraction time (6h against more than 17 h by the conventional method), with better analytical precision (<9.2% against >15% by the conventional method) and significant decrease in blank readouts as compared with the manual batch counterpart. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Improvements in surface singularity analysis and design methods. [applicable to airfoils

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.

    1979-01-01

    The coupling of the combined source vortex distribution of Green's potential flow function with contemporary numerical techniques is shown to provide accurate, efficient, and stable solutions to subsonic inviscid analysis and design problems for multi-element airfoils. The analysis problem is solved by direct calculation of the surface singularity distribution required to satisfy the flow tangency boundary condition. The design or inverse problem is solved by an iteration process. In this process, the geometry and the associated pressure distribution are iterated until the pressure distribution most nearly corresponding to the prescribed design distribution is obtained. Typically, five iteration cycles are required for convergence. A description of the analysis and design method is presented, along with supporting examples.

  7. Methodology for sensitivity analysis, approximate analysis, and design optimization in CFD for multidisciplinary applications

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.

    1993-01-01

    In this study involving advanced fluid flow codes, an incremental iterative formulation (also known as the delta or correction form) together with the well-known spatially-split approximate factorization algorithm, is presented for solving the very large sparse systems of linear equations which are associated with aerodynamic sensitivity analysis. For smaller 2D problems, a direct method can be applied to solve these linear equations in either the standard or the incremental form, in which case the two are equivalent. Iterative methods are needed for larger 2D and future 3D applications, however, because direct methods require much more computer memory than is currently available. Iterative methods for solving these equations in the standard form are generally unsatisfactory due to an ill-conditioning of the coefficient matrix; this problem can be overcome when these equations are cast in the incremental form. These and other benefits are discussed. The methodology is successfully implemented and tested in 2D using an upwind, cell-centered, finite volume formulation applied to the thin-layer Navier-Stokes equations. Results are presented for two sample airfoil problems: (1) subsonic low Reynolds number laminar flow; and (2) transonic high Reynolds number turbulent flow.

  8. A method for characterizing late-season low-flow regime in the upper Grand Ronde River Basin, Oregon

    USGS Publications Warehouse

    Kelly, Valerie J.; White, Seth

    2016-04-19

    This report describes a method for estimating ecologically relevant low-flow metrics that quantify late‑season streamflow regime for ungaged sites in the upper Grande Ronde River Basin, Oregon. The analysis presented here focuses on sites sampled by the Columbia River Inter‑Tribal Fish Commission as part of their efforts to monitor habitat restoration to benefit spring Chinook salmon recovery in the basin. Streamflow data were provided by the U.S. Geological Survey and the Oregon Water Resources Department. Specific guidance was provided for selection of streamgages, development of probabilistic frequency distributions for annual 7-day low-flow events, and regionalization of the frequency curves based on multivariate analysis of watershed characteristics. Evaluation of the uncertainty associated with the various components of this protocol indicates that the results are reliable for the intended purpose of hydrologic classification to support ecological analysis of factors contributing to juvenile salmon success. They should not be considered suitable for more standard water-resource evaluations that require greater precision, especially those focused on management and forecasting of extreme low-flow conditions.

  9. Heat And Mass Transfer Analysis of a Film Evaporative MEMS Tunable Array

    NASA Astrophysics Data System (ADS)

    O'Neill, William J.

    This thesis details the heat and mass transfer analysis of a MEMs microthruster designed to provide propulsive, attitude control and thermal control capabilities to a cubesat. This thruster is designed to function by retaining water as a propellant and applying resistive heating in order to increase the temperature of the liquid-vapor interface to either increase evaporation or induce boiling to regulate mass flow. The resulting vapor is then expanded out of a diverging nozzle to produce thrust. Because of the low operating pressure and small length scale of this thruster, unique forms of mass transfer analysis such as non-continuum gas flow were modeled using the Direct Simulation Monte Carlo method. Continuum fluid/thermal simulations using COMSOL Multiphysics have been applied to model heat and mass transfer in the solid and liquid portions of the thruster. The two methods were coupled through variables at the liquid-vapor interface and solved iteratively by the bisection method. The simulations presented in this thesis confirm the thermal valving concept. It is shown that when power is applied to the thruster there is a nearly linear increase in mass flow and thrust. Thus, mass flow can be regulated by regulating the applied power. This concept can also be used as a thermal control device for spacecraft.

  10. A simple and efficient method for poly-3-hydroxybutyrate quantification in diazotrophic bacteria within 5 minutes using flow cytometry.

    PubMed

    Alves, L P S; Almeida, A T; Cruz, L M; Pedrosa, F O; de Souza, E M; Chubatsu, L S; Müller-Santos, M; Valdameri, G

    2017-01-16

    The conventional method for quantification of polyhydroxyalkanoates based on whole-cell methanolysis and gas chromatography (GC) is laborious and time-consuming. In this work, a method based on flow cytometry of Nile red stained bacterial cells was established to quantify poly-3-hydroxybutyrate (PHB) production by the diazotrophic and plant-associated bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. The method consists of three steps: i) cell permeabilization, ii) Nile red staining, and iii) analysis by flow cytometry. The method was optimized step-by-step and can be carried out in less than 5 min. The final results indicated a high correlation coefficient (R2=0.99) compared to a standard method based on methanolysis and GC. This method was successfully applied to the quantification of PHB in epiphytic bacteria isolated from rice roots.

  11. Evidence flow graph methods for validation and verification of expert systems

    NASA Technical Reports Server (NTRS)

    Becker, Lee A.; Green, Peter G.; Bhatnagar, Jayant

    1988-01-01

    This final report describes the results of an investigation into the use of evidence flow graph techniques for performing validation and verification of expert systems. This was approached by developing a translator to convert horn-clause rule bases into evidence flow graphs, a simulation program, and methods of analysis. These tools were then applied to a simple rule base which contained errors. It was found that the method was capable of identifying a variety of problems, for example that the order of presentation of input data or small changes in critical parameters could effect the output from a set of rules.

  12. Aerothermodynamic shape optimization of hypersonic blunt bodies

    NASA Astrophysics Data System (ADS)

    Eyi, Sinan; Yumuşak, Mine

    2015-07-01

    The aim of this study is to develop a reliable and efficient design tool that can be used in hypersonic flows. The flow analysis is based on the axisymmetric Euler/Navier-Stokes and finite-rate chemical reaction equations. The equations are coupled simultaneously and solved implicitly using Newton's method. The Jacobian matrix is evaluated analytically. A gradient-based numerical optimization is used. The adjoint method is utilized for sensitivity calculations. The objective of the design is to generate a hypersonic blunt geometry that produces the minimum drag with low aerodynamic heating. Bezier curves are used for geometry parameterization. The performances of the design optimization method are demonstrated for different hypersonic flow conditions.

  13. Comparison of Several Methods of Predicting the Pressure Loss at Altitude Across a Baffled Aircraft-Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Neustein, Joseph; Schafer, Louis J , Jr

    1946-01-01

    Several methods of predicting the compressible-flow pressure loss across a baffled aircraft-engine cylinder were analytically related and were experimentally investigated on a typical air-cooled aircraft-engine cylinder. Tests with and without heat transfer covered a wide range of cooling-air flows and simulated altitudes from sea level to 40,000 feet. Both the analysis and the test results showed that the method based on the density determined by the static pressure and the stagnation temperature at the baffle exit gave results comparable with those obtained from methods derived by one-dimensional-flow theory. The method based on a characteristic Mach number, although related analytically to one-dimensional-flow theory, was found impractical in the present tests because of the difficulty encountered in defining the proper characteristic state of the cooling air. Accurate predictions of altitude pressure loss can apparently be made by these methods, provided that they are based on the results of sea-level tests with heat transfer.

  14. A Minimally Invasive Method for Retrieving Single Adherent Cells of Different Types from Cultures

    PubMed Central

    Zeng, Jia; Mohammadreza, Aida; Gao, Weimin; Merza, Saeed; Smith, Dean; Kelbauskas, Laimonas; Meldrum, Deirdre R.

    2014-01-01

    The field of single-cell analysis has gained a significant momentum over the last decade. Separation and isolation of individual cells is an indispensable step in almost all currently available single-cell analysis technologies. However, stress levels introduced by such manipulations remain largely unstudied. We present a method for minimally invasive retrieval of selected individual adherent cells of different types from cell cultures. The method is based on a combination of mechanical (shear flow) force and biochemical (trypsin digestion) treatment. We quantified alterations in the transcription levels of stress response genes in individual cells exposed to varying levels of shear flow and trypsinization. We report optimal temperature, RNA preservation reagents, shear force and trypsinization conditions necessary to minimize changes in the stress-related gene expression levels. The method and experimental findings are broadly applicable and can be used by a broad research community working in the field of single cell analysis. PMID:24957932

  15. Flow injection analysis of picric acid explosive using a copper electrode as electrochemical detector.

    PubMed

    Junqueira, João R C; de Araujo, William R; Salles, Maiara O; Paixão, Thiago R L C

    2013-01-30

    A simple and fast electrochemical method for quantitative analysis of picric acid explosive (nitro-explosive) based on its electrochemical reduction at copper surfaces is reported. To achieve a higher sample throughput, the electrochemical sensor was adapted in a flow injection system. Under optimal experimental conditions, the peak current response increases linearly with picric acid concentration over the range of 20-300 μmol L(-1). The repeatability of the electrode response in the flow injection analysis (FIA) configuration was evaluated as 3% (n=10), and the detection limit of the method was estimated to be 6.0 μmol L(-1) (S/N=3). The sample throughput under optimised conditions was estimated to be 550 samples h(-1). Peroxide explosives like triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) were tested as potential interfering substances for the proposed method, and no significant interference by these explosives was noticed. The proposed method has interesting analytical parameters, environmental applications, and low cost compared with other electroanalytical methods that have been reported for the quantification of picric acid. Additionally, the possibility to develop an in situ device for the detection of picric acid using a disposable sensor was evaluated. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  16. The Application of Deterministic Spectral Domain Method to the Analysis of Planar Circuit Discontinuities on Open Substrates

    DTIC Science & Technology

    1990-08-01

    the spectral domain is extended to include the effects of two-dimensional, two-component current flow in planar transmission line discontinuities 6n...PROFESSOR: Tatsuo Itoh A deterministic formulation of the method of moments carried out in the spectral domain is extended to include the effects of...two-dimensional, two- component current flow in planar transmission line discontinuities on open substrates. The method includes the effects of space

  17. Lab-on-a-chip nucleic-acid analysis towards point-of-care applications

    NASA Astrophysics Data System (ADS)

    Kopparthy, Varun Lingaiah

    Recent infectious disease outbreaks, such as Ebola in 2013, highlight the need for fast and accurate diagnostic tools to combat the global spread of the disease. Detection and identification of the disease-causing viruses and bacteria at the genetic level is required for accurate diagnosis of the disease. Nucleic acid analysis systems have shown promise in identifying diseases such as HIV, anthrax, and Ebola in the past. Conventional nucleic acid analysis systems are still time consuming, and are not suitable for point-ofcare applications. Miniaturized nucleic acid systems has shown great promise for rapid analysis, but they have not been commercialized due to several factors such as footprint, complexity, portability, and power consumption. This dissertation presents the development of technologies and methods for a labon-a-chip nucleic acid analysis towards point-of-care applications. An oscillatory-flow PCR methodology in a thermal gradient is developed which provides real-time analysis of nucleic-acid samples. Oscillating flow PCR was performed in the microfluidic device under thermal gradient in 40 minutes. Reverse transcription PCR (RT-PCR) was achieved in the system without an additional heating element for incubation to perform reverse transcription step. A novel method is developed for the simultaneous pattering and bonding of all-glass microfluidic devices in a microwave oven. Glass microfluidic devices were fabricated in less than 4 minutes. Towards an integrated system for the detection of amplified products, a thermal sensing method is studied for the optimization of the sensor output. Calorimetric sensing method is characterized to identify design considerations and optimal parameters such as placement of the sensor, steady state response, and flow velocity for improved performance. An understanding of these developed technologies and methods will facilitate the development of lab-on-a-chip systems for point-of-care analysis.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chase

    A number of Department of Energy (DOE) science applications, involving exascale computing systems and large experimental facilities, are expected to generate large volumes of data, in the range of petabytes to exabytes, which will be transported over wide-area networks for the purpose of storage, visualization, and analysis. The objectives of this proposal are to (1) develop and test the component technologies and their synthesis methods to achieve source-to-sink high-performance flows, and (2) develop tools that provide these capabilities through simple interfaces to users and applications. In terms of the former, we propose to develop (1) optimization methods that align andmore » transition multiple storage flows to multiple network flows on multicore, multibus hosts; and (2) edge and long-haul network path realization and maintenance using advanced provisioning methods including OSCARS and OpenFlow. We also propose synthesis methods that combine these individual technologies to compose high-performance flows using a collection of constituent storage-network flows, and realize them across the storage and local network connections as well as long-haul connections. We propose to develop automated user tools that profile the hosts, storage systems, and network connections; compose the source-to-sink complex flows; and set up and maintain the needed network connections.« less

  19. Methods for determination of optic nerve blood flow.

    PubMed Central

    Glazer, L. C.

    1988-01-01

    A variety of studies have been conducted over the past two decades to determine if decreased optic nerve blood flow has a role in the etiology of glaucomatous nerve damage. Five basic methods have been employed in examining blood flow. Invasive studies, utilizing electrodes placed in the optic nerve head, represent one of the first attempts to measure blood flow. More recently, the methodologies have included axoplasmic flow analysis, microspheres, radioactive tracers such as iodoantipyrine, and laser doppler measurements. The results of these studies are inconclusive and frequently contradictory. When the studies are grouped by methodology, only the iodoantipyrine data are consistent. While each of the experimental techniques has limitations, iodoantipyrine appears to have better resolution than either invasive studies or microspheres. PMID:3284212

  20. On the wall-normal velocity of the compressible boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1991-01-01

    Numerical methods for the compressible boundary-layer equations are facilitated by transformation from the physical (x,y) plane to a computational (xi,eta) plane in which the evolution of the flow is 'slow' in the time-like xi direction. The commonly used Levy-Lees transformation results in a computationally well-behaved problem for a wide class of non-similar boundary-layer flows, but it complicates interpretation of the solution in physical space. Specifically, the transformation is inherently nonlinear, and the physical wall-normal velocity is transformed out of the problem and is not readily recovered. In light of recent research which shows mean-flow non-parallelism to significantly influence the stability of high-speed compressible flows, the contribution of the wall-normal velocity in the analysis of stability should not be routinely neglected. Conventional methods extract the wall-normal velocity in physical space from the continuity equation, using finite-difference techniques and interpolation procedures. The present spectrally-accurate method extracts the wall-normal velocity directly from the transformation itself, without interpolation, leaving the continuity equation free as a check on the quality of the solution. The present method for recovering wall-normal velocity, when used in conjunction with a highly-accurate spectral collocation method for solving the compressible boundary-layer equations, results in a discrete solution which is extraordinarily smooth and accurate, and which satisfies the continuity equation nearly to machine precision. These qualities make the method well suited to the computation of the non-parallel mean flows needed by spatial direct numerical simulations (DNS) and parabolized stability equation (PSE) approaches to the analysis of stability.

  1. Comparison between measured turbine stage performance and the predicted performance using quasi-3D flow and boundary layer analyses

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Haas, J. E.; Katsanis, T.

    1984-01-01

    A method for calculating turbine stage performance is described. The usefulness of the method is demonstrated by comparing measured and predicted efficiencies for nine different stages. Comparisons are made over a range of turbine pressure ratios and rotor speeds. A quasi-3D flow analysis is used to account for complex passage geometries. Boundary layer analyses are done to account for losses due to friction. Empirical loss models are used to account for incidence, secondary flow, disc windage, and clearance losses.

  2. Simulation of patient flow in multiple healthcare units using process and data mining techniques for model identification.

    PubMed

    Kovalchuk, Sergey V; Funkner, Anastasia A; Metsker, Oleg G; Yakovlev, Aleksey N

    2018-06-01

    An approach to building a hybrid simulation of patient flow is introduced with a combination of data-driven methods for automation of model identification. The approach is described with a conceptual framework and basic methods for combination of different techniques. The implementation of the proposed approach for simulation of the acute coronary syndrome (ACS) was developed and used in an experimental study. A combination of data, text, process mining techniques, and machine learning approaches for the analysis of electronic health records (EHRs) with discrete-event simulation (DES) and queueing theory for the simulation of patient flow was proposed. The performed analysis of EHRs for ACS patients enabled identification of several classes of clinical pathways (CPs) which were used to implement a more realistic simulation of the patient flow. The developed solution was implemented using Python libraries (SimPy, SciPy, and others). The proposed approach enables more a realistic and detailed simulation of the patient flow within a group of related departments. An experimental study shows an improved simulation of patient length of stay for ACS patient flow obtained from EHRs in Almazov National Medical Research Centre in Saint Petersburg, Russia. The proposed approach, methods, and solutions provide a conceptual, methodological, and programming framework for the implementation of a simulation of complex and diverse scenarios within a flow of patients for different purposes: decision making, training, management optimization, and others. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Traffic Flow Density Distribution Based on FEM

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Cui, Jianming

    In analysis of normal traffic flow, it usually uses the static or dynamic model to numerical analyze based on fluid mechanics. However, in such handling process, the problem of massive modeling and data handling exist, and the accuracy is not high. Finite Element Method (FEM) is a production which is developed from the combination of a modern mathematics, mathematics and computer technology, and it has been widely applied in various domain such as engineering. Based on existing theory of traffic flow, ITS and the development of FEM, a simulation theory of the FEM that solves the problems existing in traffic flow is put forward. Based on this theory, using the existing Finite Element Analysis (FEA) software, the traffic flow is simulated analyzed with fluid mechanics and the dynamics. Massive data processing problem of manually modeling and numerical analysis is solved, and the authenticity of simulation is enhanced.

  4. Operation Guiding Light-Scientific Program and Field Plan. The Pilot Field Experiment for NORDA Project Chemical Dynamics in Ocean Frontal Areas

    DTIC Science & Technology

    1985-03-01

    distribution. Samples of suspended partici’lates will also be collected for later image and elemental analysis . 25 Method of analysis for particle...will be flow injection analysis . This method will allow rapid, continuous analysis of seawater nutrients. Measurements will be made at one minute...5 m intervals) as well as from the underway pumping system. Method of pigment analysis for porphyrin and carotenoid pigments will be separation by

  5. Lattice Boltzmann computation of creeping fluid flow in roll-coating applications

    NASA Astrophysics Data System (ADS)

    Rajan, Isac; Kesana, Balashanker; Perumal, D. Arumuga

    2018-04-01

    Lattice Boltzmann Method (LBM) has advanced as a class of Computational Fluid Dynamics (CFD) methods used to solve complex fluid systems and heat transfer problems. It has ever-increasingly attracted the interest of researchers in computational physics to solve challenging problems of industrial and academic importance. In this current study, LBM is applied to simulate the creeping fluid flow phenomena commonly encountered in manufacturing technologies. In particular, we apply this novel method to simulate the fluid flow phenomena associated with the "meniscus roll coating" application. This prevalent industrial problem encountered in polymer processing and thin film coating applications is modelled as standard lid-driven cavity problem to which creeping flow analysis is applied. This incompressible viscous flow problem is studied in various speed ratios, the ratio of upper to lower lid speed in two different configurations of lid movement - parallel and anti-parallel wall motion. The flow exhibits interesting patterns which will help in design of roll coaters.

  6. miRNA detection at single-cell resolution using microfluidic LNA flow-FISH

    DOE PAGES

    Wu, Meiye; Piccini, Matthew Ernest; Koh, Chung -Yan; ...

    2014-08-20

    Flow cytometry in combination with fluorescent in situ hybridization (flow-FISH) is a powerful technique that can be utilized to rapidly detect nucleic acids at single-cell resolution without the need for homogenization or nucleic acid extraction. Here, we describe a microfluidic-based method which enables the detection of microRNAs or miRNAs in single intact cells by flow-FISH using locked nucleic acid (LNA)-containing probes. Our method can be applied to all RNA species including mRNA and small noncoding RNA and is suitable for multiplexing with protein immunostaining in the same cell. For demonstration of our method, this chapter details the detection of miR155more » and CD69 protein in PMA and ionomycin-stimulated Jurkat cells. Here, we also include instructions on how to set up a microfluidic chip sample preparation station to prepare cells for imaging and analysis on a commercial flow cytometer or a custom-built micro-flow cytometer.« less

  7. Measurement and analysis of a small nozzle plume in vacuum

    NASA Technical Reports Server (NTRS)

    Penko, P. F.; Boyd, I. D.; Meissner, D. L.; Dewitt, K. J.

    1993-01-01

    Pitot pressures and flow angles are measured in the plume of a nozzle flowing nitrogen and exhausting to a vacuum. Total pressures are measured with Pitot tubes sized for specific regions of the plume and flow angles measured with a conical probe. The measurement area for total pressure extends 480 mm (16 exit diameters) downstream of the nozzle exit plane and radially to 60 mm (1.9 exit diameters) off the plume axis. The measurement area for flow angle extends to 160 mm (5 exit diameters) downstream and radially to 60 mm. The measurements are compared to results from a numerical simulation of the flow that is based on kinetic theory and uses the direct-simulation Monte Carlo (DSMC) method. Comparisons of computed results from the DSMC method with measurements of flow angle display good agreement in the far-field of the plume and improve with increasing distance from the exit plane. Pitot pressures computed from the DSMC method are in reasonably good agreement with experimental results over the entire measurement area.

  8. FINITE-ELEMENT ANALYSIS OF MULTIPHASE IMMISCIBLE FLOW THROUGH SOILS

    EPA Science Inventory

    A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equation...

  9. An overview of a Lagrangian method for analysis of animal wake dynamics.

    PubMed

    Peng, Jifeng; Dabiri, John O

    2008-01-01

    The fluid dynamic analysis of animal wakes is becoming increasingly popular in studies of animal swimming and flying, due in part to the development of quantitative flow visualization techniques such as digital particle imaging velocimetry (DPIV). In most studies, quasi-steady flow is assumed and the flow analysis is based on velocity and/or vorticity fields measured at a single time instant during the stroke cycle. The assumption of quasi-steady flow leads to neglect of unsteady (time-dependent) wake vortex added-mass effects, which can contribute significantly to the instantaneous locomotive forces. In this paper we review a Lagrangian approach recently introduced to determine unsteady wake vortex structure by tracking the trajectories of individual fluid particles in the flow, rather than by analyzing the velocity/vorticity fields at fixed locations and single instants in time as in the Eulerian perspective. Once the momentum of the wake vortex and its added mass are determined, the corresponding unsteady locomotive forces can be quantified. Unlike previous studies that estimated the time-averaged forces over the stroke cycle, this approach enables study of how instantaneous locomotive forces evolve over time. The utility of this method for analyses of DPIV velocity measurements is explored, with the goal of demonstrating its applicability to data that are typically available to investigators studying animal swimming and flying. The methods are equally applicable to computational fluid dynamics studies where velocity field calculations are available.

  10. Developments in boundary element methods - 2

    NASA Astrophysics Data System (ADS)

    Banerjee, P. K.; Shaw, R. P.

    This book is a continuation of the effort to demonstrate the power and versatility of boundary element methods which began in Volume 1 of this series. While Volume 1 was designed to introduce the reader to a selected range of problems in engineering for which the method has been shown to be efficient, the present volume has been restricted to time-dependent problems in engineering. Boundary element formulation for melting and solidification problems in considered along with transient flow through porous elastic media, applications of boundary element methods to problems of water waves, and problems of general viscous flow. Attention is given to time-dependent inelastic deformation of metals by boundary element methods, the determination of eigenvalues by boundary element methods, transient stress analysis of tunnels and caverns of arbitrary shape due to traveling waves, an analysis of hydrodynamic loads by boundary element methods, and acoustic emissions from submerged structures.

  11. Aerodynamics Characteristics of Multi-Element Airfoils at -90 Degrees Incidence

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.; Schmitz, Fredric H. (Technical Monitor)

    1994-01-01

    A developed method has been applied to calculate accurately the viscous flow about airfoils normal to the free-stream flow. This method has special application to the analysis of tilt rotor aircraft in the evaluation of download. In particular, the flow about an XV-15 airfoil with and without deflected leading and trailing edge flaps at -90 degrees incidence is evaluated. The multi-element aspect of the method provides for the evaluation of slotted flap configurations which may lead to decreased drag. The method solves for turbulent flow at flight Reynolds numbers. The flow about the XV-15 airfoil with and without flap deflections has been calculated and compared with experimental data at a Reynolds number of one million. The comparison between the calculated and measured pressure distributions are very good, thereby, verifying the method. The aerodynamic evaluation of multielement airfoils will be conducted to determine airfoil/flap configurations for reduced airfoil drag. Comparisons between the calculated lift, drag and pitching moment on the airfoil and the airfoil surface pressure will also be presented.

  12. Intra- and inter-reader reproducibility of blood flow measurements on the ascending aorta and pulmonary artery using cardiac magnetic resonance.

    PubMed

    Di Leo, Giovanni; D'Angelo, Ida Daniela; Alì, Marco; Cannaò, Paola Maria; Mauri, Giovanni; Secchi, Francesco; Sardanelli, Francesco

    2017-03-01

    The aim of our study was to estimate the intra- and inter-reader reproducibility of blood flow measurements in the ascending aorta and main pulmonary artery using cardiac magnetic resonance (CMR) and a semi-automated segmentation method. The ethics committee approved this retrospective study. A total of 50 consecutive patients (35 males and 15 females; mean age±standard deviation 27±13 years) affected by congenital heart disease were reviewed. They underwent CMR for flow analysis of the ascending aorta and main pulmonary artery (1.5 T, through-plane phase-contrast sequences). Two independent readers (R1, trained radiology resident; R2, lower-trained technician student) obtained segmented images twice (>10-day interval), using a semi-automated method of segmentation. Peak velocity, forward and backward flows were obtained. Bland-Altman analysis was used and reproducibility was reported as complement to 100% of the ratio between the coefficient of repeatability and the mean. R1 intra-reader reproducibility for the aorta was 99% (peak velocity), 95% (forward flow) and 49% (backward flow); for the pulmonary artery, 99%, 91% and 90%, respectively. R2 intra-reader reproducibility was 92%, 91% and 38%; 98%, 86% and 87%, respectively. Inter-reader reproducibility for the aorta was 91%, 85% and 20%; for the pulmonary artery 96%, 75%, and 82%, respectively. Our results showed a good to excellent reproducibility of blood flow measurements of CMR together with a semiautomated method of segmentation, for all variables except the backward flow of the ascending aorta, with a limited impact of operator's training.

  13. Method and apparatus for continuous flow injection extraction analysis

    DOEpatents

    Hartenstein, Steven D.; Siemer, Darryl D.

    1992-01-01

    A method and apparatus for a continuous flow injection batch extraction aysis system is disclosed employing extraction of a component of a first liquid into a second liquid which is a solvent for a component of the first liquid, and is immiscible with the first liquid, and for separating the first liquid from the second liquid subsequent to extraction of the component of the first liquid.

  14. Application of a Short Intracellular pH Method to Flow Cytometry for Determining Saccharomyces cerevisiae Vitality ▿

    PubMed Central

    Weigert, Claudia; Steffler, Fabian; Kurz, Tomas; Shellhammer, Thomas H.; Methner, Frank-Jürgen

    2009-01-01

    The measurement of yeast's intracellular pH (ICP) is a proven method for determining yeast vitality. Vitality describes the condition or health of viable cells as opposed to viability, which defines living versus dead cells. In contrast to fluorescence photometric measurements, which show only average ICP values of a population, flow cytometry allows the presentation of an ICP distribution. By examining six repeated propagations with three separate growth phases (lag, exponential, and stationary), the ICP method previously established for photometry was transferred successfully to flow cytometry by using the pH-dependent fluorescent probe 5,6-carboxyfluorescein. The correlation between the two methods was good (r2 = 0.898, n = 18). With both methods it is possible to track the course of growth phases. Although photometry did not yield significant differences between exponentially and stationary phases (P = 0.433), ICP via flow cytometry did (P = 0.012). Yeast in an exponential phase has a unimodal ICP distribution, reflective of a homogeneous population; however, yeast in a stationary phase displays a broader ICP distribution, and subpopulations could be defined by using the flow cytometry method. In conclusion, flow cytometry yielded specific evidence of the heterogeneity in vitality of a yeast population as measured via ICP. In contrast to photometry, flow cytometry increases information about the yeast population's vitality via a short measurement, which is suitable for routine analysis. PMID:19581482

  15. Contribution to the theory of stationary separation areas

    NASA Technical Reports Server (NTRS)

    Taganov, G. I.

    1985-01-01

    An attempt is made to determine the region of existence of possible steady flows with a closed separation area in a range of Reynolds numbers such that flow in the viscous mixing area can be described by the Prandtl's equations. The boundary conditions for the flow in the separation region are selected so as to simplify the flow pattern in this region, making it possible to use the methods of hydrodynamic analysis. A rule for determining stable steady flows with separation areas is formulated which is well suited for analyzing laminar flows and can be applied to turbulent flows in some areas.

  16. Improved Measurement of B(sub 22) of Macromolecules in a Flow Cell

    NASA Technical Reports Server (NTRS)

    Wilson, Wilbur; Fanguy, Joseph; Holman, Steven; Guo, Bin

    2008-01-01

    An improved apparatus has been invented for use in determining the osmotic second virial coefficient of macromolecules in solution. In a typical intended application, the macromolecules would be, more specifically, protein molecules, and the protein solution would be pumped through a flow cell to investigate the physical and chemical conditions that affect crystallization of the protein in question. Some background information is prerequisite to a meaningful description of the novel aspects of this apparatus. A method of determining B22 from simultaneous measurements of the static transmittance (taken as an indication of concentration) and static scattering of light from the same location in a flowing protein solution was published in 2004. The apparatus used to implement the method at that time included a dual-detector flow cell, which had two drawbacks: a) The amount of protein required for analysis of each solution condition was of the order of a milligram - far too large a quantity for a high-throughput analysis system, for which microgram or even nanogram quantities of protein per analysis are desirable. b) The design of flow cell was such that two light sources were used to probe different regions of the flowing solution. Consequently, the apparatus did not afford simultaneous measurements at the same location in the solution and, hence, did not guarantee an accurate determination of B22.

  17. An Approach to the Constrained Design of Natural Laminar Flow Airfoils

    NASA Technical Reports Server (NTRS)

    Green, Bradford E.

    1997-01-01

    A design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. After obtaining the initial airfoil's pressure distribution at the design lift coefficient using an Euler solver coupled with an integral turbulent boundary layer method, the calculations from a laminar boundary layer solver are used by a stability analysis code to obtain estimates of the transition location (using N-Factors) for the starting airfoil. A new design method then calculates a target pressure distribution that will increase the laminar flow toward the desired amount. An airfoil design method is then iteratively used to design an airfoil that possesses that target pressure distribution. The new airfoil's boundary layer stability characteristics are determined, and this iterative process continues until an airfoil is designed that meets the laminar flow requirement and as many of the other constraints as possible.

  18. An approach to the constrained design of natural laminar flow airfoils

    NASA Technical Reports Server (NTRS)

    Green, Bradford Earl

    1995-01-01

    A design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. After obtaining the initial airfoil's pressure distribution at the design lift coefficient using an Euler solver coupled with an integml turbulent boundary layer method, the calculations from a laminar boundary layer solver are used by a stability analysis code to obtain estimates of the transition location (using N-Factors) for the starting airfoil. A new design method then calculates a target pressure distribution that will increase the larninar flow toward the desired amounl An airfoil design method is then iteratively used to design an airfoil that possesses that target pressure distribution. The new airfoil's boundary layer stability characteristics are determined, and this iterative process continues until an airfoil is designed that meets the laminar flow requirement and as many of the other constraints as possible.

  19. Numerical methods for engine-airframe integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, S.N.B.; Paynter, G.C.

    1986-01-01

    Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison ofmore » full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment.« less

  20. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Taulbee, Dale B.; Adumitroaie, Virgil; Sabini, George J.; Shieh, Geoffrey S.

    1994-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Sep. 1993 - 1 Sep. 1994, we have focused our efforts on two research problems: (1) developments of 'algebraic' moment closures for statistical descriptions of nonpremixed reacting systems, and (2) assessments of the Dirichlet frequency in presumed scalar probability density function (PDF) methods in stochastic description of turbulent reacting flows. This report provides a complete description of our efforts during this past year as supported by the NASA Langley Research Center under Grant NAG1-1122.

  1. A comparison between Bayes discriminant analysis and logistic regression for prediction of debris flow in southwest Sichuan, China

    NASA Astrophysics Data System (ADS)

    Xu, Wenbo; Jing, Shaocai; Yu, Wenjuan; Wang, Zhaoxian; Zhang, Guoping; Huang, Jianxi

    2013-11-01

    In this study, the high risk areas of Sichuan Province with debris flow, Panzhihua and Liangshan Yi Autonomous Prefecture, were taken as the studied areas. By using rainfall and environmental factors as the predictors and based on the different prior probability combinations of debris flows, the prediction of debris flows was compared in the areas with statistical methods: logistic regression (LR) and Bayes discriminant analysis (BDA). The results through the comprehensive analysis show that (a) with the mid-range scale prior probability, the overall predicting accuracy of BDA is higher than those of LR; (b) with equal and extreme prior probabilities, the overall predicting accuracy of LR is higher than those of BDA; (c) the regional predicting models of debris flows with rainfall factors only have worse performance than those introduced environmental factors, and the predicting accuracies of occurrence and nonoccurrence of debris flows have been changed in the opposite direction as the supplemented information.

  2. Unsteady Analysis of Separated Aerodynamic Flows Using an Unstructured Multigrid Algorithm

    NASA Technical Reports Server (NTRS)

    Pelaez, Juan; Mavriplis, Dimitri J.; Kandil, Osama

    2001-01-01

    An implicit method for the computation of unsteady flows on unstructured grids is presented. The resulting nonlinear system of equations is solved at each time step using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Validation of the code using a one-equation turbulence model is performed for the well-known case of flow over a cylinder. A Detached Eddy Simulation model is also implemented and its performance compared to the one equation Spalart-Allmaras Reynolds Averaged Navier-Stokes (RANS) turbulence model. Validation cases using DES and RANS include flow over a sphere and flow over a NACA 0012 wing including massive stall regimes. The project was driven by the ultimate goal of computing separated flows of aerodynamic interest, such as massive stall or flows over complex non-streamlined geometries.

  3. The Shock and Vibration Digest, Volume 17, Number 8

    DTIC Science & Technology

    1985-08-01

    ate, transmit, and radiate audible sound. dures are based on acoustic power flow, statistical energy analysis (SEA), and modal methods [22-283. A...modified partition area. features of the acoustic field. I.--1 85-1642 Statistical Energy Analysis , Structural Reso- nances, and Beam Networks BUILDING...energy methods, Structural resonance L.J. Lee Heriot-Watt Univ., Chambers St., Edinburgh The statistical energy analysis method is EHI 1HX, Scotland

  4. Quantitative Assessment of Foot Blood Flow by Using Dynamic Volume Perfusion CT Technique: A Feasibility Study.

    PubMed

    Hur, Saebeom; Jae, Hwan Jun; Jang, Yeonggul; Min, Seung-Kee; Min, Sang-Il; Lee, Dong Yeon; Seo, Sang Gyo; Kim, Hyo-Cheol; Chung, Jin Wook; Kim, Kwang Gi; Park, Eun-Ah; Lee, Whal

    2016-04-01

    To demonstrate the feasibility of foot blood flow measurement by using dynamic volume perfusion computed tomographic (CT) technique with the upslope method in an animal experiment and a human study. The human study was approved by the institutional review board, and written informed consent was obtained from all patients. The animal study was approved by the research animal care and use committee. A perfusion CT experiment was first performed by using rabbits. A color-coded perfusion map was reconstructed by using in-house perfusion analysis software based on the upslope method, and the measured blood flow on the map was compared with the reference standard microsphere method by using correlation analysis. A total of 17 perfusion CT sessions were then performed (a) once in five human patients and (b) twice (before and after endovascular revascularization) in six human patients. Perfusion maps of blood flow were reconstructed and analyzed. The Wilcoxon signed rank test was used to prove significant differences in blood flow before and after treatment. The animal experiment demonstrated a strong correlation (R(2) = 0.965) in blood flow between perfusion CT and the microsphere method. Perfusion maps were obtained successfully in 16 human clinical sessions (94%) with the use of 32 mL of contrast medium and an effective radiation dose of 0.31 mSv (k factor for the ankle, 0.0002). The plantar dermis showed the highest blood flow among all anatomic structures of the foot, including muscle, subcutaneous tissue, tendon, and bone. After a successful revascularization procedure, the blood flow of the plantar dermis increased by 153% (P = .031). The interpretations of the color-coded perfusion map correlated well with the clinical and angiographic findings. Perfusion CT could be used to measure foot blood flow in both animals and humans. It can be a useful modality for the diagnosis of peripheral arterial disease by providing quantitative information on foot perfusion status.

  5. Haemodynamic outcome at four-dimensional flow magnetic resonance imaging following valve-sparing aortic root replacement with tricuspid and bicuspid valve morphology

    PubMed Central

    Semaan, Edouard; Markl, Michael; Chris Malaisrie, S.; Barker, Alex; Allen, Bradley; McCarthy, Patrick; Carr, James C.; Collins, Jeremy D.

    2014-01-01

    OBJECTIVE To provide a more complete characterization of aortic blood flow in patients following valve-sparing aortic root replacement (VSARR) compared with presurgical cohorts matched by tricuspid and bicuspid valve morphology, age and presurgical aorta size. METHODS Four-dimensional (4D) flow magnetic resonance imaging (MRI) was performed to analyse three-dimensional (3D) blood flow in the thoracic aorta of n = 13 patients after VSARR with reimplantation of native tricuspid aortic valve (TAV, n = 6) and bicuspid aortic valve (BAV, n = 7). Results were compared with presurgical age and aortic size-matched control cohorts with TAV (n = 10) and BAV (n = 10). Pre- and post-surgical aortic flow was evaluated using time-resolved 3D pathlines using a blinded grading system (0–2, 0 = small, 1 = moderate and 2 = prominent) analysing ascending aortic (AAo) helical flow. Systolic flow profile uniformity in the aortic root, proximal and mid-AAo was evaluated using a four-quadrant model. Further analysis in nine analysis planes distributed along the thoracic aorta quantified peak systolic velocity, retrograde fraction and peak systolic flow acceleration. RESULTS Pronounced AAo helical flow in presurgical control subjects (both BAV and TAV: helix grading = 1.8 ± 0.4) was significantly reduced (0.2 ± 0.4, P < 0.001) in cohorts after VSARR independent of aortic valve morphology. Presurgical AAo flow was highly eccentric for BAV patients but more uniform for TAV. VSARR resulted in less eccentric flow profiles. Systolic peak velocities were significantly (P < 0.05) increased in post-root repair BAV patients throughout the aorta (six of nine analysis planes) and to a lesser extent in TAV patients (three of nine analysis planes). BAV reimplantation resulted in significantly increased peak velocities in the proximal AAo compared with root repair with TAV (2.3 ± 0.6 vs 1.6 ± 0.4 m/s, P = 0.017). Post-surgical patients showed a non-significant trend towards higher systolic flow acceleration as a surrogate measure of reduced aortic compliance. CONCLUSIONS VSARR restored a cohesive flow pattern independent of native valve morphology but resulted in increased peak velocities throughout the aorta. 4D flow MRI methods can assess the clinical implications of altered aortic flow dynamics in patients undergoing VSARR. PMID:24317086

  6. Flow cytometry: basic principles and applications.

    PubMed

    Adan, Aysun; Alizada, Günel; Kiraz, Yağmur; Baran, Yusuf; Nalbant, Ayten

    2017-03-01

    Flow cytometry is a sophisticated instrument measuring multiple physical characteristics of a single cell such as size and granularity simultaneously as the cell flows in suspension through a measuring device. Its working depends on the light scattering features of the cells under investigation, which may be derived from dyes or monoclonal antibodies targeting either extracellular molecules located on the surface or intracellular molecules inside the cell. This approach makes flow cytometry a powerful tool for detailed analysis of complex populations in a short period of time. This review covers the general principles and selected applications of flow cytometry such as immunophenotyping of peripheral blood cells, analysis of apoptosis and detection of cytokines. Additionally, this report provides a basic understanding of flow cytometry technology essential for all users as well as the methods used to analyze and interpret the data. Moreover, recent progresses in flow cytometry have been discussed in order to give an opinion about the future importance of this technology.

  7. MaxEnt analysis of a water distribution network in Canberra, ACT, Australia

    NASA Astrophysics Data System (ADS)

    Waldrip, Steven H.; Niven, Robert K.; Abel, Markus; Schlegel, Michael; Noack, Bernd R.

    2015-01-01

    A maximum entropy (MaxEnt) method is developed to infer the state of a pipe flow network, for situations in which there is insufficient information to form a closed equation set. This approach substantially extends existing deterministic methods for the analysis of engineered flow networks (e.g. Newton's method or the Hardy Cross scheme). The network is represented as an undirected graph structure, in which the uncertainty is represented by a continuous relative entropy on the space of internal and external flow rates. The head losses (potential differences) on the network are treated as dependent variables, using specified pipe-flow resistance functions. The entropy is maximised subject to "observable" constraints on the mean values of certain flow rates and/or potential differences, and also "physical" constraints arising from the frictional properties of each pipe and from Kirchhoff's nodal and loop laws. A numerical method is developed in Matlab for solution of the integral equation system, based on multidimensional quadrature. Several nonlinear resistance functions (e.g. power-law and Colebrook) are investigated, necessitating numerical solution of the implicit Lagrangian by a double iteration scheme. The method is applied to a 1123-node, 1140-pipe water distribution network for the suburb of Torrens in the Australian Capital Territory, Australia, using network data supplied by water authority ACTEW Corporation Limited. A number of different assumptions are explored, including various network geometric representations, prior probabilities and constraint settings, yielding useful predictions of network demand and performance. We also propose this methodology be used in conjunction with in-flow monitoring systems, to obtain better inferences of user consumption without large investments in monitoring equipment and maintenance.

  8. Regionalized rainfall-runoff model to estimate low flow indices

    NASA Astrophysics Data System (ADS)

    Garcia, Florine; Folton, Nathalie; Oudin, Ludovic

    2016-04-01

    Estimating low flow indices is of paramount importance to manage water resources and risk assessments. These indices are derived from river discharges which are measured at gauged stations. However, the lack of observations at ungauged sites bring the necessity of developing methods to estimate these low flow indices from observed discharges in neighboring catchments and from catchment characteristics. Different estimation methods exist. Regression or geostatistical methods performed on the low flow indices are the most common types of methods. Another less common method consists in regionalizing rainfall-runoff model parameters, from catchment characteristics or by spatial proximity, to estimate low flow indices from simulated hydrographs. Irstea developed GR2M-LoiEau, a conceptual monthly rainfall-runoff model, combined with a regionalized model of snow storage and melt. GR2M-LoiEau relies on only two parameters, which are regionalized and mapped throughout France. This model allows to cartography monthly reference low flow indices. The inputs data come from SAFRAN, the distributed mesoscale atmospheric analysis system, which provides daily solid and liquid precipitation and temperature data from everywhere in the French territory. To exploit fully these data and to estimate daily low flow indices, a new version of GR-LoiEau has been developed at a daily time step. The aim of this work is to develop and regionalize a GR-LoiEau model that can provide any daily, monthly or annual estimations of low flow indices, yet keeping only a few parameters, which is a major advantage to regionalize them. This work includes two parts. On the one hand, a daily conceptual rainfall-runoff model is developed with only three parameters in order to simulate daily and monthly low flow indices, mean annual runoff and seasonality. On the other hand, different regionalization methods, based on spatial proximity and similarity, are tested to estimate the model parameters and to simulate low flow indices in ungauged sites. The analysis is carried out on 691 French catchments that are representative of various hydro-meteorological behaviors. The results are validated with a cross-validation procedure and are compared with the ones obtained with GR4J, a conceptual rainfall-runoff model, which already provides daily estimations, but involves four parameters that cannot easily be regionalized.

  9. A reconstruction method of intra-ventricular blood flow using color flow ultrasound: a simulation study

    NASA Astrophysics Data System (ADS)

    Jang, Jaeseong; Ahn, Chi Young; Jeon, Kiwan; Choi, Jung-il; Lee, Changhoon; Seo, Jin Keun

    2015-03-01

    A reconstruction method is proposed here to quantify the distribution of blood flow velocity fields inside the left ventricle from color Doppler echocardiography measurement. From 3D incompressible Navier- Stokes equation, a 2D incompressible Navier-Stokes equation with a mass source term is derived to utilize the measurable color flow ultrasound data in a plane along with the moving boundary condition. The proposed model reflects out-of-plane blood flows on the imaging plane through the mass source term. For demonstrating a feasibility of the proposed method, we have performed numerical simulations of the forward problem and numerical analysis of the reconstruction method. First, we construct a 3D moving LV region having a specific stroke volume. To obtain synthetic intra-ventricular flows, we performed a numerical simulation of the forward problem of Navier-Stokes equation inside the 3D moving LV, computed 3D intra-ventricular velocity fields as a solution of the forward problem, projected the 3D velocity fields on the imaging plane and took the inner product of the 2D velocity fields on the imaging plane and scanline directional velocity fields for synthetic scanline directional projected velocity at each position. The proposed method utilized the 2D synthetic projected velocity data for reconstructing LV blood flow. By computing the difference between synthetic flow and reconstructed flow fields, we obtained the averaged point-wise errors of 0.06 m/s and 0.02 m/s for u- and v-components, respectively.

  10. Numerical investigation of flow parameters for solid rigid spheroidal particle in a pulsatile pipe flow

    NASA Astrophysics Data System (ADS)

    Varghese, Joffin; Jayakumar, J. S.

    2017-09-01

    Quantifying, forecasting and analysing the displacement rates of suspended particles are essential while discussing about blood flow analysis. Because blood is one of the major organs in the body, which enables transport phenomena, comprising of numerous blood cells. In order to model the blood flow, a flow domain was created and numerically simulated. Flow field velocity in the stream is solved utilizing Finite Volume Method utilizing FVM unstructured solver. In pulsatile flow, the effect of parameters such as average Reynolds number, tube radius, particle size and Womersley number are taken into account. In this study spheroidal particle trajectory in axial direction is simulated at different values of pulsating frequency including 1.2 Hz, 3.33 Hz and 4.00 Hz and various densities including 1005 kg/m3 and 1025 kg/m3 for the flow domain. The analysis accomplishes the interaction study of blood constituents for different flow situations which have applications in diagnosis and treatment of cardio vascular related diseases.

  11. Analysis, Verification, and Application of Equations and Procedures for Design of Exhaust-pipe Shrouds

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Herman H.; Wcislo, Chester R.; Dexter, Howard E.

    1947-01-01

    Investigations were made to develop a simplified method for designing exhaust-pipe shrouds to provide desired or maximum cooling of exhaust installations. Analysis of heat exchange and pressure drop of an adequate exhaust-pipe shroud system requires equations for predicting design temperatures and pressure drop on cooling air side of system. Present experiments derive such equations for usual straight annular exhaust-pipe shroud systems for both parallel flow and counter flow. Equations and methods presented are believed to be applicable under certain conditions to the design of shrouds for tail pipes of jet engines.

  12. USSAERO computer program development, versions B and C

    NASA Technical Reports Server (NTRS)

    Woodward, F. A.

    1980-01-01

    Versions B and C of the unified subsonic and supersonic aerodynamic analysis program, USSAERO, are described. Version B incorporates a new symmetrical singularity method to provide improved surface pressure distributions on wings in subsonic flow. Version C extends the range of application of the program to include the analysis of multiple engine nacelles or finned external stores. In addition, nonlinear compressibility effects in high subsonic and supersonic flows are approximated using a correction based on the local Mach number at panel control points. Several examples are presented comparing the results of these programs with other panel methods and experimental data.

  13. Propfan experimental data analysis

    NASA Technical Reports Server (NTRS)

    Vernon, David F.; Page, Gregory S.; Welge, H. Robert

    1984-01-01

    A data reduction method, which is consistent with the performance prediction methods used for analysis of new aircraft designs, is defined and compared to the method currently used by NASA using data obtained from an Ames Res. Center 11 foot transonic wind tunnel test. Pressure and flow visualization data from the Ames test for both the powered straight underwing nacelle, and an unpowered contoured overwing nacelle installation is used to determine the flow phenomena present for a wind mounted turboprop installation. The test data is compared to analytic methods, showing the analytic methods to be suitable for design and analysis of new configurations. The data analysis indicated that designs with zero interference drag levels are achieveable with proper wind and nacelle tailoring. A new overwing contoured nacelle design and a modification to the wing leading edge extension for the current wind tunnel model design are evaluated. Hardware constraints of the current model parts prevent obtaining any significant performance improvement due to a modified nacelle contouring. A new aspect ratio wing design for an up outboard rotation turboprop installation is defined, and an advanced contoured nacelle is provided.

  14. A pilot study of river flow prediction in urban area based on phase space reconstruction

    NASA Astrophysics Data System (ADS)

    Adenan, Nur Hamiza; Hamid, Nor Zila Abd; Mohamed, Zulkifley; Noorani, Mohd Salmi Md

    2017-08-01

    River flow prediction is significantly related to urban hydrology impact which can provide information to solve any problems such as flood in urban area. The daily river flow of Klang River, Malaysia was chosen to be forecasted in this pilot study which based on phase space reconstruction. The reconstruction of phase space involves a single variable of river flow data to m-dimensional phase space in which the dimension (m) is based on the optimal values of Cao method. The results from the reconstruction of phase space have been used in the forecasting process using local linear approximation method. From our investigation, river flow at Klang River is chaotic based on the analysis from Cao method. The overall results provide good value of correlation coefficient. The value of correlation coefficient is acceptable since the area of the case study is influence by a lot of factors. Therefore, this pilot study may be proposed to forecast daily river flow data with the purpose of providing information about the flow of the river system in urban area.

  15. Updated logistic regression equations for the calculation of post-fire debris-flow likelihood in the western United States

    USGS Publications Warehouse

    Staley, Dennis M.; Negri, Jacquelyn A.; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.

    2016-06-30

    Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can generate dangerous flash floods and debris flows. To reduce public exposure to hazard, the U.S. Geological Survey produces post-fire debris-flow hazard assessments for select fires in the western United States. We use publicly available geospatial data describing basin morphology, burn severity, soil properties, and rainfall characteristics to estimate the statistical likelihood that debris flows will occur in response to a storm of a given rainfall intensity. Using an empirical database and refined geospatial analysis methods, we defined new equations for the prediction of debris-flow likelihood using logistic regression methods. We showed that the new logistic regression model outperformed previous models used to predict debris-flow likelihood.

  16. A calculation procedure for viscous flow in turbomachines, volume 3. [computer programs

    NASA Technical Reports Server (NTRS)

    Khalil, I.; Sheoran, Y.; Tabakoff, W.

    1980-01-01

    A method for analyzing the nonadiabatic viscous flow through turbomachine blade passages was developed. The field analysis is based upon the numerical integration of the full incompressible Navier-Stokes equations, together with the energy equation on the blade-to-blade surface. A FORTRAN IV computer program was written based on this method. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system. The flow may be axial, radial or mixed and there may be a change in stream channel thickness in the through-flow direction. The inputs required for two FORTRAN IV programs are presented. The first program considers laminar flows and the second can handle turbulent flows. Numerical examples are included to illustrate the use of the program, and to show the results that are obtained.

  17. On the stability analysis of sharply stratified shear flows

    NASA Astrophysics Data System (ADS)

    Churilov, Semyon

    2018-05-01

    When the stability of a sharply stratified shear flow is studied, the density profile is usually taken stepwise and a weak stratification between pycnoclines is neglected. As a consequence, in the instability domain of the flow two-sided neutral curves appear such that the waves corresponding to them are neutrally stable, whereas the neighboring waves on either side of the curve are unstable, in contrast with the classical result of Miles (J Fluid Mech 16:209-227, 1963) who proved that in stratified flows unstable oscillations can be only on one side of the neutral curve. In the paper, the contradiction is resolved and changes in the flow stability pattern under transition from a model stepwise to a continuous density profile are analyzed. On this basis, a simple self-consistent algorithm is proposed for studying the stability of sharply stratified shear flows with a continuous density variation and an arbitrary monotonic velocity profile without inflection points. Because our calculations and the algorithm are both based on the method of stability analysis (Churilov J Fluid Mech 539:25-55, 2005; ibid, 617, 301-326, 2008), which differs essentially from usually used, the paper starts with a brief review of the method and results obtained with it.

  18. Rarefied-continuum gas dynamics transition for SUMS project

    NASA Technical Reports Server (NTRS)

    Cheng, Sin-I

    1989-01-01

    This program is to develop an analytic method for reducing SUMS data for the determination of the undisturbed atmosphere conditions ahead of the shuttle along its descending trajectory. It is divided into an internal flow problem, an external flow problem and their matching conditions. Since the existing method of Direct Simulation Monte Carlo (DSMC) failed completely for the internal flow problem, the emphasis is on the internal flow of a highly non-equilibrium, rarefied air through a short tube of a diameter much less than the gaseous mean free path. A two fluid model analysis of this internal flow problem has been developed and studied with typical results illustrated. A computer program for such an analysis and a technical paper published in Lecture Notes in Physics No. 323 (1989) are included as Appendices 3 and 4. A proposal for in situ determination of the surface accommodation coefficients sigma sub t and sigma e is included in Appendix 5 because of their importance in quantitative data reduction. A two fluid formulation for the external flow problem is included as Appendix 6 and a review article for AIAA on Hypersonic propulsion, much dependent on ambient atmospheric density, is also included as Appendix 7.

  19. Pseudo-compressibility methods for the incompressible flow equations

    NASA Technical Reports Server (NTRS)

    Turkel, Eli; Arnone, A.

    1993-01-01

    Preconditioning methods to accelerate convergence to a steady state for the incompressible fluid dynamics equations are considered. The analysis relies on the inviscid equations. The preconditioning consists of a matrix multiplying the time derivatives. Thus the steady state of the preconditioned system is the same as the steady state of the original system. The method is compared to other types of pseudo-compressibility. For finite difference methods preconditioning can change and improve the steady state solutions. An application to viscous flow around a cascade with a non-periodic mesh is presented.

  20. Leakage detection in galvanized iron pipelines using ensemble empirical mode decomposition analysis

    NASA Astrophysics Data System (ADS)

    Amin, Makeen; Ghazali, M. Fairusham

    2015-05-01

    There are many numbers of possible approaches to detect leaks. Some leaks are simply noticeable when the liquids or water appears on the surface. However many leaks do not find their way to the surface and the existence has to be check by analysis of fluid flow in the pipeline. The first step is to determine the approximate position of leak. This can be done by isolate the sections of the mains in turn and noting which section causes a drop in the flow. Next approach is by using sensor to locate leaks. This approach are involves strain gauge pressure transducers and piezoelectric sensor. the occurrence of leaks and know its exact location in the pipeline by using specific method which are Acoustic leak detection method and transient method. The objective is to utilize the signal processing technique in order to analyse leaking in the pipeline. With this, an EEMD method will be applied as the analysis method to collect and analyse the data.

  1. Viscid/inviscid interaction analysis of thrust augmenting ejectors

    NASA Technical Reports Server (NTRS)

    Bevilacqua, P. M.; Dejoode, A. D.

    1979-01-01

    A method was developed for calculating the static performance of thrust augmenting ejectors by matching a viscous solution for the flow through the ejector to an inviscid solution for the flow outside the ejector. A two dimensional analysis utilizing a turbulence kinetic energy model is used to calculate the rate of entrainment by the jets. Vortex panel methods are then used with the requirement that the ejector shroud must be a streamline of the flow induced by the jets to determine the strength of circulation generated around the shroud. In effect, the ejector shroud is considered to be flying in the velocity field of the jets. The solution is converged by iterating between the rate of entrainment and the strength of the circulation. This approach offers the advantage of including external influences on the flow through the ejector. Comparisons with data are presented for an ejector having a single central nozzle and Coanda jet on the walls. The accuracy of the matched solution is found to be especially sensitive to the jet flap effect of the flow just downstream of the ejector exit.

  2. Shock-free turbomachinery blade design

    NASA Technical Reports Server (NTRS)

    Beauchamp, P. P.; Seebass, A. R.

    1985-01-01

    A computational method for designing shock-free, quasi-three-dimensional, transonic, turbomachinery blades is described. Shock-free designs are found by implementing Sobieczky's fictitious gas principle in the analysis of a baseline shape, resulting in an elliptic solution that is incorrect in the supersonic domain. Shock-free designs are obtained by combining the subsonic portion of this solution with a characteristic calculation of the correct supersonic flow using the sonic line data from the fictitious elliptic solution. This provides a new, shock-free blade design. Examples presented include the removal of shocks from two blades in quasi-three-dimensional flow and the development of a series of shock-free two-dimensional stators. The new designs all include modifications to the upper surface of an experimental stator blade developed at NASA Lewis Research Center. While the designs presented here are for inviscid flow, the same concepts have been successfully applied to the shock-free design of airfoils and three-dimensional wings with viscous effects. The extension of the present method to viscous flows is straightforward given a suitable analysis algorithm for the flow.

  3. An analysis of numerical convergence in discrete velocity gas dynamics for internal flows

    NASA Astrophysics Data System (ADS)

    Sekaran, Aarthi; Varghese, Philip; Goldstein, David

    2018-07-01

    The Discrete Velocity Method (DVM) for solving the Boltzmann equation has significant advantages in the modeling of non-equilibrium and near equilibrium flows as compared to other methods in terms of reduced statistical noise, faster solutions and the ability to handle transient flows. Yet the DVM performance for rarefied flow in complex, small-scale geometries, in microelectromechanical (MEMS) devices for instance, is yet to be studied in detail. The present study focuses on the performance of the DVM for locally large Knudsen number flows of argon around sharp corners and other sources for discontinuities in the distribution function. Our analysis details the nature of the solution for some benchmark cases and introduces the concept of solution convergence for the transport terms in the discrete velocity Boltzmann equation. The limiting effects of the velocity space discretization are also investigated and the constraints on obtaining a robust, consistent solution are derived. We propose techniques to maintain solution convergence and demonstrate the implementation of a specific strategy and its effect on the fidelity of the solution for some benchmark cases.

  4. A critical review of published methods for analysis of red cell antigen-antibody reactions by flow cytometry, and approaches for resolving problems with red cell agglutination.

    PubMed

    Arndt, Patricia A; Garratty, George

    2010-07-01

    Flow cytometry operators often apply familiar white blood cell (WBC) methods when studying red blood cell (RBC) antigens and antibodies. Some WBC methods are not appropriate for RBCs, as the analysis of RBCs requires special considerations, for example, avoidance of agglutination. One hundred seventy-six published articles from 88 groups studying RBC interactions were reviewed. Three fourths of groups used at least one unnecessary WBC procedure for RBCs, and about one fourth did not use any method to prevent/disperse RBC agglutination. Flow cytometric studies were performed to determine the effect of RBC agglutination on results and compare different methods of preventing and/or dispersing agglutination. The presence of RBC agglutinates have been shown to be affected by the type of pipette tip used for mixing RBC suspensions, the number of antigen sites/RBC, the type and concentration of primary antibody, and the type of secondary antibody. For quantitation methods, for example, fetal maternal hemorrhage, the presence of agglutinates have been shown to adversely affect results (fewer fetal D+ RBCs detected). Copyright 2010 Elsevier Inc. All rights reserved.

  5. Analysis and experimental verification of new power flow control for grid-connected inverter with LCL filter in microgrid.

    PubMed

    Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang

    2014-01-01

    Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method.

  6. Validated flow-injection method for rapid aluminium determination in anti-perspirants.

    PubMed

    López-Gonzálvez, A; Ruiz, M A; Barbas, C

    2008-09-29

    A flow-injection (FI) method for the rapid determination of aluminium in anti-perspirants has been developed. The method is based on the spectrophotometric detection at 535nm of the complex formed between Al ions and the chromogenic reagent eriochrome cyanine R. Both the batch and FI methods were validated by checking the parameters included in the ISO-3543-1 regulation. Variables involved in the FI method were optimized by using appropriate statistical tools. The method does not exhibit interference from other substances present in anti-perspirants and it shows a high precision with a R.S.D. value (n=6) of 0.9%. Moreover, the accuracy of the method was evaluated by comparison with a back complexometric titration method, which is currently used for routine analysis in pharmaceutical laboratories. The Student's t-test showed that the results obtained by both methods were not significantly different for a significance level of 95%. A response time of 12s and a sample analysis time, by performing triplicate injections, of 60s were achieved. The analytical figures of merit make the method highly appropriate to substitute the time-consuming complexometric method for this kind of analysis.

  7. Very high pressure liquid chromatography using core-shell particles: quantitative analysis of fast gradient separations without post-run times.

    PubMed

    Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois A; Guiochon, Georges

    2014-01-17

    Five methods for controlling the mobile phase flow rate for gradient elution analyses using very high pressure liquid chromatography (VHPLC) were tested to determine thermal stability of the column during rapid gradient separations. To obtain rapid separations, instruments are operated at high flow rates and high inlet pressure leading to uneven thermal effects across columns and additional time needed to restore thermal equilibrium between successive analyses. The purpose of this study is to investigate means to minimize thermal instability and obtain reliable results by measuring the reproducibility of the results of six replicate gradient separations of a nine component RPLC standard mixture under various experimental conditions with no post-run times. Gradient separations under different conditions were performed: constant flow rates, two sets of constant pressure operation, programmed flow constant pressure operation, and conditions which theoretically should yield a constant net heat loss at the column's wall. The results show that using constant flow rates, programmed flow constant pressures, and constant heat loss at the column's wall all provide reproducible separations. However, performing separations using a high constant pressure with programmed flow reduces the analysis time by 16% compared to constant flow rate methods. For the constant flow rate, programmed flow constant pressure, and constant wall heat experiments no equilibration time (post-run time) was required to obtain highly reproducible data. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor)

    2013-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  9. Numerical and experimental analysis of a thin liquid film on a rotating disk related to development of a spacecraft absorption cooling system

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1989-01-01

    The numerical and experimental analysis of a thin liquid film on a rotating and a stationary disk related to the development of an absorber unit for a high capacity spacecraft absorption cooling system, is described. The creation of artificial gravity by the use of a centrifugal field was focused upon in this report. Areas covered include: (1) One-dimensional computation of thin liquid film flows; (2) Experimental measurement of film height and visualization of flow; (3) Two-dimensional computation of the free surface flow of a thin liquid film using a pressure optimization method; (4) Computation of heat transfer in two-dimensional thin film flow; (5) Development of a new computational methodology for the free surface flows using a permeable wall; (6) Analysis of fluid flow and heat transfer in a thin film in the presence and absence of gravity; and (7) Comparison of theoretical prediction and experimental data. The basic phenomena related to fluid flow and heat transfer on rotating systems reported here can also be applied to other areas of space systems.

  10. CFD Analysis of Thermal Control System Using NX Thermal and Flow

    NASA Technical Reports Server (NTRS)

    Fortier, C. R.; Harris, M. F. (Editor); McConnell, S. (Editor)

    2014-01-01

    The Thermal Control Subsystem (TCS) is a key part of the Advanced Plant Habitat (APH) for the International Space Station (ISS). The purpose of this subsystem is to provide thermal control, mainly cooling, to the other APH subsystems. One of these subsystems, the Environmental Control Subsystem (ECS), controls the temperature and humidity of the growth chamber (GC) air to optimize the growth of plants in the habitat. The TCS provides thermal control to the ECS with three cold plates, which use Thermoelectric Coolers (TECs) to heat or cool water as needed to control the air temperature in the ECS system. In order to optimize the TCS design, pressure drop and heat transfer analyses were needed. The analysis for this system was performed in Siemens NX Thermal/Flow software (Version 8.5). NX Thermal/Flow has the ability to perform 1D or 3D flow solutions. The 1D flow solver can be used to represent simple geometries, such as pipes and tubes. The 1D flow method also has the ability to simulate either fluid only or fluid and wall regions. The 3D flow solver is similar to other Computational Fluid Dynamic (CFD) software. TCS performance was analyzed using both the 1D and 3D solvers. Each method produced different results, which will be evaluated and discussed.

  11. Materials Characterisation and Analysis for Flow Simulation of Liquid Resin Infusion

    NASA Astrophysics Data System (ADS)

    Sirtautas, J.; Pickett, A. K.; George, A.

    2015-06-01

    Liquid Resin Infusion (LRI) processes including VARI and VARTM have received increasing attention in recent years, particularly for infusion of large parts, or for low volume production. This method avoids the need for costly matched metal tooling as used in Resin Transfer Moulding (RTM) and can provide fast infusion if used in combination with flow media. Full material characterisation for LRI analysis requires models for three dimensional fabric permeability as a function of fibre volume content, fabric through-thickness compliance as a function of resin pressure, flow media permeability and resin viscosity. The characterisation of fabric relaxation during infusion is usually determined from cyclic compaction tests on saturated fabrics. This work presents an alternative method to determine the compressibility by using LRI flow simulation and fitting a model to experimental thickness measurements during LRI. The flow media is usually assumed to have isotropic permeability, but this work shows greater simulation accuracy from combining the flow media with separation plies as a combined orthotropic material. The permeability of this combined media can also be determined by fitting the model with simulation to LRI flow measurements. The constitutive models and the finite element solution were validated by simulation of the infusion of a complex aerospace demonstrator part.

  12. Theoretical analysis for scaling law of thermal blooming based on optical phase deference

    NASA Astrophysics Data System (ADS)

    Sun, Yunqiang; Huang, Zhilong; Ren, Zebin; Chen, Zhiqiang; Guo, Longde; Xi, Fengjie

    2016-10-01

    In order to explore the laser propagation influence of thermal blooming effect of pipe flow and to analysis the influencing factors, scaling law theoretical analysis of the thermal blooming effects in pipe flow are carry out in detail based on the optical path difference caused by thermal blooming effects in pipe flow. Firstly, by solving the energy coupling equation of laser beam propagation, the temperature of the flow is obtained, and then the optical path difference caused by the thermal blooming is deduced. Through the analysis of the influence of pipe size, flow field and laser parameters on the optical path difference, energy scaling parameters Ne=nTαLPR2/(ρɛCpπR02) and geometric scaling parameters Nc=νR2/(ɛL) of thermal blooming for the pipe flow are derived. Secondly, for the direct solution method, the energy coupled equations have analytic solutions only for the straight tube with Gauss beam. Considering the limitation of directly solving the coupled equations, the dimensionless analysis method is adopted, the analysis is also based on the change of optical path difference, same scaling parameters for the pipe flow thermal blooming are derived, which makes energy scaling parameters Ne and geometric scaling parameters Nc have good universality. The research results indicate that when the laser power and the laser beam diameter are changed, thermal blooming effects of the pipeline axial flow caused by optical path difference will not change, as long as you keep energy scaling parameters constant. When diameter or length of the pipe changes, just keep the geometric scaling parameters constant, the pipeline axial flow gas thermal blooming effects caused by optical path difference distribution will not change. That is to say, when the pipe size and laser parameters change, if keeping two scaling parameters with constant, the pipeline axial flow thermal blooming effects caused by the optical path difference will not change. Therefore, the energy scaling parameters and the geometric scaling parameters can really describe the gas thermal blooming effect in the axial pipe flow. These conclusions can give a good reference for the construction of the thermal blooming test system of laser system. Contrasted with the thermal blooming scaling parameters of the Bradley-Hermann distortion number ND and Fresnel number NF, which were derived based on the change of far field beam intensity distortion, the scaling parameters of pipe flow thermal blooming deduced from the optical path deference variation are very suitable for the optical system with short laser propagation distance, large Fresnel number and obviously changed optical path deference.

  13. A simple and efficient method for poly-3-hydroxybutyrate quantification in diazotrophic bacteria within 5 minutes using flow cytometry

    PubMed Central

    Alves, L.P.S.; Almeida, A.T.; Cruz, L.M.; Pedrosa, F.O.; de Souza, E.M.; Chubatsu, L.S.; Müller-Santos, M.; Valdameri, G.

    2017-01-01

    The conventional method for quantification of polyhydroxyalkanoates based on whole-cell methanolysis and gas chromatography (GC) is laborious and time-consuming. In this work, a method based on flow cytometry of Nile red stained bacterial cells was established to quantify poly-3-hydroxybutyrate (PHB) production by the diazotrophic and plant-associated bacteria, Herbaspirillum seropedicae and Azospirillum brasilense. The method consists of three steps: i) cell permeabilization, ii) Nile red staining, and iii) analysis by flow cytometry. The method was optimized step-by-step and can be carried out in less than 5 min. The final results indicated a high correlation coefficient (R2=0.99) compared to a standard method based on methanolysis and GC. This method was successfully applied to the quantification of PHB in epiphytic bacteria isolated from rice roots. PMID:28099582

  14. The iFlow modelling framework v2.4: a modular idealized process-based model for flow and transport in estuaries

    NASA Astrophysics Data System (ADS)

    Dijkstra, Yoeri M.; Brouwer, Ronald L.; Schuttelaars, Henk M.; Schramkowski, George P.

    2017-07-01

    The iFlow modelling framework is a width-averaged model for the systematic analysis of the water motion and sediment transport processes in estuaries and tidal rivers. The distinctive solution method, a mathematical perturbation method, used in the model allows for identification of the effect of individual physical processes on the water motion and sediment transport and study of the sensitivity of these processes to model parameters. This distinction between processes provides a unique tool for interpreting and explaining hydrodynamic interactions and sediment trapping. iFlow also includes a large number of options to configure the model geometry and multiple choices of turbulence and salinity models. Additionally, the model contains auxiliary components, including one that facilitates easy and fast sensitivity studies. iFlow has a modular structure, which makes it easy to include, exclude or change individual model components, called modules. Depending on the required functionality for the application at hand, modules can be selected to construct anything from very simple quasi-linear models to rather complex models involving multiple non-linear interactions. This way, the model complexity can be adjusted to the application. Once the modules containing the required functionality are selected, the underlying model structure automatically ensures modules are called in the correct order. The model inserts iteration loops over groups of modules that are mutually dependent. iFlow also ensures a smooth coupling of modules using analytical and numerical solution methods. This way the model combines the speed and accuracy of analytical solutions with the versatility of numerical solution methods. In this paper we present the modular structure, solution method and two examples of the use of iFlow. In the examples we present two case studies, of the Yangtze and Scheldt rivers, demonstrating how iFlow facilitates the analysis of model results, the understanding of the underlying physics and the testing of parameter sensitivity. A comparison of the model results to measurements shows a good qualitative agreement. iFlow is written in Python and is available as open source code under the LGPL license.

  15. An Evaluation of Four Methods of Numerical Analysis for Two-Dimensional Airfoil Flows. Revision.

    DTIC Science & Technology

    1985-07-06

    distribution as determined by the Eppler and Chang potential codes for the four airfoil geometries is shown in Figures 3-6. Here, 2 n-- Cp (P-Po)/.5pUo where...SPD- 1037-01. 2) Eppler , R., and D.M. Somers. A Computer Program for the Design and Analysis of Low Speed Airfoils . NASA Technical Memorandum 80210. 3...OF NUMERICAL n ANALYSIS FORI TWO-DIMENSIONAL AIRFOIL FLOWS Roger Burke APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED DAVID TAYLOR NAVAL SHIP R

  16. A new multistage groundwater transport inverse method: presentation, evaluation, and implications

    USGS Publications Warehouse

    Anderman, Evan R.; Hill, Mary C.

    1999-01-01

    More computationally efficient methods of using concentration data are needed to estimate groundwater flow and transport parameters. This work introduces and evaluates a three‐stage nonlinear‐regression‐based iterative procedure in which trial advective‐front locations link decoupled flow and transport models. Method accuracy and efficiency are evaluated by comparing results to those obtained when flow‐ and transport‐model parameters are estimated simultaneously. The new method is evaluated as conclusively as possible by using a simple test case that includes distinct flow and transport parameters, but does not include any approximations that are problem dependent. The test case is analytical; the only flow parameter is a constant velocity, and the transport parameters are longitudinal and transverse dispersivity. Any difficulties detected using the new method in this ideal situation are likely to be exacerbated in practical problems. Monte‐Carlo analysis of observation error ensures that no specific error realization obscures the results. Results indicate that, while this, and probably other, multistage methods do not always produce optimal parameter estimates, the computational advantage may make them useful in some circumstances, perhaps as a precursor to using a simultaneous method.

  17. Analysis of bacterial fatty acids by flow modulated comprehensive two-dimensional gas chromatography with parallel flame ionization detector/mass spectrometry.

    PubMed

    Gu, Qun; David, Frank; Lynen, Frédéric; Rumpel, Klaus; Xu, Guowang; De Vos, Paul; Sandra, Pat

    2010-06-25

    Comprehensive two-dimensional gas chromatography (GCxGC) offers an interesting tool for profiling bacterial fatty acids. Flow modulated GCxGC using a commercially available system was evaluated, different parameters such as column flows and modulation time were optimized. The method was tested on bacterial fatty acid methyl esters (BAMEs) from Stenotrophomonas maltophilia LMG 958T by using parallel flame ionization detector (FID)/mass spectrometry (MS). The results are compared to data obtained using a thermal modulated GCxGC system. The data show that flow modulated GCxGC-FID/MS method can be applied in a routine environment and offers interesting perspectives for chemotaxonomy of bacteria.

  18. Aeroelastic loads prediction for an arrow wing. Task 3: Evaluation of the Boeing three-dimensional leading-edge vortex code

    NASA Technical Reports Server (NTRS)

    Manro, M. E.

    1983-01-01

    Two separated flow computer programs and a semiempirical method for incorporating the experimentally measured separated flow effects into a linear aeroelastic analysis were evaluated. The three dimensional leading edge vortex (LEV) code is evaluated. This code is an improved panel method for three dimensional inviscid flow over a wing with leading edge vortex separation. The governing equations are the linear flow differential equation with nonlinear boundary conditions. The solution is iterative; the position as well as the strength of the vortex is determined. Cases for both full and partial span vortices were executed. The predicted pressures are good and adequately reflect changes in configuration.

  19. Transonic flow analysis for rotors. Part 2: Three-dimensional, unsteady, full-potential calculation

    NASA Technical Reports Server (NTRS)

    Chang, I. C.

    1985-01-01

    A numerical method is presented for calculating the three-dimensional unsteady, transonic flow past a helicopter rotor blade of arbitrary geometry. The method solves the full-potential equations in a blade-fixed frame of reference by a time-marching implicit scheme. At the far-field, a set of first-order radiation conditions is imposed, thus minimizing the reflection of outgoing wavelets from computational boundaries. Computed results are presented to highlight radial flow effects in three dimensions, to compare surface pressure distributions to quasi-steady predictions, and to predict the flow field on a swept-tip blade. The results agree well with experimental data for both straight- and swept-tip blade geometries.

  20. Adaptive Harmonic Balance Method for Unsteady, Nonlinear, One-Dimensional Periodic Flows

    DTIC Science & Technology

    2002-09-01

    Design and Implemen- tation. May 1999. REF-2 23. Toro , Eleuterio F . Fiemann Solvers and Numerical Methods for Fluid Dynamics, chapter 15. New York...prominent for high-frequency unsteady-flows. Experimental Analysis of Splitting-induced Error To assess the actual effect of splitting error on a...VITA-1 vi List of Figures Figure Page 1.1. Experimental Pressure Data on Inlet Guide Vane Upstream of Transonic Rotating

  1. On an interface of the online system for a stochastic analysis of the varied information flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorshenin, Andrey K.; MIREA, MGUPI; Kuzmin, Victor Yu.

    The article describes a possible approach to the construction of an interface of an online asynchronous system that allows researchers to analyse varied information flows. The implemented stochastic methods are based on the mixture models and the method of moving separation of mixtures. The general ideas of the system functionality are demonstrated on an example for some moments of a finite normal mixture.

  2. Flow-controlled magnetic particle manipulation

    DOEpatents

    Grate, Jay W [West Richland, WA; Bruckner-Lea, Cynthia J [Richland, WA; Holman, David A [Las Vegas, NV

    2011-02-22

    Inventive methods and apparatus are useful for collecting magnetic materials in one or more magnetic fields and resuspending the particles into a dispersion medium, and optionally repeating collection/resuspension one or more times in the same or a different medium, by controlling the direction and rate of fluid flow through a fluid flow path. The methods provide for contacting derivatized particles with test samples and reagents, removal of excess reagent, washing of magnetic material, and resuspension for analysis, among other uses. The methods are applicable to a wide variety of chemical and biological materials that are susceptible to magnetic labeling, including, for example, cells, viruses, oligonucleotides, proteins, hormones, receptor-ligand complexes, environmental contaminants and the like.

  3. Ground-water flow in the New Jersey Coastal Plain

    USGS Publications Warehouse

    Martin, Mary

    1998-01-01

    Ground-water flow in 10 aquifers and 9 intervening confining units of the New Jersey Coastal Plain was simulated as part of the Regional Aquifer System Analysis. Data on aquifer and confining unit characteristics and on pumpage and water levels from 1918 through 1980 were incorporated into a multilayer finite-difference model. The report describes the conceptual hydrogeologic model of the unstressed flow systems, the methods and approach used in simulating flow, and the results of the simulations.

  4. Energy dissipation in the blade tip region of an axial fan

    NASA Astrophysics Data System (ADS)

    Bizjan, B.; Milavec, M.; Širok, B.; Trenc, F.; Hočevar, M.

    2016-11-01

    A study of velocity and pressure fluctuations in the tip clearance flow of an axial fan is presented in this paper. Two different rotor blade tip designs were investigated: the standard one with straight blade tips and the modified one with swept-back tip winglets. Comparison of integral sound parameters indicates a significant noise level reduction for the modified blade tip design. To study the underlying mechanisms of the energy conversion and noise generation, a novel experimental method based on simultaneous measurements of local flow velocity and pressure has also been developed and is presented here. The method is based on the phase space analysis by the use of attractors, which enable more accurate identification and determination of the local flow structures and turbulent flow properties. Specific gap flow energy derived from the pressure and velocity time series was introduced as an additional attractor parameter to assess the flow energy distribution and dissipation within the phase space, and thus determines characteristic sources of the fan acoustic emission. The attractors reveal a more efficient conversion of the pressure to kinetic flow energy in the case of the modified (tip winglet) fan blade design, and also a reduction in emitted noise levels. The findings of the attractor analysis are in a good agreement with integral fan characteristics (efficiency and noise level), while offering a much more accurate and detailed representation of gap flow phenomena.

  5. Guide to Flow Measurement for Electric Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve

    2013-01-01

    In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."

  6. Computational flow development for unsteady viscous flows: Foundation of the numerical method

    NASA Technical Reports Server (NTRS)

    Bratanow, T.; Spehert, T.

    1978-01-01

    A procedure is presented for effective consideration of viscous effects in computational development of high Reynolds number flows. The procedure is based on the interpretation of the Navier-Stokes equations as vorticity transport equations. The physics of the flow was represented in a form suitable for numerical analysis. Lighthill's concept for flow development for computational purposes was adapted. The vorticity transport equations were cast in a form convenient for computation. A statement for these equations was written using the method of weighted residuals and applying the Galerkin criterion. An integral representation of the induced velocity was applied on the basis of the Biot-Savart law. Distribution of new vorticity, produced at wing surfaces over small computational time intervals, was assumed to be confined to a thin region around the wing surfaces.

  7. Development of a High-Order Space-Time Matrix-Free Adjoint Solver

    NASA Technical Reports Server (NTRS)

    Ceze, Marco A.; Diosady, Laslo T.; Murman, Scott M.

    2016-01-01

    The growth in computational power and algorithm development in the past few decades has granted the science and engineering community the ability to simulate flows over complex geometries, thus making Computational Fluid Dynamics (CFD) tools indispensable in analysis and design. Currently, one of the pacing items limiting the utility of CFD for general problems is the prediction of unsteady turbulent ows.1{3 Reynolds-averaged Navier-Stokes (RANS) methods, which predict a time-invariant mean flowfield, struggle to provide consistent predictions when encountering even mild separation, such as the side-of-body separation at a wing-body junction. NASA's Transformative Tools and Technologies project is developing both numerical methods and physical modeling approaches to improve the prediction of separated flows. A major focus of this e ort is efficient methods for resolving the unsteady fluctuations occurring in these flows to provide valuable engineering data of the time-accurate flow field for buffet analysis, vortex shedding, etc. This approach encompasses unsteady RANS (URANS), large-eddy simulations (LES), and hybrid LES-RANS approaches such as Detached Eddy Simulations (DES). These unsteady approaches are inherently more expensive than traditional engineering RANS approaches, hence every e ort to mitigate this cost must be leveraged. Arguably, the most cost-effective approach to improve the efficiency of unsteady methods is the optimal placement of the spatial and temporal degrees of freedom (DOF) using solution-adaptive methods.

  8. Proceedings of the NASTRAN (Tradename) Users’ Colloquium (17th) Held in San Antonio, Texas on 24-28 April 1989

    DTIC Science & Technology

    1989-03-01

    statistical energy analysis , the finite clement method, and the power flow method. Experimental solutions are the most common in the literature. The authors of...to the added weights and inertias of the transducers attached to an experimental structure. Statistical energy analysis (SEA) is a computational method...Analysis and Diagnosis," Journal of Sound and Vibration, Vol. 115, No. 3, pp. 405-422 (1987). 8. Lyon, R.L., Statistical Energy Analysis of Dynamical Systems

  9. Application of computational aerodynamics methods to the design and analysis of transport aircraft

    NASA Technical Reports Server (NTRS)

    Da Costa, A. L.

    1978-01-01

    The application and validation of several computational aerodynamic methods in the design and analysis of transport aircraft is established. An assessment is made concerning more recently developed methods that solve three-dimensional transonic flow and boundary layers on wings. Capabilities of subsonic aerodynamic methods are demonstrated by several design and analysis efforts. Among the examples cited are the B747 Space Shuttle Carrier Aircraft analysis, nacelle integration for transport aircraft, and winglet optimization. The accuracy and applicability of a new three-dimensional viscous transonic method is demonstrated by comparison of computed results to experimental data

  10. Stability of mixing layers

    NASA Technical Reports Server (NTRS)

    Tam, Christopher; Krothapalli, A

    1993-01-01

    The research program for the first year of this project (see the original research proposal) consists of developing an explicit marching scheme for solving the parabolized stability equations (PSE). Performing mathematical analysis of the computational algorithm including numerical stability analysis and the determination of the proper boundary conditions needed at the boundary of the computation domain are implicit in the task. Before one can solve the parabolized stability equations for high-speed mixing layers, the mean flow must first be found. In the past, instability analysis of high-speed mixing layer has mostly been performed on mean flow profiles calculated by the boundary layer equations. In carrying out this project, it is believed that the boundary layer equations might not give an accurate enough nonparallel, nonlinear mean flow needed for parabolized stability analysis. A more accurate mean flow can, however, be found by solving the parabolized Navier-Stokes equations. The advantage of the parabolized Navier-Stokes equations is that its accuracy is consistent with the PSE method. Furthermore, the method of solution is similar. Hence, the major part of the effort of the work of this year has been devoted to the development of an explicit numerical marching scheme for the solution of the Parabolized Navier-Stokes equation as applied to the high-seed mixing layer problem.

  11. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Jaberi, F. A.; Colucci, P. J.; James, S.; Givi, P.

    1996-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES) methods for computational analysis of high-speed reacting turbulent flows. We have just completed the first year of Phase 3 of this research.

  12. Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Boyd, Joshua; Buick, James M.; Green, Simon

    2007-09-01

    The lattice Boltzmann method is modified to allow the simulation of non-Newtonian shear-dependent viscosity models. Casson and Carreau-Yasuda non-Newtonian blood viscosity models are implemented and are used to compare two-dimensional Newtonian and non-Newtonian flows in the context of simple steady flow and oscillatory flow in straight and curved pipe geometries. It is found that compared to analogous Newtonian flows, both the Casson and Carreau-Yasuda flows exhibit significant differences in the steady flow situation. In the straight pipe oscillatory flows, both models exhibit differences in velocity and shear, with the largest differences occurring at low Reynolds and Womersley numbers. Larger differences occur for the Casson model. In the curved pipe Carreau-Yasuda model, moderate differences are observed in the velocities in the central regions of the geometries, and the largest shear rate differences are observed near the geometry walls. These differences may be important for the study of atherosclerotic progression.

  13. Assessment of numerical methods for the solution of fluid dynamics equations for nonlinear resonance systems

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Yang, H. Q.

    1989-01-01

    The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.

  14. Analysis of Instabilities in Non-Axisymmetric Hypersonic Boundary Layers Over Cones

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; White, Jeffery A.

    2010-01-01

    Hypersonic flows over circular cones constitute one of the most important generic configurations for fundamental aerodynamic and aerothermodynamic studies. In this paper, numerical computations are carried out for Mach 6 flows over a 7-degree half-angle cone with two different flow incidence angles and a compression cone with a large concave curvature. Instability wave and transition-related flow physics are investigated using a series of advanced stability methods ranging from conventional linear stability theory (LST) and a higher-fidelity linear and nonlinear parabolized stability equations (PSE), to the 2D eigenvalue analysis based on partial differential equations. Computed N factor distribution pertinent to various instability mechanisms over the cone surface provides initial assessments of possible transition fronts and a guide to corresponding disturbance characteristics such as frequency and azimuthal wave numbers. It is also shown that strong secondary instability that eventually leads to transition to turbulence can be simulated very efficiently using a combination of advanced stability methods described above.

  15. Analysis of high-incidence separated flow past airfoils

    NASA Technical Reports Server (NTRS)

    Chia, K. N.; Osswald, G. A.; Chia, U.

    1989-01-01

    An unsteady Navier-Stokes (NS) analysis is developed and used to carefully examine high-incidence aerodynamic separated flows past airfoils. Clustered conformal C-grids are employed for the 12 percent thick symmetric Joukowski airfoil as well as for the NACA 0012 airfoil with a sharp trailing edge. The clustering is controlled by appropriate one-dimensional stretching transformations. An attempt is made to resolve many of the dominant scales of an unsteady flow with massive separation, while maintaining the transformation metrics to be smooth and continuous in the entire flow field. A fully implicit time-marching alternating-direction implicit-block Gaussian elimination (ADI-BGE) method is employed, in which no use is made of any explicit artificial dissipation. Detailed results are obtained for massively separated, unsteady flow past symmetric Joukowski and NACA 0012 airfoils.

  16. Power flow control using quadrature boosters

    NASA Astrophysics Data System (ADS)

    Sadanandan, Sandeep N.

    A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.

  17. Functional analysis and classification of phytoplankton based on data from an automated flow cytometer.

    PubMed

    Malkassian, Anthony; Nerini, David; van Dijk, Mark A; Thyssen, Melilotus; Mante, Claude; Gregori, Gerald

    2011-04-01

    Analytical flow cytometry (FCM) is well suited for the analysis of phytoplankton communities in fresh and sea waters. The measurement of light scatter and autofluorescence properties of particles by FCM provides optical fingerprints, which enables different phytoplankton groups to be separated. A submersible version of the CytoSense flow cytometer (the CytoSub) has been designed for in situ autonomous sampling and analysis, making it possible to monitor phytoplankton at a short temporal scale and obtain accurate information about its dynamics. For data analysis, a manual clustering is usually performed a posteriori: data are displayed on histograms and scatterplots, and group discrimination is made by drawing and combining regions (gating). The purpose of this study is to provide greater objectivity in the data analysis by applying a nonmanual and consistent method to automatically discriminate clusters of particles. In other words, we seek for partitioning methods based on the optical fingerprints of each particle. As the CytoSense is able to record the full pulse shape for each variable, it quickly generates a large and complex dataset to analyze. The shape, length, and area of each curve were chosen as descriptors for the analysis. To test the developed method, numerical experiments were performed on simulated curves. Then, the method was applied and validated on phytoplankton cultures data. Promising results have been obtained with a mixture of various species whose optical fingerprints overlapped considerably and could not be accurately separated using manual gating. Copyright © 2011 International Society for Advancement of Cytometry.

  18. A numerical method for electro-kinetic flow with deformable fluid interfaces

    NASA Astrophysics Data System (ADS)

    Booty, Michael; Ma, Manman; Siegel, Michael

    2013-11-01

    We consider two-phase flow of ionic fluids whose motion is driven by an imposed electric field. At a fluid interface, a screening cloud of ions develops and forms an electro-chemical double layer or Debye layer. The imposed field acts on this induced charge distribution, resulting in a strong slip flow near the interface. We formulate a ``hybrid'' or multiscale numerical method in the thin Debye layer limit that incorporates an asymptotic analysis of the electrostatic potential and fluid dynamics in the Debye layer into a boundary integral solution of the full moving boundary problem. Results of the method are presented that show time-dependent deformation and steady state drop interface shapes when the timescale for charge-up of the Debye layer is either much less than or comparable to the timescale of the flow.

  19. The computation of three-dimensional flows using unstructured grids

    NASA Technical Reports Server (NTRS)

    Morgan, K.; Peraire, J.; Peiro, J.; Hassan, O.

    1991-01-01

    A general method is described for automatically discretizing, into unstructured assemblies of tetrahedra, the three-dimensional solution domains of complex shape which are of interest in practical computational aerodynamics. An algorithm for the solution of the compressible Euler equations which can be implemented on such general unstructured tetrahedral grids is described. This is an explicit cell-vertex scheme which follows a general Taylor-Galerkin philosophy. The approach is employed to compute a transonic inviscid flow over a standard wing and the results are shown to compare favorably with experimental observations. As a more practical demonstration, the method is then applied to the analysis of inviscid flow over a complete modern fighter configuration. The effect of using mesh adaptivity is illustrated when the method is applied to the solution of high speed flow in an engine inlet.

  20. Single-phase power distribution system power flow and fault analysis

    NASA Technical Reports Server (NTRS)

    Halpin, S. M.; Grigsby, L. L.

    1992-01-01

    Alternative methods for power flow and fault analysis of single-phase distribution systems are presented. The algorithms for both power flow and fault analysis utilize a generalized approach to network modeling. The generalized admittance matrix, formed using elements of linear graph theory, is an accurate network model for all possible single-phase network configurations. Unlike the standard nodal admittance matrix formulation algorithms, the generalized approach uses generalized component models for the transmission line and transformer. The standard assumption of a common node voltage reference point is not required to construct the generalized admittance matrix. Therefore, truly accurate simulation results can be obtained for networks that cannot be modeled using traditional techniques.

  1. Analysis of the dynamic response of a supersonic inlet to flow-field perturbations upstream of the normal shock

    NASA Technical Reports Server (NTRS)

    Cole, G. L.; Willoh, R. G.

    1975-01-01

    A linearized mathematical analysis is presented for determining the response of normal shock position and subsonic duct pressures to flow-field perturbations upstream of the normal shock in mixed-compression supersonic inlets. The inlet duct cross-sectional area variation is approximated by constant-area sections; this approximation results in one-dimensional wave equations. A movable normal shock separates the supersonic and subsonic flow regions, and a choked exit is assumed for the inlet exit condition. The analysis leads to a closed-form matrix solution for the shock position and pressure transfer functions. Analytical frequency response results are compared with experimental data and a method of characteristics solution.

  2. Analysis of transonic flow about lifting wing-body configurations

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.

    1975-01-01

    An analytical solution was obtained for the perturbation velocity potential for transonic flow about lifting wing-body configurations with order-one span-length ratios and small reduced-span-length ratios and equivalent-thickness-length ratios. The analysis is performed with the method of matched asymptotic expansions. The angles of attack which are considered are small but are large enough to insure that the effects of lift in the region far from the configuration are either dominant or comparable with the effects of thickness. The modification to the equivalence rule which accounts for these lift effects is determined. An analysis of transonic flow about lifting wings with large aspect ratios is also presented.

  3. New technologies for advanced three-dimensional optimum shape design in aeronautics

    NASA Astrophysics Data System (ADS)

    Dervieux, Alain; Lanteri, Stéphane; Malé, Jean-Michel; Marco, Nathalie; Rostaing-Schmidt, Nicole; Stoufflet, Bruno

    1999-05-01

    The analysis of complex flows around realistic aircraft geometries is becoming more and more predictive. In order to obtain this result, the complexity of flow analysis codes has been constantly increasing, involving more refined fluid models and sophisticated numerical methods. These codes can only run on top computers, exhausting their memory and CPU capabilities. It is, therefore, difficult to introduce best analysis codes in a shape optimization loop: most previous works in the optimum shape design field used only simplified analysis codes. Moreover, as the most popular optimization methods are the gradient-based ones, the more complex the flow solver, the more difficult it is to compute the sensitivity code. However, emerging technologies are contributing to make such an ambitious project, of including a state-of-the-art flow analysis code into an optimisation loop, feasible. Among those technologies, there are three important issues that this paper wishes to address: shape parametrization, automated differentiation and parallel computing. Shape parametrization allows faster optimization by reducing the number of design variable; in this work, it relies on a hierarchical multilevel approach. The sensitivity code can be obtained using automated differentiation. The automated approach is based on software manipulation tools, which allow the differentiation to be quick and the resulting differentiated code to be rather fast and reliable. In addition, the parallel algorithms implemented in this work allow the resulting optimization software to run on increasingly larger geometries. Copyright

  4. Study on Edge Thickening Flow Forming Using the Finite Elements Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Park, Jin Sung; Cho, Chongdu

    2011-08-01

    This study is to examine the forming features of flow stress property and the incremental forming method with increasing the thickness of material. Recently, the optimized forming method is widely studied through the finite element analysis to optimize forming process conditions in many different forming fields. The optimal forming method should be adopted to meet geometric requirements as the reduction in volume per unit length of material such as forging, rolling, spinning etc. However conventional studies have not dealt with issue regarding volume per unit length. For the study we use the finite element method and model a gear part of an automotive engine flywheel as the study model, which is a weld assembly of a plate and a gear with respective different thickness. In simulation of the present study, a optimized forming condition for gear machining, considering the thickness of the outer edge of flywheel is studied using the finite elements analysis for the increasing thickness of the forming method. It is concluded from the study that forming method to increase the thickness per unit length for gear machining is reasonable using the finite elements analysis and forming test.

  5. Operational considerations for laminar flow aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, Dal V.; Wagner, Richard D.

    1986-01-01

    Considerable progress has been made in the development of laminar flow technology for commercial transports during the NASA Aircraft Energy Efficiency (ACEE) laminar flow program. Practical, operational laminar flow control (LFC) systems have been designed, fabricated, and are undergoing flight testing. New materials, fabrication methods, analysis techniques, and design concepts were developed and show much promise. The laminar flow control systems now being flight tested on the NASA Jetstar aircraft are complemented by natural laminar flow flight tests to be accomplished with the F-14 variable-sweep transition flight experiment. An overview of some operational aspects of this exciting program is given.

  6. Analysis of flow field characteristics in IC equipment chamber based on orthogonal design

    NASA Astrophysics Data System (ADS)

    Liu, W. F.; Yang, Y. Y.; Wang, C. N.

    2017-01-01

    This paper aims to study the influence of the configuration of processing chamber as a part of IC equipment on flow field characteristics. Four parameters, including chamber height, chamber diameter, inlet mass flow rate and outlet area, are arranged using orthogonally design method to study their influence on flow distribution in the processing chamber with the commercial software-Fluent. The velocity, pressure and temperature distribution above the holder were analysed respectively. The velocity difference value of the gas flow above the holder is defined as the evaluation criteria to evaluate the uniformity of the gas flow. The quantitative relationship between key parameters and the uniformity of gas flow was found through analysis of experimental results. According to our study, the chamber height is the most significant factor, and then follows the outlet area, chamber diameter and inlet mass flow rate. This research can provide insights into the study and design of configuration of etcher, plasma enhanced chemical vapor deposition (PECVD) equipment, and other systems with similar configuration and processing condition.

  7. Supersonic Flow of Chemically Reacting Gas-Particle Mixtures. Volume 2: RAMP - A Computer Code for Analysis of Chemically Reacting Gas-Particle Flows

    NASA Technical Reports Server (NTRS)

    Penny, M. M.; Smith, S. D.; Anderson, P. G.; Sulyma, P. R.; Pearson, M. L.

    1976-01-01

    A computer program written in conjunction with the numerical solution of the flow of chemically reacting gas-particle mixtures was documented. The solution to the set of governing equations was obtained by utilizing the method of characteristics. The equations cast in characteristic form were shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The characteristic directions for the gas-particle system are found to be the conventional gas Mach lines, the gas streamlines and the particle streamlines. The basic mesh construction for the flow solution is along streamlines and normals to the streamlines for axisymmetric or two-dimensional flow. The analysis gives detailed information of the supersonic flow and provides for a continuous solution of the nozzle and exhaust plume flow fields. Boundary conditions for the flow solution are either the nozzle wall or the exhaust plume boundary.

  8. A classification scheme for turbulent flows based on their joint velocity-intermittency structure

    NASA Astrophysics Data System (ADS)

    Keylock, C. J.; Nishimura, K.; Peinke, J.

    2011-12-01

    Kolmogorov's classic theory for turbulence assumed an independence between velocity increments and the value for the velocity itself. However, this assumption is questionable, particularly in complex geophysical flows. Here we propose a framework for studying velocity-intermittency coupling that is similar in essence to the popular quadrant analysis method for studying near-wall flows. However, we study the dominant (longitudinal) velocity component along with a measure of the roughness of the signal, given mathematically by its series of Hölder exponents. Thus, we permit a possible dependence between velocity and intermittency. We compare boundary layer data obtained in a wind tunnel to turbulent jets and wake flows. These flow classes all have distinct velocity-intermittency characteristics, which cause them to be readily distinguished using our technique. Our method is much simpler and quicker to apply than approaches that condition the velocity increment statistics at some scale, r, on the increment statistics at a neighbouring, larger spatial scale, r+Δ, and the velocity itself. Classification of environmental flows is then possible based on their similarities to the idealised flow classes and we demonstrate this using laboratory data for flow in a parallel-channel confluence where the region of flow recirculation in the lee of the step is discriminated as a flow class distinct from boundary layer, jet and wake flows. Hence, using our method, it is possible to assign a flow classification to complex geophysical, turbulent flows depending upon which idealised flow class they most resemble.

  9. An Application of the Acoustic Similarity Law to the Numerical Analysis of Centrifugal Fan Noise

    NASA Astrophysics Data System (ADS)

    Jeon, Wan-Ho; Lee, Duck-Joo; Rhee, Huinam

    Centrifugal fans, which are frequently used in our daily lives and various industries, usually make severe noise problems. Generally, the centrifugal fan noise consists of tones at the blade passing frequency and its higher harmonics. These tonal sounds come from the interaction between the flow discharged from the impeller and the cutoff in the casing. Prediction of the noise from a centrifugal fan becomes more necessary to optimize the design to meet both the performance and noise criteria. However, only some limited studies on noise prediction method exist because there are difficulties in obtaining detailed information about the flow field and casing effect on noise radiation. This paper aims to investigate the noise generation mechanism of a centrifugal fan and to develop a prediction method for the unsteady flow and acoustic pressure fields. In order to do this, a numerical analysis method using acoustic similarity law is proposed, and it is verified that the method can predict the noise generation mechanism very well by comparing the predicted results with available experimental results.

  10. The structure of evaporating and combusting sprays: Measurements and predictions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Faeth, G. M.

    1984-01-01

    An apparatus developed, to allow observations of monodisperse sprays, consists of a methane-fueled turbulent jet diffusion flame with monodisperse methanol drops injected at the burner exit. Mean and fluctuating-phase velocities, drop sizes, drop-mass fluxes and mean-gas temperatures were measured. Initial drop diameters of 100 and 180 microns are being considered in order to vary drop penetration in the flow and effects of turbulent dispersion. Baseline tests of the burner flame with no drops present were also conducted. Calibration tests, needed to establish methods for predicting drop transport, involve drops supported in the post-flame region of a flat-flame burner operated at various mixture ratios. Spray models which are being evaluated include: (1) locally homogeneous flow (LFH) analysis, (2) deterministic separated flow (DSF) analysis and (3) stochastic separated flow (SSF) analysis.

  11. 40 CFR Table 2 to Subpart Cccc of... - Requirements for Performance Tests

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... port's location and the number of traverse points Method 1* 3. Measure volumetric flow rate. Method 2* 4. Perform gas analysis to determine the dry molecular weight of the stack gas Method 3* 5...

  12. Determination of respiratory gas flow by electrical impedance tomography in an animal model of mechanical ventilation

    PubMed Central

    2014-01-01

    Background A recent method determines regional gas flow of the lung by electrical impedance tomography (EIT). The aim of this study is to show the applicability of this method in a porcine model of mechanical ventilation in healthy and diseased lungs. Our primary hypothesis is that global gas flow measured by EIT can be correlated with spirometry. Our secondary hypothesis is that regional analysis of respiratory gas flow delivers physiologically meaningful results. Methods In two sets of experiments n = 7 healthy pigs and n = 6 pigs before and after induction of lavage lung injury were investigated. EIT of the lung and spirometry were registered synchronously during ongoing mechanical ventilation. In-vivo aeration of the lung was analysed in four regions-of-interest (ROI) by EIT: 1) global, 2) ventral (non-dependent), 3) middle and 4) dorsal (dependent) ROI. Respiratory gas flow was calculated by the first derivative of the regional aeration curve. Four phases of the respiratory cycle were discriminated. They delivered peak and late inspiratory and expiratory gas flow (PIF, LIF, PEF, LEF) characterizing early or late inspiration or expiration. Results Linear regression analysis of EIT and spirometry in healthy pigs revealed a very good correlation measuring peak flow and a good correlation detecting late flow. PIFEIT = 0.702 · PIFspiro + 117.4, r2 = 0.809; PEFEIT = 0.690 · PEFspiro-124.2, r2 = 0.760; LIFEIT = 0.909 · LIFspiro + 27.32, r2 = 0.572 and LEFEIT = 0.858 · LEFspiro-10.94, r2 = 0.647. EIT derived absolute gas flow was generally smaller than data from spirometry. Regional gas flow was distributed heterogeneously during different phases of the respiratory cycle. But, the regional distribution of gas flow stayed stable during different ventilator settings. Moderate lung injury changed the regional pattern of gas flow. Conclusions We conclude that the presented method is able to determine global respiratory gas flow of the lung in different phases of the respiratory cycle. Additionally, it delivers meaningful insight into regional pulmonary characteristics, i.e. the regional ability of the lung to take up and to release air. PMID:24779960

  13. Viscous and Interacting Flow Field Effects.

    DTIC Science & Technology

    1980-06-01

    in the inviscid flow analysis using free vortex sheets whose shapes are determined by iteration. The outer iteration employs boundary layer...Methods, Inc. which replaces the source distribution in the separation zone by a vortex wake model . This model is described in some detail in (2), but...in the potential flow is obtained using linearly varying vortex singularities distributed on planar panels. The wake is represented by sheets of

  14. Bayesian forecasting and uncertainty quantifying of stream flows using Metropolis-Hastings Markov Chain Monte Carlo algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Hongrui; Wang, Cheng; Wang, Ying; Gao, Xiong; Yu, Chen

    2017-06-01

    This paper presents a Bayesian approach using Metropolis-Hastings Markov Chain Monte Carlo algorithm and applies this method for daily river flow rate forecast and uncertainty quantification for Zhujiachuan River using data collected from Qiaotoubao Gage Station and other 13 gage stations in Zhujiachuan watershed in China. The proposed method is also compared with the conventional maximum likelihood estimation (MLE) for parameter estimation and quantification of associated uncertainties. While the Bayesian method performs similarly in estimating the mean value of daily flow rate, it performs over the conventional MLE method on uncertainty quantification, providing relatively narrower reliable interval than the MLE confidence interval and thus more precise estimation by using the related information from regional gage stations. The Bayesian MCMC method might be more favorable in the uncertainty analysis and risk management.

  15. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Frankel, S. H.; Adumitroaie, V.; Sabini, G.; Madnia, C. K.

    1993-01-01

    The primary objective of this research is to extend current capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first two years of this research have been concentrated on a priori investigations of single-point Probability Density Function (PDF) methods for providing subgrid closures in reacting turbulent flows. In the efforts initiated in the third year, our primary focus has been on performing actual LES by means of PDF methods. The approach is based on assumed PDF methods and we have performed extensive analysis of turbulent reacting flows by means of LES. This includes simulations of both three-dimensional (3D) isotropic compressible flows and two-dimensional reacting planar mixing layers. In addition to these LES analyses, some work is in progress to assess the extent of validity of our assumed PDF methods. This assessment is done by making detailed companions with recent laboratory data in predicting the rate of reactant conversion in parallel reacting shear flows. This report provides a summary of our achievements for the first six months of the third year of this program.

  16. Effective star tracking method based on optical flow analysis for star trackers.

    PubMed

    Sun, Ting; Xing, Fei; Wang, Xiaochu; Li, Jin; Wei, Minsong; You, Zheng

    2016-12-20

    Benefiting from rapid development of imaging sensor technology, modern optical technology, and a high-speed computing chip, the star tracker's accuracy, dynamic performance, and update rate have been greatly improved with low power consumption and miniature size. The star tracker is currently one of the most competitive attitude measurement sensors. However, due to restrictions of the optical imaging system, difficulties still exist in moving star spot detection and star tracking when in special motion conditions. An effective star tracking method based on optical flow analysis for star trackers is proposed in this paper. Spot-based optical flow, based on a gray gradient between two adjacent star images, is analyzed to distinguish the star spot region and obtain an accurate star spot position so that the star tracking can keep continuous under high dynamic conditions. The obtained star vectors and extended Kalman filter (EKF) are then combined to conduct an angular velocity estimation to ensure region prediction of the star spot; this can be combined with the optical flow analysis result. Experiment results show that the method proposed in this paper has advantages in conditions of large angular velocity and large angular acceleration, despite the presence of noise. Higher functional density and better performance can be achieved; thus, the star tracker can be more widely applied in small satellites, remote sensing, and other complex space missions.

  17. Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics

    PubMed Central

    Sgier, Linn; Freimann, Remo; Zupanic, Anze; Kroll, Alexandra

    2016-01-01

    Biofilms serve essential ecosystem functions and are used in different technical applications. Studies from stream ecology and waste-water treatment have shown that biofilm functionality depends to a great extent on community structure. Here we present a fast and easy-to-use method for individual cell-based analysis of stream biofilms, based on stain-free flow cytometry and visualization of the high-dimensional data by viSNE. The method allows the combined assessment of community structure, decay of phototrophic organisms and presence of abiotic particles. In laboratory experiments, it allows quantification of cellular decay and detection of survival of larger cells after temperature stress, while in the field it enables detection of community structure changes that correlate with known environmental drivers (flow conditions, dissolved organic carbon, calcium) and detection of microplastic contamination. The method can potentially be applied to other biofilm types, for example, for inferring community structure for environmental and industrial research and monitoring. PMID:27188265

  18. Simple and clean determination of tetracyclines by flow injection analysis

    NASA Astrophysics Data System (ADS)

    Rodríguez, Michael Pérez; Pezza, Helena Redigolo; Pezza, Leonardo

    2016-01-01

    An environmentally reliable analytical methodology was developed for direct quantification of tetracycline (TC) and oxytetracycline (OTC) using continuous flow injection analysis with spectrophotometric detection. The method is based on the diazo coupling reaction between the tetracyclines and diazotized sulfanilic acid in a basic medium, resulting in the formation of an intense orange azo compound that presents maximum absorption at 434 nm. Experimental design was used to optimize the analytical conditions. The proposed technique was validated over the concentration range of 1 to 40 μg mL- 1, and was successfully applied to samples of commercial veterinary pharmaceuticals. The detection (LOD) and quantification (LOQ) limits were 0.40 and 1.35 μg mL- 1, respectively. The samples were also analyzed by an HPLC method, and the results showed agreement with the proposed technique. The new flow injection method can be immediately used for quality control purposes in the pharmaceutical industry, facilitating monitoring in real time during the production processes of tetracycline formulations for veterinary use.

  19. Thermal stability analysis of a superconducting magnet considering heat flow between magnet surface and liquid helium

    NASA Astrophysics Data System (ADS)

    Jang, J. Y.; Hwang, Y. J.; Ahn, M. C.; Choi, Y. S.

    2018-07-01

    This paper represents a numerical calculation method that enables highly-accurate simulations on temperature analysis of superconducting magnets considering the heat flow between the magnet and liquid helium during a quench. A three-dimensional (3D) superconducting magnet space was divided into many cells and the finite-difference method (FDM) was adopted to calculate the superconducting magnet temperatures governed by the heat transfer and joule heating of the each cell during a quench. To enhance the accuracy of the temperature calculations during a quench, the heat flow between the superconducting magnet surface and liquid helium, which lowers the magnet temperatures, was considered in this work. The electrical equation coupled with the governing thermal equation was also applied to calculate the change of the decay of the magnet current related to the joule heating. The proposed FDM method for temperatures calculation of a superconducting magnet during a quench process achieved results that were in good agreement with those obtained from an experiment.

  20. Improved pressure contour analysis for estimating cardiac stroke volume using pulse wave velocity measurement.

    PubMed

    Kamoi, Shun; Pretty, Christopher; Balmer, Joel; Davidson, Shaun; Pironet, Antoine; Desaive, Thomas; Shaw, Geoffrey M; Chase, J Geoffrey

    2017-04-24

    Pressure contour analysis is commonly used to estimate cardiac performance for patients suffering from cardiovascular dysfunction in the intensive care unit. However, the existing techniques for continuous estimation of stroke volume (SV) from pressure measurement can be unreliable during hemodynamic instability, which is inevitable for patients requiring significant treatment. For this reason, pressure contour methods must be improved to capture changes in vascular properties and thus provide accurate conversion from pressure to flow. This paper presents a novel pressure contour method utilizing pulse wave velocity (PWV) measurement to capture vascular properties. A three-element Windkessel model combined with the reservoir-wave concept are used to decompose the pressure contour into components related to storage and flow. The model parameters are identified beat-to-beat from the water-hammer equation using measured PWV, wave component of the pressure, and an estimate of subject-specific aortic dimension. SV is then calculated by converting pressure to flow using identified model parameters. The accuracy of this novel method is investigated using data from porcine experiments (N = 4 Pietrain pigs, 20-24.5 kg), where hemodynamic properties were significantly altered using dobutamine, fluid administration, and mechanical ventilation. In the experiment, left ventricular volume was measured using admittance catheter, and aortic pressure waveforms were measured at two locations, the aortic arch and abdominal aorta. Bland-Altman analysis comparing gold-standard SV measured by the admittance catheter and estimated SV from the novel method showed average limits of agreement of ±26% across significant hemodynamic alterations. This result shows the method is capable of estimating clinically acceptable absolute SV values according to Critchely and Critchely. The novel pressure contour method presented can accurately estimate and track SV even when hemodynamic properties are significantly altered. Integrating PWV measurements into pressure contour analysis improves identification of beat-to-beat changes in Windkessel model parameters, and thus, provides accurate estimate of blood flow from measured pressure contour. The method has great potential for overcoming weaknesses associated with current pressure contour methods for estimating SV.

  1. Development of a three-dimensional supersonic inlet flow analysis

    NASA Technical Reports Server (NTRS)

    Buggeln, R. C.; Mcdonald, H.; Levy, R.; Kreskovsky, J. P.

    1980-01-01

    A method for computing three dimensional flow in supersonic inlets is described. An approximate set of governing equations is given for viscous flows which have a primary flow direction. The governing equations are written in general orthogonal coordinates. These equations are modified in the subsonic region of the flow to prevent the phenomenon of branching. Results are presented for the two sample cases: a Mach number equals 2.5 flow in a square duct, and a Mach number equals 3.0 flow in a research jet engine inlet. In the latter case the computed results are compared with the experimental data. A users' manual is included.

  2. Blood oxygenation and flow measurements using a single 720-nm tunable V-cavity laser.

    PubMed

    Feng, Yafei; Deng, Haoyu; Chen, Xin; He, Jian-Jun

    2017-08-01

    We propose and demonstrate a single-laser-based sensing method for measuring both blood oxygenation and microvascular blood flow. Based on the optimal wavelength range found from theoretical analysis on differential absorption based blood oxygenation measurement, we designed and fabricated a 720-nm-band wavelength tunable V-cavity laser. Without any grating or bandgap engineering, the laser has a wavelength tuning range of 14.1 nm. By using the laser emitting at 710.3 nm and 724.4 nm to measure the oxygenation and blood flow, we experimentally demonstrate the proposed method.

  3. Rapid Assessment of Genotoxicity by Flow Cytometric Detection of Cell Cycle Alterations.

    PubMed

    Bihari, Nevenka

    2017-01-01

    Flow cytometry is a convenient method for the determination of genotoxic effects of environmental pollution and can reveal genotoxic compounds in unknown environmental mixtures. It is especially suitable for the analyses of large numbers of samples during monitoring programs. The speed of detection is one of the advantages of this technique which permits the acquisition of 10 4 -10 5 cells per sample in 5 min. This method can rapidly detect cell cycle alterations resulting from DNA damage. The outcome of such an analysis is a diagram of DNA content across the cell cycle which indicates cell proliferation, G 2 arrests, G 1 delays, apoptosis, and ploidy.Here, we present the flow cytometric procedure for rapid assessment of genotoxicity via detection of cell cycle alterations. The described protocol simplifies the analysis of genotoxic effects in marine environments and is suitable for monitoring purposes. It uses marine mussel cells in the analysis and can be adapted to investigations on a broad range of marine invertebrates.

  4. Defining the ecological hydrology of Taiwan Rivers using multivariate statistical methods

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Wu, Tzu-Ching; Tsai, Wen-Ping; Herricks, Edwin E.

    2009-09-01

    SummaryThe identification and verification of ecohydrologic flow indicators has found new support as the importance of ecological flow regimes is recognized in modern water resources management, particularly in river restoration and reservoir management. An ecohydrologic indicator system reflecting the unique characteristics of Taiwan's water resources and hydrology has been developed, the Taiwan ecohydrological indicator system (TEIS). A major challenge for the water resources community is using the TEIS to provide environmental flow rules that improve existing water resources management. This paper examines data from the extensive network of flow monitoring stations in Taiwan using TEIS statistics to define and refine environmental flow options in Taiwan. Multivariate statistical methods were used to examine TEIS statistics for 102 stations representing the geographic and land use diversity of Taiwan. The Pearson correlation coefficient showed high multicollinearity between the TEIS statistics. Watersheds were separated into upper and lower-watershed locations. An analysis of variance indicated significant differences between upstream, more natural, and downstream, more developed, locations in the same basin with hydrologic indicator redundancy in flow change and magnitude statistics. Issues of multicollinearity were examined using a Principal Component Analysis (PCA) with the first three components related to general flow and high/low flow statistics, frequency and time statistics, and quantity statistics. These principle components would explain about 85% of the total variation. A major conclusion is that managers must be aware of differences among basins, as well as differences within basins that will require careful selection of management procedures to achieve needed flow regimes.

  5. Estimation of natural historical flows for the Manitowish River near Manitowish Waters, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.; Reneau, Paul C.; Robertson, Dale M.

    2012-01-01

    The Wisconsin Department of Natural Resources is charged with oversight of dam operations throughout Wisconsin and is considering modifications to the operating orders for the Rest Lake Dam in Vilas County, Wisconsin. State law requires that the operation orders be tied to natural low flows at the dam. Because the presence of the dam confounds measurement of natural flows, the U.S. Geological Survey, in cooperation with the Wisconsin Department of Natural Resources, installed streamflow-gaging stations and developed two statistical methods to improve estimates of natural flows at the Rest Lake Dam. Two independent methods were used to estimate daily natural flow for the Manitowish River approximately 1 mile downstream of the Rest Lake Dam. The first method was an adjusted drainage-area ratio method, which used a regression analysis that related measured water yield (flow divided by watershed area) from short-term (2009–11) gaging stations upstream of the Manitowish Chain of Lakes to the water yield from two nearby long-term gaging stations in order to extend the flow record (1991–2011). In this approach, the computed flows into the Chain of Lakes at the upstream gaging stations were multiplied by a coefficient to account for the monthly hydrologic contributions (precipitation, evaporation, groundwater, and runoff) associated with the additional watershed area between the upstream gaging stations and the dam at the outlet of the Chain of Lakes (Rest Lake Dam). The second method used to estimate daily natural flow at the Rest Lake Dam was a water-budget approach, which used lake stage and dam outflow data provided by the dam operator. A water-budget model was constructed and then calibrated with an automated parameter-estimation program by matching simulated flow-duration statistics with measured flow-duration statistics at the upstream gaging stations. After calibration of the water-budget model, the model was used to compute natural flow at the dam from 1973 to 2011. Daily natural flows at the dam, as computed by the adjusted drainage-area ratio method and the water-budget method, were used to compute monthly flow-duration values for the period of historical data available for each method. Monthly flow-durations provide a means for evaluating the frequency and range in flows that have been observed for each month over the course of many years. Both methods described the pattern and timing of measured high-flow and low-flow events at the upstream gaging stations. The adjusted drainage-area ratio method generally had smaller residual errors across the full range of observed flows and had smaller monthly biases than the water-budget method. Although it is not possible to evaluate which method may be more "correct" for estimating monthly natural flows at the dam, comparisons between the results of each method indicate that the adjusted drainage-area ratio method may be susceptible to biases at high flows due to isolated storms outside of the Manitowish River watershed. Conversely, it appears that the water-budget method may be susceptible to biases at low flows because of its sensitivity to the accuracy of reported lake stage and outflows, as well as effects of upstream diversions that could not be fully compensated for with this method. Results from both methods are useful for understanding the natural flow patterns at the dam. Flows for both methods have similar patterns, with high median flows in spring and low median flows in late summer. Similarly, the range from monthly high-flow durations to low-flow durations increases during spring, decreases during summer, and increases again during fall. These seasonal patterns illustrate a challenge with interpreting a single value of natural low flow. That is, a natural low flow computed for September is not representative of a natural low flow in April. Moreover, alteration of natural flows caused by storing water in the Chain of Lakes during spring and releasing it in fall causes a change in the timing of high and low flows compared with natural conditions. That is, the lowest reported dam outflows occurred in spring and highest reported outflows occurred in fall, which is opposite the natural patterns.

  6. Generalisation of physical habitat-discharge relationships

    NASA Astrophysics Data System (ADS)

    Booker, D. J.; Acreman, M. C.

    2007-01-01

    Physical habitat is increasingly used worldwide as a measure of river ecosystem health when assessing changes to river flows, such as those caused by abstraction. The major drawback with this approach is that defining precisely the relationships between physical habitat and flow for a given river reach requires considerable data collection and analysis. Consequently, widely used models such as the Physical Habitat Simulation (PHABSIM) system are expensive to apply. There is, thus, a demand for rapid methods for defining habitat-discharge relationships from simple field measurements. This paper reports the analysis of data from 63 sites in the UK where PHABSIM has been applied. The results demonstrate that there are strong relationships between single measurements of channel form and river hydraulics and the habitat available for target species. The results can form the basis of a method to estimate sensitivity of physical habitat to flow change by visiting a site at only one flow. Furthermore, the uncertainty in estimates reduces as more information is collected. This allows the user to select the level of investment in data collection appropriate for the desired confidence in the estimates. The method is demonstrated using habitat indicators for different life stages of Atlantic salmon, brown trout, roach and dace.

  7. Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data

    NASA Astrophysics Data System (ADS)

    Mallast, U.; Gloaguen, R.; Geyer, S.; Rödiger, T.; Siebert, C.

    2011-08-01

    In this paper we present a semi-automatic method to infer groundwater flow-paths based on the extraction of lineaments from digital elevation models. This method is especially adequate in remote and inaccessible areas where in-situ data are scarce. The combined method of linear filtering and object-based classification provides a lineament map with a high degree of accuracy. Subsequently, lineaments are differentiated into geological and morphological lineaments using auxiliary information and finally evaluated in terms of hydro-geological significance. Using the example of the western catchment of the Dead Sea (Israel/Palestine), the orientation and location of the differentiated lineaments are compared to characteristics of known structural features. We demonstrate that a strong correlation between lineaments and structural features exists. Using Euclidean distances between lineaments and wells provides an assessment criterion to evaluate the hydraulic significance of detected lineaments. Based on this analysis, we suggest that the statistical analysis of lineaments allows a delineation of flow-paths and thus significant information on groundwater movements. To validate the flow-paths we compare them to existing results of groundwater models that are based on well data.

  8. Spatiotemporal image correlation analysis of blood flow in branched vessel networks of zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Ceffa, Nicolo G.; Cesana, Ilaria; Collini, Maddalena; D'Alfonso, Laura; Carra, Silvia; Cotelli, Franco; Sironi, Laura; Chirico, Giuseppe

    2017-10-01

    Ramification of blood circulation is relevant in a number of physiological and pathological conditions. The oxygen exchange occurs largely in the capillary bed, and the cancer progression is closely linked to the angiogenesis around the tumor mass. Optical microscopy has made impressive improvements in in vivo imaging and dynamic studies based on correlation analysis of time stacks of images. Here, we develop and test advanced methods that allow mapping the flow fields in branched vessel networks at the resolution of 10 to 20 μm. The methods, based on the application of spatiotemporal image correlation spectroscopy and its extension to cross-correlation analysis, are applied here to the case of early stage embryos of zebrafish.

  9. Mathematical simulation of forced expiration.

    PubMed

    Elad, D; Kamm, R D; Shapiro, A H

    1988-07-01

    Flow limitation during forced expiration is simulated by a mathematical model. This model draws on the pressure-area law obtained in the accompanying paper, and the methods of analysis for one-dimensional flow in collapsible tubes developed by Shapiro (Trans. ASME J. Biomech. Eng. 99: 126-147, 1977). These methods represent an improvement over previous models in that 1) the effects of changing lung volume and of parenchymal-bronchial interdependence are simulated; 2) a more realistic representation of collapsed airways is employed; 3) a solution is obtained mouthward of the flow-limiting site by allowing for a smooth transition from sub- to supercritical flow speeds, then matching mouth pressure by imposing an elastic jump (an abrupt transition from super- to subcritical flow speeds) at the appropriate location; and 4) the effects of levels of effort (or vacuum pressure) in excess of those required to produce incipient flow limitation are examined, including the effects of potential physiological limitation.

  10. Flow assignment model for quantitative analysis of diverting bulk freight from road to railway

    PubMed Central

    Liu, Chang; Wang, Jiaxi; Xiao, Jie; Liu, Siqi; Wu, Jianping; Li, Jian

    2017-01-01

    Since railway transport possesses the advantage of high volume and low carbon emissions, diverting some freight from road to railway will help reduce the negative environmental impacts associated with transport. This paper develops a flow assignment model for quantitative analysis of diverting truck freight to railway. First, a general network which considers road transportation, railway transportation, handling and transferring is established according to all the steps in the whole transportation process. Then general functions which embody the factors which the shippers will pay attention to when choosing mode and path are formulated. The general functions contain the congestion cost on road, the capacity constraints of railways and freight stations. Based on the general network and general cost function, a user equilibrium flow assignment model is developed to simulate the flow distribution on the general network under the condition that all shippers choose transportation mode and path independently. Since the model is nonlinear and challenging, we adopt a method that uses tangent lines to constitute envelope curve to linearize it. Finally, a numerical example is presented to test the model and show the method of making quantitative analysis of bulk freight modal shift between road and railway. PMID:28771536

  11. Cerebral capillary velocimetry based on temporal OCT speckle contrast.

    PubMed

    Choi, Woo June; Li, Yuandong; Qin, Wan; Wang, Ruikang K

    2016-12-01

    We propose a new optical coherence tomography (OCT) based method to measure red blood cell (RBC) velocities of single capillaries in the cortex of rodent brain. This OCT capillary velocimetry exploits quantitative laser speckle contrast analysis to estimate speckle decorrelation rate from the measured temporal OCT speckle signals, which is related to microcirculatory flow velocity. We hypothesize that OCT signal due to sub-surface capillary flow can be treated as the speckle signal in the single scattering regime and thus its time scale of speckle fluctuations can be subjected to single scattering laser speckle contrast analysis to derive characteristic decorrelation time. To validate this hypothesis, OCT measurements are conducted on a single capillary flow phantom operating at preset velocities, in which M-mode B-frames are acquired using a high-speed OCT system. Analysis is then performed on the time-varying OCT signals extracted at the capillary flow, exhibiting a typical inverse relationship between the estimated decorrelation time and absolute RBC velocity, which is then used to deduce the capillary velocities. We apply the method to in vivo measurements of mouse brain, demonstrating that the proposed approach provides additional useful information in the quantitative assessment of capillary hemodynamics, complementary to that of OCT angiography.

  12. Chemiluminometric determination of phenothiazines by means of a combined multi-commutated/multi-pumped flow assembly.

    PubMed

    Halaburda, P; Mateo, J V García

    2012-07-15

    A rapid, sensitive and fully automated chemiluminometric method is described for determination of five phenothiazine derivatives, namely, trifluoperazine, fluphenazine, perphenazine, thioridazine and chlorpromazine. The method is based on the chemiluminescence (CL) induced by the oxidation of drugs with Ce(IV) in nitric acid. A flow manifold based on the association of multi-commutation and multi-pumping flow methodologies is proposed. The active operated solenoid devices consisted of a micro-pump (propelling 50μL per stroke) and a six ports solenoid valve. Reconfiguration of the flow manifold was performed by using software settings, without physical alteration of the instrument manifold. It permits the design of flexible miniaturized networks for flow analysis based on a time-pulse-counting strategy. The proposed method allows the determination of the drugs at the ngmL(-1) level with a sample throughput of 38h(-1) (chlorpromazine) and 40h(-1) (trifluoperazine, fluphenazine, perphenazine, and thioridazine). The method was successfully applied to the determination of the phenothiazine derivatives in pharmaceuticals formulations. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. FloWave.US: validated, open-source, and flexible software for ultrasound blood flow analysis.

    PubMed

    Coolbaugh, Crystal L; Bush, Emily C; Caskey, Charles F; Damon, Bruce M; Towse, Theodore F

    2016-10-01

    Automated software improves the accuracy and reliability of blood velocity, vessel diameter, blood flow, and shear rate ultrasound measurements, but existing software offers limited flexibility to customize and validate analyses. We developed FloWave.US-open-source software to automate ultrasound blood flow analysis-and demonstrated the validity of its blood velocity (aggregate relative error, 4.32%) and vessel diameter (0.31%) measures with a skeletal muscle ultrasound flow phantom. Compared with a commercial, manual analysis software program, FloWave.US produced equivalent in vivo cardiac cycle time-averaged mean (TAMean) velocities at rest and following a 10-s muscle contraction (mean bias <1 pixel for both conditions). Automated analysis of ultrasound blood flow data was 9.8 times faster than the manual method. Finally, a case study of a lower extremity muscle contraction experiment highlighted the ability of FloWave.US to measure small fluctuations in TAMean velocity, vessel diameter, and mean blood flow at specific time points in the cardiac cycle. In summary, the collective features of our newly designed software-accuracy, reliability, reduced processing time, cost-effectiveness, and flexibility-offer advantages over existing proprietary options. Further, public distribution of FloWave.US allows researchers to easily access and customize code to adapt ultrasound blood flow analysis to a variety of vascular physiology applications. Copyright © 2016 the American Physiological Society.

  14. The shallow water equations as a hybrid flow model for the numerical and experimental analysis of hydro power stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostermann, Lars; Seidel, Christian

    2015-03-10

    The numerical analysis of hydro power stations is an important method of the hydraulic design and is used for the development and optimisation of hydro power stations in addition to the experiments with the physical submodel of a full model in the hydraulic laboratory. For the numerical analysis, 2D and 3D models are appropriate and commonly used.The 2D models refer mainly to the shallow water equations (SWE), since for this flow model a large experience on a wide field of applications for the flow analysis of numerous problems in hydraulic engineering already exists. Often, the flow model is verified bymore » in situ measurements. In order to consider 3D flow phenomena close to singularities like weirs, hydro power stations etc. the development of a hybrid fluid model is advantageous to improve the quality and significance of the global model. Here, an extended hybrid flow model based on the principle of the SWE is presented. The hybrid flow model directly links the numerical model with the experimental data, which may originate from physical full models, physical submodels and in-situ measurements. Hence a wide field of application of the hybrid model emerges including the improvement of numerical models and the strong coupling of numerical and experimental analysis.« less

  15. Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis

    PubMed Central

    Ojeda, Catalina Bosch; Rojas, Fuensanta Sánchez

    2006-01-01

    Optical techniques for chemical analysis are well established and sensors based on these techniques are now attracting considerable attention because of their importance in applications such as environmental monitoring, biomedical sensing, and industrial process control. On the other hand, flow injection analysis (FIA) is advisable for the rapid analysis of microliter volume samples and can be interfaced directly to the chemical process. The FIA has become a widespread automatic analytical method for more reasons; mainly due to the simplicity and low cost of the setups, their versatility, and ease of assembling. In this paper, an overview of flow injection determinations by using optical chemical sensors is provided, and instrumentation, sensor design, and applications are discussed. This work summarizes the most relevant manuscripts from 1980 to date referred to analysis using optical chemical sensors in FIA.

  16. Simulation of groundwater flow and streamflow depletion in the Branch Brook, Merriland River, and parts of the Mousam River watersheds in southern Maine

    USGS Publications Warehouse

    Nielsen, Martha G.; Locke, Daniel B.

    2015-01-01

    The study evaluated two different methods of calculating in-stream flow requirements for Branch Brook and the Merriland River—a set of statewide equations used to calculate monthly median flows and the MOVE.1 record-extension technique used on site-specific streamflow measurements. The August median in-stream flow requirement in the Merriland River was calculated as 7.18 ft3/s using the statewide equations but was 3.07 ft3/s using the MOVE.1 analysis. In Branch Brook, the August median in-stream flow requirements were calculated as 20.3 ft3/s using the statewide equations and 11.8 ft3/s using the MOVE.1 analysis. In each case, using site-specific data yields an estimate of in-stream flow that is much lower than an estimate the statewide equations provide.

  17. Computer program for aerodynamic and blading design of multistage axial-flow compressors

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.; Gorrell, W. T.

    1981-01-01

    A code for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis codes is presented. Compressible flow, which is assumed to be steady and axisymmetric, is the basis for a two-dimensional solution in the meridional plane with viscous effects modeled by pressure loss coefficients and boundary layer blockage. The radial equation of motion and the continuity equation are solved with the streamline curvature method on calculation stations outside the blade rows. The annulus profile, mass flow, pressure ratio, and rotative speed are input. A number of other input parameters specify and control the blade row aerodynamics and geometry. In particular, blade element centerlines and thicknesses can be specified with fourth degree polynomials for two segments. The output includes a detailed aerodynamic solution and, if desired, blading coordinates that can be used for internal flow analysis codes.

  18. Numerical Analysis of the Cavity Flow subjected to Passive Controls Techniques

    NASA Astrophysics Data System (ADS)

    Melih Guleren, Kursad; Turk, Seyfettin; Mirza Demircan, Osman; Demir, Oguzhan

    2018-03-01

    Open-source flow solvers are getting more and more popular for the analysis of challenging flow problems in aeronautical and mechanical engineering applications. They are offered under the GNU General Public License and can be run, examined, shared and modified according to user’s requirements. SU2 and OpenFOAM are the two most popular open-source solvers in Computational Fluid Dynamics (CFD) community. In the present study, some passive control methods on the high-speed cavity flows are numerically simulated using these open-source flow solvers along with one commercial flow solver called ANSYS/Fluent. The results are compared with the available experimental data. The solver SU2 are seen to predict satisfactory the mean streamline velocity but not turbulent kinetic energy and overall averaged sound pressure level (OASPL). Whereas OpenFOAM predicts all these parameters nearly as the same levels of ANSYS/Fluent.

  19. Analysis and Experimental Verification of New Power Flow Control for Grid-Connected Inverter with LCL Filter in Microgrid

    PubMed Central

    Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang

    2014-01-01

    Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method. PMID:24672304

  20. Methodology for sensitivity analysis, approximate analysis, and design optimization in CFD for multidisciplinary applications. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Hou, Gene W.

    1992-01-01

    Fundamental equations of aerodynamic sensitivity analysis and approximate analysis for the two dimensional thin layer Navier-Stokes equations are reviewed, and special boundary condition considerations necessary to apply these equations to isolated lifting airfoils on 'C' and 'O' meshes are discussed in detail. An efficient strategy which is based on the finite element method and an elastic membrane representation of the computational domain is successfully tested, which circumvents the costly 'brute force' method of obtaining grid sensitivity derivatives, and is also useful in mesh regeneration. The issue of turbulence modeling is addressed in a preliminary study. Aerodynamic shape sensitivity derivatives are efficiently calculated, and their accuracy is validated on two viscous test problems, including: (1) internal flow through a double throat nozzle, and (2) external flow over a NACA 4-digit airfoil. An automated aerodynamic design optimization strategy is outlined which includes the use of a design optimization program, an aerodynamic flow analysis code, an aerodynamic sensitivity and approximate analysis code, and a mesh regeneration and grid sensitivity analysis code. Application of the optimization methodology to the two test problems in each case resulted in a new design having a significantly improved performance in the aerodynamic response of interest.

Top